]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/huge_memory.c
PCI / PM: Always check PME wakeup capability for runtime wakeup support
[mirror_ubuntu-artful-kernel.git] / mm / huge_memory.c
1 /*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/sched/coredump.h>
13 #include <linux/sched/numa_balancing.h>
14 #include <linux/highmem.h>
15 #include <linux/hugetlb.h>
16 #include <linux/mmu_notifier.h>
17 #include <linux/rmap.h>
18 #include <linux/swap.h>
19 #include <linux/shrinker.h>
20 #include <linux/mm_inline.h>
21 #include <linux/swapops.h>
22 #include <linux/dax.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/pfn_t.h>
26 #include <linux/mman.h>
27 #include <linux/memremap.h>
28 #include <linux/pagemap.h>
29 #include <linux/debugfs.h>
30 #include <linux/migrate.h>
31 #include <linux/hashtable.h>
32 #include <linux/userfaultfd_k.h>
33 #include <linux/page_idle.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/oom.h>
36
37 #include <asm/tlb.h>
38 #include <asm/pgalloc.h>
39 #include "internal.h"
40
41 /*
42 * By default transparent hugepage support is disabled in order that avoid
43 * to risk increase the memory footprint of applications without a guaranteed
44 * benefit. When transparent hugepage support is enabled, is for all mappings,
45 * and khugepaged scans all mappings.
46 * Defrag is invoked by khugepaged hugepage allocations and by page faults
47 * for all hugepage allocations.
48 */
49 unsigned long transparent_hugepage_flags __read_mostly =
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
51 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
52 #endif
53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55 #endif
56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
59
60 static struct shrinker deferred_split_shrinker;
61
62 static atomic_t huge_zero_refcount;
63 struct page *huge_zero_page __read_mostly;
64
65 static struct page *get_huge_zero_page(void)
66 {
67 struct page *zero_page;
68 retry:
69 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
70 return READ_ONCE(huge_zero_page);
71
72 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
73 HPAGE_PMD_ORDER);
74 if (!zero_page) {
75 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
76 return NULL;
77 }
78 count_vm_event(THP_ZERO_PAGE_ALLOC);
79 preempt_disable();
80 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
81 preempt_enable();
82 __free_pages(zero_page, compound_order(zero_page));
83 goto retry;
84 }
85
86 /* We take additional reference here. It will be put back by shrinker */
87 atomic_set(&huge_zero_refcount, 2);
88 preempt_enable();
89 return READ_ONCE(huge_zero_page);
90 }
91
92 static void put_huge_zero_page(void)
93 {
94 /*
95 * Counter should never go to zero here. Only shrinker can put
96 * last reference.
97 */
98 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
99 }
100
101 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
102 {
103 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
104 return READ_ONCE(huge_zero_page);
105
106 if (!get_huge_zero_page())
107 return NULL;
108
109 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
110 put_huge_zero_page();
111
112 return READ_ONCE(huge_zero_page);
113 }
114
115 void mm_put_huge_zero_page(struct mm_struct *mm)
116 {
117 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
118 put_huge_zero_page();
119 }
120
121 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
122 struct shrink_control *sc)
123 {
124 /* we can free zero page only if last reference remains */
125 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
126 }
127
128 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
129 struct shrink_control *sc)
130 {
131 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
132 struct page *zero_page = xchg(&huge_zero_page, NULL);
133 BUG_ON(zero_page == NULL);
134 __free_pages(zero_page, compound_order(zero_page));
135 return HPAGE_PMD_NR;
136 }
137
138 return 0;
139 }
140
141 static struct shrinker huge_zero_page_shrinker = {
142 .count_objects = shrink_huge_zero_page_count,
143 .scan_objects = shrink_huge_zero_page_scan,
144 .seeks = DEFAULT_SEEKS,
145 };
146
147 #ifdef CONFIG_SYSFS
148 static ssize_t enabled_show(struct kobject *kobj,
149 struct kobj_attribute *attr, char *buf)
150 {
151 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
152 return sprintf(buf, "[always] madvise never\n");
153 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
154 return sprintf(buf, "always [madvise] never\n");
155 else
156 return sprintf(buf, "always madvise [never]\n");
157 }
158
159 static ssize_t enabled_store(struct kobject *kobj,
160 struct kobj_attribute *attr,
161 const char *buf, size_t count)
162 {
163 ssize_t ret = count;
164
165 if (!memcmp("always", buf,
166 min(sizeof("always")-1, count))) {
167 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
168 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
169 } else if (!memcmp("madvise", buf,
170 min(sizeof("madvise")-1, count))) {
171 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
172 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
173 } else if (!memcmp("never", buf,
174 min(sizeof("never")-1, count))) {
175 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
176 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
177 } else
178 ret = -EINVAL;
179
180 if (ret > 0) {
181 int err = start_stop_khugepaged();
182 if (err)
183 ret = err;
184 }
185 return ret;
186 }
187 static struct kobj_attribute enabled_attr =
188 __ATTR(enabled, 0644, enabled_show, enabled_store);
189
190 ssize_t single_hugepage_flag_show(struct kobject *kobj,
191 struct kobj_attribute *attr, char *buf,
192 enum transparent_hugepage_flag flag)
193 {
194 return sprintf(buf, "%d\n",
195 !!test_bit(flag, &transparent_hugepage_flags));
196 }
197
198 ssize_t single_hugepage_flag_store(struct kobject *kobj,
199 struct kobj_attribute *attr,
200 const char *buf, size_t count,
201 enum transparent_hugepage_flag flag)
202 {
203 unsigned long value;
204 int ret;
205
206 ret = kstrtoul(buf, 10, &value);
207 if (ret < 0)
208 return ret;
209 if (value > 1)
210 return -EINVAL;
211
212 if (value)
213 set_bit(flag, &transparent_hugepage_flags);
214 else
215 clear_bit(flag, &transparent_hugepage_flags);
216
217 return count;
218 }
219
220 static ssize_t defrag_show(struct kobject *kobj,
221 struct kobj_attribute *attr, char *buf)
222 {
223 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
224 return sprintf(buf, "[always] defer defer+madvise madvise never\n");
225 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
226 return sprintf(buf, "always [defer] defer+madvise madvise never\n");
227 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
228 return sprintf(buf, "always defer [defer+madvise] madvise never\n");
229 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
230 return sprintf(buf, "always defer defer+madvise [madvise] never\n");
231 return sprintf(buf, "always defer defer+madvise madvise [never]\n");
232 }
233
234 static ssize_t defrag_store(struct kobject *kobj,
235 struct kobj_attribute *attr,
236 const char *buf, size_t count)
237 {
238 if (!memcmp("always", buf,
239 min(sizeof("always")-1, count))) {
240 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
241 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
242 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
243 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
244 } else if (!memcmp("defer+madvise", buf,
245 min(sizeof("defer+madvise")-1, count))) {
246 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
247 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
248 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
249 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
250 } else if (!memcmp("defer", buf,
251 min(sizeof("defer")-1, count))) {
252 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
253 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
254 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
255 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
256 } else if (!memcmp("madvise", buf,
257 min(sizeof("madvise")-1, count))) {
258 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
259 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
260 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
261 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
262 } else if (!memcmp("never", buf,
263 min(sizeof("never")-1, count))) {
264 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
265 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
266 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
267 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
268 } else
269 return -EINVAL;
270
271 return count;
272 }
273 static struct kobj_attribute defrag_attr =
274 __ATTR(defrag, 0644, defrag_show, defrag_store);
275
276 static ssize_t use_zero_page_show(struct kobject *kobj,
277 struct kobj_attribute *attr, char *buf)
278 {
279 return single_hugepage_flag_show(kobj, attr, buf,
280 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
281 }
282 static ssize_t use_zero_page_store(struct kobject *kobj,
283 struct kobj_attribute *attr, const char *buf, size_t count)
284 {
285 return single_hugepage_flag_store(kobj, attr, buf, count,
286 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
287 }
288 static struct kobj_attribute use_zero_page_attr =
289 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
290
291 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
292 struct kobj_attribute *attr, char *buf)
293 {
294 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
295 }
296 static struct kobj_attribute hpage_pmd_size_attr =
297 __ATTR_RO(hpage_pmd_size);
298
299 #ifdef CONFIG_DEBUG_VM
300 static ssize_t debug_cow_show(struct kobject *kobj,
301 struct kobj_attribute *attr, char *buf)
302 {
303 return single_hugepage_flag_show(kobj, attr, buf,
304 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
305 }
306 static ssize_t debug_cow_store(struct kobject *kobj,
307 struct kobj_attribute *attr,
308 const char *buf, size_t count)
309 {
310 return single_hugepage_flag_store(kobj, attr, buf, count,
311 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
312 }
313 static struct kobj_attribute debug_cow_attr =
314 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
315 #endif /* CONFIG_DEBUG_VM */
316
317 static struct attribute *hugepage_attr[] = {
318 &enabled_attr.attr,
319 &defrag_attr.attr,
320 &use_zero_page_attr.attr,
321 &hpage_pmd_size_attr.attr,
322 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
323 &shmem_enabled_attr.attr,
324 #endif
325 #ifdef CONFIG_DEBUG_VM
326 &debug_cow_attr.attr,
327 #endif
328 NULL,
329 };
330
331 static struct attribute_group hugepage_attr_group = {
332 .attrs = hugepage_attr,
333 };
334
335 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
336 {
337 int err;
338
339 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
340 if (unlikely(!*hugepage_kobj)) {
341 pr_err("failed to create transparent hugepage kobject\n");
342 return -ENOMEM;
343 }
344
345 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
346 if (err) {
347 pr_err("failed to register transparent hugepage group\n");
348 goto delete_obj;
349 }
350
351 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
352 if (err) {
353 pr_err("failed to register transparent hugepage group\n");
354 goto remove_hp_group;
355 }
356
357 return 0;
358
359 remove_hp_group:
360 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
361 delete_obj:
362 kobject_put(*hugepage_kobj);
363 return err;
364 }
365
366 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
367 {
368 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
369 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
370 kobject_put(hugepage_kobj);
371 }
372 #else
373 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
374 {
375 return 0;
376 }
377
378 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
379 {
380 }
381 #endif /* CONFIG_SYSFS */
382
383 static int __init hugepage_init(void)
384 {
385 int err;
386 struct kobject *hugepage_kobj;
387
388 if (!has_transparent_hugepage()) {
389 transparent_hugepage_flags = 0;
390 return -EINVAL;
391 }
392
393 /*
394 * hugepages can't be allocated by the buddy allocator
395 */
396 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
397 /*
398 * we use page->mapping and page->index in second tail page
399 * as list_head: assuming THP order >= 2
400 */
401 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
402
403 err = hugepage_init_sysfs(&hugepage_kobj);
404 if (err)
405 goto err_sysfs;
406
407 err = khugepaged_init();
408 if (err)
409 goto err_slab;
410
411 err = register_shrinker(&huge_zero_page_shrinker);
412 if (err)
413 goto err_hzp_shrinker;
414 err = register_shrinker(&deferred_split_shrinker);
415 if (err)
416 goto err_split_shrinker;
417
418 /*
419 * By default disable transparent hugepages on smaller systems,
420 * where the extra memory used could hurt more than TLB overhead
421 * is likely to save. The admin can still enable it through /sys.
422 */
423 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
424 transparent_hugepage_flags = 0;
425 return 0;
426 }
427
428 err = start_stop_khugepaged();
429 if (err)
430 goto err_khugepaged;
431
432 return 0;
433 err_khugepaged:
434 unregister_shrinker(&deferred_split_shrinker);
435 err_split_shrinker:
436 unregister_shrinker(&huge_zero_page_shrinker);
437 err_hzp_shrinker:
438 khugepaged_destroy();
439 err_slab:
440 hugepage_exit_sysfs(hugepage_kobj);
441 err_sysfs:
442 return err;
443 }
444 subsys_initcall(hugepage_init);
445
446 static int __init setup_transparent_hugepage(char *str)
447 {
448 int ret = 0;
449 if (!str)
450 goto out;
451 if (!strcmp(str, "always")) {
452 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
453 &transparent_hugepage_flags);
454 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
455 &transparent_hugepage_flags);
456 ret = 1;
457 } else if (!strcmp(str, "madvise")) {
458 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
459 &transparent_hugepage_flags);
460 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
461 &transparent_hugepage_flags);
462 ret = 1;
463 } else if (!strcmp(str, "never")) {
464 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
465 &transparent_hugepage_flags);
466 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
467 &transparent_hugepage_flags);
468 ret = 1;
469 }
470 out:
471 if (!ret)
472 pr_warn("transparent_hugepage= cannot parse, ignored\n");
473 return ret;
474 }
475 __setup("transparent_hugepage=", setup_transparent_hugepage);
476
477 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
478 {
479 if (likely(vma->vm_flags & VM_WRITE))
480 pmd = pmd_mkwrite(pmd);
481 return pmd;
482 }
483
484 static inline struct list_head *page_deferred_list(struct page *page)
485 {
486 /*
487 * ->lru in the tail pages is occupied by compound_head.
488 * Let's use ->mapping + ->index in the second tail page as list_head.
489 */
490 return (struct list_head *)&page[2].mapping;
491 }
492
493 void prep_transhuge_page(struct page *page)
494 {
495 /*
496 * we use page->mapping and page->indexlru in second tail page
497 * as list_head: assuming THP order >= 2
498 */
499
500 INIT_LIST_HEAD(page_deferred_list(page));
501 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
502 }
503
504 unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
505 loff_t off, unsigned long flags, unsigned long size)
506 {
507 unsigned long addr;
508 loff_t off_end = off + len;
509 loff_t off_align = round_up(off, size);
510 unsigned long len_pad;
511
512 if (off_end <= off_align || (off_end - off_align) < size)
513 return 0;
514
515 len_pad = len + size;
516 if (len_pad < len || (off + len_pad) < off)
517 return 0;
518
519 addr = current->mm->get_unmapped_area(filp, 0, len_pad,
520 off >> PAGE_SHIFT, flags);
521 if (IS_ERR_VALUE(addr))
522 return 0;
523
524 addr += (off - addr) & (size - 1);
525 return addr;
526 }
527
528 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
529 unsigned long len, unsigned long pgoff, unsigned long flags)
530 {
531 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
532
533 if (addr)
534 goto out;
535 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
536 goto out;
537
538 addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
539 if (addr)
540 return addr;
541
542 out:
543 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
544 }
545 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
546
547 static int __do_huge_pmd_anonymous_page(struct vm_fault *vmf, struct page *page,
548 gfp_t gfp)
549 {
550 struct vm_area_struct *vma = vmf->vma;
551 struct mem_cgroup *memcg;
552 pgtable_t pgtable;
553 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
554 int ret = 0;
555
556 VM_BUG_ON_PAGE(!PageCompound(page), page);
557
558 if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
559 put_page(page);
560 count_vm_event(THP_FAULT_FALLBACK);
561 return VM_FAULT_FALLBACK;
562 }
563
564 pgtable = pte_alloc_one(vma->vm_mm, haddr);
565 if (unlikely(!pgtable)) {
566 ret = VM_FAULT_OOM;
567 goto release;
568 }
569
570 clear_huge_page(page, haddr, HPAGE_PMD_NR);
571 /*
572 * The memory barrier inside __SetPageUptodate makes sure that
573 * clear_huge_page writes become visible before the set_pmd_at()
574 * write.
575 */
576 __SetPageUptodate(page);
577
578 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
579 if (unlikely(!pmd_none(*vmf->pmd))) {
580 goto unlock_release;
581 } else {
582 pmd_t entry;
583
584 ret = check_stable_address_space(vma->vm_mm);
585 if (ret)
586 goto unlock_release;
587
588 /* Deliver the page fault to userland */
589 if (userfaultfd_missing(vma)) {
590 int ret;
591
592 spin_unlock(vmf->ptl);
593 mem_cgroup_cancel_charge(page, memcg, true);
594 put_page(page);
595 pte_free(vma->vm_mm, pgtable);
596 ret = handle_userfault(vmf, VM_UFFD_MISSING);
597 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
598 return ret;
599 }
600
601 entry = mk_huge_pmd(page, vma->vm_page_prot);
602 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
603 page_add_new_anon_rmap(page, vma, haddr, true);
604 mem_cgroup_commit_charge(page, memcg, false, true);
605 lru_cache_add_active_or_unevictable(page, vma);
606 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
607 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
608 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
609 atomic_long_inc(&vma->vm_mm->nr_ptes);
610 spin_unlock(vmf->ptl);
611 count_vm_event(THP_FAULT_ALLOC);
612 }
613
614 return 0;
615 unlock_release:
616 spin_unlock(vmf->ptl);
617 release:
618 if (pgtable)
619 pte_free(vma->vm_mm, pgtable);
620 mem_cgroup_cancel_charge(page, memcg, true);
621 put_page(page);
622 return ret;
623
624 }
625
626 /*
627 * always: directly stall for all thp allocations
628 * defer: wake kswapd and fail if not immediately available
629 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
630 * fail if not immediately available
631 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
632 * available
633 * never: never stall for any thp allocation
634 */
635 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
636 {
637 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
638
639 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
640 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
641 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
642 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
643 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
644 return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
645 __GFP_KSWAPD_RECLAIM);
646 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
647 return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
648 0);
649 return GFP_TRANSHUGE_LIGHT;
650 }
651
652 /* Caller must hold page table lock. */
653 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
654 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
655 struct page *zero_page)
656 {
657 pmd_t entry;
658 if (!pmd_none(*pmd))
659 return false;
660 entry = mk_pmd(zero_page, vma->vm_page_prot);
661 entry = pmd_mkhuge(entry);
662 if (pgtable)
663 pgtable_trans_huge_deposit(mm, pmd, pgtable);
664 set_pmd_at(mm, haddr, pmd, entry);
665 atomic_long_inc(&mm->nr_ptes);
666 return true;
667 }
668
669 int do_huge_pmd_anonymous_page(struct vm_fault *vmf)
670 {
671 struct vm_area_struct *vma = vmf->vma;
672 gfp_t gfp;
673 struct page *page;
674 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
675
676 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
677 return VM_FAULT_FALLBACK;
678 if (unlikely(anon_vma_prepare(vma)))
679 return VM_FAULT_OOM;
680 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
681 return VM_FAULT_OOM;
682 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
683 !mm_forbids_zeropage(vma->vm_mm) &&
684 transparent_hugepage_use_zero_page()) {
685 pgtable_t pgtable;
686 struct page *zero_page;
687 bool set;
688 int ret;
689 pgtable = pte_alloc_one(vma->vm_mm, haddr);
690 if (unlikely(!pgtable))
691 return VM_FAULT_OOM;
692 zero_page = mm_get_huge_zero_page(vma->vm_mm);
693 if (unlikely(!zero_page)) {
694 pte_free(vma->vm_mm, pgtable);
695 count_vm_event(THP_FAULT_FALLBACK);
696 return VM_FAULT_FALLBACK;
697 }
698 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
699 ret = 0;
700 set = false;
701 if (pmd_none(*vmf->pmd)) {
702 ret = check_stable_address_space(vma->vm_mm);
703 if (ret) {
704 spin_unlock(vmf->ptl);
705 } else if (userfaultfd_missing(vma)) {
706 spin_unlock(vmf->ptl);
707 ret = handle_userfault(vmf, VM_UFFD_MISSING);
708 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
709 } else {
710 set_huge_zero_page(pgtable, vma->vm_mm, vma,
711 haddr, vmf->pmd, zero_page);
712 spin_unlock(vmf->ptl);
713 set = true;
714 }
715 } else
716 spin_unlock(vmf->ptl);
717 if (!set)
718 pte_free(vma->vm_mm, pgtable);
719 return ret;
720 }
721 gfp = alloc_hugepage_direct_gfpmask(vma);
722 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
723 if (unlikely(!page)) {
724 count_vm_event(THP_FAULT_FALLBACK);
725 return VM_FAULT_FALLBACK;
726 }
727 prep_transhuge_page(page);
728 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
729 }
730
731 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
732 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
733 pgtable_t pgtable)
734 {
735 struct mm_struct *mm = vma->vm_mm;
736 pmd_t entry;
737 spinlock_t *ptl;
738
739 ptl = pmd_lock(mm, pmd);
740 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
741 if (pfn_t_devmap(pfn))
742 entry = pmd_mkdevmap(entry);
743 if (write) {
744 entry = pmd_mkyoung(pmd_mkdirty(entry));
745 entry = maybe_pmd_mkwrite(entry, vma);
746 }
747
748 if (pgtable) {
749 pgtable_trans_huge_deposit(mm, pmd, pgtable);
750 atomic_long_inc(&mm->nr_ptes);
751 }
752
753 set_pmd_at(mm, addr, pmd, entry);
754 update_mmu_cache_pmd(vma, addr, pmd);
755 spin_unlock(ptl);
756 }
757
758 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
759 pmd_t *pmd, pfn_t pfn, bool write)
760 {
761 pgprot_t pgprot = vma->vm_page_prot;
762 pgtable_t pgtable = NULL;
763 /*
764 * If we had pmd_special, we could avoid all these restrictions,
765 * but we need to be consistent with PTEs and architectures that
766 * can't support a 'special' bit.
767 */
768 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
769 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
770 (VM_PFNMAP|VM_MIXEDMAP));
771 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
772 BUG_ON(!pfn_t_devmap(pfn));
773
774 if (addr < vma->vm_start || addr >= vma->vm_end)
775 return VM_FAULT_SIGBUS;
776
777 if (arch_needs_pgtable_deposit()) {
778 pgtable = pte_alloc_one(vma->vm_mm, addr);
779 if (!pgtable)
780 return VM_FAULT_OOM;
781 }
782
783 track_pfn_insert(vma, &pgprot, pfn);
784
785 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write, pgtable);
786 return VM_FAULT_NOPAGE;
787 }
788 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
789
790 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
791 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
792 {
793 if (likely(vma->vm_flags & VM_WRITE))
794 pud = pud_mkwrite(pud);
795 return pud;
796 }
797
798 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
799 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
800 {
801 struct mm_struct *mm = vma->vm_mm;
802 pud_t entry;
803 spinlock_t *ptl;
804
805 ptl = pud_lock(mm, pud);
806 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
807 if (pfn_t_devmap(pfn))
808 entry = pud_mkdevmap(entry);
809 if (write) {
810 entry = pud_mkyoung(pud_mkdirty(entry));
811 entry = maybe_pud_mkwrite(entry, vma);
812 }
813 set_pud_at(mm, addr, pud, entry);
814 update_mmu_cache_pud(vma, addr, pud);
815 spin_unlock(ptl);
816 }
817
818 int vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
819 pud_t *pud, pfn_t pfn, bool write)
820 {
821 pgprot_t pgprot = vma->vm_page_prot;
822 /*
823 * If we had pud_special, we could avoid all these restrictions,
824 * but we need to be consistent with PTEs and architectures that
825 * can't support a 'special' bit.
826 */
827 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
828 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
829 (VM_PFNMAP|VM_MIXEDMAP));
830 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
831 BUG_ON(!pfn_t_devmap(pfn));
832
833 if (addr < vma->vm_start || addr >= vma->vm_end)
834 return VM_FAULT_SIGBUS;
835
836 track_pfn_insert(vma, &pgprot, pfn);
837
838 insert_pfn_pud(vma, addr, pud, pfn, pgprot, write);
839 return VM_FAULT_NOPAGE;
840 }
841 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
842 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
843
844 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
845 pmd_t *pmd, int flags)
846 {
847 pmd_t _pmd;
848
849 _pmd = pmd_mkyoung(*pmd);
850 if (flags & FOLL_WRITE)
851 _pmd = pmd_mkdirty(_pmd);
852 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
853 pmd, _pmd, flags & FOLL_WRITE))
854 update_mmu_cache_pmd(vma, addr, pmd);
855 }
856
857 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
858 pmd_t *pmd, int flags)
859 {
860 unsigned long pfn = pmd_pfn(*pmd);
861 struct mm_struct *mm = vma->vm_mm;
862 struct dev_pagemap *pgmap;
863 struct page *page;
864
865 assert_spin_locked(pmd_lockptr(mm, pmd));
866
867 /*
868 * When we COW a devmap PMD entry, we split it into PTEs, so we should
869 * not be in this function with `flags & FOLL_COW` set.
870 */
871 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
872
873 if (flags & FOLL_WRITE && !pmd_write(*pmd))
874 return NULL;
875
876 if (pmd_present(*pmd) && pmd_devmap(*pmd))
877 /* pass */;
878 else
879 return NULL;
880
881 if (flags & FOLL_TOUCH)
882 touch_pmd(vma, addr, pmd, flags);
883
884 /*
885 * device mapped pages can only be returned if the
886 * caller will manage the page reference count.
887 */
888 if (!(flags & FOLL_GET))
889 return ERR_PTR(-EEXIST);
890
891 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
892 pgmap = get_dev_pagemap(pfn, NULL);
893 if (!pgmap)
894 return ERR_PTR(-EFAULT);
895 page = pfn_to_page(pfn);
896 get_page(page);
897 put_dev_pagemap(pgmap);
898
899 return page;
900 }
901
902 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
903 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
904 struct vm_area_struct *vma)
905 {
906 spinlock_t *dst_ptl, *src_ptl;
907 struct page *src_page;
908 pmd_t pmd;
909 pgtable_t pgtable = NULL;
910 int ret = -ENOMEM;
911
912 /* Skip if can be re-fill on fault */
913 if (!vma_is_anonymous(vma))
914 return 0;
915
916 pgtable = pte_alloc_one(dst_mm, addr);
917 if (unlikely(!pgtable))
918 goto out;
919
920 dst_ptl = pmd_lock(dst_mm, dst_pmd);
921 src_ptl = pmd_lockptr(src_mm, src_pmd);
922 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
923
924 ret = -EAGAIN;
925 pmd = *src_pmd;
926 if (unlikely(!pmd_trans_huge(pmd))) {
927 pte_free(dst_mm, pgtable);
928 goto out_unlock;
929 }
930 /*
931 * When page table lock is held, the huge zero pmd should not be
932 * under splitting since we don't split the page itself, only pmd to
933 * a page table.
934 */
935 if (is_huge_zero_pmd(pmd)) {
936 struct page *zero_page;
937 /*
938 * get_huge_zero_page() will never allocate a new page here,
939 * since we already have a zero page to copy. It just takes a
940 * reference.
941 */
942 zero_page = mm_get_huge_zero_page(dst_mm);
943 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
944 zero_page);
945 ret = 0;
946 goto out_unlock;
947 }
948
949 src_page = pmd_page(pmd);
950 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
951 get_page(src_page);
952 page_dup_rmap(src_page, true);
953 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
954 atomic_long_inc(&dst_mm->nr_ptes);
955 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
956
957 pmdp_set_wrprotect(src_mm, addr, src_pmd);
958 pmd = pmd_mkold(pmd_wrprotect(pmd));
959 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
960
961 ret = 0;
962 out_unlock:
963 spin_unlock(src_ptl);
964 spin_unlock(dst_ptl);
965 out:
966 return ret;
967 }
968
969 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
970 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
971 pud_t *pud, int flags)
972 {
973 pud_t _pud;
974
975 _pud = pud_mkyoung(*pud);
976 if (flags & FOLL_WRITE)
977 _pud = pud_mkdirty(_pud);
978 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
979 pud, _pud, flags & FOLL_WRITE))
980 update_mmu_cache_pud(vma, addr, pud);
981 }
982
983 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
984 pud_t *pud, int flags)
985 {
986 unsigned long pfn = pud_pfn(*pud);
987 struct mm_struct *mm = vma->vm_mm;
988 struct dev_pagemap *pgmap;
989 struct page *page;
990
991 assert_spin_locked(pud_lockptr(mm, pud));
992
993 if (flags & FOLL_WRITE && !pud_write(*pud))
994 return NULL;
995
996 if (pud_present(*pud) && pud_devmap(*pud))
997 /* pass */;
998 else
999 return NULL;
1000
1001 if (flags & FOLL_TOUCH)
1002 touch_pud(vma, addr, pud, flags);
1003
1004 /*
1005 * device mapped pages can only be returned if the
1006 * caller will manage the page reference count.
1007 */
1008 if (!(flags & FOLL_GET))
1009 return ERR_PTR(-EEXIST);
1010
1011 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1012 pgmap = get_dev_pagemap(pfn, NULL);
1013 if (!pgmap)
1014 return ERR_PTR(-EFAULT);
1015 page = pfn_to_page(pfn);
1016 get_page(page);
1017 put_dev_pagemap(pgmap);
1018
1019 return page;
1020 }
1021
1022 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1023 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1024 struct vm_area_struct *vma)
1025 {
1026 spinlock_t *dst_ptl, *src_ptl;
1027 pud_t pud;
1028 int ret;
1029
1030 dst_ptl = pud_lock(dst_mm, dst_pud);
1031 src_ptl = pud_lockptr(src_mm, src_pud);
1032 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1033
1034 ret = -EAGAIN;
1035 pud = *src_pud;
1036 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1037 goto out_unlock;
1038
1039 /*
1040 * When page table lock is held, the huge zero pud should not be
1041 * under splitting since we don't split the page itself, only pud to
1042 * a page table.
1043 */
1044 if (is_huge_zero_pud(pud)) {
1045 /* No huge zero pud yet */
1046 }
1047
1048 pudp_set_wrprotect(src_mm, addr, src_pud);
1049 pud = pud_mkold(pud_wrprotect(pud));
1050 set_pud_at(dst_mm, addr, dst_pud, pud);
1051
1052 ret = 0;
1053 out_unlock:
1054 spin_unlock(src_ptl);
1055 spin_unlock(dst_ptl);
1056 return ret;
1057 }
1058
1059 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1060 {
1061 pud_t entry;
1062 unsigned long haddr;
1063 bool write = vmf->flags & FAULT_FLAG_WRITE;
1064
1065 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1066 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1067 goto unlock;
1068
1069 entry = pud_mkyoung(orig_pud);
1070 if (write)
1071 entry = pud_mkdirty(entry);
1072 haddr = vmf->address & HPAGE_PUD_MASK;
1073 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1074 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1075
1076 unlock:
1077 spin_unlock(vmf->ptl);
1078 }
1079 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1080
1081 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1082 {
1083 pmd_t entry;
1084 unsigned long haddr;
1085 bool write = vmf->flags & FAULT_FLAG_WRITE;
1086
1087 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1088 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1089 goto unlock;
1090
1091 entry = pmd_mkyoung(orig_pmd);
1092 if (write)
1093 entry = pmd_mkdirty(entry);
1094 haddr = vmf->address & HPAGE_PMD_MASK;
1095 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1096 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1097
1098 unlock:
1099 spin_unlock(vmf->ptl);
1100 }
1101
1102 static int do_huge_pmd_wp_page_fallback(struct vm_fault *vmf, pmd_t orig_pmd,
1103 struct page *page)
1104 {
1105 struct vm_area_struct *vma = vmf->vma;
1106 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1107 struct mem_cgroup *memcg;
1108 pgtable_t pgtable;
1109 pmd_t _pmd;
1110 int ret = 0, i;
1111 struct page **pages;
1112 unsigned long mmun_start; /* For mmu_notifiers */
1113 unsigned long mmun_end; /* For mmu_notifiers */
1114
1115 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1116 GFP_KERNEL);
1117 if (unlikely(!pages)) {
1118 ret |= VM_FAULT_OOM;
1119 goto out;
1120 }
1121
1122 for (i = 0; i < HPAGE_PMD_NR; i++) {
1123 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
1124 vmf->address, page_to_nid(page));
1125 if (unlikely(!pages[i] ||
1126 mem_cgroup_try_charge(pages[i], vma->vm_mm,
1127 GFP_KERNEL, &memcg, false))) {
1128 if (pages[i])
1129 put_page(pages[i]);
1130 while (--i >= 0) {
1131 memcg = (void *)page_private(pages[i]);
1132 set_page_private(pages[i], 0);
1133 mem_cgroup_cancel_charge(pages[i], memcg,
1134 false);
1135 put_page(pages[i]);
1136 }
1137 kfree(pages);
1138 ret |= VM_FAULT_OOM;
1139 goto out;
1140 }
1141 set_page_private(pages[i], (unsigned long)memcg);
1142 }
1143
1144 for (i = 0; i < HPAGE_PMD_NR; i++) {
1145 copy_user_highpage(pages[i], page + i,
1146 haddr + PAGE_SIZE * i, vma);
1147 __SetPageUptodate(pages[i]);
1148 cond_resched();
1149 }
1150
1151 mmun_start = haddr;
1152 mmun_end = haddr + HPAGE_PMD_SIZE;
1153 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1154
1155 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1156 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1157 goto out_free_pages;
1158 VM_BUG_ON_PAGE(!PageHead(page), page);
1159
1160 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1161 /* leave pmd empty until pte is filled */
1162
1163 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
1164 pmd_populate(vma->vm_mm, &_pmd, pgtable);
1165
1166 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1167 pte_t entry;
1168 entry = mk_pte(pages[i], vma->vm_page_prot);
1169 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1170 memcg = (void *)page_private(pages[i]);
1171 set_page_private(pages[i], 0);
1172 page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1173 mem_cgroup_commit_charge(pages[i], memcg, false, false);
1174 lru_cache_add_active_or_unevictable(pages[i], vma);
1175 vmf->pte = pte_offset_map(&_pmd, haddr);
1176 VM_BUG_ON(!pte_none(*vmf->pte));
1177 set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1178 pte_unmap(vmf->pte);
1179 }
1180 kfree(pages);
1181
1182 smp_wmb(); /* make pte visible before pmd */
1183 pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1184 page_remove_rmap(page, true);
1185 spin_unlock(vmf->ptl);
1186
1187 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1188
1189 ret |= VM_FAULT_WRITE;
1190 put_page(page);
1191
1192 out:
1193 return ret;
1194
1195 out_free_pages:
1196 spin_unlock(vmf->ptl);
1197 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1198 for (i = 0; i < HPAGE_PMD_NR; i++) {
1199 memcg = (void *)page_private(pages[i]);
1200 set_page_private(pages[i], 0);
1201 mem_cgroup_cancel_charge(pages[i], memcg, false);
1202 put_page(pages[i]);
1203 }
1204 kfree(pages);
1205 goto out;
1206 }
1207
1208 int do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1209 {
1210 struct vm_area_struct *vma = vmf->vma;
1211 struct page *page = NULL, *new_page;
1212 struct mem_cgroup *memcg;
1213 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1214 unsigned long mmun_start; /* For mmu_notifiers */
1215 unsigned long mmun_end; /* For mmu_notifiers */
1216 gfp_t huge_gfp; /* for allocation and charge */
1217 int ret = 0;
1218
1219 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1220 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1221 if (is_huge_zero_pmd(orig_pmd))
1222 goto alloc;
1223 spin_lock(vmf->ptl);
1224 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1225 goto out_unlock;
1226
1227 page = pmd_page(orig_pmd);
1228 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1229 /*
1230 * We can only reuse the page if nobody else maps the huge page or it's
1231 * part.
1232 */
1233 if (page_trans_huge_mapcount(page, NULL) == 1) {
1234 pmd_t entry;
1235 entry = pmd_mkyoung(orig_pmd);
1236 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1237 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1238 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1239 ret |= VM_FAULT_WRITE;
1240 goto out_unlock;
1241 }
1242 get_page(page);
1243 spin_unlock(vmf->ptl);
1244 alloc:
1245 if (transparent_hugepage_enabled(vma) &&
1246 !transparent_hugepage_debug_cow()) {
1247 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1248 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1249 } else
1250 new_page = NULL;
1251
1252 if (likely(new_page)) {
1253 prep_transhuge_page(new_page);
1254 } else {
1255 if (!page) {
1256 split_huge_pmd(vma, vmf->pmd, vmf->address);
1257 ret |= VM_FAULT_FALLBACK;
1258 } else {
1259 ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1260 if (ret & VM_FAULT_OOM) {
1261 split_huge_pmd(vma, vmf->pmd, vmf->address);
1262 ret |= VM_FAULT_FALLBACK;
1263 }
1264 put_page(page);
1265 }
1266 count_vm_event(THP_FAULT_FALLBACK);
1267 goto out;
1268 }
1269
1270 if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
1271 huge_gfp, &memcg, true))) {
1272 put_page(new_page);
1273 split_huge_pmd(vma, vmf->pmd, vmf->address);
1274 if (page)
1275 put_page(page);
1276 ret |= VM_FAULT_FALLBACK;
1277 count_vm_event(THP_FAULT_FALLBACK);
1278 goto out;
1279 }
1280
1281 count_vm_event(THP_FAULT_ALLOC);
1282
1283 if (!page)
1284 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1285 else
1286 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1287 __SetPageUptodate(new_page);
1288
1289 mmun_start = haddr;
1290 mmun_end = haddr + HPAGE_PMD_SIZE;
1291 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1292
1293 spin_lock(vmf->ptl);
1294 if (page)
1295 put_page(page);
1296 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1297 spin_unlock(vmf->ptl);
1298 mem_cgroup_cancel_charge(new_page, memcg, true);
1299 put_page(new_page);
1300 goto out_mn;
1301 } else {
1302 pmd_t entry;
1303 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1304 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1305 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1306 page_add_new_anon_rmap(new_page, vma, haddr, true);
1307 mem_cgroup_commit_charge(new_page, memcg, false, true);
1308 lru_cache_add_active_or_unevictable(new_page, vma);
1309 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1310 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1311 if (!page) {
1312 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1313 } else {
1314 VM_BUG_ON_PAGE(!PageHead(page), page);
1315 page_remove_rmap(page, true);
1316 put_page(page);
1317 }
1318 ret |= VM_FAULT_WRITE;
1319 }
1320 spin_unlock(vmf->ptl);
1321 out_mn:
1322 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1323 out:
1324 return ret;
1325 out_unlock:
1326 spin_unlock(vmf->ptl);
1327 return ret;
1328 }
1329
1330 /*
1331 * FOLL_FORCE can write to even unwritable pmd's, but only
1332 * after we've gone through a COW cycle and they are dirty.
1333 */
1334 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1335 {
1336 return pmd_write(pmd) ||
1337 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1338 }
1339
1340 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1341 unsigned long addr,
1342 pmd_t *pmd,
1343 unsigned int flags)
1344 {
1345 struct mm_struct *mm = vma->vm_mm;
1346 struct page *page = NULL;
1347
1348 assert_spin_locked(pmd_lockptr(mm, pmd));
1349
1350 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1351 goto out;
1352
1353 /* Avoid dumping huge zero page */
1354 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1355 return ERR_PTR(-EFAULT);
1356
1357 /* Full NUMA hinting faults to serialise migration in fault paths */
1358 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1359 goto out;
1360
1361 page = pmd_page(*pmd);
1362 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1363 if (flags & FOLL_TOUCH)
1364 touch_pmd(vma, addr, pmd, flags);
1365 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1366 /*
1367 * We don't mlock() pte-mapped THPs. This way we can avoid
1368 * leaking mlocked pages into non-VM_LOCKED VMAs.
1369 *
1370 * For anon THP:
1371 *
1372 * In most cases the pmd is the only mapping of the page as we
1373 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1374 * writable private mappings in populate_vma_page_range().
1375 *
1376 * The only scenario when we have the page shared here is if we
1377 * mlocking read-only mapping shared over fork(). We skip
1378 * mlocking such pages.
1379 *
1380 * For file THP:
1381 *
1382 * We can expect PageDoubleMap() to be stable under page lock:
1383 * for file pages we set it in page_add_file_rmap(), which
1384 * requires page to be locked.
1385 */
1386
1387 if (PageAnon(page) && compound_mapcount(page) != 1)
1388 goto skip_mlock;
1389 if (PageDoubleMap(page) || !page->mapping)
1390 goto skip_mlock;
1391 if (!trylock_page(page))
1392 goto skip_mlock;
1393 lru_add_drain();
1394 if (page->mapping && !PageDoubleMap(page))
1395 mlock_vma_page(page);
1396 unlock_page(page);
1397 }
1398 skip_mlock:
1399 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1400 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1401 if (flags & FOLL_GET)
1402 get_page(page);
1403
1404 out:
1405 return page;
1406 }
1407
1408 /* NUMA hinting page fault entry point for trans huge pmds */
1409 int do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1410 {
1411 struct vm_area_struct *vma = vmf->vma;
1412 struct anon_vma *anon_vma = NULL;
1413 struct page *page;
1414 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1415 int page_nid = -1, this_nid = numa_node_id();
1416 int target_nid, last_cpupid = -1;
1417 bool page_locked;
1418 bool migrated = false;
1419 bool was_writable;
1420 int flags = 0;
1421
1422 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1423 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1424 goto out_unlock;
1425
1426 /*
1427 * If there are potential migrations, wait for completion and retry
1428 * without disrupting NUMA hinting information. Do not relock and
1429 * check_same as the page may no longer be mapped.
1430 */
1431 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1432 page = pmd_page(*vmf->pmd);
1433 if (!get_page_unless_zero(page))
1434 goto out_unlock;
1435 spin_unlock(vmf->ptl);
1436 wait_on_page_locked(page);
1437 put_page(page);
1438 goto out;
1439 }
1440
1441 page = pmd_page(pmd);
1442 BUG_ON(is_huge_zero_page(page));
1443 page_nid = page_to_nid(page);
1444 last_cpupid = page_cpupid_last(page);
1445 count_vm_numa_event(NUMA_HINT_FAULTS);
1446 if (page_nid == this_nid) {
1447 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1448 flags |= TNF_FAULT_LOCAL;
1449 }
1450
1451 /* See similar comment in do_numa_page for explanation */
1452 if (!pmd_savedwrite(pmd))
1453 flags |= TNF_NO_GROUP;
1454
1455 /*
1456 * Acquire the page lock to serialise THP migrations but avoid dropping
1457 * page_table_lock if at all possible
1458 */
1459 page_locked = trylock_page(page);
1460 target_nid = mpol_misplaced(page, vma, haddr);
1461 if (target_nid == -1) {
1462 /* If the page was locked, there are no parallel migrations */
1463 if (page_locked)
1464 goto clear_pmdnuma;
1465 }
1466
1467 /* Migration could have started since the pmd_trans_migrating check */
1468 if (!page_locked) {
1469 page_nid = -1;
1470 if (!get_page_unless_zero(page))
1471 goto out_unlock;
1472 spin_unlock(vmf->ptl);
1473 wait_on_page_locked(page);
1474 put_page(page);
1475 goto out;
1476 }
1477
1478 /*
1479 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1480 * to serialises splits
1481 */
1482 get_page(page);
1483 spin_unlock(vmf->ptl);
1484 anon_vma = page_lock_anon_vma_read(page);
1485
1486 /* Confirm the PMD did not change while page_table_lock was released */
1487 spin_lock(vmf->ptl);
1488 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1489 unlock_page(page);
1490 put_page(page);
1491 page_nid = -1;
1492 goto out_unlock;
1493 }
1494
1495 /* Bail if we fail to protect against THP splits for any reason */
1496 if (unlikely(!anon_vma)) {
1497 put_page(page);
1498 page_nid = -1;
1499 goto clear_pmdnuma;
1500 }
1501
1502 /*
1503 * The page_table_lock above provides a memory barrier
1504 * with change_protection_range.
1505 */
1506 if (mm_tlb_flush_pending(vma->vm_mm))
1507 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1508
1509 /*
1510 * Migrate the THP to the requested node, returns with page unlocked
1511 * and access rights restored.
1512 */
1513 spin_unlock(vmf->ptl);
1514 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1515 vmf->pmd, pmd, vmf->address, page, target_nid);
1516 if (migrated) {
1517 flags |= TNF_MIGRATED;
1518 page_nid = target_nid;
1519 } else
1520 flags |= TNF_MIGRATE_FAIL;
1521
1522 goto out;
1523 clear_pmdnuma:
1524 BUG_ON(!PageLocked(page));
1525 was_writable = pmd_savedwrite(pmd);
1526 pmd = pmd_modify(pmd, vma->vm_page_prot);
1527 pmd = pmd_mkyoung(pmd);
1528 if (was_writable)
1529 pmd = pmd_mkwrite(pmd);
1530 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1531 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1532 unlock_page(page);
1533 out_unlock:
1534 spin_unlock(vmf->ptl);
1535
1536 out:
1537 if (anon_vma)
1538 page_unlock_anon_vma_read(anon_vma);
1539
1540 if (page_nid != -1)
1541 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1542 flags);
1543
1544 return 0;
1545 }
1546
1547 /*
1548 * Return true if we do MADV_FREE successfully on entire pmd page.
1549 * Otherwise, return false.
1550 */
1551 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1552 pmd_t *pmd, unsigned long addr, unsigned long next)
1553 {
1554 spinlock_t *ptl;
1555 pmd_t orig_pmd;
1556 struct page *page;
1557 struct mm_struct *mm = tlb->mm;
1558 bool ret = false;
1559
1560 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1561
1562 ptl = pmd_trans_huge_lock(pmd, vma);
1563 if (!ptl)
1564 goto out_unlocked;
1565
1566 orig_pmd = *pmd;
1567 if (is_huge_zero_pmd(orig_pmd))
1568 goto out;
1569
1570 page = pmd_page(orig_pmd);
1571 /*
1572 * If other processes are mapping this page, we couldn't discard
1573 * the page unless they all do MADV_FREE so let's skip the page.
1574 */
1575 if (page_mapcount(page) != 1)
1576 goto out;
1577
1578 if (!trylock_page(page))
1579 goto out;
1580
1581 /*
1582 * If user want to discard part-pages of THP, split it so MADV_FREE
1583 * will deactivate only them.
1584 */
1585 if (next - addr != HPAGE_PMD_SIZE) {
1586 get_page(page);
1587 spin_unlock(ptl);
1588 split_huge_page(page);
1589 unlock_page(page);
1590 put_page(page);
1591 goto out_unlocked;
1592 }
1593
1594 if (PageDirty(page))
1595 ClearPageDirty(page);
1596 unlock_page(page);
1597
1598 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1599 pmdp_invalidate(vma, addr, pmd);
1600 orig_pmd = pmd_mkold(orig_pmd);
1601 orig_pmd = pmd_mkclean(orig_pmd);
1602
1603 set_pmd_at(mm, addr, pmd, orig_pmd);
1604 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1605 }
1606
1607 mark_page_lazyfree(page);
1608 ret = true;
1609 out:
1610 spin_unlock(ptl);
1611 out_unlocked:
1612 return ret;
1613 }
1614
1615 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1616 {
1617 pgtable_t pgtable;
1618
1619 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1620 pte_free(mm, pgtable);
1621 atomic_long_dec(&mm->nr_ptes);
1622 }
1623
1624 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1625 pmd_t *pmd, unsigned long addr)
1626 {
1627 pmd_t orig_pmd;
1628 spinlock_t *ptl;
1629
1630 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1631
1632 ptl = __pmd_trans_huge_lock(pmd, vma);
1633 if (!ptl)
1634 return 0;
1635 /*
1636 * For architectures like ppc64 we look at deposited pgtable
1637 * when calling pmdp_huge_get_and_clear. So do the
1638 * pgtable_trans_huge_withdraw after finishing pmdp related
1639 * operations.
1640 */
1641 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1642 tlb->fullmm);
1643 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1644 if (vma_is_dax(vma)) {
1645 if (arch_needs_pgtable_deposit())
1646 zap_deposited_table(tlb->mm, pmd);
1647 spin_unlock(ptl);
1648 if (is_huge_zero_pmd(orig_pmd))
1649 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1650 } else if (is_huge_zero_pmd(orig_pmd)) {
1651 zap_deposited_table(tlb->mm, pmd);
1652 spin_unlock(ptl);
1653 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1654 } else {
1655 struct page *page = pmd_page(orig_pmd);
1656 page_remove_rmap(page, true);
1657 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1658 VM_BUG_ON_PAGE(!PageHead(page), page);
1659 if (PageAnon(page)) {
1660 zap_deposited_table(tlb->mm, pmd);
1661 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1662 } else {
1663 if (arch_needs_pgtable_deposit())
1664 zap_deposited_table(tlb->mm, pmd);
1665 add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1666 }
1667 spin_unlock(ptl);
1668 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1669 }
1670 return 1;
1671 }
1672
1673 #ifndef pmd_move_must_withdraw
1674 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1675 spinlock_t *old_pmd_ptl,
1676 struct vm_area_struct *vma)
1677 {
1678 /*
1679 * With split pmd lock we also need to move preallocated
1680 * PTE page table if new_pmd is on different PMD page table.
1681 *
1682 * We also don't deposit and withdraw tables for file pages.
1683 */
1684 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1685 }
1686 #endif
1687
1688 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1689 unsigned long new_addr, unsigned long old_end,
1690 pmd_t *old_pmd, pmd_t *new_pmd, bool *need_flush)
1691 {
1692 spinlock_t *old_ptl, *new_ptl;
1693 pmd_t pmd;
1694 struct mm_struct *mm = vma->vm_mm;
1695 bool force_flush = false;
1696
1697 if ((old_addr & ~HPAGE_PMD_MASK) ||
1698 (new_addr & ~HPAGE_PMD_MASK) ||
1699 old_end - old_addr < HPAGE_PMD_SIZE)
1700 return false;
1701
1702 /*
1703 * The destination pmd shouldn't be established, free_pgtables()
1704 * should have release it.
1705 */
1706 if (WARN_ON(!pmd_none(*new_pmd))) {
1707 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1708 return false;
1709 }
1710
1711 /*
1712 * We don't have to worry about the ordering of src and dst
1713 * ptlocks because exclusive mmap_sem prevents deadlock.
1714 */
1715 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1716 if (old_ptl) {
1717 new_ptl = pmd_lockptr(mm, new_pmd);
1718 if (new_ptl != old_ptl)
1719 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1720 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1721 if (pmd_present(pmd) && pmd_dirty(pmd))
1722 force_flush = true;
1723 VM_BUG_ON(!pmd_none(*new_pmd));
1724
1725 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1726 pgtable_t pgtable;
1727 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1728 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1729 }
1730 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1731 if (new_ptl != old_ptl)
1732 spin_unlock(new_ptl);
1733 if (force_flush)
1734 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1735 else
1736 *need_flush = true;
1737 spin_unlock(old_ptl);
1738 return true;
1739 }
1740 return false;
1741 }
1742
1743 /*
1744 * Returns
1745 * - 0 if PMD could not be locked
1746 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1747 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1748 */
1749 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1750 unsigned long addr, pgprot_t newprot, int prot_numa)
1751 {
1752 struct mm_struct *mm = vma->vm_mm;
1753 spinlock_t *ptl;
1754 pmd_t entry;
1755 bool preserve_write;
1756 int ret;
1757
1758 ptl = __pmd_trans_huge_lock(pmd, vma);
1759 if (!ptl)
1760 return 0;
1761
1762 preserve_write = prot_numa && pmd_write(*pmd);
1763 ret = 1;
1764
1765 /*
1766 * Avoid trapping faults against the zero page. The read-only
1767 * data is likely to be read-cached on the local CPU and
1768 * local/remote hits to the zero page are not interesting.
1769 */
1770 if (prot_numa && is_huge_zero_pmd(*pmd))
1771 goto unlock;
1772
1773 if (prot_numa && pmd_protnone(*pmd))
1774 goto unlock;
1775
1776 /*
1777 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1778 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1779 * which is also under down_read(mmap_sem):
1780 *
1781 * CPU0: CPU1:
1782 * change_huge_pmd(prot_numa=1)
1783 * pmdp_huge_get_and_clear_notify()
1784 * madvise_dontneed()
1785 * zap_pmd_range()
1786 * pmd_trans_huge(*pmd) == 0 (without ptl)
1787 * // skip the pmd
1788 * set_pmd_at();
1789 * // pmd is re-established
1790 *
1791 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1792 * which may break userspace.
1793 *
1794 * pmdp_invalidate() is required to make sure we don't miss
1795 * dirty/young flags set by hardware.
1796 */
1797 entry = *pmd;
1798 pmdp_invalidate(vma, addr, pmd);
1799
1800 /*
1801 * Recover dirty/young flags. It relies on pmdp_invalidate to not
1802 * corrupt them.
1803 */
1804 if (pmd_dirty(*pmd))
1805 entry = pmd_mkdirty(entry);
1806 if (pmd_young(*pmd))
1807 entry = pmd_mkyoung(entry);
1808
1809 entry = pmd_modify(entry, newprot);
1810 if (preserve_write)
1811 entry = pmd_mk_savedwrite(entry);
1812 ret = HPAGE_PMD_NR;
1813 set_pmd_at(mm, addr, pmd, entry);
1814 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1815 unlock:
1816 spin_unlock(ptl);
1817 return ret;
1818 }
1819
1820 /*
1821 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1822 *
1823 * Note that if it returns page table lock pointer, this routine returns without
1824 * unlocking page table lock. So callers must unlock it.
1825 */
1826 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1827 {
1828 spinlock_t *ptl;
1829 ptl = pmd_lock(vma->vm_mm, pmd);
1830 if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
1831 return ptl;
1832 spin_unlock(ptl);
1833 return NULL;
1834 }
1835
1836 /*
1837 * Returns true if a given pud maps a thp, false otherwise.
1838 *
1839 * Note that if it returns true, this routine returns without unlocking page
1840 * table lock. So callers must unlock it.
1841 */
1842 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1843 {
1844 spinlock_t *ptl;
1845
1846 ptl = pud_lock(vma->vm_mm, pud);
1847 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1848 return ptl;
1849 spin_unlock(ptl);
1850 return NULL;
1851 }
1852
1853 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1854 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1855 pud_t *pud, unsigned long addr)
1856 {
1857 pud_t orig_pud;
1858 spinlock_t *ptl;
1859
1860 ptl = __pud_trans_huge_lock(pud, vma);
1861 if (!ptl)
1862 return 0;
1863 /*
1864 * For architectures like ppc64 we look at deposited pgtable
1865 * when calling pudp_huge_get_and_clear. So do the
1866 * pgtable_trans_huge_withdraw after finishing pudp related
1867 * operations.
1868 */
1869 orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
1870 tlb->fullmm);
1871 tlb_remove_pud_tlb_entry(tlb, pud, addr);
1872 if (vma_is_dax(vma)) {
1873 spin_unlock(ptl);
1874 /* No zero page support yet */
1875 } else {
1876 /* No support for anonymous PUD pages yet */
1877 BUG();
1878 }
1879 return 1;
1880 }
1881
1882 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1883 unsigned long haddr)
1884 {
1885 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1886 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1887 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1888 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1889
1890 count_vm_event(THP_SPLIT_PUD);
1891
1892 pudp_huge_clear_flush_notify(vma, haddr, pud);
1893 }
1894
1895 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1896 unsigned long address)
1897 {
1898 spinlock_t *ptl;
1899 struct mm_struct *mm = vma->vm_mm;
1900 unsigned long haddr = address & HPAGE_PUD_MASK;
1901
1902 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE);
1903 ptl = pud_lock(mm, pud);
1904 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1905 goto out;
1906 __split_huge_pud_locked(vma, pud, haddr);
1907
1908 out:
1909 spin_unlock(ptl);
1910 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PUD_SIZE);
1911 }
1912 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1913
1914 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1915 unsigned long haddr, pmd_t *pmd)
1916 {
1917 struct mm_struct *mm = vma->vm_mm;
1918 pgtable_t pgtable;
1919 pmd_t _pmd;
1920 int i;
1921
1922 /* leave pmd empty until pte is filled */
1923 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1924
1925 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1926 pmd_populate(mm, &_pmd, pgtable);
1927
1928 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1929 pte_t *pte, entry;
1930 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
1931 entry = pte_mkspecial(entry);
1932 pte = pte_offset_map(&_pmd, haddr);
1933 VM_BUG_ON(!pte_none(*pte));
1934 set_pte_at(mm, haddr, pte, entry);
1935 pte_unmap(pte);
1936 }
1937 smp_wmb(); /* make pte visible before pmd */
1938 pmd_populate(mm, pmd, pgtable);
1939 }
1940
1941 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
1942 unsigned long haddr, bool freeze)
1943 {
1944 struct mm_struct *mm = vma->vm_mm;
1945 struct page *page;
1946 pgtable_t pgtable;
1947 pmd_t _pmd;
1948 bool young, write, dirty, soft_dirty;
1949 unsigned long addr;
1950 int i;
1951
1952 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
1953 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1954 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
1955 VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
1956
1957 count_vm_event(THP_SPLIT_PMD);
1958
1959 if (!vma_is_anonymous(vma)) {
1960 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1961 /*
1962 * We are going to unmap this huge page. So
1963 * just go ahead and zap it
1964 */
1965 if (arch_needs_pgtable_deposit())
1966 zap_deposited_table(mm, pmd);
1967 if (vma_is_dax(vma))
1968 return;
1969 page = pmd_page(_pmd);
1970 if (!PageReferenced(page) && pmd_young(_pmd))
1971 SetPageReferenced(page);
1972 page_remove_rmap(page, true);
1973 put_page(page);
1974 add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1975 return;
1976 } else if (is_huge_zero_pmd(*pmd)) {
1977 return __split_huge_zero_page_pmd(vma, haddr, pmd);
1978 }
1979
1980 page = pmd_page(*pmd);
1981 VM_BUG_ON_PAGE(!page_count(page), page);
1982 page_ref_add(page, HPAGE_PMD_NR - 1);
1983 write = pmd_write(*pmd);
1984 young = pmd_young(*pmd);
1985 dirty = pmd_dirty(*pmd);
1986 soft_dirty = pmd_soft_dirty(*pmd);
1987
1988 pmdp_huge_split_prepare(vma, haddr, pmd);
1989 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1990 pmd_populate(mm, &_pmd, pgtable);
1991
1992 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
1993 pte_t entry, *pte;
1994 /*
1995 * Note that NUMA hinting access restrictions are not
1996 * transferred to avoid any possibility of altering
1997 * permissions across VMAs.
1998 */
1999 if (freeze) {
2000 swp_entry_t swp_entry;
2001 swp_entry = make_migration_entry(page + i, write);
2002 entry = swp_entry_to_pte(swp_entry);
2003 if (soft_dirty)
2004 entry = pte_swp_mksoft_dirty(entry);
2005 } else {
2006 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2007 entry = maybe_mkwrite(entry, vma);
2008 if (!write)
2009 entry = pte_wrprotect(entry);
2010 if (!young)
2011 entry = pte_mkold(entry);
2012 if (soft_dirty)
2013 entry = pte_mksoft_dirty(entry);
2014 }
2015 if (dirty)
2016 SetPageDirty(page + i);
2017 pte = pte_offset_map(&_pmd, addr);
2018 BUG_ON(!pte_none(*pte));
2019 set_pte_at(mm, addr, pte, entry);
2020 atomic_inc(&page[i]._mapcount);
2021 pte_unmap(pte);
2022 }
2023
2024 /*
2025 * Set PG_double_map before dropping compound_mapcount to avoid
2026 * false-negative page_mapped().
2027 */
2028 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2029 for (i = 0; i < HPAGE_PMD_NR; i++)
2030 atomic_inc(&page[i]._mapcount);
2031 }
2032
2033 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2034 /* Last compound_mapcount is gone. */
2035 __dec_node_page_state(page, NR_ANON_THPS);
2036 if (TestClearPageDoubleMap(page)) {
2037 /* No need in mapcount reference anymore */
2038 for (i = 0; i < HPAGE_PMD_NR; i++)
2039 atomic_dec(&page[i]._mapcount);
2040 }
2041 }
2042
2043 smp_wmb(); /* make pte visible before pmd */
2044 /*
2045 * Up to this point the pmd is present and huge and userland has the
2046 * whole access to the hugepage during the split (which happens in
2047 * place). If we overwrite the pmd with the not-huge version pointing
2048 * to the pte here (which of course we could if all CPUs were bug
2049 * free), userland could trigger a small page size TLB miss on the
2050 * small sized TLB while the hugepage TLB entry is still established in
2051 * the huge TLB. Some CPU doesn't like that.
2052 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2053 * 383 on page 93. Intel should be safe but is also warns that it's
2054 * only safe if the permission and cache attributes of the two entries
2055 * loaded in the two TLB is identical (which should be the case here).
2056 * But it is generally safer to never allow small and huge TLB entries
2057 * for the same virtual address to be loaded simultaneously. So instead
2058 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2059 * current pmd notpresent (atomically because here the pmd_trans_huge
2060 * and pmd_trans_splitting must remain set at all times on the pmd
2061 * until the split is complete for this pmd), then we flush the SMP TLB
2062 * and finally we write the non-huge version of the pmd entry with
2063 * pmd_populate.
2064 */
2065 pmdp_invalidate(vma, haddr, pmd);
2066 pmd_populate(mm, pmd, pgtable);
2067
2068 if (freeze) {
2069 for (i = 0; i < HPAGE_PMD_NR; i++) {
2070 page_remove_rmap(page + i, false);
2071 put_page(page + i);
2072 }
2073 }
2074 }
2075
2076 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2077 unsigned long address, bool freeze, struct page *page)
2078 {
2079 spinlock_t *ptl;
2080 struct mm_struct *mm = vma->vm_mm;
2081 unsigned long haddr = address & HPAGE_PMD_MASK;
2082
2083 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2084 ptl = pmd_lock(mm, pmd);
2085
2086 /*
2087 * If caller asks to setup a migration entries, we need a page to check
2088 * pmd against. Otherwise we can end up replacing wrong page.
2089 */
2090 VM_BUG_ON(freeze && !page);
2091 if (page && page != pmd_page(*pmd))
2092 goto out;
2093
2094 if (pmd_trans_huge(*pmd)) {
2095 page = pmd_page(*pmd);
2096 if (PageMlocked(page))
2097 clear_page_mlock(page);
2098 } else if (!pmd_devmap(*pmd))
2099 goto out;
2100 __split_huge_pmd_locked(vma, pmd, haddr, freeze);
2101 out:
2102 spin_unlock(ptl);
2103 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
2104 }
2105
2106 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2107 bool freeze, struct page *page)
2108 {
2109 pgd_t *pgd;
2110 p4d_t *p4d;
2111 pud_t *pud;
2112 pmd_t *pmd;
2113
2114 pgd = pgd_offset(vma->vm_mm, address);
2115 if (!pgd_present(*pgd))
2116 return;
2117
2118 p4d = p4d_offset(pgd, address);
2119 if (!p4d_present(*p4d))
2120 return;
2121
2122 pud = pud_offset(p4d, address);
2123 if (!pud_present(*pud))
2124 return;
2125
2126 pmd = pmd_offset(pud, address);
2127
2128 __split_huge_pmd(vma, pmd, address, freeze, page);
2129 }
2130
2131 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2132 unsigned long start,
2133 unsigned long end,
2134 long adjust_next)
2135 {
2136 /*
2137 * If the new start address isn't hpage aligned and it could
2138 * previously contain an hugepage: check if we need to split
2139 * an huge pmd.
2140 */
2141 if (start & ~HPAGE_PMD_MASK &&
2142 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2143 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2144 split_huge_pmd_address(vma, start, false, NULL);
2145
2146 /*
2147 * If the new end address isn't hpage aligned and it could
2148 * previously contain an hugepage: check if we need to split
2149 * an huge pmd.
2150 */
2151 if (end & ~HPAGE_PMD_MASK &&
2152 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2153 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2154 split_huge_pmd_address(vma, end, false, NULL);
2155
2156 /*
2157 * If we're also updating the vma->vm_next->vm_start, if the new
2158 * vm_next->vm_start isn't page aligned and it could previously
2159 * contain an hugepage: check if we need to split an huge pmd.
2160 */
2161 if (adjust_next > 0) {
2162 struct vm_area_struct *next = vma->vm_next;
2163 unsigned long nstart = next->vm_start;
2164 nstart += adjust_next << PAGE_SHIFT;
2165 if (nstart & ~HPAGE_PMD_MASK &&
2166 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2167 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2168 split_huge_pmd_address(next, nstart, false, NULL);
2169 }
2170 }
2171
2172 static void freeze_page(struct page *page)
2173 {
2174 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2175 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2176 bool unmap_success;
2177
2178 VM_BUG_ON_PAGE(!PageHead(page), page);
2179
2180 if (PageAnon(page))
2181 ttu_flags |= TTU_MIGRATION;
2182
2183 unmap_success = try_to_unmap(page, ttu_flags);
2184 VM_BUG_ON_PAGE(!unmap_success, page);
2185 }
2186
2187 static void unfreeze_page(struct page *page)
2188 {
2189 int i;
2190 if (PageTransHuge(page)) {
2191 remove_migration_ptes(page, page, true);
2192 } else {
2193 for (i = 0; i < HPAGE_PMD_NR; i++)
2194 remove_migration_ptes(page + i, page + i, true);
2195 }
2196 }
2197
2198 static void __split_huge_page_tail(struct page *head, int tail,
2199 struct lruvec *lruvec, struct list_head *list)
2200 {
2201 struct page *page_tail = head + tail;
2202
2203 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2204 VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
2205
2206 /*
2207 * tail_page->_refcount is zero and not changing from under us. But
2208 * get_page_unless_zero() may be running from under us on the
2209 * tail_page. If we used atomic_set() below instead of atomic_inc() or
2210 * atomic_add(), we would then run atomic_set() concurrently with
2211 * get_page_unless_zero(), and atomic_set() is implemented in C not
2212 * using locked ops. spin_unlock on x86 sometime uses locked ops
2213 * because of PPro errata 66, 92, so unless somebody can guarantee
2214 * atomic_set() here would be safe on all archs (and not only on x86),
2215 * it's safer to use atomic_inc()/atomic_add().
2216 */
2217 if (PageAnon(head) && !PageSwapCache(head)) {
2218 page_ref_inc(page_tail);
2219 } else {
2220 /* Additional pin to radix tree */
2221 page_ref_add(page_tail, 2);
2222 }
2223
2224 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2225 page_tail->flags |= (head->flags &
2226 ((1L << PG_referenced) |
2227 (1L << PG_swapbacked) |
2228 (1L << PG_swapcache) |
2229 (1L << PG_mlocked) |
2230 (1L << PG_uptodate) |
2231 (1L << PG_active) |
2232 (1L << PG_locked) |
2233 (1L << PG_unevictable) |
2234 (1L << PG_dirty)));
2235
2236 /*
2237 * After clearing PageTail the gup refcount can be released.
2238 * Page flags also must be visible before we make the page non-compound.
2239 */
2240 smp_wmb();
2241
2242 clear_compound_head(page_tail);
2243
2244 if (page_is_young(head))
2245 set_page_young(page_tail);
2246 if (page_is_idle(head))
2247 set_page_idle(page_tail);
2248
2249 /* ->mapping in first tail page is compound_mapcount */
2250 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2251 page_tail);
2252 page_tail->mapping = head->mapping;
2253
2254 page_tail->index = head->index + tail;
2255 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2256 lru_add_page_tail(head, page_tail, lruvec, list);
2257 }
2258
2259 static void __split_huge_page(struct page *page, struct list_head *list,
2260 unsigned long flags)
2261 {
2262 struct page *head = compound_head(page);
2263 struct zone *zone = page_zone(head);
2264 struct lruvec *lruvec;
2265 pgoff_t end = -1;
2266 int i;
2267
2268 lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
2269
2270 /* complete memcg works before add pages to LRU */
2271 mem_cgroup_split_huge_fixup(head);
2272
2273 if (!PageAnon(page))
2274 end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
2275
2276 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2277 __split_huge_page_tail(head, i, lruvec, list);
2278 /* Some pages can be beyond i_size: drop them from page cache */
2279 if (head[i].index >= end) {
2280 __ClearPageDirty(head + i);
2281 __delete_from_page_cache(head + i, NULL);
2282 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2283 shmem_uncharge(head->mapping->host, 1);
2284 put_page(head + i);
2285 }
2286 }
2287
2288 ClearPageCompound(head);
2289 /* See comment in __split_huge_page_tail() */
2290 if (PageAnon(head)) {
2291 /* Additional pin to radix tree of swap cache */
2292 if (PageSwapCache(head))
2293 page_ref_add(head, 2);
2294 else
2295 page_ref_inc(head);
2296 } else {
2297 /* Additional pin to radix tree */
2298 page_ref_add(head, 2);
2299 spin_unlock(&head->mapping->tree_lock);
2300 }
2301
2302 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2303
2304 unfreeze_page(head);
2305
2306 for (i = 0; i < HPAGE_PMD_NR; i++) {
2307 struct page *subpage = head + i;
2308 if (subpage == page)
2309 continue;
2310 unlock_page(subpage);
2311
2312 /*
2313 * Subpages may be freed if there wasn't any mapping
2314 * like if add_to_swap() is running on a lru page that
2315 * had its mapping zapped. And freeing these pages
2316 * requires taking the lru_lock so we do the put_page
2317 * of the tail pages after the split is complete.
2318 */
2319 put_page(subpage);
2320 }
2321 }
2322
2323 int total_mapcount(struct page *page)
2324 {
2325 int i, compound, ret;
2326
2327 VM_BUG_ON_PAGE(PageTail(page), page);
2328
2329 if (likely(!PageCompound(page)))
2330 return atomic_read(&page->_mapcount) + 1;
2331
2332 compound = compound_mapcount(page);
2333 if (PageHuge(page))
2334 return compound;
2335 ret = compound;
2336 for (i = 0; i < HPAGE_PMD_NR; i++)
2337 ret += atomic_read(&page[i]._mapcount) + 1;
2338 /* File pages has compound_mapcount included in _mapcount */
2339 if (!PageAnon(page))
2340 return ret - compound * HPAGE_PMD_NR;
2341 if (PageDoubleMap(page))
2342 ret -= HPAGE_PMD_NR;
2343 return ret;
2344 }
2345
2346 /*
2347 * This calculates accurately how many mappings a transparent hugepage
2348 * has (unlike page_mapcount() which isn't fully accurate). This full
2349 * accuracy is primarily needed to know if copy-on-write faults can
2350 * reuse the page and change the mapping to read-write instead of
2351 * copying them. At the same time this returns the total_mapcount too.
2352 *
2353 * The function returns the highest mapcount any one of the subpages
2354 * has. If the return value is one, even if different processes are
2355 * mapping different subpages of the transparent hugepage, they can
2356 * all reuse it, because each process is reusing a different subpage.
2357 *
2358 * The total_mapcount is instead counting all virtual mappings of the
2359 * subpages. If the total_mapcount is equal to "one", it tells the
2360 * caller all mappings belong to the same "mm" and in turn the
2361 * anon_vma of the transparent hugepage can become the vma->anon_vma
2362 * local one as no other process may be mapping any of the subpages.
2363 *
2364 * It would be more accurate to replace page_mapcount() with
2365 * page_trans_huge_mapcount(), however we only use
2366 * page_trans_huge_mapcount() in the copy-on-write faults where we
2367 * need full accuracy to avoid breaking page pinning, because
2368 * page_trans_huge_mapcount() is slower than page_mapcount().
2369 */
2370 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2371 {
2372 int i, ret, _total_mapcount, mapcount;
2373
2374 /* hugetlbfs shouldn't call it */
2375 VM_BUG_ON_PAGE(PageHuge(page), page);
2376
2377 if (likely(!PageTransCompound(page))) {
2378 mapcount = atomic_read(&page->_mapcount) + 1;
2379 if (total_mapcount)
2380 *total_mapcount = mapcount;
2381 return mapcount;
2382 }
2383
2384 page = compound_head(page);
2385
2386 _total_mapcount = ret = 0;
2387 for (i = 0; i < HPAGE_PMD_NR; i++) {
2388 mapcount = atomic_read(&page[i]._mapcount) + 1;
2389 ret = max(ret, mapcount);
2390 _total_mapcount += mapcount;
2391 }
2392 if (PageDoubleMap(page)) {
2393 ret -= 1;
2394 _total_mapcount -= HPAGE_PMD_NR;
2395 }
2396 mapcount = compound_mapcount(page);
2397 ret += mapcount;
2398 _total_mapcount += mapcount;
2399 if (total_mapcount)
2400 *total_mapcount = _total_mapcount;
2401 return ret;
2402 }
2403
2404 /* Racy check whether the huge page can be split */
2405 bool can_split_huge_page(struct page *page, int *pextra_pins)
2406 {
2407 int extra_pins;
2408
2409 /* Additional pins from radix tree */
2410 if (PageAnon(page))
2411 extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2412 else
2413 extra_pins = HPAGE_PMD_NR;
2414 if (pextra_pins)
2415 *pextra_pins = extra_pins;
2416 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2417 }
2418
2419 /*
2420 * This function splits huge page into normal pages. @page can point to any
2421 * subpage of huge page to split. Split doesn't change the position of @page.
2422 *
2423 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2424 * The huge page must be locked.
2425 *
2426 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2427 *
2428 * Both head page and tail pages will inherit mapping, flags, and so on from
2429 * the hugepage.
2430 *
2431 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2432 * they are not mapped.
2433 *
2434 * Returns 0 if the hugepage is split successfully.
2435 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2436 * us.
2437 */
2438 int split_huge_page_to_list(struct page *page, struct list_head *list)
2439 {
2440 struct page *head = compound_head(page);
2441 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2442 struct anon_vma *anon_vma = NULL;
2443 struct address_space *mapping = NULL;
2444 int count, mapcount, extra_pins, ret;
2445 bool mlocked;
2446 unsigned long flags;
2447
2448 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
2449 VM_BUG_ON_PAGE(!PageLocked(page), page);
2450 VM_BUG_ON_PAGE(!PageCompound(page), page);
2451
2452 if (PageAnon(head)) {
2453 /*
2454 * The caller does not necessarily hold an mmap_sem that would
2455 * prevent the anon_vma disappearing so we first we take a
2456 * reference to it and then lock the anon_vma for write. This
2457 * is similar to page_lock_anon_vma_read except the write lock
2458 * is taken to serialise against parallel split or collapse
2459 * operations.
2460 */
2461 anon_vma = page_get_anon_vma(head);
2462 if (!anon_vma) {
2463 ret = -EBUSY;
2464 goto out;
2465 }
2466 mapping = NULL;
2467 anon_vma_lock_write(anon_vma);
2468 } else {
2469 mapping = head->mapping;
2470
2471 /* Truncated ? */
2472 if (!mapping) {
2473 ret = -EBUSY;
2474 goto out;
2475 }
2476
2477 anon_vma = NULL;
2478 i_mmap_lock_read(mapping);
2479 }
2480
2481 /*
2482 * Racy check if we can split the page, before freeze_page() will
2483 * split PMDs
2484 */
2485 if (!can_split_huge_page(head, &extra_pins)) {
2486 ret = -EBUSY;
2487 goto out_unlock;
2488 }
2489
2490 mlocked = PageMlocked(page);
2491 freeze_page(head);
2492 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2493
2494 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2495 if (mlocked)
2496 lru_add_drain();
2497
2498 /* prevent PageLRU to go away from under us, and freeze lru stats */
2499 spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2500
2501 if (mapping) {
2502 void **pslot;
2503
2504 spin_lock(&mapping->tree_lock);
2505 pslot = radix_tree_lookup_slot(&mapping->page_tree,
2506 page_index(head));
2507 /*
2508 * Check if the head page is present in radix tree.
2509 * We assume all tail are present too, if head is there.
2510 */
2511 if (radix_tree_deref_slot_protected(pslot,
2512 &mapping->tree_lock) != head)
2513 goto fail;
2514 }
2515
2516 /* Prevent deferred_split_scan() touching ->_refcount */
2517 spin_lock(&pgdata->split_queue_lock);
2518 count = page_count(head);
2519 mapcount = total_mapcount(head);
2520 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2521 if (!list_empty(page_deferred_list(head))) {
2522 pgdata->split_queue_len--;
2523 list_del(page_deferred_list(head));
2524 }
2525 if (mapping)
2526 __dec_node_page_state(page, NR_SHMEM_THPS);
2527 spin_unlock(&pgdata->split_queue_lock);
2528 __split_huge_page(page, list, flags);
2529 ret = 0;
2530 } else {
2531 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2532 pr_alert("total_mapcount: %u, page_count(): %u\n",
2533 mapcount, count);
2534 if (PageTail(page))
2535 dump_page(head, NULL);
2536 dump_page(page, "total_mapcount(head) > 0");
2537 BUG();
2538 }
2539 spin_unlock(&pgdata->split_queue_lock);
2540 fail: if (mapping)
2541 spin_unlock(&mapping->tree_lock);
2542 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2543 unfreeze_page(head);
2544 ret = -EBUSY;
2545 }
2546
2547 out_unlock:
2548 if (anon_vma) {
2549 anon_vma_unlock_write(anon_vma);
2550 put_anon_vma(anon_vma);
2551 }
2552 if (mapping)
2553 i_mmap_unlock_read(mapping);
2554 out:
2555 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2556 return ret;
2557 }
2558
2559 void free_transhuge_page(struct page *page)
2560 {
2561 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2562 unsigned long flags;
2563
2564 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2565 if (!list_empty(page_deferred_list(page))) {
2566 pgdata->split_queue_len--;
2567 list_del(page_deferred_list(page));
2568 }
2569 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2570 free_compound_page(page);
2571 }
2572
2573 void deferred_split_huge_page(struct page *page)
2574 {
2575 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2576 unsigned long flags;
2577
2578 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2579
2580 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2581 if (list_empty(page_deferred_list(page))) {
2582 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2583 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2584 pgdata->split_queue_len++;
2585 }
2586 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2587 }
2588
2589 static unsigned long deferred_split_count(struct shrinker *shrink,
2590 struct shrink_control *sc)
2591 {
2592 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2593 return ACCESS_ONCE(pgdata->split_queue_len);
2594 }
2595
2596 static unsigned long deferred_split_scan(struct shrinker *shrink,
2597 struct shrink_control *sc)
2598 {
2599 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2600 unsigned long flags;
2601 LIST_HEAD(list), *pos, *next;
2602 struct page *page;
2603 int split = 0;
2604
2605 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2606 /* Take pin on all head pages to avoid freeing them under us */
2607 list_for_each_safe(pos, next, &pgdata->split_queue) {
2608 page = list_entry((void *)pos, struct page, mapping);
2609 page = compound_head(page);
2610 if (get_page_unless_zero(page)) {
2611 list_move(page_deferred_list(page), &list);
2612 } else {
2613 /* We lost race with put_compound_page() */
2614 list_del_init(page_deferred_list(page));
2615 pgdata->split_queue_len--;
2616 }
2617 if (!--sc->nr_to_scan)
2618 break;
2619 }
2620 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2621
2622 list_for_each_safe(pos, next, &list) {
2623 page = list_entry((void *)pos, struct page, mapping);
2624 lock_page(page);
2625 /* split_huge_page() removes page from list on success */
2626 if (!split_huge_page(page))
2627 split++;
2628 unlock_page(page);
2629 put_page(page);
2630 }
2631
2632 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2633 list_splice_tail(&list, &pgdata->split_queue);
2634 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2635
2636 /*
2637 * Stop shrinker if we didn't split any page, but the queue is empty.
2638 * This can happen if pages were freed under us.
2639 */
2640 if (!split && list_empty(&pgdata->split_queue))
2641 return SHRINK_STOP;
2642 return split;
2643 }
2644
2645 static struct shrinker deferred_split_shrinker = {
2646 .count_objects = deferred_split_count,
2647 .scan_objects = deferred_split_scan,
2648 .seeks = DEFAULT_SEEKS,
2649 .flags = SHRINKER_NUMA_AWARE,
2650 };
2651
2652 #ifdef CONFIG_DEBUG_FS
2653 static int split_huge_pages_set(void *data, u64 val)
2654 {
2655 struct zone *zone;
2656 struct page *page;
2657 unsigned long pfn, max_zone_pfn;
2658 unsigned long total = 0, split = 0;
2659
2660 if (val != 1)
2661 return -EINVAL;
2662
2663 for_each_populated_zone(zone) {
2664 max_zone_pfn = zone_end_pfn(zone);
2665 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2666 if (!pfn_valid(pfn))
2667 continue;
2668
2669 page = pfn_to_page(pfn);
2670 if (!get_page_unless_zero(page))
2671 continue;
2672
2673 if (zone != page_zone(page))
2674 goto next;
2675
2676 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2677 goto next;
2678
2679 total++;
2680 lock_page(page);
2681 if (!split_huge_page(page))
2682 split++;
2683 unlock_page(page);
2684 next:
2685 put_page(page);
2686 }
2687 }
2688
2689 pr_info("%lu of %lu THP split\n", split, total);
2690
2691 return 0;
2692 }
2693 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2694 "%llu\n");
2695
2696 static int __init split_huge_pages_debugfs(void)
2697 {
2698 void *ret;
2699
2700 ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2701 &split_huge_pages_fops);
2702 if (!ret)
2703 pr_warn("Failed to create split_huge_pages in debugfs");
2704 return 0;
2705 }
2706 late_initcall(split_huge_pages_debugfs);
2707 #endif