]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/hugetlb.c
UBUNTU: [Config] CONFIG_W1_SLAVE_DS2438=m
[mirror_ubuntu-artful-kernel.git] / mm / hugetlb.c
1 /*
2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
4 */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/mm.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/sched/signal.h>
22 #include <linux/rmap.h>
23 #include <linux/string_helpers.h>
24 #include <linux/swap.h>
25 #include <linux/swapops.h>
26 #include <linux/jhash.h>
27
28 #include <asm/page.h>
29 #include <asm/pgtable.h>
30 #include <asm/tlb.h>
31
32 #include <linux/io.h>
33 #include <linux/hugetlb.h>
34 #include <linux/hugetlb_cgroup.h>
35 #include <linux/node.h>
36 #include <linux/userfaultfd_k.h>
37 #include "internal.h"
38
39 int hugepages_treat_as_movable;
40
41 int hugetlb_max_hstate __read_mostly;
42 unsigned int default_hstate_idx;
43 struct hstate hstates[HUGE_MAX_HSTATE];
44 /*
45 * Minimum page order among possible hugepage sizes, set to a proper value
46 * at boot time.
47 */
48 static unsigned int minimum_order __read_mostly = UINT_MAX;
49
50 __initdata LIST_HEAD(huge_boot_pages);
51
52 /* for command line parsing */
53 static struct hstate * __initdata parsed_hstate;
54 static unsigned long __initdata default_hstate_max_huge_pages;
55 static unsigned long __initdata default_hstate_size;
56 static bool __initdata parsed_valid_hugepagesz = true;
57
58 /*
59 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
60 * free_huge_pages, and surplus_huge_pages.
61 */
62 DEFINE_SPINLOCK(hugetlb_lock);
63
64 /*
65 * Serializes faults on the same logical page. This is used to
66 * prevent spurious OOMs when the hugepage pool is fully utilized.
67 */
68 static int num_fault_mutexes;
69 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
70
71 /* Forward declaration */
72 static int hugetlb_acct_memory(struct hstate *h, long delta);
73
74 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
75 {
76 bool free = (spool->count == 0) && (spool->used_hpages == 0);
77
78 spin_unlock(&spool->lock);
79
80 /* If no pages are used, and no other handles to the subpool
81 * remain, give up any reservations mased on minimum size and
82 * free the subpool */
83 if (free) {
84 if (spool->min_hpages != -1)
85 hugetlb_acct_memory(spool->hstate,
86 -spool->min_hpages);
87 kfree(spool);
88 }
89 }
90
91 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
92 long min_hpages)
93 {
94 struct hugepage_subpool *spool;
95
96 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
97 if (!spool)
98 return NULL;
99
100 spin_lock_init(&spool->lock);
101 spool->count = 1;
102 spool->max_hpages = max_hpages;
103 spool->hstate = h;
104 spool->min_hpages = min_hpages;
105
106 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
107 kfree(spool);
108 return NULL;
109 }
110 spool->rsv_hpages = min_hpages;
111
112 return spool;
113 }
114
115 void hugepage_put_subpool(struct hugepage_subpool *spool)
116 {
117 spin_lock(&spool->lock);
118 BUG_ON(!spool->count);
119 spool->count--;
120 unlock_or_release_subpool(spool);
121 }
122
123 /*
124 * Subpool accounting for allocating and reserving pages.
125 * Return -ENOMEM if there are not enough resources to satisfy the
126 * the request. Otherwise, return the number of pages by which the
127 * global pools must be adjusted (upward). The returned value may
128 * only be different than the passed value (delta) in the case where
129 * a subpool minimum size must be manitained.
130 */
131 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
132 long delta)
133 {
134 long ret = delta;
135
136 if (!spool)
137 return ret;
138
139 spin_lock(&spool->lock);
140
141 if (spool->max_hpages != -1) { /* maximum size accounting */
142 if ((spool->used_hpages + delta) <= spool->max_hpages)
143 spool->used_hpages += delta;
144 else {
145 ret = -ENOMEM;
146 goto unlock_ret;
147 }
148 }
149
150 /* minimum size accounting */
151 if (spool->min_hpages != -1 && spool->rsv_hpages) {
152 if (delta > spool->rsv_hpages) {
153 /*
154 * Asking for more reserves than those already taken on
155 * behalf of subpool. Return difference.
156 */
157 ret = delta - spool->rsv_hpages;
158 spool->rsv_hpages = 0;
159 } else {
160 ret = 0; /* reserves already accounted for */
161 spool->rsv_hpages -= delta;
162 }
163 }
164
165 unlock_ret:
166 spin_unlock(&spool->lock);
167 return ret;
168 }
169
170 /*
171 * Subpool accounting for freeing and unreserving pages.
172 * Return the number of global page reservations that must be dropped.
173 * The return value may only be different than the passed value (delta)
174 * in the case where a subpool minimum size must be maintained.
175 */
176 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
177 long delta)
178 {
179 long ret = delta;
180
181 if (!spool)
182 return delta;
183
184 spin_lock(&spool->lock);
185
186 if (spool->max_hpages != -1) /* maximum size accounting */
187 spool->used_hpages -= delta;
188
189 /* minimum size accounting */
190 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
191 if (spool->rsv_hpages + delta <= spool->min_hpages)
192 ret = 0;
193 else
194 ret = spool->rsv_hpages + delta - spool->min_hpages;
195
196 spool->rsv_hpages += delta;
197 if (spool->rsv_hpages > spool->min_hpages)
198 spool->rsv_hpages = spool->min_hpages;
199 }
200
201 /*
202 * If hugetlbfs_put_super couldn't free spool due to an outstanding
203 * quota reference, free it now.
204 */
205 unlock_or_release_subpool(spool);
206
207 return ret;
208 }
209
210 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
211 {
212 return HUGETLBFS_SB(inode->i_sb)->spool;
213 }
214
215 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
216 {
217 return subpool_inode(file_inode(vma->vm_file));
218 }
219
220 /*
221 * Region tracking -- allows tracking of reservations and instantiated pages
222 * across the pages in a mapping.
223 *
224 * The region data structures are embedded into a resv_map and protected
225 * by a resv_map's lock. The set of regions within the resv_map represent
226 * reservations for huge pages, or huge pages that have already been
227 * instantiated within the map. The from and to elements are huge page
228 * indicies into the associated mapping. from indicates the starting index
229 * of the region. to represents the first index past the end of the region.
230 *
231 * For example, a file region structure with from == 0 and to == 4 represents
232 * four huge pages in a mapping. It is important to note that the to element
233 * represents the first element past the end of the region. This is used in
234 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
235 *
236 * Interval notation of the form [from, to) will be used to indicate that
237 * the endpoint from is inclusive and to is exclusive.
238 */
239 struct file_region {
240 struct list_head link;
241 long from;
242 long to;
243 };
244
245 /*
246 * Add the huge page range represented by [f, t) to the reserve
247 * map. In the normal case, existing regions will be expanded
248 * to accommodate the specified range. Sufficient regions should
249 * exist for expansion due to the previous call to region_chg
250 * with the same range. However, it is possible that region_del
251 * could have been called after region_chg and modifed the map
252 * in such a way that no region exists to be expanded. In this
253 * case, pull a region descriptor from the cache associated with
254 * the map and use that for the new range.
255 *
256 * Return the number of new huge pages added to the map. This
257 * number is greater than or equal to zero.
258 */
259 static long region_add(struct resv_map *resv, long f, long t)
260 {
261 struct list_head *head = &resv->regions;
262 struct file_region *rg, *nrg, *trg;
263 long add = 0;
264
265 spin_lock(&resv->lock);
266 /* Locate the region we are either in or before. */
267 list_for_each_entry(rg, head, link)
268 if (f <= rg->to)
269 break;
270
271 /*
272 * If no region exists which can be expanded to include the
273 * specified range, the list must have been modified by an
274 * interleving call to region_del(). Pull a region descriptor
275 * from the cache and use it for this range.
276 */
277 if (&rg->link == head || t < rg->from) {
278 VM_BUG_ON(resv->region_cache_count <= 0);
279
280 resv->region_cache_count--;
281 nrg = list_first_entry(&resv->region_cache, struct file_region,
282 link);
283 list_del(&nrg->link);
284
285 nrg->from = f;
286 nrg->to = t;
287 list_add(&nrg->link, rg->link.prev);
288
289 add += t - f;
290 goto out_locked;
291 }
292
293 /* Round our left edge to the current segment if it encloses us. */
294 if (f > rg->from)
295 f = rg->from;
296
297 /* Check for and consume any regions we now overlap with. */
298 nrg = rg;
299 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
300 if (&rg->link == head)
301 break;
302 if (rg->from > t)
303 break;
304
305 /* If this area reaches higher then extend our area to
306 * include it completely. If this is not the first area
307 * which we intend to reuse, free it. */
308 if (rg->to > t)
309 t = rg->to;
310 if (rg != nrg) {
311 /* Decrement return value by the deleted range.
312 * Another range will span this area so that by
313 * end of routine add will be >= zero
314 */
315 add -= (rg->to - rg->from);
316 list_del(&rg->link);
317 kfree(rg);
318 }
319 }
320
321 add += (nrg->from - f); /* Added to beginning of region */
322 nrg->from = f;
323 add += t - nrg->to; /* Added to end of region */
324 nrg->to = t;
325
326 out_locked:
327 resv->adds_in_progress--;
328 spin_unlock(&resv->lock);
329 VM_BUG_ON(add < 0);
330 return add;
331 }
332
333 /*
334 * Examine the existing reserve map and determine how many
335 * huge pages in the specified range [f, t) are NOT currently
336 * represented. This routine is called before a subsequent
337 * call to region_add that will actually modify the reserve
338 * map to add the specified range [f, t). region_chg does
339 * not change the number of huge pages represented by the
340 * map. However, if the existing regions in the map can not
341 * be expanded to represent the new range, a new file_region
342 * structure is added to the map as a placeholder. This is
343 * so that the subsequent region_add call will have all the
344 * regions it needs and will not fail.
345 *
346 * Upon entry, region_chg will also examine the cache of region descriptors
347 * associated with the map. If there are not enough descriptors cached, one
348 * will be allocated for the in progress add operation.
349 *
350 * Returns the number of huge pages that need to be added to the existing
351 * reservation map for the range [f, t). This number is greater or equal to
352 * zero. -ENOMEM is returned if a new file_region structure or cache entry
353 * is needed and can not be allocated.
354 */
355 static long region_chg(struct resv_map *resv, long f, long t)
356 {
357 struct list_head *head = &resv->regions;
358 struct file_region *rg, *nrg = NULL;
359 long chg = 0;
360
361 retry:
362 spin_lock(&resv->lock);
363 retry_locked:
364 resv->adds_in_progress++;
365
366 /*
367 * Check for sufficient descriptors in the cache to accommodate
368 * the number of in progress add operations.
369 */
370 if (resv->adds_in_progress > resv->region_cache_count) {
371 struct file_region *trg;
372
373 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
374 /* Must drop lock to allocate a new descriptor. */
375 resv->adds_in_progress--;
376 spin_unlock(&resv->lock);
377
378 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
379 if (!trg) {
380 kfree(nrg);
381 return -ENOMEM;
382 }
383
384 spin_lock(&resv->lock);
385 list_add(&trg->link, &resv->region_cache);
386 resv->region_cache_count++;
387 goto retry_locked;
388 }
389
390 /* Locate the region we are before or in. */
391 list_for_each_entry(rg, head, link)
392 if (f <= rg->to)
393 break;
394
395 /* If we are below the current region then a new region is required.
396 * Subtle, allocate a new region at the position but make it zero
397 * size such that we can guarantee to record the reservation. */
398 if (&rg->link == head || t < rg->from) {
399 if (!nrg) {
400 resv->adds_in_progress--;
401 spin_unlock(&resv->lock);
402 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
403 if (!nrg)
404 return -ENOMEM;
405
406 nrg->from = f;
407 nrg->to = f;
408 INIT_LIST_HEAD(&nrg->link);
409 goto retry;
410 }
411
412 list_add(&nrg->link, rg->link.prev);
413 chg = t - f;
414 goto out_nrg;
415 }
416
417 /* Round our left edge to the current segment if it encloses us. */
418 if (f > rg->from)
419 f = rg->from;
420 chg = t - f;
421
422 /* Check for and consume any regions we now overlap with. */
423 list_for_each_entry(rg, rg->link.prev, link) {
424 if (&rg->link == head)
425 break;
426 if (rg->from > t)
427 goto out;
428
429 /* We overlap with this area, if it extends further than
430 * us then we must extend ourselves. Account for its
431 * existing reservation. */
432 if (rg->to > t) {
433 chg += rg->to - t;
434 t = rg->to;
435 }
436 chg -= rg->to - rg->from;
437 }
438
439 out:
440 spin_unlock(&resv->lock);
441 /* We already know we raced and no longer need the new region */
442 kfree(nrg);
443 return chg;
444 out_nrg:
445 spin_unlock(&resv->lock);
446 return chg;
447 }
448
449 /*
450 * Abort the in progress add operation. The adds_in_progress field
451 * of the resv_map keeps track of the operations in progress between
452 * calls to region_chg and region_add. Operations are sometimes
453 * aborted after the call to region_chg. In such cases, region_abort
454 * is called to decrement the adds_in_progress counter.
455 *
456 * NOTE: The range arguments [f, t) are not needed or used in this
457 * routine. They are kept to make reading the calling code easier as
458 * arguments will match the associated region_chg call.
459 */
460 static void region_abort(struct resv_map *resv, long f, long t)
461 {
462 spin_lock(&resv->lock);
463 VM_BUG_ON(!resv->region_cache_count);
464 resv->adds_in_progress--;
465 spin_unlock(&resv->lock);
466 }
467
468 /*
469 * Delete the specified range [f, t) from the reserve map. If the
470 * t parameter is LONG_MAX, this indicates that ALL regions after f
471 * should be deleted. Locate the regions which intersect [f, t)
472 * and either trim, delete or split the existing regions.
473 *
474 * Returns the number of huge pages deleted from the reserve map.
475 * In the normal case, the return value is zero or more. In the
476 * case where a region must be split, a new region descriptor must
477 * be allocated. If the allocation fails, -ENOMEM will be returned.
478 * NOTE: If the parameter t == LONG_MAX, then we will never split
479 * a region and possibly return -ENOMEM. Callers specifying
480 * t == LONG_MAX do not need to check for -ENOMEM error.
481 */
482 static long region_del(struct resv_map *resv, long f, long t)
483 {
484 struct list_head *head = &resv->regions;
485 struct file_region *rg, *trg;
486 struct file_region *nrg = NULL;
487 long del = 0;
488
489 retry:
490 spin_lock(&resv->lock);
491 list_for_each_entry_safe(rg, trg, head, link) {
492 /*
493 * Skip regions before the range to be deleted. file_region
494 * ranges are normally of the form [from, to). However, there
495 * may be a "placeholder" entry in the map which is of the form
496 * (from, to) with from == to. Check for placeholder entries
497 * at the beginning of the range to be deleted.
498 */
499 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
500 continue;
501
502 if (rg->from >= t)
503 break;
504
505 if (f > rg->from && t < rg->to) { /* Must split region */
506 /*
507 * Check for an entry in the cache before dropping
508 * lock and attempting allocation.
509 */
510 if (!nrg &&
511 resv->region_cache_count > resv->adds_in_progress) {
512 nrg = list_first_entry(&resv->region_cache,
513 struct file_region,
514 link);
515 list_del(&nrg->link);
516 resv->region_cache_count--;
517 }
518
519 if (!nrg) {
520 spin_unlock(&resv->lock);
521 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
522 if (!nrg)
523 return -ENOMEM;
524 goto retry;
525 }
526
527 del += t - f;
528
529 /* New entry for end of split region */
530 nrg->from = t;
531 nrg->to = rg->to;
532 INIT_LIST_HEAD(&nrg->link);
533
534 /* Original entry is trimmed */
535 rg->to = f;
536
537 list_add(&nrg->link, &rg->link);
538 nrg = NULL;
539 break;
540 }
541
542 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
543 del += rg->to - rg->from;
544 list_del(&rg->link);
545 kfree(rg);
546 continue;
547 }
548
549 if (f <= rg->from) { /* Trim beginning of region */
550 del += t - rg->from;
551 rg->from = t;
552 } else { /* Trim end of region */
553 del += rg->to - f;
554 rg->to = f;
555 }
556 }
557
558 spin_unlock(&resv->lock);
559 kfree(nrg);
560 return del;
561 }
562
563 /*
564 * A rare out of memory error was encountered which prevented removal of
565 * the reserve map region for a page. The huge page itself was free'ed
566 * and removed from the page cache. This routine will adjust the subpool
567 * usage count, and the global reserve count if needed. By incrementing
568 * these counts, the reserve map entry which could not be deleted will
569 * appear as a "reserved" entry instead of simply dangling with incorrect
570 * counts.
571 */
572 void hugetlb_fix_reserve_counts(struct inode *inode)
573 {
574 struct hugepage_subpool *spool = subpool_inode(inode);
575 long rsv_adjust;
576
577 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
578 if (rsv_adjust) {
579 struct hstate *h = hstate_inode(inode);
580
581 hugetlb_acct_memory(h, 1);
582 }
583 }
584
585 /*
586 * Count and return the number of huge pages in the reserve map
587 * that intersect with the range [f, t).
588 */
589 static long region_count(struct resv_map *resv, long f, long t)
590 {
591 struct list_head *head = &resv->regions;
592 struct file_region *rg;
593 long chg = 0;
594
595 spin_lock(&resv->lock);
596 /* Locate each segment we overlap with, and count that overlap. */
597 list_for_each_entry(rg, head, link) {
598 long seg_from;
599 long seg_to;
600
601 if (rg->to <= f)
602 continue;
603 if (rg->from >= t)
604 break;
605
606 seg_from = max(rg->from, f);
607 seg_to = min(rg->to, t);
608
609 chg += seg_to - seg_from;
610 }
611 spin_unlock(&resv->lock);
612
613 return chg;
614 }
615
616 /*
617 * Convert the address within this vma to the page offset within
618 * the mapping, in pagecache page units; huge pages here.
619 */
620 static pgoff_t vma_hugecache_offset(struct hstate *h,
621 struct vm_area_struct *vma, unsigned long address)
622 {
623 return ((address - vma->vm_start) >> huge_page_shift(h)) +
624 (vma->vm_pgoff >> huge_page_order(h));
625 }
626
627 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
628 unsigned long address)
629 {
630 return vma_hugecache_offset(hstate_vma(vma), vma, address);
631 }
632 EXPORT_SYMBOL_GPL(linear_hugepage_index);
633
634 /*
635 * Return the size of the pages allocated when backing a VMA. In the majority
636 * cases this will be same size as used by the page table entries.
637 */
638 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
639 {
640 struct hstate *hstate;
641
642 if (!is_vm_hugetlb_page(vma))
643 return PAGE_SIZE;
644
645 hstate = hstate_vma(vma);
646
647 return 1UL << huge_page_shift(hstate);
648 }
649 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
650
651 /*
652 * Return the page size being used by the MMU to back a VMA. In the majority
653 * of cases, the page size used by the kernel matches the MMU size. On
654 * architectures where it differs, an architecture-specific version of this
655 * function is required.
656 */
657 #ifndef vma_mmu_pagesize
658 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
659 {
660 return vma_kernel_pagesize(vma);
661 }
662 #endif
663
664 /*
665 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
666 * bits of the reservation map pointer, which are always clear due to
667 * alignment.
668 */
669 #define HPAGE_RESV_OWNER (1UL << 0)
670 #define HPAGE_RESV_UNMAPPED (1UL << 1)
671 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
672
673 /*
674 * These helpers are used to track how many pages are reserved for
675 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
676 * is guaranteed to have their future faults succeed.
677 *
678 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
679 * the reserve counters are updated with the hugetlb_lock held. It is safe
680 * to reset the VMA at fork() time as it is not in use yet and there is no
681 * chance of the global counters getting corrupted as a result of the values.
682 *
683 * The private mapping reservation is represented in a subtly different
684 * manner to a shared mapping. A shared mapping has a region map associated
685 * with the underlying file, this region map represents the backing file
686 * pages which have ever had a reservation assigned which this persists even
687 * after the page is instantiated. A private mapping has a region map
688 * associated with the original mmap which is attached to all VMAs which
689 * reference it, this region map represents those offsets which have consumed
690 * reservation ie. where pages have been instantiated.
691 */
692 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
693 {
694 return (unsigned long)vma->vm_private_data;
695 }
696
697 static void set_vma_private_data(struct vm_area_struct *vma,
698 unsigned long value)
699 {
700 vma->vm_private_data = (void *)value;
701 }
702
703 struct resv_map *resv_map_alloc(void)
704 {
705 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
706 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
707
708 if (!resv_map || !rg) {
709 kfree(resv_map);
710 kfree(rg);
711 return NULL;
712 }
713
714 kref_init(&resv_map->refs);
715 spin_lock_init(&resv_map->lock);
716 INIT_LIST_HEAD(&resv_map->regions);
717
718 resv_map->adds_in_progress = 0;
719
720 INIT_LIST_HEAD(&resv_map->region_cache);
721 list_add(&rg->link, &resv_map->region_cache);
722 resv_map->region_cache_count = 1;
723
724 return resv_map;
725 }
726
727 void resv_map_release(struct kref *ref)
728 {
729 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
730 struct list_head *head = &resv_map->region_cache;
731 struct file_region *rg, *trg;
732
733 /* Clear out any active regions before we release the map. */
734 region_del(resv_map, 0, LONG_MAX);
735
736 /* ... and any entries left in the cache */
737 list_for_each_entry_safe(rg, trg, head, link) {
738 list_del(&rg->link);
739 kfree(rg);
740 }
741
742 VM_BUG_ON(resv_map->adds_in_progress);
743
744 kfree(resv_map);
745 }
746
747 static inline struct resv_map *inode_resv_map(struct inode *inode)
748 {
749 return inode->i_mapping->private_data;
750 }
751
752 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
753 {
754 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
755 if (vma->vm_flags & VM_MAYSHARE) {
756 struct address_space *mapping = vma->vm_file->f_mapping;
757 struct inode *inode = mapping->host;
758
759 return inode_resv_map(inode);
760
761 } else {
762 return (struct resv_map *)(get_vma_private_data(vma) &
763 ~HPAGE_RESV_MASK);
764 }
765 }
766
767 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
768 {
769 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
770 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
771
772 set_vma_private_data(vma, (get_vma_private_data(vma) &
773 HPAGE_RESV_MASK) | (unsigned long)map);
774 }
775
776 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
777 {
778 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
779 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
780
781 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
782 }
783
784 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
785 {
786 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
787
788 return (get_vma_private_data(vma) & flag) != 0;
789 }
790
791 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
792 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
793 {
794 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
795 if (!(vma->vm_flags & VM_MAYSHARE))
796 vma->vm_private_data = (void *)0;
797 }
798
799 /* Returns true if the VMA has associated reserve pages */
800 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
801 {
802 if (vma->vm_flags & VM_NORESERVE) {
803 /*
804 * This address is already reserved by other process(chg == 0),
805 * so, we should decrement reserved count. Without decrementing,
806 * reserve count remains after releasing inode, because this
807 * allocated page will go into page cache and is regarded as
808 * coming from reserved pool in releasing step. Currently, we
809 * don't have any other solution to deal with this situation
810 * properly, so add work-around here.
811 */
812 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
813 return true;
814 else
815 return false;
816 }
817
818 /* Shared mappings always use reserves */
819 if (vma->vm_flags & VM_MAYSHARE) {
820 /*
821 * We know VM_NORESERVE is not set. Therefore, there SHOULD
822 * be a region map for all pages. The only situation where
823 * there is no region map is if a hole was punched via
824 * fallocate. In this case, there really are no reverves to
825 * use. This situation is indicated if chg != 0.
826 */
827 if (chg)
828 return false;
829 else
830 return true;
831 }
832
833 /*
834 * Only the process that called mmap() has reserves for
835 * private mappings.
836 */
837 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
838 /*
839 * Like the shared case above, a hole punch or truncate
840 * could have been performed on the private mapping.
841 * Examine the value of chg to determine if reserves
842 * actually exist or were previously consumed.
843 * Very Subtle - The value of chg comes from a previous
844 * call to vma_needs_reserves(). The reserve map for
845 * private mappings has different (opposite) semantics
846 * than that of shared mappings. vma_needs_reserves()
847 * has already taken this difference in semantics into
848 * account. Therefore, the meaning of chg is the same
849 * as in the shared case above. Code could easily be
850 * combined, but keeping it separate draws attention to
851 * subtle differences.
852 */
853 if (chg)
854 return false;
855 else
856 return true;
857 }
858
859 return false;
860 }
861
862 static void enqueue_huge_page(struct hstate *h, struct page *page)
863 {
864 int nid = page_to_nid(page);
865 list_move(&page->lru, &h->hugepage_freelists[nid]);
866 h->free_huge_pages++;
867 h->free_huge_pages_node[nid]++;
868 }
869
870 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
871 {
872 struct page *page;
873
874 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
875 if (!PageHWPoison(page))
876 break;
877 /*
878 * if 'non-isolated free hugepage' not found on the list,
879 * the allocation fails.
880 */
881 if (&h->hugepage_freelists[nid] == &page->lru)
882 return NULL;
883 list_move(&page->lru, &h->hugepage_activelist);
884 set_page_refcounted(page);
885 h->free_huge_pages--;
886 h->free_huge_pages_node[nid]--;
887 return page;
888 }
889
890 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
891 nodemask_t *nmask)
892 {
893 unsigned int cpuset_mems_cookie;
894 struct zonelist *zonelist;
895 struct zone *zone;
896 struct zoneref *z;
897 int node = -1;
898
899 zonelist = node_zonelist(nid, gfp_mask);
900
901 retry_cpuset:
902 cpuset_mems_cookie = read_mems_allowed_begin();
903 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
904 struct page *page;
905
906 if (!cpuset_zone_allowed(zone, gfp_mask))
907 continue;
908 /*
909 * no need to ask again on the same node. Pool is node rather than
910 * zone aware
911 */
912 if (zone_to_nid(zone) == node)
913 continue;
914 node = zone_to_nid(zone);
915
916 page = dequeue_huge_page_node_exact(h, node);
917 if (page)
918 return page;
919 }
920 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
921 goto retry_cpuset;
922
923 return NULL;
924 }
925
926 /* Movability of hugepages depends on migration support. */
927 static inline gfp_t htlb_alloc_mask(struct hstate *h)
928 {
929 if (hugepages_treat_as_movable || hugepage_migration_supported(h))
930 return GFP_HIGHUSER_MOVABLE;
931 else
932 return GFP_HIGHUSER;
933 }
934
935 static struct page *dequeue_huge_page_vma(struct hstate *h,
936 struct vm_area_struct *vma,
937 unsigned long address, int avoid_reserve,
938 long chg)
939 {
940 struct page *page;
941 struct mempolicy *mpol;
942 gfp_t gfp_mask;
943 nodemask_t *nodemask;
944 int nid;
945
946 /*
947 * A child process with MAP_PRIVATE mappings created by their parent
948 * have no page reserves. This check ensures that reservations are
949 * not "stolen". The child may still get SIGKILLed
950 */
951 if (!vma_has_reserves(vma, chg) &&
952 h->free_huge_pages - h->resv_huge_pages == 0)
953 goto err;
954
955 /* If reserves cannot be used, ensure enough pages are in the pool */
956 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
957 goto err;
958
959 gfp_mask = htlb_alloc_mask(h);
960 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
961 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
962 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
963 SetPagePrivate(page);
964 h->resv_huge_pages--;
965 }
966
967 mpol_cond_put(mpol);
968 return page;
969
970 err:
971 return NULL;
972 }
973
974 /*
975 * common helper functions for hstate_next_node_to_{alloc|free}.
976 * We may have allocated or freed a huge page based on a different
977 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
978 * be outside of *nodes_allowed. Ensure that we use an allowed
979 * node for alloc or free.
980 */
981 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
982 {
983 nid = next_node_in(nid, *nodes_allowed);
984 VM_BUG_ON(nid >= MAX_NUMNODES);
985
986 return nid;
987 }
988
989 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
990 {
991 if (!node_isset(nid, *nodes_allowed))
992 nid = next_node_allowed(nid, nodes_allowed);
993 return nid;
994 }
995
996 /*
997 * returns the previously saved node ["this node"] from which to
998 * allocate a persistent huge page for the pool and advance the
999 * next node from which to allocate, handling wrap at end of node
1000 * mask.
1001 */
1002 static int hstate_next_node_to_alloc(struct hstate *h,
1003 nodemask_t *nodes_allowed)
1004 {
1005 int nid;
1006
1007 VM_BUG_ON(!nodes_allowed);
1008
1009 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1010 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1011
1012 return nid;
1013 }
1014
1015 /*
1016 * helper for free_pool_huge_page() - return the previously saved
1017 * node ["this node"] from which to free a huge page. Advance the
1018 * next node id whether or not we find a free huge page to free so
1019 * that the next attempt to free addresses the next node.
1020 */
1021 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1022 {
1023 int nid;
1024
1025 VM_BUG_ON(!nodes_allowed);
1026
1027 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1028 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1029
1030 return nid;
1031 }
1032
1033 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1034 for (nr_nodes = nodes_weight(*mask); \
1035 nr_nodes > 0 && \
1036 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1037 nr_nodes--)
1038
1039 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1040 for (nr_nodes = nodes_weight(*mask); \
1041 nr_nodes > 0 && \
1042 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1043 nr_nodes--)
1044
1045 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1046 static void destroy_compound_gigantic_page(struct page *page,
1047 unsigned int order)
1048 {
1049 int i;
1050 int nr_pages = 1 << order;
1051 struct page *p = page + 1;
1052
1053 atomic_set(compound_mapcount_ptr(page), 0);
1054 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1055 clear_compound_head(p);
1056 set_page_refcounted(p);
1057 }
1058
1059 set_compound_order(page, 0);
1060 __ClearPageHead(page);
1061 }
1062
1063 static void free_gigantic_page(struct page *page, unsigned int order)
1064 {
1065 free_contig_range(page_to_pfn(page), 1 << order);
1066 }
1067
1068 static int __alloc_gigantic_page(unsigned long start_pfn,
1069 unsigned long nr_pages)
1070 {
1071 unsigned long end_pfn = start_pfn + nr_pages;
1072 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1073 GFP_KERNEL);
1074 }
1075
1076 static bool pfn_range_valid_gigantic(struct zone *z,
1077 unsigned long start_pfn, unsigned long nr_pages)
1078 {
1079 unsigned long i, end_pfn = start_pfn + nr_pages;
1080 struct page *page;
1081
1082 for (i = start_pfn; i < end_pfn; i++) {
1083 if (!pfn_valid(i))
1084 return false;
1085
1086 page = pfn_to_page(i);
1087
1088 if (page_zone(page) != z)
1089 return false;
1090
1091 if (PageReserved(page))
1092 return false;
1093
1094 if (page_count(page) > 0)
1095 return false;
1096
1097 if (PageHuge(page))
1098 return false;
1099 }
1100
1101 return true;
1102 }
1103
1104 static bool zone_spans_last_pfn(const struct zone *zone,
1105 unsigned long start_pfn, unsigned long nr_pages)
1106 {
1107 unsigned long last_pfn = start_pfn + nr_pages - 1;
1108 return zone_spans_pfn(zone, last_pfn);
1109 }
1110
1111 static struct page *alloc_gigantic_page(int nid, unsigned int order)
1112 {
1113 unsigned long nr_pages = 1 << order;
1114 unsigned long ret, pfn, flags;
1115 struct zone *z;
1116
1117 z = NODE_DATA(nid)->node_zones;
1118 for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1119 spin_lock_irqsave(&z->lock, flags);
1120
1121 pfn = ALIGN(z->zone_start_pfn, nr_pages);
1122 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1123 if (pfn_range_valid_gigantic(z, pfn, nr_pages)) {
1124 /*
1125 * We release the zone lock here because
1126 * alloc_contig_range() will also lock the zone
1127 * at some point. If there's an allocation
1128 * spinning on this lock, it may win the race
1129 * and cause alloc_contig_range() to fail...
1130 */
1131 spin_unlock_irqrestore(&z->lock, flags);
1132 ret = __alloc_gigantic_page(pfn, nr_pages);
1133 if (!ret)
1134 return pfn_to_page(pfn);
1135 spin_lock_irqsave(&z->lock, flags);
1136 }
1137 pfn += nr_pages;
1138 }
1139
1140 spin_unlock_irqrestore(&z->lock, flags);
1141 }
1142
1143 return NULL;
1144 }
1145
1146 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1147 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1148
1149 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1150 {
1151 struct page *page;
1152
1153 page = alloc_gigantic_page(nid, huge_page_order(h));
1154 if (page) {
1155 prep_compound_gigantic_page(page, huge_page_order(h));
1156 prep_new_huge_page(h, page, nid);
1157 }
1158
1159 return page;
1160 }
1161
1162 static int alloc_fresh_gigantic_page(struct hstate *h,
1163 nodemask_t *nodes_allowed)
1164 {
1165 struct page *page = NULL;
1166 int nr_nodes, node;
1167
1168 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1169 page = alloc_fresh_gigantic_page_node(h, node);
1170 if (page)
1171 return 1;
1172 }
1173
1174 return 0;
1175 }
1176
1177 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1178 static inline bool gigantic_page_supported(void) { return false; }
1179 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1180 static inline void destroy_compound_gigantic_page(struct page *page,
1181 unsigned int order) { }
1182 static inline int alloc_fresh_gigantic_page(struct hstate *h,
1183 nodemask_t *nodes_allowed) { return 0; }
1184 #endif
1185
1186 static void update_and_free_page(struct hstate *h, struct page *page)
1187 {
1188 int i;
1189
1190 if (hstate_is_gigantic(h) && !gigantic_page_supported())
1191 return;
1192
1193 h->nr_huge_pages--;
1194 h->nr_huge_pages_node[page_to_nid(page)]--;
1195 for (i = 0; i < pages_per_huge_page(h); i++) {
1196 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1197 1 << PG_referenced | 1 << PG_dirty |
1198 1 << PG_active | 1 << PG_private |
1199 1 << PG_writeback);
1200 }
1201 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1202 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1203 set_page_refcounted(page);
1204 if (hstate_is_gigantic(h)) {
1205 destroy_compound_gigantic_page(page, huge_page_order(h));
1206 free_gigantic_page(page, huge_page_order(h));
1207 } else {
1208 __free_pages(page, huge_page_order(h));
1209 }
1210 }
1211
1212 struct hstate *size_to_hstate(unsigned long size)
1213 {
1214 struct hstate *h;
1215
1216 for_each_hstate(h) {
1217 if (huge_page_size(h) == size)
1218 return h;
1219 }
1220 return NULL;
1221 }
1222
1223 /*
1224 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1225 * to hstate->hugepage_activelist.)
1226 *
1227 * This function can be called for tail pages, but never returns true for them.
1228 */
1229 bool page_huge_active(struct page *page)
1230 {
1231 VM_BUG_ON_PAGE(!PageHuge(page), page);
1232 return PageHead(page) && PagePrivate(&page[1]);
1233 }
1234
1235 /* never called for tail page */
1236 static void set_page_huge_active(struct page *page)
1237 {
1238 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1239 SetPagePrivate(&page[1]);
1240 }
1241
1242 static void clear_page_huge_active(struct page *page)
1243 {
1244 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1245 ClearPagePrivate(&page[1]);
1246 }
1247
1248 void free_huge_page(struct page *page)
1249 {
1250 /*
1251 * Can't pass hstate in here because it is called from the
1252 * compound page destructor.
1253 */
1254 struct hstate *h = page_hstate(page);
1255 int nid = page_to_nid(page);
1256 struct hugepage_subpool *spool =
1257 (struct hugepage_subpool *)page_private(page);
1258 bool restore_reserve;
1259
1260 set_page_private(page, 0);
1261 page->mapping = NULL;
1262 VM_BUG_ON_PAGE(page_count(page), page);
1263 VM_BUG_ON_PAGE(page_mapcount(page), page);
1264 restore_reserve = PagePrivate(page);
1265 ClearPagePrivate(page);
1266
1267 /*
1268 * A return code of zero implies that the subpool will be under its
1269 * minimum size if the reservation is not restored after page is free.
1270 * Therefore, force restore_reserve operation.
1271 */
1272 if (hugepage_subpool_put_pages(spool, 1) == 0)
1273 restore_reserve = true;
1274
1275 spin_lock(&hugetlb_lock);
1276 clear_page_huge_active(page);
1277 hugetlb_cgroup_uncharge_page(hstate_index(h),
1278 pages_per_huge_page(h), page);
1279 if (restore_reserve)
1280 h->resv_huge_pages++;
1281
1282 if (h->surplus_huge_pages_node[nid]) {
1283 /* remove the page from active list */
1284 list_del(&page->lru);
1285 update_and_free_page(h, page);
1286 h->surplus_huge_pages--;
1287 h->surplus_huge_pages_node[nid]--;
1288 } else {
1289 arch_clear_hugepage_flags(page);
1290 enqueue_huge_page(h, page);
1291 }
1292 spin_unlock(&hugetlb_lock);
1293 }
1294
1295 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1296 {
1297 INIT_LIST_HEAD(&page->lru);
1298 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1299 spin_lock(&hugetlb_lock);
1300 set_hugetlb_cgroup(page, NULL);
1301 h->nr_huge_pages++;
1302 h->nr_huge_pages_node[nid]++;
1303 spin_unlock(&hugetlb_lock);
1304 put_page(page); /* free it into the hugepage allocator */
1305 }
1306
1307 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1308 {
1309 int i;
1310 int nr_pages = 1 << order;
1311 struct page *p = page + 1;
1312
1313 /* we rely on prep_new_huge_page to set the destructor */
1314 set_compound_order(page, order);
1315 __ClearPageReserved(page);
1316 __SetPageHead(page);
1317 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1318 /*
1319 * For gigantic hugepages allocated through bootmem at
1320 * boot, it's safer to be consistent with the not-gigantic
1321 * hugepages and clear the PG_reserved bit from all tail pages
1322 * too. Otherwse drivers using get_user_pages() to access tail
1323 * pages may get the reference counting wrong if they see
1324 * PG_reserved set on a tail page (despite the head page not
1325 * having PG_reserved set). Enforcing this consistency between
1326 * head and tail pages allows drivers to optimize away a check
1327 * on the head page when they need know if put_page() is needed
1328 * after get_user_pages().
1329 */
1330 __ClearPageReserved(p);
1331 set_page_count(p, 0);
1332 set_compound_head(p, page);
1333 }
1334 atomic_set(compound_mapcount_ptr(page), -1);
1335 }
1336
1337 /*
1338 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1339 * transparent huge pages. See the PageTransHuge() documentation for more
1340 * details.
1341 */
1342 int PageHuge(struct page *page)
1343 {
1344 if (!PageCompound(page))
1345 return 0;
1346
1347 page = compound_head(page);
1348 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1349 }
1350 EXPORT_SYMBOL_GPL(PageHuge);
1351
1352 /*
1353 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1354 * normal or transparent huge pages.
1355 */
1356 int PageHeadHuge(struct page *page_head)
1357 {
1358 if (!PageHead(page_head))
1359 return 0;
1360
1361 return get_compound_page_dtor(page_head) == free_huge_page;
1362 }
1363
1364 pgoff_t __basepage_index(struct page *page)
1365 {
1366 struct page *page_head = compound_head(page);
1367 pgoff_t index = page_index(page_head);
1368 unsigned long compound_idx;
1369
1370 if (!PageHuge(page_head))
1371 return page_index(page);
1372
1373 if (compound_order(page_head) >= MAX_ORDER)
1374 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1375 else
1376 compound_idx = page - page_head;
1377
1378 return (index << compound_order(page_head)) + compound_idx;
1379 }
1380
1381 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1382 {
1383 struct page *page;
1384
1385 page = __alloc_pages_node(nid,
1386 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1387 __GFP_RETRY_MAYFAIL|__GFP_NOWARN,
1388 huge_page_order(h));
1389 if (page) {
1390 prep_new_huge_page(h, page, nid);
1391 }
1392
1393 return page;
1394 }
1395
1396 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1397 {
1398 struct page *page;
1399 int nr_nodes, node;
1400 int ret = 0;
1401
1402 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1403 page = alloc_fresh_huge_page_node(h, node);
1404 if (page) {
1405 ret = 1;
1406 break;
1407 }
1408 }
1409
1410 if (ret)
1411 count_vm_event(HTLB_BUDDY_PGALLOC);
1412 else
1413 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1414
1415 return ret;
1416 }
1417
1418 /*
1419 * Free huge page from pool from next node to free.
1420 * Attempt to keep persistent huge pages more or less
1421 * balanced over allowed nodes.
1422 * Called with hugetlb_lock locked.
1423 */
1424 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1425 bool acct_surplus)
1426 {
1427 int nr_nodes, node;
1428 int ret = 0;
1429
1430 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1431 /*
1432 * If we're returning unused surplus pages, only examine
1433 * nodes with surplus pages.
1434 */
1435 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1436 !list_empty(&h->hugepage_freelists[node])) {
1437 struct page *page =
1438 list_entry(h->hugepage_freelists[node].next,
1439 struct page, lru);
1440 list_del(&page->lru);
1441 h->free_huge_pages--;
1442 h->free_huge_pages_node[node]--;
1443 if (acct_surplus) {
1444 h->surplus_huge_pages--;
1445 h->surplus_huge_pages_node[node]--;
1446 }
1447 update_and_free_page(h, page);
1448 ret = 1;
1449 break;
1450 }
1451 }
1452
1453 return ret;
1454 }
1455
1456 /*
1457 * Dissolve a given free hugepage into free buddy pages. This function does
1458 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1459 * number of free hugepages would be reduced below the number of reserved
1460 * hugepages.
1461 */
1462 int dissolve_free_huge_page(struct page *page)
1463 {
1464 int rc = 0;
1465
1466 spin_lock(&hugetlb_lock);
1467 if (PageHuge(page) && !page_count(page)) {
1468 struct page *head = compound_head(page);
1469 struct hstate *h = page_hstate(head);
1470 int nid = page_to_nid(head);
1471 if (h->free_huge_pages - h->resv_huge_pages == 0) {
1472 rc = -EBUSY;
1473 goto out;
1474 }
1475 /*
1476 * Move PageHWPoison flag from head page to the raw error page,
1477 * which makes any subpages rather than the error page reusable.
1478 */
1479 if (PageHWPoison(head) && page != head) {
1480 SetPageHWPoison(page);
1481 ClearPageHWPoison(head);
1482 }
1483 list_del(&head->lru);
1484 h->free_huge_pages--;
1485 h->free_huge_pages_node[nid]--;
1486 h->max_huge_pages--;
1487 update_and_free_page(h, head);
1488 }
1489 out:
1490 spin_unlock(&hugetlb_lock);
1491 return rc;
1492 }
1493
1494 /*
1495 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1496 * make specified memory blocks removable from the system.
1497 * Note that this will dissolve a free gigantic hugepage completely, if any
1498 * part of it lies within the given range.
1499 * Also note that if dissolve_free_huge_page() returns with an error, all
1500 * free hugepages that were dissolved before that error are lost.
1501 */
1502 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1503 {
1504 unsigned long pfn;
1505 struct page *page;
1506 int rc = 0;
1507
1508 if (!hugepages_supported())
1509 return rc;
1510
1511 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1512 page = pfn_to_page(pfn);
1513 if (PageHuge(page) && !page_count(page)) {
1514 rc = dissolve_free_huge_page(page);
1515 if (rc)
1516 break;
1517 }
1518 }
1519
1520 return rc;
1521 }
1522
1523 static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1524 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1525 {
1526 int order = huge_page_order(h);
1527
1528 gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
1529 if (nid == NUMA_NO_NODE)
1530 nid = numa_mem_id();
1531 return __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1532 }
1533
1534 static struct page *__alloc_buddy_huge_page(struct hstate *h, gfp_t gfp_mask,
1535 int nid, nodemask_t *nmask)
1536 {
1537 struct page *page;
1538 unsigned int r_nid;
1539
1540 if (hstate_is_gigantic(h))
1541 return NULL;
1542
1543 /*
1544 * Assume we will successfully allocate the surplus page to
1545 * prevent racing processes from causing the surplus to exceed
1546 * overcommit
1547 *
1548 * This however introduces a different race, where a process B
1549 * tries to grow the static hugepage pool while alloc_pages() is
1550 * called by process A. B will only examine the per-node
1551 * counters in determining if surplus huge pages can be
1552 * converted to normal huge pages in adjust_pool_surplus(). A
1553 * won't be able to increment the per-node counter, until the
1554 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1555 * no more huge pages can be converted from surplus to normal
1556 * state (and doesn't try to convert again). Thus, we have a
1557 * case where a surplus huge page exists, the pool is grown, and
1558 * the surplus huge page still exists after, even though it
1559 * should just have been converted to a normal huge page. This
1560 * does not leak memory, though, as the hugepage will be freed
1561 * once it is out of use. It also does not allow the counters to
1562 * go out of whack in adjust_pool_surplus() as we don't modify
1563 * the node values until we've gotten the hugepage and only the
1564 * per-node value is checked there.
1565 */
1566 spin_lock(&hugetlb_lock);
1567 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1568 spin_unlock(&hugetlb_lock);
1569 return NULL;
1570 } else {
1571 h->nr_huge_pages++;
1572 h->surplus_huge_pages++;
1573 }
1574 spin_unlock(&hugetlb_lock);
1575
1576 page = __hugetlb_alloc_buddy_huge_page(h, gfp_mask, nid, nmask);
1577
1578 spin_lock(&hugetlb_lock);
1579 if (page) {
1580 INIT_LIST_HEAD(&page->lru);
1581 r_nid = page_to_nid(page);
1582 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1583 set_hugetlb_cgroup(page, NULL);
1584 /*
1585 * We incremented the global counters already
1586 */
1587 h->nr_huge_pages_node[r_nid]++;
1588 h->surplus_huge_pages_node[r_nid]++;
1589 __count_vm_event(HTLB_BUDDY_PGALLOC);
1590 } else {
1591 h->nr_huge_pages--;
1592 h->surplus_huge_pages--;
1593 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1594 }
1595 spin_unlock(&hugetlb_lock);
1596
1597 return page;
1598 }
1599
1600 /*
1601 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1602 */
1603 static
1604 struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1605 struct vm_area_struct *vma, unsigned long addr)
1606 {
1607 struct page *page;
1608 struct mempolicy *mpol;
1609 gfp_t gfp_mask = htlb_alloc_mask(h);
1610 int nid;
1611 nodemask_t *nodemask;
1612
1613 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1614 page = __alloc_buddy_huge_page(h, gfp_mask, nid, nodemask);
1615 mpol_cond_put(mpol);
1616
1617 return page;
1618 }
1619
1620 /*
1621 * This allocation function is useful in the context where vma is irrelevant.
1622 * E.g. soft-offlining uses this function because it only cares physical
1623 * address of error page.
1624 */
1625 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1626 {
1627 gfp_t gfp_mask = htlb_alloc_mask(h);
1628 struct page *page = NULL;
1629
1630 if (nid != NUMA_NO_NODE)
1631 gfp_mask |= __GFP_THISNODE;
1632
1633 spin_lock(&hugetlb_lock);
1634 if (h->free_huge_pages - h->resv_huge_pages > 0)
1635 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1636 spin_unlock(&hugetlb_lock);
1637
1638 if (!page)
1639 page = __alloc_buddy_huge_page(h, gfp_mask, nid, NULL);
1640
1641 return page;
1642 }
1643
1644
1645 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1646 nodemask_t *nmask)
1647 {
1648 gfp_t gfp_mask = htlb_alloc_mask(h);
1649
1650 spin_lock(&hugetlb_lock);
1651 if (h->free_huge_pages - h->resv_huge_pages > 0) {
1652 struct page *page;
1653
1654 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1655 if (page) {
1656 spin_unlock(&hugetlb_lock);
1657 return page;
1658 }
1659 }
1660 spin_unlock(&hugetlb_lock);
1661
1662 /* No reservations, try to overcommit */
1663
1664 return __alloc_buddy_huge_page(h, gfp_mask, preferred_nid, nmask);
1665 }
1666
1667 /*
1668 * Increase the hugetlb pool such that it can accommodate a reservation
1669 * of size 'delta'.
1670 */
1671 static int gather_surplus_pages(struct hstate *h, int delta)
1672 {
1673 struct list_head surplus_list;
1674 struct page *page, *tmp;
1675 int ret, i;
1676 int needed, allocated;
1677 bool alloc_ok = true;
1678
1679 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1680 if (needed <= 0) {
1681 h->resv_huge_pages += delta;
1682 return 0;
1683 }
1684
1685 allocated = 0;
1686 INIT_LIST_HEAD(&surplus_list);
1687
1688 ret = -ENOMEM;
1689 retry:
1690 spin_unlock(&hugetlb_lock);
1691 for (i = 0; i < needed; i++) {
1692 page = __alloc_buddy_huge_page(h, htlb_alloc_mask(h),
1693 NUMA_NO_NODE, NULL);
1694 if (!page) {
1695 alloc_ok = false;
1696 break;
1697 }
1698 list_add(&page->lru, &surplus_list);
1699 cond_resched();
1700 }
1701 allocated += i;
1702
1703 /*
1704 * After retaking hugetlb_lock, we need to recalculate 'needed'
1705 * because either resv_huge_pages or free_huge_pages may have changed.
1706 */
1707 spin_lock(&hugetlb_lock);
1708 needed = (h->resv_huge_pages + delta) -
1709 (h->free_huge_pages + allocated);
1710 if (needed > 0) {
1711 if (alloc_ok)
1712 goto retry;
1713 /*
1714 * We were not able to allocate enough pages to
1715 * satisfy the entire reservation so we free what
1716 * we've allocated so far.
1717 */
1718 goto free;
1719 }
1720 /*
1721 * The surplus_list now contains _at_least_ the number of extra pages
1722 * needed to accommodate the reservation. Add the appropriate number
1723 * of pages to the hugetlb pool and free the extras back to the buddy
1724 * allocator. Commit the entire reservation here to prevent another
1725 * process from stealing the pages as they are added to the pool but
1726 * before they are reserved.
1727 */
1728 needed += allocated;
1729 h->resv_huge_pages += delta;
1730 ret = 0;
1731
1732 /* Free the needed pages to the hugetlb pool */
1733 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1734 if ((--needed) < 0)
1735 break;
1736 /*
1737 * This page is now managed by the hugetlb allocator and has
1738 * no users -- drop the buddy allocator's reference.
1739 */
1740 put_page_testzero(page);
1741 VM_BUG_ON_PAGE(page_count(page), page);
1742 enqueue_huge_page(h, page);
1743 }
1744 free:
1745 spin_unlock(&hugetlb_lock);
1746
1747 /* Free unnecessary surplus pages to the buddy allocator */
1748 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1749 put_page(page);
1750 spin_lock(&hugetlb_lock);
1751
1752 return ret;
1753 }
1754
1755 /*
1756 * This routine has two main purposes:
1757 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1758 * in unused_resv_pages. This corresponds to the prior adjustments made
1759 * to the associated reservation map.
1760 * 2) Free any unused surplus pages that may have been allocated to satisfy
1761 * the reservation. As many as unused_resv_pages may be freed.
1762 *
1763 * Called with hugetlb_lock held. However, the lock could be dropped (and
1764 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1765 * we must make sure nobody else can claim pages we are in the process of
1766 * freeing. Do this by ensuring resv_huge_page always is greater than the
1767 * number of huge pages we plan to free when dropping the lock.
1768 */
1769 static void return_unused_surplus_pages(struct hstate *h,
1770 unsigned long unused_resv_pages)
1771 {
1772 unsigned long nr_pages;
1773
1774 /* Cannot return gigantic pages currently */
1775 if (hstate_is_gigantic(h))
1776 goto out;
1777
1778 /*
1779 * Part (or even all) of the reservation could have been backed
1780 * by pre-allocated pages. Only free surplus pages.
1781 */
1782 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1783
1784 /*
1785 * We want to release as many surplus pages as possible, spread
1786 * evenly across all nodes with memory. Iterate across these nodes
1787 * until we can no longer free unreserved surplus pages. This occurs
1788 * when the nodes with surplus pages have no free pages.
1789 * free_pool_huge_page() will balance the the freed pages across the
1790 * on-line nodes with memory and will handle the hstate accounting.
1791 *
1792 * Note that we decrement resv_huge_pages as we free the pages. If
1793 * we drop the lock, resv_huge_pages will still be sufficiently large
1794 * to cover subsequent pages we may free.
1795 */
1796 while (nr_pages--) {
1797 h->resv_huge_pages--;
1798 unused_resv_pages--;
1799 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1800 goto out;
1801 cond_resched_lock(&hugetlb_lock);
1802 }
1803
1804 out:
1805 /* Fully uncommit the reservation */
1806 h->resv_huge_pages -= unused_resv_pages;
1807 }
1808
1809
1810 /*
1811 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1812 * are used by the huge page allocation routines to manage reservations.
1813 *
1814 * vma_needs_reservation is called to determine if the huge page at addr
1815 * within the vma has an associated reservation. If a reservation is
1816 * needed, the value 1 is returned. The caller is then responsible for
1817 * managing the global reservation and subpool usage counts. After
1818 * the huge page has been allocated, vma_commit_reservation is called
1819 * to add the page to the reservation map. If the page allocation fails,
1820 * the reservation must be ended instead of committed. vma_end_reservation
1821 * is called in such cases.
1822 *
1823 * In the normal case, vma_commit_reservation returns the same value
1824 * as the preceding vma_needs_reservation call. The only time this
1825 * is not the case is if a reserve map was changed between calls. It
1826 * is the responsibility of the caller to notice the difference and
1827 * take appropriate action.
1828 *
1829 * vma_add_reservation is used in error paths where a reservation must
1830 * be restored when a newly allocated huge page must be freed. It is
1831 * to be called after calling vma_needs_reservation to determine if a
1832 * reservation exists.
1833 */
1834 enum vma_resv_mode {
1835 VMA_NEEDS_RESV,
1836 VMA_COMMIT_RESV,
1837 VMA_END_RESV,
1838 VMA_ADD_RESV,
1839 };
1840 static long __vma_reservation_common(struct hstate *h,
1841 struct vm_area_struct *vma, unsigned long addr,
1842 enum vma_resv_mode mode)
1843 {
1844 struct resv_map *resv;
1845 pgoff_t idx;
1846 long ret;
1847
1848 resv = vma_resv_map(vma);
1849 if (!resv)
1850 return 1;
1851
1852 idx = vma_hugecache_offset(h, vma, addr);
1853 switch (mode) {
1854 case VMA_NEEDS_RESV:
1855 ret = region_chg(resv, idx, idx + 1);
1856 break;
1857 case VMA_COMMIT_RESV:
1858 ret = region_add(resv, idx, idx + 1);
1859 break;
1860 case VMA_END_RESV:
1861 region_abort(resv, idx, idx + 1);
1862 ret = 0;
1863 break;
1864 case VMA_ADD_RESV:
1865 if (vma->vm_flags & VM_MAYSHARE)
1866 ret = region_add(resv, idx, idx + 1);
1867 else {
1868 region_abort(resv, idx, idx + 1);
1869 ret = region_del(resv, idx, idx + 1);
1870 }
1871 break;
1872 default:
1873 BUG();
1874 }
1875
1876 if (vma->vm_flags & VM_MAYSHARE)
1877 return ret;
1878 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1879 /*
1880 * In most cases, reserves always exist for private mappings.
1881 * However, a file associated with mapping could have been
1882 * hole punched or truncated after reserves were consumed.
1883 * As subsequent fault on such a range will not use reserves.
1884 * Subtle - The reserve map for private mappings has the
1885 * opposite meaning than that of shared mappings. If NO
1886 * entry is in the reserve map, it means a reservation exists.
1887 * If an entry exists in the reserve map, it means the
1888 * reservation has already been consumed. As a result, the
1889 * return value of this routine is the opposite of the
1890 * value returned from reserve map manipulation routines above.
1891 */
1892 if (ret)
1893 return 0;
1894 else
1895 return 1;
1896 }
1897 else
1898 return ret < 0 ? ret : 0;
1899 }
1900
1901 static long vma_needs_reservation(struct hstate *h,
1902 struct vm_area_struct *vma, unsigned long addr)
1903 {
1904 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1905 }
1906
1907 static long vma_commit_reservation(struct hstate *h,
1908 struct vm_area_struct *vma, unsigned long addr)
1909 {
1910 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1911 }
1912
1913 static void vma_end_reservation(struct hstate *h,
1914 struct vm_area_struct *vma, unsigned long addr)
1915 {
1916 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1917 }
1918
1919 static long vma_add_reservation(struct hstate *h,
1920 struct vm_area_struct *vma, unsigned long addr)
1921 {
1922 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1923 }
1924
1925 /*
1926 * This routine is called to restore a reservation on error paths. In the
1927 * specific error paths, a huge page was allocated (via alloc_huge_page)
1928 * and is about to be freed. If a reservation for the page existed,
1929 * alloc_huge_page would have consumed the reservation and set PagePrivate
1930 * in the newly allocated page. When the page is freed via free_huge_page,
1931 * the global reservation count will be incremented if PagePrivate is set.
1932 * However, free_huge_page can not adjust the reserve map. Adjust the
1933 * reserve map here to be consistent with global reserve count adjustments
1934 * to be made by free_huge_page.
1935 */
1936 static void restore_reserve_on_error(struct hstate *h,
1937 struct vm_area_struct *vma, unsigned long address,
1938 struct page *page)
1939 {
1940 if (unlikely(PagePrivate(page))) {
1941 long rc = vma_needs_reservation(h, vma, address);
1942
1943 if (unlikely(rc < 0)) {
1944 /*
1945 * Rare out of memory condition in reserve map
1946 * manipulation. Clear PagePrivate so that
1947 * global reserve count will not be incremented
1948 * by free_huge_page. This will make it appear
1949 * as though the reservation for this page was
1950 * consumed. This may prevent the task from
1951 * faulting in the page at a later time. This
1952 * is better than inconsistent global huge page
1953 * accounting of reserve counts.
1954 */
1955 ClearPagePrivate(page);
1956 } else if (rc) {
1957 rc = vma_add_reservation(h, vma, address);
1958 if (unlikely(rc < 0))
1959 /*
1960 * See above comment about rare out of
1961 * memory condition.
1962 */
1963 ClearPagePrivate(page);
1964 } else
1965 vma_end_reservation(h, vma, address);
1966 }
1967 }
1968
1969 struct page *alloc_huge_page(struct vm_area_struct *vma,
1970 unsigned long addr, int avoid_reserve)
1971 {
1972 struct hugepage_subpool *spool = subpool_vma(vma);
1973 struct hstate *h = hstate_vma(vma);
1974 struct page *page;
1975 long map_chg, map_commit;
1976 long gbl_chg;
1977 int ret, idx;
1978 struct hugetlb_cgroup *h_cg;
1979
1980 idx = hstate_index(h);
1981 /*
1982 * Examine the region/reserve map to determine if the process
1983 * has a reservation for the page to be allocated. A return
1984 * code of zero indicates a reservation exists (no change).
1985 */
1986 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
1987 if (map_chg < 0)
1988 return ERR_PTR(-ENOMEM);
1989
1990 /*
1991 * Processes that did not create the mapping will have no
1992 * reserves as indicated by the region/reserve map. Check
1993 * that the allocation will not exceed the subpool limit.
1994 * Allocations for MAP_NORESERVE mappings also need to be
1995 * checked against any subpool limit.
1996 */
1997 if (map_chg || avoid_reserve) {
1998 gbl_chg = hugepage_subpool_get_pages(spool, 1);
1999 if (gbl_chg < 0) {
2000 vma_end_reservation(h, vma, addr);
2001 return ERR_PTR(-ENOSPC);
2002 }
2003
2004 /*
2005 * Even though there was no reservation in the region/reserve
2006 * map, there could be reservations associated with the
2007 * subpool that can be used. This would be indicated if the
2008 * return value of hugepage_subpool_get_pages() is zero.
2009 * However, if avoid_reserve is specified we still avoid even
2010 * the subpool reservations.
2011 */
2012 if (avoid_reserve)
2013 gbl_chg = 1;
2014 }
2015
2016 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2017 if (ret)
2018 goto out_subpool_put;
2019
2020 spin_lock(&hugetlb_lock);
2021 /*
2022 * glb_chg is passed to indicate whether or not a page must be taken
2023 * from the global free pool (global change). gbl_chg == 0 indicates
2024 * a reservation exists for the allocation.
2025 */
2026 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2027 if (!page) {
2028 spin_unlock(&hugetlb_lock);
2029 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
2030 if (!page)
2031 goto out_uncharge_cgroup;
2032 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2033 SetPagePrivate(page);
2034 h->resv_huge_pages--;
2035 }
2036 spin_lock(&hugetlb_lock);
2037 list_move(&page->lru, &h->hugepage_activelist);
2038 /* Fall through */
2039 }
2040 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2041 spin_unlock(&hugetlb_lock);
2042
2043 set_page_private(page, (unsigned long)spool);
2044
2045 map_commit = vma_commit_reservation(h, vma, addr);
2046 if (unlikely(map_chg > map_commit)) {
2047 /*
2048 * The page was added to the reservation map between
2049 * vma_needs_reservation and vma_commit_reservation.
2050 * This indicates a race with hugetlb_reserve_pages.
2051 * Adjust for the subpool count incremented above AND
2052 * in hugetlb_reserve_pages for the same page. Also,
2053 * the reservation count added in hugetlb_reserve_pages
2054 * no longer applies.
2055 */
2056 long rsv_adjust;
2057
2058 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2059 hugetlb_acct_memory(h, -rsv_adjust);
2060 }
2061 return page;
2062
2063 out_uncharge_cgroup:
2064 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2065 out_subpool_put:
2066 if (map_chg || avoid_reserve)
2067 hugepage_subpool_put_pages(spool, 1);
2068 vma_end_reservation(h, vma, addr);
2069 return ERR_PTR(-ENOSPC);
2070 }
2071
2072 /*
2073 * alloc_huge_page()'s wrapper which simply returns the page if allocation
2074 * succeeds, otherwise NULL. This function is called from new_vma_page(),
2075 * where no ERR_VALUE is expected to be returned.
2076 */
2077 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
2078 unsigned long addr, int avoid_reserve)
2079 {
2080 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
2081 if (IS_ERR(page))
2082 page = NULL;
2083 return page;
2084 }
2085
2086 int __weak alloc_bootmem_huge_page(struct hstate *h)
2087 {
2088 struct huge_bootmem_page *m;
2089 int nr_nodes, node;
2090
2091 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2092 void *addr;
2093
2094 addr = memblock_virt_alloc_try_nid_nopanic(
2095 huge_page_size(h), huge_page_size(h),
2096 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2097 if (addr) {
2098 /*
2099 * Use the beginning of the huge page to store the
2100 * huge_bootmem_page struct (until gather_bootmem
2101 * puts them into the mem_map).
2102 */
2103 m = addr;
2104 goto found;
2105 }
2106 }
2107 return 0;
2108
2109 found:
2110 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2111 /* Put them into a private list first because mem_map is not up yet */
2112 list_add(&m->list, &huge_boot_pages);
2113 m->hstate = h;
2114 return 1;
2115 }
2116
2117 static void __init prep_compound_huge_page(struct page *page,
2118 unsigned int order)
2119 {
2120 if (unlikely(order > (MAX_ORDER - 1)))
2121 prep_compound_gigantic_page(page, order);
2122 else
2123 prep_compound_page(page, order);
2124 }
2125
2126 /* Put bootmem huge pages into the standard lists after mem_map is up */
2127 static void __init gather_bootmem_prealloc(void)
2128 {
2129 struct huge_bootmem_page *m;
2130
2131 list_for_each_entry(m, &huge_boot_pages, list) {
2132 struct hstate *h = m->hstate;
2133 struct page *page;
2134
2135 #ifdef CONFIG_HIGHMEM
2136 page = pfn_to_page(m->phys >> PAGE_SHIFT);
2137 memblock_free_late(__pa(m),
2138 sizeof(struct huge_bootmem_page));
2139 #else
2140 page = virt_to_page(m);
2141 #endif
2142 WARN_ON(page_count(page) != 1);
2143 prep_compound_huge_page(page, h->order);
2144 WARN_ON(PageReserved(page));
2145 prep_new_huge_page(h, page, page_to_nid(page));
2146 /*
2147 * If we had gigantic hugepages allocated at boot time, we need
2148 * to restore the 'stolen' pages to totalram_pages in order to
2149 * fix confusing memory reports from free(1) and another
2150 * side-effects, like CommitLimit going negative.
2151 */
2152 if (hstate_is_gigantic(h))
2153 adjust_managed_page_count(page, 1 << h->order);
2154 }
2155 }
2156
2157 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2158 {
2159 unsigned long i;
2160
2161 for (i = 0; i < h->max_huge_pages; ++i) {
2162 if (hstate_is_gigantic(h)) {
2163 if (!alloc_bootmem_huge_page(h))
2164 break;
2165 } else if (!alloc_fresh_huge_page(h,
2166 &node_states[N_MEMORY]))
2167 break;
2168 cond_resched();
2169 }
2170 if (i < h->max_huge_pages) {
2171 char buf[32];
2172
2173 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2174 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2175 h->max_huge_pages, buf, i);
2176 h->max_huge_pages = i;
2177 }
2178 }
2179
2180 static void __init hugetlb_init_hstates(void)
2181 {
2182 struct hstate *h;
2183
2184 for_each_hstate(h) {
2185 if (minimum_order > huge_page_order(h))
2186 minimum_order = huge_page_order(h);
2187
2188 /* oversize hugepages were init'ed in early boot */
2189 if (!hstate_is_gigantic(h))
2190 hugetlb_hstate_alloc_pages(h);
2191 }
2192 VM_BUG_ON(minimum_order == UINT_MAX);
2193 }
2194
2195 static void __init report_hugepages(void)
2196 {
2197 struct hstate *h;
2198
2199 for_each_hstate(h) {
2200 char buf[32];
2201
2202 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2203 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2204 buf, h->free_huge_pages);
2205 }
2206 }
2207
2208 #ifdef CONFIG_HIGHMEM
2209 static void try_to_free_low(struct hstate *h, unsigned long count,
2210 nodemask_t *nodes_allowed)
2211 {
2212 int i;
2213
2214 if (hstate_is_gigantic(h))
2215 return;
2216
2217 for_each_node_mask(i, *nodes_allowed) {
2218 struct page *page, *next;
2219 struct list_head *freel = &h->hugepage_freelists[i];
2220 list_for_each_entry_safe(page, next, freel, lru) {
2221 if (count >= h->nr_huge_pages)
2222 return;
2223 if (PageHighMem(page))
2224 continue;
2225 list_del(&page->lru);
2226 update_and_free_page(h, page);
2227 h->free_huge_pages--;
2228 h->free_huge_pages_node[page_to_nid(page)]--;
2229 }
2230 }
2231 }
2232 #else
2233 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2234 nodemask_t *nodes_allowed)
2235 {
2236 }
2237 #endif
2238
2239 /*
2240 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2241 * balanced by operating on them in a round-robin fashion.
2242 * Returns 1 if an adjustment was made.
2243 */
2244 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2245 int delta)
2246 {
2247 int nr_nodes, node;
2248
2249 VM_BUG_ON(delta != -1 && delta != 1);
2250
2251 if (delta < 0) {
2252 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2253 if (h->surplus_huge_pages_node[node])
2254 goto found;
2255 }
2256 } else {
2257 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2258 if (h->surplus_huge_pages_node[node] <
2259 h->nr_huge_pages_node[node])
2260 goto found;
2261 }
2262 }
2263 return 0;
2264
2265 found:
2266 h->surplus_huge_pages += delta;
2267 h->surplus_huge_pages_node[node] += delta;
2268 return 1;
2269 }
2270
2271 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2272 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2273 nodemask_t *nodes_allowed)
2274 {
2275 unsigned long min_count, ret;
2276
2277 if (hstate_is_gigantic(h) && !gigantic_page_supported())
2278 return h->max_huge_pages;
2279
2280 /*
2281 * Increase the pool size
2282 * First take pages out of surplus state. Then make up the
2283 * remaining difference by allocating fresh huge pages.
2284 *
2285 * We might race with __alloc_buddy_huge_page() here and be unable
2286 * to convert a surplus huge page to a normal huge page. That is
2287 * not critical, though, it just means the overall size of the
2288 * pool might be one hugepage larger than it needs to be, but
2289 * within all the constraints specified by the sysctls.
2290 */
2291 spin_lock(&hugetlb_lock);
2292 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2293 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2294 break;
2295 }
2296
2297 while (count > persistent_huge_pages(h)) {
2298 /*
2299 * If this allocation races such that we no longer need the
2300 * page, free_huge_page will handle it by freeing the page
2301 * and reducing the surplus.
2302 */
2303 spin_unlock(&hugetlb_lock);
2304
2305 /* yield cpu to avoid soft lockup */
2306 cond_resched();
2307
2308 if (hstate_is_gigantic(h))
2309 ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2310 else
2311 ret = alloc_fresh_huge_page(h, nodes_allowed);
2312 spin_lock(&hugetlb_lock);
2313 if (!ret)
2314 goto out;
2315
2316 /* Bail for signals. Probably ctrl-c from user */
2317 if (signal_pending(current))
2318 goto out;
2319 }
2320
2321 /*
2322 * Decrease the pool size
2323 * First return free pages to the buddy allocator (being careful
2324 * to keep enough around to satisfy reservations). Then place
2325 * pages into surplus state as needed so the pool will shrink
2326 * to the desired size as pages become free.
2327 *
2328 * By placing pages into the surplus state independent of the
2329 * overcommit value, we are allowing the surplus pool size to
2330 * exceed overcommit. There are few sane options here. Since
2331 * __alloc_buddy_huge_page() is checking the global counter,
2332 * though, we'll note that we're not allowed to exceed surplus
2333 * and won't grow the pool anywhere else. Not until one of the
2334 * sysctls are changed, or the surplus pages go out of use.
2335 */
2336 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2337 min_count = max(count, min_count);
2338 try_to_free_low(h, min_count, nodes_allowed);
2339 while (min_count < persistent_huge_pages(h)) {
2340 if (!free_pool_huge_page(h, nodes_allowed, 0))
2341 break;
2342 cond_resched_lock(&hugetlb_lock);
2343 }
2344 while (count < persistent_huge_pages(h)) {
2345 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2346 break;
2347 }
2348 out:
2349 ret = persistent_huge_pages(h);
2350 spin_unlock(&hugetlb_lock);
2351 return ret;
2352 }
2353
2354 #define HSTATE_ATTR_RO(_name) \
2355 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2356
2357 #define HSTATE_ATTR(_name) \
2358 static struct kobj_attribute _name##_attr = \
2359 __ATTR(_name, 0644, _name##_show, _name##_store)
2360
2361 static struct kobject *hugepages_kobj;
2362 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2363
2364 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2365
2366 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2367 {
2368 int i;
2369
2370 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2371 if (hstate_kobjs[i] == kobj) {
2372 if (nidp)
2373 *nidp = NUMA_NO_NODE;
2374 return &hstates[i];
2375 }
2376
2377 return kobj_to_node_hstate(kobj, nidp);
2378 }
2379
2380 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2381 struct kobj_attribute *attr, char *buf)
2382 {
2383 struct hstate *h;
2384 unsigned long nr_huge_pages;
2385 int nid;
2386
2387 h = kobj_to_hstate(kobj, &nid);
2388 if (nid == NUMA_NO_NODE)
2389 nr_huge_pages = h->nr_huge_pages;
2390 else
2391 nr_huge_pages = h->nr_huge_pages_node[nid];
2392
2393 return sprintf(buf, "%lu\n", nr_huge_pages);
2394 }
2395
2396 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2397 struct hstate *h, int nid,
2398 unsigned long count, size_t len)
2399 {
2400 int err;
2401 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2402
2403 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2404 err = -EINVAL;
2405 goto out;
2406 }
2407
2408 if (nid == NUMA_NO_NODE) {
2409 /*
2410 * global hstate attribute
2411 */
2412 if (!(obey_mempolicy &&
2413 init_nodemask_of_mempolicy(nodes_allowed))) {
2414 NODEMASK_FREE(nodes_allowed);
2415 nodes_allowed = &node_states[N_MEMORY];
2416 }
2417 } else if (nodes_allowed) {
2418 /*
2419 * per node hstate attribute: adjust count to global,
2420 * but restrict alloc/free to the specified node.
2421 */
2422 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2423 init_nodemask_of_node(nodes_allowed, nid);
2424 } else
2425 nodes_allowed = &node_states[N_MEMORY];
2426
2427 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2428
2429 if (nodes_allowed != &node_states[N_MEMORY])
2430 NODEMASK_FREE(nodes_allowed);
2431
2432 return len;
2433 out:
2434 NODEMASK_FREE(nodes_allowed);
2435 return err;
2436 }
2437
2438 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2439 struct kobject *kobj, const char *buf,
2440 size_t len)
2441 {
2442 struct hstate *h;
2443 unsigned long count;
2444 int nid;
2445 int err;
2446
2447 err = kstrtoul(buf, 10, &count);
2448 if (err)
2449 return err;
2450
2451 h = kobj_to_hstate(kobj, &nid);
2452 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2453 }
2454
2455 static ssize_t nr_hugepages_show(struct kobject *kobj,
2456 struct kobj_attribute *attr, char *buf)
2457 {
2458 return nr_hugepages_show_common(kobj, attr, buf);
2459 }
2460
2461 static ssize_t nr_hugepages_store(struct kobject *kobj,
2462 struct kobj_attribute *attr, const char *buf, size_t len)
2463 {
2464 return nr_hugepages_store_common(false, kobj, buf, len);
2465 }
2466 HSTATE_ATTR(nr_hugepages);
2467
2468 #ifdef CONFIG_NUMA
2469
2470 /*
2471 * hstate attribute for optionally mempolicy-based constraint on persistent
2472 * huge page alloc/free.
2473 */
2474 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2475 struct kobj_attribute *attr, char *buf)
2476 {
2477 return nr_hugepages_show_common(kobj, attr, buf);
2478 }
2479
2480 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2481 struct kobj_attribute *attr, const char *buf, size_t len)
2482 {
2483 return nr_hugepages_store_common(true, kobj, buf, len);
2484 }
2485 HSTATE_ATTR(nr_hugepages_mempolicy);
2486 #endif
2487
2488
2489 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2490 struct kobj_attribute *attr, char *buf)
2491 {
2492 struct hstate *h = kobj_to_hstate(kobj, NULL);
2493 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2494 }
2495
2496 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2497 struct kobj_attribute *attr, const char *buf, size_t count)
2498 {
2499 int err;
2500 unsigned long input;
2501 struct hstate *h = kobj_to_hstate(kobj, NULL);
2502
2503 if (hstate_is_gigantic(h))
2504 return -EINVAL;
2505
2506 err = kstrtoul(buf, 10, &input);
2507 if (err)
2508 return err;
2509
2510 spin_lock(&hugetlb_lock);
2511 h->nr_overcommit_huge_pages = input;
2512 spin_unlock(&hugetlb_lock);
2513
2514 return count;
2515 }
2516 HSTATE_ATTR(nr_overcommit_hugepages);
2517
2518 static ssize_t free_hugepages_show(struct kobject *kobj,
2519 struct kobj_attribute *attr, char *buf)
2520 {
2521 struct hstate *h;
2522 unsigned long free_huge_pages;
2523 int nid;
2524
2525 h = kobj_to_hstate(kobj, &nid);
2526 if (nid == NUMA_NO_NODE)
2527 free_huge_pages = h->free_huge_pages;
2528 else
2529 free_huge_pages = h->free_huge_pages_node[nid];
2530
2531 return sprintf(buf, "%lu\n", free_huge_pages);
2532 }
2533 HSTATE_ATTR_RO(free_hugepages);
2534
2535 static ssize_t resv_hugepages_show(struct kobject *kobj,
2536 struct kobj_attribute *attr, char *buf)
2537 {
2538 struct hstate *h = kobj_to_hstate(kobj, NULL);
2539 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2540 }
2541 HSTATE_ATTR_RO(resv_hugepages);
2542
2543 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2544 struct kobj_attribute *attr, char *buf)
2545 {
2546 struct hstate *h;
2547 unsigned long surplus_huge_pages;
2548 int nid;
2549
2550 h = kobj_to_hstate(kobj, &nid);
2551 if (nid == NUMA_NO_NODE)
2552 surplus_huge_pages = h->surplus_huge_pages;
2553 else
2554 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2555
2556 return sprintf(buf, "%lu\n", surplus_huge_pages);
2557 }
2558 HSTATE_ATTR_RO(surplus_hugepages);
2559
2560 static struct attribute *hstate_attrs[] = {
2561 &nr_hugepages_attr.attr,
2562 &nr_overcommit_hugepages_attr.attr,
2563 &free_hugepages_attr.attr,
2564 &resv_hugepages_attr.attr,
2565 &surplus_hugepages_attr.attr,
2566 #ifdef CONFIG_NUMA
2567 &nr_hugepages_mempolicy_attr.attr,
2568 #endif
2569 NULL,
2570 };
2571
2572 static struct attribute_group hstate_attr_group = {
2573 .attrs = hstate_attrs,
2574 };
2575
2576 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2577 struct kobject **hstate_kobjs,
2578 struct attribute_group *hstate_attr_group)
2579 {
2580 int retval;
2581 int hi = hstate_index(h);
2582
2583 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2584 if (!hstate_kobjs[hi])
2585 return -ENOMEM;
2586
2587 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2588 if (retval)
2589 kobject_put(hstate_kobjs[hi]);
2590
2591 return retval;
2592 }
2593
2594 static void __init hugetlb_sysfs_init(void)
2595 {
2596 struct hstate *h;
2597 int err;
2598
2599 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2600 if (!hugepages_kobj)
2601 return;
2602
2603 for_each_hstate(h) {
2604 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2605 hstate_kobjs, &hstate_attr_group);
2606 if (err)
2607 pr_err("Hugetlb: Unable to add hstate %s", h->name);
2608 }
2609 }
2610
2611 #ifdef CONFIG_NUMA
2612
2613 /*
2614 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2615 * with node devices in node_devices[] using a parallel array. The array
2616 * index of a node device or _hstate == node id.
2617 * This is here to avoid any static dependency of the node device driver, in
2618 * the base kernel, on the hugetlb module.
2619 */
2620 struct node_hstate {
2621 struct kobject *hugepages_kobj;
2622 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2623 };
2624 static struct node_hstate node_hstates[MAX_NUMNODES];
2625
2626 /*
2627 * A subset of global hstate attributes for node devices
2628 */
2629 static struct attribute *per_node_hstate_attrs[] = {
2630 &nr_hugepages_attr.attr,
2631 &free_hugepages_attr.attr,
2632 &surplus_hugepages_attr.attr,
2633 NULL,
2634 };
2635
2636 static struct attribute_group per_node_hstate_attr_group = {
2637 .attrs = per_node_hstate_attrs,
2638 };
2639
2640 /*
2641 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2642 * Returns node id via non-NULL nidp.
2643 */
2644 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2645 {
2646 int nid;
2647
2648 for (nid = 0; nid < nr_node_ids; nid++) {
2649 struct node_hstate *nhs = &node_hstates[nid];
2650 int i;
2651 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2652 if (nhs->hstate_kobjs[i] == kobj) {
2653 if (nidp)
2654 *nidp = nid;
2655 return &hstates[i];
2656 }
2657 }
2658
2659 BUG();
2660 return NULL;
2661 }
2662
2663 /*
2664 * Unregister hstate attributes from a single node device.
2665 * No-op if no hstate attributes attached.
2666 */
2667 static void hugetlb_unregister_node(struct node *node)
2668 {
2669 struct hstate *h;
2670 struct node_hstate *nhs = &node_hstates[node->dev.id];
2671
2672 if (!nhs->hugepages_kobj)
2673 return; /* no hstate attributes */
2674
2675 for_each_hstate(h) {
2676 int idx = hstate_index(h);
2677 if (nhs->hstate_kobjs[idx]) {
2678 kobject_put(nhs->hstate_kobjs[idx]);
2679 nhs->hstate_kobjs[idx] = NULL;
2680 }
2681 }
2682
2683 kobject_put(nhs->hugepages_kobj);
2684 nhs->hugepages_kobj = NULL;
2685 }
2686
2687
2688 /*
2689 * Register hstate attributes for a single node device.
2690 * No-op if attributes already registered.
2691 */
2692 static void hugetlb_register_node(struct node *node)
2693 {
2694 struct hstate *h;
2695 struct node_hstate *nhs = &node_hstates[node->dev.id];
2696 int err;
2697
2698 if (nhs->hugepages_kobj)
2699 return; /* already allocated */
2700
2701 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2702 &node->dev.kobj);
2703 if (!nhs->hugepages_kobj)
2704 return;
2705
2706 for_each_hstate(h) {
2707 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2708 nhs->hstate_kobjs,
2709 &per_node_hstate_attr_group);
2710 if (err) {
2711 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2712 h->name, node->dev.id);
2713 hugetlb_unregister_node(node);
2714 break;
2715 }
2716 }
2717 }
2718
2719 /*
2720 * hugetlb init time: register hstate attributes for all registered node
2721 * devices of nodes that have memory. All on-line nodes should have
2722 * registered their associated device by this time.
2723 */
2724 static void __init hugetlb_register_all_nodes(void)
2725 {
2726 int nid;
2727
2728 for_each_node_state(nid, N_MEMORY) {
2729 struct node *node = node_devices[nid];
2730 if (node->dev.id == nid)
2731 hugetlb_register_node(node);
2732 }
2733
2734 /*
2735 * Let the node device driver know we're here so it can
2736 * [un]register hstate attributes on node hotplug.
2737 */
2738 register_hugetlbfs_with_node(hugetlb_register_node,
2739 hugetlb_unregister_node);
2740 }
2741 #else /* !CONFIG_NUMA */
2742
2743 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2744 {
2745 BUG();
2746 if (nidp)
2747 *nidp = -1;
2748 return NULL;
2749 }
2750
2751 static void hugetlb_register_all_nodes(void) { }
2752
2753 #endif
2754
2755 static int __init hugetlb_init(void)
2756 {
2757 int i;
2758
2759 if (!hugepages_supported())
2760 return 0;
2761
2762 if (!size_to_hstate(default_hstate_size)) {
2763 if (default_hstate_size != 0) {
2764 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2765 default_hstate_size, HPAGE_SIZE);
2766 }
2767
2768 default_hstate_size = HPAGE_SIZE;
2769 if (!size_to_hstate(default_hstate_size))
2770 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2771 }
2772 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2773 if (default_hstate_max_huge_pages) {
2774 if (!default_hstate.max_huge_pages)
2775 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2776 }
2777
2778 hugetlb_init_hstates();
2779 gather_bootmem_prealloc();
2780 report_hugepages();
2781
2782 hugetlb_sysfs_init();
2783 hugetlb_register_all_nodes();
2784 hugetlb_cgroup_file_init();
2785
2786 #ifdef CONFIG_SMP
2787 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2788 #else
2789 num_fault_mutexes = 1;
2790 #endif
2791 hugetlb_fault_mutex_table =
2792 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2793 BUG_ON(!hugetlb_fault_mutex_table);
2794
2795 for (i = 0; i < num_fault_mutexes; i++)
2796 mutex_init(&hugetlb_fault_mutex_table[i]);
2797 return 0;
2798 }
2799 subsys_initcall(hugetlb_init);
2800
2801 /* Should be called on processing a hugepagesz=... option */
2802 void __init hugetlb_bad_size(void)
2803 {
2804 parsed_valid_hugepagesz = false;
2805 }
2806
2807 void __init hugetlb_add_hstate(unsigned int order)
2808 {
2809 struct hstate *h;
2810 unsigned long i;
2811
2812 if (size_to_hstate(PAGE_SIZE << order)) {
2813 pr_warn("hugepagesz= specified twice, ignoring\n");
2814 return;
2815 }
2816 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2817 BUG_ON(order == 0);
2818 h = &hstates[hugetlb_max_hstate++];
2819 h->order = order;
2820 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2821 h->nr_huge_pages = 0;
2822 h->free_huge_pages = 0;
2823 for (i = 0; i < MAX_NUMNODES; ++i)
2824 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2825 INIT_LIST_HEAD(&h->hugepage_activelist);
2826 h->next_nid_to_alloc = first_memory_node;
2827 h->next_nid_to_free = first_memory_node;
2828 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2829 huge_page_size(h)/1024);
2830
2831 parsed_hstate = h;
2832 }
2833
2834 static int __init hugetlb_nrpages_setup(char *s)
2835 {
2836 unsigned long *mhp;
2837 static unsigned long *last_mhp;
2838
2839 if (!parsed_valid_hugepagesz) {
2840 pr_warn("hugepages = %s preceded by "
2841 "an unsupported hugepagesz, ignoring\n", s);
2842 parsed_valid_hugepagesz = true;
2843 return 1;
2844 }
2845 /*
2846 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2847 * so this hugepages= parameter goes to the "default hstate".
2848 */
2849 else if (!hugetlb_max_hstate)
2850 mhp = &default_hstate_max_huge_pages;
2851 else
2852 mhp = &parsed_hstate->max_huge_pages;
2853
2854 if (mhp == last_mhp) {
2855 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2856 return 1;
2857 }
2858
2859 if (sscanf(s, "%lu", mhp) <= 0)
2860 *mhp = 0;
2861
2862 /*
2863 * Global state is always initialized later in hugetlb_init.
2864 * But we need to allocate >= MAX_ORDER hstates here early to still
2865 * use the bootmem allocator.
2866 */
2867 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2868 hugetlb_hstate_alloc_pages(parsed_hstate);
2869
2870 last_mhp = mhp;
2871
2872 return 1;
2873 }
2874 __setup("hugepages=", hugetlb_nrpages_setup);
2875
2876 static int __init hugetlb_default_setup(char *s)
2877 {
2878 default_hstate_size = memparse(s, &s);
2879 return 1;
2880 }
2881 __setup("default_hugepagesz=", hugetlb_default_setup);
2882
2883 static unsigned int cpuset_mems_nr(unsigned int *array)
2884 {
2885 int node;
2886 unsigned int nr = 0;
2887
2888 for_each_node_mask(node, cpuset_current_mems_allowed)
2889 nr += array[node];
2890
2891 return nr;
2892 }
2893
2894 #ifdef CONFIG_SYSCTL
2895 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2896 struct ctl_table *table, int write,
2897 void __user *buffer, size_t *length, loff_t *ppos)
2898 {
2899 struct hstate *h = &default_hstate;
2900 unsigned long tmp = h->max_huge_pages;
2901 int ret;
2902
2903 if (!hugepages_supported())
2904 return -EOPNOTSUPP;
2905
2906 table->data = &tmp;
2907 table->maxlen = sizeof(unsigned long);
2908 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2909 if (ret)
2910 goto out;
2911
2912 if (write)
2913 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2914 NUMA_NO_NODE, tmp, *length);
2915 out:
2916 return ret;
2917 }
2918
2919 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2920 void __user *buffer, size_t *length, loff_t *ppos)
2921 {
2922
2923 return hugetlb_sysctl_handler_common(false, table, write,
2924 buffer, length, ppos);
2925 }
2926
2927 #ifdef CONFIG_NUMA
2928 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2929 void __user *buffer, size_t *length, loff_t *ppos)
2930 {
2931 return hugetlb_sysctl_handler_common(true, table, write,
2932 buffer, length, ppos);
2933 }
2934 #endif /* CONFIG_NUMA */
2935
2936 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2937 void __user *buffer,
2938 size_t *length, loff_t *ppos)
2939 {
2940 struct hstate *h = &default_hstate;
2941 unsigned long tmp;
2942 int ret;
2943
2944 if (!hugepages_supported())
2945 return -EOPNOTSUPP;
2946
2947 tmp = h->nr_overcommit_huge_pages;
2948
2949 if (write && hstate_is_gigantic(h))
2950 return -EINVAL;
2951
2952 table->data = &tmp;
2953 table->maxlen = sizeof(unsigned long);
2954 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2955 if (ret)
2956 goto out;
2957
2958 if (write) {
2959 spin_lock(&hugetlb_lock);
2960 h->nr_overcommit_huge_pages = tmp;
2961 spin_unlock(&hugetlb_lock);
2962 }
2963 out:
2964 return ret;
2965 }
2966
2967 #endif /* CONFIG_SYSCTL */
2968
2969 void hugetlb_report_meminfo(struct seq_file *m)
2970 {
2971 struct hstate *h = &default_hstate;
2972 if (!hugepages_supported())
2973 return;
2974 seq_printf(m,
2975 "HugePages_Total: %5lu\n"
2976 "HugePages_Free: %5lu\n"
2977 "HugePages_Rsvd: %5lu\n"
2978 "HugePages_Surp: %5lu\n"
2979 "Hugepagesize: %8lu kB\n",
2980 h->nr_huge_pages,
2981 h->free_huge_pages,
2982 h->resv_huge_pages,
2983 h->surplus_huge_pages,
2984 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2985 }
2986
2987 int hugetlb_report_node_meminfo(int nid, char *buf)
2988 {
2989 struct hstate *h = &default_hstate;
2990 if (!hugepages_supported())
2991 return 0;
2992 return sprintf(buf,
2993 "Node %d HugePages_Total: %5u\n"
2994 "Node %d HugePages_Free: %5u\n"
2995 "Node %d HugePages_Surp: %5u\n",
2996 nid, h->nr_huge_pages_node[nid],
2997 nid, h->free_huge_pages_node[nid],
2998 nid, h->surplus_huge_pages_node[nid]);
2999 }
3000
3001 void hugetlb_show_meminfo(void)
3002 {
3003 struct hstate *h;
3004 int nid;
3005
3006 if (!hugepages_supported())
3007 return;
3008
3009 for_each_node_state(nid, N_MEMORY)
3010 for_each_hstate(h)
3011 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3012 nid,
3013 h->nr_huge_pages_node[nid],
3014 h->free_huge_pages_node[nid],
3015 h->surplus_huge_pages_node[nid],
3016 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3017 }
3018
3019 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3020 {
3021 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3022 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3023 }
3024
3025 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3026 unsigned long hugetlb_total_pages(void)
3027 {
3028 struct hstate *h;
3029 unsigned long nr_total_pages = 0;
3030
3031 for_each_hstate(h)
3032 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3033 return nr_total_pages;
3034 }
3035
3036 static int hugetlb_acct_memory(struct hstate *h, long delta)
3037 {
3038 int ret = -ENOMEM;
3039
3040 spin_lock(&hugetlb_lock);
3041 /*
3042 * When cpuset is configured, it breaks the strict hugetlb page
3043 * reservation as the accounting is done on a global variable. Such
3044 * reservation is completely rubbish in the presence of cpuset because
3045 * the reservation is not checked against page availability for the
3046 * current cpuset. Application can still potentially OOM'ed by kernel
3047 * with lack of free htlb page in cpuset that the task is in.
3048 * Attempt to enforce strict accounting with cpuset is almost
3049 * impossible (or too ugly) because cpuset is too fluid that
3050 * task or memory node can be dynamically moved between cpusets.
3051 *
3052 * The change of semantics for shared hugetlb mapping with cpuset is
3053 * undesirable. However, in order to preserve some of the semantics,
3054 * we fall back to check against current free page availability as
3055 * a best attempt and hopefully to minimize the impact of changing
3056 * semantics that cpuset has.
3057 */
3058 if (delta > 0) {
3059 if (gather_surplus_pages(h, delta) < 0)
3060 goto out;
3061
3062 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3063 return_unused_surplus_pages(h, delta);
3064 goto out;
3065 }
3066 }
3067
3068 ret = 0;
3069 if (delta < 0)
3070 return_unused_surplus_pages(h, (unsigned long) -delta);
3071
3072 out:
3073 spin_unlock(&hugetlb_lock);
3074 return ret;
3075 }
3076
3077 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3078 {
3079 struct resv_map *resv = vma_resv_map(vma);
3080
3081 /*
3082 * This new VMA should share its siblings reservation map if present.
3083 * The VMA will only ever have a valid reservation map pointer where
3084 * it is being copied for another still existing VMA. As that VMA
3085 * has a reference to the reservation map it cannot disappear until
3086 * after this open call completes. It is therefore safe to take a
3087 * new reference here without additional locking.
3088 */
3089 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3090 kref_get(&resv->refs);
3091 }
3092
3093 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3094 {
3095 struct hstate *h = hstate_vma(vma);
3096 struct resv_map *resv = vma_resv_map(vma);
3097 struct hugepage_subpool *spool = subpool_vma(vma);
3098 unsigned long reserve, start, end;
3099 long gbl_reserve;
3100
3101 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3102 return;
3103
3104 start = vma_hugecache_offset(h, vma, vma->vm_start);
3105 end = vma_hugecache_offset(h, vma, vma->vm_end);
3106
3107 reserve = (end - start) - region_count(resv, start, end);
3108
3109 kref_put(&resv->refs, resv_map_release);
3110
3111 if (reserve) {
3112 /*
3113 * Decrement reserve counts. The global reserve count may be
3114 * adjusted if the subpool has a minimum size.
3115 */
3116 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3117 hugetlb_acct_memory(h, -gbl_reserve);
3118 }
3119 }
3120
3121 /*
3122 * We cannot handle pagefaults against hugetlb pages at all. They cause
3123 * handle_mm_fault() to try to instantiate regular-sized pages in the
3124 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3125 * this far.
3126 */
3127 static int hugetlb_vm_op_fault(struct vm_fault *vmf)
3128 {
3129 BUG();
3130 return 0;
3131 }
3132
3133 const struct vm_operations_struct hugetlb_vm_ops = {
3134 .fault = hugetlb_vm_op_fault,
3135 .open = hugetlb_vm_op_open,
3136 .close = hugetlb_vm_op_close,
3137 };
3138
3139 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3140 int writable)
3141 {
3142 pte_t entry;
3143
3144 if (writable) {
3145 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3146 vma->vm_page_prot)));
3147 } else {
3148 entry = huge_pte_wrprotect(mk_huge_pte(page,
3149 vma->vm_page_prot));
3150 }
3151 entry = pte_mkyoung(entry);
3152 entry = pte_mkhuge(entry);
3153 entry = arch_make_huge_pte(entry, vma, page, writable);
3154
3155 return entry;
3156 }
3157
3158 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3159 unsigned long address, pte_t *ptep)
3160 {
3161 pte_t entry;
3162
3163 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3164 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3165 update_mmu_cache(vma, address, ptep);
3166 }
3167
3168 bool is_hugetlb_entry_migration(pte_t pte)
3169 {
3170 swp_entry_t swp;
3171
3172 if (huge_pte_none(pte) || pte_present(pte))
3173 return false;
3174 swp = pte_to_swp_entry(pte);
3175 if (non_swap_entry(swp) && is_migration_entry(swp))
3176 return true;
3177 else
3178 return false;
3179 }
3180
3181 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3182 {
3183 swp_entry_t swp;
3184
3185 if (huge_pte_none(pte) || pte_present(pte))
3186 return 0;
3187 swp = pte_to_swp_entry(pte);
3188 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3189 return 1;
3190 else
3191 return 0;
3192 }
3193
3194 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3195 struct vm_area_struct *vma)
3196 {
3197 pte_t *src_pte, *dst_pte, entry;
3198 struct page *ptepage;
3199 unsigned long addr;
3200 int cow;
3201 struct hstate *h = hstate_vma(vma);
3202 unsigned long sz = huge_page_size(h);
3203 unsigned long mmun_start; /* For mmu_notifiers */
3204 unsigned long mmun_end; /* For mmu_notifiers */
3205 int ret = 0;
3206
3207 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3208
3209 mmun_start = vma->vm_start;
3210 mmun_end = vma->vm_end;
3211 if (cow)
3212 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3213
3214 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3215 spinlock_t *src_ptl, *dst_ptl;
3216 src_pte = huge_pte_offset(src, addr, sz);
3217 if (!src_pte)
3218 continue;
3219 dst_pte = huge_pte_alloc(dst, addr, sz);
3220 if (!dst_pte) {
3221 ret = -ENOMEM;
3222 break;
3223 }
3224
3225 /* If the pagetables are shared don't copy or take references */
3226 if (dst_pte == src_pte)
3227 continue;
3228
3229 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3230 src_ptl = huge_pte_lockptr(h, src, src_pte);
3231 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3232 entry = huge_ptep_get(src_pte);
3233 if (huge_pte_none(entry)) { /* skip none entry */
3234 ;
3235 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3236 is_hugetlb_entry_hwpoisoned(entry))) {
3237 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3238
3239 if (is_write_migration_entry(swp_entry) && cow) {
3240 /*
3241 * COW mappings require pages in both
3242 * parent and child to be set to read.
3243 */
3244 make_migration_entry_read(&swp_entry);
3245 entry = swp_entry_to_pte(swp_entry);
3246 set_huge_swap_pte_at(src, addr, src_pte,
3247 entry, sz);
3248 }
3249 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3250 } else {
3251 if (cow) {
3252 huge_ptep_set_wrprotect(src, addr, src_pte);
3253 mmu_notifier_invalidate_range(src, mmun_start,
3254 mmun_end);
3255 }
3256 entry = huge_ptep_get(src_pte);
3257 ptepage = pte_page(entry);
3258 get_page(ptepage);
3259 page_dup_rmap(ptepage, true);
3260 set_huge_pte_at(dst, addr, dst_pte, entry);
3261 hugetlb_count_add(pages_per_huge_page(h), dst);
3262 }
3263 spin_unlock(src_ptl);
3264 spin_unlock(dst_ptl);
3265 }
3266
3267 if (cow)
3268 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3269
3270 return ret;
3271 }
3272
3273 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3274 unsigned long start, unsigned long end,
3275 struct page *ref_page)
3276 {
3277 struct mm_struct *mm = vma->vm_mm;
3278 unsigned long address;
3279 pte_t *ptep;
3280 pte_t pte;
3281 spinlock_t *ptl;
3282 struct page *page;
3283 struct hstate *h = hstate_vma(vma);
3284 unsigned long sz = huge_page_size(h);
3285 const unsigned long mmun_start = start; /* For mmu_notifiers */
3286 const unsigned long mmun_end = end; /* For mmu_notifiers */
3287
3288 WARN_ON(!is_vm_hugetlb_page(vma));
3289 BUG_ON(start & ~huge_page_mask(h));
3290 BUG_ON(end & ~huge_page_mask(h));
3291
3292 /*
3293 * This is a hugetlb vma, all the pte entries should point
3294 * to huge page.
3295 */
3296 tlb_remove_check_page_size_change(tlb, sz);
3297 tlb_start_vma(tlb, vma);
3298 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3299 address = start;
3300 for (; address < end; address += sz) {
3301 ptep = huge_pte_offset(mm, address, sz);
3302 if (!ptep)
3303 continue;
3304
3305 ptl = huge_pte_lock(h, mm, ptep);
3306 if (huge_pmd_unshare(mm, &address, ptep)) {
3307 spin_unlock(ptl);
3308 continue;
3309 }
3310
3311 pte = huge_ptep_get(ptep);
3312 if (huge_pte_none(pte)) {
3313 spin_unlock(ptl);
3314 continue;
3315 }
3316
3317 /*
3318 * Migrating hugepage or HWPoisoned hugepage is already
3319 * unmapped and its refcount is dropped, so just clear pte here.
3320 */
3321 if (unlikely(!pte_present(pte))) {
3322 huge_pte_clear(mm, address, ptep, sz);
3323 spin_unlock(ptl);
3324 continue;
3325 }
3326
3327 page = pte_page(pte);
3328 /*
3329 * If a reference page is supplied, it is because a specific
3330 * page is being unmapped, not a range. Ensure the page we
3331 * are about to unmap is the actual page of interest.
3332 */
3333 if (ref_page) {
3334 if (page != ref_page) {
3335 spin_unlock(ptl);
3336 continue;
3337 }
3338 /*
3339 * Mark the VMA as having unmapped its page so that
3340 * future faults in this VMA will fail rather than
3341 * looking like data was lost
3342 */
3343 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3344 }
3345
3346 pte = huge_ptep_get_and_clear(mm, address, ptep);
3347 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3348 if (huge_pte_dirty(pte))
3349 set_page_dirty(page);
3350
3351 hugetlb_count_sub(pages_per_huge_page(h), mm);
3352 page_remove_rmap(page, true);
3353
3354 spin_unlock(ptl);
3355 tlb_remove_page_size(tlb, page, huge_page_size(h));
3356 /*
3357 * Bail out after unmapping reference page if supplied
3358 */
3359 if (ref_page)
3360 break;
3361 }
3362 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3363 tlb_end_vma(tlb, vma);
3364 }
3365
3366 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3367 struct vm_area_struct *vma, unsigned long start,
3368 unsigned long end, struct page *ref_page)
3369 {
3370 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3371
3372 /*
3373 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3374 * test will fail on a vma being torn down, and not grab a page table
3375 * on its way out. We're lucky that the flag has such an appropriate
3376 * name, and can in fact be safely cleared here. We could clear it
3377 * before the __unmap_hugepage_range above, but all that's necessary
3378 * is to clear it before releasing the i_mmap_rwsem. This works
3379 * because in the context this is called, the VMA is about to be
3380 * destroyed and the i_mmap_rwsem is held.
3381 */
3382 vma->vm_flags &= ~VM_MAYSHARE;
3383 }
3384
3385 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3386 unsigned long end, struct page *ref_page)
3387 {
3388 struct mm_struct *mm;
3389 struct mmu_gather tlb;
3390
3391 mm = vma->vm_mm;
3392
3393 tlb_gather_mmu(&tlb, mm, start, end);
3394 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3395 tlb_finish_mmu(&tlb, start, end);
3396 }
3397
3398 /*
3399 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3400 * mappping it owns the reserve page for. The intention is to unmap the page
3401 * from other VMAs and let the children be SIGKILLed if they are faulting the
3402 * same region.
3403 */
3404 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3405 struct page *page, unsigned long address)
3406 {
3407 struct hstate *h = hstate_vma(vma);
3408 struct vm_area_struct *iter_vma;
3409 struct address_space *mapping;
3410 pgoff_t pgoff;
3411
3412 /*
3413 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3414 * from page cache lookup which is in HPAGE_SIZE units.
3415 */
3416 address = address & huge_page_mask(h);
3417 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3418 vma->vm_pgoff;
3419 mapping = vma->vm_file->f_mapping;
3420
3421 /*
3422 * Take the mapping lock for the duration of the table walk. As
3423 * this mapping should be shared between all the VMAs,
3424 * __unmap_hugepage_range() is called as the lock is already held
3425 */
3426 i_mmap_lock_write(mapping);
3427 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3428 /* Do not unmap the current VMA */
3429 if (iter_vma == vma)
3430 continue;
3431
3432 /*
3433 * Shared VMAs have their own reserves and do not affect
3434 * MAP_PRIVATE accounting but it is possible that a shared
3435 * VMA is using the same page so check and skip such VMAs.
3436 */
3437 if (iter_vma->vm_flags & VM_MAYSHARE)
3438 continue;
3439
3440 /*
3441 * Unmap the page from other VMAs without their own reserves.
3442 * They get marked to be SIGKILLed if they fault in these
3443 * areas. This is because a future no-page fault on this VMA
3444 * could insert a zeroed page instead of the data existing
3445 * from the time of fork. This would look like data corruption
3446 */
3447 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3448 unmap_hugepage_range(iter_vma, address,
3449 address + huge_page_size(h), page);
3450 }
3451 i_mmap_unlock_write(mapping);
3452 }
3453
3454 /*
3455 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3456 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3457 * cannot race with other handlers or page migration.
3458 * Keep the pte_same checks anyway to make transition from the mutex easier.
3459 */
3460 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3461 unsigned long address, pte_t *ptep,
3462 struct page *pagecache_page, spinlock_t *ptl)
3463 {
3464 pte_t pte;
3465 struct hstate *h = hstate_vma(vma);
3466 struct page *old_page, *new_page;
3467 int ret = 0, outside_reserve = 0;
3468 unsigned long mmun_start; /* For mmu_notifiers */
3469 unsigned long mmun_end; /* For mmu_notifiers */
3470
3471 pte = huge_ptep_get(ptep);
3472 old_page = pte_page(pte);
3473
3474 retry_avoidcopy:
3475 /* If no-one else is actually using this page, avoid the copy
3476 * and just make the page writable */
3477 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3478 page_move_anon_rmap(old_page, vma);
3479 set_huge_ptep_writable(vma, address, ptep);
3480 return 0;
3481 }
3482
3483 /*
3484 * If the process that created a MAP_PRIVATE mapping is about to
3485 * perform a COW due to a shared page count, attempt to satisfy
3486 * the allocation without using the existing reserves. The pagecache
3487 * page is used to determine if the reserve at this address was
3488 * consumed or not. If reserves were used, a partial faulted mapping
3489 * at the time of fork() could consume its reserves on COW instead
3490 * of the full address range.
3491 */
3492 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3493 old_page != pagecache_page)
3494 outside_reserve = 1;
3495
3496 get_page(old_page);
3497
3498 /*
3499 * Drop page table lock as buddy allocator may be called. It will
3500 * be acquired again before returning to the caller, as expected.
3501 */
3502 spin_unlock(ptl);
3503 new_page = alloc_huge_page(vma, address, outside_reserve);
3504
3505 if (IS_ERR(new_page)) {
3506 /*
3507 * If a process owning a MAP_PRIVATE mapping fails to COW,
3508 * it is due to references held by a child and an insufficient
3509 * huge page pool. To guarantee the original mappers
3510 * reliability, unmap the page from child processes. The child
3511 * may get SIGKILLed if it later faults.
3512 */
3513 if (outside_reserve) {
3514 put_page(old_page);
3515 BUG_ON(huge_pte_none(pte));
3516 unmap_ref_private(mm, vma, old_page, address);
3517 BUG_ON(huge_pte_none(pte));
3518 spin_lock(ptl);
3519 ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3520 huge_page_size(h));
3521 if (likely(ptep &&
3522 pte_same(huge_ptep_get(ptep), pte)))
3523 goto retry_avoidcopy;
3524 /*
3525 * race occurs while re-acquiring page table
3526 * lock, and our job is done.
3527 */
3528 return 0;
3529 }
3530
3531 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3532 VM_FAULT_OOM : VM_FAULT_SIGBUS;
3533 goto out_release_old;
3534 }
3535
3536 /*
3537 * When the original hugepage is shared one, it does not have
3538 * anon_vma prepared.
3539 */
3540 if (unlikely(anon_vma_prepare(vma))) {
3541 ret = VM_FAULT_OOM;
3542 goto out_release_all;
3543 }
3544
3545 copy_user_huge_page(new_page, old_page, address, vma,
3546 pages_per_huge_page(h));
3547 __SetPageUptodate(new_page);
3548 set_page_huge_active(new_page);
3549
3550 mmun_start = address & huge_page_mask(h);
3551 mmun_end = mmun_start + huge_page_size(h);
3552 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3553
3554 /*
3555 * Retake the page table lock to check for racing updates
3556 * before the page tables are altered
3557 */
3558 spin_lock(ptl);
3559 ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3560 huge_page_size(h));
3561 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3562 ClearPagePrivate(new_page);
3563
3564 /* Break COW */
3565 huge_ptep_clear_flush(vma, address, ptep);
3566 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3567 set_huge_pte_at(mm, address, ptep,
3568 make_huge_pte(vma, new_page, 1));
3569 page_remove_rmap(old_page, true);
3570 hugepage_add_new_anon_rmap(new_page, vma, address);
3571 /* Make the old page be freed below */
3572 new_page = old_page;
3573 }
3574 spin_unlock(ptl);
3575 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3576 out_release_all:
3577 restore_reserve_on_error(h, vma, address, new_page);
3578 put_page(new_page);
3579 out_release_old:
3580 put_page(old_page);
3581
3582 spin_lock(ptl); /* Caller expects lock to be held */
3583 return ret;
3584 }
3585
3586 /* Return the pagecache page at a given address within a VMA */
3587 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3588 struct vm_area_struct *vma, unsigned long address)
3589 {
3590 struct address_space *mapping;
3591 pgoff_t idx;
3592
3593 mapping = vma->vm_file->f_mapping;
3594 idx = vma_hugecache_offset(h, vma, address);
3595
3596 return find_lock_page(mapping, idx);
3597 }
3598
3599 /*
3600 * Return whether there is a pagecache page to back given address within VMA.
3601 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3602 */
3603 static bool hugetlbfs_pagecache_present(struct hstate *h,
3604 struct vm_area_struct *vma, unsigned long address)
3605 {
3606 struct address_space *mapping;
3607 pgoff_t idx;
3608 struct page *page;
3609
3610 mapping = vma->vm_file->f_mapping;
3611 idx = vma_hugecache_offset(h, vma, address);
3612
3613 page = find_get_page(mapping, idx);
3614 if (page)
3615 put_page(page);
3616 return page != NULL;
3617 }
3618
3619 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3620 pgoff_t idx)
3621 {
3622 struct inode *inode = mapping->host;
3623 struct hstate *h = hstate_inode(inode);
3624 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3625
3626 if (err)
3627 return err;
3628 ClearPagePrivate(page);
3629
3630 spin_lock(&inode->i_lock);
3631 inode->i_blocks += blocks_per_huge_page(h);
3632 spin_unlock(&inode->i_lock);
3633 return 0;
3634 }
3635
3636 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3637 struct address_space *mapping, pgoff_t idx,
3638 unsigned long address, pte_t *ptep, unsigned int flags)
3639 {
3640 struct hstate *h = hstate_vma(vma);
3641 int ret = VM_FAULT_SIGBUS;
3642 int anon_rmap = 0;
3643 unsigned long size;
3644 struct page *page;
3645 pte_t new_pte;
3646 spinlock_t *ptl;
3647
3648 /*
3649 * Currently, we are forced to kill the process in the event the
3650 * original mapper has unmapped pages from the child due to a failed
3651 * COW. Warn that such a situation has occurred as it may not be obvious
3652 */
3653 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3654 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3655 current->pid);
3656 return ret;
3657 }
3658
3659 /*
3660 * Use page lock to guard against racing truncation
3661 * before we get page_table_lock.
3662 */
3663 retry:
3664 page = find_lock_page(mapping, idx);
3665 if (!page) {
3666 size = i_size_read(mapping->host) >> huge_page_shift(h);
3667 if (idx >= size)
3668 goto out;
3669
3670 /*
3671 * Check for page in userfault range
3672 */
3673 if (userfaultfd_missing(vma)) {
3674 u32 hash;
3675 struct vm_fault vmf = {
3676 .vma = vma,
3677 .address = address,
3678 .flags = flags,
3679 /*
3680 * Hard to debug if it ends up being
3681 * used by a callee that assumes
3682 * something about the other
3683 * uninitialized fields... same as in
3684 * memory.c
3685 */
3686 };
3687
3688 /*
3689 * hugetlb_fault_mutex must be dropped before
3690 * handling userfault. Reacquire after handling
3691 * fault to make calling code simpler.
3692 */
3693 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
3694 idx, address);
3695 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3696 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3697 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3698 goto out;
3699 }
3700
3701 page = alloc_huge_page(vma, address, 0);
3702 if (IS_ERR(page)) {
3703 ret = PTR_ERR(page);
3704 if (ret == -ENOMEM)
3705 ret = VM_FAULT_OOM;
3706 else
3707 ret = VM_FAULT_SIGBUS;
3708 goto out;
3709 }
3710 clear_huge_page(page, address, pages_per_huge_page(h));
3711 __SetPageUptodate(page);
3712 set_page_huge_active(page);
3713
3714 if (vma->vm_flags & VM_MAYSHARE) {
3715 int err = huge_add_to_page_cache(page, mapping, idx);
3716 if (err) {
3717 put_page(page);
3718 if (err == -EEXIST)
3719 goto retry;
3720 goto out;
3721 }
3722 } else {
3723 lock_page(page);
3724 if (unlikely(anon_vma_prepare(vma))) {
3725 ret = VM_FAULT_OOM;
3726 goto backout_unlocked;
3727 }
3728 anon_rmap = 1;
3729 }
3730 } else {
3731 /*
3732 * If memory error occurs between mmap() and fault, some process
3733 * don't have hwpoisoned swap entry for errored virtual address.
3734 * So we need to block hugepage fault by PG_hwpoison bit check.
3735 */
3736 if (unlikely(PageHWPoison(page))) {
3737 ret = VM_FAULT_HWPOISON |
3738 VM_FAULT_SET_HINDEX(hstate_index(h));
3739 goto backout_unlocked;
3740 }
3741 }
3742
3743 /*
3744 * If we are going to COW a private mapping later, we examine the
3745 * pending reservations for this page now. This will ensure that
3746 * any allocations necessary to record that reservation occur outside
3747 * the spinlock.
3748 */
3749 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3750 if (vma_needs_reservation(h, vma, address) < 0) {
3751 ret = VM_FAULT_OOM;
3752 goto backout_unlocked;
3753 }
3754 /* Just decrements count, does not deallocate */
3755 vma_end_reservation(h, vma, address);
3756 }
3757
3758 ptl = huge_pte_lock(h, mm, ptep);
3759 size = i_size_read(mapping->host) >> huge_page_shift(h);
3760 if (idx >= size)
3761 goto backout;
3762
3763 ret = 0;
3764 if (!huge_pte_none(huge_ptep_get(ptep)))
3765 goto backout;
3766
3767 if (anon_rmap) {
3768 ClearPagePrivate(page);
3769 hugepage_add_new_anon_rmap(page, vma, address);
3770 } else
3771 page_dup_rmap(page, true);
3772 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3773 && (vma->vm_flags & VM_SHARED)));
3774 set_huge_pte_at(mm, address, ptep, new_pte);
3775
3776 hugetlb_count_add(pages_per_huge_page(h), mm);
3777 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3778 /* Optimization, do the COW without a second fault */
3779 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3780 }
3781
3782 spin_unlock(ptl);
3783 unlock_page(page);
3784 out:
3785 return ret;
3786
3787 backout:
3788 spin_unlock(ptl);
3789 backout_unlocked:
3790 unlock_page(page);
3791 restore_reserve_on_error(h, vma, address, page);
3792 put_page(page);
3793 goto out;
3794 }
3795
3796 #ifdef CONFIG_SMP
3797 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3798 struct vm_area_struct *vma,
3799 struct address_space *mapping,
3800 pgoff_t idx, unsigned long address)
3801 {
3802 unsigned long key[2];
3803 u32 hash;
3804
3805 if (vma->vm_flags & VM_SHARED) {
3806 key[0] = (unsigned long) mapping;
3807 key[1] = idx;
3808 } else {
3809 key[0] = (unsigned long) mm;
3810 key[1] = address >> huge_page_shift(h);
3811 }
3812
3813 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3814
3815 return hash & (num_fault_mutexes - 1);
3816 }
3817 #else
3818 /*
3819 * For uniprocesor systems we always use a single mutex, so just
3820 * return 0 and avoid the hashing overhead.
3821 */
3822 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3823 struct vm_area_struct *vma,
3824 struct address_space *mapping,
3825 pgoff_t idx, unsigned long address)
3826 {
3827 return 0;
3828 }
3829 #endif
3830
3831 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3832 unsigned long address, unsigned int flags)
3833 {
3834 pte_t *ptep, entry;
3835 spinlock_t *ptl;
3836 int ret;
3837 u32 hash;
3838 pgoff_t idx;
3839 struct page *page = NULL;
3840 struct page *pagecache_page = NULL;
3841 struct hstate *h = hstate_vma(vma);
3842 struct address_space *mapping;
3843 int need_wait_lock = 0;
3844
3845 address &= huge_page_mask(h);
3846
3847 ptep = huge_pte_offset(mm, address, huge_page_size(h));
3848 if (ptep) {
3849 entry = huge_ptep_get(ptep);
3850 if (unlikely(is_hugetlb_entry_migration(entry))) {
3851 migration_entry_wait_huge(vma, mm, ptep);
3852 return 0;
3853 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3854 return VM_FAULT_HWPOISON_LARGE |
3855 VM_FAULT_SET_HINDEX(hstate_index(h));
3856 } else {
3857 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3858 if (!ptep)
3859 return VM_FAULT_OOM;
3860 }
3861
3862 mapping = vma->vm_file->f_mapping;
3863 idx = vma_hugecache_offset(h, vma, address);
3864
3865 /*
3866 * Serialize hugepage allocation and instantiation, so that we don't
3867 * get spurious allocation failures if two CPUs race to instantiate
3868 * the same page in the page cache.
3869 */
3870 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3871 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3872
3873 entry = huge_ptep_get(ptep);
3874 if (huge_pte_none(entry)) {
3875 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3876 goto out_mutex;
3877 }
3878
3879 ret = 0;
3880
3881 /*
3882 * entry could be a migration/hwpoison entry at this point, so this
3883 * check prevents the kernel from going below assuming that we have
3884 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3885 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3886 * handle it.
3887 */
3888 if (!pte_present(entry))
3889 goto out_mutex;
3890
3891 /*
3892 * If we are going to COW the mapping later, we examine the pending
3893 * reservations for this page now. This will ensure that any
3894 * allocations necessary to record that reservation occur outside the
3895 * spinlock. For private mappings, we also lookup the pagecache
3896 * page now as it is used to determine if a reservation has been
3897 * consumed.
3898 */
3899 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3900 if (vma_needs_reservation(h, vma, address) < 0) {
3901 ret = VM_FAULT_OOM;
3902 goto out_mutex;
3903 }
3904 /* Just decrements count, does not deallocate */
3905 vma_end_reservation(h, vma, address);
3906
3907 if (!(vma->vm_flags & VM_MAYSHARE))
3908 pagecache_page = hugetlbfs_pagecache_page(h,
3909 vma, address);
3910 }
3911
3912 ptl = huge_pte_lock(h, mm, ptep);
3913
3914 /* Check for a racing update before calling hugetlb_cow */
3915 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3916 goto out_ptl;
3917
3918 /*
3919 * hugetlb_cow() requires page locks of pte_page(entry) and
3920 * pagecache_page, so here we need take the former one
3921 * when page != pagecache_page or !pagecache_page.
3922 */
3923 page = pte_page(entry);
3924 if (page != pagecache_page)
3925 if (!trylock_page(page)) {
3926 need_wait_lock = 1;
3927 goto out_ptl;
3928 }
3929
3930 get_page(page);
3931
3932 if (flags & FAULT_FLAG_WRITE) {
3933 if (!huge_pte_write(entry)) {
3934 ret = hugetlb_cow(mm, vma, address, ptep,
3935 pagecache_page, ptl);
3936 goto out_put_page;
3937 }
3938 entry = huge_pte_mkdirty(entry);
3939 }
3940 entry = pte_mkyoung(entry);
3941 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3942 flags & FAULT_FLAG_WRITE))
3943 update_mmu_cache(vma, address, ptep);
3944 out_put_page:
3945 if (page != pagecache_page)
3946 unlock_page(page);
3947 put_page(page);
3948 out_ptl:
3949 spin_unlock(ptl);
3950
3951 if (pagecache_page) {
3952 unlock_page(pagecache_page);
3953 put_page(pagecache_page);
3954 }
3955 out_mutex:
3956 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3957 /*
3958 * Generally it's safe to hold refcount during waiting page lock. But
3959 * here we just wait to defer the next page fault to avoid busy loop and
3960 * the page is not used after unlocked before returning from the current
3961 * page fault. So we are safe from accessing freed page, even if we wait
3962 * here without taking refcount.
3963 */
3964 if (need_wait_lock)
3965 wait_on_page_locked(page);
3966 return ret;
3967 }
3968
3969 /*
3970 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
3971 * modifications for huge pages.
3972 */
3973 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
3974 pte_t *dst_pte,
3975 struct vm_area_struct *dst_vma,
3976 unsigned long dst_addr,
3977 unsigned long src_addr,
3978 struct page **pagep)
3979 {
3980 struct address_space *mapping;
3981 pgoff_t idx;
3982 unsigned long size;
3983 int vm_shared = dst_vma->vm_flags & VM_SHARED;
3984 struct hstate *h = hstate_vma(dst_vma);
3985 pte_t _dst_pte;
3986 spinlock_t *ptl;
3987 int ret;
3988 struct page *page;
3989
3990 if (!*pagep) {
3991 ret = -ENOMEM;
3992 page = alloc_huge_page(dst_vma, dst_addr, 0);
3993 if (IS_ERR(page))
3994 goto out;
3995
3996 ret = copy_huge_page_from_user(page,
3997 (const void __user *) src_addr,
3998 pages_per_huge_page(h), false);
3999
4000 /* fallback to copy_from_user outside mmap_sem */
4001 if (unlikely(ret)) {
4002 ret = -EFAULT;
4003 *pagep = page;
4004 /* don't free the page */
4005 goto out;
4006 }
4007 } else {
4008 page = *pagep;
4009 *pagep = NULL;
4010 }
4011
4012 /*
4013 * The memory barrier inside __SetPageUptodate makes sure that
4014 * preceding stores to the page contents become visible before
4015 * the set_pte_at() write.
4016 */
4017 __SetPageUptodate(page);
4018 set_page_huge_active(page);
4019
4020 mapping = dst_vma->vm_file->f_mapping;
4021 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4022
4023 /*
4024 * If shared, add to page cache
4025 */
4026 if (vm_shared) {
4027 size = i_size_read(mapping->host) >> huge_page_shift(h);
4028 ret = -EFAULT;
4029 if (idx >= size)
4030 goto out_release_nounlock;
4031
4032 /*
4033 * Serialization between remove_inode_hugepages() and
4034 * huge_add_to_page_cache() below happens through the
4035 * hugetlb_fault_mutex_table that here must be hold by
4036 * the caller.
4037 */
4038 ret = huge_add_to_page_cache(page, mapping, idx);
4039 if (ret)
4040 goto out_release_nounlock;
4041 }
4042
4043 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4044 spin_lock(ptl);
4045
4046 /*
4047 * Recheck the i_size after holding PT lock to make sure not
4048 * to leave any page mapped (as page_mapped()) beyond the end
4049 * of the i_size (remove_inode_hugepages() is strict about
4050 * enforcing that). If we bail out here, we'll also leave a
4051 * page in the radix tree in the vm_shared case beyond the end
4052 * of the i_size, but remove_inode_hugepages() will take care
4053 * of it as soon as we drop the hugetlb_fault_mutex_table.
4054 */
4055 size = i_size_read(mapping->host) >> huge_page_shift(h);
4056 ret = -EFAULT;
4057 if (idx >= size)
4058 goto out_release_unlock;
4059
4060 ret = -EEXIST;
4061 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4062 goto out_release_unlock;
4063
4064 if (vm_shared) {
4065 page_dup_rmap(page, true);
4066 } else {
4067 ClearPagePrivate(page);
4068 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4069 }
4070
4071 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4072 if (dst_vma->vm_flags & VM_WRITE)
4073 _dst_pte = huge_pte_mkdirty(_dst_pte);
4074 _dst_pte = pte_mkyoung(_dst_pte);
4075
4076 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4077
4078 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4079 dst_vma->vm_flags & VM_WRITE);
4080 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4081
4082 /* No need to invalidate - it was non-present before */
4083 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4084
4085 spin_unlock(ptl);
4086 if (vm_shared)
4087 unlock_page(page);
4088 ret = 0;
4089 out:
4090 return ret;
4091 out_release_unlock:
4092 spin_unlock(ptl);
4093 if (vm_shared)
4094 unlock_page(page);
4095 out_release_nounlock:
4096 put_page(page);
4097 goto out;
4098 }
4099
4100 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4101 struct page **pages, struct vm_area_struct **vmas,
4102 unsigned long *position, unsigned long *nr_pages,
4103 long i, unsigned int flags, int *nonblocking)
4104 {
4105 unsigned long pfn_offset;
4106 unsigned long vaddr = *position;
4107 unsigned long remainder = *nr_pages;
4108 struct hstate *h = hstate_vma(vma);
4109 int err = -EFAULT;
4110
4111 while (vaddr < vma->vm_end && remainder) {
4112 pte_t *pte;
4113 spinlock_t *ptl = NULL;
4114 int absent;
4115 struct page *page;
4116
4117 /*
4118 * If we have a pending SIGKILL, don't keep faulting pages and
4119 * potentially allocating memory.
4120 */
4121 if (unlikely(fatal_signal_pending(current))) {
4122 remainder = 0;
4123 break;
4124 }
4125
4126 /*
4127 * Some archs (sparc64, sh*) have multiple pte_ts to
4128 * each hugepage. We have to make sure we get the
4129 * first, for the page indexing below to work.
4130 *
4131 * Note that page table lock is not held when pte is null.
4132 */
4133 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4134 huge_page_size(h));
4135 if (pte)
4136 ptl = huge_pte_lock(h, mm, pte);
4137 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4138
4139 /*
4140 * When coredumping, it suits get_dump_page if we just return
4141 * an error where there's an empty slot with no huge pagecache
4142 * to back it. This way, we avoid allocating a hugepage, and
4143 * the sparse dumpfile avoids allocating disk blocks, but its
4144 * huge holes still show up with zeroes where they need to be.
4145 */
4146 if (absent && (flags & FOLL_DUMP) &&
4147 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4148 if (pte)
4149 spin_unlock(ptl);
4150 remainder = 0;
4151 break;
4152 }
4153
4154 /*
4155 * We need call hugetlb_fault for both hugepages under migration
4156 * (in which case hugetlb_fault waits for the migration,) and
4157 * hwpoisoned hugepages (in which case we need to prevent the
4158 * caller from accessing to them.) In order to do this, we use
4159 * here is_swap_pte instead of is_hugetlb_entry_migration and
4160 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4161 * both cases, and because we can't follow correct pages
4162 * directly from any kind of swap entries.
4163 */
4164 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4165 ((flags & FOLL_WRITE) &&
4166 !huge_pte_write(huge_ptep_get(pte)))) {
4167 int ret;
4168 unsigned int fault_flags = 0;
4169
4170 if (pte)
4171 spin_unlock(ptl);
4172 if (flags & FOLL_WRITE)
4173 fault_flags |= FAULT_FLAG_WRITE;
4174 if (nonblocking)
4175 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4176 if (flags & FOLL_NOWAIT)
4177 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4178 FAULT_FLAG_RETRY_NOWAIT;
4179 if (flags & FOLL_TRIED) {
4180 VM_WARN_ON_ONCE(fault_flags &
4181 FAULT_FLAG_ALLOW_RETRY);
4182 fault_flags |= FAULT_FLAG_TRIED;
4183 }
4184 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4185 if (ret & VM_FAULT_ERROR) {
4186 err = vm_fault_to_errno(ret, flags);
4187 remainder = 0;
4188 break;
4189 }
4190 if (ret & VM_FAULT_RETRY) {
4191 if (nonblocking)
4192 *nonblocking = 0;
4193 *nr_pages = 0;
4194 /*
4195 * VM_FAULT_RETRY must not return an
4196 * error, it will return zero
4197 * instead.
4198 *
4199 * No need to update "position" as the
4200 * caller will not check it after
4201 * *nr_pages is set to 0.
4202 */
4203 return i;
4204 }
4205 continue;
4206 }
4207
4208 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4209 page = pte_page(huge_ptep_get(pte));
4210 same_page:
4211 if (pages) {
4212 pages[i] = mem_map_offset(page, pfn_offset);
4213 get_page(pages[i]);
4214 }
4215
4216 if (vmas)
4217 vmas[i] = vma;
4218
4219 vaddr += PAGE_SIZE;
4220 ++pfn_offset;
4221 --remainder;
4222 ++i;
4223 if (vaddr < vma->vm_end && remainder &&
4224 pfn_offset < pages_per_huge_page(h)) {
4225 /*
4226 * We use pfn_offset to avoid touching the pageframes
4227 * of this compound page.
4228 */
4229 goto same_page;
4230 }
4231 spin_unlock(ptl);
4232 }
4233 *nr_pages = remainder;
4234 /*
4235 * setting position is actually required only if remainder is
4236 * not zero but it's faster not to add a "if (remainder)"
4237 * branch.
4238 */
4239 *position = vaddr;
4240
4241 return i ? i : err;
4242 }
4243
4244 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4245 /*
4246 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4247 * implement this.
4248 */
4249 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4250 #endif
4251
4252 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4253 unsigned long address, unsigned long end, pgprot_t newprot)
4254 {
4255 struct mm_struct *mm = vma->vm_mm;
4256 unsigned long start = address;
4257 pte_t *ptep;
4258 pte_t pte;
4259 struct hstate *h = hstate_vma(vma);
4260 unsigned long pages = 0;
4261
4262 BUG_ON(address >= end);
4263 flush_cache_range(vma, address, end);
4264
4265 mmu_notifier_invalidate_range_start(mm, start, end);
4266 i_mmap_lock_write(vma->vm_file->f_mapping);
4267 for (; address < end; address += huge_page_size(h)) {
4268 spinlock_t *ptl;
4269 ptep = huge_pte_offset(mm, address, huge_page_size(h));
4270 if (!ptep)
4271 continue;
4272 ptl = huge_pte_lock(h, mm, ptep);
4273 if (huge_pmd_unshare(mm, &address, ptep)) {
4274 pages++;
4275 spin_unlock(ptl);
4276 continue;
4277 }
4278 pte = huge_ptep_get(ptep);
4279 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4280 spin_unlock(ptl);
4281 continue;
4282 }
4283 if (unlikely(is_hugetlb_entry_migration(pte))) {
4284 swp_entry_t entry = pte_to_swp_entry(pte);
4285
4286 if (is_write_migration_entry(entry)) {
4287 pte_t newpte;
4288
4289 make_migration_entry_read(&entry);
4290 newpte = swp_entry_to_pte(entry);
4291 set_huge_swap_pte_at(mm, address, ptep,
4292 newpte, huge_page_size(h));
4293 pages++;
4294 }
4295 spin_unlock(ptl);
4296 continue;
4297 }
4298 if (!huge_pte_none(pte)) {
4299 pte = huge_ptep_get_and_clear(mm, address, ptep);
4300 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4301 pte = arch_make_huge_pte(pte, vma, NULL, 0);
4302 set_huge_pte_at(mm, address, ptep, pte);
4303 pages++;
4304 }
4305 spin_unlock(ptl);
4306 }
4307 /*
4308 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4309 * may have cleared our pud entry and done put_page on the page table:
4310 * once we release i_mmap_rwsem, another task can do the final put_page
4311 * and that page table be reused and filled with junk.
4312 */
4313 flush_hugetlb_tlb_range(vma, start, end);
4314 mmu_notifier_invalidate_range(mm, start, end);
4315 i_mmap_unlock_write(vma->vm_file->f_mapping);
4316 mmu_notifier_invalidate_range_end(mm, start, end);
4317
4318 return pages << h->order;
4319 }
4320
4321 int hugetlb_reserve_pages(struct inode *inode,
4322 long from, long to,
4323 struct vm_area_struct *vma,
4324 vm_flags_t vm_flags)
4325 {
4326 long ret, chg;
4327 struct hstate *h = hstate_inode(inode);
4328 struct hugepage_subpool *spool = subpool_inode(inode);
4329 struct resv_map *resv_map;
4330 long gbl_reserve;
4331
4332 /*
4333 * Only apply hugepage reservation if asked. At fault time, an
4334 * attempt will be made for VM_NORESERVE to allocate a page
4335 * without using reserves
4336 */
4337 if (vm_flags & VM_NORESERVE)
4338 return 0;
4339
4340 /*
4341 * Shared mappings base their reservation on the number of pages that
4342 * are already allocated on behalf of the file. Private mappings need
4343 * to reserve the full area even if read-only as mprotect() may be
4344 * called to make the mapping read-write. Assume !vma is a shm mapping
4345 */
4346 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4347 resv_map = inode_resv_map(inode);
4348
4349 chg = region_chg(resv_map, from, to);
4350
4351 } else {
4352 resv_map = resv_map_alloc();
4353 if (!resv_map)
4354 return -ENOMEM;
4355
4356 chg = to - from;
4357
4358 set_vma_resv_map(vma, resv_map);
4359 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4360 }
4361
4362 if (chg < 0) {
4363 ret = chg;
4364 goto out_err;
4365 }
4366
4367 /*
4368 * There must be enough pages in the subpool for the mapping. If
4369 * the subpool has a minimum size, there may be some global
4370 * reservations already in place (gbl_reserve).
4371 */
4372 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4373 if (gbl_reserve < 0) {
4374 ret = -ENOSPC;
4375 goto out_err;
4376 }
4377
4378 /*
4379 * Check enough hugepages are available for the reservation.
4380 * Hand the pages back to the subpool if there are not
4381 */
4382 ret = hugetlb_acct_memory(h, gbl_reserve);
4383 if (ret < 0) {
4384 /* put back original number of pages, chg */
4385 (void)hugepage_subpool_put_pages(spool, chg);
4386 goto out_err;
4387 }
4388
4389 /*
4390 * Account for the reservations made. Shared mappings record regions
4391 * that have reservations as they are shared by multiple VMAs.
4392 * When the last VMA disappears, the region map says how much
4393 * the reservation was and the page cache tells how much of
4394 * the reservation was consumed. Private mappings are per-VMA and
4395 * only the consumed reservations are tracked. When the VMA
4396 * disappears, the original reservation is the VMA size and the
4397 * consumed reservations are stored in the map. Hence, nothing
4398 * else has to be done for private mappings here
4399 */
4400 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4401 long add = region_add(resv_map, from, to);
4402
4403 if (unlikely(chg > add)) {
4404 /*
4405 * pages in this range were added to the reserve
4406 * map between region_chg and region_add. This
4407 * indicates a race with alloc_huge_page. Adjust
4408 * the subpool and reserve counts modified above
4409 * based on the difference.
4410 */
4411 long rsv_adjust;
4412
4413 rsv_adjust = hugepage_subpool_put_pages(spool,
4414 chg - add);
4415 hugetlb_acct_memory(h, -rsv_adjust);
4416 }
4417 }
4418 return 0;
4419 out_err:
4420 if (!vma || vma->vm_flags & VM_MAYSHARE)
4421 /* Don't call region_abort if region_chg failed */
4422 if (chg >= 0)
4423 region_abort(resv_map, from, to);
4424 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4425 kref_put(&resv_map->refs, resv_map_release);
4426 return ret;
4427 }
4428
4429 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4430 long freed)
4431 {
4432 struct hstate *h = hstate_inode(inode);
4433 struct resv_map *resv_map = inode_resv_map(inode);
4434 long chg = 0;
4435 struct hugepage_subpool *spool = subpool_inode(inode);
4436 long gbl_reserve;
4437
4438 if (resv_map) {
4439 chg = region_del(resv_map, start, end);
4440 /*
4441 * region_del() can fail in the rare case where a region
4442 * must be split and another region descriptor can not be
4443 * allocated. If end == LONG_MAX, it will not fail.
4444 */
4445 if (chg < 0)
4446 return chg;
4447 }
4448
4449 spin_lock(&inode->i_lock);
4450 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4451 spin_unlock(&inode->i_lock);
4452
4453 /*
4454 * If the subpool has a minimum size, the number of global
4455 * reservations to be released may be adjusted.
4456 */
4457 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4458 hugetlb_acct_memory(h, -gbl_reserve);
4459
4460 return 0;
4461 }
4462
4463 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4464 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4465 struct vm_area_struct *vma,
4466 unsigned long addr, pgoff_t idx)
4467 {
4468 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4469 svma->vm_start;
4470 unsigned long sbase = saddr & PUD_MASK;
4471 unsigned long s_end = sbase + PUD_SIZE;
4472
4473 /* Allow segments to share if only one is marked locked */
4474 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4475 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4476
4477 /*
4478 * match the virtual addresses, permission and the alignment of the
4479 * page table page.
4480 */
4481 if (pmd_index(addr) != pmd_index(saddr) ||
4482 vm_flags != svm_flags ||
4483 sbase < svma->vm_start || svma->vm_end < s_end)
4484 return 0;
4485
4486 return saddr;
4487 }
4488
4489 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4490 {
4491 unsigned long base = addr & PUD_MASK;
4492 unsigned long end = base + PUD_SIZE;
4493
4494 /*
4495 * check on proper vm_flags and page table alignment
4496 */
4497 if (vma->vm_flags & VM_MAYSHARE &&
4498 vma->vm_start <= base && end <= vma->vm_end)
4499 return true;
4500 return false;
4501 }
4502
4503 /*
4504 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4505 * and returns the corresponding pte. While this is not necessary for the
4506 * !shared pmd case because we can allocate the pmd later as well, it makes the
4507 * code much cleaner. pmd allocation is essential for the shared case because
4508 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4509 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4510 * bad pmd for sharing.
4511 */
4512 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4513 {
4514 struct vm_area_struct *vma = find_vma(mm, addr);
4515 struct address_space *mapping = vma->vm_file->f_mapping;
4516 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4517 vma->vm_pgoff;
4518 struct vm_area_struct *svma;
4519 unsigned long saddr;
4520 pte_t *spte = NULL;
4521 pte_t *pte;
4522 spinlock_t *ptl;
4523
4524 if (!vma_shareable(vma, addr))
4525 return (pte_t *)pmd_alloc(mm, pud, addr);
4526
4527 i_mmap_lock_write(mapping);
4528 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4529 if (svma == vma)
4530 continue;
4531
4532 saddr = page_table_shareable(svma, vma, addr, idx);
4533 if (saddr) {
4534 spte = huge_pte_offset(svma->vm_mm, saddr,
4535 vma_mmu_pagesize(svma));
4536 if (spte) {
4537 get_page(virt_to_page(spte));
4538 break;
4539 }
4540 }
4541 }
4542
4543 if (!spte)
4544 goto out;
4545
4546 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4547 if (pud_none(*pud)) {
4548 pud_populate(mm, pud,
4549 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4550 mm_inc_nr_pmds(mm);
4551 } else {
4552 put_page(virt_to_page(spte));
4553 }
4554 spin_unlock(ptl);
4555 out:
4556 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4557 i_mmap_unlock_write(mapping);
4558 return pte;
4559 }
4560
4561 /*
4562 * unmap huge page backed by shared pte.
4563 *
4564 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4565 * indicated by page_count > 1, unmap is achieved by clearing pud and
4566 * decrementing the ref count. If count == 1, the pte page is not shared.
4567 *
4568 * called with page table lock held.
4569 *
4570 * returns: 1 successfully unmapped a shared pte page
4571 * 0 the underlying pte page is not shared, or it is the last user
4572 */
4573 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4574 {
4575 pgd_t *pgd = pgd_offset(mm, *addr);
4576 p4d_t *p4d = p4d_offset(pgd, *addr);
4577 pud_t *pud = pud_offset(p4d, *addr);
4578
4579 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4580 if (page_count(virt_to_page(ptep)) == 1)
4581 return 0;
4582
4583 pud_clear(pud);
4584 put_page(virt_to_page(ptep));
4585 mm_dec_nr_pmds(mm);
4586 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4587 return 1;
4588 }
4589 #define want_pmd_share() (1)
4590 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4591 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4592 {
4593 return NULL;
4594 }
4595
4596 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4597 {
4598 return 0;
4599 }
4600 #define want_pmd_share() (0)
4601 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4602
4603 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4604 pte_t *huge_pte_alloc(struct mm_struct *mm,
4605 unsigned long addr, unsigned long sz)
4606 {
4607 pgd_t *pgd;
4608 p4d_t *p4d;
4609 pud_t *pud;
4610 pte_t *pte = NULL;
4611
4612 pgd = pgd_offset(mm, addr);
4613 p4d = p4d_offset(pgd, addr);
4614 pud = pud_alloc(mm, p4d, addr);
4615 if (pud) {
4616 if (sz == PUD_SIZE) {
4617 pte = (pte_t *)pud;
4618 } else {
4619 BUG_ON(sz != PMD_SIZE);
4620 if (want_pmd_share() && pud_none(*pud))
4621 pte = huge_pmd_share(mm, addr, pud);
4622 else
4623 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4624 }
4625 }
4626 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4627
4628 return pte;
4629 }
4630
4631 pte_t *huge_pte_offset(struct mm_struct *mm,
4632 unsigned long addr, unsigned long sz)
4633 {
4634 pgd_t *pgd;
4635 p4d_t *p4d;
4636 pud_t *pud;
4637 pmd_t *pmd;
4638
4639 pgd = pgd_offset(mm, addr);
4640 if (!pgd_present(*pgd))
4641 return NULL;
4642 p4d = p4d_offset(pgd, addr);
4643 if (!p4d_present(*p4d))
4644 return NULL;
4645 pud = pud_offset(p4d, addr);
4646 if (!pud_present(*pud))
4647 return NULL;
4648 if (pud_huge(*pud))
4649 return (pte_t *)pud;
4650 pmd = pmd_offset(pud, addr);
4651 return (pte_t *) pmd;
4652 }
4653
4654 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4655
4656 /*
4657 * These functions are overwritable if your architecture needs its own
4658 * behavior.
4659 */
4660 struct page * __weak
4661 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4662 int write)
4663 {
4664 return ERR_PTR(-EINVAL);
4665 }
4666
4667 struct page * __weak
4668 follow_huge_pd(struct vm_area_struct *vma,
4669 unsigned long address, hugepd_t hpd, int flags, int pdshift)
4670 {
4671 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4672 return NULL;
4673 }
4674
4675 struct page * __weak
4676 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4677 pmd_t *pmd, int flags)
4678 {
4679 struct page *page = NULL;
4680 spinlock_t *ptl;
4681 pte_t pte;
4682 retry:
4683 ptl = pmd_lockptr(mm, pmd);
4684 spin_lock(ptl);
4685 /*
4686 * make sure that the address range covered by this pmd is not
4687 * unmapped from other threads.
4688 */
4689 if (!pmd_huge(*pmd))
4690 goto out;
4691 pte = huge_ptep_get((pte_t *)pmd);
4692 if (pte_present(pte)) {
4693 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4694 if (flags & FOLL_GET)
4695 get_page(page);
4696 } else {
4697 if (is_hugetlb_entry_migration(pte)) {
4698 spin_unlock(ptl);
4699 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4700 goto retry;
4701 }
4702 /*
4703 * hwpoisoned entry is treated as no_page_table in
4704 * follow_page_mask().
4705 */
4706 }
4707 out:
4708 spin_unlock(ptl);
4709 return page;
4710 }
4711
4712 struct page * __weak
4713 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4714 pud_t *pud, int flags)
4715 {
4716 if (flags & FOLL_GET)
4717 return NULL;
4718
4719 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4720 }
4721
4722 struct page * __weak
4723 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4724 {
4725 if (flags & FOLL_GET)
4726 return NULL;
4727
4728 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4729 }
4730
4731 bool isolate_huge_page(struct page *page, struct list_head *list)
4732 {
4733 bool ret = true;
4734
4735 VM_BUG_ON_PAGE(!PageHead(page), page);
4736 spin_lock(&hugetlb_lock);
4737 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4738 ret = false;
4739 goto unlock;
4740 }
4741 clear_page_huge_active(page);
4742 list_move_tail(&page->lru, list);
4743 unlock:
4744 spin_unlock(&hugetlb_lock);
4745 return ret;
4746 }
4747
4748 void putback_active_hugepage(struct page *page)
4749 {
4750 VM_BUG_ON_PAGE(!PageHead(page), page);
4751 spin_lock(&hugetlb_lock);
4752 set_page_huge_active(page);
4753 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4754 spin_unlock(&hugetlb_lock);
4755 put_page(page);
4756 }