]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/ksm.c
Merge tag 'drm-misc-fixes-2017-08-08' of git://anongit.freedesktop.org/git/drm-misc...
[mirror_ubuntu-artful-kernel.git] / mm / ksm.c
1 /*
2 * Memory merging support.
3 *
4 * This code enables dynamic sharing of identical pages found in different
5 * memory areas, even if they are not shared by fork()
6 *
7 * Copyright (C) 2008-2009 Red Hat, Inc.
8 * Authors:
9 * Izik Eidus
10 * Andrea Arcangeli
11 * Chris Wright
12 * Hugh Dickins
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2.
15 */
16
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/rwsem.h>
25 #include <linux/pagemap.h>
26 #include <linux/rmap.h>
27 #include <linux/spinlock.h>
28 #include <linux/jhash.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/wait.h>
32 #include <linux/slab.h>
33 #include <linux/rbtree.h>
34 #include <linux/memory.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/swap.h>
37 #include <linux/ksm.h>
38 #include <linux/hashtable.h>
39 #include <linux/freezer.h>
40 #include <linux/oom.h>
41 #include <linux/numa.h>
42
43 #include <asm/tlbflush.h>
44 #include "internal.h"
45
46 #ifdef CONFIG_NUMA
47 #define NUMA(x) (x)
48 #define DO_NUMA(x) do { (x); } while (0)
49 #else
50 #define NUMA(x) (0)
51 #define DO_NUMA(x) do { } while (0)
52 #endif
53
54 /*
55 * A few notes about the KSM scanning process,
56 * to make it easier to understand the data structures below:
57 *
58 * In order to reduce excessive scanning, KSM sorts the memory pages by their
59 * contents into a data structure that holds pointers to the pages' locations.
60 *
61 * Since the contents of the pages may change at any moment, KSM cannot just
62 * insert the pages into a normal sorted tree and expect it to find anything.
63 * Therefore KSM uses two data structures - the stable and the unstable tree.
64 *
65 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
66 * by their contents. Because each such page is write-protected, searching on
67 * this tree is fully assured to be working (except when pages are unmapped),
68 * and therefore this tree is called the stable tree.
69 *
70 * In addition to the stable tree, KSM uses a second data structure called the
71 * unstable tree: this tree holds pointers to pages which have been found to
72 * be "unchanged for a period of time". The unstable tree sorts these pages
73 * by their contents, but since they are not write-protected, KSM cannot rely
74 * upon the unstable tree to work correctly - the unstable tree is liable to
75 * be corrupted as its contents are modified, and so it is called unstable.
76 *
77 * KSM solves this problem by several techniques:
78 *
79 * 1) The unstable tree is flushed every time KSM completes scanning all
80 * memory areas, and then the tree is rebuilt again from the beginning.
81 * 2) KSM will only insert into the unstable tree, pages whose hash value
82 * has not changed since the previous scan of all memory areas.
83 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
84 * colors of the nodes and not on their contents, assuring that even when
85 * the tree gets "corrupted" it won't get out of balance, so scanning time
86 * remains the same (also, searching and inserting nodes in an rbtree uses
87 * the same algorithm, so we have no overhead when we flush and rebuild).
88 * 4) KSM never flushes the stable tree, which means that even if it were to
89 * take 10 attempts to find a page in the unstable tree, once it is found,
90 * it is secured in the stable tree. (When we scan a new page, we first
91 * compare it against the stable tree, and then against the unstable tree.)
92 *
93 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
94 * stable trees and multiple unstable trees: one of each for each NUMA node.
95 */
96
97 /**
98 * struct mm_slot - ksm information per mm that is being scanned
99 * @link: link to the mm_slots hash list
100 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
101 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
102 * @mm: the mm that this information is valid for
103 */
104 struct mm_slot {
105 struct hlist_node link;
106 struct list_head mm_list;
107 struct rmap_item *rmap_list;
108 struct mm_struct *mm;
109 };
110
111 /**
112 * struct ksm_scan - cursor for scanning
113 * @mm_slot: the current mm_slot we are scanning
114 * @address: the next address inside that to be scanned
115 * @rmap_list: link to the next rmap to be scanned in the rmap_list
116 * @seqnr: count of completed full scans (needed when removing unstable node)
117 *
118 * There is only the one ksm_scan instance of this cursor structure.
119 */
120 struct ksm_scan {
121 struct mm_slot *mm_slot;
122 unsigned long address;
123 struct rmap_item **rmap_list;
124 unsigned long seqnr;
125 };
126
127 /**
128 * struct stable_node - node of the stable rbtree
129 * @node: rb node of this ksm page in the stable tree
130 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
131 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
132 * @list: linked into migrate_nodes, pending placement in the proper node tree
133 * @hlist: hlist head of rmap_items using this ksm page
134 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
135 * @chain_prune_time: time of the last full garbage collection
136 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
137 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
138 */
139 struct stable_node {
140 union {
141 struct rb_node node; /* when node of stable tree */
142 struct { /* when listed for migration */
143 struct list_head *head;
144 struct {
145 struct hlist_node hlist_dup;
146 struct list_head list;
147 };
148 };
149 };
150 struct hlist_head hlist;
151 union {
152 unsigned long kpfn;
153 unsigned long chain_prune_time;
154 };
155 /*
156 * STABLE_NODE_CHAIN can be any negative number in
157 * rmap_hlist_len negative range, but better not -1 to be able
158 * to reliably detect underflows.
159 */
160 #define STABLE_NODE_CHAIN -1024
161 int rmap_hlist_len;
162 #ifdef CONFIG_NUMA
163 int nid;
164 #endif
165 };
166
167 /**
168 * struct rmap_item - reverse mapping item for virtual addresses
169 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
170 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
171 * @nid: NUMA node id of unstable tree in which linked (may not match page)
172 * @mm: the memory structure this rmap_item is pointing into
173 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
174 * @oldchecksum: previous checksum of the page at that virtual address
175 * @node: rb node of this rmap_item in the unstable tree
176 * @head: pointer to stable_node heading this list in the stable tree
177 * @hlist: link into hlist of rmap_items hanging off that stable_node
178 */
179 struct rmap_item {
180 struct rmap_item *rmap_list;
181 union {
182 struct anon_vma *anon_vma; /* when stable */
183 #ifdef CONFIG_NUMA
184 int nid; /* when node of unstable tree */
185 #endif
186 };
187 struct mm_struct *mm;
188 unsigned long address; /* + low bits used for flags below */
189 unsigned int oldchecksum; /* when unstable */
190 union {
191 struct rb_node node; /* when node of unstable tree */
192 struct { /* when listed from stable tree */
193 struct stable_node *head;
194 struct hlist_node hlist;
195 };
196 };
197 };
198
199 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
200 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
201 #define STABLE_FLAG 0x200 /* is listed from the stable tree */
202
203 /* The stable and unstable tree heads */
204 static struct rb_root one_stable_tree[1] = { RB_ROOT };
205 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
206 static struct rb_root *root_stable_tree = one_stable_tree;
207 static struct rb_root *root_unstable_tree = one_unstable_tree;
208
209 /* Recently migrated nodes of stable tree, pending proper placement */
210 static LIST_HEAD(migrate_nodes);
211 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
212
213 #define MM_SLOTS_HASH_BITS 10
214 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
215
216 static struct mm_slot ksm_mm_head = {
217 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
218 };
219 static struct ksm_scan ksm_scan = {
220 .mm_slot = &ksm_mm_head,
221 };
222
223 static struct kmem_cache *rmap_item_cache;
224 static struct kmem_cache *stable_node_cache;
225 static struct kmem_cache *mm_slot_cache;
226
227 /* The number of nodes in the stable tree */
228 static unsigned long ksm_pages_shared;
229
230 /* The number of page slots additionally sharing those nodes */
231 static unsigned long ksm_pages_sharing;
232
233 /* The number of nodes in the unstable tree */
234 static unsigned long ksm_pages_unshared;
235
236 /* The number of rmap_items in use: to calculate pages_volatile */
237 static unsigned long ksm_rmap_items;
238
239 /* The number of stable_node chains */
240 static unsigned long ksm_stable_node_chains;
241
242 /* The number of stable_node dups linked to the stable_node chains */
243 static unsigned long ksm_stable_node_dups;
244
245 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
246 static int ksm_stable_node_chains_prune_millisecs = 2000;
247
248 /* Maximum number of page slots sharing a stable node */
249 static int ksm_max_page_sharing = 256;
250
251 /* Number of pages ksmd should scan in one batch */
252 static unsigned int ksm_thread_pages_to_scan = 100;
253
254 /* Milliseconds ksmd should sleep between batches */
255 static unsigned int ksm_thread_sleep_millisecs = 20;
256
257 /* Checksum of an empty (zeroed) page */
258 static unsigned int zero_checksum __read_mostly;
259
260 /* Whether to merge empty (zeroed) pages with actual zero pages */
261 static bool ksm_use_zero_pages __read_mostly;
262
263 #ifdef CONFIG_NUMA
264 /* Zeroed when merging across nodes is not allowed */
265 static unsigned int ksm_merge_across_nodes = 1;
266 static int ksm_nr_node_ids = 1;
267 #else
268 #define ksm_merge_across_nodes 1U
269 #define ksm_nr_node_ids 1
270 #endif
271
272 #define KSM_RUN_STOP 0
273 #define KSM_RUN_MERGE 1
274 #define KSM_RUN_UNMERGE 2
275 #define KSM_RUN_OFFLINE 4
276 static unsigned long ksm_run = KSM_RUN_STOP;
277 static void wait_while_offlining(void);
278
279 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
280 static DEFINE_MUTEX(ksm_thread_mutex);
281 static DEFINE_SPINLOCK(ksm_mmlist_lock);
282
283 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
284 sizeof(struct __struct), __alignof__(struct __struct),\
285 (__flags), NULL)
286
287 static int __init ksm_slab_init(void)
288 {
289 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
290 if (!rmap_item_cache)
291 goto out;
292
293 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
294 if (!stable_node_cache)
295 goto out_free1;
296
297 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
298 if (!mm_slot_cache)
299 goto out_free2;
300
301 return 0;
302
303 out_free2:
304 kmem_cache_destroy(stable_node_cache);
305 out_free1:
306 kmem_cache_destroy(rmap_item_cache);
307 out:
308 return -ENOMEM;
309 }
310
311 static void __init ksm_slab_free(void)
312 {
313 kmem_cache_destroy(mm_slot_cache);
314 kmem_cache_destroy(stable_node_cache);
315 kmem_cache_destroy(rmap_item_cache);
316 mm_slot_cache = NULL;
317 }
318
319 static __always_inline bool is_stable_node_chain(struct stable_node *chain)
320 {
321 return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
322 }
323
324 static __always_inline bool is_stable_node_dup(struct stable_node *dup)
325 {
326 return dup->head == STABLE_NODE_DUP_HEAD;
327 }
328
329 static inline void stable_node_chain_add_dup(struct stable_node *dup,
330 struct stable_node *chain)
331 {
332 VM_BUG_ON(is_stable_node_dup(dup));
333 dup->head = STABLE_NODE_DUP_HEAD;
334 VM_BUG_ON(!is_stable_node_chain(chain));
335 hlist_add_head(&dup->hlist_dup, &chain->hlist);
336 ksm_stable_node_dups++;
337 }
338
339 static inline void __stable_node_dup_del(struct stable_node *dup)
340 {
341 VM_BUG_ON(!is_stable_node_dup(dup));
342 hlist_del(&dup->hlist_dup);
343 ksm_stable_node_dups--;
344 }
345
346 static inline void stable_node_dup_del(struct stable_node *dup)
347 {
348 VM_BUG_ON(is_stable_node_chain(dup));
349 if (is_stable_node_dup(dup))
350 __stable_node_dup_del(dup);
351 else
352 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
353 #ifdef CONFIG_DEBUG_VM
354 dup->head = NULL;
355 #endif
356 }
357
358 static inline struct rmap_item *alloc_rmap_item(void)
359 {
360 struct rmap_item *rmap_item;
361
362 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
363 __GFP_NORETRY | __GFP_NOWARN);
364 if (rmap_item)
365 ksm_rmap_items++;
366 return rmap_item;
367 }
368
369 static inline void free_rmap_item(struct rmap_item *rmap_item)
370 {
371 ksm_rmap_items--;
372 rmap_item->mm = NULL; /* debug safety */
373 kmem_cache_free(rmap_item_cache, rmap_item);
374 }
375
376 static inline struct stable_node *alloc_stable_node(void)
377 {
378 /*
379 * The allocation can take too long with GFP_KERNEL when memory is under
380 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH
381 * grants access to memory reserves, helping to avoid this problem.
382 */
383 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
384 }
385
386 static inline void free_stable_node(struct stable_node *stable_node)
387 {
388 VM_BUG_ON(stable_node->rmap_hlist_len &&
389 !is_stable_node_chain(stable_node));
390 kmem_cache_free(stable_node_cache, stable_node);
391 }
392
393 static inline struct mm_slot *alloc_mm_slot(void)
394 {
395 if (!mm_slot_cache) /* initialization failed */
396 return NULL;
397 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
398 }
399
400 static inline void free_mm_slot(struct mm_slot *mm_slot)
401 {
402 kmem_cache_free(mm_slot_cache, mm_slot);
403 }
404
405 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
406 {
407 struct mm_slot *slot;
408
409 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
410 if (slot->mm == mm)
411 return slot;
412
413 return NULL;
414 }
415
416 static void insert_to_mm_slots_hash(struct mm_struct *mm,
417 struct mm_slot *mm_slot)
418 {
419 mm_slot->mm = mm;
420 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
421 }
422
423 /*
424 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
425 * page tables after it has passed through ksm_exit() - which, if necessary,
426 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set
427 * a special flag: they can just back out as soon as mm_users goes to zero.
428 * ksm_test_exit() is used throughout to make this test for exit: in some
429 * places for correctness, in some places just to avoid unnecessary work.
430 */
431 static inline bool ksm_test_exit(struct mm_struct *mm)
432 {
433 return atomic_read(&mm->mm_users) == 0;
434 }
435
436 /*
437 * We use break_ksm to break COW on a ksm page: it's a stripped down
438 *
439 * if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
440 * put_page(page);
441 *
442 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
443 * in case the application has unmapped and remapped mm,addr meanwhile.
444 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
445 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
446 *
447 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
448 * of the process that owns 'vma'. We also do not want to enforce
449 * protection keys here anyway.
450 */
451 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
452 {
453 struct page *page;
454 int ret = 0;
455
456 do {
457 cond_resched();
458 page = follow_page(vma, addr,
459 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
460 if (IS_ERR_OR_NULL(page))
461 break;
462 if (PageKsm(page))
463 ret = handle_mm_fault(vma, addr,
464 FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE);
465 else
466 ret = VM_FAULT_WRITE;
467 put_page(page);
468 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
469 /*
470 * We must loop because handle_mm_fault() may back out if there's
471 * any difficulty e.g. if pte accessed bit gets updated concurrently.
472 *
473 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
474 * COW has been broken, even if the vma does not permit VM_WRITE;
475 * but note that a concurrent fault might break PageKsm for us.
476 *
477 * VM_FAULT_SIGBUS could occur if we race with truncation of the
478 * backing file, which also invalidates anonymous pages: that's
479 * okay, that truncation will have unmapped the PageKsm for us.
480 *
481 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
482 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
483 * current task has TIF_MEMDIE set, and will be OOM killed on return
484 * to user; and ksmd, having no mm, would never be chosen for that.
485 *
486 * But if the mm is in a limited mem_cgroup, then the fault may fail
487 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
488 * even ksmd can fail in this way - though it's usually breaking ksm
489 * just to undo a merge it made a moment before, so unlikely to oom.
490 *
491 * That's a pity: we might therefore have more kernel pages allocated
492 * than we're counting as nodes in the stable tree; but ksm_do_scan
493 * will retry to break_cow on each pass, so should recover the page
494 * in due course. The important thing is to not let VM_MERGEABLE
495 * be cleared while any such pages might remain in the area.
496 */
497 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
498 }
499
500 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
501 unsigned long addr)
502 {
503 struct vm_area_struct *vma;
504 if (ksm_test_exit(mm))
505 return NULL;
506 vma = find_vma(mm, addr);
507 if (!vma || vma->vm_start > addr)
508 return NULL;
509 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
510 return NULL;
511 return vma;
512 }
513
514 static void break_cow(struct rmap_item *rmap_item)
515 {
516 struct mm_struct *mm = rmap_item->mm;
517 unsigned long addr = rmap_item->address;
518 struct vm_area_struct *vma;
519
520 /*
521 * It is not an accident that whenever we want to break COW
522 * to undo, we also need to drop a reference to the anon_vma.
523 */
524 put_anon_vma(rmap_item->anon_vma);
525
526 down_read(&mm->mmap_sem);
527 vma = find_mergeable_vma(mm, addr);
528 if (vma)
529 break_ksm(vma, addr);
530 up_read(&mm->mmap_sem);
531 }
532
533 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
534 {
535 struct mm_struct *mm = rmap_item->mm;
536 unsigned long addr = rmap_item->address;
537 struct vm_area_struct *vma;
538 struct page *page;
539
540 down_read(&mm->mmap_sem);
541 vma = find_mergeable_vma(mm, addr);
542 if (!vma)
543 goto out;
544
545 page = follow_page(vma, addr, FOLL_GET);
546 if (IS_ERR_OR_NULL(page))
547 goto out;
548 if (PageAnon(page)) {
549 flush_anon_page(vma, page, addr);
550 flush_dcache_page(page);
551 } else {
552 put_page(page);
553 out:
554 page = NULL;
555 }
556 up_read(&mm->mmap_sem);
557 return page;
558 }
559
560 /*
561 * This helper is used for getting right index into array of tree roots.
562 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
563 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
564 * every node has its own stable and unstable tree.
565 */
566 static inline int get_kpfn_nid(unsigned long kpfn)
567 {
568 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
569 }
570
571 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
572 struct rb_root *root)
573 {
574 struct stable_node *chain = alloc_stable_node();
575 VM_BUG_ON(is_stable_node_chain(dup));
576 if (likely(chain)) {
577 INIT_HLIST_HEAD(&chain->hlist);
578 chain->chain_prune_time = jiffies;
579 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
580 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
581 chain->nid = -1; /* debug */
582 #endif
583 ksm_stable_node_chains++;
584
585 /*
586 * Put the stable node chain in the first dimension of
587 * the stable tree and at the same time remove the old
588 * stable node.
589 */
590 rb_replace_node(&dup->node, &chain->node, root);
591
592 /*
593 * Move the old stable node to the second dimension
594 * queued in the hlist_dup. The invariant is that all
595 * dup stable_nodes in the chain->hlist point to pages
596 * that are wrprotected and have the exact same
597 * content.
598 */
599 stable_node_chain_add_dup(dup, chain);
600 }
601 return chain;
602 }
603
604 static inline void free_stable_node_chain(struct stable_node *chain,
605 struct rb_root *root)
606 {
607 rb_erase(&chain->node, root);
608 free_stable_node(chain);
609 ksm_stable_node_chains--;
610 }
611
612 static void remove_node_from_stable_tree(struct stable_node *stable_node)
613 {
614 struct rmap_item *rmap_item;
615
616 /* check it's not STABLE_NODE_CHAIN or negative */
617 BUG_ON(stable_node->rmap_hlist_len < 0);
618
619 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
620 if (rmap_item->hlist.next)
621 ksm_pages_sharing--;
622 else
623 ksm_pages_shared--;
624 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
625 stable_node->rmap_hlist_len--;
626 put_anon_vma(rmap_item->anon_vma);
627 rmap_item->address &= PAGE_MASK;
628 cond_resched();
629 }
630
631 /*
632 * We need the second aligned pointer of the migrate_nodes
633 * list_head to stay clear from the rb_parent_color union
634 * (aligned and different than any node) and also different
635 * from &migrate_nodes. This will verify that future list.h changes
636 * don't break STABLE_NODE_DUP_HEAD.
637 */
638 #if GCC_VERSION >= 40903 /* only recent gcc can handle it */
639 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
640 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
641 #endif
642
643 if (stable_node->head == &migrate_nodes)
644 list_del(&stable_node->list);
645 else
646 stable_node_dup_del(stable_node);
647 free_stable_node(stable_node);
648 }
649
650 /*
651 * get_ksm_page: checks if the page indicated by the stable node
652 * is still its ksm page, despite having held no reference to it.
653 * In which case we can trust the content of the page, and it
654 * returns the gotten page; but if the page has now been zapped,
655 * remove the stale node from the stable tree and return NULL.
656 * But beware, the stable node's page might be being migrated.
657 *
658 * You would expect the stable_node to hold a reference to the ksm page.
659 * But if it increments the page's count, swapping out has to wait for
660 * ksmd to come around again before it can free the page, which may take
661 * seconds or even minutes: much too unresponsive. So instead we use a
662 * "keyhole reference": access to the ksm page from the stable node peeps
663 * out through its keyhole to see if that page still holds the right key,
664 * pointing back to this stable node. This relies on freeing a PageAnon
665 * page to reset its page->mapping to NULL, and relies on no other use of
666 * a page to put something that might look like our key in page->mapping.
667 * is on its way to being freed; but it is an anomaly to bear in mind.
668 */
669 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
670 {
671 struct page *page;
672 void *expected_mapping;
673 unsigned long kpfn;
674
675 expected_mapping = (void *)((unsigned long)stable_node |
676 PAGE_MAPPING_KSM);
677 again:
678 kpfn = READ_ONCE(stable_node->kpfn);
679 page = pfn_to_page(kpfn);
680
681 /*
682 * page is computed from kpfn, so on most architectures reading
683 * page->mapping is naturally ordered after reading node->kpfn,
684 * but on Alpha we need to be more careful.
685 */
686 smp_read_barrier_depends();
687 if (READ_ONCE(page->mapping) != expected_mapping)
688 goto stale;
689
690 /*
691 * We cannot do anything with the page while its refcount is 0.
692 * Usually 0 means free, or tail of a higher-order page: in which
693 * case this node is no longer referenced, and should be freed;
694 * however, it might mean that the page is under page_freeze_refs().
695 * The __remove_mapping() case is easy, again the node is now stale;
696 * but if page is swapcache in migrate_page_move_mapping(), it might
697 * still be our page, in which case it's essential to keep the node.
698 */
699 while (!get_page_unless_zero(page)) {
700 /*
701 * Another check for page->mapping != expected_mapping would
702 * work here too. We have chosen the !PageSwapCache test to
703 * optimize the common case, when the page is or is about to
704 * be freed: PageSwapCache is cleared (under spin_lock_irq)
705 * in the freeze_refs section of __remove_mapping(); but Anon
706 * page->mapping reset to NULL later, in free_pages_prepare().
707 */
708 if (!PageSwapCache(page))
709 goto stale;
710 cpu_relax();
711 }
712
713 if (READ_ONCE(page->mapping) != expected_mapping) {
714 put_page(page);
715 goto stale;
716 }
717
718 if (lock_it) {
719 lock_page(page);
720 if (READ_ONCE(page->mapping) != expected_mapping) {
721 unlock_page(page);
722 put_page(page);
723 goto stale;
724 }
725 }
726 return page;
727
728 stale:
729 /*
730 * We come here from above when page->mapping or !PageSwapCache
731 * suggests that the node is stale; but it might be under migration.
732 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
733 * before checking whether node->kpfn has been changed.
734 */
735 smp_rmb();
736 if (READ_ONCE(stable_node->kpfn) != kpfn)
737 goto again;
738 remove_node_from_stable_tree(stable_node);
739 return NULL;
740 }
741
742 /*
743 * Removing rmap_item from stable or unstable tree.
744 * This function will clean the information from the stable/unstable tree.
745 */
746 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
747 {
748 if (rmap_item->address & STABLE_FLAG) {
749 struct stable_node *stable_node;
750 struct page *page;
751
752 stable_node = rmap_item->head;
753 page = get_ksm_page(stable_node, true);
754 if (!page)
755 goto out;
756
757 hlist_del(&rmap_item->hlist);
758 unlock_page(page);
759 put_page(page);
760
761 if (!hlist_empty(&stable_node->hlist))
762 ksm_pages_sharing--;
763 else
764 ksm_pages_shared--;
765 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
766 stable_node->rmap_hlist_len--;
767
768 put_anon_vma(rmap_item->anon_vma);
769 rmap_item->address &= PAGE_MASK;
770
771 } else if (rmap_item->address & UNSTABLE_FLAG) {
772 unsigned char age;
773 /*
774 * Usually ksmd can and must skip the rb_erase, because
775 * root_unstable_tree was already reset to RB_ROOT.
776 * But be careful when an mm is exiting: do the rb_erase
777 * if this rmap_item was inserted by this scan, rather
778 * than left over from before.
779 */
780 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
781 BUG_ON(age > 1);
782 if (!age)
783 rb_erase(&rmap_item->node,
784 root_unstable_tree + NUMA(rmap_item->nid));
785 ksm_pages_unshared--;
786 rmap_item->address &= PAGE_MASK;
787 }
788 out:
789 cond_resched(); /* we're called from many long loops */
790 }
791
792 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
793 struct rmap_item **rmap_list)
794 {
795 while (*rmap_list) {
796 struct rmap_item *rmap_item = *rmap_list;
797 *rmap_list = rmap_item->rmap_list;
798 remove_rmap_item_from_tree(rmap_item);
799 free_rmap_item(rmap_item);
800 }
801 }
802
803 /*
804 * Though it's very tempting to unmerge rmap_items from stable tree rather
805 * than check every pte of a given vma, the locking doesn't quite work for
806 * that - an rmap_item is assigned to the stable tree after inserting ksm
807 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing
808 * rmap_items from parent to child at fork time (so as not to waste time
809 * if exit comes before the next scan reaches it).
810 *
811 * Similarly, although we'd like to remove rmap_items (so updating counts
812 * and freeing memory) when unmerging an area, it's easier to leave that
813 * to the next pass of ksmd - consider, for example, how ksmd might be
814 * in cmp_and_merge_page on one of the rmap_items we would be removing.
815 */
816 static int unmerge_ksm_pages(struct vm_area_struct *vma,
817 unsigned long start, unsigned long end)
818 {
819 unsigned long addr;
820 int err = 0;
821
822 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
823 if (ksm_test_exit(vma->vm_mm))
824 break;
825 if (signal_pending(current))
826 err = -ERESTARTSYS;
827 else
828 err = break_ksm(vma, addr);
829 }
830 return err;
831 }
832
833 #ifdef CONFIG_SYSFS
834 /*
835 * Only called through the sysfs control interface:
836 */
837 static int remove_stable_node(struct stable_node *stable_node)
838 {
839 struct page *page;
840 int err;
841
842 page = get_ksm_page(stable_node, true);
843 if (!page) {
844 /*
845 * get_ksm_page did remove_node_from_stable_tree itself.
846 */
847 return 0;
848 }
849
850 if (WARN_ON_ONCE(page_mapped(page))) {
851 /*
852 * This should not happen: but if it does, just refuse to let
853 * merge_across_nodes be switched - there is no need to panic.
854 */
855 err = -EBUSY;
856 } else {
857 /*
858 * The stable node did not yet appear stale to get_ksm_page(),
859 * since that allows for an unmapped ksm page to be recognized
860 * right up until it is freed; but the node is safe to remove.
861 * This page might be in a pagevec waiting to be freed,
862 * or it might be PageSwapCache (perhaps under writeback),
863 * or it might have been removed from swapcache a moment ago.
864 */
865 set_page_stable_node(page, NULL);
866 remove_node_from_stable_tree(stable_node);
867 err = 0;
868 }
869
870 unlock_page(page);
871 put_page(page);
872 return err;
873 }
874
875 static int remove_stable_node_chain(struct stable_node *stable_node,
876 struct rb_root *root)
877 {
878 struct stable_node *dup;
879 struct hlist_node *hlist_safe;
880
881 if (!is_stable_node_chain(stable_node)) {
882 VM_BUG_ON(is_stable_node_dup(stable_node));
883 if (remove_stable_node(stable_node))
884 return true;
885 else
886 return false;
887 }
888
889 hlist_for_each_entry_safe(dup, hlist_safe,
890 &stable_node->hlist, hlist_dup) {
891 VM_BUG_ON(!is_stable_node_dup(dup));
892 if (remove_stable_node(dup))
893 return true;
894 }
895 BUG_ON(!hlist_empty(&stable_node->hlist));
896 free_stable_node_chain(stable_node, root);
897 return false;
898 }
899
900 static int remove_all_stable_nodes(void)
901 {
902 struct stable_node *stable_node, *next;
903 int nid;
904 int err = 0;
905
906 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
907 while (root_stable_tree[nid].rb_node) {
908 stable_node = rb_entry(root_stable_tree[nid].rb_node,
909 struct stable_node, node);
910 if (remove_stable_node_chain(stable_node,
911 root_stable_tree + nid)) {
912 err = -EBUSY;
913 break; /* proceed to next nid */
914 }
915 cond_resched();
916 }
917 }
918 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
919 if (remove_stable_node(stable_node))
920 err = -EBUSY;
921 cond_resched();
922 }
923 return err;
924 }
925
926 static int unmerge_and_remove_all_rmap_items(void)
927 {
928 struct mm_slot *mm_slot;
929 struct mm_struct *mm;
930 struct vm_area_struct *vma;
931 int err = 0;
932
933 spin_lock(&ksm_mmlist_lock);
934 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
935 struct mm_slot, mm_list);
936 spin_unlock(&ksm_mmlist_lock);
937
938 for (mm_slot = ksm_scan.mm_slot;
939 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
940 mm = mm_slot->mm;
941 down_read(&mm->mmap_sem);
942 for (vma = mm->mmap; vma; vma = vma->vm_next) {
943 if (ksm_test_exit(mm))
944 break;
945 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
946 continue;
947 err = unmerge_ksm_pages(vma,
948 vma->vm_start, vma->vm_end);
949 if (err)
950 goto error;
951 }
952
953 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
954 up_read(&mm->mmap_sem);
955
956 spin_lock(&ksm_mmlist_lock);
957 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
958 struct mm_slot, mm_list);
959 if (ksm_test_exit(mm)) {
960 hash_del(&mm_slot->link);
961 list_del(&mm_slot->mm_list);
962 spin_unlock(&ksm_mmlist_lock);
963
964 free_mm_slot(mm_slot);
965 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
966 mmdrop(mm);
967 } else
968 spin_unlock(&ksm_mmlist_lock);
969 }
970
971 /* Clean up stable nodes, but don't worry if some are still busy */
972 remove_all_stable_nodes();
973 ksm_scan.seqnr = 0;
974 return 0;
975
976 error:
977 up_read(&mm->mmap_sem);
978 spin_lock(&ksm_mmlist_lock);
979 ksm_scan.mm_slot = &ksm_mm_head;
980 spin_unlock(&ksm_mmlist_lock);
981 return err;
982 }
983 #endif /* CONFIG_SYSFS */
984
985 static u32 calc_checksum(struct page *page)
986 {
987 u32 checksum;
988 void *addr = kmap_atomic(page);
989 checksum = jhash2(addr, PAGE_SIZE / 4, 17);
990 kunmap_atomic(addr);
991 return checksum;
992 }
993
994 static int memcmp_pages(struct page *page1, struct page *page2)
995 {
996 char *addr1, *addr2;
997 int ret;
998
999 addr1 = kmap_atomic(page1);
1000 addr2 = kmap_atomic(page2);
1001 ret = memcmp(addr1, addr2, PAGE_SIZE);
1002 kunmap_atomic(addr2);
1003 kunmap_atomic(addr1);
1004 return ret;
1005 }
1006
1007 static inline int pages_identical(struct page *page1, struct page *page2)
1008 {
1009 return !memcmp_pages(page1, page2);
1010 }
1011
1012 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1013 pte_t *orig_pte)
1014 {
1015 struct mm_struct *mm = vma->vm_mm;
1016 struct page_vma_mapped_walk pvmw = {
1017 .page = page,
1018 .vma = vma,
1019 };
1020 int swapped;
1021 int err = -EFAULT;
1022 unsigned long mmun_start; /* For mmu_notifiers */
1023 unsigned long mmun_end; /* For mmu_notifiers */
1024
1025 pvmw.address = page_address_in_vma(page, vma);
1026 if (pvmw.address == -EFAULT)
1027 goto out;
1028
1029 BUG_ON(PageTransCompound(page));
1030
1031 mmun_start = pvmw.address;
1032 mmun_end = pvmw.address + PAGE_SIZE;
1033 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1034
1035 if (!page_vma_mapped_walk(&pvmw))
1036 goto out_mn;
1037 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1038 goto out_unlock;
1039
1040 if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1041 (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte))) {
1042 pte_t entry;
1043
1044 swapped = PageSwapCache(page);
1045 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1046 /*
1047 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1048 * take any lock, therefore the check that we are going to make
1049 * with the pagecount against the mapcount is racey and
1050 * O_DIRECT can happen right after the check.
1051 * So we clear the pte and flush the tlb before the check
1052 * this assure us that no O_DIRECT can happen after the check
1053 * or in the middle of the check.
1054 */
1055 entry = ptep_clear_flush_notify(vma, pvmw.address, pvmw.pte);
1056 /*
1057 * Check that no O_DIRECT or similar I/O is in progress on the
1058 * page
1059 */
1060 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1061 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1062 goto out_unlock;
1063 }
1064 if (pte_dirty(entry))
1065 set_page_dirty(page);
1066
1067 if (pte_protnone(entry))
1068 entry = pte_mkclean(pte_clear_savedwrite(entry));
1069 else
1070 entry = pte_mkclean(pte_wrprotect(entry));
1071 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1072 }
1073 *orig_pte = *pvmw.pte;
1074 err = 0;
1075
1076 out_unlock:
1077 page_vma_mapped_walk_done(&pvmw);
1078 out_mn:
1079 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1080 out:
1081 return err;
1082 }
1083
1084 /**
1085 * replace_page - replace page in vma by new ksm page
1086 * @vma: vma that holds the pte pointing to page
1087 * @page: the page we are replacing by kpage
1088 * @kpage: the ksm page we replace page by
1089 * @orig_pte: the original value of the pte
1090 *
1091 * Returns 0 on success, -EFAULT on failure.
1092 */
1093 static int replace_page(struct vm_area_struct *vma, struct page *page,
1094 struct page *kpage, pte_t orig_pte)
1095 {
1096 struct mm_struct *mm = vma->vm_mm;
1097 pmd_t *pmd;
1098 pte_t *ptep;
1099 pte_t newpte;
1100 spinlock_t *ptl;
1101 unsigned long addr;
1102 int err = -EFAULT;
1103 unsigned long mmun_start; /* For mmu_notifiers */
1104 unsigned long mmun_end; /* For mmu_notifiers */
1105
1106 addr = page_address_in_vma(page, vma);
1107 if (addr == -EFAULT)
1108 goto out;
1109
1110 pmd = mm_find_pmd(mm, addr);
1111 if (!pmd)
1112 goto out;
1113
1114 mmun_start = addr;
1115 mmun_end = addr + PAGE_SIZE;
1116 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1117
1118 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1119 if (!pte_same(*ptep, orig_pte)) {
1120 pte_unmap_unlock(ptep, ptl);
1121 goto out_mn;
1122 }
1123
1124 /*
1125 * No need to check ksm_use_zero_pages here: we can only have a
1126 * zero_page here if ksm_use_zero_pages was enabled alreaady.
1127 */
1128 if (!is_zero_pfn(page_to_pfn(kpage))) {
1129 get_page(kpage);
1130 page_add_anon_rmap(kpage, vma, addr, false);
1131 newpte = mk_pte(kpage, vma->vm_page_prot);
1132 } else {
1133 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1134 vma->vm_page_prot));
1135 }
1136
1137 flush_cache_page(vma, addr, pte_pfn(*ptep));
1138 ptep_clear_flush_notify(vma, addr, ptep);
1139 set_pte_at_notify(mm, addr, ptep, newpte);
1140
1141 page_remove_rmap(page, false);
1142 if (!page_mapped(page))
1143 try_to_free_swap(page);
1144 put_page(page);
1145
1146 pte_unmap_unlock(ptep, ptl);
1147 err = 0;
1148 out_mn:
1149 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1150 out:
1151 return err;
1152 }
1153
1154 /*
1155 * try_to_merge_one_page - take two pages and merge them into one
1156 * @vma: the vma that holds the pte pointing to page
1157 * @page: the PageAnon page that we want to replace with kpage
1158 * @kpage: the PageKsm page that we want to map instead of page,
1159 * or NULL the first time when we want to use page as kpage.
1160 *
1161 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1162 */
1163 static int try_to_merge_one_page(struct vm_area_struct *vma,
1164 struct page *page, struct page *kpage)
1165 {
1166 pte_t orig_pte = __pte(0);
1167 int err = -EFAULT;
1168
1169 if (page == kpage) /* ksm page forked */
1170 return 0;
1171
1172 if (!PageAnon(page))
1173 goto out;
1174
1175 /*
1176 * We need the page lock to read a stable PageSwapCache in
1177 * write_protect_page(). We use trylock_page() instead of
1178 * lock_page() because we don't want to wait here - we
1179 * prefer to continue scanning and merging different pages,
1180 * then come back to this page when it is unlocked.
1181 */
1182 if (!trylock_page(page))
1183 goto out;
1184
1185 if (PageTransCompound(page)) {
1186 if (split_huge_page(page))
1187 goto out_unlock;
1188 }
1189
1190 /*
1191 * If this anonymous page is mapped only here, its pte may need
1192 * to be write-protected. If it's mapped elsewhere, all of its
1193 * ptes are necessarily already write-protected. But in either
1194 * case, we need to lock and check page_count is not raised.
1195 */
1196 if (write_protect_page(vma, page, &orig_pte) == 0) {
1197 if (!kpage) {
1198 /*
1199 * While we hold page lock, upgrade page from
1200 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1201 * stable_tree_insert() will update stable_node.
1202 */
1203 set_page_stable_node(page, NULL);
1204 mark_page_accessed(page);
1205 /*
1206 * Page reclaim just frees a clean page with no dirty
1207 * ptes: make sure that the ksm page would be swapped.
1208 */
1209 if (!PageDirty(page))
1210 SetPageDirty(page);
1211 err = 0;
1212 } else if (pages_identical(page, kpage))
1213 err = replace_page(vma, page, kpage, orig_pte);
1214 }
1215
1216 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1217 munlock_vma_page(page);
1218 if (!PageMlocked(kpage)) {
1219 unlock_page(page);
1220 lock_page(kpage);
1221 mlock_vma_page(kpage);
1222 page = kpage; /* for final unlock */
1223 }
1224 }
1225
1226 out_unlock:
1227 unlock_page(page);
1228 out:
1229 return err;
1230 }
1231
1232 /*
1233 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1234 * but no new kernel page is allocated: kpage must already be a ksm page.
1235 *
1236 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1237 */
1238 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1239 struct page *page, struct page *kpage)
1240 {
1241 struct mm_struct *mm = rmap_item->mm;
1242 struct vm_area_struct *vma;
1243 int err = -EFAULT;
1244
1245 down_read(&mm->mmap_sem);
1246 vma = find_mergeable_vma(mm, rmap_item->address);
1247 if (!vma)
1248 goto out;
1249
1250 err = try_to_merge_one_page(vma, page, kpage);
1251 if (err)
1252 goto out;
1253
1254 /* Unstable nid is in union with stable anon_vma: remove first */
1255 remove_rmap_item_from_tree(rmap_item);
1256
1257 /* Must get reference to anon_vma while still holding mmap_sem */
1258 rmap_item->anon_vma = vma->anon_vma;
1259 get_anon_vma(vma->anon_vma);
1260 out:
1261 up_read(&mm->mmap_sem);
1262 return err;
1263 }
1264
1265 /*
1266 * try_to_merge_two_pages - take two identical pages and prepare them
1267 * to be merged into one page.
1268 *
1269 * This function returns the kpage if we successfully merged two identical
1270 * pages into one ksm page, NULL otherwise.
1271 *
1272 * Note that this function upgrades page to ksm page: if one of the pages
1273 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1274 */
1275 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1276 struct page *page,
1277 struct rmap_item *tree_rmap_item,
1278 struct page *tree_page)
1279 {
1280 int err;
1281
1282 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1283 if (!err) {
1284 err = try_to_merge_with_ksm_page(tree_rmap_item,
1285 tree_page, page);
1286 /*
1287 * If that fails, we have a ksm page with only one pte
1288 * pointing to it: so break it.
1289 */
1290 if (err)
1291 break_cow(rmap_item);
1292 }
1293 return err ? NULL : page;
1294 }
1295
1296 static __always_inline
1297 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1298 {
1299 VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1300 /*
1301 * Check that at least one mapping still exists, otherwise
1302 * there's no much point to merge and share with this
1303 * stable_node, as the underlying tree_page of the other
1304 * sharer is going to be freed soon.
1305 */
1306 return stable_node->rmap_hlist_len &&
1307 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1308 }
1309
1310 static __always_inline
1311 bool is_page_sharing_candidate(struct stable_node *stable_node)
1312 {
1313 return __is_page_sharing_candidate(stable_node, 0);
1314 }
1315
1316 struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1317 struct stable_node **_stable_node,
1318 struct rb_root *root,
1319 bool prune_stale_stable_nodes)
1320 {
1321 struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1322 struct hlist_node *hlist_safe;
1323 struct page *_tree_page, *tree_page = NULL;
1324 int nr = 0;
1325 int found_rmap_hlist_len;
1326
1327 if (!prune_stale_stable_nodes ||
1328 time_before(jiffies, stable_node->chain_prune_time +
1329 msecs_to_jiffies(
1330 ksm_stable_node_chains_prune_millisecs)))
1331 prune_stale_stable_nodes = false;
1332 else
1333 stable_node->chain_prune_time = jiffies;
1334
1335 hlist_for_each_entry_safe(dup, hlist_safe,
1336 &stable_node->hlist, hlist_dup) {
1337 cond_resched();
1338 /*
1339 * We must walk all stable_node_dup to prune the stale
1340 * stable nodes during lookup.
1341 *
1342 * get_ksm_page can drop the nodes from the
1343 * stable_node->hlist if they point to freed pages
1344 * (that's why we do a _safe walk). The "dup"
1345 * stable_node parameter itself will be freed from
1346 * under us if it returns NULL.
1347 */
1348 _tree_page = get_ksm_page(dup, false);
1349 if (!_tree_page)
1350 continue;
1351 nr += 1;
1352 if (is_page_sharing_candidate(dup)) {
1353 if (!found ||
1354 dup->rmap_hlist_len > found_rmap_hlist_len) {
1355 if (found)
1356 put_page(tree_page);
1357 found = dup;
1358 found_rmap_hlist_len = found->rmap_hlist_len;
1359 tree_page = _tree_page;
1360
1361 /* skip put_page for found dup */
1362 if (!prune_stale_stable_nodes)
1363 break;
1364 continue;
1365 }
1366 }
1367 put_page(_tree_page);
1368 }
1369
1370 if (found) {
1371 /*
1372 * nr is counting all dups in the chain only if
1373 * prune_stale_stable_nodes is true, otherwise we may
1374 * break the loop at nr == 1 even if there are
1375 * multiple entries.
1376 */
1377 if (prune_stale_stable_nodes && nr == 1) {
1378 /*
1379 * If there's not just one entry it would
1380 * corrupt memory, better BUG_ON. In KSM
1381 * context with no lock held it's not even
1382 * fatal.
1383 */
1384 BUG_ON(stable_node->hlist.first->next);
1385
1386 /*
1387 * There's just one entry and it is below the
1388 * deduplication limit so drop the chain.
1389 */
1390 rb_replace_node(&stable_node->node, &found->node,
1391 root);
1392 free_stable_node(stable_node);
1393 ksm_stable_node_chains--;
1394 ksm_stable_node_dups--;
1395 /*
1396 * NOTE: the caller depends on the stable_node
1397 * to be equal to stable_node_dup if the chain
1398 * was collapsed.
1399 */
1400 *_stable_node = found;
1401 /*
1402 * Just for robustneess as stable_node is
1403 * otherwise left as a stable pointer, the
1404 * compiler shall optimize it away at build
1405 * time.
1406 */
1407 stable_node = NULL;
1408 } else if (stable_node->hlist.first != &found->hlist_dup &&
1409 __is_page_sharing_candidate(found, 1)) {
1410 /*
1411 * If the found stable_node dup can accept one
1412 * more future merge (in addition to the one
1413 * that is underway) and is not at the head of
1414 * the chain, put it there so next search will
1415 * be quicker in the !prune_stale_stable_nodes
1416 * case.
1417 *
1418 * NOTE: it would be inaccurate to use nr > 1
1419 * instead of checking the hlist.first pointer
1420 * directly, because in the
1421 * prune_stale_stable_nodes case "nr" isn't
1422 * the position of the found dup in the chain,
1423 * but the total number of dups in the chain.
1424 */
1425 hlist_del(&found->hlist_dup);
1426 hlist_add_head(&found->hlist_dup,
1427 &stable_node->hlist);
1428 }
1429 }
1430
1431 *_stable_node_dup = found;
1432 return tree_page;
1433 }
1434
1435 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1436 struct rb_root *root)
1437 {
1438 if (!is_stable_node_chain(stable_node))
1439 return stable_node;
1440 if (hlist_empty(&stable_node->hlist)) {
1441 free_stable_node_chain(stable_node, root);
1442 return NULL;
1443 }
1444 return hlist_entry(stable_node->hlist.first,
1445 typeof(*stable_node), hlist_dup);
1446 }
1447
1448 /*
1449 * Like for get_ksm_page, this function can free the *_stable_node and
1450 * *_stable_node_dup if the returned tree_page is NULL.
1451 *
1452 * It can also free and overwrite *_stable_node with the found
1453 * stable_node_dup if the chain is collapsed (in which case
1454 * *_stable_node will be equal to *_stable_node_dup like if the chain
1455 * never existed). It's up to the caller to verify tree_page is not
1456 * NULL before dereferencing *_stable_node or *_stable_node_dup.
1457 *
1458 * *_stable_node_dup is really a second output parameter of this
1459 * function and will be overwritten in all cases, the caller doesn't
1460 * need to initialize it.
1461 */
1462 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1463 struct stable_node **_stable_node,
1464 struct rb_root *root,
1465 bool prune_stale_stable_nodes)
1466 {
1467 struct stable_node *stable_node = *_stable_node;
1468 if (!is_stable_node_chain(stable_node)) {
1469 if (is_page_sharing_candidate(stable_node)) {
1470 *_stable_node_dup = stable_node;
1471 return get_ksm_page(stable_node, false);
1472 }
1473 /*
1474 * _stable_node_dup set to NULL means the stable_node
1475 * reached the ksm_max_page_sharing limit.
1476 */
1477 *_stable_node_dup = NULL;
1478 return NULL;
1479 }
1480 return stable_node_dup(_stable_node_dup, _stable_node, root,
1481 prune_stale_stable_nodes);
1482 }
1483
1484 static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1485 struct stable_node **s_n,
1486 struct rb_root *root)
1487 {
1488 return __stable_node_chain(s_n_d, s_n, root, true);
1489 }
1490
1491 static __always_inline struct page *chain(struct stable_node **s_n_d,
1492 struct stable_node *s_n,
1493 struct rb_root *root)
1494 {
1495 struct stable_node *old_stable_node = s_n;
1496 struct page *tree_page;
1497
1498 tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1499 /* not pruning dups so s_n cannot have changed */
1500 VM_BUG_ON(s_n != old_stable_node);
1501 return tree_page;
1502 }
1503
1504 /*
1505 * stable_tree_search - search for page inside the stable tree
1506 *
1507 * This function checks if there is a page inside the stable tree
1508 * with identical content to the page that we are scanning right now.
1509 *
1510 * This function returns the stable tree node of identical content if found,
1511 * NULL otherwise.
1512 */
1513 static struct page *stable_tree_search(struct page *page)
1514 {
1515 int nid;
1516 struct rb_root *root;
1517 struct rb_node **new;
1518 struct rb_node *parent;
1519 struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1520 struct stable_node *page_node;
1521
1522 page_node = page_stable_node(page);
1523 if (page_node && page_node->head != &migrate_nodes) {
1524 /* ksm page forked */
1525 get_page(page);
1526 return page;
1527 }
1528
1529 nid = get_kpfn_nid(page_to_pfn(page));
1530 root = root_stable_tree + nid;
1531 again:
1532 new = &root->rb_node;
1533 parent = NULL;
1534
1535 while (*new) {
1536 struct page *tree_page;
1537 int ret;
1538
1539 cond_resched();
1540 stable_node = rb_entry(*new, struct stable_node, node);
1541 stable_node_any = NULL;
1542 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
1543 /*
1544 * NOTE: stable_node may have been freed by
1545 * chain_prune() if the returned stable_node_dup is
1546 * not NULL. stable_node_dup may have been inserted in
1547 * the rbtree instead as a regular stable_node (in
1548 * order to collapse the stable_node chain if a single
1549 * stable_node dup was found in it). In such case the
1550 * stable_node is overwritten by the calleee to point
1551 * to the stable_node_dup that was collapsed in the
1552 * stable rbtree and stable_node will be equal to
1553 * stable_node_dup like if the chain never existed.
1554 */
1555 if (!stable_node_dup) {
1556 /*
1557 * Either all stable_node dups were full in
1558 * this stable_node chain, or this chain was
1559 * empty and should be rb_erased.
1560 */
1561 stable_node_any = stable_node_dup_any(stable_node,
1562 root);
1563 if (!stable_node_any) {
1564 /* rb_erase just run */
1565 goto again;
1566 }
1567 /*
1568 * Take any of the stable_node dups page of
1569 * this stable_node chain to let the tree walk
1570 * continue. All KSM pages belonging to the
1571 * stable_node dups in a stable_node chain
1572 * have the same content and they're
1573 * wrprotected at all times. Any will work
1574 * fine to continue the walk.
1575 */
1576 tree_page = get_ksm_page(stable_node_any, false);
1577 }
1578 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1579 if (!tree_page) {
1580 /*
1581 * If we walked over a stale stable_node,
1582 * get_ksm_page() will call rb_erase() and it
1583 * may rebalance the tree from under us. So
1584 * restart the search from scratch. Returning
1585 * NULL would be safe too, but we'd generate
1586 * false negative insertions just because some
1587 * stable_node was stale.
1588 */
1589 goto again;
1590 }
1591
1592 ret = memcmp_pages(page, tree_page);
1593 put_page(tree_page);
1594
1595 parent = *new;
1596 if (ret < 0)
1597 new = &parent->rb_left;
1598 else if (ret > 0)
1599 new = &parent->rb_right;
1600 else {
1601 if (page_node) {
1602 VM_BUG_ON(page_node->head != &migrate_nodes);
1603 /*
1604 * Test if the migrated page should be merged
1605 * into a stable node dup. If the mapcount is
1606 * 1 we can migrate it with another KSM page
1607 * without adding it to the chain.
1608 */
1609 if (page_mapcount(page) > 1)
1610 goto chain_append;
1611 }
1612
1613 if (!stable_node_dup) {
1614 /*
1615 * If the stable_node is a chain and
1616 * we got a payload match in memcmp
1617 * but we cannot merge the scanned
1618 * page in any of the existing
1619 * stable_node dups because they're
1620 * all full, we need to wait the
1621 * scanned page to find itself a match
1622 * in the unstable tree to create a
1623 * brand new KSM page to add later to
1624 * the dups of this stable_node.
1625 */
1626 return NULL;
1627 }
1628
1629 /*
1630 * Lock and unlock the stable_node's page (which
1631 * might already have been migrated) so that page
1632 * migration is sure to notice its raised count.
1633 * It would be more elegant to return stable_node
1634 * than kpage, but that involves more changes.
1635 */
1636 tree_page = get_ksm_page(stable_node_dup, true);
1637 if (unlikely(!tree_page))
1638 /*
1639 * The tree may have been rebalanced,
1640 * so re-evaluate parent and new.
1641 */
1642 goto again;
1643 unlock_page(tree_page);
1644
1645 if (get_kpfn_nid(stable_node_dup->kpfn) !=
1646 NUMA(stable_node_dup->nid)) {
1647 put_page(tree_page);
1648 goto replace;
1649 }
1650 return tree_page;
1651 }
1652 }
1653
1654 if (!page_node)
1655 return NULL;
1656
1657 list_del(&page_node->list);
1658 DO_NUMA(page_node->nid = nid);
1659 rb_link_node(&page_node->node, parent, new);
1660 rb_insert_color(&page_node->node, root);
1661 out:
1662 if (is_page_sharing_candidate(page_node)) {
1663 get_page(page);
1664 return page;
1665 } else
1666 return NULL;
1667
1668 replace:
1669 /*
1670 * If stable_node was a chain and chain_prune collapsed it,
1671 * stable_node has been updated to be the new regular
1672 * stable_node. A collapse of the chain is indistinguishable
1673 * from the case there was no chain in the stable
1674 * rbtree. Otherwise stable_node is the chain and
1675 * stable_node_dup is the dup to replace.
1676 */
1677 if (stable_node_dup == stable_node) {
1678 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1679 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1680 /* there is no chain */
1681 if (page_node) {
1682 VM_BUG_ON(page_node->head != &migrate_nodes);
1683 list_del(&page_node->list);
1684 DO_NUMA(page_node->nid = nid);
1685 rb_replace_node(&stable_node_dup->node,
1686 &page_node->node,
1687 root);
1688 if (is_page_sharing_candidate(page_node))
1689 get_page(page);
1690 else
1691 page = NULL;
1692 } else {
1693 rb_erase(&stable_node_dup->node, root);
1694 page = NULL;
1695 }
1696 } else {
1697 VM_BUG_ON(!is_stable_node_chain(stable_node));
1698 __stable_node_dup_del(stable_node_dup);
1699 if (page_node) {
1700 VM_BUG_ON(page_node->head != &migrate_nodes);
1701 list_del(&page_node->list);
1702 DO_NUMA(page_node->nid = nid);
1703 stable_node_chain_add_dup(page_node, stable_node);
1704 if (is_page_sharing_candidate(page_node))
1705 get_page(page);
1706 else
1707 page = NULL;
1708 } else {
1709 page = NULL;
1710 }
1711 }
1712 stable_node_dup->head = &migrate_nodes;
1713 list_add(&stable_node_dup->list, stable_node_dup->head);
1714 return page;
1715
1716 chain_append:
1717 /* stable_node_dup could be null if it reached the limit */
1718 if (!stable_node_dup)
1719 stable_node_dup = stable_node_any;
1720 /*
1721 * If stable_node was a chain and chain_prune collapsed it,
1722 * stable_node has been updated to be the new regular
1723 * stable_node. A collapse of the chain is indistinguishable
1724 * from the case there was no chain in the stable
1725 * rbtree. Otherwise stable_node is the chain and
1726 * stable_node_dup is the dup to replace.
1727 */
1728 if (stable_node_dup == stable_node) {
1729 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1730 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1731 /* chain is missing so create it */
1732 stable_node = alloc_stable_node_chain(stable_node_dup,
1733 root);
1734 if (!stable_node)
1735 return NULL;
1736 }
1737 /*
1738 * Add this stable_node dup that was
1739 * migrated to the stable_node chain
1740 * of the current nid for this page
1741 * content.
1742 */
1743 VM_BUG_ON(!is_stable_node_chain(stable_node));
1744 VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1745 VM_BUG_ON(page_node->head != &migrate_nodes);
1746 list_del(&page_node->list);
1747 DO_NUMA(page_node->nid = nid);
1748 stable_node_chain_add_dup(page_node, stable_node);
1749 goto out;
1750 }
1751
1752 /*
1753 * stable_tree_insert - insert stable tree node pointing to new ksm page
1754 * into the stable tree.
1755 *
1756 * This function returns the stable tree node just allocated on success,
1757 * NULL otherwise.
1758 */
1759 static struct stable_node *stable_tree_insert(struct page *kpage)
1760 {
1761 int nid;
1762 unsigned long kpfn;
1763 struct rb_root *root;
1764 struct rb_node **new;
1765 struct rb_node *parent;
1766 struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1767 bool need_chain = false;
1768
1769 kpfn = page_to_pfn(kpage);
1770 nid = get_kpfn_nid(kpfn);
1771 root = root_stable_tree + nid;
1772 again:
1773 parent = NULL;
1774 new = &root->rb_node;
1775
1776 while (*new) {
1777 struct page *tree_page;
1778 int ret;
1779
1780 cond_resched();
1781 stable_node = rb_entry(*new, struct stable_node, node);
1782 stable_node_any = NULL;
1783 tree_page = chain(&stable_node_dup, stable_node, root);
1784 if (!stable_node_dup) {
1785 /*
1786 * Either all stable_node dups were full in
1787 * this stable_node chain, or this chain was
1788 * empty and should be rb_erased.
1789 */
1790 stable_node_any = stable_node_dup_any(stable_node,
1791 root);
1792 if (!stable_node_any) {
1793 /* rb_erase just run */
1794 goto again;
1795 }
1796 /*
1797 * Take any of the stable_node dups page of
1798 * this stable_node chain to let the tree walk
1799 * continue. All KSM pages belonging to the
1800 * stable_node dups in a stable_node chain
1801 * have the same content and they're
1802 * wrprotected at all times. Any will work
1803 * fine to continue the walk.
1804 */
1805 tree_page = get_ksm_page(stable_node_any, false);
1806 }
1807 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1808 if (!tree_page) {
1809 /*
1810 * If we walked over a stale stable_node,
1811 * get_ksm_page() will call rb_erase() and it
1812 * may rebalance the tree from under us. So
1813 * restart the search from scratch. Returning
1814 * NULL would be safe too, but we'd generate
1815 * false negative insertions just because some
1816 * stable_node was stale.
1817 */
1818 goto again;
1819 }
1820
1821 ret = memcmp_pages(kpage, tree_page);
1822 put_page(tree_page);
1823
1824 parent = *new;
1825 if (ret < 0)
1826 new = &parent->rb_left;
1827 else if (ret > 0)
1828 new = &parent->rb_right;
1829 else {
1830 need_chain = true;
1831 break;
1832 }
1833 }
1834
1835 stable_node_dup = alloc_stable_node();
1836 if (!stable_node_dup)
1837 return NULL;
1838
1839 INIT_HLIST_HEAD(&stable_node_dup->hlist);
1840 stable_node_dup->kpfn = kpfn;
1841 set_page_stable_node(kpage, stable_node_dup);
1842 stable_node_dup->rmap_hlist_len = 0;
1843 DO_NUMA(stable_node_dup->nid = nid);
1844 if (!need_chain) {
1845 rb_link_node(&stable_node_dup->node, parent, new);
1846 rb_insert_color(&stable_node_dup->node, root);
1847 } else {
1848 if (!is_stable_node_chain(stable_node)) {
1849 struct stable_node *orig = stable_node;
1850 /* chain is missing so create it */
1851 stable_node = alloc_stable_node_chain(orig, root);
1852 if (!stable_node) {
1853 free_stable_node(stable_node_dup);
1854 return NULL;
1855 }
1856 }
1857 stable_node_chain_add_dup(stable_node_dup, stable_node);
1858 }
1859
1860 return stable_node_dup;
1861 }
1862
1863 /*
1864 * unstable_tree_search_insert - search for identical page,
1865 * else insert rmap_item into the unstable tree.
1866 *
1867 * This function searches for a page in the unstable tree identical to the
1868 * page currently being scanned; and if no identical page is found in the
1869 * tree, we insert rmap_item as a new object into the unstable tree.
1870 *
1871 * This function returns pointer to rmap_item found to be identical
1872 * to the currently scanned page, NULL otherwise.
1873 *
1874 * This function does both searching and inserting, because they share
1875 * the same walking algorithm in an rbtree.
1876 */
1877 static
1878 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1879 struct page *page,
1880 struct page **tree_pagep)
1881 {
1882 struct rb_node **new;
1883 struct rb_root *root;
1884 struct rb_node *parent = NULL;
1885 int nid;
1886
1887 nid = get_kpfn_nid(page_to_pfn(page));
1888 root = root_unstable_tree + nid;
1889 new = &root->rb_node;
1890
1891 while (*new) {
1892 struct rmap_item *tree_rmap_item;
1893 struct page *tree_page;
1894 int ret;
1895
1896 cond_resched();
1897 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1898 tree_page = get_mergeable_page(tree_rmap_item);
1899 if (!tree_page)
1900 return NULL;
1901
1902 /*
1903 * Don't substitute a ksm page for a forked page.
1904 */
1905 if (page == tree_page) {
1906 put_page(tree_page);
1907 return NULL;
1908 }
1909
1910 ret = memcmp_pages(page, tree_page);
1911
1912 parent = *new;
1913 if (ret < 0) {
1914 put_page(tree_page);
1915 new = &parent->rb_left;
1916 } else if (ret > 0) {
1917 put_page(tree_page);
1918 new = &parent->rb_right;
1919 } else if (!ksm_merge_across_nodes &&
1920 page_to_nid(tree_page) != nid) {
1921 /*
1922 * If tree_page has been migrated to another NUMA node,
1923 * it will be flushed out and put in the right unstable
1924 * tree next time: only merge with it when across_nodes.
1925 */
1926 put_page(tree_page);
1927 return NULL;
1928 } else {
1929 *tree_pagep = tree_page;
1930 return tree_rmap_item;
1931 }
1932 }
1933
1934 rmap_item->address |= UNSTABLE_FLAG;
1935 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1936 DO_NUMA(rmap_item->nid = nid);
1937 rb_link_node(&rmap_item->node, parent, new);
1938 rb_insert_color(&rmap_item->node, root);
1939
1940 ksm_pages_unshared++;
1941 return NULL;
1942 }
1943
1944 /*
1945 * stable_tree_append - add another rmap_item to the linked list of
1946 * rmap_items hanging off a given node of the stable tree, all sharing
1947 * the same ksm page.
1948 */
1949 static void stable_tree_append(struct rmap_item *rmap_item,
1950 struct stable_node *stable_node,
1951 bool max_page_sharing_bypass)
1952 {
1953 /*
1954 * rmap won't find this mapping if we don't insert the
1955 * rmap_item in the right stable_node
1956 * duplicate. page_migration could break later if rmap breaks,
1957 * so we can as well crash here. We really need to check for
1958 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
1959 * for other negative values as an undeflow if detected here
1960 * for the first time (and not when decreasing rmap_hlist_len)
1961 * would be sign of memory corruption in the stable_node.
1962 */
1963 BUG_ON(stable_node->rmap_hlist_len < 0);
1964
1965 stable_node->rmap_hlist_len++;
1966 if (!max_page_sharing_bypass)
1967 /* possibly non fatal but unexpected overflow, only warn */
1968 WARN_ON_ONCE(stable_node->rmap_hlist_len >
1969 ksm_max_page_sharing);
1970
1971 rmap_item->head = stable_node;
1972 rmap_item->address |= STABLE_FLAG;
1973 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1974
1975 if (rmap_item->hlist.next)
1976 ksm_pages_sharing++;
1977 else
1978 ksm_pages_shared++;
1979 }
1980
1981 /*
1982 * cmp_and_merge_page - first see if page can be merged into the stable tree;
1983 * if not, compare checksum to previous and if it's the same, see if page can
1984 * be inserted into the unstable tree, or merged with a page already there and
1985 * both transferred to the stable tree.
1986 *
1987 * @page: the page that we are searching identical page to.
1988 * @rmap_item: the reverse mapping into the virtual address of this page
1989 */
1990 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1991 {
1992 struct rmap_item *tree_rmap_item;
1993 struct page *tree_page = NULL;
1994 struct stable_node *stable_node;
1995 struct page *kpage;
1996 unsigned int checksum;
1997 int err;
1998 bool max_page_sharing_bypass = false;
1999
2000 stable_node = page_stable_node(page);
2001 if (stable_node) {
2002 if (stable_node->head != &migrate_nodes &&
2003 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2004 NUMA(stable_node->nid)) {
2005 stable_node_dup_del(stable_node);
2006 stable_node->head = &migrate_nodes;
2007 list_add(&stable_node->list, stable_node->head);
2008 }
2009 if (stable_node->head != &migrate_nodes &&
2010 rmap_item->head == stable_node)
2011 return;
2012 /*
2013 * If it's a KSM fork, allow it to go over the sharing limit
2014 * without warnings.
2015 */
2016 if (!is_page_sharing_candidate(stable_node))
2017 max_page_sharing_bypass = true;
2018 }
2019
2020 /* We first start with searching the page inside the stable tree */
2021 kpage = stable_tree_search(page);
2022 if (kpage == page && rmap_item->head == stable_node) {
2023 put_page(kpage);
2024 return;
2025 }
2026
2027 remove_rmap_item_from_tree(rmap_item);
2028
2029 if (kpage) {
2030 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2031 if (!err) {
2032 /*
2033 * The page was successfully merged:
2034 * add its rmap_item to the stable tree.
2035 */
2036 lock_page(kpage);
2037 stable_tree_append(rmap_item, page_stable_node(kpage),
2038 max_page_sharing_bypass);
2039 unlock_page(kpage);
2040 }
2041 put_page(kpage);
2042 return;
2043 }
2044
2045 /*
2046 * If the hash value of the page has changed from the last time
2047 * we calculated it, this page is changing frequently: therefore we
2048 * don't want to insert it in the unstable tree, and we don't want
2049 * to waste our time searching for something identical to it there.
2050 */
2051 checksum = calc_checksum(page);
2052 if (rmap_item->oldchecksum != checksum) {
2053 rmap_item->oldchecksum = checksum;
2054 return;
2055 }
2056
2057 /*
2058 * Same checksum as an empty page. We attempt to merge it with the
2059 * appropriate zero page if the user enabled this via sysfs.
2060 */
2061 if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2062 struct vm_area_struct *vma;
2063
2064 vma = find_mergeable_vma(rmap_item->mm, rmap_item->address);
2065 err = try_to_merge_one_page(vma, page,
2066 ZERO_PAGE(rmap_item->address));
2067 /*
2068 * In case of failure, the page was not really empty, so we
2069 * need to continue. Otherwise we're done.
2070 */
2071 if (!err)
2072 return;
2073 }
2074 tree_rmap_item =
2075 unstable_tree_search_insert(rmap_item, page, &tree_page);
2076 if (tree_rmap_item) {
2077 kpage = try_to_merge_two_pages(rmap_item, page,
2078 tree_rmap_item, tree_page);
2079 put_page(tree_page);
2080 if (kpage) {
2081 /*
2082 * The pages were successfully merged: insert new
2083 * node in the stable tree and add both rmap_items.
2084 */
2085 lock_page(kpage);
2086 stable_node = stable_tree_insert(kpage);
2087 if (stable_node) {
2088 stable_tree_append(tree_rmap_item, stable_node,
2089 false);
2090 stable_tree_append(rmap_item, stable_node,
2091 false);
2092 }
2093 unlock_page(kpage);
2094
2095 /*
2096 * If we fail to insert the page into the stable tree,
2097 * we will have 2 virtual addresses that are pointing
2098 * to a ksm page left outside the stable tree,
2099 * in which case we need to break_cow on both.
2100 */
2101 if (!stable_node) {
2102 break_cow(tree_rmap_item);
2103 break_cow(rmap_item);
2104 }
2105 }
2106 }
2107 }
2108
2109 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
2110 struct rmap_item **rmap_list,
2111 unsigned long addr)
2112 {
2113 struct rmap_item *rmap_item;
2114
2115 while (*rmap_list) {
2116 rmap_item = *rmap_list;
2117 if ((rmap_item->address & PAGE_MASK) == addr)
2118 return rmap_item;
2119 if (rmap_item->address > addr)
2120 break;
2121 *rmap_list = rmap_item->rmap_list;
2122 remove_rmap_item_from_tree(rmap_item);
2123 free_rmap_item(rmap_item);
2124 }
2125
2126 rmap_item = alloc_rmap_item();
2127 if (rmap_item) {
2128 /* It has already been zeroed */
2129 rmap_item->mm = mm_slot->mm;
2130 rmap_item->address = addr;
2131 rmap_item->rmap_list = *rmap_list;
2132 *rmap_list = rmap_item;
2133 }
2134 return rmap_item;
2135 }
2136
2137 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2138 {
2139 struct mm_struct *mm;
2140 struct mm_slot *slot;
2141 struct vm_area_struct *vma;
2142 struct rmap_item *rmap_item;
2143 int nid;
2144
2145 if (list_empty(&ksm_mm_head.mm_list))
2146 return NULL;
2147
2148 slot = ksm_scan.mm_slot;
2149 if (slot == &ksm_mm_head) {
2150 /*
2151 * A number of pages can hang around indefinitely on per-cpu
2152 * pagevecs, raised page count preventing write_protect_page
2153 * from merging them. Though it doesn't really matter much,
2154 * it is puzzling to see some stuck in pages_volatile until
2155 * other activity jostles them out, and they also prevented
2156 * LTP's KSM test from succeeding deterministically; so drain
2157 * them here (here rather than on entry to ksm_do_scan(),
2158 * so we don't IPI too often when pages_to_scan is set low).
2159 */
2160 lru_add_drain_all();
2161
2162 /*
2163 * Whereas stale stable_nodes on the stable_tree itself
2164 * get pruned in the regular course of stable_tree_search(),
2165 * those moved out to the migrate_nodes list can accumulate:
2166 * so prune them once before each full scan.
2167 */
2168 if (!ksm_merge_across_nodes) {
2169 struct stable_node *stable_node, *next;
2170 struct page *page;
2171
2172 list_for_each_entry_safe(stable_node, next,
2173 &migrate_nodes, list) {
2174 page = get_ksm_page(stable_node, false);
2175 if (page)
2176 put_page(page);
2177 cond_resched();
2178 }
2179 }
2180
2181 for (nid = 0; nid < ksm_nr_node_ids; nid++)
2182 root_unstable_tree[nid] = RB_ROOT;
2183
2184 spin_lock(&ksm_mmlist_lock);
2185 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2186 ksm_scan.mm_slot = slot;
2187 spin_unlock(&ksm_mmlist_lock);
2188 /*
2189 * Although we tested list_empty() above, a racing __ksm_exit
2190 * of the last mm on the list may have removed it since then.
2191 */
2192 if (slot == &ksm_mm_head)
2193 return NULL;
2194 next_mm:
2195 ksm_scan.address = 0;
2196 ksm_scan.rmap_list = &slot->rmap_list;
2197 }
2198
2199 mm = slot->mm;
2200 down_read(&mm->mmap_sem);
2201 if (ksm_test_exit(mm))
2202 vma = NULL;
2203 else
2204 vma = find_vma(mm, ksm_scan.address);
2205
2206 for (; vma; vma = vma->vm_next) {
2207 if (!(vma->vm_flags & VM_MERGEABLE))
2208 continue;
2209 if (ksm_scan.address < vma->vm_start)
2210 ksm_scan.address = vma->vm_start;
2211 if (!vma->anon_vma)
2212 ksm_scan.address = vma->vm_end;
2213
2214 while (ksm_scan.address < vma->vm_end) {
2215 if (ksm_test_exit(mm))
2216 break;
2217 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
2218 if (IS_ERR_OR_NULL(*page)) {
2219 ksm_scan.address += PAGE_SIZE;
2220 cond_resched();
2221 continue;
2222 }
2223 if (PageAnon(*page)) {
2224 flush_anon_page(vma, *page, ksm_scan.address);
2225 flush_dcache_page(*page);
2226 rmap_item = get_next_rmap_item(slot,
2227 ksm_scan.rmap_list, ksm_scan.address);
2228 if (rmap_item) {
2229 ksm_scan.rmap_list =
2230 &rmap_item->rmap_list;
2231 ksm_scan.address += PAGE_SIZE;
2232 } else
2233 put_page(*page);
2234 up_read(&mm->mmap_sem);
2235 return rmap_item;
2236 }
2237 put_page(*page);
2238 ksm_scan.address += PAGE_SIZE;
2239 cond_resched();
2240 }
2241 }
2242
2243 if (ksm_test_exit(mm)) {
2244 ksm_scan.address = 0;
2245 ksm_scan.rmap_list = &slot->rmap_list;
2246 }
2247 /*
2248 * Nuke all the rmap_items that are above this current rmap:
2249 * because there were no VM_MERGEABLE vmas with such addresses.
2250 */
2251 remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
2252
2253 spin_lock(&ksm_mmlist_lock);
2254 ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2255 struct mm_slot, mm_list);
2256 if (ksm_scan.address == 0) {
2257 /*
2258 * We've completed a full scan of all vmas, holding mmap_sem
2259 * throughout, and found no VM_MERGEABLE: so do the same as
2260 * __ksm_exit does to remove this mm from all our lists now.
2261 * This applies either when cleaning up after __ksm_exit
2262 * (but beware: we can reach here even before __ksm_exit),
2263 * or when all VM_MERGEABLE areas have been unmapped (and
2264 * mmap_sem then protects against race with MADV_MERGEABLE).
2265 */
2266 hash_del(&slot->link);
2267 list_del(&slot->mm_list);
2268 spin_unlock(&ksm_mmlist_lock);
2269
2270 free_mm_slot(slot);
2271 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2272 up_read(&mm->mmap_sem);
2273 mmdrop(mm);
2274 } else {
2275 up_read(&mm->mmap_sem);
2276 /*
2277 * up_read(&mm->mmap_sem) first because after
2278 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2279 * already have been freed under us by __ksm_exit()
2280 * because the "mm_slot" is still hashed and
2281 * ksm_scan.mm_slot doesn't point to it anymore.
2282 */
2283 spin_unlock(&ksm_mmlist_lock);
2284 }
2285
2286 /* Repeat until we've completed scanning the whole list */
2287 slot = ksm_scan.mm_slot;
2288 if (slot != &ksm_mm_head)
2289 goto next_mm;
2290
2291 ksm_scan.seqnr++;
2292 return NULL;
2293 }
2294
2295 /**
2296 * ksm_do_scan - the ksm scanner main worker function.
2297 * @scan_npages - number of pages we want to scan before we return.
2298 */
2299 static void ksm_do_scan(unsigned int scan_npages)
2300 {
2301 struct rmap_item *rmap_item;
2302 struct page *uninitialized_var(page);
2303
2304 while (scan_npages-- && likely(!freezing(current))) {
2305 cond_resched();
2306 rmap_item = scan_get_next_rmap_item(&page);
2307 if (!rmap_item)
2308 return;
2309 cmp_and_merge_page(page, rmap_item);
2310 put_page(page);
2311 }
2312 }
2313
2314 static int ksmd_should_run(void)
2315 {
2316 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2317 }
2318
2319 static int ksm_scan_thread(void *nothing)
2320 {
2321 set_freezable();
2322 set_user_nice(current, 5);
2323
2324 while (!kthread_should_stop()) {
2325 mutex_lock(&ksm_thread_mutex);
2326 wait_while_offlining();
2327 if (ksmd_should_run())
2328 ksm_do_scan(ksm_thread_pages_to_scan);
2329 mutex_unlock(&ksm_thread_mutex);
2330
2331 try_to_freeze();
2332
2333 if (ksmd_should_run()) {
2334 schedule_timeout_interruptible(
2335 msecs_to_jiffies(ksm_thread_sleep_millisecs));
2336 } else {
2337 wait_event_freezable(ksm_thread_wait,
2338 ksmd_should_run() || kthread_should_stop());
2339 }
2340 }
2341 return 0;
2342 }
2343
2344 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2345 unsigned long end, int advice, unsigned long *vm_flags)
2346 {
2347 struct mm_struct *mm = vma->vm_mm;
2348 int err;
2349
2350 switch (advice) {
2351 case MADV_MERGEABLE:
2352 /*
2353 * Be somewhat over-protective for now!
2354 */
2355 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
2356 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
2357 VM_HUGETLB | VM_MIXEDMAP))
2358 return 0; /* just ignore the advice */
2359
2360 #ifdef VM_SAO
2361 if (*vm_flags & VM_SAO)
2362 return 0;
2363 #endif
2364
2365 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2366 err = __ksm_enter(mm);
2367 if (err)
2368 return err;
2369 }
2370
2371 *vm_flags |= VM_MERGEABLE;
2372 break;
2373
2374 case MADV_UNMERGEABLE:
2375 if (!(*vm_flags & VM_MERGEABLE))
2376 return 0; /* just ignore the advice */
2377
2378 if (vma->anon_vma) {
2379 err = unmerge_ksm_pages(vma, start, end);
2380 if (err)
2381 return err;
2382 }
2383
2384 *vm_flags &= ~VM_MERGEABLE;
2385 break;
2386 }
2387
2388 return 0;
2389 }
2390
2391 int __ksm_enter(struct mm_struct *mm)
2392 {
2393 struct mm_slot *mm_slot;
2394 int needs_wakeup;
2395
2396 mm_slot = alloc_mm_slot();
2397 if (!mm_slot)
2398 return -ENOMEM;
2399
2400 /* Check ksm_run too? Would need tighter locking */
2401 needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2402
2403 spin_lock(&ksm_mmlist_lock);
2404 insert_to_mm_slots_hash(mm, mm_slot);
2405 /*
2406 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2407 * insert just behind the scanning cursor, to let the area settle
2408 * down a little; when fork is followed by immediate exec, we don't
2409 * want ksmd to waste time setting up and tearing down an rmap_list.
2410 *
2411 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2412 * scanning cursor, otherwise KSM pages in newly forked mms will be
2413 * missed: then we might as well insert at the end of the list.
2414 */
2415 if (ksm_run & KSM_RUN_UNMERGE)
2416 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2417 else
2418 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
2419 spin_unlock(&ksm_mmlist_lock);
2420
2421 set_bit(MMF_VM_MERGEABLE, &mm->flags);
2422 mmgrab(mm);
2423
2424 if (needs_wakeup)
2425 wake_up_interruptible(&ksm_thread_wait);
2426
2427 return 0;
2428 }
2429
2430 void __ksm_exit(struct mm_struct *mm)
2431 {
2432 struct mm_slot *mm_slot;
2433 int easy_to_free = 0;
2434
2435 /*
2436 * This process is exiting: if it's straightforward (as is the
2437 * case when ksmd was never running), free mm_slot immediately.
2438 * But if it's at the cursor or has rmap_items linked to it, use
2439 * mmap_sem to synchronize with any break_cows before pagetables
2440 * are freed, and leave the mm_slot on the list for ksmd to free.
2441 * Beware: ksm may already have noticed it exiting and freed the slot.
2442 */
2443
2444 spin_lock(&ksm_mmlist_lock);
2445 mm_slot = get_mm_slot(mm);
2446 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2447 if (!mm_slot->rmap_list) {
2448 hash_del(&mm_slot->link);
2449 list_del(&mm_slot->mm_list);
2450 easy_to_free = 1;
2451 } else {
2452 list_move(&mm_slot->mm_list,
2453 &ksm_scan.mm_slot->mm_list);
2454 }
2455 }
2456 spin_unlock(&ksm_mmlist_lock);
2457
2458 if (easy_to_free) {
2459 free_mm_slot(mm_slot);
2460 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2461 mmdrop(mm);
2462 } else if (mm_slot) {
2463 down_write(&mm->mmap_sem);
2464 up_write(&mm->mmap_sem);
2465 }
2466 }
2467
2468 struct page *ksm_might_need_to_copy(struct page *page,
2469 struct vm_area_struct *vma, unsigned long address)
2470 {
2471 struct anon_vma *anon_vma = page_anon_vma(page);
2472 struct page *new_page;
2473
2474 if (PageKsm(page)) {
2475 if (page_stable_node(page) &&
2476 !(ksm_run & KSM_RUN_UNMERGE))
2477 return page; /* no need to copy it */
2478 } else if (!anon_vma) {
2479 return page; /* no need to copy it */
2480 } else if (anon_vma->root == vma->anon_vma->root &&
2481 page->index == linear_page_index(vma, address)) {
2482 return page; /* still no need to copy it */
2483 }
2484 if (!PageUptodate(page))
2485 return page; /* let do_swap_page report the error */
2486
2487 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2488 if (new_page) {
2489 copy_user_highpage(new_page, page, address, vma);
2490
2491 SetPageDirty(new_page);
2492 __SetPageUptodate(new_page);
2493 __SetPageLocked(new_page);
2494 }
2495
2496 return new_page;
2497 }
2498
2499 void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
2500 {
2501 struct stable_node *stable_node;
2502 struct rmap_item *rmap_item;
2503 int search_new_forks = 0;
2504
2505 VM_BUG_ON_PAGE(!PageKsm(page), page);
2506
2507 /*
2508 * Rely on the page lock to protect against concurrent modifications
2509 * to that page's node of the stable tree.
2510 */
2511 VM_BUG_ON_PAGE(!PageLocked(page), page);
2512
2513 stable_node = page_stable_node(page);
2514 if (!stable_node)
2515 return;
2516 again:
2517 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2518 struct anon_vma *anon_vma = rmap_item->anon_vma;
2519 struct anon_vma_chain *vmac;
2520 struct vm_area_struct *vma;
2521
2522 cond_resched();
2523 anon_vma_lock_read(anon_vma);
2524 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2525 0, ULONG_MAX) {
2526 cond_resched();
2527 vma = vmac->vma;
2528 if (rmap_item->address < vma->vm_start ||
2529 rmap_item->address >= vma->vm_end)
2530 continue;
2531 /*
2532 * Initially we examine only the vma which covers this
2533 * rmap_item; but later, if there is still work to do,
2534 * we examine covering vmas in other mms: in case they
2535 * were forked from the original since ksmd passed.
2536 */
2537 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2538 continue;
2539
2540 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2541 continue;
2542
2543 if (!rwc->rmap_one(page, vma,
2544 rmap_item->address, rwc->arg)) {
2545 anon_vma_unlock_read(anon_vma);
2546 return;
2547 }
2548 if (rwc->done && rwc->done(page)) {
2549 anon_vma_unlock_read(anon_vma);
2550 return;
2551 }
2552 }
2553 anon_vma_unlock_read(anon_vma);
2554 }
2555 if (!search_new_forks++)
2556 goto again;
2557 }
2558
2559 #ifdef CONFIG_MIGRATION
2560 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2561 {
2562 struct stable_node *stable_node;
2563
2564 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2565 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2566 VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2567
2568 stable_node = page_stable_node(newpage);
2569 if (stable_node) {
2570 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2571 stable_node->kpfn = page_to_pfn(newpage);
2572 /*
2573 * newpage->mapping was set in advance; now we need smp_wmb()
2574 * to make sure that the new stable_node->kpfn is visible
2575 * to get_ksm_page() before it can see that oldpage->mapping
2576 * has gone stale (or that PageSwapCache has been cleared).
2577 */
2578 smp_wmb();
2579 set_page_stable_node(oldpage, NULL);
2580 }
2581 }
2582 #endif /* CONFIG_MIGRATION */
2583
2584 #ifdef CONFIG_MEMORY_HOTREMOVE
2585 static void wait_while_offlining(void)
2586 {
2587 while (ksm_run & KSM_RUN_OFFLINE) {
2588 mutex_unlock(&ksm_thread_mutex);
2589 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2590 TASK_UNINTERRUPTIBLE);
2591 mutex_lock(&ksm_thread_mutex);
2592 }
2593 }
2594
2595 static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2596 unsigned long start_pfn,
2597 unsigned long end_pfn)
2598 {
2599 if (stable_node->kpfn >= start_pfn &&
2600 stable_node->kpfn < end_pfn) {
2601 /*
2602 * Don't get_ksm_page, page has already gone:
2603 * which is why we keep kpfn instead of page*
2604 */
2605 remove_node_from_stable_tree(stable_node);
2606 return true;
2607 }
2608 return false;
2609 }
2610
2611 static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2612 unsigned long start_pfn,
2613 unsigned long end_pfn,
2614 struct rb_root *root)
2615 {
2616 struct stable_node *dup;
2617 struct hlist_node *hlist_safe;
2618
2619 if (!is_stable_node_chain(stable_node)) {
2620 VM_BUG_ON(is_stable_node_dup(stable_node));
2621 return stable_node_dup_remove_range(stable_node, start_pfn,
2622 end_pfn);
2623 }
2624
2625 hlist_for_each_entry_safe(dup, hlist_safe,
2626 &stable_node->hlist, hlist_dup) {
2627 VM_BUG_ON(!is_stable_node_dup(dup));
2628 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2629 }
2630 if (hlist_empty(&stable_node->hlist)) {
2631 free_stable_node_chain(stable_node, root);
2632 return true; /* notify caller that tree was rebalanced */
2633 } else
2634 return false;
2635 }
2636
2637 static void ksm_check_stable_tree(unsigned long start_pfn,
2638 unsigned long end_pfn)
2639 {
2640 struct stable_node *stable_node, *next;
2641 struct rb_node *node;
2642 int nid;
2643
2644 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2645 node = rb_first(root_stable_tree + nid);
2646 while (node) {
2647 stable_node = rb_entry(node, struct stable_node, node);
2648 if (stable_node_chain_remove_range(stable_node,
2649 start_pfn, end_pfn,
2650 root_stable_tree +
2651 nid))
2652 node = rb_first(root_stable_tree + nid);
2653 else
2654 node = rb_next(node);
2655 cond_resched();
2656 }
2657 }
2658 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2659 if (stable_node->kpfn >= start_pfn &&
2660 stable_node->kpfn < end_pfn)
2661 remove_node_from_stable_tree(stable_node);
2662 cond_resched();
2663 }
2664 }
2665
2666 static int ksm_memory_callback(struct notifier_block *self,
2667 unsigned long action, void *arg)
2668 {
2669 struct memory_notify *mn = arg;
2670
2671 switch (action) {
2672 case MEM_GOING_OFFLINE:
2673 /*
2674 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2675 * and remove_all_stable_nodes() while memory is going offline:
2676 * it is unsafe for them to touch the stable tree at this time.
2677 * But unmerge_ksm_pages(), rmap lookups and other entry points
2678 * which do not need the ksm_thread_mutex are all safe.
2679 */
2680 mutex_lock(&ksm_thread_mutex);
2681 ksm_run |= KSM_RUN_OFFLINE;
2682 mutex_unlock(&ksm_thread_mutex);
2683 break;
2684
2685 case MEM_OFFLINE:
2686 /*
2687 * Most of the work is done by page migration; but there might
2688 * be a few stable_nodes left over, still pointing to struct
2689 * pages which have been offlined: prune those from the tree,
2690 * otherwise get_ksm_page() might later try to access a
2691 * non-existent struct page.
2692 */
2693 ksm_check_stable_tree(mn->start_pfn,
2694 mn->start_pfn + mn->nr_pages);
2695 /* fallthrough */
2696
2697 case MEM_CANCEL_OFFLINE:
2698 mutex_lock(&ksm_thread_mutex);
2699 ksm_run &= ~KSM_RUN_OFFLINE;
2700 mutex_unlock(&ksm_thread_mutex);
2701
2702 smp_mb(); /* wake_up_bit advises this */
2703 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2704 break;
2705 }
2706 return NOTIFY_OK;
2707 }
2708 #else
2709 static void wait_while_offlining(void)
2710 {
2711 }
2712 #endif /* CONFIG_MEMORY_HOTREMOVE */
2713
2714 #ifdef CONFIG_SYSFS
2715 /*
2716 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2717 */
2718
2719 #define KSM_ATTR_RO(_name) \
2720 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2721 #define KSM_ATTR(_name) \
2722 static struct kobj_attribute _name##_attr = \
2723 __ATTR(_name, 0644, _name##_show, _name##_store)
2724
2725 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2726 struct kobj_attribute *attr, char *buf)
2727 {
2728 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2729 }
2730
2731 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2732 struct kobj_attribute *attr,
2733 const char *buf, size_t count)
2734 {
2735 unsigned long msecs;
2736 int err;
2737
2738 err = kstrtoul(buf, 10, &msecs);
2739 if (err || msecs > UINT_MAX)
2740 return -EINVAL;
2741
2742 ksm_thread_sleep_millisecs = msecs;
2743
2744 return count;
2745 }
2746 KSM_ATTR(sleep_millisecs);
2747
2748 static ssize_t pages_to_scan_show(struct kobject *kobj,
2749 struct kobj_attribute *attr, char *buf)
2750 {
2751 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2752 }
2753
2754 static ssize_t pages_to_scan_store(struct kobject *kobj,
2755 struct kobj_attribute *attr,
2756 const char *buf, size_t count)
2757 {
2758 int err;
2759 unsigned long nr_pages;
2760
2761 err = kstrtoul(buf, 10, &nr_pages);
2762 if (err || nr_pages > UINT_MAX)
2763 return -EINVAL;
2764
2765 ksm_thread_pages_to_scan = nr_pages;
2766
2767 return count;
2768 }
2769 KSM_ATTR(pages_to_scan);
2770
2771 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2772 char *buf)
2773 {
2774 return sprintf(buf, "%lu\n", ksm_run);
2775 }
2776
2777 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2778 const char *buf, size_t count)
2779 {
2780 int err;
2781 unsigned long flags;
2782
2783 err = kstrtoul(buf, 10, &flags);
2784 if (err || flags > UINT_MAX)
2785 return -EINVAL;
2786 if (flags > KSM_RUN_UNMERGE)
2787 return -EINVAL;
2788
2789 /*
2790 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2791 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2792 * breaking COW to free the pages_shared (but leaves mm_slots
2793 * on the list for when ksmd may be set running again).
2794 */
2795
2796 mutex_lock(&ksm_thread_mutex);
2797 wait_while_offlining();
2798 if (ksm_run != flags) {
2799 ksm_run = flags;
2800 if (flags & KSM_RUN_UNMERGE) {
2801 set_current_oom_origin();
2802 err = unmerge_and_remove_all_rmap_items();
2803 clear_current_oom_origin();
2804 if (err) {
2805 ksm_run = KSM_RUN_STOP;
2806 count = err;
2807 }
2808 }
2809 }
2810 mutex_unlock(&ksm_thread_mutex);
2811
2812 if (flags & KSM_RUN_MERGE)
2813 wake_up_interruptible(&ksm_thread_wait);
2814
2815 return count;
2816 }
2817 KSM_ATTR(run);
2818
2819 #ifdef CONFIG_NUMA
2820 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2821 struct kobj_attribute *attr, char *buf)
2822 {
2823 return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2824 }
2825
2826 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2827 struct kobj_attribute *attr,
2828 const char *buf, size_t count)
2829 {
2830 int err;
2831 unsigned long knob;
2832
2833 err = kstrtoul(buf, 10, &knob);
2834 if (err)
2835 return err;
2836 if (knob > 1)
2837 return -EINVAL;
2838
2839 mutex_lock(&ksm_thread_mutex);
2840 wait_while_offlining();
2841 if (ksm_merge_across_nodes != knob) {
2842 if (ksm_pages_shared || remove_all_stable_nodes())
2843 err = -EBUSY;
2844 else if (root_stable_tree == one_stable_tree) {
2845 struct rb_root *buf;
2846 /*
2847 * This is the first time that we switch away from the
2848 * default of merging across nodes: must now allocate
2849 * a buffer to hold as many roots as may be needed.
2850 * Allocate stable and unstable together:
2851 * MAXSMP NODES_SHIFT 10 will use 16kB.
2852 */
2853 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2854 GFP_KERNEL);
2855 /* Let us assume that RB_ROOT is NULL is zero */
2856 if (!buf)
2857 err = -ENOMEM;
2858 else {
2859 root_stable_tree = buf;
2860 root_unstable_tree = buf + nr_node_ids;
2861 /* Stable tree is empty but not the unstable */
2862 root_unstable_tree[0] = one_unstable_tree[0];
2863 }
2864 }
2865 if (!err) {
2866 ksm_merge_across_nodes = knob;
2867 ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2868 }
2869 }
2870 mutex_unlock(&ksm_thread_mutex);
2871
2872 return err ? err : count;
2873 }
2874 KSM_ATTR(merge_across_nodes);
2875 #endif
2876
2877 static ssize_t use_zero_pages_show(struct kobject *kobj,
2878 struct kobj_attribute *attr, char *buf)
2879 {
2880 return sprintf(buf, "%u\n", ksm_use_zero_pages);
2881 }
2882 static ssize_t use_zero_pages_store(struct kobject *kobj,
2883 struct kobj_attribute *attr,
2884 const char *buf, size_t count)
2885 {
2886 int err;
2887 bool value;
2888
2889 err = kstrtobool(buf, &value);
2890 if (err)
2891 return -EINVAL;
2892
2893 ksm_use_zero_pages = value;
2894
2895 return count;
2896 }
2897 KSM_ATTR(use_zero_pages);
2898
2899 static ssize_t max_page_sharing_show(struct kobject *kobj,
2900 struct kobj_attribute *attr, char *buf)
2901 {
2902 return sprintf(buf, "%u\n", ksm_max_page_sharing);
2903 }
2904
2905 static ssize_t max_page_sharing_store(struct kobject *kobj,
2906 struct kobj_attribute *attr,
2907 const char *buf, size_t count)
2908 {
2909 int err;
2910 int knob;
2911
2912 err = kstrtoint(buf, 10, &knob);
2913 if (err)
2914 return err;
2915 /*
2916 * When a KSM page is created it is shared by 2 mappings. This
2917 * being a signed comparison, it implicitly verifies it's not
2918 * negative.
2919 */
2920 if (knob < 2)
2921 return -EINVAL;
2922
2923 if (READ_ONCE(ksm_max_page_sharing) == knob)
2924 return count;
2925
2926 mutex_lock(&ksm_thread_mutex);
2927 wait_while_offlining();
2928 if (ksm_max_page_sharing != knob) {
2929 if (ksm_pages_shared || remove_all_stable_nodes())
2930 err = -EBUSY;
2931 else
2932 ksm_max_page_sharing = knob;
2933 }
2934 mutex_unlock(&ksm_thread_mutex);
2935
2936 return err ? err : count;
2937 }
2938 KSM_ATTR(max_page_sharing);
2939
2940 static ssize_t pages_shared_show(struct kobject *kobj,
2941 struct kobj_attribute *attr, char *buf)
2942 {
2943 return sprintf(buf, "%lu\n", ksm_pages_shared);
2944 }
2945 KSM_ATTR_RO(pages_shared);
2946
2947 static ssize_t pages_sharing_show(struct kobject *kobj,
2948 struct kobj_attribute *attr, char *buf)
2949 {
2950 return sprintf(buf, "%lu\n", ksm_pages_sharing);
2951 }
2952 KSM_ATTR_RO(pages_sharing);
2953
2954 static ssize_t pages_unshared_show(struct kobject *kobj,
2955 struct kobj_attribute *attr, char *buf)
2956 {
2957 return sprintf(buf, "%lu\n", ksm_pages_unshared);
2958 }
2959 KSM_ATTR_RO(pages_unshared);
2960
2961 static ssize_t pages_volatile_show(struct kobject *kobj,
2962 struct kobj_attribute *attr, char *buf)
2963 {
2964 long ksm_pages_volatile;
2965
2966 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2967 - ksm_pages_sharing - ksm_pages_unshared;
2968 /*
2969 * It was not worth any locking to calculate that statistic,
2970 * but it might therefore sometimes be negative: conceal that.
2971 */
2972 if (ksm_pages_volatile < 0)
2973 ksm_pages_volatile = 0;
2974 return sprintf(buf, "%ld\n", ksm_pages_volatile);
2975 }
2976 KSM_ATTR_RO(pages_volatile);
2977
2978 static ssize_t stable_node_dups_show(struct kobject *kobj,
2979 struct kobj_attribute *attr, char *buf)
2980 {
2981 return sprintf(buf, "%lu\n", ksm_stable_node_dups);
2982 }
2983 KSM_ATTR_RO(stable_node_dups);
2984
2985 static ssize_t stable_node_chains_show(struct kobject *kobj,
2986 struct kobj_attribute *attr, char *buf)
2987 {
2988 return sprintf(buf, "%lu\n", ksm_stable_node_chains);
2989 }
2990 KSM_ATTR_RO(stable_node_chains);
2991
2992 static ssize_t
2993 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
2994 struct kobj_attribute *attr,
2995 char *buf)
2996 {
2997 return sprintf(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
2998 }
2999
3000 static ssize_t
3001 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3002 struct kobj_attribute *attr,
3003 const char *buf, size_t count)
3004 {
3005 unsigned long msecs;
3006 int err;
3007
3008 err = kstrtoul(buf, 10, &msecs);
3009 if (err || msecs > UINT_MAX)
3010 return -EINVAL;
3011
3012 ksm_stable_node_chains_prune_millisecs = msecs;
3013
3014 return count;
3015 }
3016 KSM_ATTR(stable_node_chains_prune_millisecs);
3017
3018 static ssize_t full_scans_show(struct kobject *kobj,
3019 struct kobj_attribute *attr, char *buf)
3020 {
3021 return sprintf(buf, "%lu\n", ksm_scan.seqnr);
3022 }
3023 KSM_ATTR_RO(full_scans);
3024
3025 static struct attribute *ksm_attrs[] = {
3026 &sleep_millisecs_attr.attr,
3027 &pages_to_scan_attr.attr,
3028 &run_attr.attr,
3029 &pages_shared_attr.attr,
3030 &pages_sharing_attr.attr,
3031 &pages_unshared_attr.attr,
3032 &pages_volatile_attr.attr,
3033 &full_scans_attr.attr,
3034 #ifdef CONFIG_NUMA
3035 &merge_across_nodes_attr.attr,
3036 #endif
3037 &max_page_sharing_attr.attr,
3038 &stable_node_chains_attr.attr,
3039 &stable_node_dups_attr.attr,
3040 &stable_node_chains_prune_millisecs_attr.attr,
3041 &use_zero_pages_attr.attr,
3042 NULL,
3043 };
3044
3045 static struct attribute_group ksm_attr_group = {
3046 .attrs = ksm_attrs,
3047 .name = "ksm",
3048 };
3049 #endif /* CONFIG_SYSFS */
3050
3051 static int __init ksm_init(void)
3052 {
3053 struct task_struct *ksm_thread;
3054 int err;
3055
3056 /* The correct value depends on page size and endianness */
3057 zero_checksum = calc_checksum(ZERO_PAGE(0));
3058 /* Default to false for backwards compatibility */
3059 ksm_use_zero_pages = false;
3060
3061 err = ksm_slab_init();
3062 if (err)
3063 goto out;
3064
3065 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3066 if (IS_ERR(ksm_thread)) {
3067 pr_err("ksm: creating kthread failed\n");
3068 err = PTR_ERR(ksm_thread);
3069 goto out_free;
3070 }
3071
3072 #ifdef CONFIG_SYSFS
3073 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3074 if (err) {
3075 pr_err("ksm: register sysfs failed\n");
3076 kthread_stop(ksm_thread);
3077 goto out_free;
3078 }
3079 #else
3080 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
3081
3082 #endif /* CONFIG_SYSFS */
3083
3084 #ifdef CONFIG_MEMORY_HOTREMOVE
3085 /* There is no significance to this priority 100 */
3086 hotplug_memory_notifier(ksm_memory_callback, 100);
3087 #endif
3088 return 0;
3089
3090 out_free:
3091 ksm_slab_free();
3092 out:
3093 return err;
3094 }
3095 subsys_initcall(ksm_init);