]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/madvise.c
UBUNTU: Ubuntu-4.13.0-45.50
[mirror_ubuntu-artful-kernel.git] / mm / madvise.c
1 /*
2 * linux/mm/madvise.c
3 *
4 * Copyright (C) 1999 Linus Torvalds
5 * Copyright (C) 2002 Christoph Hellwig
6 */
7
8 #include <linux/mman.h>
9 #include <linux/pagemap.h>
10 #include <linux/syscalls.h>
11 #include <linux/mempolicy.h>
12 #include <linux/page-isolation.h>
13 #include <linux/userfaultfd_k.h>
14 #include <linux/hugetlb.h>
15 #include <linux/falloc.h>
16 #include <linux/sched.h>
17 #include <linux/ksm.h>
18 #include <linux/fs.h>
19 #include <linux/file.h>
20 #include <linux/blkdev.h>
21 #include <linux/backing-dev.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/shmem_fs.h>
25 #include <linux/mmu_notifier.h>
26
27 #include <asm/tlb.h>
28
29 #include "internal.h"
30
31 /*
32 * Any behaviour which results in changes to the vma->vm_flags needs to
33 * take mmap_sem for writing. Others, which simply traverse vmas, need
34 * to only take it for reading.
35 */
36 static int madvise_need_mmap_write(int behavior)
37 {
38 switch (behavior) {
39 case MADV_REMOVE:
40 case MADV_WILLNEED:
41 case MADV_DONTNEED:
42 case MADV_FREE:
43 return 0;
44 default:
45 /* be safe, default to 1. list exceptions explicitly */
46 return 1;
47 }
48 }
49
50 /*
51 * We can potentially split a vm area into separate
52 * areas, each area with its own behavior.
53 */
54 static long madvise_behavior(struct vm_area_struct *vma,
55 struct vm_area_struct **prev,
56 unsigned long start, unsigned long end, int behavior)
57 {
58 struct mm_struct *mm = vma->vm_mm;
59 int error = 0;
60 pgoff_t pgoff;
61 unsigned long new_flags = vma->vm_flags;
62
63 switch (behavior) {
64 case MADV_NORMAL:
65 new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ;
66 break;
67 case MADV_SEQUENTIAL:
68 new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ;
69 break;
70 case MADV_RANDOM:
71 new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ;
72 break;
73 case MADV_DONTFORK:
74 new_flags |= VM_DONTCOPY;
75 break;
76 case MADV_DOFORK:
77 if (vma->vm_flags & VM_IO) {
78 error = -EINVAL;
79 goto out;
80 }
81 new_flags &= ~VM_DONTCOPY;
82 break;
83 case MADV_DONTDUMP:
84 new_flags |= VM_DONTDUMP;
85 break;
86 case MADV_DODUMP:
87 if (new_flags & VM_SPECIAL) {
88 error = -EINVAL;
89 goto out;
90 }
91 new_flags &= ~VM_DONTDUMP;
92 break;
93 case MADV_MERGEABLE:
94 case MADV_UNMERGEABLE:
95 error = ksm_madvise(vma, start, end, behavior, &new_flags);
96 if (error) {
97 /*
98 * madvise() returns EAGAIN if kernel resources, such as
99 * slab, are temporarily unavailable.
100 */
101 if (error == -ENOMEM)
102 error = -EAGAIN;
103 goto out;
104 }
105 break;
106 case MADV_HUGEPAGE:
107 case MADV_NOHUGEPAGE:
108 error = hugepage_madvise(vma, &new_flags, behavior);
109 if (error) {
110 /*
111 * madvise() returns EAGAIN if kernel resources, such as
112 * slab, are temporarily unavailable.
113 */
114 if (error == -ENOMEM)
115 error = -EAGAIN;
116 goto out;
117 }
118 break;
119 }
120
121 if (new_flags == vma->vm_flags) {
122 *prev = vma;
123 goto out;
124 }
125
126 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
127 *prev = vma_merge(mm, *prev, start, end, new_flags, vma->anon_vma,
128 vma->vm_file, pgoff, vma_policy(vma),
129 vma->vm_userfaultfd_ctx);
130 if (*prev) {
131 vma = *prev;
132 goto success;
133 }
134
135 *prev = vma;
136
137 if (start != vma->vm_start) {
138 if (unlikely(mm->map_count >= sysctl_max_map_count)) {
139 error = -ENOMEM;
140 goto out;
141 }
142 error = __split_vma(mm, vma, start, 1);
143 if (error) {
144 /*
145 * madvise() returns EAGAIN if kernel resources, such as
146 * slab, are temporarily unavailable.
147 */
148 if (error == -ENOMEM)
149 error = -EAGAIN;
150 goto out;
151 }
152 }
153
154 if (end != vma->vm_end) {
155 if (unlikely(mm->map_count >= sysctl_max_map_count)) {
156 error = -ENOMEM;
157 goto out;
158 }
159 error = __split_vma(mm, vma, end, 0);
160 if (error) {
161 /*
162 * madvise() returns EAGAIN if kernel resources, such as
163 * slab, are temporarily unavailable.
164 */
165 if (error == -ENOMEM)
166 error = -EAGAIN;
167 goto out;
168 }
169 }
170
171 success:
172 /*
173 * vm_flags is protected by the mmap_sem held in write mode.
174 */
175 vma->vm_flags = new_flags;
176 out:
177 return error;
178 }
179
180 #ifdef CONFIG_SWAP
181 static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start,
182 unsigned long end, struct mm_walk *walk)
183 {
184 pte_t *orig_pte;
185 struct vm_area_struct *vma = walk->private;
186 unsigned long index;
187
188 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
189 return 0;
190
191 for (index = start; index != end; index += PAGE_SIZE) {
192 pte_t pte;
193 swp_entry_t entry;
194 struct page *page;
195 spinlock_t *ptl;
196
197 orig_pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl);
198 pte = *(orig_pte + ((index - start) / PAGE_SIZE));
199 pte_unmap_unlock(orig_pte, ptl);
200
201 if (pte_present(pte) || pte_none(pte))
202 continue;
203 entry = pte_to_swp_entry(pte);
204 if (unlikely(non_swap_entry(entry)))
205 continue;
206
207 page = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE,
208 vma, index, false);
209 if (page)
210 put_page(page);
211 }
212
213 return 0;
214 }
215
216 static void force_swapin_readahead(struct vm_area_struct *vma,
217 unsigned long start, unsigned long end)
218 {
219 struct mm_walk walk = {
220 .mm = vma->vm_mm,
221 .pmd_entry = swapin_walk_pmd_entry,
222 .private = vma,
223 };
224
225 walk_page_range(start, end, &walk);
226
227 lru_add_drain(); /* Push any new pages onto the LRU now */
228 }
229
230 static void force_shm_swapin_readahead(struct vm_area_struct *vma,
231 unsigned long start, unsigned long end,
232 struct address_space *mapping)
233 {
234 pgoff_t index;
235 struct page *page;
236 swp_entry_t swap;
237
238 for (; start < end; start += PAGE_SIZE) {
239 index = ((start - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
240
241 page = find_get_entry(mapping, index);
242 if (!radix_tree_exceptional_entry(page)) {
243 if (page)
244 put_page(page);
245 continue;
246 }
247 swap = radix_to_swp_entry(page);
248 page = read_swap_cache_async(swap, GFP_HIGHUSER_MOVABLE,
249 NULL, 0, false);
250 if (page)
251 put_page(page);
252 }
253
254 lru_add_drain(); /* Push any new pages onto the LRU now */
255 }
256 #endif /* CONFIG_SWAP */
257
258 /*
259 * Schedule all required I/O operations. Do not wait for completion.
260 */
261 static long madvise_willneed(struct vm_area_struct *vma,
262 struct vm_area_struct **prev,
263 unsigned long start, unsigned long end)
264 {
265 struct file *file = vma->vm_file;
266
267 *prev = vma;
268 #ifdef CONFIG_SWAP
269 if (!file) {
270 force_swapin_readahead(vma, start, end);
271 return 0;
272 }
273
274 if (shmem_mapping(file->f_mapping)) {
275 force_shm_swapin_readahead(vma, start, end,
276 file->f_mapping);
277 return 0;
278 }
279 #else
280 if (!file)
281 return -EBADF;
282 #endif
283
284 if (IS_DAX(file_inode(file))) {
285 /* no bad return value, but ignore advice */
286 return 0;
287 }
288
289 start = ((start - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
290 if (end > vma->vm_end)
291 end = vma->vm_end;
292 end = ((end - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
293
294 force_page_cache_readahead(file->f_mapping, file, start, end - start);
295 return 0;
296 }
297
298 static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr,
299 unsigned long end, struct mm_walk *walk)
300
301 {
302 struct mmu_gather *tlb = walk->private;
303 struct mm_struct *mm = tlb->mm;
304 struct vm_area_struct *vma = walk->vma;
305 spinlock_t *ptl;
306 pte_t *orig_pte, *pte, ptent;
307 struct page *page;
308 int nr_swap = 0;
309 unsigned long next;
310
311 next = pmd_addr_end(addr, end);
312 if (pmd_trans_huge(*pmd))
313 if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next))
314 goto next;
315
316 if (pmd_trans_unstable(pmd))
317 return 0;
318
319 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
320 orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
321 flush_tlb_batched_pending(mm);
322 arch_enter_lazy_mmu_mode();
323 for (; addr != end; pte++, addr += PAGE_SIZE) {
324 ptent = *pte;
325
326 if (pte_none(ptent))
327 continue;
328 /*
329 * If the pte has swp_entry, just clear page table to
330 * prevent swap-in which is more expensive rather than
331 * (page allocation + zeroing).
332 */
333 if (!pte_present(ptent)) {
334 swp_entry_t entry;
335
336 entry = pte_to_swp_entry(ptent);
337 if (non_swap_entry(entry))
338 continue;
339 nr_swap--;
340 free_swap_and_cache(entry);
341 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
342 continue;
343 }
344
345 page = vm_normal_page(vma, addr, ptent);
346 if (!page)
347 continue;
348
349 /*
350 * If pmd isn't transhuge but the page is THP and
351 * is owned by only this process, split it and
352 * deactivate all pages.
353 */
354 if (PageTransCompound(page)) {
355 if (page_mapcount(page) != 1)
356 goto out;
357 get_page(page);
358 if (!trylock_page(page)) {
359 put_page(page);
360 goto out;
361 }
362 pte_unmap_unlock(orig_pte, ptl);
363 if (split_huge_page(page)) {
364 unlock_page(page);
365 put_page(page);
366 pte_offset_map_lock(mm, pmd, addr, &ptl);
367 goto out;
368 }
369 unlock_page(page);
370 put_page(page);
371 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
372 pte--;
373 addr -= PAGE_SIZE;
374 continue;
375 }
376
377 VM_BUG_ON_PAGE(PageTransCompound(page), page);
378
379 if (PageSwapCache(page) || PageDirty(page)) {
380 if (!trylock_page(page))
381 continue;
382 /*
383 * If page is shared with others, we couldn't clear
384 * PG_dirty of the page.
385 */
386 if (page_mapcount(page) != 1) {
387 unlock_page(page);
388 continue;
389 }
390
391 if (PageSwapCache(page) && !try_to_free_swap(page)) {
392 unlock_page(page);
393 continue;
394 }
395
396 ClearPageDirty(page);
397 unlock_page(page);
398 }
399
400 if (pte_young(ptent) || pte_dirty(ptent)) {
401 /*
402 * Some of architecture(ex, PPC) don't update TLB
403 * with set_pte_at and tlb_remove_tlb_entry so for
404 * the portability, remap the pte with old|clean
405 * after pte clearing.
406 */
407 ptent = ptep_get_and_clear_full(mm, addr, pte,
408 tlb->fullmm);
409
410 ptent = pte_mkold(ptent);
411 ptent = pte_mkclean(ptent);
412 set_pte_at(mm, addr, pte, ptent);
413 tlb_remove_tlb_entry(tlb, pte, addr);
414 }
415 mark_page_lazyfree(page);
416 }
417 out:
418 if (nr_swap) {
419 if (current->mm == mm)
420 sync_mm_rss(mm);
421
422 add_mm_counter(mm, MM_SWAPENTS, nr_swap);
423 }
424 arch_leave_lazy_mmu_mode();
425 pte_unmap_unlock(orig_pte, ptl);
426 cond_resched();
427 next:
428 return 0;
429 }
430
431 static void madvise_free_page_range(struct mmu_gather *tlb,
432 struct vm_area_struct *vma,
433 unsigned long addr, unsigned long end)
434 {
435 struct mm_walk free_walk = {
436 .pmd_entry = madvise_free_pte_range,
437 .mm = vma->vm_mm,
438 .private = tlb,
439 };
440
441 tlb_start_vma(tlb, vma);
442 walk_page_range(addr, end, &free_walk);
443 tlb_end_vma(tlb, vma);
444 }
445
446 static int madvise_free_single_vma(struct vm_area_struct *vma,
447 unsigned long start_addr, unsigned long end_addr)
448 {
449 unsigned long start, end;
450 struct mm_struct *mm = vma->vm_mm;
451 struct mmu_gather tlb;
452
453 /* MADV_FREE works for only anon vma at the moment */
454 if (!vma_is_anonymous(vma))
455 return -EINVAL;
456
457 start = max(vma->vm_start, start_addr);
458 if (start >= vma->vm_end)
459 return -EINVAL;
460 end = min(vma->vm_end, end_addr);
461 if (end <= vma->vm_start)
462 return -EINVAL;
463
464 lru_add_drain();
465 tlb_gather_mmu(&tlb, mm, start, end);
466 update_hiwater_rss(mm);
467
468 mmu_notifier_invalidate_range_start(mm, start, end);
469 madvise_free_page_range(&tlb, vma, start, end);
470 mmu_notifier_invalidate_range_end(mm, start, end);
471 tlb_finish_mmu(&tlb, start, end);
472
473 return 0;
474 }
475
476 /*
477 * Application no longer needs these pages. If the pages are dirty,
478 * it's OK to just throw them away. The app will be more careful about
479 * data it wants to keep. Be sure to free swap resources too. The
480 * zap_page_range call sets things up for shrink_active_list to actually free
481 * these pages later if no one else has touched them in the meantime,
482 * although we could add these pages to a global reuse list for
483 * shrink_active_list to pick up before reclaiming other pages.
484 *
485 * NB: This interface discards data rather than pushes it out to swap,
486 * as some implementations do. This has performance implications for
487 * applications like large transactional databases which want to discard
488 * pages in anonymous maps after committing to backing store the data
489 * that was kept in them. There is no reason to write this data out to
490 * the swap area if the application is discarding it.
491 *
492 * An interface that causes the system to free clean pages and flush
493 * dirty pages is already available as msync(MS_INVALIDATE).
494 */
495 static long madvise_dontneed_single_vma(struct vm_area_struct *vma,
496 unsigned long start, unsigned long end)
497 {
498 zap_page_range(vma, start, end - start);
499 return 0;
500 }
501
502 static long madvise_dontneed_free(struct vm_area_struct *vma,
503 struct vm_area_struct **prev,
504 unsigned long start, unsigned long end,
505 int behavior)
506 {
507 *prev = vma;
508 if (!can_madv_dontneed_vma(vma))
509 return -EINVAL;
510
511 if (!userfaultfd_remove(vma, start, end)) {
512 *prev = NULL; /* mmap_sem has been dropped, prev is stale */
513
514 down_read(&current->mm->mmap_sem);
515 vma = find_vma(current->mm, start);
516 if (!vma)
517 return -ENOMEM;
518 if (start < vma->vm_start) {
519 /*
520 * This "vma" under revalidation is the one
521 * with the lowest vma->vm_start where start
522 * is also < vma->vm_end. If start <
523 * vma->vm_start it means an hole materialized
524 * in the user address space within the
525 * virtual range passed to MADV_DONTNEED
526 * or MADV_FREE.
527 */
528 return -ENOMEM;
529 }
530 if (!can_madv_dontneed_vma(vma))
531 return -EINVAL;
532 if (end > vma->vm_end) {
533 /*
534 * Don't fail if end > vma->vm_end. If the old
535 * vma was splitted while the mmap_sem was
536 * released the effect of the concurrent
537 * operation may not cause madvise() to
538 * have an undefined result. There may be an
539 * adjacent next vma that we'll walk
540 * next. userfaultfd_remove() will generate an
541 * UFFD_EVENT_REMOVE repetition on the
542 * end-vma->vm_end range, but the manager can
543 * handle a repetition fine.
544 */
545 end = vma->vm_end;
546 }
547 VM_WARN_ON(start >= end);
548 }
549
550 if (behavior == MADV_DONTNEED)
551 return madvise_dontneed_single_vma(vma, start, end);
552 else if (behavior == MADV_FREE)
553 return madvise_free_single_vma(vma, start, end);
554 else
555 return -EINVAL;
556 }
557
558 /*
559 * Application wants to free up the pages and associated backing store.
560 * This is effectively punching a hole into the middle of a file.
561 */
562 static long madvise_remove(struct vm_area_struct *vma,
563 struct vm_area_struct **prev,
564 unsigned long start, unsigned long end)
565 {
566 loff_t offset;
567 int error;
568 struct file *f;
569
570 *prev = NULL; /* tell sys_madvise we drop mmap_sem */
571
572 if (vma->vm_flags & VM_LOCKED)
573 return -EINVAL;
574
575 f = vma->vm_file;
576
577 if (!f || !f->f_mapping || !f->f_mapping->host) {
578 return -EINVAL;
579 }
580
581 if ((vma->vm_flags & (VM_SHARED|VM_WRITE)) != (VM_SHARED|VM_WRITE))
582 return -EACCES;
583
584 offset = (loff_t)(start - vma->vm_start)
585 + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
586
587 /*
588 * Filesystem's fallocate may need to take i_mutex. We need to
589 * explicitly grab a reference because the vma (and hence the
590 * vma's reference to the file) can go away as soon as we drop
591 * mmap_sem.
592 */
593 get_file(f);
594 if (userfaultfd_remove(vma, start, end)) {
595 /* mmap_sem was not released by userfaultfd_remove() */
596 up_read(&current->mm->mmap_sem);
597 }
598 error = vfs_fallocate(f,
599 FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
600 offset, end - start);
601 fput(f);
602 down_read(&current->mm->mmap_sem);
603 return error;
604 }
605
606 #ifdef CONFIG_MEMORY_FAILURE
607 /*
608 * Error injection support for memory error handling.
609 */
610 static int madvise_inject_error(int behavior,
611 unsigned long start, unsigned long end)
612 {
613 struct page *page;
614 struct zone *zone;
615 unsigned int order;
616
617 if (!capable(CAP_SYS_ADMIN))
618 return -EPERM;
619
620
621 for (; start < end; start += PAGE_SIZE << order) {
622 int ret;
623
624 ret = get_user_pages_fast(start, 1, 0, &page);
625 if (ret != 1)
626 return ret;
627
628 /*
629 * When soft offlining hugepages, after migrating the page
630 * we dissolve it, therefore in the second loop "page" will
631 * no longer be a compound page, and order will be 0.
632 */
633 order = compound_order(compound_head(page));
634
635 if (PageHWPoison(page)) {
636 put_page(page);
637 continue;
638 }
639
640 if (behavior == MADV_SOFT_OFFLINE) {
641 pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n",
642 page_to_pfn(page), start);
643
644 ret = soft_offline_page(page, MF_COUNT_INCREASED);
645 if (ret)
646 return ret;
647 continue;
648 }
649 pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n",
650 page_to_pfn(page), start);
651
652 ret = memory_failure(page_to_pfn(page), 0, MF_COUNT_INCREASED);
653 if (ret)
654 return ret;
655 }
656
657 /* Ensure that all poisoned pages are removed from per-cpu lists */
658 for_each_populated_zone(zone)
659 drain_all_pages(zone);
660
661 return 0;
662 }
663 #endif
664
665 static long
666 madvise_vma(struct vm_area_struct *vma, struct vm_area_struct **prev,
667 unsigned long start, unsigned long end, int behavior)
668 {
669 switch (behavior) {
670 case MADV_REMOVE:
671 return madvise_remove(vma, prev, start, end);
672 case MADV_WILLNEED:
673 return madvise_willneed(vma, prev, start, end);
674 case MADV_FREE:
675 case MADV_DONTNEED:
676 return madvise_dontneed_free(vma, prev, start, end, behavior);
677 default:
678 return madvise_behavior(vma, prev, start, end, behavior);
679 }
680 }
681
682 static bool
683 madvise_behavior_valid(int behavior)
684 {
685 switch (behavior) {
686 case MADV_DOFORK:
687 case MADV_DONTFORK:
688 case MADV_NORMAL:
689 case MADV_SEQUENTIAL:
690 case MADV_RANDOM:
691 case MADV_REMOVE:
692 case MADV_WILLNEED:
693 case MADV_DONTNEED:
694 case MADV_FREE:
695 #ifdef CONFIG_KSM
696 case MADV_MERGEABLE:
697 case MADV_UNMERGEABLE:
698 #endif
699 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
700 case MADV_HUGEPAGE:
701 case MADV_NOHUGEPAGE:
702 #endif
703 case MADV_DONTDUMP:
704 case MADV_DODUMP:
705 #ifdef CONFIG_MEMORY_FAILURE
706 case MADV_SOFT_OFFLINE:
707 case MADV_HWPOISON:
708 #endif
709 return true;
710
711 default:
712 return false;
713 }
714 }
715
716 /*
717 * The madvise(2) system call.
718 *
719 * Applications can use madvise() to advise the kernel how it should
720 * handle paging I/O in this VM area. The idea is to help the kernel
721 * use appropriate read-ahead and caching techniques. The information
722 * provided is advisory only, and can be safely disregarded by the
723 * kernel without affecting the correct operation of the application.
724 *
725 * behavior values:
726 * MADV_NORMAL - the default behavior is to read clusters. This
727 * results in some read-ahead and read-behind.
728 * MADV_RANDOM - the system should read the minimum amount of data
729 * on any access, since it is unlikely that the appli-
730 * cation will need more than what it asks for.
731 * MADV_SEQUENTIAL - pages in the given range will probably be accessed
732 * once, so they can be aggressively read ahead, and
733 * can be freed soon after they are accessed.
734 * MADV_WILLNEED - the application is notifying the system to read
735 * some pages ahead.
736 * MADV_DONTNEED - the application is finished with the given range,
737 * so the kernel can free resources associated with it.
738 * MADV_FREE - the application marks pages in the given range as lazy free,
739 * where actual purges are postponed until memory pressure happens.
740 * MADV_REMOVE - the application wants to free up the given range of
741 * pages and associated backing store.
742 * MADV_DONTFORK - omit this area from child's address space when forking:
743 * typically, to avoid COWing pages pinned by get_user_pages().
744 * MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking.
745 * MADV_HWPOISON - trigger memory error handler as if the given memory range
746 * were corrupted by unrecoverable hardware memory failure.
747 * MADV_SOFT_OFFLINE - try to soft-offline the given range of memory.
748 * MADV_MERGEABLE - the application recommends that KSM try to merge pages in
749 * this area with pages of identical content from other such areas.
750 * MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others.
751 * MADV_HUGEPAGE - the application wants to back the given range by transparent
752 * huge pages in the future. Existing pages might be coalesced and
753 * new pages might be allocated as THP.
754 * MADV_NOHUGEPAGE - mark the given range as not worth being backed by
755 * transparent huge pages so the existing pages will not be
756 * coalesced into THP and new pages will not be allocated as THP.
757 * MADV_DONTDUMP - the application wants to prevent pages in the given range
758 * from being included in its core dump.
759 * MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump.
760 *
761 * return values:
762 * zero - success
763 * -EINVAL - start + len < 0, start is not page-aligned,
764 * "behavior" is not a valid value, or application
765 * is attempting to release locked or shared pages.
766 * -ENOMEM - addresses in the specified range are not currently
767 * mapped, or are outside the AS of the process.
768 * -EIO - an I/O error occurred while paging in data.
769 * -EBADF - map exists, but area maps something that isn't a file.
770 * -EAGAIN - a kernel resource was temporarily unavailable.
771 */
772 SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior)
773 {
774 unsigned long end, tmp;
775 struct vm_area_struct *vma, *prev;
776 int unmapped_error = 0;
777 int error = -EINVAL;
778 int write;
779 size_t len;
780 struct blk_plug plug;
781
782 if (!madvise_behavior_valid(behavior))
783 return error;
784
785 if (start & ~PAGE_MASK)
786 return error;
787 len = (len_in + ~PAGE_MASK) & PAGE_MASK;
788
789 /* Check to see whether len was rounded up from small -ve to zero */
790 if (len_in && !len)
791 return error;
792
793 end = start + len;
794 if (end < start)
795 return error;
796
797 error = 0;
798 if (end == start)
799 return error;
800
801 #ifdef CONFIG_MEMORY_FAILURE
802 if (behavior == MADV_HWPOISON || behavior == MADV_SOFT_OFFLINE)
803 return madvise_inject_error(behavior, start, start + len_in);
804 #endif
805
806 write = madvise_need_mmap_write(behavior);
807 if (write) {
808 if (down_write_killable(&current->mm->mmap_sem))
809 return -EINTR;
810 } else {
811 down_read(&current->mm->mmap_sem);
812 }
813
814 /*
815 * If the interval [start,end) covers some unmapped address
816 * ranges, just ignore them, but return -ENOMEM at the end.
817 * - different from the way of handling in mlock etc.
818 */
819 vma = find_vma_prev(current->mm, start, &prev);
820 if (vma && start > vma->vm_start)
821 prev = vma;
822
823 blk_start_plug(&plug);
824 for (;;) {
825 /* Still start < end. */
826 error = -ENOMEM;
827 if (!vma)
828 goto out;
829
830 /* Here start < (end|vma->vm_end). */
831 if (start < vma->vm_start) {
832 unmapped_error = -ENOMEM;
833 start = vma->vm_start;
834 if (start >= end)
835 goto out;
836 }
837
838 /* Here vma->vm_start <= start < (end|vma->vm_end) */
839 tmp = vma->vm_end;
840 if (end < tmp)
841 tmp = end;
842
843 /* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
844 error = madvise_vma(vma, &prev, start, tmp, behavior);
845 if (error)
846 goto out;
847 start = tmp;
848 if (prev && start < prev->vm_end)
849 start = prev->vm_end;
850 error = unmapped_error;
851 if (start >= end)
852 goto out;
853 if (prev)
854 vma = prev->vm_next;
855 else /* madvise_remove dropped mmap_sem */
856 vma = find_vma(current->mm, start);
857 }
858 out:
859 blk_finish_plug(&plug);
860 if (write)
861 up_write(&current->mm->mmap_sem);
862 else
863 up_read(&current->mm->mmap_sem);
864
865 return error;
866 }