]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/memblock.c
UBUNTU: Ubuntu-4.13.0-45.50
[mirror_ubuntu-artful-kernel.git] / mm / memblock.c
1 /*
2 * Procedures for maintaining information about logical memory blocks.
3 *
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/seq_file.h>
21 #include <linux/memblock.h>
22
23 #include <asm/sections.h>
24 #include <linux/io.h>
25
26 #include "internal.h"
27
28 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
29 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
30 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
31 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
32 #endif
33
34 struct memblock memblock __initdata_memblock = {
35 .memory.regions = memblock_memory_init_regions,
36 .memory.cnt = 1, /* empty dummy entry */
37 .memory.max = INIT_MEMBLOCK_REGIONS,
38 .memory.name = "memory",
39
40 .reserved.regions = memblock_reserved_init_regions,
41 .reserved.cnt = 1, /* empty dummy entry */
42 .reserved.max = INIT_MEMBLOCK_REGIONS,
43 .reserved.name = "reserved",
44
45 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
46 .physmem.regions = memblock_physmem_init_regions,
47 .physmem.cnt = 1, /* empty dummy entry */
48 .physmem.max = INIT_PHYSMEM_REGIONS,
49 .physmem.name = "physmem",
50 #endif
51
52 .bottom_up = false,
53 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
54 };
55
56 int memblock_debug __initdata_memblock;
57 static bool system_has_some_mirror __initdata_memblock = false;
58 static int memblock_can_resize __initdata_memblock;
59 static int memblock_memory_in_slab __initdata_memblock = 0;
60 static int memblock_reserved_in_slab __initdata_memblock = 0;
61
62 ulong __init_memblock choose_memblock_flags(void)
63 {
64 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
65 }
66
67 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
68 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
69 {
70 return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
71 }
72
73 /*
74 * Address comparison utilities
75 */
76 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
77 phys_addr_t base2, phys_addr_t size2)
78 {
79 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
80 }
81
82 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
83 phys_addr_t base, phys_addr_t size)
84 {
85 unsigned long i;
86
87 for (i = 0; i < type->cnt; i++)
88 if (memblock_addrs_overlap(base, size, type->regions[i].base,
89 type->regions[i].size))
90 break;
91 return i < type->cnt;
92 }
93
94 /*
95 * __memblock_find_range_bottom_up - find free area utility in bottom-up
96 * @start: start of candidate range
97 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
98 * @size: size of free area to find
99 * @align: alignment of free area to find
100 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
101 * @flags: pick from blocks based on memory attributes
102 *
103 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
104 *
105 * RETURNS:
106 * Found address on success, 0 on failure.
107 */
108 static phys_addr_t __init_memblock
109 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
110 phys_addr_t size, phys_addr_t align, int nid,
111 ulong flags)
112 {
113 phys_addr_t this_start, this_end, cand;
114 u64 i;
115
116 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
117 this_start = clamp(this_start, start, end);
118 this_end = clamp(this_end, start, end);
119
120 cand = round_up(this_start, align);
121 if (cand < this_end && this_end - cand >= size)
122 return cand;
123 }
124
125 return 0;
126 }
127
128 /**
129 * __memblock_find_range_top_down - find free area utility, in top-down
130 * @start: start of candidate range
131 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
132 * @size: size of free area to find
133 * @align: alignment of free area to find
134 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
135 * @flags: pick from blocks based on memory attributes
136 *
137 * Utility called from memblock_find_in_range_node(), find free area top-down.
138 *
139 * RETURNS:
140 * Found address on success, 0 on failure.
141 */
142 static phys_addr_t __init_memblock
143 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
144 phys_addr_t size, phys_addr_t align, int nid,
145 ulong flags)
146 {
147 phys_addr_t this_start, this_end, cand;
148 u64 i;
149
150 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
151 NULL) {
152 this_start = clamp(this_start, start, end);
153 this_end = clamp(this_end, start, end);
154
155 if (this_end < size)
156 continue;
157
158 cand = round_down(this_end - size, align);
159 if (cand >= this_start)
160 return cand;
161 }
162
163 return 0;
164 }
165
166 /**
167 * memblock_find_in_range_node - find free area in given range and node
168 * @size: size of free area to find
169 * @align: alignment of free area to find
170 * @start: start of candidate range
171 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
172 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
173 * @flags: pick from blocks based on memory attributes
174 *
175 * Find @size free area aligned to @align in the specified range and node.
176 *
177 * When allocation direction is bottom-up, the @start should be greater
178 * than the end of the kernel image. Otherwise, it will be trimmed. The
179 * reason is that we want the bottom-up allocation just near the kernel
180 * image so it is highly likely that the allocated memory and the kernel
181 * will reside in the same node.
182 *
183 * If bottom-up allocation failed, will try to allocate memory top-down.
184 *
185 * RETURNS:
186 * Found address on success, 0 on failure.
187 */
188 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
189 phys_addr_t align, phys_addr_t start,
190 phys_addr_t end, int nid, ulong flags)
191 {
192 phys_addr_t kernel_end, ret;
193
194 /* pump up @end */
195 if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
196 end = memblock.current_limit;
197
198 /* avoid allocating the first page */
199 start = max_t(phys_addr_t, start, PAGE_SIZE);
200 end = max(start, end);
201 kernel_end = __pa_symbol(_end);
202
203 /*
204 * try bottom-up allocation only when bottom-up mode
205 * is set and @end is above the kernel image.
206 */
207 if (memblock_bottom_up() && end > kernel_end) {
208 phys_addr_t bottom_up_start;
209
210 /* make sure we will allocate above the kernel */
211 bottom_up_start = max(start, kernel_end);
212
213 /* ok, try bottom-up allocation first */
214 ret = __memblock_find_range_bottom_up(bottom_up_start, end,
215 size, align, nid, flags);
216 if (ret)
217 return ret;
218
219 /*
220 * we always limit bottom-up allocation above the kernel,
221 * but top-down allocation doesn't have the limit, so
222 * retrying top-down allocation may succeed when bottom-up
223 * allocation failed.
224 *
225 * bottom-up allocation is expected to be fail very rarely,
226 * so we use WARN_ONCE() here to see the stack trace if
227 * fail happens.
228 */
229 WARN_ONCE(1, "memblock: bottom-up allocation failed, memory hotunplug may be affected\n");
230 }
231
232 return __memblock_find_range_top_down(start, end, size, align, nid,
233 flags);
234 }
235
236 /**
237 * memblock_find_in_range - find free area in given range
238 * @start: start of candidate range
239 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
240 * @size: size of free area to find
241 * @align: alignment of free area to find
242 *
243 * Find @size free area aligned to @align in the specified range.
244 *
245 * RETURNS:
246 * Found address on success, 0 on failure.
247 */
248 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
249 phys_addr_t end, phys_addr_t size,
250 phys_addr_t align)
251 {
252 phys_addr_t ret;
253 ulong flags = choose_memblock_flags();
254
255 again:
256 ret = memblock_find_in_range_node(size, align, start, end,
257 NUMA_NO_NODE, flags);
258
259 if (!ret && (flags & MEMBLOCK_MIRROR)) {
260 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
261 &size);
262 flags &= ~MEMBLOCK_MIRROR;
263 goto again;
264 }
265
266 return ret;
267 }
268
269 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
270 {
271 type->total_size -= type->regions[r].size;
272 memmove(&type->regions[r], &type->regions[r + 1],
273 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
274 type->cnt--;
275
276 /* Special case for empty arrays */
277 if (type->cnt == 0) {
278 WARN_ON(type->total_size != 0);
279 type->cnt = 1;
280 type->regions[0].base = 0;
281 type->regions[0].size = 0;
282 type->regions[0].flags = 0;
283 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
284 }
285 }
286
287 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
288 /**
289 * Discard memory and reserved arrays if they were allocated
290 */
291 void __init memblock_discard(void)
292 {
293 phys_addr_t addr, size;
294
295 if (memblock.reserved.regions != memblock_reserved_init_regions) {
296 addr = __pa(memblock.reserved.regions);
297 size = PAGE_ALIGN(sizeof(struct memblock_region) *
298 memblock.reserved.max);
299 __memblock_free_late(addr, size);
300 }
301
302 if (memblock.memory.regions != memblock_memory_init_regions) {
303 addr = __pa(memblock.memory.regions);
304 size = PAGE_ALIGN(sizeof(struct memblock_region) *
305 memblock.memory.max);
306 __memblock_free_late(addr, size);
307 }
308 }
309 #endif
310
311 /**
312 * memblock_double_array - double the size of the memblock regions array
313 * @type: memblock type of the regions array being doubled
314 * @new_area_start: starting address of memory range to avoid overlap with
315 * @new_area_size: size of memory range to avoid overlap with
316 *
317 * Double the size of the @type regions array. If memblock is being used to
318 * allocate memory for a new reserved regions array and there is a previously
319 * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
320 * waiting to be reserved, ensure the memory used by the new array does
321 * not overlap.
322 *
323 * RETURNS:
324 * 0 on success, -1 on failure.
325 */
326 static int __init_memblock memblock_double_array(struct memblock_type *type,
327 phys_addr_t new_area_start,
328 phys_addr_t new_area_size)
329 {
330 struct memblock_region *new_array, *old_array;
331 phys_addr_t old_alloc_size, new_alloc_size;
332 phys_addr_t old_size, new_size, addr;
333 int use_slab = slab_is_available();
334 int *in_slab;
335
336 /* We don't allow resizing until we know about the reserved regions
337 * of memory that aren't suitable for allocation
338 */
339 if (!memblock_can_resize)
340 return -1;
341
342 /* Calculate new doubled size */
343 old_size = type->max * sizeof(struct memblock_region);
344 new_size = old_size << 1;
345 /*
346 * We need to allocated new one align to PAGE_SIZE,
347 * so we can free them completely later.
348 */
349 old_alloc_size = PAGE_ALIGN(old_size);
350 new_alloc_size = PAGE_ALIGN(new_size);
351
352 /* Retrieve the slab flag */
353 if (type == &memblock.memory)
354 in_slab = &memblock_memory_in_slab;
355 else
356 in_slab = &memblock_reserved_in_slab;
357
358 /* Try to find some space for it.
359 *
360 * WARNING: We assume that either slab_is_available() and we use it or
361 * we use MEMBLOCK for allocations. That means that this is unsafe to
362 * use when bootmem is currently active (unless bootmem itself is
363 * implemented on top of MEMBLOCK which isn't the case yet)
364 *
365 * This should however not be an issue for now, as we currently only
366 * call into MEMBLOCK while it's still active, or much later when slab
367 * is active for memory hotplug operations
368 */
369 if (use_slab) {
370 new_array = kmalloc(new_size, GFP_KERNEL);
371 addr = new_array ? __pa(new_array) : 0;
372 } else {
373 /* only exclude range when trying to double reserved.regions */
374 if (type != &memblock.reserved)
375 new_area_start = new_area_size = 0;
376
377 addr = memblock_find_in_range(new_area_start + new_area_size,
378 memblock.current_limit,
379 new_alloc_size, PAGE_SIZE);
380 if (!addr && new_area_size)
381 addr = memblock_find_in_range(0,
382 min(new_area_start, memblock.current_limit),
383 new_alloc_size, PAGE_SIZE);
384
385 new_array = addr ? __va(addr) : NULL;
386 }
387 if (!addr) {
388 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
389 type->name, type->max, type->max * 2);
390 return -1;
391 }
392
393 memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
394 type->name, type->max * 2, (u64)addr,
395 (u64)addr + new_size - 1);
396
397 /*
398 * Found space, we now need to move the array over before we add the
399 * reserved region since it may be our reserved array itself that is
400 * full.
401 */
402 memcpy(new_array, type->regions, old_size);
403 memset(new_array + type->max, 0, old_size);
404 old_array = type->regions;
405 type->regions = new_array;
406 type->max <<= 1;
407
408 /* Free old array. We needn't free it if the array is the static one */
409 if (*in_slab)
410 kfree(old_array);
411 else if (old_array != memblock_memory_init_regions &&
412 old_array != memblock_reserved_init_regions)
413 memblock_free(__pa(old_array), old_alloc_size);
414
415 /*
416 * Reserve the new array if that comes from the memblock. Otherwise, we
417 * needn't do it
418 */
419 if (!use_slab)
420 BUG_ON(memblock_reserve(addr, new_alloc_size));
421
422 /* Update slab flag */
423 *in_slab = use_slab;
424
425 return 0;
426 }
427
428 /**
429 * memblock_merge_regions - merge neighboring compatible regions
430 * @type: memblock type to scan
431 *
432 * Scan @type and merge neighboring compatible regions.
433 */
434 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
435 {
436 int i = 0;
437
438 /* cnt never goes below 1 */
439 while (i < type->cnt - 1) {
440 struct memblock_region *this = &type->regions[i];
441 struct memblock_region *next = &type->regions[i + 1];
442
443 if (this->base + this->size != next->base ||
444 memblock_get_region_node(this) !=
445 memblock_get_region_node(next) ||
446 this->flags != next->flags) {
447 BUG_ON(this->base + this->size > next->base);
448 i++;
449 continue;
450 }
451
452 this->size += next->size;
453 /* move forward from next + 1, index of which is i + 2 */
454 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
455 type->cnt--;
456 }
457 }
458
459 /**
460 * memblock_insert_region - insert new memblock region
461 * @type: memblock type to insert into
462 * @idx: index for the insertion point
463 * @base: base address of the new region
464 * @size: size of the new region
465 * @nid: node id of the new region
466 * @flags: flags of the new region
467 *
468 * Insert new memblock region [@base,@base+@size) into @type at @idx.
469 * @type must already have extra room to accommodate the new region.
470 */
471 static void __init_memblock memblock_insert_region(struct memblock_type *type,
472 int idx, phys_addr_t base,
473 phys_addr_t size,
474 int nid, unsigned long flags)
475 {
476 struct memblock_region *rgn = &type->regions[idx];
477
478 BUG_ON(type->cnt >= type->max);
479 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
480 rgn->base = base;
481 rgn->size = size;
482 rgn->flags = flags;
483 memblock_set_region_node(rgn, nid);
484 type->cnt++;
485 type->total_size += size;
486 }
487
488 /**
489 * memblock_add_range - add new memblock region
490 * @type: memblock type to add new region into
491 * @base: base address of the new region
492 * @size: size of the new region
493 * @nid: nid of the new region
494 * @flags: flags of the new region
495 *
496 * Add new memblock region [@base,@base+@size) into @type. The new region
497 * is allowed to overlap with existing ones - overlaps don't affect already
498 * existing regions. @type is guaranteed to be minimal (all neighbouring
499 * compatible regions are merged) after the addition.
500 *
501 * RETURNS:
502 * 0 on success, -errno on failure.
503 */
504 int __init_memblock memblock_add_range(struct memblock_type *type,
505 phys_addr_t base, phys_addr_t size,
506 int nid, unsigned long flags)
507 {
508 bool insert = false;
509 phys_addr_t obase = base;
510 phys_addr_t end = base + memblock_cap_size(base, &size);
511 int idx, nr_new;
512 struct memblock_region *rgn;
513
514 if (!size)
515 return 0;
516
517 /* special case for empty array */
518 if (type->regions[0].size == 0) {
519 WARN_ON(type->cnt != 1 || type->total_size);
520 type->regions[0].base = base;
521 type->regions[0].size = size;
522 type->regions[0].flags = flags;
523 memblock_set_region_node(&type->regions[0], nid);
524 type->total_size = size;
525 return 0;
526 }
527 repeat:
528 /*
529 * The following is executed twice. Once with %false @insert and
530 * then with %true. The first counts the number of regions needed
531 * to accommodate the new area. The second actually inserts them.
532 */
533 base = obase;
534 nr_new = 0;
535
536 for_each_memblock_type(type, rgn) {
537 phys_addr_t rbase = rgn->base;
538 phys_addr_t rend = rbase + rgn->size;
539
540 if (rbase >= end)
541 break;
542 if (rend <= base)
543 continue;
544 /*
545 * @rgn overlaps. If it separates the lower part of new
546 * area, insert that portion.
547 */
548 if (rbase > base) {
549 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
550 WARN_ON(nid != memblock_get_region_node(rgn));
551 #endif
552 WARN_ON(flags != rgn->flags);
553 nr_new++;
554 if (insert)
555 memblock_insert_region(type, idx++, base,
556 rbase - base, nid,
557 flags);
558 }
559 /* area below @rend is dealt with, forget about it */
560 base = min(rend, end);
561 }
562
563 /* insert the remaining portion */
564 if (base < end) {
565 nr_new++;
566 if (insert)
567 memblock_insert_region(type, idx, base, end - base,
568 nid, flags);
569 }
570
571 if (!nr_new)
572 return 0;
573
574 /*
575 * If this was the first round, resize array and repeat for actual
576 * insertions; otherwise, merge and return.
577 */
578 if (!insert) {
579 while (type->cnt + nr_new > type->max)
580 if (memblock_double_array(type, obase, size) < 0)
581 return -ENOMEM;
582 insert = true;
583 goto repeat;
584 } else {
585 memblock_merge_regions(type);
586 return 0;
587 }
588 }
589
590 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
591 int nid)
592 {
593 return memblock_add_range(&memblock.memory, base, size, nid, 0);
594 }
595
596 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
597 {
598 phys_addr_t end = base + size - 1;
599
600 memblock_dbg("memblock_add: [%pa-%pa] %pF\n",
601 &base, &end, (void *)_RET_IP_);
602
603 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
604 }
605
606 /**
607 * memblock_isolate_range - isolate given range into disjoint memblocks
608 * @type: memblock type to isolate range for
609 * @base: base of range to isolate
610 * @size: size of range to isolate
611 * @start_rgn: out parameter for the start of isolated region
612 * @end_rgn: out parameter for the end of isolated region
613 *
614 * Walk @type and ensure that regions don't cross the boundaries defined by
615 * [@base,@base+@size). Crossing regions are split at the boundaries,
616 * which may create at most two more regions. The index of the first
617 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
618 *
619 * RETURNS:
620 * 0 on success, -errno on failure.
621 */
622 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
623 phys_addr_t base, phys_addr_t size,
624 int *start_rgn, int *end_rgn)
625 {
626 phys_addr_t end = base + memblock_cap_size(base, &size);
627 int idx;
628 struct memblock_region *rgn;
629
630 *start_rgn = *end_rgn = 0;
631
632 if (!size)
633 return 0;
634
635 /* we'll create at most two more regions */
636 while (type->cnt + 2 > type->max)
637 if (memblock_double_array(type, base, size) < 0)
638 return -ENOMEM;
639
640 for_each_memblock_type(type, rgn) {
641 phys_addr_t rbase = rgn->base;
642 phys_addr_t rend = rbase + rgn->size;
643
644 if (rbase >= end)
645 break;
646 if (rend <= base)
647 continue;
648
649 if (rbase < base) {
650 /*
651 * @rgn intersects from below. Split and continue
652 * to process the next region - the new top half.
653 */
654 rgn->base = base;
655 rgn->size -= base - rbase;
656 type->total_size -= base - rbase;
657 memblock_insert_region(type, idx, rbase, base - rbase,
658 memblock_get_region_node(rgn),
659 rgn->flags);
660 } else if (rend > end) {
661 /*
662 * @rgn intersects from above. Split and redo the
663 * current region - the new bottom half.
664 */
665 rgn->base = end;
666 rgn->size -= end - rbase;
667 type->total_size -= end - rbase;
668 memblock_insert_region(type, idx--, rbase, end - rbase,
669 memblock_get_region_node(rgn),
670 rgn->flags);
671 } else {
672 /* @rgn is fully contained, record it */
673 if (!*end_rgn)
674 *start_rgn = idx;
675 *end_rgn = idx + 1;
676 }
677 }
678
679 return 0;
680 }
681
682 static int __init_memblock memblock_remove_range(struct memblock_type *type,
683 phys_addr_t base, phys_addr_t size)
684 {
685 int start_rgn, end_rgn;
686 int i, ret;
687
688 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
689 if (ret)
690 return ret;
691
692 for (i = end_rgn - 1; i >= start_rgn; i--)
693 memblock_remove_region(type, i);
694 return 0;
695 }
696
697 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
698 {
699 return memblock_remove_range(&memblock.memory, base, size);
700 }
701
702
703 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
704 {
705 phys_addr_t end = base + size - 1;
706
707 memblock_dbg(" memblock_free: [%pa-%pa] %pF\n",
708 &base, &end, (void *)_RET_IP_);
709
710 kmemleak_free_part_phys(base, size);
711 return memblock_remove_range(&memblock.reserved, base, size);
712 }
713
714 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
715 {
716 phys_addr_t end = base + size - 1;
717
718 memblock_dbg("memblock_reserve: [%pa-%pa] %pF\n",
719 &base, &end, (void *)_RET_IP_);
720
721 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
722 }
723
724 /**
725 *
726 * This function isolates region [@base, @base + @size), and sets/clears flag
727 *
728 * Return 0 on success, -errno on failure.
729 */
730 static int __init_memblock memblock_setclr_flag(phys_addr_t base,
731 phys_addr_t size, int set, int flag)
732 {
733 struct memblock_type *type = &memblock.memory;
734 int i, ret, start_rgn, end_rgn;
735
736 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
737 if (ret)
738 return ret;
739
740 for (i = start_rgn; i < end_rgn; i++)
741 if (set)
742 memblock_set_region_flags(&type->regions[i], flag);
743 else
744 memblock_clear_region_flags(&type->regions[i], flag);
745
746 memblock_merge_regions(type);
747 return 0;
748 }
749
750 /**
751 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
752 * @base: the base phys addr of the region
753 * @size: the size of the region
754 *
755 * Return 0 on success, -errno on failure.
756 */
757 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
758 {
759 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
760 }
761
762 /**
763 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
764 * @base: the base phys addr of the region
765 * @size: the size of the region
766 *
767 * Return 0 on success, -errno on failure.
768 */
769 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
770 {
771 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
772 }
773
774 /**
775 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
776 * @base: the base phys addr of the region
777 * @size: the size of the region
778 *
779 * Return 0 on success, -errno on failure.
780 */
781 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
782 {
783 system_has_some_mirror = true;
784
785 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
786 }
787
788 /**
789 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
790 * @base: the base phys addr of the region
791 * @size: the size of the region
792 *
793 * Return 0 on success, -errno on failure.
794 */
795 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
796 {
797 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
798 }
799
800 /**
801 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
802 * @base: the base phys addr of the region
803 * @size: the size of the region
804 *
805 * Return 0 on success, -errno on failure.
806 */
807 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
808 {
809 return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
810 }
811
812 /**
813 * __next_reserved_mem_region - next function for for_each_reserved_region()
814 * @idx: pointer to u64 loop variable
815 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
816 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
817 *
818 * Iterate over all reserved memory regions.
819 */
820 void __init_memblock __next_reserved_mem_region(u64 *idx,
821 phys_addr_t *out_start,
822 phys_addr_t *out_end)
823 {
824 struct memblock_type *type = &memblock.reserved;
825
826 if (*idx < type->cnt) {
827 struct memblock_region *r = &type->regions[*idx];
828 phys_addr_t base = r->base;
829 phys_addr_t size = r->size;
830
831 if (out_start)
832 *out_start = base;
833 if (out_end)
834 *out_end = base + size - 1;
835
836 *idx += 1;
837 return;
838 }
839
840 /* signal end of iteration */
841 *idx = ULLONG_MAX;
842 }
843
844 /**
845 * __next__mem_range - next function for for_each_free_mem_range() etc.
846 * @idx: pointer to u64 loop variable
847 * @nid: node selector, %NUMA_NO_NODE for all nodes
848 * @flags: pick from blocks based on memory attributes
849 * @type_a: pointer to memblock_type from where the range is taken
850 * @type_b: pointer to memblock_type which excludes memory from being taken
851 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
852 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
853 * @out_nid: ptr to int for nid of the range, can be %NULL
854 *
855 * Find the first area from *@idx which matches @nid, fill the out
856 * parameters, and update *@idx for the next iteration. The lower 32bit of
857 * *@idx contains index into type_a and the upper 32bit indexes the
858 * areas before each region in type_b. For example, if type_b regions
859 * look like the following,
860 *
861 * 0:[0-16), 1:[32-48), 2:[128-130)
862 *
863 * The upper 32bit indexes the following regions.
864 *
865 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
866 *
867 * As both region arrays are sorted, the function advances the two indices
868 * in lockstep and returns each intersection.
869 */
870 void __init_memblock __next_mem_range(u64 *idx, int nid, ulong flags,
871 struct memblock_type *type_a,
872 struct memblock_type *type_b,
873 phys_addr_t *out_start,
874 phys_addr_t *out_end, int *out_nid)
875 {
876 int idx_a = *idx & 0xffffffff;
877 int idx_b = *idx >> 32;
878
879 if (WARN_ONCE(nid == MAX_NUMNODES,
880 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
881 nid = NUMA_NO_NODE;
882
883 for (; idx_a < type_a->cnt; idx_a++) {
884 struct memblock_region *m = &type_a->regions[idx_a];
885
886 phys_addr_t m_start = m->base;
887 phys_addr_t m_end = m->base + m->size;
888 int m_nid = memblock_get_region_node(m);
889
890 /* only memory regions are associated with nodes, check it */
891 if (nid != NUMA_NO_NODE && nid != m_nid)
892 continue;
893
894 /* skip hotpluggable memory regions if needed */
895 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
896 continue;
897
898 /* if we want mirror memory skip non-mirror memory regions */
899 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
900 continue;
901
902 /* skip nomap memory unless we were asked for it explicitly */
903 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
904 continue;
905
906 if (!type_b) {
907 if (out_start)
908 *out_start = m_start;
909 if (out_end)
910 *out_end = m_end;
911 if (out_nid)
912 *out_nid = m_nid;
913 idx_a++;
914 *idx = (u32)idx_a | (u64)idx_b << 32;
915 return;
916 }
917
918 /* scan areas before each reservation */
919 for (; idx_b < type_b->cnt + 1; idx_b++) {
920 struct memblock_region *r;
921 phys_addr_t r_start;
922 phys_addr_t r_end;
923
924 r = &type_b->regions[idx_b];
925 r_start = idx_b ? r[-1].base + r[-1].size : 0;
926 r_end = idx_b < type_b->cnt ?
927 r->base : ULLONG_MAX;
928
929 /*
930 * if idx_b advanced past idx_a,
931 * break out to advance idx_a
932 */
933 if (r_start >= m_end)
934 break;
935 /* if the two regions intersect, we're done */
936 if (m_start < r_end) {
937 if (out_start)
938 *out_start =
939 max(m_start, r_start);
940 if (out_end)
941 *out_end = min(m_end, r_end);
942 if (out_nid)
943 *out_nid = m_nid;
944 /*
945 * The region which ends first is
946 * advanced for the next iteration.
947 */
948 if (m_end <= r_end)
949 idx_a++;
950 else
951 idx_b++;
952 *idx = (u32)idx_a | (u64)idx_b << 32;
953 return;
954 }
955 }
956 }
957
958 /* signal end of iteration */
959 *idx = ULLONG_MAX;
960 }
961
962 /**
963 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
964 *
965 * Finds the next range from type_a which is not marked as unsuitable
966 * in type_b.
967 *
968 * @idx: pointer to u64 loop variable
969 * @nid: node selector, %NUMA_NO_NODE for all nodes
970 * @flags: pick from blocks based on memory attributes
971 * @type_a: pointer to memblock_type from where the range is taken
972 * @type_b: pointer to memblock_type which excludes memory from being taken
973 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
974 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
975 * @out_nid: ptr to int for nid of the range, can be %NULL
976 *
977 * Reverse of __next_mem_range().
978 */
979 void __init_memblock __next_mem_range_rev(u64 *idx, int nid, ulong flags,
980 struct memblock_type *type_a,
981 struct memblock_type *type_b,
982 phys_addr_t *out_start,
983 phys_addr_t *out_end, int *out_nid)
984 {
985 int idx_a = *idx & 0xffffffff;
986 int idx_b = *idx >> 32;
987
988 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
989 nid = NUMA_NO_NODE;
990
991 if (*idx == (u64)ULLONG_MAX) {
992 idx_a = type_a->cnt - 1;
993 if (type_b != NULL)
994 idx_b = type_b->cnt;
995 else
996 idx_b = 0;
997 }
998
999 for (; idx_a >= 0; idx_a--) {
1000 struct memblock_region *m = &type_a->regions[idx_a];
1001
1002 phys_addr_t m_start = m->base;
1003 phys_addr_t m_end = m->base + m->size;
1004 int m_nid = memblock_get_region_node(m);
1005
1006 /* only memory regions are associated with nodes, check it */
1007 if (nid != NUMA_NO_NODE && nid != m_nid)
1008 continue;
1009
1010 /* skip hotpluggable memory regions if needed */
1011 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
1012 continue;
1013
1014 /* if we want mirror memory skip non-mirror memory regions */
1015 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1016 continue;
1017
1018 /* skip nomap memory unless we were asked for it explicitly */
1019 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1020 continue;
1021
1022 if (!type_b) {
1023 if (out_start)
1024 *out_start = m_start;
1025 if (out_end)
1026 *out_end = m_end;
1027 if (out_nid)
1028 *out_nid = m_nid;
1029 idx_a--;
1030 *idx = (u32)idx_a | (u64)idx_b << 32;
1031 return;
1032 }
1033
1034 /* scan areas before each reservation */
1035 for (; idx_b >= 0; idx_b--) {
1036 struct memblock_region *r;
1037 phys_addr_t r_start;
1038 phys_addr_t r_end;
1039
1040 r = &type_b->regions[idx_b];
1041 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1042 r_end = idx_b < type_b->cnt ?
1043 r->base : ULLONG_MAX;
1044 /*
1045 * if idx_b advanced past idx_a,
1046 * break out to advance idx_a
1047 */
1048
1049 if (r_end <= m_start)
1050 break;
1051 /* if the two regions intersect, we're done */
1052 if (m_end > r_start) {
1053 if (out_start)
1054 *out_start = max(m_start, r_start);
1055 if (out_end)
1056 *out_end = min(m_end, r_end);
1057 if (out_nid)
1058 *out_nid = m_nid;
1059 if (m_start >= r_start)
1060 idx_a--;
1061 else
1062 idx_b--;
1063 *idx = (u32)idx_a | (u64)idx_b << 32;
1064 return;
1065 }
1066 }
1067 }
1068 /* signal end of iteration */
1069 *idx = ULLONG_MAX;
1070 }
1071
1072 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1073 /*
1074 * Common iterator interface used to define for_each_mem_range().
1075 */
1076 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1077 unsigned long *out_start_pfn,
1078 unsigned long *out_end_pfn, int *out_nid)
1079 {
1080 struct memblock_type *type = &memblock.memory;
1081 struct memblock_region *r;
1082
1083 while (++*idx < type->cnt) {
1084 r = &type->regions[*idx];
1085
1086 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1087 continue;
1088 if (nid == MAX_NUMNODES || nid == r->nid)
1089 break;
1090 }
1091 if (*idx >= type->cnt) {
1092 *idx = -1;
1093 return;
1094 }
1095
1096 if (out_start_pfn)
1097 *out_start_pfn = PFN_UP(r->base);
1098 if (out_end_pfn)
1099 *out_end_pfn = PFN_DOWN(r->base + r->size);
1100 if (out_nid)
1101 *out_nid = r->nid;
1102 }
1103
1104 unsigned long __init_memblock memblock_next_valid_pfn(unsigned long pfn,
1105 unsigned long max_pfn)
1106 {
1107 struct memblock_type *type = &memblock.memory;
1108 unsigned int right = type->cnt;
1109 unsigned int mid, left = 0;
1110 phys_addr_t addr = PFN_PHYS(pfn + 1);
1111
1112 do {
1113 mid = (right + left) / 2;
1114
1115 if (addr < type->regions[mid].base)
1116 right = mid;
1117 else if (addr >= (type->regions[mid].base +
1118 type->regions[mid].size))
1119 left = mid + 1;
1120 else {
1121 /* addr is within the region, so pfn + 1 is valid */
1122 return min(pfn + 1, max_pfn);
1123 }
1124 } while (left < right);
1125
1126 if (right == type->cnt)
1127 return max_pfn;
1128 else
1129 return min(PHYS_PFN(type->regions[right].base), max_pfn);
1130 }
1131
1132 /**
1133 * memblock_set_node - set node ID on memblock regions
1134 * @base: base of area to set node ID for
1135 * @size: size of area to set node ID for
1136 * @type: memblock type to set node ID for
1137 * @nid: node ID to set
1138 *
1139 * Set the nid of memblock @type regions in [@base,@base+@size) to @nid.
1140 * Regions which cross the area boundaries are split as necessary.
1141 *
1142 * RETURNS:
1143 * 0 on success, -errno on failure.
1144 */
1145 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1146 struct memblock_type *type, int nid)
1147 {
1148 int start_rgn, end_rgn;
1149 int i, ret;
1150
1151 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1152 if (ret)
1153 return ret;
1154
1155 for (i = start_rgn; i < end_rgn; i++)
1156 memblock_set_region_node(&type->regions[i], nid);
1157
1158 memblock_merge_regions(type);
1159 return 0;
1160 }
1161 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1162
1163 static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1164 phys_addr_t align, phys_addr_t start,
1165 phys_addr_t end, int nid, ulong flags)
1166 {
1167 phys_addr_t found;
1168
1169 if (!align)
1170 align = SMP_CACHE_BYTES;
1171
1172 found = memblock_find_in_range_node(size, align, start, end, nid,
1173 flags);
1174 if (found && !memblock_reserve(found, size)) {
1175 /*
1176 * The min_count is set to 0 so that memblock allocations are
1177 * never reported as leaks.
1178 */
1179 kmemleak_alloc_phys(found, size, 0, 0);
1180 return found;
1181 }
1182 return 0;
1183 }
1184
1185 phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align,
1186 phys_addr_t start, phys_addr_t end,
1187 ulong flags)
1188 {
1189 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1190 flags);
1191 }
1192
1193 static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
1194 phys_addr_t align, phys_addr_t max_addr,
1195 int nid, ulong flags)
1196 {
1197 return memblock_alloc_range_nid(size, align, 0, max_addr, nid, flags);
1198 }
1199
1200 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
1201 {
1202 ulong flags = choose_memblock_flags();
1203 phys_addr_t ret;
1204
1205 again:
1206 ret = memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE,
1207 nid, flags);
1208
1209 if (!ret && (flags & MEMBLOCK_MIRROR)) {
1210 flags &= ~MEMBLOCK_MIRROR;
1211 goto again;
1212 }
1213 return ret;
1214 }
1215
1216 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1217 {
1218 return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE,
1219 MEMBLOCK_NONE);
1220 }
1221
1222 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1223 {
1224 phys_addr_t alloc;
1225
1226 alloc = __memblock_alloc_base(size, align, max_addr);
1227
1228 if (alloc == 0)
1229 panic("ERROR: Failed to allocate %pa bytes below %pa.\n",
1230 &size, &max_addr);
1231
1232 return alloc;
1233 }
1234
1235 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
1236 {
1237 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1238 }
1239
1240 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1241 {
1242 phys_addr_t res = memblock_alloc_nid(size, align, nid);
1243
1244 if (res)
1245 return res;
1246 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1247 }
1248
1249 /**
1250 * memblock_virt_alloc_internal - allocate boot memory block
1251 * @size: size of memory block to be allocated in bytes
1252 * @align: alignment of the region and block's size
1253 * @min_addr: the lower bound of the memory region to allocate (phys address)
1254 * @max_addr: the upper bound of the memory region to allocate (phys address)
1255 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1256 *
1257 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1258 * will fall back to memory below @min_addr. Also, allocation may fall back
1259 * to any node in the system if the specified node can not
1260 * hold the requested memory.
1261 *
1262 * The allocation is performed from memory region limited by
1263 * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
1264 *
1265 * The memory block is aligned on SMP_CACHE_BYTES if @align == 0.
1266 *
1267 * The phys address of allocated boot memory block is converted to virtual and
1268 * allocated memory is reset to 0.
1269 *
1270 * In addition, function sets the min_count to 0 using kmemleak_alloc for
1271 * allocated boot memory block, so that it is never reported as leaks.
1272 *
1273 * RETURNS:
1274 * Virtual address of allocated memory block on success, NULL on failure.
1275 */
1276 static void * __init memblock_virt_alloc_internal(
1277 phys_addr_t size, phys_addr_t align,
1278 phys_addr_t min_addr, phys_addr_t max_addr,
1279 int nid)
1280 {
1281 phys_addr_t alloc;
1282 void *ptr;
1283 ulong flags = choose_memblock_flags();
1284
1285 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1286 nid = NUMA_NO_NODE;
1287
1288 /*
1289 * Detect any accidental use of these APIs after slab is ready, as at
1290 * this moment memblock may be deinitialized already and its
1291 * internal data may be destroyed (after execution of free_all_bootmem)
1292 */
1293 if (WARN_ON_ONCE(slab_is_available()))
1294 return kzalloc_node(size, GFP_NOWAIT, nid);
1295
1296 if (!align)
1297 align = SMP_CACHE_BYTES;
1298
1299 if (max_addr > memblock.current_limit)
1300 max_addr = memblock.current_limit;
1301 again:
1302 alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
1303 nid, flags);
1304 if (alloc && !memblock_reserve(alloc, size))
1305 goto done;
1306
1307 if (nid != NUMA_NO_NODE) {
1308 alloc = memblock_find_in_range_node(size, align, min_addr,
1309 max_addr, NUMA_NO_NODE,
1310 flags);
1311 if (alloc && !memblock_reserve(alloc, size))
1312 goto done;
1313 }
1314
1315 if (min_addr) {
1316 min_addr = 0;
1317 goto again;
1318 }
1319
1320 if (flags & MEMBLOCK_MIRROR) {
1321 flags &= ~MEMBLOCK_MIRROR;
1322 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1323 &size);
1324 goto again;
1325 }
1326
1327 return NULL;
1328 done:
1329 ptr = phys_to_virt(alloc);
1330 memset(ptr, 0, size);
1331
1332 /*
1333 * The min_count is set to 0 so that bootmem allocated blocks
1334 * are never reported as leaks. This is because many of these blocks
1335 * are only referred via the physical address which is not
1336 * looked up by kmemleak.
1337 */
1338 kmemleak_alloc(ptr, size, 0, 0);
1339
1340 return ptr;
1341 }
1342
1343 /**
1344 * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
1345 * @size: size of memory block to be allocated in bytes
1346 * @align: alignment of the region and block's size
1347 * @min_addr: the lower bound of the memory region from where the allocation
1348 * is preferred (phys address)
1349 * @max_addr: the upper bound of the memory region from where the allocation
1350 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1351 * allocate only from memory limited by memblock.current_limit value
1352 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1353 *
1354 * Public version of _memblock_virt_alloc_try_nid_nopanic() which provides
1355 * additional debug information (including caller info), if enabled.
1356 *
1357 * RETURNS:
1358 * Virtual address of allocated memory block on success, NULL on failure.
1359 */
1360 void * __init memblock_virt_alloc_try_nid_nopanic(
1361 phys_addr_t size, phys_addr_t align,
1362 phys_addr_t min_addr, phys_addr_t max_addr,
1363 int nid)
1364 {
1365 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1366 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1367 (u64)max_addr, (void *)_RET_IP_);
1368 return memblock_virt_alloc_internal(size, align, min_addr,
1369 max_addr, nid);
1370 }
1371
1372 /**
1373 * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
1374 * @size: size of memory block to be allocated in bytes
1375 * @align: alignment of the region and block's size
1376 * @min_addr: the lower bound of the memory region from where the allocation
1377 * is preferred (phys address)
1378 * @max_addr: the upper bound of the memory region from where the allocation
1379 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1380 * allocate only from memory limited by memblock.current_limit value
1381 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1382 *
1383 * Public panicking version of _memblock_virt_alloc_try_nid_nopanic()
1384 * which provides debug information (including caller info), if enabled,
1385 * and panics if the request can not be satisfied.
1386 *
1387 * RETURNS:
1388 * Virtual address of allocated memory block on success, NULL on failure.
1389 */
1390 void * __init memblock_virt_alloc_try_nid(
1391 phys_addr_t size, phys_addr_t align,
1392 phys_addr_t min_addr, phys_addr_t max_addr,
1393 int nid)
1394 {
1395 void *ptr;
1396
1397 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1398 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1399 (u64)max_addr, (void *)_RET_IP_);
1400 ptr = memblock_virt_alloc_internal(size, align,
1401 min_addr, max_addr, nid);
1402 if (ptr)
1403 return ptr;
1404
1405 panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n",
1406 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1407 (u64)max_addr);
1408 return NULL;
1409 }
1410
1411 /**
1412 * __memblock_free_early - free boot memory block
1413 * @base: phys starting address of the boot memory block
1414 * @size: size of the boot memory block in bytes
1415 *
1416 * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
1417 * The freeing memory will not be released to the buddy allocator.
1418 */
1419 void __init __memblock_free_early(phys_addr_t base, phys_addr_t size)
1420 {
1421 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1422 __func__, (u64)base, (u64)base + size - 1,
1423 (void *)_RET_IP_);
1424 kmemleak_free_part_phys(base, size);
1425 memblock_remove_range(&memblock.reserved, base, size);
1426 }
1427
1428 /*
1429 * __memblock_free_late - free bootmem block pages directly to buddy allocator
1430 * @addr: phys starting address of the boot memory block
1431 * @size: size of the boot memory block in bytes
1432 *
1433 * This is only useful when the bootmem allocator has already been torn
1434 * down, but we are still initializing the system. Pages are released directly
1435 * to the buddy allocator, no bootmem metadata is updated because it is gone.
1436 */
1437 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1438 {
1439 u64 cursor, end;
1440
1441 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1442 __func__, (u64)base, (u64)base + size - 1,
1443 (void *)_RET_IP_);
1444 kmemleak_free_part_phys(base, size);
1445 cursor = PFN_UP(base);
1446 end = PFN_DOWN(base + size);
1447
1448 for (; cursor < end; cursor++) {
1449 __free_pages_bootmem(pfn_to_page(cursor), cursor, 0);
1450 totalram_pages++;
1451 }
1452 }
1453
1454 /*
1455 * Remaining API functions
1456 */
1457
1458 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1459 {
1460 return memblock.memory.total_size;
1461 }
1462
1463 phys_addr_t __init_memblock memblock_reserved_size(void)
1464 {
1465 return memblock.reserved.total_size;
1466 }
1467
1468 phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1469 {
1470 unsigned long pages = 0;
1471 struct memblock_region *r;
1472 unsigned long start_pfn, end_pfn;
1473
1474 for_each_memblock(memory, r) {
1475 start_pfn = memblock_region_memory_base_pfn(r);
1476 end_pfn = memblock_region_memory_end_pfn(r);
1477 start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1478 end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1479 pages += end_pfn - start_pfn;
1480 }
1481
1482 return PFN_PHYS(pages);
1483 }
1484
1485 /* lowest address */
1486 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1487 {
1488 return memblock.memory.regions[0].base;
1489 }
1490
1491 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1492 {
1493 int idx = memblock.memory.cnt - 1;
1494
1495 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1496 }
1497
1498 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1499 {
1500 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
1501 struct memblock_region *r;
1502
1503 /*
1504 * translate the memory @limit size into the max address within one of
1505 * the memory memblock regions, if the @limit exceeds the total size
1506 * of those regions, max_addr will keep original value ULLONG_MAX
1507 */
1508 for_each_memblock(memory, r) {
1509 if (limit <= r->size) {
1510 max_addr = r->base + limit;
1511 break;
1512 }
1513 limit -= r->size;
1514 }
1515
1516 return max_addr;
1517 }
1518
1519 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1520 {
1521 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
1522
1523 if (!limit)
1524 return;
1525
1526 max_addr = __find_max_addr(limit);
1527
1528 /* @limit exceeds the total size of the memory, do nothing */
1529 if (max_addr == (phys_addr_t)ULLONG_MAX)
1530 return;
1531
1532 /* truncate both memory and reserved regions */
1533 memblock_remove_range(&memblock.memory, max_addr,
1534 (phys_addr_t)ULLONG_MAX);
1535 memblock_remove_range(&memblock.reserved, max_addr,
1536 (phys_addr_t)ULLONG_MAX);
1537 }
1538
1539 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1540 {
1541 int start_rgn, end_rgn;
1542 int i, ret;
1543
1544 if (!size)
1545 return;
1546
1547 ret = memblock_isolate_range(&memblock.memory, base, size,
1548 &start_rgn, &end_rgn);
1549 if (ret)
1550 return;
1551
1552 /* remove all the MAP regions */
1553 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1554 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1555 memblock_remove_region(&memblock.memory, i);
1556
1557 for (i = start_rgn - 1; i >= 0; i--)
1558 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1559 memblock_remove_region(&memblock.memory, i);
1560
1561 /* truncate the reserved regions */
1562 memblock_remove_range(&memblock.reserved, 0, base);
1563 memblock_remove_range(&memblock.reserved,
1564 base + size, (phys_addr_t)ULLONG_MAX);
1565 }
1566
1567 void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1568 {
1569 phys_addr_t max_addr;
1570
1571 if (!limit)
1572 return;
1573
1574 max_addr = __find_max_addr(limit);
1575
1576 /* @limit exceeds the total size of the memory, do nothing */
1577 if (max_addr == (phys_addr_t)ULLONG_MAX)
1578 return;
1579
1580 memblock_cap_memory_range(0, max_addr);
1581 }
1582
1583 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1584 {
1585 unsigned int left = 0, right = type->cnt;
1586
1587 do {
1588 unsigned int mid = (right + left) / 2;
1589
1590 if (addr < type->regions[mid].base)
1591 right = mid;
1592 else if (addr >= (type->regions[mid].base +
1593 type->regions[mid].size))
1594 left = mid + 1;
1595 else
1596 return mid;
1597 } while (left < right);
1598 return -1;
1599 }
1600
1601 bool __init memblock_is_reserved(phys_addr_t addr)
1602 {
1603 return memblock_search(&memblock.reserved, addr) != -1;
1604 }
1605
1606 bool __init_memblock memblock_is_memory(phys_addr_t addr)
1607 {
1608 return memblock_search(&memblock.memory, addr) != -1;
1609 }
1610
1611 int __init_memblock memblock_is_map_memory(phys_addr_t addr)
1612 {
1613 int i = memblock_search(&memblock.memory, addr);
1614
1615 if (i == -1)
1616 return false;
1617 return !memblock_is_nomap(&memblock.memory.regions[i]);
1618 }
1619
1620 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1621 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1622 unsigned long *start_pfn, unsigned long *end_pfn)
1623 {
1624 struct memblock_type *type = &memblock.memory;
1625 int mid = memblock_search(type, PFN_PHYS(pfn));
1626
1627 if (mid == -1)
1628 return -1;
1629
1630 *start_pfn = PFN_DOWN(type->regions[mid].base);
1631 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1632
1633 return type->regions[mid].nid;
1634 }
1635 #endif
1636
1637 /**
1638 * memblock_is_region_memory - check if a region is a subset of memory
1639 * @base: base of region to check
1640 * @size: size of region to check
1641 *
1642 * Check if the region [@base, @base+@size) is a subset of a memory block.
1643 *
1644 * RETURNS:
1645 * 0 if false, non-zero if true
1646 */
1647 int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1648 {
1649 int idx = memblock_search(&memblock.memory, base);
1650 phys_addr_t end = base + memblock_cap_size(base, &size);
1651
1652 if (idx == -1)
1653 return 0;
1654 return (memblock.memory.regions[idx].base +
1655 memblock.memory.regions[idx].size) >= end;
1656 }
1657
1658 /**
1659 * memblock_is_region_reserved - check if a region intersects reserved memory
1660 * @base: base of region to check
1661 * @size: size of region to check
1662 *
1663 * Check if the region [@base, @base+@size) intersects a reserved memory block.
1664 *
1665 * RETURNS:
1666 * True if they intersect, false if not.
1667 */
1668 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1669 {
1670 memblock_cap_size(base, &size);
1671 return memblock_overlaps_region(&memblock.reserved, base, size);
1672 }
1673
1674 void __init_memblock memblock_trim_memory(phys_addr_t align)
1675 {
1676 phys_addr_t start, end, orig_start, orig_end;
1677 struct memblock_region *r;
1678
1679 for_each_memblock(memory, r) {
1680 orig_start = r->base;
1681 orig_end = r->base + r->size;
1682 start = round_up(orig_start, align);
1683 end = round_down(orig_end, align);
1684
1685 if (start == orig_start && end == orig_end)
1686 continue;
1687
1688 if (start < end) {
1689 r->base = start;
1690 r->size = end - start;
1691 } else {
1692 memblock_remove_region(&memblock.memory,
1693 r - memblock.memory.regions);
1694 r--;
1695 }
1696 }
1697 }
1698
1699 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1700 {
1701 memblock.current_limit = limit;
1702 }
1703
1704 phys_addr_t __init_memblock memblock_get_current_limit(void)
1705 {
1706 return memblock.current_limit;
1707 }
1708
1709 static void __init_memblock memblock_dump(struct memblock_type *type)
1710 {
1711 phys_addr_t base, end, size;
1712 unsigned long flags;
1713 int idx;
1714 struct memblock_region *rgn;
1715
1716 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt);
1717
1718 for_each_memblock_type(type, rgn) {
1719 char nid_buf[32] = "";
1720
1721 base = rgn->base;
1722 size = rgn->size;
1723 end = base + size - 1;
1724 flags = rgn->flags;
1725 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1726 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1727 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1728 memblock_get_region_node(rgn));
1729 #endif
1730 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#lx\n",
1731 type->name, idx, &base, &end, &size, nid_buf, flags);
1732 }
1733 }
1734
1735 extern unsigned long __init_memblock
1736 memblock_reserved_memory_within(phys_addr_t start_addr, phys_addr_t end_addr)
1737 {
1738 struct memblock_region *rgn;
1739 unsigned long size = 0;
1740 int idx;
1741
1742 for_each_memblock_type((&memblock.reserved), rgn) {
1743 phys_addr_t start, end;
1744
1745 if (rgn->base + rgn->size < start_addr)
1746 continue;
1747 if (rgn->base > end_addr)
1748 continue;
1749
1750 start = rgn->base;
1751 end = start + rgn->size;
1752 size += end - start;
1753 }
1754
1755 return size;
1756 }
1757
1758 void __init_memblock __memblock_dump_all(void)
1759 {
1760 pr_info("MEMBLOCK configuration:\n");
1761 pr_info(" memory size = %pa reserved size = %pa\n",
1762 &memblock.memory.total_size,
1763 &memblock.reserved.total_size);
1764
1765 memblock_dump(&memblock.memory);
1766 memblock_dump(&memblock.reserved);
1767 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1768 memblock_dump(&memblock.physmem);
1769 #endif
1770 }
1771
1772 void __init memblock_allow_resize(void)
1773 {
1774 memblock_can_resize = 1;
1775 }
1776
1777 static int __init early_memblock(char *p)
1778 {
1779 if (p && strstr(p, "debug"))
1780 memblock_debug = 1;
1781 return 0;
1782 }
1783 early_param("memblock", early_memblock);
1784
1785 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1786
1787 static int memblock_debug_show(struct seq_file *m, void *private)
1788 {
1789 struct memblock_type *type = m->private;
1790 struct memblock_region *reg;
1791 int i;
1792 phys_addr_t end;
1793
1794 for (i = 0; i < type->cnt; i++) {
1795 reg = &type->regions[i];
1796 end = reg->base + reg->size - 1;
1797
1798 seq_printf(m, "%4d: ", i);
1799 seq_printf(m, "%pa..%pa\n", &reg->base, &end);
1800 }
1801 return 0;
1802 }
1803
1804 static int memblock_debug_open(struct inode *inode, struct file *file)
1805 {
1806 return single_open(file, memblock_debug_show, inode->i_private);
1807 }
1808
1809 static const struct file_operations memblock_debug_fops = {
1810 .open = memblock_debug_open,
1811 .read = seq_read,
1812 .llseek = seq_lseek,
1813 .release = single_release,
1814 };
1815
1816 static int __init memblock_init_debugfs(void)
1817 {
1818 struct dentry *root = debugfs_create_dir("memblock", NULL);
1819 if (!root)
1820 return -ENXIO;
1821 debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
1822 debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
1823 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1824 debugfs_create_file("physmem", S_IRUGO, root, &memblock.physmem, &memblock_debug_fops);
1825 #endif
1826
1827 return 0;
1828 }
1829 __initcall(memblock_init_debugfs);
1830
1831 #endif /* CONFIG_DEBUG_FS */