]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/memory.c
UBUNTU: Ubuntu-4.13.0-45.50
[mirror_ubuntu-artful-kernel.git] / mm / memory.c
1 /*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12 /*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23 /*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31 /*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/ksm.h>
53 #include <linux/rmap.h>
54 #include <linux/export.h>
55 #include <linux/delayacct.h>
56 #include <linux/init.h>
57 #include <linux/pfn_t.h>
58 #include <linux/writeback.h>
59 #include <linux/memcontrol.h>
60 #include <linux/mmu_notifier.h>
61 #include <linux/kallsyms.h>
62 #include <linux/swapops.h>
63 #include <linux/elf.h>
64 #include <linux/gfp.h>
65 #include <linux/migrate.h>
66 #include <linux/string.h>
67 #include <linux/dma-debug.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72
73 #include <asm/io.h>
74 #include <asm/mmu_context.h>
75 #include <asm/pgalloc.h>
76 #include <linux/uaccess.h>
77 #include <asm/tlb.h>
78 #include <asm/tlbflush.h>
79 #include <asm/pgtable.h>
80
81 #include "internal.h"
82
83 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
84 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
85 #endif
86
87 #ifndef CONFIG_NEED_MULTIPLE_NODES
88 /* use the per-pgdat data instead for discontigmem - mbligh */
89 unsigned long max_mapnr;
90 EXPORT_SYMBOL(max_mapnr);
91
92 struct page *mem_map;
93 EXPORT_SYMBOL(mem_map);
94 #endif
95
96 /*
97 * A number of key systems in x86 including ioremap() rely on the assumption
98 * that high_memory defines the upper bound on direct map memory, then end
99 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
100 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
101 * and ZONE_HIGHMEM.
102 */
103 void *high_memory;
104 EXPORT_SYMBOL(high_memory);
105
106 /*
107 * Randomize the address space (stacks, mmaps, brk, etc.).
108 *
109 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
110 * as ancient (libc5 based) binaries can segfault. )
111 */
112 int randomize_va_space __read_mostly =
113 #ifdef CONFIG_COMPAT_BRK
114 1;
115 #else
116 2;
117 #endif
118
119 static int __init disable_randmaps(char *s)
120 {
121 randomize_va_space = 0;
122 return 1;
123 }
124 __setup("norandmaps", disable_randmaps);
125
126 unsigned long zero_pfn __read_mostly;
127 EXPORT_SYMBOL(zero_pfn);
128
129 unsigned long highest_memmap_pfn __read_mostly;
130
131 /*
132 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
133 */
134 static int __init init_zero_pfn(void)
135 {
136 zero_pfn = page_to_pfn(ZERO_PAGE(0));
137 return 0;
138 }
139 core_initcall(init_zero_pfn);
140
141
142 #if defined(SPLIT_RSS_COUNTING)
143
144 void sync_mm_rss(struct mm_struct *mm)
145 {
146 int i;
147
148 for (i = 0; i < NR_MM_COUNTERS; i++) {
149 if (current->rss_stat.count[i]) {
150 add_mm_counter(mm, i, current->rss_stat.count[i]);
151 current->rss_stat.count[i] = 0;
152 }
153 }
154 current->rss_stat.events = 0;
155 }
156
157 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
158 {
159 struct task_struct *task = current;
160
161 if (likely(task->mm == mm))
162 task->rss_stat.count[member] += val;
163 else
164 add_mm_counter(mm, member, val);
165 }
166 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
167 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
168
169 /* sync counter once per 64 page faults */
170 #define TASK_RSS_EVENTS_THRESH (64)
171 static void check_sync_rss_stat(struct task_struct *task)
172 {
173 if (unlikely(task != current))
174 return;
175 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
176 sync_mm_rss(task->mm);
177 }
178 #else /* SPLIT_RSS_COUNTING */
179
180 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
181 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
182
183 static void check_sync_rss_stat(struct task_struct *task)
184 {
185 }
186
187 #endif /* SPLIT_RSS_COUNTING */
188
189 #ifdef HAVE_GENERIC_MMU_GATHER
190
191 static bool tlb_next_batch(struct mmu_gather *tlb)
192 {
193 struct mmu_gather_batch *batch;
194
195 batch = tlb->active;
196 if (batch->next) {
197 tlb->active = batch->next;
198 return true;
199 }
200
201 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
202 return false;
203
204 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
205 if (!batch)
206 return false;
207
208 tlb->batch_count++;
209 batch->next = NULL;
210 batch->nr = 0;
211 batch->max = MAX_GATHER_BATCH;
212
213 tlb->active->next = batch;
214 tlb->active = batch;
215
216 return true;
217 }
218
219 void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
220 unsigned long start, unsigned long end)
221 {
222 tlb->mm = mm;
223
224 /* Is it from 0 to ~0? */
225 tlb->fullmm = !(start | (end+1));
226 tlb->need_flush_all = 0;
227 tlb->local.next = NULL;
228 tlb->local.nr = 0;
229 tlb->local.max = ARRAY_SIZE(tlb->__pages);
230 tlb->active = &tlb->local;
231 tlb->batch_count = 0;
232
233 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
234 tlb->batch = NULL;
235 #endif
236 tlb->page_size = 0;
237
238 __tlb_reset_range(tlb);
239 }
240
241 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
242 {
243 if (!tlb->end)
244 return;
245
246 tlb_flush(tlb);
247 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
248 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
249 tlb_table_flush(tlb);
250 #endif
251 __tlb_reset_range(tlb);
252 }
253
254 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
255 {
256 struct mmu_gather_batch *batch;
257
258 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
259 free_pages_and_swap_cache(batch->pages, batch->nr);
260 batch->nr = 0;
261 }
262 tlb->active = &tlb->local;
263 }
264
265 void tlb_flush_mmu(struct mmu_gather *tlb)
266 {
267 tlb_flush_mmu_tlbonly(tlb);
268 tlb_flush_mmu_free(tlb);
269 }
270
271 /* tlb_finish_mmu
272 * Called at the end of the shootdown operation to free up any resources
273 * that were required.
274 */
275 void arch_tlb_finish_mmu(struct mmu_gather *tlb,
276 unsigned long start, unsigned long end, bool force)
277 {
278 struct mmu_gather_batch *batch, *next;
279
280 if (force)
281 __tlb_adjust_range(tlb, start, end - start);
282
283 tlb_flush_mmu(tlb);
284
285 /* keep the page table cache within bounds */
286 check_pgt_cache();
287
288 for (batch = tlb->local.next; batch; batch = next) {
289 next = batch->next;
290 free_pages((unsigned long)batch, 0);
291 }
292 tlb->local.next = NULL;
293 }
294
295 /* __tlb_remove_page
296 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
297 * handling the additional races in SMP caused by other CPUs caching valid
298 * mappings in their TLBs. Returns the number of free page slots left.
299 * When out of page slots we must call tlb_flush_mmu().
300 *returns true if the caller should flush.
301 */
302 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
303 {
304 struct mmu_gather_batch *batch;
305
306 VM_BUG_ON(!tlb->end);
307 VM_WARN_ON(tlb->page_size != page_size);
308
309 batch = tlb->active;
310 /*
311 * Add the page and check if we are full. If so
312 * force a flush.
313 */
314 batch->pages[batch->nr++] = page;
315 if (batch->nr == batch->max) {
316 if (!tlb_next_batch(tlb))
317 return true;
318 batch = tlb->active;
319 }
320 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
321
322 return false;
323 }
324
325 #endif /* HAVE_GENERIC_MMU_GATHER */
326
327 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
328
329 /*
330 * See the comment near struct mmu_table_batch.
331 */
332
333 static void tlb_remove_table_smp_sync(void *arg)
334 {
335 /* Simply deliver the interrupt */
336 }
337
338 static void tlb_remove_table_one(void *table)
339 {
340 /*
341 * This isn't an RCU grace period and hence the page-tables cannot be
342 * assumed to be actually RCU-freed.
343 *
344 * It is however sufficient for software page-table walkers that rely on
345 * IRQ disabling. See the comment near struct mmu_table_batch.
346 */
347 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
348 __tlb_remove_table(table);
349 }
350
351 static void tlb_remove_table_rcu(struct rcu_head *head)
352 {
353 struct mmu_table_batch *batch;
354 int i;
355
356 batch = container_of(head, struct mmu_table_batch, rcu);
357
358 for (i = 0; i < batch->nr; i++)
359 __tlb_remove_table(batch->tables[i]);
360
361 free_page((unsigned long)batch);
362 }
363
364 void tlb_table_flush(struct mmu_gather *tlb)
365 {
366 struct mmu_table_batch **batch = &tlb->batch;
367
368 if (*batch) {
369 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
370 *batch = NULL;
371 }
372 }
373
374 void tlb_remove_table(struct mmu_gather *tlb, void *table)
375 {
376 struct mmu_table_batch **batch = &tlb->batch;
377
378 /*
379 * When there's less then two users of this mm there cannot be a
380 * concurrent page-table walk.
381 */
382 if (atomic_read(&tlb->mm->mm_users) < 2) {
383 __tlb_remove_table(table);
384 return;
385 }
386
387 if (*batch == NULL) {
388 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
389 if (*batch == NULL) {
390 tlb_remove_table_one(table);
391 return;
392 }
393 (*batch)->nr = 0;
394 }
395 (*batch)->tables[(*batch)->nr++] = table;
396 if ((*batch)->nr == MAX_TABLE_BATCH)
397 tlb_table_flush(tlb);
398 }
399
400 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
401
402 /* tlb_gather_mmu
403 * Called to initialize an (on-stack) mmu_gather structure for page-table
404 * tear-down from @mm. The @fullmm argument is used when @mm is without
405 * users and we're going to destroy the full address space (exit/execve).
406 */
407 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
408 unsigned long start, unsigned long end)
409 {
410 arch_tlb_gather_mmu(tlb, mm, start, end);
411 inc_tlb_flush_pending(tlb->mm);
412 }
413
414 void tlb_finish_mmu(struct mmu_gather *tlb,
415 unsigned long start, unsigned long end)
416 {
417 /*
418 * If there are parallel threads are doing PTE changes on same range
419 * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB
420 * flush by batching, a thread has stable TLB entry can fail to flush
421 * the TLB by observing pte_none|!pte_dirty, for example so flush TLB
422 * forcefully if we detect parallel PTE batching threads.
423 */
424 bool force = mm_tlb_flush_nested(tlb->mm);
425
426 arch_tlb_finish_mmu(tlb, start, end, force);
427 dec_tlb_flush_pending(tlb->mm);
428 }
429
430 /*
431 * Note: this doesn't free the actual pages themselves. That
432 * has been handled earlier when unmapping all the memory regions.
433 */
434 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
435 unsigned long addr)
436 {
437 pgtable_t token = pmd_pgtable(*pmd);
438 pmd_clear(pmd);
439 pte_free_tlb(tlb, token, addr);
440 atomic_long_dec(&tlb->mm->nr_ptes);
441 }
442
443 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
444 unsigned long addr, unsigned long end,
445 unsigned long floor, unsigned long ceiling)
446 {
447 pmd_t *pmd;
448 unsigned long next;
449 unsigned long start;
450
451 start = addr;
452 pmd = pmd_offset(pud, addr);
453 do {
454 next = pmd_addr_end(addr, end);
455 if (pmd_none_or_clear_bad(pmd))
456 continue;
457 free_pte_range(tlb, pmd, addr);
458 } while (pmd++, addr = next, addr != end);
459
460 start &= PUD_MASK;
461 if (start < floor)
462 return;
463 if (ceiling) {
464 ceiling &= PUD_MASK;
465 if (!ceiling)
466 return;
467 }
468 if (end - 1 > ceiling - 1)
469 return;
470
471 pmd = pmd_offset(pud, start);
472 pud_clear(pud);
473 pmd_free_tlb(tlb, pmd, start);
474 mm_dec_nr_pmds(tlb->mm);
475 }
476
477 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
478 unsigned long addr, unsigned long end,
479 unsigned long floor, unsigned long ceiling)
480 {
481 pud_t *pud;
482 unsigned long next;
483 unsigned long start;
484
485 start = addr;
486 pud = pud_offset(p4d, addr);
487 do {
488 next = pud_addr_end(addr, end);
489 if (pud_none_or_clear_bad(pud))
490 continue;
491 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
492 } while (pud++, addr = next, addr != end);
493
494 start &= P4D_MASK;
495 if (start < floor)
496 return;
497 if (ceiling) {
498 ceiling &= P4D_MASK;
499 if (!ceiling)
500 return;
501 }
502 if (end - 1 > ceiling - 1)
503 return;
504
505 pud = pud_offset(p4d, start);
506 p4d_clear(p4d);
507 pud_free_tlb(tlb, pud, start);
508 }
509
510 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
511 unsigned long addr, unsigned long end,
512 unsigned long floor, unsigned long ceiling)
513 {
514 p4d_t *p4d;
515 unsigned long next;
516 unsigned long start;
517
518 start = addr;
519 p4d = p4d_offset(pgd, addr);
520 do {
521 next = p4d_addr_end(addr, end);
522 if (p4d_none_or_clear_bad(p4d))
523 continue;
524 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
525 } while (p4d++, addr = next, addr != end);
526
527 start &= PGDIR_MASK;
528 if (start < floor)
529 return;
530 if (ceiling) {
531 ceiling &= PGDIR_MASK;
532 if (!ceiling)
533 return;
534 }
535 if (end - 1 > ceiling - 1)
536 return;
537
538 p4d = p4d_offset(pgd, start);
539 pgd_clear(pgd);
540 p4d_free_tlb(tlb, p4d, start);
541 }
542
543 /*
544 * This function frees user-level page tables of a process.
545 */
546 void free_pgd_range(struct mmu_gather *tlb,
547 unsigned long addr, unsigned long end,
548 unsigned long floor, unsigned long ceiling)
549 {
550 pgd_t *pgd;
551 unsigned long next;
552
553 /*
554 * The next few lines have given us lots of grief...
555 *
556 * Why are we testing PMD* at this top level? Because often
557 * there will be no work to do at all, and we'd prefer not to
558 * go all the way down to the bottom just to discover that.
559 *
560 * Why all these "- 1"s? Because 0 represents both the bottom
561 * of the address space and the top of it (using -1 for the
562 * top wouldn't help much: the masks would do the wrong thing).
563 * The rule is that addr 0 and floor 0 refer to the bottom of
564 * the address space, but end 0 and ceiling 0 refer to the top
565 * Comparisons need to use "end - 1" and "ceiling - 1" (though
566 * that end 0 case should be mythical).
567 *
568 * Wherever addr is brought up or ceiling brought down, we must
569 * be careful to reject "the opposite 0" before it confuses the
570 * subsequent tests. But what about where end is brought down
571 * by PMD_SIZE below? no, end can't go down to 0 there.
572 *
573 * Whereas we round start (addr) and ceiling down, by different
574 * masks at different levels, in order to test whether a table
575 * now has no other vmas using it, so can be freed, we don't
576 * bother to round floor or end up - the tests don't need that.
577 */
578
579 addr &= PMD_MASK;
580 if (addr < floor) {
581 addr += PMD_SIZE;
582 if (!addr)
583 return;
584 }
585 if (ceiling) {
586 ceiling &= PMD_MASK;
587 if (!ceiling)
588 return;
589 }
590 if (end - 1 > ceiling - 1)
591 end -= PMD_SIZE;
592 if (addr > end - 1)
593 return;
594 /*
595 * We add page table cache pages with PAGE_SIZE,
596 * (see pte_free_tlb()), flush the tlb if we need
597 */
598 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
599 pgd = pgd_offset(tlb->mm, addr);
600 do {
601 next = pgd_addr_end(addr, end);
602 if (pgd_none_or_clear_bad(pgd))
603 continue;
604 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
605 } while (pgd++, addr = next, addr != end);
606 }
607
608 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
609 unsigned long floor, unsigned long ceiling)
610 {
611 while (vma) {
612 struct vm_area_struct *next = vma->vm_next;
613 unsigned long addr = vma->vm_start;
614
615 /*
616 * Hide vma from rmap and truncate_pagecache before freeing
617 * pgtables
618 */
619 unlink_anon_vmas(vma);
620 unlink_file_vma(vma);
621
622 if (is_vm_hugetlb_page(vma)) {
623 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
624 floor, next ? next->vm_start : ceiling);
625 } else {
626 /*
627 * Optimization: gather nearby vmas into one call down
628 */
629 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
630 && !is_vm_hugetlb_page(next)) {
631 vma = next;
632 next = vma->vm_next;
633 unlink_anon_vmas(vma);
634 unlink_file_vma(vma);
635 }
636 free_pgd_range(tlb, addr, vma->vm_end,
637 floor, next ? next->vm_start : ceiling);
638 }
639 vma = next;
640 }
641 }
642
643 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
644 {
645 spinlock_t *ptl;
646 pgtable_t new = pte_alloc_one(mm, address);
647 if (!new)
648 return -ENOMEM;
649
650 /*
651 * Ensure all pte setup (eg. pte page lock and page clearing) are
652 * visible before the pte is made visible to other CPUs by being
653 * put into page tables.
654 *
655 * The other side of the story is the pointer chasing in the page
656 * table walking code (when walking the page table without locking;
657 * ie. most of the time). Fortunately, these data accesses consist
658 * of a chain of data-dependent loads, meaning most CPUs (alpha
659 * being the notable exception) will already guarantee loads are
660 * seen in-order. See the alpha page table accessors for the
661 * smp_read_barrier_depends() barriers in page table walking code.
662 */
663 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
664
665 ptl = pmd_lock(mm, pmd);
666 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
667 atomic_long_inc(&mm->nr_ptes);
668 pmd_populate(mm, pmd, new);
669 new = NULL;
670 }
671 spin_unlock(ptl);
672 if (new)
673 pte_free(mm, new);
674 return 0;
675 }
676
677 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
678 {
679 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
680 if (!new)
681 return -ENOMEM;
682
683 smp_wmb(); /* See comment in __pte_alloc */
684
685 spin_lock(&init_mm.page_table_lock);
686 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
687 pmd_populate_kernel(&init_mm, pmd, new);
688 new = NULL;
689 }
690 spin_unlock(&init_mm.page_table_lock);
691 if (new)
692 pte_free_kernel(&init_mm, new);
693 return 0;
694 }
695
696 static inline void init_rss_vec(int *rss)
697 {
698 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
699 }
700
701 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
702 {
703 int i;
704
705 if (current->mm == mm)
706 sync_mm_rss(mm);
707 for (i = 0; i < NR_MM_COUNTERS; i++)
708 if (rss[i])
709 add_mm_counter(mm, i, rss[i]);
710 }
711
712 /*
713 * This function is called to print an error when a bad pte
714 * is found. For example, we might have a PFN-mapped pte in
715 * a region that doesn't allow it.
716 *
717 * The calling function must still handle the error.
718 */
719 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
720 pte_t pte, struct page *page)
721 {
722 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
723 p4d_t *p4d = p4d_offset(pgd, addr);
724 pud_t *pud = pud_offset(p4d, addr);
725 pmd_t *pmd = pmd_offset(pud, addr);
726 struct address_space *mapping;
727 pgoff_t index;
728 static unsigned long resume;
729 static unsigned long nr_shown;
730 static unsigned long nr_unshown;
731
732 /*
733 * Allow a burst of 60 reports, then keep quiet for that minute;
734 * or allow a steady drip of one report per second.
735 */
736 if (nr_shown == 60) {
737 if (time_before(jiffies, resume)) {
738 nr_unshown++;
739 return;
740 }
741 if (nr_unshown) {
742 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
743 nr_unshown);
744 nr_unshown = 0;
745 }
746 nr_shown = 0;
747 }
748 if (nr_shown++ == 0)
749 resume = jiffies + 60 * HZ;
750
751 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
752 index = linear_page_index(vma, addr);
753
754 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
755 current->comm,
756 (long long)pte_val(pte), (long long)pmd_val(*pmd));
757 if (page)
758 dump_page(page, "bad pte");
759 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
760 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
761 /*
762 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
763 */
764 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
765 vma->vm_file,
766 vma->vm_ops ? vma->vm_ops->fault : NULL,
767 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
768 mapping ? mapping->a_ops->readpage : NULL);
769 dump_stack();
770 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
771 }
772
773 /*
774 * vm_normal_page -- This function gets the "struct page" associated with a pte.
775 *
776 * "Special" mappings do not wish to be associated with a "struct page" (either
777 * it doesn't exist, or it exists but they don't want to touch it). In this
778 * case, NULL is returned here. "Normal" mappings do have a struct page.
779 *
780 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
781 * pte bit, in which case this function is trivial. Secondly, an architecture
782 * may not have a spare pte bit, which requires a more complicated scheme,
783 * described below.
784 *
785 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
786 * special mapping (even if there are underlying and valid "struct pages").
787 * COWed pages of a VM_PFNMAP are always normal.
788 *
789 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
790 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
791 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
792 * mapping will always honor the rule
793 *
794 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
795 *
796 * And for normal mappings this is false.
797 *
798 * This restricts such mappings to be a linear translation from virtual address
799 * to pfn. To get around this restriction, we allow arbitrary mappings so long
800 * as the vma is not a COW mapping; in that case, we know that all ptes are
801 * special (because none can have been COWed).
802 *
803 *
804 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
805 *
806 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
807 * page" backing, however the difference is that _all_ pages with a struct
808 * page (that is, those where pfn_valid is true) are refcounted and considered
809 * normal pages by the VM. The disadvantage is that pages are refcounted
810 * (which can be slower and simply not an option for some PFNMAP users). The
811 * advantage is that we don't have to follow the strict linearity rule of
812 * PFNMAP mappings in order to support COWable mappings.
813 *
814 */
815 #ifdef __HAVE_ARCH_PTE_SPECIAL
816 # define HAVE_PTE_SPECIAL 1
817 #else
818 # define HAVE_PTE_SPECIAL 0
819 #endif
820 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
821 pte_t pte)
822 {
823 unsigned long pfn = pte_pfn(pte);
824
825 if (HAVE_PTE_SPECIAL) {
826 if (likely(!pte_special(pte)))
827 goto check_pfn;
828 if (vma->vm_ops && vma->vm_ops->find_special_page)
829 return vma->vm_ops->find_special_page(vma, addr);
830 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
831 return NULL;
832 if (!is_zero_pfn(pfn))
833 print_bad_pte(vma, addr, pte, NULL);
834 return NULL;
835 }
836
837 /* !HAVE_PTE_SPECIAL case follows: */
838
839 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
840 if (vma->vm_flags & VM_MIXEDMAP) {
841 if (!pfn_valid(pfn))
842 return NULL;
843 goto out;
844 } else {
845 unsigned long off;
846 off = (addr - vma->vm_start) >> PAGE_SHIFT;
847 if (pfn == vma->vm_pgoff + off)
848 return NULL;
849 if (!is_cow_mapping(vma->vm_flags))
850 return NULL;
851 }
852 }
853
854 if (is_zero_pfn(pfn))
855 return NULL;
856 check_pfn:
857 if (unlikely(pfn > highest_memmap_pfn)) {
858 print_bad_pte(vma, addr, pte, NULL);
859 return NULL;
860 }
861
862 /*
863 * NOTE! We still have PageReserved() pages in the page tables.
864 * eg. VDSO mappings can cause them to exist.
865 */
866 out:
867 return pfn_to_page(pfn);
868 }
869
870 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
871 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
872 pmd_t pmd)
873 {
874 unsigned long pfn = pmd_pfn(pmd);
875
876 /*
877 * There is no pmd_special() but there may be special pmds, e.g.
878 * in a direct-access (dax) mapping, so let's just replicate the
879 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
880 */
881 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
882 if (vma->vm_flags & VM_MIXEDMAP) {
883 if (!pfn_valid(pfn))
884 return NULL;
885 goto out;
886 } else {
887 unsigned long off;
888 off = (addr - vma->vm_start) >> PAGE_SHIFT;
889 if (pfn == vma->vm_pgoff + off)
890 return NULL;
891 if (!is_cow_mapping(vma->vm_flags))
892 return NULL;
893 }
894 }
895
896 if (is_zero_pfn(pfn))
897 return NULL;
898 if (unlikely(pfn > highest_memmap_pfn))
899 return NULL;
900
901 /*
902 * NOTE! We still have PageReserved() pages in the page tables.
903 * eg. VDSO mappings can cause them to exist.
904 */
905 out:
906 return pfn_to_page(pfn);
907 }
908 #endif
909
910 /*
911 * copy one vm_area from one task to the other. Assumes the page tables
912 * already present in the new task to be cleared in the whole range
913 * covered by this vma.
914 */
915
916 static inline unsigned long
917 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
918 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
919 unsigned long addr, int *rss)
920 {
921 unsigned long vm_flags = vma->vm_flags;
922 pte_t pte = *src_pte;
923 struct page *page;
924
925 /* pte contains position in swap or file, so copy. */
926 if (unlikely(!pte_present(pte))) {
927 swp_entry_t entry = pte_to_swp_entry(pte);
928
929 if (likely(!non_swap_entry(entry))) {
930 if (swap_duplicate(entry) < 0)
931 return entry.val;
932
933 /* make sure dst_mm is on swapoff's mmlist. */
934 if (unlikely(list_empty(&dst_mm->mmlist))) {
935 spin_lock(&mmlist_lock);
936 if (list_empty(&dst_mm->mmlist))
937 list_add(&dst_mm->mmlist,
938 &src_mm->mmlist);
939 spin_unlock(&mmlist_lock);
940 }
941 rss[MM_SWAPENTS]++;
942 } else if (is_migration_entry(entry)) {
943 page = migration_entry_to_page(entry);
944
945 rss[mm_counter(page)]++;
946
947 if (is_write_migration_entry(entry) &&
948 is_cow_mapping(vm_flags)) {
949 /*
950 * COW mappings require pages in both
951 * parent and child to be set to read.
952 */
953 make_migration_entry_read(&entry);
954 pte = swp_entry_to_pte(entry);
955 if (pte_swp_soft_dirty(*src_pte))
956 pte = pte_swp_mksoft_dirty(pte);
957 set_pte_at(src_mm, addr, src_pte, pte);
958 }
959 }
960 goto out_set_pte;
961 }
962
963 /*
964 * If it's a COW mapping, write protect it both
965 * in the parent and the child
966 */
967 if (is_cow_mapping(vm_flags)) {
968 ptep_set_wrprotect(src_mm, addr, src_pte);
969 pte = pte_wrprotect(pte);
970 }
971
972 /*
973 * If it's a shared mapping, mark it clean in
974 * the child
975 */
976 if (vm_flags & VM_SHARED)
977 pte = pte_mkclean(pte);
978 pte = pte_mkold(pte);
979
980 page = vm_normal_page(vma, addr, pte);
981 if (page) {
982 get_page(page);
983 page_dup_rmap(page, false);
984 rss[mm_counter(page)]++;
985 }
986
987 out_set_pte:
988 set_pte_at(dst_mm, addr, dst_pte, pte);
989 return 0;
990 }
991
992 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
993 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
994 unsigned long addr, unsigned long end)
995 {
996 pte_t *orig_src_pte, *orig_dst_pte;
997 pte_t *src_pte, *dst_pte;
998 spinlock_t *src_ptl, *dst_ptl;
999 int progress = 0;
1000 int rss[NR_MM_COUNTERS];
1001 swp_entry_t entry = (swp_entry_t){0};
1002
1003 again:
1004 init_rss_vec(rss);
1005
1006 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1007 if (!dst_pte)
1008 return -ENOMEM;
1009 src_pte = pte_offset_map(src_pmd, addr);
1010 src_ptl = pte_lockptr(src_mm, src_pmd);
1011 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1012 orig_src_pte = src_pte;
1013 orig_dst_pte = dst_pte;
1014 arch_enter_lazy_mmu_mode();
1015
1016 do {
1017 /*
1018 * We are holding two locks at this point - either of them
1019 * could generate latencies in another task on another CPU.
1020 */
1021 if (progress >= 32) {
1022 progress = 0;
1023 if (need_resched() ||
1024 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1025 break;
1026 }
1027 if (pte_none(*src_pte)) {
1028 progress++;
1029 continue;
1030 }
1031 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
1032 vma, addr, rss);
1033 if (entry.val)
1034 break;
1035 progress += 8;
1036 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1037
1038 arch_leave_lazy_mmu_mode();
1039 spin_unlock(src_ptl);
1040 pte_unmap(orig_src_pte);
1041 add_mm_rss_vec(dst_mm, rss);
1042 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1043 cond_resched();
1044
1045 if (entry.val) {
1046 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
1047 return -ENOMEM;
1048 progress = 0;
1049 }
1050 if (addr != end)
1051 goto again;
1052 return 0;
1053 }
1054
1055 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1056 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1057 unsigned long addr, unsigned long end)
1058 {
1059 pmd_t *src_pmd, *dst_pmd;
1060 unsigned long next;
1061
1062 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1063 if (!dst_pmd)
1064 return -ENOMEM;
1065 src_pmd = pmd_offset(src_pud, addr);
1066 do {
1067 next = pmd_addr_end(addr, end);
1068 if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {
1069 int err;
1070 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
1071 err = copy_huge_pmd(dst_mm, src_mm,
1072 dst_pmd, src_pmd, addr, vma);
1073 if (err == -ENOMEM)
1074 return -ENOMEM;
1075 if (!err)
1076 continue;
1077 /* fall through */
1078 }
1079 if (pmd_none_or_clear_bad(src_pmd))
1080 continue;
1081 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1082 vma, addr, next))
1083 return -ENOMEM;
1084 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1085 return 0;
1086 }
1087
1088 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1089 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1090 unsigned long addr, unsigned long end)
1091 {
1092 pud_t *src_pud, *dst_pud;
1093 unsigned long next;
1094
1095 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1096 if (!dst_pud)
1097 return -ENOMEM;
1098 src_pud = pud_offset(src_p4d, addr);
1099 do {
1100 next = pud_addr_end(addr, end);
1101 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1102 int err;
1103
1104 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1105 err = copy_huge_pud(dst_mm, src_mm,
1106 dst_pud, src_pud, addr, vma);
1107 if (err == -ENOMEM)
1108 return -ENOMEM;
1109 if (!err)
1110 continue;
1111 /* fall through */
1112 }
1113 if (pud_none_or_clear_bad(src_pud))
1114 continue;
1115 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1116 vma, addr, next))
1117 return -ENOMEM;
1118 } while (dst_pud++, src_pud++, addr = next, addr != end);
1119 return 0;
1120 }
1121
1122 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1123 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1124 unsigned long addr, unsigned long end)
1125 {
1126 p4d_t *src_p4d, *dst_p4d;
1127 unsigned long next;
1128
1129 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1130 if (!dst_p4d)
1131 return -ENOMEM;
1132 src_p4d = p4d_offset(src_pgd, addr);
1133 do {
1134 next = p4d_addr_end(addr, end);
1135 if (p4d_none_or_clear_bad(src_p4d))
1136 continue;
1137 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
1138 vma, addr, next))
1139 return -ENOMEM;
1140 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1141 return 0;
1142 }
1143
1144 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1145 struct vm_area_struct *vma)
1146 {
1147 pgd_t *src_pgd, *dst_pgd;
1148 unsigned long next;
1149 unsigned long addr = vma->vm_start;
1150 unsigned long end = vma->vm_end;
1151 unsigned long mmun_start; /* For mmu_notifiers */
1152 unsigned long mmun_end; /* For mmu_notifiers */
1153 bool is_cow;
1154 int ret;
1155
1156 /*
1157 * Don't copy ptes where a page fault will fill them correctly.
1158 * Fork becomes much lighter when there are big shared or private
1159 * readonly mappings. The tradeoff is that copy_page_range is more
1160 * efficient than faulting.
1161 */
1162 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1163 !vma->anon_vma)
1164 return 0;
1165
1166 if (is_vm_hugetlb_page(vma))
1167 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1168
1169 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1170 /*
1171 * We do not free on error cases below as remove_vma
1172 * gets called on error from higher level routine
1173 */
1174 ret = track_pfn_copy(vma);
1175 if (ret)
1176 return ret;
1177 }
1178
1179 /*
1180 * We need to invalidate the secondary MMU mappings only when
1181 * there could be a permission downgrade on the ptes of the
1182 * parent mm. And a permission downgrade will only happen if
1183 * is_cow_mapping() returns true.
1184 */
1185 is_cow = is_cow_mapping(vma->vm_flags);
1186 mmun_start = addr;
1187 mmun_end = end;
1188 if (is_cow)
1189 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1190 mmun_end);
1191
1192 ret = 0;
1193 dst_pgd = pgd_offset(dst_mm, addr);
1194 src_pgd = pgd_offset(src_mm, addr);
1195 do {
1196 next = pgd_addr_end(addr, end);
1197 if (pgd_none_or_clear_bad(src_pgd))
1198 continue;
1199 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1200 vma, addr, next))) {
1201 ret = -ENOMEM;
1202 break;
1203 }
1204 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1205
1206 if (is_cow)
1207 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1208 return ret;
1209 }
1210
1211 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1212 struct vm_area_struct *vma, pmd_t *pmd,
1213 unsigned long addr, unsigned long end,
1214 struct zap_details *details)
1215 {
1216 struct mm_struct *mm = tlb->mm;
1217 int force_flush = 0;
1218 int rss[NR_MM_COUNTERS];
1219 spinlock_t *ptl;
1220 pte_t *start_pte;
1221 pte_t *pte;
1222 swp_entry_t entry;
1223
1224 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1225 again:
1226 init_rss_vec(rss);
1227 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1228 pte = start_pte;
1229 flush_tlb_batched_pending(mm);
1230 arch_enter_lazy_mmu_mode();
1231 do {
1232 pte_t ptent = *pte;
1233 if (pte_none(ptent))
1234 continue;
1235
1236 if (pte_present(ptent)) {
1237 struct page *page;
1238
1239 page = vm_normal_page(vma, addr, ptent);
1240 if (unlikely(details) && page) {
1241 /*
1242 * unmap_shared_mapping_pages() wants to
1243 * invalidate cache without truncating:
1244 * unmap shared but keep private pages.
1245 */
1246 if (details->check_mapping &&
1247 details->check_mapping != page_rmapping(page))
1248 continue;
1249 }
1250 ptent = ptep_get_and_clear_full(mm, addr, pte,
1251 tlb->fullmm);
1252 tlb_remove_tlb_entry(tlb, pte, addr);
1253 if (unlikely(!page))
1254 continue;
1255
1256 if (!PageAnon(page)) {
1257 if (pte_dirty(ptent)) {
1258 force_flush = 1;
1259 set_page_dirty(page);
1260 }
1261 if (pte_young(ptent) &&
1262 likely(!(vma->vm_flags & VM_SEQ_READ)))
1263 mark_page_accessed(page);
1264 }
1265 rss[mm_counter(page)]--;
1266 page_remove_rmap(page, false);
1267 if (unlikely(page_mapcount(page) < 0))
1268 print_bad_pte(vma, addr, ptent, page);
1269 if (unlikely(__tlb_remove_page(tlb, page))) {
1270 force_flush = 1;
1271 addr += PAGE_SIZE;
1272 break;
1273 }
1274 continue;
1275 }
1276 /* If details->check_mapping, we leave swap entries. */
1277 if (unlikely(details))
1278 continue;
1279
1280 entry = pte_to_swp_entry(ptent);
1281 if (!non_swap_entry(entry))
1282 rss[MM_SWAPENTS]--;
1283 else if (is_migration_entry(entry)) {
1284 struct page *page;
1285
1286 page = migration_entry_to_page(entry);
1287 rss[mm_counter(page)]--;
1288 }
1289 if (unlikely(!free_swap_and_cache(entry)))
1290 print_bad_pte(vma, addr, ptent, NULL);
1291 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1292 } while (pte++, addr += PAGE_SIZE, addr != end);
1293
1294 add_mm_rss_vec(mm, rss);
1295 arch_leave_lazy_mmu_mode();
1296
1297 /* Do the actual TLB flush before dropping ptl */
1298 if (force_flush)
1299 tlb_flush_mmu_tlbonly(tlb);
1300 pte_unmap_unlock(start_pte, ptl);
1301
1302 /*
1303 * If we forced a TLB flush (either due to running out of
1304 * batch buffers or because we needed to flush dirty TLB
1305 * entries before releasing the ptl), free the batched
1306 * memory too. Restart if we didn't do everything.
1307 */
1308 if (force_flush) {
1309 force_flush = 0;
1310 tlb_flush_mmu_free(tlb);
1311 if (addr != end)
1312 goto again;
1313 }
1314
1315 return addr;
1316 }
1317
1318 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1319 struct vm_area_struct *vma, pud_t *pud,
1320 unsigned long addr, unsigned long end,
1321 struct zap_details *details)
1322 {
1323 pmd_t *pmd;
1324 unsigned long next;
1325
1326 pmd = pmd_offset(pud, addr);
1327 do {
1328 next = pmd_addr_end(addr, end);
1329 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1330 if (next - addr != HPAGE_PMD_SIZE) {
1331 VM_BUG_ON_VMA(vma_is_anonymous(vma) &&
1332 !rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1333 __split_huge_pmd(vma, pmd, addr, false, NULL);
1334 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1335 goto next;
1336 /* fall through */
1337 }
1338 /*
1339 * Here there can be other concurrent MADV_DONTNEED or
1340 * trans huge page faults running, and if the pmd is
1341 * none or trans huge it can change under us. This is
1342 * because MADV_DONTNEED holds the mmap_sem in read
1343 * mode.
1344 */
1345 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1346 goto next;
1347 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1348 next:
1349 cond_resched();
1350 } while (pmd++, addr = next, addr != end);
1351
1352 return addr;
1353 }
1354
1355 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1356 struct vm_area_struct *vma, p4d_t *p4d,
1357 unsigned long addr, unsigned long end,
1358 struct zap_details *details)
1359 {
1360 pud_t *pud;
1361 unsigned long next;
1362
1363 pud = pud_offset(p4d, addr);
1364 do {
1365 next = pud_addr_end(addr, end);
1366 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1367 if (next - addr != HPAGE_PUD_SIZE) {
1368 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1369 split_huge_pud(vma, pud, addr);
1370 } else if (zap_huge_pud(tlb, vma, pud, addr))
1371 goto next;
1372 /* fall through */
1373 }
1374 if (pud_none_or_clear_bad(pud))
1375 continue;
1376 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1377 next:
1378 cond_resched();
1379 } while (pud++, addr = next, addr != end);
1380
1381 return addr;
1382 }
1383
1384 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1385 struct vm_area_struct *vma, pgd_t *pgd,
1386 unsigned long addr, unsigned long end,
1387 struct zap_details *details)
1388 {
1389 p4d_t *p4d;
1390 unsigned long next;
1391
1392 p4d = p4d_offset(pgd, addr);
1393 do {
1394 next = p4d_addr_end(addr, end);
1395 if (p4d_none_or_clear_bad(p4d))
1396 continue;
1397 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1398 } while (p4d++, addr = next, addr != end);
1399
1400 return addr;
1401 }
1402
1403 void unmap_page_range(struct mmu_gather *tlb,
1404 struct vm_area_struct *vma,
1405 unsigned long addr, unsigned long end,
1406 struct zap_details *details)
1407 {
1408 pgd_t *pgd;
1409 unsigned long next;
1410
1411 BUG_ON(addr >= end);
1412 tlb_start_vma(tlb, vma);
1413 pgd = pgd_offset(vma->vm_mm, addr);
1414 do {
1415 next = pgd_addr_end(addr, end);
1416 if (pgd_none_or_clear_bad(pgd))
1417 continue;
1418 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1419 } while (pgd++, addr = next, addr != end);
1420 tlb_end_vma(tlb, vma);
1421 }
1422
1423
1424 static void unmap_single_vma(struct mmu_gather *tlb,
1425 struct vm_area_struct *vma, unsigned long start_addr,
1426 unsigned long end_addr,
1427 struct zap_details *details)
1428 {
1429 unsigned long start = max(vma->vm_start, start_addr);
1430 unsigned long end;
1431
1432 if (start >= vma->vm_end)
1433 return;
1434 end = min(vma->vm_end, end_addr);
1435 if (end <= vma->vm_start)
1436 return;
1437
1438 if (vma->vm_file)
1439 uprobe_munmap(vma, start, end);
1440
1441 if (unlikely(vma->vm_flags & VM_PFNMAP))
1442 untrack_pfn(vma, 0, 0);
1443
1444 if (start != end) {
1445 if (unlikely(is_vm_hugetlb_page(vma))) {
1446 /*
1447 * It is undesirable to test vma->vm_file as it
1448 * should be non-null for valid hugetlb area.
1449 * However, vm_file will be NULL in the error
1450 * cleanup path of mmap_region. When
1451 * hugetlbfs ->mmap method fails,
1452 * mmap_region() nullifies vma->vm_file
1453 * before calling this function to clean up.
1454 * Since no pte has actually been setup, it is
1455 * safe to do nothing in this case.
1456 */
1457 if (vma->vm_file) {
1458 i_mmap_lock_write(vma->vm_file->f_mapping);
1459 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1460 i_mmap_unlock_write(vma->vm_file->f_mapping);
1461 }
1462 } else
1463 unmap_page_range(tlb, vma, start, end, details);
1464 }
1465 }
1466
1467 /**
1468 * unmap_vmas - unmap a range of memory covered by a list of vma's
1469 * @tlb: address of the caller's struct mmu_gather
1470 * @vma: the starting vma
1471 * @start_addr: virtual address at which to start unmapping
1472 * @end_addr: virtual address at which to end unmapping
1473 *
1474 * Unmap all pages in the vma list.
1475 *
1476 * Only addresses between `start' and `end' will be unmapped.
1477 *
1478 * The VMA list must be sorted in ascending virtual address order.
1479 *
1480 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1481 * range after unmap_vmas() returns. So the only responsibility here is to
1482 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1483 * drops the lock and schedules.
1484 */
1485 void unmap_vmas(struct mmu_gather *tlb,
1486 struct vm_area_struct *vma, unsigned long start_addr,
1487 unsigned long end_addr)
1488 {
1489 struct mm_struct *mm = vma->vm_mm;
1490
1491 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1492 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1493 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1494 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1495 }
1496
1497 /**
1498 * zap_page_range - remove user pages in a given range
1499 * @vma: vm_area_struct holding the applicable pages
1500 * @start: starting address of pages to zap
1501 * @size: number of bytes to zap
1502 *
1503 * Caller must protect the VMA list
1504 */
1505 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1506 unsigned long size)
1507 {
1508 struct mm_struct *mm = vma->vm_mm;
1509 struct mmu_gather tlb;
1510 unsigned long end = start + size;
1511
1512 lru_add_drain();
1513 tlb_gather_mmu(&tlb, mm, start, end);
1514 update_hiwater_rss(mm);
1515 mmu_notifier_invalidate_range_start(mm, start, end);
1516 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1517 unmap_single_vma(&tlb, vma, start, end, NULL);
1518 mmu_notifier_invalidate_range_end(mm, start, end);
1519 tlb_finish_mmu(&tlb, start, end);
1520 }
1521
1522 /**
1523 * zap_page_range_single - remove user pages in a given range
1524 * @vma: vm_area_struct holding the applicable pages
1525 * @address: starting address of pages to zap
1526 * @size: number of bytes to zap
1527 * @details: details of shared cache invalidation
1528 *
1529 * The range must fit into one VMA.
1530 */
1531 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1532 unsigned long size, struct zap_details *details)
1533 {
1534 struct mm_struct *mm = vma->vm_mm;
1535 struct mmu_gather tlb;
1536 unsigned long end = address + size;
1537
1538 lru_add_drain();
1539 tlb_gather_mmu(&tlb, mm, address, end);
1540 update_hiwater_rss(mm);
1541 mmu_notifier_invalidate_range_start(mm, address, end);
1542 unmap_single_vma(&tlb, vma, address, end, details);
1543 mmu_notifier_invalidate_range_end(mm, address, end);
1544 tlb_finish_mmu(&tlb, address, end);
1545 }
1546
1547 /**
1548 * zap_vma_ptes - remove ptes mapping the vma
1549 * @vma: vm_area_struct holding ptes to be zapped
1550 * @address: starting address of pages to zap
1551 * @size: number of bytes to zap
1552 *
1553 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1554 *
1555 * The entire address range must be fully contained within the vma.
1556 *
1557 * Returns 0 if successful.
1558 */
1559 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1560 unsigned long size)
1561 {
1562 if (address < vma->vm_start || address + size > vma->vm_end ||
1563 !(vma->vm_flags & VM_PFNMAP))
1564 return -1;
1565 zap_page_range_single(vma, address, size, NULL);
1566 return 0;
1567 }
1568 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1569
1570 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1571 spinlock_t **ptl)
1572 {
1573 pgd_t *pgd;
1574 p4d_t *p4d;
1575 pud_t *pud;
1576 pmd_t *pmd;
1577
1578 pgd = pgd_offset(mm, addr);
1579 p4d = p4d_alloc(mm, pgd, addr);
1580 if (!p4d)
1581 return NULL;
1582 pud = pud_alloc(mm, p4d, addr);
1583 if (!pud)
1584 return NULL;
1585 pmd = pmd_alloc(mm, pud, addr);
1586 if (!pmd)
1587 return NULL;
1588
1589 VM_BUG_ON(pmd_trans_huge(*pmd));
1590 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1591 }
1592
1593 /*
1594 * This is the old fallback for page remapping.
1595 *
1596 * For historical reasons, it only allows reserved pages. Only
1597 * old drivers should use this, and they needed to mark their
1598 * pages reserved for the old functions anyway.
1599 */
1600 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1601 struct page *page, pgprot_t prot)
1602 {
1603 struct mm_struct *mm = vma->vm_mm;
1604 int retval;
1605 pte_t *pte;
1606 spinlock_t *ptl;
1607
1608 retval = -EINVAL;
1609 if (PageAnon(page))
1610 goto out;
1611 retval = -ENOMEM;
1612 flush_dcache_page(page);
1613 pte = get_locked_pte(mm, addr, &ptl);
1614 if (!pte)
1615 goto out;
1616 retval = -EBUSY;
1617 if (!pte_none(*pte))
1618 goto out_unlock;
1619
1620 /* Ok, finally just insert the thing.. */
1621 get_page(page);
1622 inc_mm_counter_fast(mm, mm_counter_file(page));
1623 page_add_file_rmap(page, false);
1624 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1625
1626 retval = 0;
1627 pte_unmap_unlock(pte, ptl);
1628 return retval;
1629 out_unlock:
1630 pte_unmap_unlock(pte, ptl);
1631 out:
1632 return retval;
1633 }
1634
1635 /**
1636 * vm_insert_page - insert single page into user vma
1637 * @vma: user vma to map to
1638 * @addr: target user address of this page
1639 * @page: source kernel page
1640 *
1641 * This allows drivers to insert individual pages they've allocated
1642 * into a user vma.
1643 *
1644 * The page has to be a nice clean _individual_ kernel allocation.
1645 * If you allocate a compound page, you need to have marked it as
1646 * such (__GFP_COMP), or manually just split the page up yourself
1647 * (see split_page()).
1648 *
1649 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1650 * took an arbitrary page protection parameter. This doesn't allow
1651 * that. Your vma protection will have to be set up correctly, which
1652 * means that if you want a shared writable mapping, you'd better
1653 * ask for a shared writable mapping!
1654 *
1655 * The page does not need to be reserved.
1656 *
1657 * Usually this function is called from f_op->mmap() handler
1658 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1659 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1660 * function from other places, for example from page-fault handler.
1661 */
1662 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1663 struct page *page)
1664 {
1665 if (addr < vma->vm_start || addr >= vma->vm_end)
1666 return -EFAULT;
1667 if (!page_count(page))
1668 return -EINVAL;
1669 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1670 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1671 BUG_ON(vma->vm_flags & VM_PFNMAP);
1672 vma->vm_flags |= VM_MIXEDMAP;
1673 }
1674 return insert_page(vma, addr, page, vma->vm_page_prot);
1675 }
1676 EXPORT_SYMBOL(vm_insert_page);
1677
1678 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1679 pfn_t pfn, pgprot_t prot, bool mkwrite)
1680 {
1681 struct mm_struct *mm = vma->vm_mm;
1682 int retval;
1683 pte_t *pte, entry;
1684 spinlock_t *ptl;
1685
1686 retval = -ENOMEM;
1687 pte = get_locked_pte(mm, addr, &ptl);
1688 if (!pte)
1689 goto out;
1690 retval = -EBUSY;
1691 if (!pte_none(*pte)) {
1692 if (mkwrite) {
1693 /*
1694 * For read faults on private mappings the PFN passed
1695 * in may not match the PFN we have mapped if the
1696 * mapped PFN is a writeable COW page. In the mkwrite
1697 * case we are creating a writable PTE for a shared
1698 * mapping and we expect the PFNs to match.
1699 */
1700 if (WARN_ON_ONCE(pte_pfn(*pte) != pfn_t_to_pfn(pfn)))
1701 goto out_unlock;
1702 entry = *pte;
1703 goto out_mkwrite;
1704 } else
1705 goto out_unlock;
1706 }
1707
1708 /* Ok, finally just insert the thing.. */
1709 if (pfn_t_devmap(pfn))
1710 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1711 else
1712 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1713
1714 out_mkwrite:
1715 if (mkwrite) {
1716 entry = pte_mkyoung(entry);
1717 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1718 }
1719
1720 set_pte_at(mm, addr, pte, entry);
1721 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1722
1723 retval = 0;
1724 out_unlock:
1725 pte_unmap_unlock(pte, ptl);
1726 out:
1727 return retval;
1728 }
1729
1730 /**
1731 * vm_insert_pfn - insert single pfn into user vma
1732 * @vma: user vma to map to
1733 * @addr: target user address of this page
1734 * @pfn: source kernel pfn
1735 *
1736 * Similar to vm_insert_page, this allows drivers to insert individual pages
1737 * they've allocated into a user vma. Same comments apply.
1738 *
1739 * This function should only be called from a vm_ops->fault handler, and
1740 * in that case the handler should return NULL.
1741 *
1742 * vma cannot be a COW mapping.
1743 *
1744 * As this is called only for pages that do not currently exist, we
1745 * do not need to flush old virtual caches or the TLB.
1746 */
1747 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1748 unsigned long pfn)
1749 {
1750 return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1751 }
1752 EXPORT_SYMBOL(vm_insert_pfn);
1753
1754 /**
1755 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1756 * @vma: user vma to map to
1757 * @addr: target user address of this page
1758 * @pfn: source kernel pfn
1759 * @pgprot: pgprot flags for the inserted page
1760 *
1761 * This is exactly like vm_insert_pfn, except that it allows drivers to
1762 * to override pgprot on a per-page basis.
1763 *
1764 * This only makes sense for IO mappings, and it makes no sense for
1765 * cow mappings. In general, using multiple vmas is preferable;
1766 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1767 * impractical.
1768 */
1769 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1770 unsigned long pfn, pgprot_t pgprot)
1771 {
1772 int ret;
1773 /*
1774 * Technically, architectures with pte_special can avoid all these
1775 * restrictions (same for remap_pfn_range). However we would like
1776 * consistency in testing and feature parity among all, so we should
1777 * try to keep these invariants in place for everybody.
1778 */
1779 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1780 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1781 (VM_PFNMAP|VM_MIXEDMAP));
1782 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1783 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1784
1785 if (addr < vma->vm_start || addr >= vma->vm_end)
1786 return -EFAULT;
1787
1788 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1789
1790 ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1791 false);
1792
1793 return ret;
1794 }
1795 EXPORT_SYMBOL(vm_insert_pfn_prot);
1796
1797 static int __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1798 pfn_t pfn, bool mkwrite)
1799 {
1800 pgprot_t pgprot = vma->vm_page_prot;
1801
1802 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1803
1804 if (addr < vma->vm_start || addr >= vma->vm_end)
1805 return -EFAULT;
1806
1807 track_pfn_insert(vma, &pgprot, pfn);
1808
1809 /*
1810 * If we don't have pte special, then we have to use the pfn_valid()
1811 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1812 * refcount the page if pfn_valid is true (hence insert_page rather
1813 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1814 * without pte special, it would there be refcounted as a normal page.
1815 */
1816 if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1817 struct page *page;
1818
1819 /*
1820 * At this point we are committed to insert_page()
1821 * regardless of whether the caller specified flags that
1822 * result in pfn_t_has_page() == false.
1823 */
1824 page = pfn_to_page(pfn_t_to_pfn(pfn));
1825 return insert_page(vma, addr, page, pgprot);
1826 }
1827 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1828 }
1829
1830 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1831 pfn_t pfn)
1832 {
1833 return __vm_insert_mixed(vma, addr, pfn, false);
1834
1835 }
1836 EXPORT_SYMBOL(vm_insert_mixed);
1837
1838 int vm_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr,
1839 pfn_t pfn)
1840 {
1841 return __vm_insert_mixed(vma, addr, pfn, true);
1842 }
1843 EXPORT_SYMBOL(vm_insert_mixed_mkwrite);
1844
1845 /*
1846 * maps a range of physical memory into the requested pages. the old
1847 * mappings are removed. any references to nonexistent pages results
1848 * in null mappings (currently treated as "copy-on-access")
1849 */
1850 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1851 unsigned long addr, unsigned long end,
1852 unsigned long pfn, pgprot_t prot)
1853 {
1854 pte_t *pte;
1855 spinlock_t *ptl;
1856
1857 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1858 if (!pte)
1859 return -ENOMEM;
1860 arch_enter_lazy_mmu_mode();
1861 do {
1862 BUG_ON(!pte_none(*pte));
1863 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1864 pfn++;
1865 } while (pte++, addr += PAGE_SIZE, addr != end);
1866 arch_leave_lazy_mmu_mode();
1867 pte_unmap_unlock(pte - 1, ptl);
1868 return 0;
1869 }
1870
1871 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1872 unsigned long addr, unsigned long end,
1873 unsigned long pfn, pgprot_t prot)
1874 {
1875 pmd_t *pmd;
1876 unsigned long next;
1877
1878 pfn -= addr >> PAGE_SHIFT;
1879 pmd = pmd_alloc(mm, pud, addr);
1880 if (!pmd)
1881 return -ENOMEM;
1882 VM_BUG_ON(pmd_trans_huge(*pmd));
1883 do {
1884 next = pmd_addr_end(addr, end);
1885 if (remap_pte_range(mm, pmd, addr, next,
1886 pfn + (addr >> PAGE_SHIFT), prot))
1887 return -ENOMEM;
1888 } while (pmd++, addr = next, addr != end);
1889 return 0;
1890 }
1891
1892 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1893 unsigned long addr, unsigned long end,
1894 unsigned long pfn, pgprot_t prot)
1895 {
1896 pud_t *pud;
1897 unsigned long next;
1898
1899 pfn -= addr >> PAGE_SHIFT;
1900 pud = pud_alloc(mm, p4d, addr);
1901 if (!pud)
1902 return -ENOMEM;
1903 do {
1904 next = pud_addr_end(addr, end);
1905 if (remap_pmd_range(mm, pud, addr, next,
1906 pfn + (addr >> PAGE_SHIFT), prot))
1907 return -ENOMEM;
1908 } while (pud++, addr = next, addr != end);
1909 return 0;
1910 }
1911
1912 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1913 unsigned long addr, unsigned long end,
1914 unsigned long pfn, pgprot_t prot)
1915 {
1916 p4d_t *p4d;
1917 unsigned long next;
1918
1919 pfn -= addr >> PAGE_SHIFT;
1920 p4d = p4d_alloc(mm, pgd, addr);
1921 if (!p4d)
1922 return -ENOMEM;
1923 do {
1924 next = p4d_addr_end(addr, end);
1925 if (remap_pud_range(mm, p4d, addr, next,
1926 pfn + (addr >> PAGE_SHIFT), prot))
1927 return -ENOMEM;
1928 } while (p4d++, addr = next, addr != end);
1929 return 0;
1930 }
1931
1932 /**
1933 * remap_pfn_range - remap kernel memory to userspace
1934 * @vma: user vma to map to
1935 * @addr: target user address to start at
1936 * @pfn: physical address of kernel memory
1937 * @size: size of map area
1938 * @prot: page protection flags for this mapping
1939 *
1940 * Note: this is only safe if the mm semaphore is held when called.
1941 */
1942 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1943 unsigned long pfn, unsigned long size, pgprot_t prot)
1944 {
1945 pgd_t *pgd;
1946 unsigned long next;
1947 unsigned long end = addr + PAGE_ALIGN(size);
1948 struct mm_struct *mm = vma->vm_mm;
1949 unsigned long remap_pfn = pfn;
1950 int err;
1951
1952 /*
1953 * Physically remapped pages are special. Tell the
1954 * rest of the world about it:
1955 * VM_IO tells people not to look at these pages
1956 * (accesses can have side effects).
1957 * VM_PFNMAP tells the core MM that the base pages are just
1958 * raw PFN mappings, and do not have a "struct page" associated
1959 * with them.
1960 * VM_DONTEXPAND
1961 * Disable vma merging and expanding with mremap().
1962 * VM_DONTDUMP
1963 * Omit vma from core dump, even when VM_IO turned off.
1964 *
1965 * There's a horrible special case to handle copy-on-write
1966 * behaviour that some programs depend on. We mark the "original"
1967 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1968 * See vm_normal_page() for details.
1969 */
1970 if (is_cow_mapping(vma->vm_flags)) {
1971 if (addr != vma->vm_start || end != vma->vm_end)
1972 return -EINVAL;
1973 vma->vm_pgoff = pfn;
1974 }
1975
1976 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1977 if (err)
1978 return -EINVAL;
1979
1980 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1981
1982 BUG_ON(addr >= end);
1983 pfn -= addr >> PAGE_SHIFT;
1984 pgd = pgd_offset(mm, addr);
1985 flush_cache_range(vma, addr, end);
1986 do {
1987 next = pgd_addr_end(addr, end);
1988 err = remap_p4d_range(mm, pgd, addr, next,
1989 pfn + (addr >> PAGE_SHIFT), prot);
1990 if (err)
1991 break;
1992 } while (pgd++, addr = next, addr != end);
1993
1994 if (err)
1995 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1996
1997 return err;
1998 }
1999 EXPORT_SYMBOL(remap_pfn_range);
2000
2001 /**
2002 * vm_iomap_memory - remap memory to userspace
2003 * @vma: user vma to map to
2004 * @start: start of area
2005 * @len: size of area
2006 *
2007 * This is a simplified io_remap_pfn_range() for common driver use. The
2008 * driver just needs to give us the physical memory range to be mapped,
2009 * we'll figure out the rest from the vma information.
2010 *
2011 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2012 * whatever write-combining details or similar.
2013 */
2014 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2015 {
2016 unsigned long vm_len, pfn, pages;
2017
2018 /* Check that the physical memory area passed in looks valid */
2019 if (start + len < start)
2020 return -EINVAL;
2021 /*
2022 * You *really* shouldn't map things that aren't page-aligned,
2023 * but we've historically allowed it because IO memory might
2024 * just have smaller alignment.
2025 */
2026 len += start & ~PAGE_MASK;
2027 pfn = start >> PAGE_SHIFT;
2028 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2029 if (pfn + pages < pfn)
2030 return -EINVAL;
2031
2032 /* We start the mapping 'vm_pgoff' pages into the area */
2033 if (vma->vm_pgoff > pages)
2034 return -EINVAL;
2035 pfn += vma->vm_pgoff;
2036 pages -= vma->vm_pgoff;
2037
2038 /* Can we fit all of the mapping? */
2039 vm_len = vma->vm_end - vma->vm_start;
2040 if (vm_len >> PAGE_SHIFT > pages)
2041 return -EINVAL;
2042
2043 /* Ok, let it rip */
2044 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2045 }
2046 EXPORT_SYMBOL(vm_iomap_memory);
2047
2048 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2049 unsigned long addr, unsigned long end,
2050 pte_fn_t fn, void *data)
2051 {
2052 pte_t *pte;
2053 int err;
2054 pgtable_t token;
2055 spinlock_t *uninitialized_var(ptl);
2056
2057 pte = (mm == &init_mm) ?
2058 pte_alloc_kernel(pmd, addr) :
2059 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2060 if (!pte)
2061 return -ENOMEM;
2062
2063 BUG_ON(pmd_huge(*pmd));
2064
2065 arch_enter_lazy_mmu_mode();
2066
2067 token = pmd_pgtable(*pmd);
2068
2069 do {
2070 err = fn(pte++, token, addr, data);
2071 if (err)
2072 break;
2073 } while (addr += PAGE_SIZE, addr != end);
2074
2075 arch_leave_lazy_mmu_mode();
2076
2077 if (mm != &init_mm)
2078 pte_unmap_unlock(pte-1, ptl);
2079 return err;
2080 }
2081
2082 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2083 unsigned long addr, unsigned long end,
2084 pte_fn_t fn, void *data)
2085 {
2086 pmd_t *pmd;
2087 unsigned long next;
2088 int err;
2089
2090 BUG_ON(pud_huge(*pud));
2091
2092 pmd = pmd_alloc(mm, pud, addr);
2093 if (!pmd)
2094 return -ENOMEM;
2095 do {
2096 next = pmd_addr_end(addr, end);
2097 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2098 if (err)
2099 break;
2100 } while (pmd++, addr = next, addr != end);
2101 return err;
2102 }
2103
2104 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2105 unsigned long addr, unsigned long end,
2106 pte_fn_t fn, void *data)
2107 {
2108 pud_t *pud;
2109 unsigned long next;
2110 int err;
2111
2112 pud = pud_alloc(mm, p4d, addr);
2113 if (!pud)
2114 return -ENOMEM;
2115 do {
2116 next = pud_addr_end(addr, end);
2117 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2118 if (err)
2119 break;
2120 } while (pud++, addr = next, addr != end);
2121 return err;
2122 }
2123
2124 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2125 unsigned long addr, unsigned long end,
2126 pte_fn_t fn, void *data)
2127 {
2128 p4d_t *p4d;
2129 unsigned long next;
2130 int err;
2131
2132 p4d = p4d_alloc(mm, pgd, addr);
2133 if (!p4d)
2134 return -ENOMEM;
2135 do {
2136 next = p4d_addr_end(addr, end);
2137 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2138 if (err)
2139 break;
2140 } while (p4d++, addr = next, addr != end);
2141 return err;
2142 }
2143
2144 /*
2145 * Scan a region of virtual memory, filling in page tables as necessary
2146 * and calling a provided function on each leaf page table.
2147 */
2148 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2149 unsigned long size, pte_fn_t fn, void *data)
2150 {
2151 pgd_t *pgd;
2152 unsigned long next;
2153 unsigned long end = addr + size;
2154 int err;
2155
2156 if (WARN_ON(addr >= end))
2157 return -EINVAL;
2158
2159 pgd = pgd_offset(mm, addr);
2160 do {
2161 next = pgd_addr_end(addr, end);
2162 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2163 if (err)
2164 break;
2165 } while (pgd++, addr = next, addr != end);
2166
2167 return err;
2168 }
2169 EXPORT_SYMBOL_GPL(apply_to_page_range);
2170
2171 /*
2172 * handle_pte_fault chooses page fault handler according to an entry which was
2173 * read non-atomically. Before making any commitment, on those architectures
2174 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2175 * parts, do_swap_page must check under lock before unmapping the pte and
2176 * proceeding (but do_wp_page is only called after already making such a check;
2177 * and do_anonymous_page can safely check later on).
2178 */
2179 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2180 pte_t *page_table, pte_t orig_pte)
2181 {
2182 int same = 1;
2183 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2184 if (sizeof(pte_t) > sizeof(unsigned long)) {
2185 spinlock_t *ptl = pte_lockptr(mm, pmd);
2186 spin_lock(ptl);
2187 same = pte_same(*page_table, orig_pte);
2188 spin_unlock(ptl);
2189 }
2190 #endif
2191 pte_unmap(page_table);
2192 return same;
2193 }
2194
2195 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2196 {
2197 debug_dma_assert_idle(src);
2198
2199 /*
2200 * If the source page was a PFN mapping, we don't have
2201 * a "struct page" for it. We do a best-effort copy by
2202 * just copying from the original user address. If that
2203 * fails, we just zero-fill it. Live with it.
2204 */
2205 if (unlikely(!src)) {
2206 void *kaddr = kmap_atomic(dst);
2207 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2208
2209 /*
2210 * This really shouldn't fail, because the page is there
2211 * in the page tables. But it might just be unreadable,
2212 * in which case we just give up and fill the result with
2213 * zeroes.
2214 */
2215 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2216 clear_page(kaddr);
2217 kunmap_atomic(kaddr);
2218 flush_dcache_page(dst);
2219 } else
2220 copy_user_highpage(dst, src, va, vma);
2221 }
2222
2223 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2224 {
2225 struct file *vm_file = vma->vm_file;
2226
2227 if (vm_file)
2228 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2229
2230 /*
2231 * Special mappings (e.g. VDSO) do not have any file so fake
2232 * a default GFP_KERNEL for them.
2233 */
2234 return GFP_KERNEL;
2235 }
2236
2237 /*
2238 * Notify the address space that the page is about to become writable so that
2239 * it can prohibit this or wait for the page to get into an appropriate state.
2240 *
2241 * We do this without the lock held, so that it can sleep if it needs to.
2242 */
2243 static int do_page_mkwrite(struct vm_fault *vmf)
2244 {
2245 int ret;
2246 struct page *page = vmf->page;
2247 unsigned int old_flags = vmf->flags;
2248
2249 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2250
2251 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2252 /* Restore original flags so that caller is not surprised */
2253 vmf->flags = old_flags;
2254 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2255 return ret;
2256 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2257 lock_page(page);
2258 if (!page->mapping) {
2259 unlock_page(page);
2260 return 0; /* retry */
2261 }
2262 ret |= VM_FAULT_LOCKED;
2263 } else
2264 VM_BUG_ON_PAGE(!PageLocked(page), page);
2265 return ret;
2266 }
2267
2268 /*
2269 * Handle dirtying of a page in shared file mapping on a write fault.
2270 *
2271 * The function expects the page to be locked and unlocks it.
2272 */
2273 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2274 struct page *page)
2275 {
2276 struct address_space *mapping;
2277 bool dirtied;
2278 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2279
2280 dirtied = set_page_dirty(page);
2281 VM_BUG_ON_PAGE(PageAnon(page), page);
2282 /*
2283 * Take a local copy of the address_space - page.mapping may be zeroed
2284 * by truncate after unlock_page(). The address_space itself remains
2285 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2286 * release semantics to prevent the compiler from undoing this copying.
2287 */
2288 mapping = page_rmapping(page);
2289 unlock_page(page);
2290
2291 if ((dirtied || page_mkwrite) && mapping) {
2292 /*
2293 * Some device drivers do not set page.mapping
2294 * but still dirty their pages
2295 */
2296 balance_dirty_pages_ratelimited(mapping);
2297 }
2298
2299 if (!page_mkwrite)
2300 file_update_time(vma->vm_file);
2301 }
2302
2303 /*
2304 * Handle write page faults for pages that can be reused in the current vma
2305 *
2306 * This can happen either due to the mapping being with the VM_SHARED flag,
2307 * or due to us being the last reference standing to the page. In either
2308 * case, all we need to do here is to mark the page as writable and update
2309 * any related book-keeping.
2310 */
2311 static inline void wp_page_reuse(struct vm_fault *vmf)
2312 __releases(vmf->ptl)
2313 {
2314 struct vm_area_struct *vma = vmf->vma;
2315 struct page *page = vmf->page;
2316 pte_t entry;
2317 /*
2318 * Clear the pages cpupid information as the existing
2319 * information potentially belongs to a now completely
2320 * unrelated process.
2321 */
2322 if (page)
2323 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2324
2325 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2326 entry = pte_mkyoung(vmf->orig_pte);
2327 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2328 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2329 update_mmu_cache(vma, vmf->address, vmf->pte);
2330 pte_unmap_unlock(vmf->pte, vmf->ptl);
2331 }
2332
2333 /*
2334 * Handle the case of a page which we actually need to copy to a new page.
2335 *
2336 * Called with mmap_sem locked and the old page referenced, but
2337 * without the ptl held.
2338 *
2339 * High level logic flow:
2340 *
2341 * - Allocate a page, copy the content of the old page to the new one.
2342 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2343 * - Take the PTL. If the pte changed, bail out and release the allocated page
2344 * - If the pte is still the way we remember it, update the page table and all
2345 * relevant references. This includes dropping the reference the page-table
2346 * held to the old page, as well as updating the rmap.
2347 * - In any case, unlock the PTL and drop the reference we took to the old page.
2348 */
2349 static int wp_page_copy(struct vm_fault *vmf)
2350 {
2351 struct vm_area_struct *vma = vmf->vma;
2352 struct mm_struct *mm = vma->vm_mm;
2353 struct page *old_page = vmf->page;
2354 struct page *new_page = NULL;
2355 pte_t entry;
2356 int page_copied = 0;
2357 const unsigned long mmun_start = vmf->address & PAGE_MASK;
2358 const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2359 struct mem_cgroup *memcg;
2360
2361 if (unlikely(anon_vma_prepare(vma)))
2362 goto oom;
2363
2364 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2365 new_page = alloc_zeroed_user_highpage_movable(vma,
2366 vmf->address);
2367 if (!new_page)
2368 goto oom;
2369 } else {
2370 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2371 vmf->address);
2372 if (!new_page)
2373 goto oom;
2374 cow_user_page(new_page, old_page, vmf->address, vma);
2375 }
2376
2377 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2378 goto oom_free_new;
2379
2380 __SetPageUptodate(new_page);
2381
2382 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2383
2384 /*
2385 * Re-check the pte - we dropped the lock
2386 */
2387 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2388 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2389 if (old_page) {
2390 if (!PageAnon(old_page)) {
2391 dec_mm_counter_fast(mm,
2392 mm_counter_file(old_page));
2393 inc_mm_counter_fast(mm, MM_ANONPAGES);
2394 }
2395 } else {
2396 inc_mm_counter_fast(mm, MM_ANONPAGES);
2397 }
2398 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2399 entry = mk_pte(new_page, vma->vm_page_prot);
2400 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2401 /*
2402 * Clear the pte entry and flush it first, before updating the
2403 * pte with the new entry. This will avoid a race condition
2404 * seen in the presence of one thread doing SMC and another
2405 * thread doing COW.
2406 */
2407 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2408 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2409 mem_cgroup_commit_charge(new_page, memcg, false, false);
2410 lru_cache_add_active_or_unevictable(new_page, vma);
2411 /*
2412 * We call the notify macro here because, when using secondary
2413 * mmu page tables (such as kvm shadow page tables), we want the
2414 * new page to be mapped directly into the secondary page table.
2415 */
2416 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2417 update_mmu_cache(vma, vmf->address, vmf->pte);
2418 if (old_page) {
2419 /*
2420 * Only after switching the pte to the new page may
2421 * we remove the mapcount here. Otherwise another
2422 * process may come and find the rmap count decremented
2423 * before the pte is switched to the new page, and
2424 * "reuse" the old page writing into it while our pte
2425 * here still points into it and can be read by other
2426 * threads.
2427 *
2428 * The critical issue is to order this
2429 * page_remove_rmap with the ptp_clear_flush above.
2430 * Those stores are ordered by (if nothing else,)
2431 * the barrier present in the atomic_add_negative
2432 * in page_remove_rmap.
2433 *
2434 * Then the TLB flush in ptep_clear_flush ensures that
2435 * no process can access the old page before the
2436 * decremented mapcount is visible. And the old page
2437 * cannot be reused until after the decremented
2438 * mapcount is visible. So transitively, TLBs to
2439 * old page will be flushed before it can be reused.
2440 */
2441 page_remove_rmap(old_page, false);
2442 }
2443
2444 /* Free the old page.. */
2445 new_page = old_page;
2446 page_copied = 1;
2447 } else {
2448 mem_cgroup_cancel_charge(new_page, memcg, false);
2449 }
2450
2451 if (new_page)
2452 put_page(new_page);
2453
2454 pte_unmap_unlock(vmf->pte, vmf->ptl);
2455 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2456 if (old_page) {
2457 /*
2458 * Don't let another task, with possibly unlocked vma,
2459 * keep the mlocked page.
2460 */
2461 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2462 lock_page(old_page); /* LRU manipulation */
2463 if (PageMlocked(old_page))
2464 munlock_vma_page(old_page);
2465 unlock_page(old_page);
2466 }
2467 put_page(old_page);
2468 }
2469 return page_copied ? VM_FAULT_WRITE : 0;
2470 oom_free_new:
2471 put_page(new_page);
2472 oom:
2473 if (old_page)
2474 put_page(old_page);
2475 return VM_FAULT_OOM;
2476 }
2477
2478 /**
2479 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2480 * writeable once the page is prepared
2481 *
2482 * @vmf: structure describing the fault
2483 *
2484 * This function handles all that is needed to finish a write page fault in a
2485 * shared mapping due to PTE being read-only once the mapped page is prepared.
2486 * It handles locking of PTE and modifying it. The function returns
2487 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2488 * lock.
2489 *
2490 * The function expects the page to be locked or other protection against
2491 * concurrent faults / writeback (such as DAX radix tree locks).
2492 */
2493 int finish_mkwrite_fault(struct vm_fault *vmf)
2494 {
2495 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2496 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2497 &vmf->ptl);
2498 /*
2499 * We might have raced with another page fault while we released the
2500 * pte_offset_map_lock.
2501 */
2502 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2503 pte_unmap_unlock(vmf->pte, vmf->ptl);
2504 return VM_FAULT_NOPAGE;
2505 }
2506 wp_page_reuse(vmf);
2507 return 0;
2508 }
2509
2510 /*
2511 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2512 * mapping
2513 */
2514 static int wp_pfn_shared(struct vm_fault *vmf)
2515 {
2516 struct vm_area_struct *vma = vmf->vma;
2517
2518 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2519 int ret;
2520
2521 pte_unmap_unlock(vmf->pte, vmf->ptl);
2522 vmf->flags |= FAULT_FLAG_MKWRITE;
2523 ret = vma->vm_ops->pfn_mkwrite(vmf);
2524 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2525 return ret;
2526 return finish_mkwrite_fault(vmf);
2527 }
2528 wp_page_reuse(vmf);
2529 return VM_FAULT_WRITE;
2530 }
2531
2532 static int wp_page_shared(struct vm_fault *vmf)
2533 __releases(vmf->ptl)
2534 {
2535 struct vm_area_struct *vma = vmf->vma;
2536
2537 get_page(vmf->page);
2538
2539 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2540 int tmp;
2541
2542 pte_unmap_unlock(vmf->pte, vmf->ptl);
2543 tmp = do_page_mkwrite(vmf);
2544 if (unlikely(!tmp || (tmp &
2545 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2546 put_page(vmf->page);
2547 return tmp;
2548 }
2549 tmp = finish_mkwrite_fault(vmf);
2550 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2551 unlock_page(vmf->page);
2552 put_page(vmf->page);
2553 return tmp;
2554 }
2555 } else {
2556 wp_page_reuse(vmf);
2557 lock_page(vmf->page);
2558 }
2559 fault_dirty_shared_page(vma, vmf->page);
2560 put_page(vmf->page);
2561
2562 return VM_FAULT_WRITE;
2563 }
2564
2565 /*
2566 * This routine handles present pages, when users try to write
2567 * to a shared page. It is done by copying the page to a new address
2568 * and decrementing the shared-page counter for the old page.
2569 *
2570 * Note that this routine assumes that the protection checks have been
2571 * done by the caller (the low-level page fault routine in most cases).
2572 * Thus we can safely just mark it writable once we've done any necessary
2573 * COW.
2574 *
2575 * We also mark the page dirty at this point even though the page will
2576 * change only once the write actually happens. This avoids a few races,
2577 * and potentially makes it more efficient.
2578 *
2579 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2580 * but allow concurrent faults), with pte both mapped and locked.
2581 * We return with mmap_sem still held, but pte unmapped and unlocked.
2582 */
2583 static int do_wp_page(struct vm_fault *vmf)
2584 __releases(vmf->ptl)
2585 {
2586 struct vm_area_struct *vma = vmf->vma;
2587
2588 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2589 if (!vmf->page) {
2590 /*
2591 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2592 * VM_PFNMAP VMA.
2593 *
2594 * We should not cow pages in a shared writeable mapping.
2595 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2596 */
2597 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2598 (VM_WRITE|VM_SHARED))
2599 return wp_pfn_shared(vmf);
2600
2601 pte_unmap_unlock(vmf->pte, vmf->ptl);
2602 return wp_page_copy(vmf);
2603 }
2604
2605 /*
2606 * Take out anonymous pages first, anonymous shared vmas are
2607 * not dirty accountable.
2608 */
2609 if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2610 int total_mapcount;
2611 if (!trylock_page(vmf->page)) {
2612 get_page(vmf->page);
2613 pte_unmap_unlock(vmf->pte, vmf->ptl);
2614 lock_page(vmf->page);
2615 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2616 vmf->address, &vmf->ptl);
2617 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2618 unlock_page(vmf->page);
2619 pte_unmap_unlock(vmf->pte, vmf->ptl);
2620 put_page(vmf->page);
2621 return 0;
2622 }
2623 put_page(vmf->page);
2624 }
2625 if (reuse_swap_page(vmf->page, &total_mapcount)) {
2626 if (total_mapcount == 1) {
2627 /*
2628 * The page is all ours. Move it to
2629 * our anon_vma so the rmap code will
2630 * not search our parent or siblings.
2631 * Protected against the rmap code by
2632 * the page lock.
2633 */
2634 page_move_anon_rmap(vmf->page, vma);
2635 }
2636 unlock_page(vmf->page);
2637 wp_page_reuse(vmf);
2638 return VM_FAULT_WRITE;
2639 }
2640 unlock_page(vmf->page);
2641 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2642 (VM_WRITE|VM_SHARED))) {
2643 return wp_page_shared(vmf);
2644 }
2645
2646 /*
2647 * Ok, we need to copy. Oh, well..
2648 */
2649 get_page(vmf->page);
2650
2651 pte_unmap_unlock(vmf->pte, vmf->ptl);
2652 return wp_page_copy(vmf);
2653 }
2654
2655 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2656 unsigned long start_addr, unsigned long end_addr,
2657 struct zap_details *details)
2658 {
2659 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2660 }
2661
2662 static inline void unmap_mapping_range_tree(struct rb_root *root,
2663 struct zap_details *details)
2664 {
2665 struct vm_area_struct *vma;
2666 pgoff_t vba, vea, zba, zea;
2667
2668 vma_interval_tree_foreach(vma, root,
2669 details->first_index, details->last_index) {
2670
2671 vba = vma->vm_pgoff;
2672 vea = vba + vma_pages(vma) - 1;
2673 zba = details->first_index;
2674 if (zba < vba)
2675 zba = vba;
2676 zea = details->last_index;
2677 if (zea > vea)
2678 zea = vea;
2679
2680 unmap_mapping_range_vma(vma,
2681 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2682 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2683 details);
2684 }
2685 }
2686
2687 /**
2688 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2689 * address_space corresponding to the specified page range in the underlying
2690 * file.
2691 *
2692 * @mapping: the address space containing mmaps to be unmapped.
2693 * @holebegin: byte in first page to unmap, relative to the start of
2694 * the underlying file. This will be rounded down to a PAGE_SIZE
2695 * boundary. Note that this is different from truncate_pagecache(), which
2696 * must keep the partial page. In contrast, we must get rid of
2697 * partial pages.
2698 * @holelen: size of prospective hole in bytes. This will be rounded
2699 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2700 * end of the file.
2701 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2702 * but 0 when invalidating pagecache, don't throw away private data.
2703 */
2704 void unmap_mapping_range(struct address_space *mapping,
2705 loff_t const holebegin, loff_t const holelen, int even_cows)
2706 {
2707 struct zap_details details = { };
2708 pgoff_t hba = holebegin >> PAGE_SHIFT;
2709 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2710
2711 /* Check for overflow. */
2712 if (sizeof(holelen) > sizeof(hlen)) {
2713 long long holeend =
2714 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2715 if (holeend & ~(long long)ULONG_MAX)
2716 hlen = ULONG_MAX - hba + 1;
2717 }
2718
2719 details.check_mapping = even_cows ? NULL : mapping;
2720 details.first_index = hba;
2721 details.last_index = hba + hlen - 1;
2722 if (details.last_index < details.first_index)
2723 details.last_index = ULONG_MAX;
2724
2725 i_mmap_lock_write(mapping);
2726 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2727 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2728 i_mmap_unlock_write(mapping);
2729 }
2730 EXPORT_SYMBOL(unmap_mapping_range);
2731
2732 /*
2733 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2734 * but allow concurrent faults), and pte mapped but not yet locked.
2735 * We return with pte unmapped and unlocked.
2736 *
2737 * We return with the mmap_sem locked or unlocked in the same cases
2738 * as does filemap_fault().
2739 */
2740 int do_swap_page(struct vm_fault *vmf)
2741 {
2742 struct vm_area_struct *vma = vmf->vma;
2743 struct page *page, *swapcache;
2744 struct mem_cgroup *memcg;
2745 swp_entry_t entry;
2746 pte_t pte;
2747 int locked;
2748 int exclusive = 0;
2749 int ret = 0;
2750
2751 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2752 goto out;
2753
2754 entry = pte_to_swp_entry(vmf->orig_pte);
2755 if (unlikely(non_swap_entry(entry))) {
2756 if (is_migration_entry(entry)) {
2757 migration_entry_wait(vma->vm_mm, vmf->pmd,
2758 vmf->address);
2759 } else if (is_hwpoison_entry(entry)) {
2760 ret = VM_FAULT_HWPOISON;
2761 } else {
2762 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2763 ret = VM_FAULT_SIGBUS;
2764 }
2765 goto out;
2766 }
2767 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2768 page = lookup_swap_cache(entry);
2769 if (!page) {
2770 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, vma,
2771 vmf->address);
2772 if (!page) {
2773 /*
2774 * Back out if somebody else faulted in this pte
2775 * while we released the pte lock.
2776 */
2777 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2778 vmf->address, &vmf->ptl);
2779 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2780 ret = VM_FAULT_OOM;
2781 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2782 goto unlock;
2783 }
2784
2785 /* Had to read the page from swap area: Major fault */
2786 ret = VM_FAULT_MAJOR;
2787 count_vm_event(PGMAJFAULT);
2788 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2789 } else if (PageHWPoison(page)) {
2790 /*
2791 * hwpoisoned dirty swapcache pages are kept for killing
2792 * owner processes (which may be unknown at hwpoison time)
2793 */
2794 ret = VM_FAULT_HWPOISON;
2795 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2796 swapcache = page;
2797 goto out_release;
2798 }
2799
2800 swapcache = page;
2801 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2802
2803 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2804 if (!locked) {
2805 ret |= VM_FAULT_RETRY;
2806 goto out_release;
2807 }
2808
2809 /*
2810 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2811 * release the swapcache from under us. The page pin, and pte_same
2812 * test below, are not enough to exclude that. Even if it is still
2813 * swapcache, we need to check that the page's swap has not changed.
2814 */
2815 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2816 goto out_page;
2817
2818 page = ksm_might_need_to_copy(page, vma, vmf->address);
2819 if (unlikely(!page)) {
2820 ret = VM_FAULT_OOM;
2821 page = swapcache;
2822 goto out_page;
2823 }
2824
2825 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
2826 &memcg, false)) {
2827 ret = VM_FAULT_OOM;
2828 goto out_page;
2829 }
2830
2831 /*
2832 * Back out if somebody else already faulted in this pte.
2833 */
2834 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2835 &vmf->ptl);
2836 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
2837 goto out_nomap;
2838
2839 if (unlikely(!PageUptodate(page))) {
2840 ret = VM_FAULT_SIGBUS;
2841 goto out_nomap;
2842 }
2843
2844 /*
2845 * The page isn't present yet, go ahead with the fault.
2846 *
2847 * Be careful about the sequence of operations here.
2848 * To get its accounting right, reuse_swap_page() must be called
2849 * while the page is counted on swap but not yet in mapcount i.e.
2850 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2851 * must be called after the swap_free(), or it will never succeed.
2852 */
2853
2854 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2855 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
2856 pte = mk_pte(page, vma->vm_page_prot);
2857 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2858 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2859 vmf->flags &= ~FAULT_FLAG_WRITE;
2860 ret |= VM_FAULT_WRITE;
2861 exclusive = RMAP_EXCLUSIVE;
2862 }
2863 flush_icache_page(vma, page);
2864 if (pte_swp_soft_dirty(vmf->orig_pte))
2865 pte = pte_mksoft_dirty(pte);
2866 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
2867 vmf->orig_pte = pte;
2868 if (page == swapcache) {
2869 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
2870 mem_cgroup_commit_charge(page, memcg, true, false);
2871 activate_page(page);
2872 } else { /* ksm created a completely new copy */
2873 page_add_new_anon_rmap(page, vma, vmf->address, false);
2874 mem_cgroup_commit_charge(page, memcg, false, false);
2875 lru_cache_add_active_or_unevictable(page, vma);
2876 }
2877
2878 swap_free(entry);
2879 if (mem_cgroup_swap_full(page) ||
2880 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2881 try_to_free_swap(page);
2882 unlock_page(page);
2883 if (page != swapcache) {
2884 /*
2885 * Hold the lock to avoid the swap entry to be reused
2886 * until we take the PT lock for the pte_same() check
2887 * (to avoid false positives from pte_same). For
2888 * further safety release the lock after the swap_free
2889 * so that the swap count won't change under a
2890 * parallel locked swapcache.
2891 */
2892 unlock_page(swapcache);
2893 put_page(swapcache);
2894 }
2895
2896 if (vmf->flags & FAULT_FLAG_WRITE) {
2897 ret |= do_wp_page(vmf);
2898 if (ret & VM_FAULT_ERROR)
2899 ret &= VM_FAULT_ERROR;
2900 goto out;
2901 }
2902
2903 /* No need to invalidate - it was non-present before */
2904 update_mmu_cache(vma, vmf->address, vmf->pte);
2905 unlock:
2906 pte_unmap_unlock(vmf->pte, vmf->ptl);
2907 out:
2908 return ret;
2909 out_nomap:
2910 mem_cgroup_cancel_charge(page, memcg, false);
2911 pte_unmap_unlock(vmf->pte, vmf->ptl);
2912 out_page:
2913 unlock_page(page);
2914 out_release:
2915 put_page(page);
2916 if (page != swapcache) {
2917 unlock_page(swapcache);
2918 put_page(swapcache);
2919 }
2920 return ret;
2921 }
2922
2923 /*
2924 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2925 * but allow concurrent faults), and pte mapped but not yet locked.
2926 * We return with mmap_sem still held, but pte unmapped and unlocked.
2927 */
2928 static int do_anonymous_page(struct vm_fault *vmf)
2929 {
2930 struct vm_area_struct *vma = vmf->vma;
2931 struct mem_cgroup *memcg;
2932 struct page *page;
2933 int ret = 0;
2934 pte_t entry;
2935
2936 /* File mapping without ->vm_ops ? */
2937 if (vma->vm_flags & VM_SHARED)
2938 return VM_FAULT_SIGBUS;
2939
2940 /*
2941 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2942 * pte_offset_map() on pmds where a huge pmd might be created
2943 * from a different thread.
2944 *
2945 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2946 * parallel threads are excluded by other means.
2947 *
2948 * Here we only have down_read(mmap_sem).
2949 */
2950 if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
2951 return VM_FAULT_OOM;
2952
2953 /* See the comment in pte_alloc_one_map() */
2954 if (unlikely(pmd_trans_unstable(vmf->pmd)))
2955 return 0;
2956
2957 /* Use the zero-page for reads */
2958 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
2959 !mm_forbids_zeropage(vma->vm_mm)) {
2960 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
2961 vma->vm_page_prot));
2962 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2963 vmf->address, &vmf->ptl);
2964 if (!pte_none(*vmf->pte))
2965 goto unlock;
2966 ret = check_stable_address_space(vma->vm_mm);
2967 if (ret)
2968 goto unlock;
2969 /* Deliver the page fault to userland, check inside PT lock */
2970 if (userfaultfd_missing(vma)) {
2971 pte_unmap_unlock(vmf->pte, vmf->ptl);
2972 return handle_userfault(vmf, VM_UFFD_MISSING);
2973 }
2974 goto setpte;
2975 }
2976
2977 /* Allocate our own private page. */
2978 if (unlikely(anon_vma_prepare(vma)))
2979 goto oom;
2980 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
2981 if (!page)
2982 goto oom;
2983
2984 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2985 goto oom_free_page;
2986
2987 /*
2988 * The memory barrier inside __SetPageUptodate makes sure that
2989 * preceeding stores to the page contents become visible before
2990 * the set_pte_at() write.
2991 */
2992 __SetPageUptodate(page);
2993
2994 entry = mk_pte(page, vma->vm_page_prot);
2995 if (vma->vm_flags & VM_WRITE)
2996 entry = pte_mkwrite(pte_mkdirty(entry));
2997
2998 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2999 &vmf->ptl);
3000 if (!pte_none(*vmf->pte))
3001 goto release;
3002
3003 ret = check_stable_address_space(vma->vm_mm);
3004 if (ret)
3005 goto release;
3006
3007 /* Deliver the page fault to userland, check inside PT lock */
3008 if (userfaultfd_missing(vma)) {
3009 pte_unmap_unlock(vmf->pte, vmf->ptl);
3010 mem_cgroup_cancel_charge(page, memcg, false);
3011 put_page(page);
3012 return handle_userfault(vmf, VM_UFFD_MISSING);
3013 }
3014
3015 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3016 page_add_new_anon_rmap(page, vma, vmf->address, false);
3017 mem_cgroup_commit_charge(page, memcg, false, false);
3018 lru_cache_add_active_or_unevictable(page, vma);
3019 setpte:
3020 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3021
3022 /* No need to invalidate - it was non-present before */
3023 update_mmu_cache(vma, vmf->address, vmf->pte);
3024 unlock:
3025 pte_unmap_unlock(vmf->pte, vmf->ptl);
3026 return ret;
3027 release:
3028 mem_cgroup_cancel_charge(page, memcg, false);
3029 put_page(page);
3030 goto unlock;
3031 oom_free_page:
3032 put_page(page);
3033 oom:
3034 return VM_FAULT_OOM;
3035 }
3036
3037 /*
3038 * The mmap_sem must have been held on entry, and may have been
3039 * released depending on flags and vma->vm_ops->fault() return value.
3040 * See filemap_fault() and __lock_page_retry().
3041 */
3042 static int __do_fault(struct vm_fault *vmf)
3043 {
3044 struct vm_area_struct *vma = vmf->vma;
3045 int ret;
3046
3047 ret = vma->vm_ops->fault(vmf);
3048 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3049 VM_FAULT_DONE_COW)))
3050 return ret;
3051
3052 if (unlikely(PageHWPoison(vmf->page))) {
3053 if (ret & VM_FAULT_LOCKED)
3054 unlock_page(vmf->page);
3055 put_page(vmf->page);
3056 vmf->page = NULL;
3057 return VM_FAULT_HWPOISON;
3058 }
3059
3060 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3061 lock_page(vmf->page);
3062 else
3063 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3064
3065 return ret;
3066 }
3067
3068 /*
3069 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3070 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3071 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3072 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3073 */
3074 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3075 {
3076 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3077 }
3078
3079 static int pte_alloc_one_map(struct vm_fault *vmf)
3080 {
3081 struct vm_area_struct *vma = vmf->vma;
3082
3083 if (!pmd_none(*vmf->pmd))
3084 goto map_pte;
3085 if (vmf->prealloc_pte) {
3086 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3087 if (unlikely(!pmd_none(*vmf->pmd))) {
3088 spin_unlock(vmf->ptl);
3089 goto map_pte;
3090 }
3091
3092 atomic_long_inc(&vma->vm_mm->nr_ptes);
3093 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3094 spin_unlock(vmf->ptl);
3095 vmf->prealloc_pte = NULL;
3096 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
3097 return VM_FAULT_OOM;
3098 }
3099 map_pte:
3100 /*
3101 * If a huge pmd materialized under us just retry later. Use
3102 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3103 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3104 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3105 * running immediately after a huge pmd fault in a different thread of
3106 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3107 * All we have to ensure is that it is a regular pmd that we can walk
3108 * with pte_offset_map() and we can do that through an atomic read in
3109 * C, which is what pmd_trans_unstable() provides.
3110 */
3111 if (pmd_devmap_trans_unstable(vmf->pmd))
3112 return VM_FAULT_NOPAGE;
3113
3114 /*
3115 * At this point we know that our vmf->pmd points to a page of ptes
3116 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3117 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3118 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3119 * be valid and we will re-check to make sure the vmf->pte isn't
3120 * pte_none() under vmf->ptl protection when we return to
3121 * alloc_set_pte().
3122 */
3123 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3124 &vmf->ptl);
3125 return 0;
3126 }
3127
3128 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3129
3130 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3131 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3132 unsigned long haddr)
3133 {
3134 if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3135 (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3136 return false;
3137 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3138 return false;
3139 return true;
3140 }
3141
3142 static void deposit_prealloc_pte(struct vm_fault *vmf)
3143 {
3144 struct vm_area_struct *vma = vmf->vma;
3145
3146 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3147 /*
3148 * We are going to consume the prealloc table,
3149 * count that as nr_ptes.
3150 */
3151 atomic_long_inc(&vma->vm_mm->nr_ptes);
3152 vmf->prealloc_pte = NULL;
3153 }
3154
3155 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3156 {
3157 struct vm_area_struct *vma = vmf->vma;
3158 bool write = vmf->flags & FAULT_FLAG_WRITE;
3159 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3160 pmd_t entry;
3161 int i, ret;
3162
3163 if (!transhuge_vma_suitable(vma, haddr))
3164 return VM_FAULT_FALLBACK;
3165
3166 ret = VM_FAULT_FALLBACK;
3167 page = compound_head(page);
3168
3169 /*
3170 * Archs like ppc64 need additonal space to store information
3171 * related to pte entry. Use the preallocated table for that.
3172 */
3173 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3174 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3175 if (!vmf->prealloc_pte)
3176 return VM_FAULT_OOM;
3177 smp_wmb(); /* See comment in __pte_alloc() */
3178 }
3179
3180 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3181 if (unlikely(!pmd_none(*vmf->pmd)))
3182 goto out;
3183
3184 for (i = 0; i < HPAGE_PMD_NR; i++)
3185 flush_icache_page(vma, page + i);
3186
3187 entry = mk_huge_pmd(page, vma->vm_page_prot);
3188 if (write)
3189 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3190
3191 add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR);
3192 page_add_file_rmap(page, true);
3193 /*
3194 * deposit and withdraw with pmd lock held
3195 */
3196 if (arch_needs_pgtable_deposit())
3197 deposit_prealloc_pte(vmf);
3198
3199 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3200
3201 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3202
3203 /* fault is handled */
3204 ret = 0;
3205 count_vm_event(THP_FILE_MAPPED);
3206 out:
3207 spin_unlock(vmf->ptl);
3208 return ret;
3209 }
3210 #else
3211 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3212 {
3213 BUILD_BUG();
3214 return 0;
3215 }
3216 #endif
3217
3218 /**
3219 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3220 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3221 *
3222 * @vmf: fault environment
3223 * @memcg: memcg to charge page (only for private mappings)
3224 * @page: page to map
3225 *
3226 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3227 * return.
3228 *
3229 * Target users are page handler itself and implementations of
3230 * vm_ops->map_pages.
3231 */
3232 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3233 struct page *page)
3234 {
3235 struct vm_area_struct *vma = vmf->vma;
3236 bool write = vmf->flags & FAULT_FLAG_WRITE;
3237 pte_t entry;
3238 int ret;
3239
3240 if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3241 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3242 /* THP on COW? */
3243 VM_BUG_ON_PAGE(memcg, page);
3244
3245 ret = do_set_pmd(vmf, page);
3246 if (ret != VM_FAULT_FALLBACK)
3247 return ret;
3248 }
3249
3250 if (!vmf->pte) {
3251 ret = pte_alloc_one_map(vmf);
3252 if (ret)
3253 return ret;
3254 }
3255
3256 /* Re-check under ptl */
3257 if (unlikely(!pte_none(*vmf->pte)))
3258 return VM_FAULT_NOPAGE;
3259
3260 flush_icache_page(vma, page);
3261 entry = mk_pte(page, vma->vm_page_prot);
3262 if (write)
3263 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3264 /* copy-on-write page */
3265 if (write && !(vma->vm_flags & VM_SHARED)) {
3266 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3267 page_add_new_anon_rmap(page, vma, vmf->address, false);
3268 mem_cgroup_commit_charge(page, memcg, false, false);
3269 lru_cache_add_active_or_unevictable(page, vma);
3270 } else {
3271 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3272 page_add_file_rmap(page, false);
3273 }
3274 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3275
3276 /* no need to invalidate: a not-present page won't be cached */
3277 update_mmu_cache(vma, vmf->address, vmf->pte);
3278
3279 return 0;
3280 }
3281
3282
3283 /**
3284 * finish_fault - finish page fault once we have prepared the page to fault
3285 *
3286 * @vmf: structure describing the fault
3287 *
3288 * This function handles all that is needed to finish a page fault once the
3289 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3290 * given page, adds reverse page mapping, handles memcg charges and LRU
3291 * addition. The function returns 0 on success, VM_FAULT_ code in case of
3292 * error.
3293 *
3294 * The function expects the page to be locked and on success it consumes a
3295 * reference of a page being mapped (for the PTE which maps it).
3296 */
3297 int finish_fault(struct vm_fault *vmf)
3298 {
3299 struct page *page;
3300 int ret = 0;
3301
3302 /* Did we COW the page? */
3303 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3304 !(vmf->vma->vm_flags & VM_SHARED))
3305 page = vmf->cow_page;
3306 else
3307 page = vmf->page;
3308
3309 /*
3310 * check even for read faults because we might have lost our CoWed
3311 * page
3312 */
3313 if (!(vmf->vma->vm_flags & VM_SHARED))
3314 ret = check_stable_address_space(vmf->vma->vm_mm);
3315 if (!ret)
3316 ret = alloc_set_pte(vmf, vmf->memcg, page);
3317 if (vmf->pte)
3318 pte_unmap_unlock(vmf->pte, vmf->ptl);
3319 return ret;
3320 }
3321
3322 static unsigned long fault_around_bytes __read_mostly =
3323 rounddown_pow_of_two(65536);
3324
3325 #ifdef CONFIG_DEBUG_FS
3326 static int fault_around_bytes_get(void *data, u64 *val)
3327 {
3328 *val = fault_around_bytes;
3329 return 0;
3330 }
3331
3332 /*
3333 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
3334 * rounded down to nearest page order. It's what do_fault_around() expects to
3335 * see.
3336 */
3337 static int fault_around_bytes_set(void *data, u64 val)
3338 {
3339 if (val / PAGE_SIZE > PTRS_PER_PTE)
3340 return -EINVAL;
3341 if (val > PAGE_SIZE)
3342 fault_around_bytes = rounddown_pow_of_two(val);
3343 else
3344 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3345 return 0;
3346 }
3347 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3348 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3349
3350 static int __init fault_around_debugfs(void)
3351 {
3352 void *ret;
3353
3354 ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3355 &fault_around_bytes_fops);
3356 if (!ret)
3357 pr_warn("Failed to create fault_around_bytes in debugfs");
3358 return 0;
3359 }
3360 late_initcall(fault_around_debugfs);
3361 #endif
3362
3363 /*
3364 * do_fault_around() tries to map few pages around the fault address. The hope
3365 * is that the pages will be needed soon and this will lower the number of
3366 * faults to handle.
3367 *
3368 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3369 * not ready to be mapped: not up-to-date, locked, etc.
3370 *
3371 * This function is called with the page table lock taken. In the split ptlock
3372 * case the page table lock only protects only those entries which belong to
3373 * the page table corresponding to the fault address.
3374 *
3375 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3376 * only once.
3377 *
3378 * fault_around_pages() defines how many pages we'll try to map.
3379 * do_fault_around() expects it to return a power of two less than or equal to
3380 * PTRS_PER_PTE.
3381 *
3382 * The virtual address of the area that we map is naturally aligned to the
3383 * fault_around_pages() value (and therefore to page order). This way it's
3384 * easier to guarantee that we don't cross page table boundaries.
3385 */
3386 static int do_fault_around(struct vm_fault *vmf)
3387 {
3388 unsigned long address = vmf->address, nr_pages, mask;
3389 pgoff_t start_pgoff = vmf->pgoff;
3390 pgoff_t end_pgoff;
3391 int off, ret = 0;
3392
3393 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3394 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3395
3396 vmf->address = max(address & mask, vmf->vma->vm_start);
3397 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3398 start_pgoff -= off;
3399
3400 /*
3401 * end_pgoff is either end of page table or end of vma
3402 * or fault_around_pages() from start_pgoff, depending what is nearest.
3403 */
3404 end_pgoff = start_pgoff -
3405 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3406 PTRS_PER_PTE - 1;
3407 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3408 start_pgoff + nr_pages - 1);
3409
3410 if (pmd_none(*vmf->pmd)) {
3411 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3412 vmf->address);
3413 if (!vmf->prealloc_pte)
3414 goto out;
3415 smp_wmb(); /* See comment in __pte_alloc() */
3416 }
3417
3418 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3419
3420 /* Huge page is mapped? Page fault is solved */
3421 if (pmd_trans_huge(*vmf->pmd)) {
3422 ret = VM_FAULT_NOPAGE;
3423 goto out;
3424 }
3425
3426 /* ->map_pages() haven't done anything useful. Cold page cache? */
3427 if (!vmf->pte)
3428 goto out;
3429
3430 /* check if the page fault is solved */
3431 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3432 if (!pte_none(*vmf->pte))
3433 ret = VM_FAULT_NOPAGE;
3434 pte_unmap_unlock(vmf->pte, vmf->ptl);
3435 out:
3436 vmf->address = address;
3437 vmf->pte = NULL;
3438 return ret;
3439 }
3440
3441 static int do_read_fault(struct vm_fault *vmf)
3442 {
3443 struct vm_area_struct *vma = vmf->vma;
3444 int ret = 0;
3445
3446 /*
3447 * Let's call ->map_pages() first and use ->fault() as fallback
3448 * if page by the offset is not ready to be mapped (cold cache or
3449 * something).
3450 */
3451 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3452 ret = do_fault_around(vmf);
3453 if (ret)
3454 return ret;
3455 }
3456
3457 ret = __do_fault(vmf);
3458 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3459 return ret;
3460
3461 ret |= finish_fault(vmf);
3462 unlock_page(vmf->page);
3463 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3464 put_page(vmf->page);
3465 return ret;
3466 }
3467
3468 static int do_cow_fault(struct vm_fault *vmf)
3469 {
3470 struct vm_area_struct *vma = vmf->vma;
3471 int ret;
3472
3473 if (unlikely(anon_vma_prepare(vma)))
3474 return VM_FAULT_OOM;
3475
3476 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3477 if (!vmf->cow_page)
3478 return VM_FAULT_OOM;
3479
3480 if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3481 &vmf->memcg, false)) {
3482 put_page(vmf->cow_page);
3483 return VM_FAULT_OOM;
3484 }
3485
3486 ret = __do_fault(vmf);
3487 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3488 goto uncharge_out;
3489 if (ret & VM_FAULT_DONE_COW)
3490 return ret;
3491
3492 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3493 __SetPageUptodate(vmf->cow_page);
3494
3495 ret |= finish_fault(vmf);
3496 unlock_page(vmf->page);
3497 put_page(vmf->page);
3498 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3499 goto uncharge_out;
3500 return ret;
3501 uncharge_out:
3502 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3503 put_page(vmf->cow_page);
3504 return ret;
3505 }
3506
3507 static int do_shared_fault(struct vm_fault *vmf)
3508 {
3509 struct vm_area_struct *vma = vmf->vma;
3510 int ret, tmp;
3511
3512 ret = __do_fault(vmf);
3513 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3514 return ret;
3515
3516 /*
3517 * Check if the backing address space wants to know that the page is
3518 * about to become writable
3519 */
3520 if (vma->vm_ops->page_mkwrite) {
3521 unlock_page(vmf->page);
3522 tmp = do_page_mkwrite(vmf);
3523 if (unlikely(!tmp ||
3524 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3525 put_page(vmf->page);
3526 return tmp;
3527 }
3528 }
3529
3530 ret |= finish_fault(vmf);
3531 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3532 VM_FAULT_RETRY))) {
3533 unlock_page(vmf->page);
3534 put_page(vmf->page);
3535 return ret;
3536 }
3537
3538 fault_dirty_shared_page(vma, vmf->page);
3539 return ret;
3540 }
3541
3542 /*
3543 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3544 * but allow concurrent faults).
3545 * The mmap_sem may have been released depending on flags and our
3546 * return value. See filemap_fault() and __lock_page_or_retry().
3547 */
3548 static int do_fault(struct vm_fault *vmf)
3549 {
3550 struct vm_area_struct *vma = vmf->vma;
3551 int ret;
3552
3553 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3554 if (!vma->vm_ops->fault)
3555 ret = VM_FAULT_SIGBUS;
3556 else if (!(vmf->flags & FAULT_FLAG_WRITE))
3557 ret = do_read_fault(vmf);
3558 else if (!(vma->vm_flags & VM_SHARED))
3559 ret = do_cow_fault(vmf);
3560 else
3561 ret = do_shared_fault(vmf);
3562
3563 /* preallocated pagetable is unused: free it */
3564 if (vmf->prealloc_pte) {
3565 pte_free(vma->vm_mm, vmf->prealloc_pte);
3566 vmf->prealloc_pte = NULL;
3567 }
3568 return ret;
3569 }
3570
3571 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3572 unsigned long addr, int page_nid,
3573 int *flags)
3574 {
3575 get_page(page);
3576
3577 count_vm_numa_event(NUMA_HINT_FAULTS);
3578 if (page_nid == numa_node_id()) {
3579 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3580 *flags |= TNF_FAULT_LOCAL;
3581 }
3582
3583 return mpol_misplaced(page, vma, addr);
3584 }
3585
3586 static int do_numa_page(struct vm_fault *vmf)
3587 {
3588 struct vm_area_struct *vma = vmf->vma;
3589 struct page *page = NULL;
3590 int page_nid = -1;
3591 int last_cpupid;
3592 int target_nid;
3593 bool migrated = false;
3594 pte_t pte;
3595 bool was_writable = pte_savedwrite(vmf->orig_pte);
3596 int flags = 0;
3597
3598 /*
3599 * The "pte" at this point cannot be used safely without
3600 * validation through pte_unmap_same(). It's of NUMA type but
3601 * the pfn may be screwed if the read is non atomic.
3602 */
3603 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3604 spin_lock(vmf->ptl);
3605 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3606 pte_unmap_unlock(vmf->pte, vmf->ptl);
3607 goto out;
3608 }
3609
3610 /*
3611 * Make it present again, Depending on how arch implementes non
3612 * accessible ptes, some can allow access by kernel mode.
3613 */
3614 pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
3615 pte = pte_modify(pte, vma->vm_page_prot);
3616 pte = pte_mkyoung(pte);
3617 if (was_writable)
3618 pte = pte_mkwrite(pte);
3619 ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
3620 update_mmu_cache(vma, vmf->address, vmf->pte);
3621
3622 page = vm_normal_page(vma, vmf->address, pte);
3623 if (!page) {
3624 pte_unmap_unlock(vmf->pte, vmf->ptl);
3625 return 0;
3626 }
3627
3628 /* TODO: handle PTE-mapped THP */
3629 if (PageCompound(page)) {
3630 pte_unmap_unlock(vmf->pte, vmf->ptl);
3631 return 0;
3632 }
3633
3634 /*
3635 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3636 * much anyway since they can be in shared cache state. This misses
3637 * the case where a mapping is writable but the process never writes
3638 * to it but pte_write gets cleared during protection updates and
3639 * pte_dirty has unpredictable behaviour between PTE scan updates,
3640 * background writeback, dirty balancing and application behaviour.
3641 */
3642 if (!pte_write(pte))
3643 flags |= TNF_NO_GROUP;
3644
3645 /*
3646 * Flag if the page is shared between multiple address spaces. This
3647 * is later used when determining whether to group tasks together
3648 */
3649 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3650 flags |= TNF_SHARED;
3651
3652 last_cpupid = page_cpupid_last(page);
3653 page_nid = page_to_nid(page);
3654 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3655 &flags);
3656 pte_unmap_unlock(vmf->pte, vmf->ptl);
3657 if (target_nid == -1) {
3658 put_page(page);
3659 goto out;
3660 }
3661
3662 /* Migrate to the requested node */
3663 migrated = migrate_misplaced_page(page, vma, target_nid);
3664 if (migrated) {
3665 page_nid = target_nid;
3666 flags |= TNF_MIGRATED;
3667 } else
3668 flags |= TNF_MIGRATE_FAIL;
3669
3670 out:
3671 if (page_nid != -1)
3672 task_numa_fault(last_cpupid, page_nid, 1, flags);
3673 return 0;
3674 }
3675
3676 static inline int create_huge_pmd(struct vm_fault *vmf)
3677 {
3678 if (vma_is_anonymous(vmf->vma))
3679 return do_huge_pmd_anonymous_page(vmf);
3680 if (vmf->vma->vm_ops->huge_fault)
3681 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3682 return VM_FAULT_FALLBACK;
3683 }
3684
3685 static int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3686 {
3687 if (vma_is_anonymous(vmf->vma))
3688 return do_huge_pmd_wp_page(vmf, orig_pmd);
3689 if (vmf->vma->vm_ops->huge_fault)
3690 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3691
3692 /* COW handled on pte level: split pmd */
3693 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3694 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3695
3696 return VM_FAULT_FALLBACK;
3697 }
3698
3699 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3700 {
3701 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3702 }
3703
3704 static int create_huge_pud(struct vm_fault *vmf)
3705 {
3706 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3707 /* No support for anonymous transparent PUD pages yet */
3708 if (vma_is_anonymous(vmf->vma))
3709 return VM_FAULT_FALLBACK;
3710 if (vmf->vma->vm_ops->huge_fault)
3711 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3712 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3713 return VM_FAULT_FALLBACK;
3714 }
3715
3716 static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3717 {
3718 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3719 /* No support for anonymous transparent PUD pages yet */
3720 if (vma_is_anonymous(vmf->vma))
3721 return VM_FAULT_FALLBACK;
3722 if (vmf->vma->vm_ops->huge_fault)
3723 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3724 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3725 return VM_FAULT_FALLBACK;
3726 }
3727
3728 /*
3729 * These routines also need to handle stuff like marking pages dirty
3730 * and/or accessed for architectures that don't do it in hardware (most
3731 * RISC architectures). The early dirtying is also good on the i386.
3732 *
3733 * There is also a hook called "update_mmu_cache()" that architectures
3734 * with external mmu caches can use to update those (ie the Sparc or
3735 * PowerPC hashed page tables that act as extended TLBs).
3736 *
3737 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3738 * concurrent faults).
3739 *
3740 * The mmap_sem may have been released depending on flags and our return value.
3741 * See filemap_fault() and __lock_page_or_retry().
3742 */
3743 static int handle_pte_fault(struct vm_fault *vmf)
3744 {
3745 pte_t entry;
3746
3747 if (unlikely(pmd_none(*vmf->pmd))) {
3748 /*
3749 * Leave __pte_alloc() until later: because vm_ops->fault may
3750 * want to allocate huge page, and if we expose page table
3751 * for an instant, it will be difficult to retract from
3752 * concurrent faults and from rmap lookups.
3753 */
3754 vmf->pte = NULL;
3755 } else {
3756 /* See comment in pte_alloc_one_map() */
3757 if (pmd_devmap_trans_unstable(vmf->pmd))
3758 return 0;
3759 /*
3760 * A regular pmd is established and it can't morph into a huge
3761 * pmd from under us anymore at this point because we hold the
3762 * mmap_sem read mode and khugepaged takes it in write mode.
3763 * So now it's safe to run pte_offset_map().
3764 */
3765 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3766 vmf->orig_pte = *vmf->pte;
3767
3768 /*
3769 * some architectures can have larger ptes than wordsize,
3770 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3771 * CONFIG_32BIT=y, so READ_ONCE or ACCESS_ONCE cannot guarantee
3772 * atomic accesses. The code below just needs a consistent
3773 * view for the ifs and we later double check anyway with the
3774 * ptl lock held. So here a barrier will do.
3775 */
3776 barrier();
3777 if (pte_none(vmf->orig_pte)) {
3778 pte_unmap(vmf->pte);
3779 vmf->pte = NULL;
3780 }
3781 }
3782
3783 if (!vmf->pte) {
3784 if (vma_is_anonymous(vmf->vma))
3785 return do_anonymous_page(vmf);
3786 else
3787 return do_fault(vmf);
3788 }
3789
3790 if (!pte_present(vmf->orig_pte))
3791 return do_swap_page(vmf);
3792
3793 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3794 return do_numa_page(vmf);
3795
3796 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3797 spin_lock(vmf->ptl);
3798 entry = vmf->orig_pte;
3799 if (unlikely(!pte_same(*vmf->pte, entry)))
3800 goto unlock;
3801 if (vmf->flags & FAULT_FLAG_WRITE) {
3802 if (!pte_write(entry))
3803 return do_wp_page(vmf);
3804 entry = pte_mkdirty(entry);
3805 }
3806 entry = pte_mkyoung(entry);
3807 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3808 vmf->flags & FAULT_FLAG_WRITE)) {
3809 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3810 } else {
3811 /*
3812 * This is needed only for protection faults but the arch code
3813 * is not yet telling us if this is a protection fault or not.
3814 * This still avoids useless tlb flushes for .text page faults
3815 * with threads.
3816 */
3817 if (vmf->flags & FAULT_FLAG_WRITE)
3818 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
3819 }
3820 unlock:
3821 pte_unmap_unlock(vmf->pte, vmf->ptl);
3822 return 0;
3823 }
3824
3825 /*
3826 * By the time we get here, we already hold the mm semaphore
3827 *
3828 * The mmap_sem may have been released depending on flags and our
3829 * return value. See filemap_fault() and __lock_page_or_retry().
3830 */
3831 static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3832 unsigned int flags)
3833 {
3834 struct vm_fault vmf = {
3835 .vma = vma,
3836 .address = address & PAGE_MASK,
3837 .flags = flags,
3838 .pgoff = linear_page_index(vma, address),
3839 .gfp_mask = __get_fault_gfp_mask(vma),
3840 };
3841 struct mm_struct *mm = vma->vm_mm;
3842 pgd_t *pgd;
3843 p4d_t *p4d;
3844 int ret;
3845
3846 pgd = pgd_offset(mm, address);
3847 p4d = p4d_alloc(mm, pgd, address);
3848 if (!p4d)
3849 return VM_FAULT_OOM;
3850
3851 vmf.pud = pud_alloc(mm, p4d, address);
3852 if (!vmf.pud)
3853 return VM_FAULT_OOM;
3854 if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
3855 ret = create_huge_pud(&vmf);
3856 if (!(ret & VM_FAULT_FALLBACK))
3857 return ret;
3858 } else {
3859 pud_t orig_pud = *vmf.pud;
3860
3861 barrier();
3862 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
3863 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3864
3865 /* NUMA case for anonymous PUDs would go here */
3866
3867 if (dirty && !pud_write(orig_pud)) {
3868 ret = wp_huge_pud(&vmf, orig_pud);
3869 if (!(ret & VM_FAULT_FALLBACK))
3870 return ret;
3871 } else {
3872 huge_pud_set_accessed(&vmf, orig_pud);
3873 return 0;
3874 }
3875 }
3876 }
3877
3878 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
3879 if (!vmf.pmd)
3880 return VM_FAULT_OOM;
3881 if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
3882 ret = create_huge_pmd(&vmf);
3883 if (!(ret & VM_FAULT_FALLBACK))
3884 return ret;
3885 } else {
3886 pmd_t orig_pmd = *vmf.pmd;
3887
3888 barrier();
3889 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3890 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
3891 return do_huge_pmd_numa_page(&vmf, orig_pmd);
3892
3893 if ((vmf.flags & FAULT_FLAG_WRITE) &&
3894 !pmd_write(orig_pmd)) {
3895 ret = wp_huge_pmd(&vmf, orig_pmd);
3896 if (!(ret & VM_FAULT_FALLBACK))
3897 return ret;
3898 } else {
3899 huge_pmd_set_accessed(&vmf, orig_pmd);
3900 return 0;
3901 }
3902 }
3903 }
3904
3905 return handle_pte_fault(&vmf);
3906 }
3907
3908 /*
3909 * By the time we get here, we already hold the mm semaphore
3910 *
3911 * The mmap_sem may have been released depending on flags and our
3912 * return value. See filemap_fault() and __lock_page_or_retry().
3913 */
3914 int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3915 unsigned int flags)
3916 {
3917 int ret;
3918
3919 __set_current_state(TASK_RUNNING);
3920
3921 count_vm_event(PGFAULT);
3922 count_memcg_event_mm(vma->vm_mm, PGFAULT);
3923
3924 /* do counter updates before entering really critical section. */
3925 check_sync_rss_stat(current);
3926
3927 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3928 flags & FAULT_FLAG_INSTRUCTION,
3929 flags & FAULT_FLAG_REMOTE))
3930 return VM_FAULT_SIGSEGV;
3931
3932 /*
3933 * Enable the memcg OOM handling for faults triggered in user
3934 * space. Kernel faults are handled more gracefully.
3935 */
3936 if (flags & FAULT_FLAG_USER)
3937 mem_cgroup_oom_enable();
3938
3939 if (unlikely(is_vm_hugetlb_page(vma)))
3940 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
3941 else
3942 ret = __handle_mm_fault(vma, address, flags);
3943
3944 if (flags & FAULT_FLAG_USER) {
3945 mem_cgroup_oom_disable();
3946 /*
3947 * The task may have entered a memcg OOM situation but
3948 * if the allocation error was handled gracefully (no
3949 * VM_FAULT_OOM), there is no need to kill anything.
3950 * Just clean up the OOM state peacefully.
3951 */
3952 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3953 mem_cgroup_oom_synchronize(false);
3954 }
3955
3956 return ret;
3957 }
3958 EXPORT_SYMBOL_GPL(handle_mm_fault);
3959
3960 #ifndef __PAGETABLE_P4D_FOLDED
3961 /*
3962 * Allocate p4d page table.
3963 * We've already handled the fast-path in-line.
3964 */
3965 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3966 {
3967 p4d_t *new = p4d_alloc_one(mm, address);
3968 if (!new)
3969 return -ENOMEM;
3970
3971 smp_wmb(); /* See comment in __pte_alloc */
3972
3973 spin_lock(&mm->page_table_lock);
3974 if (pgd_present(*pgd)) /* Another has populated it */
3975 p4d_free(mm, new);
3976 else
3977 pgd_populate(mm, pgd, new);
3978 spin_unlock(&mm->page_table_lock);
3979 return 0;
3980 }
3981 #endif /* __PAGETABLE_P4D_FOLDED */
3982
3983 #ifndef __PAGETABLE_PUD_FOLDED
3984 /*
3985 * Allocate page upper directory.
3986 * We've already handled the fast-path in-line.
3987 */
3988 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
3989 {
3990 pud_t *new = pud_alloc_one(mm, address);
3991 if (!new)
3992 return -ENOMEM;
3993
3994 smp_wmb(); /* See comment in __pte_alloc */
3995
3996 spin_lock(&mm->page_table_lock);
3997 #ifndef __ARCH_HAS_5LEVEL_HACK
3998 if (p4d_present(*p4d)) /* Another has populated it */
3999 pud_free(mm, new);
4000 else
4001 p4d_populate(mm, p4d, new);
4002 #else
4003 if (pgd_present(*p4d)) /* Another has populated it */
4004 pud_free(mm, new);
4005 else
4006 pgd_populate(mm, p4d, new);
4007 #endif /* __ARCH_HAS_5LEVEL_HACK */
4008 spin_unlock(&mm->page_table_lock);
4009 return 0;
4010 }
4011 #endif /* __PAGETABLE_PUD_FOLDED */
4012
4013 #ifndef __PAGETABLE_PMD_FOLDED
4014 /*
4015 * Allocate page middle directory.
4016 * We've already handled the fast-path in-line.
4017 */
4018 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4019 {
4020 spinlock_t *ptl;
4021 pmd_t *new = pmd_alloc_one(mm, address);
4022 if (!new)
4023 return -ENOMEM;
4024
4025 smp_wmb(); /* See comment in __pte_alloc */
4026
4027 ptl = pud_lock(mm, pud);
4028 #ifndef __ARCH_HAS_4LEVEL_HACK
4029 if (!pud_present(*pud)) {
4030 mm_inc_nr_pmds(mm);
4031 pud_populate(mm, pud, new);
4032 } else /* Another has populated it */
4033 pmd_free(mm, new);
4034 #else
4035 if (!pgd_present(*pud)) {
4036 mm_inc_nr_pmds(mm);
4037 pgd_populate(mm, pud, new);
4038 } else /* Another has populated it */
4039 pmd_free(mm, new);
4040 #endif /* __ARCH_HAS_4LEVEL_HACK */
4041 spin_unlock(ptl);
4042 return 0;
4043 }
4044 #endif /* __PAGETABLE_PMD_FOLDED */
4045
4046 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4047 unsigned long *start, unsigned long *end,
4048 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4049 {
4050 pgd_t *pgd;
4051 p4d_t *p4d;
4052 pud_t *pud;
4053 pmd_t *pmd;
4054 pte_t *ptep;
4055
4056 pgd = pgd_offset(mm, address);
4057 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4058 goto out;
4059
4060 p4d = p4d_offset(pgd, address);
4061 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4062 goto out;
4063
4064 pud = pud_offset(p4d, address);
4065 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4066 goto out;
4067
4068 pmd = pmd_offset(pud, address);
4069 VM_BUG_ON(pmd_trans_huge(*pmd));
4070
4071 if (pmd_huge(*pmd)) {
4072 if (!pmdpp)
4073 goto out;
4074
4075 if (start && end) {
4076 *start = address & PMD_MASK;
4077 *end = *start + PMD_SIZE;
4078 mmu_notifier_invalidate_range_start(mm, *start, *end);
4079 }
4080 *ptlp = pmd_lock(mm, pmd);
4081 if (pmd_huge(*pmd)) {
4082 *pmdpp = pmd;
4083 return 0;
4084 }
4085 spin_unlock(*ptlp);
4086 if (start && end)
4087 mmu_notifier_invalidate_range_end(mm, *start, *end);
4088 }
4089
4090 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4091 goto out;
4092
4093 if (start && end) {
4094 *start = address & PAGE_MASK;
4095 *end = *start + PAGE_SIZE;
4096 mmu_notifier_invalidate_range_start(mm, *start, *end);
4097 }
4098 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4099 if (!pte_present(*ptep))
4100 goto unlock;
4101 *ptepp = ptep;
4102 return 0;
4103 unlock:
4104 pte_unmap_unlock(ptep, *ptlp);
4105 if (start && end)
4106 mmu_notifier_invalidate_range_end(mm, *start, *end);
4107 out:
4108 return -EINVAL;
4109 }
4110
4111 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4112 pte_t **ptepp, spinlock_t **ptlp)
4113 {
4114 int res;
4115
4116 /* (void) is needed to make gcc happy */
4117 (void) __cond_lock(*ptlp,
4118 !(res = __follow_pte_pmd(mm, address, NULL, NULL,
4119 ptepp, NULL, ptlp)));
4120 return res;
4121 }
4122
4123 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4124 unsigned long *start, unsigned long *end,
4125 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4126 {
4127 int res;
4128
4129 /* (void) is needed to make gcc happy */
4130 (void) __cond_lock(*ptlp,
4131 !(res = __follow_pte_pmd(mm, address, start, end,
4132 ptepp, pmdpp, ptlp)));
4133 return res;
4134 }
4135 EXPORT_SYMBOL(follow_pte_pmd);
4136
4137 /**
4138 * follow_pfn - look up PFN at a user virtual address
4139 * @vma: memory mapping
4140 * @address: user virtual address
4141 * @pfn: location to store found PFN
4142 *
4143 * Only IO mappings and raw PFN mappings are allowed.
4144 *
4145 * Returns zero and the pfn at @pfn on success, -ve otherwise.
4146 */
4147 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4148 unsigned long *pfn)
4149 {
4150 int ret = -EINVAL;
4151 spinlock_t *ptl;
4152 pte_t *ptep;
4153
4154 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4155 return ret;
4156
4157 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4158 if (ret)
4159 return ret;
4160 *pfn = pte_pfn(*ptep);
4161 pte_unmap_unlock(ptep, ptl);
4162 return 0;
4163 }
4164 EXPORT_SYMBOL(follow_pfn);
4165
4166 #ifdef CONFIG_HAVE_IOREMAP_PROT
4167 int follow_phys(struct vm_area_struct *vma,
4168 unsigned long address, unsigned int flags,
4169 unsigned long *prot, resource_size_t *phys)
4170 {
4171 int ret = -EINVAL;
4172 pte_t *ptep, pte;
4173 spinlock_t *ptl;
4174
4175 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4176 goto out;
4177
4178 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4179 goto out;
4180 pte = *ptep;
4181
4182 if ((flags & FOLL_WRITE) && !pte_write(pte))
4183 goto unlock;
4184
4185 *prot = pgprot_val(pte_pgprot(pte));
4186 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4187
4188 ret = 0;
4189 unlock:
4190 pte_unmap_unlock(ptep, ptl);
4191 out:
4192 return ret;
4193 }
4194
4195 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4196 void *buf, int len, int write)
4197 {
4198 resource_size_t phys_addr;
4199 unsigned long prot = 0;
4200 void __iomem *maddr;
4201 int offset = addr & (PAGE_SIZE-1);
4202
4203 if (follow_phys(vma, addr, write, &prot, &phys_addr))
4204 return -EINVAL;
4205
4206 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4207 if (write)
4208 memcpy_toio(maddr + offset, buf, len);
4209 else
4210 memcpy_fromio(buf, maddr + offset, len);
4211 iounmap(maddr);
4212
4213 return len;
4214 }
4215 EXPORT_SYMBOL_GPL(generic_access_phys);
4216 #endif
4217
4218 /*
4219 * Access another process' address space as given in mm. If non-NULL, use the
4220 * given task for page fault accounting.
4221 */
4222 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4223 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4224 {
4225 struct vm_area_struct *vma;
4226 void *old_buf = buf;
4227 int write = gup_flags & FOLL_WRITE;
4228
4229 down_read(&mm->mmap_sem);
4230 /* ignore errors, just check how much was successfully transferred */
4231 while (len) {
4232 int bytes, ret, offset;
4233 void *maddr;
4234 struct page *page = NULL;
4235
4236 ret = get_user_pages_remote(tsk, mm, addr, 1,
4237 gup_flags, &page, &vma, NULL);
4238 if (ret <= 0) {
4239 #ifndef CONFIG_HAVE_IOREMAP_PROT
4240 break;
4241 #else
4242 /*
4243 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4244 * we can access using slightly different code.
4245 */
4246 vma = find_vma(mm, addr);
4247 if (!vma || vma->vm_start > addr)
4248 break;
4249 if (vma->vm_ops && vma->vm_ops->access)
4250 ret = vma->vm_ops->access(vma, addr, buf,
4251 len, write);
4252 if (ret <= 0)
4253 break;
4254 bytes = ret;
4255 #endif
4256 } else {
4257 bytes = len;
4258 offset = addr & (PAGE_SIZE-1);
4259 if (bytes > PAGE_SIZE-offset)
4260 bytes = PAGE_SIZE-offset;
4261
4262 maddr = kmap(page);
4263 if (write) {
4264 copy_to_user_page(vma, page, addr,
4265 maddr + offset, buf, bytes);
4266 set_page_dirty_lock(page);
4267 } else {
4268 copy_from_user_page(vma, page, addr,
4269 buf, maddr + offset, bytes);
4270 }
4271 kunmap(page);
4272 put_page(page);
4273 }
4274 len -= bytes;
4275 buf += bytes;
4276 addr += bytes;
4277 }
4278 up_read(&mm->mmap_sem);
4279
4280 return buf - old_buf;
4281 }
4282
4283 /**
4284 * access_remote_vm - access another process' address space
4285 * @mm: the mm_struct of the target address space
4286 * @addr: start address to access
4287 * @buf: source or destination buffer
4288 * @len: number of bytes to transfer
4289 * @gup_flags: flags modifying lookup behaviour
4290 *
4291 * The caller must hold a reference on @mm.
4292 */
4293 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4294 void *buf, int len, unsigned int gup_flags)
4295 {
4296 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4297 }
4298
4299 /*
4300 * Access another process' address space.
4301 * Source/target buffer must be kernel space,
4302 * Do not walk the page table directly, use get_user_pages
4303 */
4304 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4305 void *buf, int len, unsigned int gup_flags)
4306 {
4307 struct mm_struct *mm;
4308 int ret;
4309
4310 mm = get_task_mm(tsk);
4311 if (!mm)
4312 return 0;
4313
4314 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4315
4316 mmput(mm);
4317
4318 return ret;
4319 }
4320 EXPORT_SYMBOL_GPL(access_process_vm);
4321
4322 /*
4323 * Print the name of a VMA.
4324 */
4325 void print_vma_addr(char *prefix, unsigned long ip)
4326 {
4327 struct mm_struct *mm = current->mm;
4328 struct vm_area_struct *vma;
4329
4330 /*
4331 * Do not print if we are in atomic
4332 * contexts (in exception stacks, etc.):
4333 */
4334 if (preempt_count())
4335 return;
4336
4337 down_read(&mm->mmap_sem);
4338 vma = find_vma(mm, ip);
4339 if (vma && vma->vm_file) {
4340 struct file *f = vma->vm_file;
4341 char *buf = (char *)__get_free_page(GFP_KERNEL);
4342 if (buf) {
4343 char *p;
4344
4345 p = file_path(f, buf, PAGE_SIZE);
4346 if (IS_ERR(p))
4347 p = "?";
4348 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4349 vma->vm_start,
4350 vma->vm_end - vma->vm_start);
4351 free_page((unsigned long)buf);
4352 }
4353 }
4354 up_read(&mm->mmap_sem);
4355 }
4356
4357 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4358 void __might_fault(const char *file, int line)
4359 {
4360 /*
4361 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4362 * holding the mmap_sem, this is safe because kernel memory doesn't
4363 * get paged out, therefore we'll never actually fault, and the
4364 * below annotations will generate false positives.
4365 */
4366 if (uaccess_kernel())
4367 return;
4368 if (pagefault_disabled())
4369 return;
4370 __might_sleep(file, line, 0);
4371 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4372 if (current->mm)
4373 might_lock_read(&current->mm->mmap_sem);
4374 #endif
4375 }
4376 EXPORT_SYMBOL(__might_fault);
4377 #endif
4378
4379 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4380 static void clear_gigantic_page(struct page *page,
4381 unsigned long addr,
4382 unsigned int pages_per_huge_page)
4383 {
4384 int i;
4385 struct page *p = page;
4386
4387 might_sleep();
4388 for (i = 0; i < pages_per_huge_page;
4389 i++, p = mem_map_next(p, page, i)) {
4390 cond_resched();
4391 clear_user_highpage(p, addr + i * PAGE_SIZE);
4392 }
4393 }
4394 void clear_huge_page(struct page *page,
4395 unsigned long addr, unsigned int pages_per_huge_page)
4396 {
4397 int i;
4398
4399 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4400 clear_gigantic_page(page, addr, pages_per_huge_page);
4401 return;
4402 }
4403
4404 might_sleep();
4405 for (i = 0; i < pages_per_huge_page; i++) {
4406 cond_resched();
4407 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4408 }
4409 }
4410
4411 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4412 unsigned long addr,
4413 struct vm_area_struct *vma,
4414 unsigned int pages_per_huge_page)
4415 {
4416 int i;
4417 struct page *dst_base = dst;
4418 struct page *src_base = src;
4419
4420 for (i = 0; i < pages_per_huge_page; ) {
4421 cond_resched();
4422 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4423
4424 i++;
4425 dst = mem_map_next(dst, dst_base, i);
4426 src = mem_map_next(src, src_base, i);
4427 }
4428 }
4429
4430 void copy_user_huge_page(struct page *dst, struct page *src,
4431 unsigned long addr, struct vm_area_struct *vma,
4432 unsigned int pages_per_huge_page)
4433 {
4434 int i;
4435
4436 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4437 copy_user_gigantic_page(dst, src, addr, vma,
4438 pages_per_huge_page);
4439 return;
4440 }
4441
4442 might_sleep();
4443 for (i = 0; i < pages_per_huge_page; i++) {
4444 cond_resched();
4445 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4446 }
4447 }
4448
4449 long copy_huge_page_from_user(struct page *dst_page,
4450 const void __user *usr_src,
4451 unsigned int pages_per_huge_page,
4452 bool allow_pagefault)
4453 {
4454 void *src = (void *)usr_src;
4455 void *page_kaddr;
4456 unsigned long i, rc = 0;
4457 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4458
4459 for (i = 0; i < pages_per_huge_page; i++) {
4460 if (allow_pagefault)
4461 page_kaddr = kmap(dst_page + i);
4462 else
4463 page_kaddr = kmap_atomic(dst_page + i);
4464 rc = copy_from_user(page_kaddr,
4465 (const void __user *)(src + i * PAGE_SIZE),
4466 PAGE_SIZE);
4467 if (allow_pagefault)
4468 kunmap(dst_page + i);
4469 else
4470 kunmap_atomic(page_kaddr);
4471
4472 ret_val -= (PAGE_SIZE - rc);
4473 if (rc)
4474 break;
4475
4476 cond_resched();
4477 }
4478 return ret_val;
4479 }
4480 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4481
4482 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4483
4484 static struct kmem_cache *page_ptl_cachep;
4485
4486 void __init ptlock_cache_init(void)
4487 {
4488 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4489 SLAB_PANIC, NULL);
4490 }
4491
4492 bool ptlock_alloc(struct page *page)
4493 {
4494 spinlock_t *ptl;
4495
4496 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4497 if (!ptl)
4498 return false;
4499 page->ptl = ptl;
4500 return true;
4501 }
4502
4503 void ptlock_free(struct page *page)
4504 {
4505 kmem_cache_free(page_ptl_cachep, page->ptl);
4506 }
4507 #endif