]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/shmem.c
x86/msr: Add definitions for new speculation control MSRs
[mirror_ubuntu-artful-kernel.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/sched/signal.h>
33 #include <linux/export.h>
34 #include <linux/swap.h>
35 #include <linux/uio.h>
36 #include <linux/khugepaged.h>
37
38 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
39
40 static struct vfsmount *shm_mnt;
41
42 #ifdef CONFIG_SHMEM
43 /*
44 * This virtual memory filesystem is heavily based on the ramfs. It
45 * extends ramfs by the ability to use swap and honor resource limits
46 * which makes it a completely usable filesystem.
47 */
48
49 #include <linux/xattr.h>
50 #include <linux/exportfs.h>
51 #include <linux/posix_acl.h>
52 #include <linux/posix_acl_xattr.h>
53 #include <linux/mman.h>
54 #include <linux/string.h>
55 #include <linux/slab.h>
56 #include <linux/backing-dev.h>
57 #include <linux/shmem_fs.h>
58 #include <linux/writeback.h>
59 #include <linux/blkdev.h>
60 #include <linux/pagevec.h>
61 #include <linux/percpu_counter.h>
62 #include <linux/falloc.h>
63 #include <linux/splice.h>
64 #include <linux/security.h>
65 #include <linux/swapops.h>
66 #include <linux/mempolicy.h>
67 #include <linux/namei.h>
68 #include <linux/ctype.h>
69 #include <linux/migrate.h>
70 #include <linux/highmem.h>
71 #include <linux/seq_file.h>
72 #include <linux/magic.h>
73 #include <linux/syscalls.h>
74 #include <linux/fcntl.h>
75 #include <uapi/linux/memfd.h>
76 #include <linux/userfaultfd_k.h>
77 #include <linux/rmap.h>
78 #include <linux/uuid.h>
79
80 #include <linux/uaccess.h>
81 #include <asm/pgtable.h>
82
83 #include "internal.h"
84
85 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
86 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
87
88 /* Pretend that each entry is of this size in directory's i_size */
89 #define BOGO_DIRENT_SIZE 20
90
91 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
92 #define SHORT_SYMLINK_LEN 128
93
94 /*
95 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
96 * inode->i_private (with i_mutex making sure that it has only one user at
97 * a time): we would prefer not to enlarge the shmem inode just for that.
98 */
99 struct shmem_falloc {
100 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
101 pgoff_t start; /* start of range currently being fallocated */
102 pgoff_t next; /* the next page offset to be fallocated */
103 pgoff_t nr_falloced; /* how many new pages have been fallocated */
104 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
105 };
106
107 #ifdef CONFIG_TMPFS
108 static unsigned long shmem_default_max_blocks(void)
109 {
110 return totalram_pages / 2;
111 }
112
113 static int shmem_default_max_inodes(void)
114 {
115 unsigned long ul;
116
117 ul = INT_MAX;
118 ul = min3(ul, totalram_pages - totalhigh_pages, totalram_pages / 2);
119 return ul;
120 }
121 #endif
122
123 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
124 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
125 struct shmem_inode_info *info, pgoff_t index);
126 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
127 struct page **pagep, enum sgp_type sgp,
128 gfp_t gfp, struct vm_area_struct *vma,
129 struct vm_fault *vmf, int *fault_type);
130
131 int shmem_getpage(struct inode *inode, pgoff_t index,
132 struct page **pagep, enum sgp_type sgp)
133 {
134 return shmem_getpage_gfp(inode, index, pagep, sgp,
135 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
136 }
137
138 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
139 {
140 return sb->s_fs_info;
141 }
142
143 /*
144 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
145 * for shared memory and for shared anonymous (/dev/zero) mappings
146 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
147 * consistent with the pre-accounting of private mappings ...
148 */
149 static inline int shmem_acct_size(unsigned long flags, loff_t size)
150 {
151 return (flags & VM_NORESERVE) ?
152 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
153 }
154
155 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
156 {
157 if (!(flags & VM_NORESERVE))
158 vm_unacct_memory(VM_ACCT(size));
159 }
160
161 static inline int shmem_reacct_size(unsigned long flags,
162 loff_t oldsize, loff_t newsize)
163 {
164 if (!(flags & VM_NORESERVE)) {
165 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
166 return security_vm_enough_memory_mm(current->mm,
167 VM_ACCT(newsize) - VM_ACCT(oldsize));
168 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
169 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
170 }
171 return 0;
172 }
173
174 /*
175 * ... whereas tmpfs objects are accounted incrementally as
176 * pages are allocated, in order to allow large sparse files.
177 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
178 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
179 */
180 static inline int shmem_acct_block(unsigned long flags, long pages)
181 {
182 if (!(flags & VM_NORESERVE))
183 return 0;
184
185 return security_vm_enough_memory_mm(current->mm,
186 pages * VM_ACCT(PAGE_SIZE));
187 }
188
189 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
190 {
191 if (flags & VM_NORESERVE)
192 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
193 }
194
195 static const struct super_operations shmem_ops;
196 static const struct address_space_operations shmem_aops;
197 static const struct file_operations shmem_file_operations;
198 static const struct inode_operations shmem_inode_operations;
199 static const struct inode_operations shmem_dir_inode_operations;
200 static const struct inode_operations shmem_special_inode_operations;
201 static const struct vm_operations_struct shmem_vm_ops;
202 static struct file_system_type shmem_fs_type;
203
204 bool vma_is_shmem(struct vm_area_struct *vma)
205 {
206 return vma->vm_ops == &shmem_vm_ops;
207 }
208
209 static LIST_HEAD(shmem_swaplist);
210 static DEFINE_MUTEX(shmem_swaplist_mutex);
211
212 static int shmem_reserve_inode(struct super_block *sb)
213 {
214 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
215 if (sbinfo->max_inodes) {
216 spin_lock(&sbinfo->stat_lock);
217 if (!sbinfo->free_inodes) {
218 spin_unlock(&sbinfo->stat_lock);
219 return -ENOSPC;
220 }
221 sbinfo->free_inodes--;
222 spin_unlock(&sbinfo->stat_lock);
223 }
224 return 0;
225 }
226
227 static void shmem_free_inode(struct super_block *sb)
228 {
229 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
230 if (sbinfo->max_inodes) {
231 spin_lock(&sbinfo->stat_lock);
232 sbinfo->free_inodes++;
233 spin_unlock(&sbinfo->stat_lock);
234 }
235 }
236
237 /**
238 * shmem_recalc_inode - recalculate the block usage of an inode
239 * @inode: inode to recalc
240 *
241 * We have to calculate the free blocks since the mm can drop
242 * undirtied hole pages behind our back.
243 *
244 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
245 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
246 *
247 * It has to be called with the spinlock held.
248 */
249 static void shmem_recalc_inode(struct inode *inode)
250 {
251 struct shmem_inode_info *info = SHMEM_I(inode);
252 long freed;
253
254 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
255 if (freed > 0) {
256 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
257 if (sbinfo->max_blocks)
258 percpu_counter_add(&sbinfo->used_blocks, -freed);
259 info->alloced -= freed;
260 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
261 shmem_unacct_blocks(info->flags, freed);
262 }
263 }
264
265 bool shmem_charge(struct inode *inode, long pages)
266 {
267 struct shmem_inode_info *info = SHMEM_I(inode);
268 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
269 unsigned long flags;
270
271 if (shmem_acct_block(info->flags, pages))
272 return false;
273 spin_lock_irqsave(&info->lock, flags);
274 info->alloced += pages;
275 inode->i_blocks += pages * BLOCKS_PER_PAGE;
276 shmem_recalc_inode(inode);
277 spin_unlock_irqrestore(&info->lock, flags);
278 inode->i_mapping->nrpages += pages;
279
280 if (!sbinfo->max_blocks)
281 return true;
282 if (percpu_counter_compare(&sbinfo->used_blocks,
283 sbinfo->max_blocks - pages) > 0) {
284 inode->i_mapping->nrpages -= pages;
285 spin_lock_irqsave(&info->lock, flags);
286 info->alloced -= pages;
287 shmem_recalc_inode(inode);
288 spin_unlock_irqrestore(&info->lock, flags);
289 shmem_unacct_blocks(info->flags, pages);
290 return false;
291 }
292 percpu_counter_add(&sbinfo->used_blocks, pages);
293 return true;
294 }
295
296 void shmem_uncharge(struct inode *inode, long pages)
297 {
298 struct shmem_inode_info *info = SHMEM_I(inode);
299 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
300 unsigned long flags;
301
302 spin_lock_irqsave(&info->lock, flags);
303 info->alloced -= pages;
304 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
305 shmem_recalc_inode(inode);
306 spin_unlock_irqrestore(&info->lock, flags);
307
308 if (sbinfo->max_blocks)
309 percpu_counter_sub(&sbinfo->used_blocks, pages);
310 shmem_unacct_blocks(info->flags, pages);
311 }
312
313 /*
314 * Replace item expected in radix tree by a new item, while holding tree lock.
315 */
316 static int shmem_radix_tree_replace(struct address_space *mapping,
317 pgoff_t index, void *expected, void *replacement)
318 {
319 struct radix_tree_node *node;
320 void **pslot;
321 void *item;
322
323 VM_BUG_ON(!expected);
324 VM_BUG_ON(!replacement);
325 item = __radix_tree_lookup(&mapping->page_tree, index, &node, &pslot);
326 if (!item)
327 return -ENOENT;
328 if (item != expected)
329 return -ENOENT;
330 __radix_tree_replace(&mapping->page_tree, node, pslot,
331 replacement, NULL, NULL);
332 return 0;
333 }
334
335 /*
336 * Sometimes, before we decide whether to proceed or to fail, we must check
337 * that an entry was not already brought back from swap by a racing thread.
338 *
339 * Checking page is not enough: by the time a SwapCache page is locked, it
340 * might be reused, and again be SwapCache, using the same swap as before.
341 */
342 static bool shmem_confirm_swap(struct address_space *mapping,
343 pgoff_t index, swp_entry_t swap)
344 {
345 void *item;
346
347 rcu_read_lock();
348 item = radix_tree_lookup(&mapping->page_tree, index);
349 rcu_read_unlock();
350 return item == swp_to_radix_entry(swap);
351 }
352
353 /*
354 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
355 *
356 * SHMEM_HUGE_NEVER:
357 * disables huge pages for the mount;
358 * SHMEM_HUGE_ALWAYS:
359 * enables huge pages for the mount;
360 * SHMEM_HUGE_WITHIN_SIZE:
361 * only allocate huge pages if the page will be fully within i_size,
362 * also respect fadvise()/madvise() hints;
363 * SHMEM_HUGE_ADVISE:
364 * only allocate huge pages if requested with fadvise()/madvise();
365 */
366
367 #define SHMEM_HUGE_NEVER 0
368 #define SHMEM_HUGE_ALWAYS 1
369 #define SHMEM_HUGE_WITHIN_SIZE 2
370 #define SHMEM_HUGE_ADVISE 3
371
372 /*
373 * Special values.
374 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
375 *
376 * SHMEM_HUGE_DENY:
377 * disables huge on shm_mnt and all mounts, for emergency use;
378 * SHMEM_HUGE_FORCE:
379 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
380 *
381 */
382 #define SHMEM_HUGE_DENY (-1)
383 #define SHMEM_HUGE_FORCE (-2)
384
385 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
386 /* ifdef here to avoid bloating shmem.o when not necessary */
387
388 int shmem_huge __read_mostly;
389
390 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
391 static int shmem_parse_huge(const char *str)
392 {
393 if (!strcmp(str, "never"))
394 return SHMEM_HUGE_NEVER;
395 if (!strcmp(str, "always"))
396 return SHMEM_HUGE_ALWAYS;
397 if (!strcmp(str, "within_size"))
398 return SHMEM_HUGE_WITHIN_SIZE;
399 if (!strcmp(str, "advise"))
400 return SHMEM_HUGE_ADVISE;
401 if (!strcmp(str, "deny"))
402 return SHMEM_HUGE_DENY;
403 if (!strcmp(str, "force"))
404 return SHMEM_HUGE_FORCE;
405 return -EINVAL;
406 }
407
408 static const char *shmem_format_huge(int huge)
409 {
410 switch (huge) {
411 case SHMEM_HUGE_NEVER:
412 return "never";
413 case SHMEM_HUGE_ALWAYS:
414 return "always";
415 case SHMEM_HUGE_WITHIN_SIZE:
416 return "within_size";
417 case SHMEM_HUGE_ADVISE:
418 return "advise";
419 case SHMEM_HUGE_DENY:
420 return "deny";
421 case SHMEM_HUGE_FORCE:
422 return "force";
423 default:
424 VM_BUG_ON(1);
425 return "bad_val";
426 }
427 }
428 #endif
429
430 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
431 struct shrink_control *sc, unsigned long nr_to_split)
432 {
433 LIST_HEAD(list), *pos, *next;
434 LIST_HEAD(to_remove);
435 struct inode *inode;
436 struct shmem_inode_info *info;
437 struct page *page;
438 unsigned long batch = sc ? sc->nr_to_scan : 128;
439 int removed = 0, split = 0;
440
441 if (list_empty(&sbinfo->shrinklist))
442 return SHRINK_STOP;
443
444 spin_lock(&sbinfo->shrinklist_lock);
445 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
446 info = list_entry(pos, struct shmem_inode_info, shrinklist);
447
448 /* pin the inode */
449 inode = igrab(&info->vfs_inode);
450
451 /* inode is about to be evicted */
452 if (!inode) {
453 list_del_init(&info->shrinklist);
454 removed++;
455 goto next;
456 }
457
458 /* Check if there's anything to gain */
459 if (round_up(inode->i_size, PAGE_SIZE) ==
460 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
461 list_move(&info->shrinklist, &to_remove);
462 removed++;
463 goto next;
464 }
465
466 list_move(&info->shrinklist, &list);
467 next:
468 if (!--batch)
469 break;
470 }
471 spin_unlock(&sbinfo->shrinklist_lock);
472
473 list_for_each_safe(pos, next, &to_remove) {
474 info = list_entry(pos, struct shmem_inode_info, shrinklist);
475 inode = &info->vfs_inode;
476 list_del_init(&info->shrinklist);
477 iput(inode);
478 }
479
480 list_for_each_safe(pos, next, &list) {
481 int ret;
482
483 info = list_entry(pos, struct shmem_inode_info, shrinklist);
484 inode = &info->vfs_inode;
485
486 if (nr_to_split && split >= nr_to_split) {
487 iput(inode);
488 continue;
489 }
490
491 page = find_lock_page(inode->i_mapping,
492 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
493 if (!page)
494 goto drop;
495
496 if (!PageTransHuge(page)) {
497 unlock_page(page);
498 put_page(page);
499 goto drop;
500 }
501
502 ret = split_huge_page(page);
503 unlock_page(page);
504 put_page(page);
505
506 if (ret) {
507 /* split failed: leave it on the list */
508 iput(inode);
509 continue;
510 }
511
512 split++;
513 drop:
514 list_del_init(&info->shrinklist);
515 removed++;
516 iput(inode);
517 }
518
519 spin_lock(&sbinfo->shrinklist_lock);
520 list_splice_tail(&list, &sbinfo->shrinklist);
521 sbinfo->shrinklist_len -= removed;
522 spin_unlock(&sbinfo->shrinklist_lock);
523
524 return split;
525 }
526
527 static long shmem_unused_huge_scan(struct super_block *sb,
528 struct shrink_control *sc)
529 {
530 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
531
532 if (!READ_ONCE(sbinfo->shrinklist_len))
533 return SHRINK_STOP;
534
535 return shmem_unused_huge_shrink(sbinfo, sc, 0);
536 }
537
538 static long shmem_unused_huge_count(struct super_block *sb,
539 struct shrink_control *sc)
540 {
541 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
542 return READ_ONCE(sbinfo->shrinklist_len);
543 }
544 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
545
546 #define shmem_huge SHMEM_HUGE_DENY
547
548 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
549 struct shrink_control *sc, unsigned long nr_to_split)
550 {
551 return 0;
552 }
553 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
554
555 /*
556 * Like add_to_page_cache_locked, but error if expected item has gone.
557 */
558 static int shmem_add_to_page_cache(struct page *page,
559 struct address_space *mapping,
560 pgoff_t index, void *expected)
561 {
562 int error, nr = hpage_nr_pages(page);
563
564 VM_BUG_ON_PAGE(PageTail(page), page);
565 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
566 VM_BUG_ON_PAGE(!PageLocked(page), page);
567 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
568 VM_BUG_ON(expected && PageTransHuge(page));
569
570 page_ref_add(page, nr);
571 page->mapping = mapping;
572 page->index = index;
573
574 spin_lock_irq(&mapping->tree_lock);
575 if (PageTransHuge(page)) {
576 void __rcu **results;
577 pgoff_t idx;
578 int i;
579
580 error = 0;
581 if (radix_tree_gang_lookup_slot(&mapping->page_tree,
582 &results, &idx, index, 1) &&
583 idx < index + HPAGE_PMD_NR) {
584 error = -EEXIST;
585 }
586
587 if (!error) {
588 for (i = 0; i < HPAGE_PMD_NR; i++) {
589 error = radix_tree_insert(&mapping->page_tree,
590 index + i, page + i);
591 VM_BUG_ON(error);
592 }
593 count_vm_event(THP_FILE_ALLOC);
594 }
595 } else if (!expected) {
596 error = radix_tree_insert(&mapping->page_tree, index, page);
597 } else {
598 error = shmem_radix_tree_replace(mapping, index, expected,
599 page);
600 }
601
602 if (!error) {
603 mapping->nrpages += nr;
604 if (PageTransHuge(page))
605 __inc_node_page_state(page, NR_SHMEM_THPS);
606 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
607 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
608 spin_unlock_irq(&mapping->tree_lock);
609 } else {
610 page->mapping = NULL;
611 spin_unlock_irq(&mapping->tree_lock);
612 page_ref_sub(page, nr);
613 }
614 return error;
615 }
616
617 /*
618 * Like delete_from_page_cache, but substitutes swap for page.
619 */
620 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
621 {
622 struct address_space *mapping = page->mapping;
623 int error;
624
625 VM_BUG_ON_PAGE(PageCompound(page), page);
626
627 spin_lock_irq(&mapping->tree_lock);
628 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
629 page->mapping = NULL;
630 mapping->nrpages--;
631 __dec_node_page_state(page, NR_FILE_PAGES);
632 __dec_node_page_state(page, NR_SHMEM);
633 spin_unlock_irq(&mapping->tree_lock);
634 put_page(page);
635 BUG_ON(error);
636 }
637
638 /*
639 * Remove swap entry from radix tree, free the swap and its page cache.
640 */
641 static int shmem_free_swap(struct address_space *mapping,
642 pgoff_t index, void *radswap)
643 {
644 void *old;
645
646 spin_lock_irq(&mapping->tree_lock);
647 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
648 spin_unlock_irq(&mapping->tree_lock);
649 if (old != radswap)
650 return -ENOENT;
651 free_swap_and_cache(radix_to_swp_entry(radswap));
652 return 0;
653 }
654
655 /*
656 * Determine (in bytes) how many of the shmem object's pages mapped by the
657 * given offsets are swapped out.
658 *
659 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
660 * as long as the inode doesn't go away and racy results are not a problem.
661 */
662 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
663 pgoff_t start, pgoff_t end)
664 {
665 struct radix_tree_iter iter;
666 void **slot;
667 struct page *page;
668 unsigned long swapped = 0;
669
670 rcu_read_lock();
671
672 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
673 if (iter.index >= end)
674 break;
675
676 page = radix_tree_deref_slot(slot);
677
678 if (radix_tree_deref_retry(page)) {
679 slot = radix_tree_iter_retry(&iter);
680 continue;
681 }
682
683 if (radix_tree_exceptional_entry(page))
684 swapped++;
685
686 if (need_resched()) {
687 slot = radix_tree_iter_resume(slot, &iter);
688 cond_resched_rcu();
689 }
690 }
691
692 rcu_read_unlock();
693
694 return swapped << PAGE_SHIFT;
695 }
696
697 /*
698 * Determine (in bytes) how many of the shmem object's pages mapped by the
699 * given vma is swapped out.
700 *
701 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
702 * as long as the inode doesn't go away and racy results are not a problem.
703 */
704 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
705 {
706 struct inode *inode = file_inode(vma->vm_file);
707 struct shmem_inode_info *info = SHMEM_I(inode);
708 struct address_space *mapping = inode->i_mapping;
709 unsigned long swapped;
710
711 /* Be careful as we don't hold info->lock */
712 swapped = READ_ONCE(info->swapped);
713
714 /*
715 * The easier cases are when the shmem object has nothing in swap, or
716 * the vma maps it whole. Then we can simply use the stats that we
717 * already track.
718 */
719 if (!swapped)
720 return 0;
721
722 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
723 return swapped << PAGE_SHIFT;
724
725 /* Here comes the more involved part */
726 return shmem_partial_swap_usage(mapping,
727 linear_page_index(vma, vma->vm_start),
728 linear_page_index(vma, vma->vm_end));
729 }
730
731 /*
732 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
733 */
734 void shmem_unlock_mapping(struct address_space *mapping)
735 {
736 struct pagevec pvec;
737 pgoff_t indices[PAGEVEC_SIZE];
738 pgoff_t index = 0;
739
740 pagevec_init(&pvec, 0);
741 /*
742 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
743 */
744 while (!mapping_unevictable(mapping)) {
745 /*
746 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
747 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
748 */
749 pvec.nr = find_get_entries(mapping, index,
750 PAGEVEC_SIZE, pvec.pages, indices);
751 if (!pvec.nr)
752 break;
753 index = indices[pvec.nr - 1] + 1;
754 pagevec_remove_exceptionals(&pvec);
755 check_move_unevictable_pages(pvec.pages, pvec.nr);
756 pagevec_release(&pvec);
757 cond_resched();
758 }
759 }
760
761 /*
762 * Remove range of pages and swap entries from radix tree, and free them.
763 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
764 */
765 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
766 bool unfalloc)
767 {
768 struct address_space *mapping = inode->i_mapping;
769 struct shmem_inode_info *info = SHMEM_I(inode);
770 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
771 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
772 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
773 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
774 struct pagevec pvec;
775 pgoff_t indices[PAGEVEC_SIZE];
776 long nr_swaps_freed = 0;
777 pgoff_t index;
778 int i;
779
780 if (lend == -1)
781 end = -1; /* unsigned, so actually very big */
782
783 pagevec_init(&pvec, 0);
784 index = start;
785 while (index < end) {
786 pvec.nr = find_get_entries(mapping, index,
787 min(end - index, (pgoff_t)PAGEVEC_SIZE),
788 pvec.pages, indices);
789 if (!pvec.nr)
790 break;
791 for (i = 0; i < pagevec_count(&pvec); i++) {
792 struct page *page = pvec.pages[i];
793
794 index = indices[i];
795 if (index >= end)
796 break;
797
798 if (radix_tree_exceptional_entry(page)) {
799 if (unfalloc)
800 continue;
801 nr_swaps_freed += !shmem_free_swap(mapping,
802 index, page);
803 continue;
804 }
805
806 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
807
808 if (!trylock_page(page))
809 continue;
810
811 if (PageTransTail(page)) {
812 /* Middle of THP: zero out the page */
813 clear_highpage(page);
814 unlock_page(page);
815 continue;
816 } else if (PageTransHuge(page)) {
817 if (index == round_down(end, HPAGE_PMD_NR)) {
818 /*
819 * Range ends in the middle of THP:
820 * zero out the page
821 */
822 clear_highpage(page);
823 unlock_page(page);
824 continue;
825 }
826 index += HPAGE_PMD_NR - 1;
827 i += HPAGE_PMD_NR - 1;
828 }
829
830 if (!unfalloc || !PageUptodate(page)) {
831 VM_BUG_ON_PAGE(PageTail(page), page);
832 if (page_mapping(page) == mapping) {
833 VM_BUG_ON_PAGE(PageWriteback(page), page);
834 truncate_inode_page(mapping, page);
835 }
836 }
837 unlock_page(page);
838 }
839 pagevec_remove_exceptionals(&pvec);
840 pagevec_release(&pvec);
841 cond_resched();
842 index++;
843 }
844
845 if (partial_start) {
846 struct page *page = NULL;
847 shmem_getpage(inode, start - 1, &page, SGP_READ);
848 if (page) {
849 unsigned int top = PAGE_SIZE;
850 if (start > end) {
851 top = partial_end;
852 partial_end = 0;
853 }
854 zero_user_segment(page, partial_start, top);
855 set_page_dirty(page);
856 unlock_page(page);
857 put_page(page);
858 }
859 }
860 if (partial_end) {
861 struct page *page = NULL;
862 shmem_getpage(inode, end, &page, SGP_READ);
863 if (page) {
864 zero_user_segment(page, 0, partial_end);
865 set_page_dirty(page);
866 unlock_page(page);
867 put_page(page);
868 }
869 }
870 if (start >= end)
871 return;
872
873 index = start;
874 while (index < end) {
875 cond_resched();
876
877 pvec.nr = find_get_entries(mapping, index,
878 min(end - index, (pgoff_t)PAGEVEC_SIZE),
879 pvec.pages, indices);
880 if (!pvec.nr) {
881 /* If all gone or hole-punch or unfalloc, we're done */
882 if (index == start || end != -1)
883 break;
884 /* But if truncating, restart to make sure all gone */
885 index = start;
886 continue;
887 }
888 for (i = 0; i < pagevec_count(&pvec); i++) {
889 struct page *page = pvec.pages[i];
890
891 index = indices[i];
892 if (index >= end)
893 break;
894
895 if (radix_tree_exceptional_entry(page)) {
896 if (unfalloc)
897 continue;
898 if (shmem_free_swap(mapping, index, page)) {
899 /* Swap was replaced by page: retry */
900 index--;
901 break;
902 }
903 nr_swaps_freed++;
904 continue;
905 }
906
907 lock_page(page);
908
909 if (PageTransTail(page)) {
910 /* Middle of THP: zero out the page */
911 clear_highpage(page);
912 unlock_page(page);
913 /*
914 * Partial thp truncate due 'start' in middle
915 * of THP: don't need to look on these pages
916 * again on !pvec.nr restart.
917 */
918 if (index != round_down(end, HPAGE_PMD_NR))
919 start++;
920 continue;
921 } else if (PageTransHuge(page)) {
922 if (index == round_down(end, HPAGE_PMD_NR)) {
923 /*
924 * Range ends in the middle of THP:
925 * zero out the page
926 */
927 clear_highpage(page);
928 unlock_page(page);
929 continue;
930 }
931 index += HPAGE_PMD_NR - 1;
932 i += HPAGE_PMD_NR - 1;
933 }
934
935 if (!unfalloc || !PageUptodate(page)) {
936 VM_BUG_ON_PAGE(PageTail(page), page);
937 if (page_mapping(page) == mapping) {
938 VM_BUG_ON_PAGE(PageWriteback(page), page);
939 truncate_inode_page(mapping, page);
940 } else {
941 /* Page was replaced by swap: retry */
942 unlock_page(page);
943 index--;
944 break;
945 }
946 }
947 unlock_page(page);
948 }
949 pagevec_remove_exceptionals(&pvec);
950 pagevec_release(&pvec);
951 index++;
952 }
953
954 spin_lock_irq(&info->lock);
955 info->swapped -= nr_swaps_freed;
956 shmem_recalc_inode(inode);
957 spin_unlock_irq(&info->lock);
958 }
959
960 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
961 {
962 shmem_undo_range(inode, lstart, lend, false);
963 inode->i_ctime = inode->i_mtime = current_time(inode);
964 }
965 EXPORT_SYMBOL_GPL(shmem_truncate_range);
966
967 static int shmem_getattr(const struct path *path, struct kstat *stat,
968 u32 request_mask, unsigned int query_flags)
969 {
970 struct inode *inode = path->dentry->d_inode;
971 struct shmem_inode_info *info = SHMEM_I(inode);
972
973 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
974 spin_lock_irq(&info->lock);
975 shmem_recalc_inode(inode);
976 spin_unlock_irq(&info->lock);
977 }
978 generic_fillattr(inode, stat);
979 return 0;
980 }
981
982 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
983 {
984 struct inode *inode = d_inode(dentry);
985 struct shmem_inode_info *info = SHMEM_I(inode);
986 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
987 int error;
988
989 error = setattr_prepare(dentry, attr);
990 if (error)
991 return error;
992
993 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
994 loff_t oldsize = inode->i_size;
995 loff_t newsize = attr->ia_size;
996
997 /* protected by i_mutex */
998 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
999 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1000 return -EPERM;
1001
1002 if (newsize != oldsize) {
1003 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1004 oldsize, newsize);
1005 if (error)
1006 return error;
1007 i_size_write(inode, newsize);
1008 inode->i_ctime = inode->i_mtime = current_time(inode);
1009 }
1010 if (newsize <= oldsize) {
1011 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1012 if (oldsize > holebegin)
1013 unmap_mapping_range(inode->i_mapping,
1014 holebegin, 0, 1);
1015 if (info->alloced)
1016 shmem_truncate_range(inode,
1017 newsize, (loff_t)-1);
1018 /* unmap again to remove racily COWed private pages */
1019 if (oldsize > holebegin)
1020 unmap_mapping_range(inode->i_mapping,
1021 holebegin, 0, 1);
1022
1023 /*
1024 * Part of the huge page can be beyond i_size: subject
1025 * to shrink under memory pressure.
1026 */
1027 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1028 spin_lock(&sbinfo->shrinklist_lock);
1029 /*
1030 * _careful to defend against unlocked access to
1031 * ->shrink_list in shmem_unused_huge_shrink()
1032 */
1033 if (list_empty_careful(&info->shrinklist)) {
1034 list_add_tail(&info->shrinklist,
1035 &sbinfo->shrinklist);
1036 sbinfo->shrinklist_len++;
1037 }
1038 spin_unlock(&sbinfo->shrinklist_lock);
1039 }
1040 }
1041 }
1042
1043 setattr_copy(inode, attr);
1044 if (attr->ia_valid & ATTR_MODE)
1045 error = posix_acl_chmod(inode, inode->i_mode);
1046 return error;
1047 }
1048
1049 static void shmem_evict_inode(struct inode *inode)
1050 {
1051 struct shmem_inode_info *info = SHMEM_I(inode);
1052 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1053
1054 if (inode->i_mapping->a_ops == &shmem_aops) {
1055 shmem_unacct_size(info->flags, inode->i_size);
1056 inode->i_size = 0;
1057 shmem_truncate_range(inode, 0, (loff_t)-1);
1058 if (!list_empty(&info->shrinklist)) {
1059 spin_lock(&sbinfo->shrinklist_lock);
1060 if (!list_empty(&info->shrinklist)) {
1061 list_del_init(&info->shrinklist);
1062 sbinfo->shrinklist_len--;
1063 }
1064 spin_unlock(&sbinfo->shrinklist_lock);
1065 }
1066 if (!list_empty(&info->swaplist)) {
1067 mutex_lock(&shmem_swaplist_mutex);
1068 list_del_init(&info->swaplist);
1069 mutex_unlock(&shmem_swaplist_mutex);
1070 }
1071 }
1072
1073 simple_xattrs_free(&info->xattrs);
1074 WARN_ON(inode->i_blocks);
1075 if (!sbinfo->idr_nouse && inode->i_ino) {
1076 mutex_lock(&sbinfo->idr_lock);
1077 idr_remove(&sbinfo->idr, inode->i_ino);
1078 mutex_unlock(&sbinfo->idr_lock);
1079 }
1080 shmem_free_inode(inode->i_sb);
1081 clear_inode(inode);
1082 }
1083
1084 static unsigned long find_swap_entry(struct radix_tree_root *root, void *item)
1085 {
1086 struct radix_tree_iter iter;
1087 void **slot;
1088 unsigned long found = -1;
1089 unsigned int checked = 0;
1090
1091 rcu_read_lock();
1092 radix_tree_for_each_slot(slot, root, &iter, 0) {
1093 if (*slot == item) {
1094 found = iter.index;
1095 break;
1096 }
1097 checked++;
1098 if ((checked % 4096) != 0)
1099 continue;
1100 slot = radix_tree_iter_resume(slot, &iter);
1101 cond_resched_rcu();
1102 }
1103
1104 rcu_read_unlock();
1105 return found;
1106 }
1107
1108 /*
1109 * If swap found in inode, free it and move page from swapcache to filecache.
1110 */
1111 static int shmem_unuse_inode(struct shmem_inode_info *info,
1112 swp_entry_t swap, struct page **pagep)
1113 {
1114 struct address_space *mapping = info->vfs_inode.i_mapping;
1115 void *radswap;
1116 pgoff_t index;
1117 gfp_t gfp;
1118 int error = 0;
1119
1120 radswap = swp_to_radix_entry(swap);
1121 index = find_swap_entry(&mapping->page_tree, radswap);
1122 if (index == -1)
1123 return -EAGAIN; /* tell shmem_unuse we found nothing */
1124
1125 /*
1126 * Move _head_ to start search for next from here.
1127 * But be careful: shmem_evict_inode checks list_empty without taking
1128 * mutex, and there's an instant in list_move_tail when info->swaplist
1129 * would appear empty, if it were the only one on shmem_swaplist.
1130 */
1131 if (shmem_swaplist.next != &info->swaplist)
1132 list_move_tail(&shmem_swaplist, &info->swaplist);
1133
1134 gfp = mapping_gfp_mask(mapping);
1135 if (shmem_should_replace_page(*pagep, gfp)) {
1136 mutex_unlock(&shmem_swaplist_mutex);
1137 error = shmem_replace_page(pagep, gfp, info, index);
1138 mutex_lock(&shmem_swaplist_mutex);
1139 /*
1140 * We needed to drop mutex to make that restrictive page
1141 * allocation, but the inode might have been freed while we
1142 * dropped it: although a racing shmem_evict_inode() cannot
1143 * complete without emptying the radix_tree, our page lock
1144 * on this swapcache page is not enough to prevent that -
1145 * free_swap_and_cache() of our swap entry will only
1146 * trylock_page(), removing swap from radix_tree whatever.
1147 *
1148 * We must not proceed to shmem_add_to_page_cache() if the
1149 * inode has been freed, but of course we cannot rely on
1150 * inode or mapping or info to check that. However, we can
1151 * safely check if our swap entry is still in use (and here
1152 * it can't have got reused for another page): if it's still
1153 * in use, then the inode cannot have been freed yet, and we
1154 * can safely proceed (if it's no longer in use, that tells
1155 * nothing about the inode, but we don't need to unuse swap).
1156 */
1157 if (!page_swapcount(*pagep))
1158 error = -ENOENT;
1159 }
1160
1161 /*
1162 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1163 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1164 * beneath us (pagelock doesn't help until the page is in pagecache).
1165 */
1166 if (!error)
1167 error = shmem_add_to_page_cache(*pagep, mapping, index,
1168 radswap);
1169 if (error != -ENOMEM) {
1170 /*
1171 * Truncation and eviction use free_swap_and_cache(), which
1172 * only does trylock page: if we raced, best clean up here.
1173 */
1174 delete_from_swap_cache(*pagep);
1175 set_page_dirty(*pagep);
1176 if (!error) {
1177 spin_lock_irq(&info->lock);
1178 info->swapped--;
1179 spin_unlock_irq(&info->lock);
1180 swap_free(swap);
1181 }
1182 }
1183 return error;
1184 }
1185
1186 /*
1187 * Search through swapped inodes to find and replace swap by page.
1188 */
1189 int shmem_unuse(swp_entry_t swap, struct page *page)
1190 {
1191 struct list_head *this, *next;
1192 struct shmem_inode_info *info;
1193 struct mem_cgroup *memcg;
1194 int error = 0;
1195
1196 /*
1197 * There's a faint possibility that swap page was replaced before
1198 * caller locked it: caller will come back later with the right page.
1199 */
1200 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1201 goto out;
1202
1203 /*
1204 * Charge page using GFP_KERNEL while we can wait, before taking
1205 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1206 * Charged back to the user (not to caller) when swap account is used.
1207 */
1208 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
1209 false);
1210 if (error)
1211 goto out;
1212 /* No radix_tree_preload: swap entry keeps a place for page in tree */
1213 error = -EAGAIN;
1214
1215 mutex_lock(&shmem_swaplist_mutex);
1216 list_for_each_safe(this, next, &shmem_swaplist) {
1217 info = list_entry(this, struct shmem_inode_info, swaplist);
1218 if (info->swapped)
1219 error = shmem_unuse_inode(info, swap, &page);
1220 else
1221 list_del_init(&info->swaplist);
1222 cond_resched();
1223 if (error != -EAGAIN)
1224 break;
1225 /* found nothing in this: move on to search the next */
1226 }
1227 mutex_unlock(&shmem_swaplist_mutex);
1228
1229 if (error) {
1230 if (error != -ENOMEM)
1231 error = 0;
1232 mem_cgroup_cancel_charge(page, memcg, false);
1233 } else
1234 mem_cgroup_commit_charge(page, memcg, true, false);
1235 out:
1236 unlock_page(page);
1237 put_page(page);
1238 return error;
1239 }
1240
1241 /*
1242 * Move the page from the page cache to the swap cache.
1243 */
1244 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1245 {
1246 struct shmem_inode_info *info;
1247 struct address_space *mapping;
1248 struct inode *inode;
1249 swp_entry_t swap;
1250 pgoff_t index;
1251
1252 VM_BUG_ON_PAGE(PageCompound(page), page);
1253 BUG_ON(!PageLocked(page));
1254 mapping = page->mapping;
1255 index = page->index;
1256 inode = mapping->host;
1257 info = SHMEM_I(inode);
1258 if (info->flags & VM_LOCKED)
1259 goto redirty;
1260 if (!total_swap_pages)
1261 goto redirty;
1262
1263 /*
1264 * Our capabilities prevent regular writeback or sync from ever calling
1265 * shmem_writepage; but a stacking filesystem might use ->writepage of
1266 * its underlying filesystem, in which case tmpfs should write out to
1267 * swap only in response to memory pressure, and not for the writeback
1268 * threads or sync.
1269 */
1270 if (!wbc->for_reclaim) {
1271 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1272 goto redirty;
1273 }
1274
1275 /*
1276 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1277 * value into swapfile.c, the only way we can correctly account for a
1278 * fallocated page arriving here is now to initialize it and write it.
1279 *
1280 * That's okay for a page already fallocated earlier, but if we have
1281 * not yet completed the fallocation, then (a) we want to keep track
1282 * of this page in case we have to undo it, and (b) it may not be a
1283 * good idea to continue anyway, once we're pushing into swap. So
1284 * reactivate the page, and let shmem_fallocate() quit when too many.
1285 */
1286 if (!PageUptodate(page)) {
1287 if (inode->i_private) {
1288 struct shmem_falloc *shmem_falloc;
1289 spin_lock(&inode->i_lock);
1290 shmem_falloc = inode->i_private;
1291 if (shmem_falloc &&
1292 !shmem_falloc->waitq &&
1293 index >= shmem_falloc->start &&
1294 index < shmem_falloc->next)
1295 shmem_falloc->nr_unswapped++;
1296 else
1297 shmem_falloc = NULL;
1298 spin_unlock(&inode->i_lock);
1299 if (shmem_falloc)
1300 goto redirty;
1301 }
1302 clear_highpage(page);
1303 flush_dcache_page(page);
1304 SetPageUptodate(page);
1305 }
1306
1307 swap = get_swap_page(page);
1308 if (!swap.val)
1309 goto redirty;
1310
1311 if (mem_cgroup_try_charge_swap(page, swap))
1312 goto free_swap;
1313
1314 /*
1315 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1316 * if it's not already there. Do it now before the page is
1317 * moved to swap cache, when its pagelock no longer protects
1318 * the inode from eviction. But don't unlock the mutex until
1319 * we've incremented swapped, because shmem_unuse_inode() will
1320 * prune a !swapped inode from the swaplist under this mutex.
1321 */
1322 mutex_lock(&shmem_swaplist_mutex);
1323 if (list_empty(&info->swaplist))
1324 list_add_tail(&info->swaplist, &shmem_swaplist);
1325
1326 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1327 spin_lock_irq(&info->lock);
1328 shmem_recalc_inode(inode);
1329 info->swapped++;
1330 spin_unlock_irq(&info->lock);
1331
1332 swap_shmem_alloc(swap);
1333 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1334
1335 mutex_unlock(&shmem_swaplist_mutex);
1336 BUG_ON(page_mapped(page));
1337 swap_writepage(page, wbc);
1338 return 0;
1339 }
1340
1341 mutex_unlock(&shmem_swaplist_mutex);
1342 free_swap:
1343 put_swap_page(page, swap);
1344 redirty:
1345 set_page_dirty(page);
1346 if (wbc->for_reclaim)
1347 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1348 unlock_page(page);
1349 return 0;
1350 }
1351
1352 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1353 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1354 {
1355 char buffer[64];
1356
1357 if (!mpol || mpol->mode == MPOL_DEFAULT)
1358 return; /* show nothing */
1359
1360 mpol_to_str(buffer, sizeof(buffer), mpol);
1361
1362 seq_printf(seq, ",mpol=%s", buffer);
1363 }
1364
1365 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1366 {
1367 struct mempolicy *mpol = NULL;
1368 if (sbinfo->mpol) {
1369 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1370 mpol = sbinfo->mpol;
1371 mpol_get(mpol);
1372 spin_unlock(&sbinfo->stat_lock);
1373 }
1374 return mpol;
1375 }
1376 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1377 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1378 {
1379 }
1380 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1381 {
1382 return NULL;
1383 }
1384 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1385 #ifndef CONFIG_NUMA
1386 #define vm_policy vm_private_data
1387 #endif
1388
1389 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1390 struct shmem_inode_info *info, pgoff_t index)
1391 {
1392 /* Create a pseudo vma that just contains the policy */
1393 vma->vm_start = 0;
1394 /* Bias interleave by inode number to distribute better across nodes */
1395 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1396 vma->vm_ops = NULL;
1397 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1398 }
1399
1400 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1401 {
1402 /* Drop reference taken by mpol_shared_policy_lookup() */
1403 mpol_cond_put(vma->vm_policy);
1404 }
1405
1406 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1407 struct shmem_inode_info *info, pgoff_t index)
1408 {
1409 struct vm_area_struct pvma;
1410 struct page *page;
1411
1412 shmem_pseudo_vma_init(&pvma, info, index);
1413 page = swapin_readahead(swap, gfp, &pvma, 0);
1414 shmem_pseudo_vma_destroy(&pvma);
1415
1416 return page;
1417 }
1418
1419 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1420 struct shmem_inode_info *info, pgoff_t index)
1421 {
1422 struct vm_area_struct pvma;
1423 struct inode *inode = &info->vfs_inode;
1424 struct address_space *mapping = inode->i_mapping;
1425 pgoff_t idx, hindex;
1426 void __rcu **results;
1427 struct page *page;
1428
1429 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1430 return NULL;
1431
1432 hindex = round_down(index, HPAGE_PMD_NR);
1433 rcu_read_lock();
1434 if (radix_tree_gang_lookup_slot(&mapping->page_tree, &results, &idx,
1435 hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1436 rcu_read_unlock();
1437 return NULL;
1438 }
1439 rcu_read_unlock();
1440
1441 shmem_pseudo_vma_init(&pvma, info, hindex);
1442 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1443 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1444 shmem_pseudo_vma_destroy(&pvma);
1445 if (page)
1446 prep_transhuge_page(page);
1447 return page;
1448 }
1449
1450 static struct page *shmem_alloc_page(gfp_t gfp,
1451 struct shmem_inode_info *info, pgoff_t index)
1452 {
1453 struct vm_area_struct pvma;
1454 struct page *page;
1455
1456 shmem_pseudo_vma_init(&pvma, info, index);
1457 page = alloc_page_vma(gfp, &pvma, 0);
1458 shmem_pseudo_vma_destroy(&pvma);
1459
1460 return page;
1461 }
1462
1463 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1464 struct shmem_inode_info *info, struct shmem_sb_info *sbinfo,
1465 pgoff_t index, bool huge)
1466 {
1467 struct page *page;
1468 int nr;
1469 int err = -ENOSPC;
1470
1471 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1472 huge = false;
1473 nr = huge ? HPAGE_PMD_NR : 1;
1474
1475 if (shmem_acct_block(info->flags, nr))
1476 goto failed;
1477 if (sbinfo->max_blocks) {
1478 if (percpu_counter_compare(&sbinfo->used_blocks,
1479 sbinfo->max_blocks - nr) > 0)
1480 goto unacct;
1481 percpu_counter_add(&sbinfo->used_blocks, nr);
1482 }
1483
1484 if (huge)
1485 page = shmem_alloc_hugepage(gfp, info, index);
1486 else
1487 page = shmem_alloc_page(gfp, info, index);
1488 if (page) {
1489 __SetPageLocked(page);
1490 __SetPageSwapBacked(page);
1491 return page;
1492 }
1493
1494 err = -ENOMEM;
1495 if (sbinfo->max_blocks)
1496 percpu_counter_add(&sbinfo->used_blocks, -nr);
1497 unacct:
1498 shmem_unacct_blocks(info->flags, nr);
1499 failed:
1500 return ERR_PTR(err);
1501 }
1502
1503 /*
1504 * When a page is moved from swapcache to shmem filecache (either by the
1505 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1506 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1507 * ignorance of the mapping it belongs to. If that mapping has special
1508 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1509 * we may need to copy to a suitable page before moving to filecache.
1510 *
1511 * In a future release, this may well be extended to respect cpuset and
1512 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1513 * but for now it is a simple matter of zone.
1514 */
1515 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1516 {
1517 return page_zonenum(page) > gfp_zone(gfp);
1518 }
1519
1520 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1521 struct shmem_inode_info *info, pgoff_t index)
1522 {
1523 struct page *oldpage, *newpage;
1524 struct address_space *swap_mapping;
1525 pgoff_t swap_index;
1526 int error;
1527
1528 oldpage = *pagep;
1529 swap_index = page_private(oldpage);
1530 swap_mapping = page_mapping(oldpage);
1531
1532 /*
1533 * We have arrived here because our zones are constrained, so don't
1534 * limit chance of success by further cpuset and node constraints.
1535 */
1536 gfp &= ~GFP_CONSTRAINT_MASK;
1537 newpage = shmem_alloc_page(gfp, info, index);
1538 if (!newpage)
1539 return -ENOMEM;
1540
1541 get_page(newpage);
1542 copy_highpage(newpage, oldpage);
1543 flush_dcache_page(newpage);
1544
1545 __SetPageLocked(newpage);
1546 __SetPageSwapBacked(newpage);
1547 SetPageUptodate(newpage);
1548 set_page_private(newpage, swap_index);
1549 SetPageSwapCache(newpage);
1550
1551 /*
1552 * Our caller will very soon move newpage out of swapcache, but it's
1553 * a nice clean interface for us to replace oldpage by newpage there.
1554 */
1555 spin_lock_irq(&swap_mapping->tree_lock);
1556 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1557 newpage);
1558 if (!error) {
1559 __inc_node_page_state(newpage, NR_FILE_PAGES);
1560 __dec_node_page_state(oldpage, NR_FILE_PAGES);
1561 }
1562 spin_unlock_irq(&swap_mapping->tree_lock);
1563
1564 if (unlikely(error)) {
1565 /*
1566 * Is this possible? I think not, now that our callers check
1567 * both PageSwapCache and page_private after getting page lock;
1568 * but be defensive. Reverse old to newpage for clear and free.
1569 */
1570 oldpage = newpage;
1571 } else {
1572 mem_cgroup_migrate(oldpage, newpage);
1573 lru_cache_add_anon(newpage);
1574 *pagep = newpage;
1575 }
1576
1577 ClearPageSwapCache(oldpage);
1578 set_page_private(oldpage, 0);
1579
1580 unlock_page(oldpage);
1581 put_page(oldpage);
1582 put_page(oldpage);
1583 return error;
1584 }
1585
1586 /*
1587 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1588 *
1589 * If we allocate a new one we do not mark it dirty. That's up to the
1590 * vm. If we swap it in we mark it dirty since we also free the swap
1591 * entry since a page cannot live in both the swap and page cache.
1592 *
1593 * fault_mm and fault_type are only supplied by shmem_fault:
1594 * otherwise they are NULL.
1595 */
1596 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1597 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1598 struct vm_area_struct *vma, struct vm_fault *vmf, int *fault_type)
1599 {
1600 struct address_space *mapping = inode->i_mapping;
1601 struct shmem_inode_info *info = SHMEM_I(inode);
1602 struct shmem_sb_info *sbinfo;
1603 struct mm_struct *charge_mm;
1604 struct mem_cgroup *memcg;
1605 struct page *page;
1606 swp_entry_t swap;
1607 enum sgp_type sgp_huge = sgp;
1608 pgoff_t hindex = index;
1609 int error;
1610 int once = 0;
1611 int alloced = 0;
1612
1613 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1614 return -EFBIG;
1615 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1616 sgp = SGP_CACHE;
1617 repeat:
1618 swap.val = 0;
1619 page = find_lock_entry(mapping, index);
1620 if (radix_tree_exceptional_entry(page)) {
1621 swap = radix_to_swp_entry(page);
1622 page = NULL;
1623 }
1624
1625 if (sgp <= SGP_CACHE &&
1626 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1627 error = -EINVAL;
1628 goto unlock;
1629 }
1630
1631 if (page && sgp == SGP_WRITE)
1632 mark_page_accessed(page);
1633
1634 /* fallocated page? */
1635 if (page && !PageUptodate(page)) {
1636 if (sgp != SGP_READ)
1637 goto clear;
1638 unlock_page(page);
1639 put_page(page);
1640 page = NULL;
1641 }
1642 if (page || (sgp == SGP_READ && !swap.val)) {
1643 *pagep = page;
1644 return 0;
1645 }
1646
1647 /*
1648 * Fast cache lookup did not find it:
1649 * bring it back from swap or allocate.
1650 */
1651 sbinfo = SHMEM_SB(inode->i_sb);
1652 charge_mm = vma ? vma->vm_mm : current->mm;
1653
1654 if (swap.val) {
1655 /* Look it up and read it in.. */
1656 page = lookup_swap_cache(swap);
1657 if (!page) {
1658 /* Or update major stats only when swapin succeeds?? */
1659 if (fault_type) {
1660 *fault_type |= VM_FAULT_MAJOR;
1661 count_vm_event(PGMAJFAULT);
1662 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1663 }
1664 /* Here we actually start the io */
1665 page = shmem_swapin(swap, gfp, info, index);
1666 if (!page) {
1667 error = -ENOMEM;
1668 goto failed;
1669 }
1670 }
1671
1672 /* We have to do this with page locked to prevent races */
1673 lock_page(page);
1674 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1675 !shmem_confirm_swap(mapping, index, swap)) {
1676 error = -EEXIST; /* try again */
1677 goto unlock;
1678 }
1679 if (!PageUptodate(page)) {
1680 error = -EIO;
1681 goto failed;
1682 }
1683 wait_on_page_writeback(page);
1684
1685 if (shmem_should_replace_page(page, gfp)) {
1686 error = shmem_replace_page(&page, gfp, info, index);
1687 if (error)
1688 goto failed;
1689 }
1690
1691 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1692 false);
1693 if (!error) {
1694 error = shmem_add_to_page_cache(page, mapping, index,
1695 swp_to_radix_entry(swap));
1696 /*
1697 * We already confirmed swap under page lock, and make
1698 * no memory allocation here, so usually no possibility
1699 * of error; but free_swap_and_cache() only trylocks a
1700 * page, so it is just possible that the entry has been
1701 * truncated or holepunched since swap was confirmed.
1702 * shmem_undo_range() will have done some of the
1703 * unaccounting, now delete_from_swap_cache() will do
1704 * the rest.
1705 * Reset swap.val? No, leave it so "failed" goes back to
1706 * "repeat": reading a hole and writing should succeed.
1707 */
1708 if (error) {
1709 mem_cgroup_cancel_charge(page, memcg, false);
1710 delete_from_swap_cache(page);
1711 }
1712 }
1713 if (error)
1714 goto failed;
1715
1716 mem_cgroup_commit_charge(page, memcg, true, false);
1717
1718 spin_lock_irq(&info->lock);
1719 info->swapped--;
1720 shmem_recalc_inode(inode);
1721 spin_unlock_irq(&info->lock);
1722
1723 if (sgp == SGP_WRITE)
1724 mark_page_accessed(page);
1725
1726 delete_from_swap_cache(page);
1727 set_page_dirty(page);
1728 swap_free(swap);
1729
1730 } else {
1731 if (vma && userfaultfd_missing(vma)) {
1732 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1733 return 0;
1734 }
1735
1736 /* shmem_symlink() */
1737 if (mapping->a_ops != &shmem_aops)
1738 goto alloc_nohuge;
1739 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1740 goto alloc_nohuge;
1741 if (shmem_huge == SHMEM_HUGE_FORCE)
1742 goto alloc_huge;
1743 switch (sbinfo->huge) {
1744 loff_t i_size;
1745 pgoff_t off;
1746 case SHMEM_HUGE_NEVER:
1747 goto alloc_nohuge;
1748 case SHMEM_HUGE_WITHIN_SIZE:
1749 off = round_up(index, HPAGE_PMD_NR);
1750 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1751 if (i_size >= HPAGE_PMD_SIZE &&
1752 i_size >> PAGE_SHIFT >= off)
1753 goto alloc_huge;
1754 /* fallthrough */
1755 case SHMEM_HUGE_ADVISE:
1756 if (sgp_huge == SGP_HUGE)
1757 goto alloc_huge;
1758 /* TODO: implement fadvise() hints */
1759 goto alloc_nohuge;
1760 }
1761
1762 alloc_huge:
1763 page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1764 index, true);
1765 if (IS_ERR(page)) {
1766 alloc_nohuge: page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1767 index, false);
1768 }
1769 if (IS_ERR(page)) {
1770 int retry = 5;
1771 error = PTR_ERR(page);
1772 page = NULL;
1773 if (error != -ENOSPC)
1774 goto failed;
1775 /*
1776 * Try to reclaim some spece by splitting a huge page
1777 * beyond i_size on the filesystem.
1778 */
1779 while (retry--) {
1780 int ret;
1781 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1782 if (ret == SHRINK_STOP)
1783 break;
1784 if (ret)
1785 goto alloc_nohuge;
1786 }
1787 goto failed;
1788 }
1789
1790 if (PageTransHuge(page))
1791 hindex = round_down(index, HPAGE_PMD_NR);
1792 else
1793 hindex = index;
1794
1795 if (sgp == SGP_WRITE)
1796 __SetPageReferenced(page);
1797
1798 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1799 PageTransHuge(page));
1800 if (error)
1801 goto unacct;
1802 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1803 compound_order(page));
1804 if (!error) {
1805 error = shmem_add_to_page_cache(page, mapping, hindex,
1806 NULL);
1807 radix_tree_preload_end();
1808 }
1809 if (error) {
1810 mem_cgroup_cancel_charge(page, memcg,
1811 PageTransHuge(page));
1812 goto unacct;
1813 }
1814 mem_cgroup_commit_charge(page, memcg, false,
1815 PageTransHuge(page));
1816 lru_cache_add_anon(page);
1817
1818 spin_lock_irq(&info->lock);
1819 info->alloced += 1 << compound_order(page);
1820 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1821 shmem_recalc_inode(inode);
1822 spin_unlock_irq(&info->lock);
1823 alloced = true;
1824
1825 if (PageTransHuge(page) &&
1826 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1827 hindex + HPAGE_PMD_NR - 1) {
1828 /*
1829 * Part of the huge page is beyond i_size: subject
1830 * to shrink under memory pressure.
1831 */
1832 spin_lock(&sbinfo->shrinklist_lock);
1833 /*
1834 * _careful to defend against unlocked access to
1835 * ->shrink_list in shmem_unused_huge_shrink()
1836 */
1837 if (list_empty_careful(&info->shrinklist)) {
1838 list_add_tail(&info->shrinklist,
1839 &sbinfo->shrinklist);
1840 sbinfo->shrinklist_len++;
1841 }
1842 spin_unlock(&sbinfo->shrinklist_lock);
1843 }
1844
1845 /*
1846 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1847 */
1848 if (sgp == SGP_FALLOC)
1849 sgp = SGP_WRITE;
1850 clear:
1851 /*
1852 * Let SGP_WRITE caller clear ends if write does not fill page;
1853 * but SGP_FALLOC on a page fallocated earlier must initialize
1854 * it now, lest undo on failure cancel our earlier guarantee.
1855 */
1856 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1857 struct page *head = compound_head(page);
1858 int i;
1859
1860 for (i = 0; i < (1 << compound_order(head)); i++) {
1861 clear_highpage(head + i);
1862 flush_dcache_page(head + i);
1863 }
1864 SetPageUptodate(head);
1865 }
1866 }
1867
1868 /* Perhaps the file has been truncated since we checked */
1869 if (sgp <= SGP_CACHE &&
1870 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1871 if (alloced) {
1872 ClearPageDirty(page);
1873 delete_from_page_cache(page);
1874 spin_lock_irq(&info->lock);
1875 shmem_recalc_inode(inode);
1876 spin_unlock_irq(&info->lock);
1877 }
1878 error = -EINVAL;
1879 goto unlock;
1880 }
1881 *pagep = page + index - hindex;
1882 return 0;
1883
1884 /*
1885 * Error recovery.
1886 */
1887 unacct:
1888 if (sbinfo->max_blocks)
1889 percpu_counter_sub(&sbinfo->used_blocks,
1890 1 << compound_order(page));
1891 shmem_unacct_blocks(info->flags, 1 << compound_order(page));
1892
1893 if (PageTransHuge(page)) {
1894 unlock_page(page);
1895 put_page(page);
1896 goto alloc_nohuge;
1897 }
1898 failed:
1899 if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1900 error = -EEXIST;
1901 unlock:
1902 if (page) {
1903 unlock_page(page);
1904 put_page(page);
1905 }
1906 if (error == -ENOSPC && !once++) {
1907 spin_lock_irq(&info->lock);
1908 shmem_recalc_inode(inode);
1909 spin_unlock_irq(&info->lock);
1910 goto repeat;
1911 }
1912 if (error == -EEXIST) /* from above or from radix_tree_insert */
1913 goto repeat;
1914 return error;
1915 }
1916
1917 /*
1918 * This is like autoremove_wake_function, but it removes the wait queue
1919 * entry unconditionally - even if something else had already woken the
1920 * target.
1921 */
1922 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1923 {
1924 int ret = default_wake_function(wait, mode, sync, key);
1925 list_del_init(&wait->entry);
1926 return ret;
1927 }
1928
1929 static int shmem_fault(struct vm_fault *vmf)
1930 {
1931 struct vm_area_struct *vma = vmf->vma;
1932 struct inode *inode = file_inode(vma->vm_file);
1933 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1934 enum sgp_type sgp;
1935 int error;
1936 int ret = VM_FAULT_LOCKED;
1937
1938 /*
1939 * Trinity finds that probing a hole which tmpfs is punching can
1940 * prevent the hole-punch from ever completing: which in turn
1941 * locks writers out with its hold on i_mutex. So refrain from
1942 * faulting pages into the hole while it's being punched. Although
1943 * shmem_undo_range() does remove the additions, it may be unable to
1944 * keep up, as each new page needs its own unmap_mapping_range() call,
1945 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1946 *
1947 * It does not matter if we sometimes reach this check just before the
1948 * hole-punch begins, so that one fault then races with the punch:
1949 * we just need to make racing faults a rare case.
1950 *
1951 * The implementation below would be much simpler if we just used a
1952 * standard mutex or completion: but we cannot take i_mutex in fault,
1953 * and bloating every shmem inode for this unlikely case would be sad.
1954 */
1955 if (unlikely(inode->i_private)) {
1956 struct shmem_falloc *shmem_falloc;
1957
1958 spin_lock(&inode->i_lock);
1959 shmem_falloc = inode->i_private;
1960 if (shmem_falloc &&
1961 shmem_falloc->waitq &&
1962 vmf->pgoff >= shmem_falloc->start &&
1963 vmf->pgoff < shmem_falloc->next) {
1964 wait_queue_head_t *shmem_falloc_waitq;
1965 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
1966
1967 ret = VM_FAULT_NOPAGE;
1968 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1969 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1970 /* It's polite to up mmap_sem if we can */
1971 up_read(&vma->vm_mm->mmap_sem);
1972 ret = VM_FAULT_RETRY;
1973 }
1974
1975 shmem_falloc_waitq = shmem_falloc->waitq;
1976 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1977 TASK_UNINTERRUPTIBLE);
1978 spin_unlock(&inode->i_lock);
1979 schedule();
1980
1981 /*
1982 * shmem_falloc_waitq points into the shmem_fallocate()
1983 * stack of the hole-punching task: shmem_falloc_waitq
1984 * is usually invalid by the time we reach here, but
1985 * finish_wait() does not dereference it in that case;
1986 * though i_lock needed lest racing with wake_up_all().
1987 */
1988 spin_lock(&inode->i_lock);
1989 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1990 spin_unlock(&inode->i_lock);
1991 return ret;
1992 }
1993 spin_unlock(&inode->i_lock);
1994 }
1995
1996 sgp = SGP_CACHE;
1997
1998 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
1999 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2000 sgp = SGP_NOHUGE;
2001 else if (vma->vm_flags & VM_HUGEPAGE)
2002 sgp = SGP_HUGE;
2003
2004 error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2005 gfp, vma, vmf, &ret);
2006 if (error)
2007 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
2008 return ret;
2009 }
2010
2011 unsigned long shmem_get_unmapped_area(struct file *file,
2012 unsigned long uaddr, unsigned long len,
2013 unsigned long pgoff, unsigned long flags)
2014 {
2015 unsigned long (*get_area)(struct file *,
2016 unsigned long, unsigned long, unsigned long, unsigned long);
2017 unsigned long addr;
2018 unsigned long offset;
2019 unsigned long inflated_len;
2020 unsigned long inflated_addr;
2021 unsigned long inflated_offset;
2022
2023 if (len > TASK_SIZE)
2024 return -ENOMEM;
2025
2026 get_area = current->mm->get_unmapped_area;
2027 addr = get_area(file, uaddr, len, pgoff, flags);
2028
2029 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
2030 return addr;
2031 if (IS_ERR_VALUE(addr))
2032 return addr;
2033 if (addr & ~PAGE_MASK)
2034 return addr;
2035 if (addr > TASK_SIZE - len)
2036 return addr;
2037
2038 if (shmem_huge == SHMEM_HUGE_DENY)
2039 return addr;
2040 if (len < HPAGE_PMD_SIZE)
2041 return addr;
2042 if (flags & MAP_FIXED)
2043 return addr;
2044 /*
2045 * Our priority is to support MAP_SHARED mapped hugely;
2046 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2047 * But if caller specified an address hint, respect that as before.
2048 */
2049 if (uaddr)
2050 return addr;
2051
2052 if (shmem_huge != SHMEM_HUGE_FORCE) {
2053 struct super_block *sb;
2054
2055 if (file) {
2056 VM_BUG_ON(file->f_op != &shmem_file_operations);
2057 sb = file_inode(file)->i_sb;
2058 } else {
2059 /*
2060 * Called directly from mm/mmap.c, or drivers/char/mem.c
2061 * for "/dev/zero", to create a shared anonymous object.
2062 */
2063 if (IS_ERR(shm_mnt))
2064 return addr;
2065 sb = shm_mnt->mnt_sb;
2066 }
2067 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2068 return addr;
2069 }
2070
2071 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2072 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2073 return addr;
2074 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2075 return addr;
2076
2077 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2078 if (inflated_len > TASK_SIZE)
2079 return addr;
2080 if (inflated_len < len)
2081 return addr;
2082
2083 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2084 if (IS_ERR_VALUE(inflated_addr))
2085 return addr;
2086 if (inflated_addr & ~PAGE_MASK)
2087 return addr;
2088
2089 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2090 inflated_addr += offset - inflated_offset;
2091 if (inflated_offset > offset)
2092 inflated_addr += HPAGE_PMD_SIZE;
2093
2094 if (inflated_addr > TASK_SIZE - len)
2095 return addr;
2096 return inflated_addr;
2097 }
2098
2099 #ifdef CONFIG_NUMA
2100 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2101 {
2102 struct inode *inode = file_inode(vma->vm_file);
2103 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2104 }
2105
2106 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2107 unsigned long addr)
2108 {
2109 struct inode *inode = file_inode(vma->vm_file);
2110 pgoff_t index;
2111
2112 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2113 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2114 }
2115 #endif
2116
2117 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2118 {
2119 struct inode *inode = file_inode(file);
2120 struct shmem_inode_info *info = SHMEM_I(inode);
2121 int retval = -ENOMEM;
2122
2123 spin_lock_irq(&info->lock);
2124 if (lock && !(info->flags & VM_LOCKED)) {
2125 if (!user_shm_lock(inode->i_size, user))
2126 goto out_nomem;
2127 info->flags |= VM_LOCKED;
2128 mapping_set_unevictable(file->f_mapping);
2129 }
2130 if (!lock && (info->flags & VM_LOCKED) && user) {
2131 user_shm_unlock(inode->i_size, user);
2132 info->flags &= ~VM_LOCKED;
2133 mapping_clear_unevictable(file->f_mapping);
2134 }
2135 retval = 0;
2136
2137 out_nomem:
2138 spin_unlock_irq(&info->lock);
2139 return retval;
2140 }
2141
2142 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2143 {
2144 file_accessed(file);
2145 vma->vm_ops = &shmem_vm_ops;
2146 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2147 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2148 (vma->vm_end & HPAGE_PMD_MASK)) {
2149 khugepaged_enter(vma, vma->vm_flags);
2150 }
2151 return 0;
2152 }
2153
2154 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2155 umode_t mode, dev_t dev, unsigned long flags)
2156 {
2157 struct inode *inode;
2158 struct shmem_inode_info *info;
2159 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2160 int ino;
2161
2162 if (shmem_reserve_inode(sb))
2163 return NULL;
2164
2165 inode = new_inode(sb);
2166 if (inode) {
2167 inode_init_owner(inode, dir, mode);
2168 inode->i_blocks = 0;
2169 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2170 inode->i_generation = get_seconds();
2171 info = SHMEM_I(inode);
2172 memset(info, 0, (char *)inode - (char *)info);
2173 spin_lock_init(&info->lock);
2174 info->seals = F_SEAL_SEAL;
2175 info->flags = flags & VM_NORESERVE;
2176 INIT_LIST_HEAD(&info->shrinklist);
2177 INIT_LIST_HEAD(&info->swaplist);
2178 simple_xattrs_init(&info->xattrs);
2179 cache_no_acl(inode);
2180
2181 switch (mode & S_IFMT) {
2182 default:
2183 inode->i_op = &shmem_special_inode_operations;
2184 init_special_inode(inode, mode, dev);
2185 break;
2186 case S_IFREG:
2187 inode->i_mapping->a_ops = &shmem_aops;
2188 inode->i_op = &shmem_inode_operations;
2189 inode->i_fop = &shmem_file_operations;
2190 mpol_shared_policy_init(&info->policy,
2191 shmem_get_sbmpol(sbinfo));
2192 break;
2193 case S_IFDIR:
2194 inc_nlink(inode);
2195 /* Some things misbehave if size == 0 on a directory */
2196 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2197 inode->i_op = &shmem_dir_inode_operations;
2198 inode->i_fop = &simple_dir_operations;
2199 break;
2200 case S_IFLNK:
2201 /*
2202 * Must not load anything in the rbtree,
2203 * mpol_free_shared_policy will not be called.
2204 */
2205 mpol_shared_policy_init(&info->policy, NULL);
2206 break;
2207 }
2208
2209 if (!sbinfo->idr_nouse) {
2210 /* inum 0 and 1 are unused */
2211 mutex_lock(&sbinfo->idr_lock);
2212 ino = idr_alloc(&sbinfo->idr, inode, 2, INT_MAX,
2213 GFP_NOFS);
2214 if (ino > 0) {
2215 inode->i_ino = ino;
2216 mutex_unlock(&sbinfo->idr_lock);
2217 __insert_inode_hash(inode, inode->i_ino);
2218 } else {
2219 inode->i_ino = 0;
2220 mutex_unlock(&sbinfo->idr_lock);
2221 iput(inode);
2222 /* shmem_free_inode() will be called */
2223 inode = NULL;
2224 }
2225 } else
2226 inode->i_ino = get_next_ino();
2227 } else
2228 shmem_free_inode(sb);
2229 return inode;
2230 }
2231
2232 bool shmem_mapping(struct address_space *mapping)
2233 {
2234 return mapping->a_ops == &shmem_aops;
2235 }
2236
2237 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2238 pmd_t *dst_pmd,
2239 struct vm_area_struct *dst_vma,
2240 unsigned long dst_addr,
2241 unsigned long src_addr,
2242 struct page **pagep)
2243 {
2244 struct inode *inode = file_inode(dst_vma->vm_file);
2245 struct shmem_inode_info *info = SHMEM_I(inode);
2246 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2247 struct address_space *mapping = inode->i_mapping;
2248 gfp_t gfp = mapping_gfp_mask(mapping);
2249 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2250 struct mem_cgroup *memcg;
2251 spinlock_t *ptl;
2252 void *page_kaddr;
2253 struct page *page;
2254 pte_t _dst_pte, *dst_pte;
2255 int ret;
2256
2257 ret = -ENOMEM;
2258 if (shmem_acct_block(info->flags, 1))
2259 goto out;
2260 if (sbinfo->max_blocks) {
2261 if (percpu_counter_compare(&sbinfo->used_blocks,
2262 sbinfo->max_blocks) >= 0)
2263 goto out_unacct_blocks;
2264 percpu_counter_inc(&sbinfo->used_blocks);
2265 }
2266
2267 if (!*pagep) {
2268 page = shmem_alloc_page(gfp, info, pgoff);
2269 if (!page)
2270 goto out_dec_used_blocks;
2271
2272 page_kaddr = kmap_atomic(page);
2273 ret = copy_from_user(page_kaddr, (const void __user *)src_addr,
2274 PAGE_SIZE);
2275 kunmap_atomic(page_kaddr);
2276
2277 /* fallback to copy_from_user outside mmap_sem */
2278 if (unlikely(ret)) {
2279 *pagep = page;
2280 if (sbinfo->max_blocks)
2281 percpu_counter_add(&sbinfo->used_blocks, -1);
2282 shmem_unacct_blocks(info->flags, 1);
2283 /* don't free the page */
2284 return -EFAULT;
2285 }
2286 } else {
2287 page = *pagep;
2288 *pagep = NULL;
2289 }
2290
2291 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2292 __SetPageLocked(page);
2293 __SetPageSwapBacked(page);
2294 __SetPageUptodate(page);
2295
2296 ret = mem_cgroup_try_charge(page, dst_mm, gfp, &memcg, false);
2297 if (ret)
2298 goto out_release;
2299
2300 ret = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
2301 if (!ret) {
2302 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL);
2303 radix_tree_preload_end();
2304 }
2305 if (ret)
2306 goto out_release_uncharge;
2307
2308 mem_cgroup_commit_charge(page, memcg, false, false);
2309
2310 _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2311 if (dst_vma->vm_flags & VM_WRITE)
2312 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2313
2314 ret = -EEXIST;
2315 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2316 if (!pte_none(*dst_pte))
2317 goto out_release_uncharge_unlock;
2318
2319 lru_cache_add_anon(page);
2320
2321 spin_lock(&info->lock);
2322 info->alloced++;
2323 inode->i_blocks += BLOCKS_PER_PAGE;
2324 shmem_recalc_inode(inode);
2325 spin_unlock(&info->lock);
2326
2327 inc_mm_counter(dst_mm, mm_counter_file(page));
2328 page_add_file_rmap(page, false);
2329 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2330
2331 /* No need to invalidate - it was non-present before */
2332 update_mmu_cache(dst_vma, dst_addr, dst_pte);
2333 unlock_page(page);
2334 pte_unmap_unlock(dst_pte, ptl);
2335 ret = 0;
2336 out:
2337 return ret;
2338 out_release_uncharge_unlock:
2339 pte_unmap_unlock(dst_pte, ptl);
2340 out_release_uncharge:
2341 mem_cgroup_cancel_charge(page, memcg, false);
2342 out_release:
2343 unlock_page(page);
2344 put_page(page);
2345 out_dec_used_blocks:
2346 if (sbinfo->max_blocks)
2347 percpu_counter_add(&sbinfo->used_blocks, -1);
2348 out_unacct_blocks:
2349 shmem_unacct_blocks(info->flags, 1);
2350 goto out;
2351 }
2352
2353 #ifdef CONFIG_TMPFS
2354 static const struct inode_operations shmem_symlink_inode_operations;
2355 static const struct inode_operations shmem_short_symlink_operations;
2356
2357 #ifdef CONFIG_TMPFS_XATTR
2358 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2359 #else
2360 #define shmem_initxattrs NULL
2361 #endif
2362
2363 static int
2364 shmem_write_begin(struct file *file, struct address_space *mapping,
2365 loff_t pos, unsigned len, unsigned flags,
2366 struct page **pagep, void **fsdata)
2367 {
2368 struct inode *inode = mapping->host;
2369 struct shmem_inode_info *info = SHMEM_I(inode);
2370 pgoff_t index = pos >> PAGE_SHIFT;
2371
2372 /* i_mutex is held by caller */
2373 if (unlikely(info->seals & (F_SEAL_WRITE | F_SEAL_GROW))) {
2374 if (info->seals & F_SEAL_WRITE)
2375 return -EPERM;
2376 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2377 return -EPERM;
2378 }
2379
2380 return shmem_getpage(inode, index, pagep, SGP_WRITE);
2381 }
2382
2383 static int
2384 shmem_write_end(struct file *file, struct address_space *mapping,
2385 loff_t pos, unsigned len, unsigned copied,
2386 struct page *page, void *fsdata)
2387 {
2388 struct inode *inode = mapping->host;
2389
2390 if (pos + copied > inode->i_size)
2391 i_size_write(inode, pos + copied);
2392
2393 if (!PageUptodate(page)) {
2394 struct page *head = compound_head(page);
2395 if (PageTransCompound(page)) {
2396 int i;
2397
2398 for (i = 0; i < HPAGE_PMD_NR; i++) {
2399 if (head + i == page)
2400 continue;
2401 clear_highpage(head + i);
2402 flush_dcache_page(head + i);
2403 }
2404 }
2405 if (copied < PAGE_SIZE) {
2406 unsigned from = pos & (PAGE_SIZE - 1);
2407 zero_user_segments(page, 0, from,
2408 from + copied, PAGE_SIZE);
2409 }
2410 SetPageUptodate(head);
2411 }
2412 set_page_dirty(page);
2413 unlock_page(page);
2414 put_page(page);
2415
2416 return copied;
2417 }
2418
2419 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2420 {
2421 struct file *file = iocb->ki_filp;
2422 struct inode *inode = file_inode(file);
2423 struct address_space *mapping = inode->i_mapping;
2424 pgoff_t index;
2425 unsigned long offset;
2426 enum sgp_type sgp = SGP_READ;
2427 int error = 0;
2428 ssize_t retval = 0;
2429 loff_t *ppos = &iocb->ki_pos;
2430
2431 /*
2432 * Might this read be for a stacking filesystem? Then when reading
2433 * holes of a sparse file, we actually need to allocate those pages,
2434 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2435 */
2436 if (!iter_is_iovec(to))
2437 sgp = SGP_CACHE;
2438
2439 index = *ppos >> PAGE_SHIFT;
2440 offset = *ppos & ~PAGE_MASK;
2441
2442 for (;;) {
2443 struct page *page = NULL;
2444 pgoff_t end_index;
2445 unsigned long nr, ret;
2446 loff_t i_size = i_size_read(inode);
2447
2448 end_index = i_size >> PAGE_SHIFT;
2449 if (index > end_index)
2450 break;
2451 if (index == end_index) {
2452 nr = i_size & ~PAGE_MASK;
2453 if (nr <= offset)
2454 break;
2455 }
2456
2457 error = shmem_getpage(inode, index, &page, sgp);
2458 if (error) {
2459 if (error == -EINVAL)
2460 error = 0;
2461 break;
2462 }
2463 if (page) {
2464 if (sgp == SGP_CACHE)
2465 set_page_dirty(page);
2466 unlock_page(page);
2467 }
2468
2469 /*
2470 * We must evaluate after, since reads (unlike writes)
2471 * are called without i_mutex protection against truncate
2472 */
2473 nr = PAGE_SIZE;
2474 i_size = i_size_read(inode);
2475 end_index = i_size >> PAGE_SHIFT;
2476 if (index == end_index) {
2477 nr = i_size & ~PAGE_MASK;
2478 if (nr <= offset) {
2479 if (page)
2480 put_page(page);
2481 break;
2482 }
2483 }
2484 nr -= offset;
2485
2486 if (page) {
2487 /*
2488 * If users can be writing to this page using arbitrary
2489 * virtual addresses, take care about potential aliasing
2490 * before reading the page on the kernel side.
2491 */
2492 if (mapping_writably_mapped(mapping))
2493 flush_dcache_page(page);
2494 /*
2495 * Mark the page accessed if we read the beginning.
2496 */
2497 if (!offset)
2498 mark_page_accessed(page);
2499 } else {
2500 page = ZERO_PAGE(0);
2501 get_page(page);
2502 }
2503
2504 /*
2505 * Ok, we have the page, and it's up-to-date, so
2506 * now we can copy it to user space...
2507 */
2508 ret = copy_page_to_iter(page, offset, nr, to);
2509 retval += ret;
2510 offset += ret;
2511 index += offset >> PAGE_SHIFT;
2512 offset &= ~PAGE_MASK;
2513
2514 put_page(page);
2515 if (!iov_iter_count(to))
2516 break;
2517 if (ret < nr) {
2518 error = -EFAULT;
2519 break;
2520 }
2521 cond_resched();
2522 }
2523
2524 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2525 file_accessed(file);
2526 return retval ? retval : error;
2527 }
2528
2529 /*
2530 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2531 */
2532 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2533 pgoff_t index, pgoff_t end, int whence)
2534 {
2535 struct page *page;
2536 struct pagevec pvec;
2537 pgoff_t indices[PAGEVEC_SIZE];
2538 bool done = false;
2539 int i;
2540
2541 pagevec_init(&pvec, 0);
2542 pvec.nr = 1; /* start small: we may be there already */
2543 while (!done) {
2544 pvec.nr = find_get_entries(mapping, index,
2545 pvec.nr, pvec.pages, indices);
2546 if (!pvec.nr) {
2547 if (whence == SEEK_DATA)
2548 index = end;
2549 break;
2550 }
2551 for (i = 0; i < pvec.nr; i++, index++) {
2552 if (index < indices[i]) {
2553 if (whence == SEEK_HOLE) {
2554 done = true;
2555 break;
2556 }
2557 index = indices[i];
2558 }
2559 page = pvec.pages[i];
2560 if (page && !radix_tree_exceptional_entry(page)) {
2561 if (!PageUptodate(page))
2562 page = NULL;
2563 }
2564 if (index >= end ||
2565 (page && whence == SEEK_DATA) ||
2566 (!page && whence == SEEK_HOLE)) {
2567 done = true;
2568 break;
2569 }
2570 }
2571 pagevec_remove_exceptionals(&pvec);
2572 pagevec_release(&pvec);
2573 pvec.nr = PAGEVEC_SIZE;
2574 cond_resched();
2575 }
2576 return index;
2577 }
2578
2579 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2580 {
2581 struct address_space *mapping = file->f_mapping;
2582 struct inode *inode = mapping->host;
2583 pgoff_t start, end;
2584 loff_t new_offset;
2585
2586 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2587 return generic_file_llseek_size(file, offset, whence,
2588 MAX_LFS_FILESIZE, i_size_read(inode));
2589 inode_lock(inode);
2590 /* We're holding i_mutex so we can access i_size directly */
2591
2592 if (offset < 0)
2593 offset = -EINVAL;
2594 else if (offset >= inode->i_size)
2595 offset = -ENXIO;
2596 else {
2597 start = offset >> PAGE_SHIFT;
2598 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2599 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2600 new_offset <<= PAGE_SHIFT;
2601 if (new_offset > offset) {
2602 if (new_offset < inode->i_size)
2603 offset = new_offset;
2604 else if (whence == SEEK_DATA)
2605 offset = -ENXIO;
2606 else
2607 offset = inode->i_size;
2608 }
2609 }
2610
2611 if (offset >= 0)
2612 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2613 inode_unlock(inode);
2614 return offset;
2615 }
2616
2617 /*
2618 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2619 * so reuse a tag which we firmly believe is never set or cleared on shmem.
2620 */
2621 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
2622 #define LAST_SCAN 4 /* about 150ms max */
2623
2624 static void shmem_tag_pins(struct address_space *mapping)
2625 {
2626 struct radix_tree_iter iter;
2627 void **slot;
2628 pgoff_t start;
2629 struct page *page;
2630
2631 lru_add_drain();
2632 start = 0;
2633 rcu_read_lock();
2634
2635 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
2636 page = radix_tree_deref_slot(slot);
2637 if (!page || radix_tree_exception(page)) {
2638 if (radix_tree_deref_retry(page)) {
2639 slot = radix_tree_iter_retry(&iter);
2640 continue;
2641 }
2642 } else if (page_count(page) - page_mapcount(page) > 1) {
2643 spin_lock_irq(&mapping->tree_lock);
2644 radix_tree_tag_set(&mapping->page_tree, iter.index,
2645 SHMEM_TAG_PINNED);
2646 spin_unlock_irq(&mapping->tree_lock);
2647 }
2648
2649 if (need_resched()) {
2650 slot = radix_tree_iter_resume(slot, &iter);
2651 cond_resched_rcu();
2652 }
2653 }
2654 rcu_read_unlock();
2655 }
2656
2657 /*
2658 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2659 * via get_user_pages(), drivers might have some pending I/O without any active
2660 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2661 * and see whether it has an elevated ref-count. If so, we tag them and wait for
2662 * them to be dropped.
2663 * The caller must guarantee that no new user will acquire writable references
2664 * to those pages to avoid races.
2665 */
2666 static int shmem_wait_for_pins(struct address_space *mapping)
2667 {
2668 struct radix_tree_iter iter;
2669 void **slot;
2670 pgoff_t start;
2671 struct page *page;
2672 int error, scan;
2673
2674 shmem_tag_pins(mapping);
2675
2676 error = 0;
2677 for (scan = 0; scan <= LAST_SCAN; scan++) {
2678 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
2679 break;
2680
2681 if (!scan)
2682 lru_add_drain_all();
2683 else if (schedule_timeout_killable((HZ << scan) / 200))
2684 scan = LAST_SCAN;
2685
2686 start = 0;
2687 rcu_read_lock();
2688 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2689 start, SHMEM_TAG_PINNED) {
2690
2691 page = radix_tree_deref_slot(slot);
2692 if (radix_tree_exception(page)) {
2693 if (radix_tree_deref_retry(page)) {
2694 slot = radix_tree_iter_retry(&iter);
2695 continue;
2696 }
2697
2698 page = NULL;
2699 }
2700
2701 if (page &&
2702 page_count(page) - page_mapcount(page) != 1) {
2703 if (scan < LAST_SCAN)
2704 goto continue_resched;
2705
2706 /*
2707 * On the last scan, we clean up all those tags
2708 * we inserted; but make a note that we still
2709 * found pages pinned.
2710 */
2711 error = -EBUSY;
2712 }
2713
2714 spin_lock_irq(&mapping->tree_lock);
2715 radix_tree_tag_clear(&mapping->page_tree,
2716 iter.index, SHMEM_TAG_PINNED);
2717 spin_unlock_irq(&mapping->tree_lock);
2718 continue_resched:
2719 if (need_resched()) {
2720 slot = radix_tree_iter_resume(slot, &iter);
2721 cond_resched_rcu();
2722 }
2723 }
2724 rcu_read_unlock();
2725 }
2726
2727 return error;
2728 }
2729
2730 #define F_ALL_SEALS (F_SEAL_SEAL | \
2731 F_SEAL_SHRINK | \
2732 F_SEAL_GROW | \
2733 F_SEAL_WRITE)
2734
2735 int shmem_add_seals(struct file *file, unsigned int seals)
2736 {
2737 struct inode *inode = file_inode(file);
2738 struct shmem_inode_info *info = SHMEM_I(inode);
2739 int error;
2740
2741 /*
2742 * SEALING
2743 * Sealing allows multiple parties to share a shmem-file but restrict
2744 * access to a specific subset of file operations. Seals can only be
2745 * added, but never removed. This way, mutually untrusted parties can
2746 * share common memory regions with a well-defined policy. A malicious
2747 * peer can thus never perform unwanted operations on a shared object.
2748 *
2749 * Seals are only supported on special shmem-files and always affect
2750 * the whole underlying inode. Once a seal is set, it may prevent some
2751 * kinds of access to the file. Currently, the following seals are
2752 * defined:
2753 * SEAL_SEAL: Prevent further seals from being set on this file
2754 * SEAL_SHRINK: Prevent the file from shrinking
2755 * SEAL_GROW: Prevent the file from growing
2756 * SEAL_WRITE: Prevent write access to the file
2757 *
2758 * As we don't require any trust relationship between two parties, we
2759 * must prevent seals from being removed. Therefore, sealing a file
2760 * only adds a given set of seals to the file, it never touches
2761 * existing seals. Furthermore, the "setting seals"-operation can be
2762 * sealed itself, which basically prevents any further seal from being
2763 * added.
2764 *
2765 * Semantics of sealing are only defined on volatile files. Only
2766 * anonymous shmem files support sealing. More importantly, seals are
2767 * never written to disk. Therefore, there's no plan to support it on
2768 * other file types.
2769 */
2770
2771 if (file->f_op != &shmem_file_operations)
2772 return -EINVAL;
2773 if (!(file->f_mode & FMODE_WRITE))
2774 return -EPERM;
2775 if (seals & ~(unsigned int)F_ALL_SEALS)
2776 return -EINVAL;
2777
2778 inode_lock(inode);
2779
2780 if (info->seals & F_SEAL_SEAL) {
2781 error = -EPERM;
2782 goto unlock;
2783 }
2784
2785 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2786 error = mapping_deny_writable(file->f_mapping);
2787 if (error)
2788 goto unlock;
2789
2790 error = shmem_wait_for_pins(file->f_mapping);
2791 if (error) {
2792 mapping_allow_writable(file->f_mapping);
2793 goto unlock;
2794 }
2795 }
2796
2797 info->seals |= seals;
2798 error = 0;
2799
2800 unlock:
2801 inode_unlock(inode);
2802 return error;
2803 }
2804 EXPORT_SYMBOL_GPL(shmem_add_seals);
2805
2806 int shmem_get_seals(struct file *file)
2807 {
2808 if (file->f_op != &shmem_file_operations)
2809 return -EINVAL;
2810
2811 return SHMEM_I(file_inode(file))->seals;
2812 }
2813 EXPORT_SYMBOL_GPL(shmem_get_seals);
2814
2815 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2816 {
2817 long error;
2818
2819 switch (cmd) {
2820 case F_ADD_SEALS:
2821 /* disallow upper 32bit */
2822 if (arg > UINT_MAX)
2823 return -EINVAL;
2824
2825 error = shmem_add_seals(file, arg);
2826 break;
2827 case F_GET_SEALS:
2828 error = shmem_get_seals(file);
2829 break;
2830 default:
2831 error = -EINVAL;
2832 break;
2833 }
2834
2835 return error;
2836 }
2837
2838 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2839 loff_t len)
2840 {
2841 struct inode *inode = file_inode(file);
2842 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2843 struct shmem_inode_info *info = SHMEM_I(inode);
2844 struct shmem_falloc shmem_falloc;
2845 pgoff_t start, index, end;
2846 int error;
2847
2848 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2849 return -EOPNOTSUPP;
2850
2851 inode_lock(inode);
2852
2853 if (mode & FALLOC_FL_PUNCH_HOLE) {
2854 struct address_space *mapping = file->f_mapping;
2855 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2856 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2857 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2858
2859 /* protected by i_mutex */
2860 if (info->seals & F_SEAL_WRITE) {
2861 error = -EPERM;
2862 goto out;
2863 }
2864
2865 shmem_falloc.waitq = &shmem_falloc_waitq;
2866 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2867 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2868 spin_lock(&inode->i_lock);
2869 inode->i_private = &shmem_falloc;
2870 spin_unlock(&inode->i_lock);
2871
2872 if ((u64)unmap_end > (u64)unmap_start)
2873 unmap_mapping_range(mapping, unmap_start,
2874 1 + unmap_end - unmap_start, 0);
2875 shmem_truncate_range(inode, offset, offset + len - 1);
2876 /* No need to unmap again: hole-punching leaves COWed pages */
2877
2878 spin_lock(&inode->i_lock);
2879 inode->i_private = NULL;
2880 wake_up_all(&shmem_falloc_waitq);
2881 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2882 spin_unlock(&inode->i_lock);
2883 error = 0;
2884 goto out;
2885 }
2886
2887 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2888 error = inode_newsize_ok(inode, offset + len);
2889 if (error)
2890 goto out;
2891
2892 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2893 error = -EPERM;
2894 goto out;
2895 }
2896
2897 start = offset >> PAGE_SHIFT;
2898 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2899 /* Try to avoid a swapstorm if len is impossible to satisfy */
2900 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2901 error = -ENOSPC;
2902 goto out;
2903 }
2904
2905 shmem_falloc.waitq = NULL;
2906 shmem_falloc.start = start;
2907 shmem_falloc.next = start;
2908 shmem_falloc.nr_falloced = 0;
2909 shmem_falloc.nr_unswapped = 0;
2910 spin_lock(&inode->i_lock);
2911 inode->i_private = &shmem_falloc;
2912 spin_unlock(&inode->i_lock);
2913
2914 for (index = start; index < end; index++) {
2915 struct page *page;
2916
2917 /*
2918 * Good, the fallocate(2) manpage permits EINTR: we may have
2919 * been interrupted because we are using up too much memory.
2920 */
2921 if (signal_pending(current))
2922 error = -EINTR;
2923 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2924 error = -ENOMEM;
2925 else
2926 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2927 if (error) {
2928 /* Remove the !PageUptodate pages we added */
2929 if (index > start) {
2930 shmem_undo_range(inode,
2931 (loff_t)start << PAGE_SHIFT,
2932 ((loff_t)index << PAGE_SHIFT) - 1, true);
2933 }
2934 goto undone;
2935 }
2936
2937 /*
2938 * Inform shmem_writepage() how far we have reached.
2939 * No need for lock or barrier: we have the page lock.
2940 */
2941 shmem_falloc.next++;
2942 if (!PageUptodate(page))
2943 shmem_falloc.nr_falloced++;
2944
2945 /*
2946 * If !PageUptodate, leave it that way so that freeable pages
2947 * can be recognized if we need to rollback on error later.
2948 * But set_page_dirty so that memory pressure will swap rather
2949 * than free the pages we are allocating (and SGP_CACHE pages
2950 * might still be clean: we now need to mark those dirty too).
2951 */
2952 set_page_dirty(page);
2953 unlock_page(page);
2954 put_page(page);
2955 cond_resched();
2956 }
2957
2958 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2959 i_size_write(inode, offset + len);
2960 inode->i_ctime = current_time(inode);
2961 undone:
2962 spin_lock(&inode->i_lock);
2963 inode->i_private = NULL;
2964 spin_unlock(&inode->i_lock);
2965 out:
2966 inode_unlock(inode);
2967 return error;
2968 }
2969
2970 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2971 {
2972 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2973
2974 buf->f_type = TMPFS_MAGIC;
2975 buf->f_bsize = PAGE_SIZE;
2976 buf->f_namelen = NAME_MAX;
2977 if (sbinfo->max_blocks) {
2978 buf->f_blocks = sbinfo->max_blocks;
2979 buf->f_bavail =
2980 buf->f_bfree = sbinfo->max_blocks -
2981 percpu_counter_sum(&sbinfo->used_blocks);
2982 }
2983 if (sbinfo->max_inodes) {
2984 buf->f_files = sbinfo->max_inodes;
2985 buf->f_ffree = sbinfo->free_inodes;
2986 }
2987 /* else leave those fields 0 like simple_statfs */
2988 return 0;
2989 }
2990
2991 /*
2992 * File creation. Allocate an inode, and we're done..
2993 */
2994 static int
2995 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2996 {
2997 struct inode *inode;
2998 int error = -ENOSPC;
2999
3000 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
3001 if (inode) {
3002 error = simple_acl_create(dir, inode);
3003 if (error)
3004 goto out_iput;
3005 error = security_inode_init_security(inode, dir,
3006 &dentry->d_name,
3007 shmem_initxattrs, NULL);
3008 if (error && error != -EOPNOTSUPP)
3009 goto out_iput;
3010
3011 error = 0;
3012 dir->i_size += BOGO_DIRENT_SIZE;
3013 dir->i_ctime = dir->i_mtime = current_time(dir);
3014 d_instantiate(dentry, inode);
3015 dget(dentry); /* Extra count - pin the dentry in core */
3016 }
3017 return error;
3018 out_iput:
3019 iput(inode);
3020 return error;
3021 }
3022
3023 static int
3024 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
3025 {
3026 struct inode *inode;
3027 int error = -ENOSPC;
3028
3029 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
3030 if (inode) {
3031 error = security_inode_init_security(inode, dir,
3032 NULL,
3033 shmem_initxattrs, NULL);
3034 if (error && error != -EOPNOTSUPP)
3035 goto out_iput;
3036 error = simple_acl_create(dir, inode);
3037 if (error)
3038 goto out_iput;
3039 d_tmpfile(dentry, inode);
3040 }
3041 return error;
3042 out_iput:
3043 iput(inode);
3044 return error;
3045 }
3046
3047 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3048 {
3049 int error;
3050
3051 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
3052 return error;
3053 inc_nlink(dir);
3054 return 0;
3055 }
3056
3057 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
3058 bool excl)
3059 {
3060 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
3061 }
3062
3063 /*
3064 * Link a file..
3065 */
3066 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
3067 {
3068 struct inode *inode = d_inode(old_dentry);
3069 int ret;
3070
3071 /*
3072 * No ordinary (disk based) filesystem counts links as inodes;
3073 * but each new link needs a new dentry, pinning lowmem, and
3074 * tmpfs dentries cannot be pruned until they are unlinked.
3075 */
3076 ret = shmem_reserve_inode(inode->i_sb);
3077 if (ret)
3078 goto out;
3079
3080 dir->i_size += BOGO_DIRENT_SIZE;
3081 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3082 inc_nlink(inode);
3083 ihold(inode); /* New dentry reference */
3084 dget(dentry); /* Extra pinning count for the created dentry */
3085 d_instantiate(dentry, inode);
3086 out:
3087 return ret;
3088 }
3089
3090 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3091 {
3092 struct inode *inode = d_inode(dentry);
3093
3094 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3095 shmem_free_inode(inode->i_sb);
3096
3097 dir->i_size -= BOGO_DIRENT_SIZE;
3098 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3099 drop_nlink(inode);
3100 dput(dentry); /* Undo the count from "create" - this does all the work */
3101 return 0;
3102 }
3103
3104 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3105 {
3106 if (!simple_empty(dentry))
3107 return -ENOTEMPTY;
3108
3109 drop_nlink(d_inode(dentry));
3110 drop_nlink(dir);
3111 return shmem_unlink(dir, dentry);
3112 }
3113
3114 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3115 {
3116 bool old_is_dir = d_is_dir(old_dentry);
3117 bool new_is_dir = d_is_dir(new_dentry);
3118
3119 if (old_dir != new_dir && old_is_dir != new_is_dir) {
3120 if (old_is_dir) {
3121 drop_nlink(old_dir);
3122 inc_nlink(new_dir);
3123 } else {
3124 drop_nlink(new_dir);
3125 inc_nlink(old_dir);
3126 }
3127 }
3128 old_dir->i_ctime = old_dir->i_mtime =
3129 new_dir->i_ctime = new_dir->i_mtime =
3130 d_inode(old_dentry)->i_ctime =
3131 d_inode(new_dentry)->i_ctime = current_time(old_dir);
3132
3133 return 0;
3134 }
3135
3136 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3137 {
3138 struct dentry *whiteout;
3139 int error;
3140
3141 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3142 if (!whiteout)
3143 return -ENOMEM;
3144
3145 error = shmem_mknod(old_dir, whiteout,
3146 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3147 dput(whiteout);
3148 if (error)
3149 return error;
3150
3151 /*
3152 * Cheat and hash the whiteout while the old dentry is still in
3153 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3154 *
3155 * d_lookup() will consistently find one of them at this point,
3156 * not sure which one, but that isn't even important.
3157 */
3158 d_rehash(whiteout);
3159 return 0;
3160 }
3161
3162 /*
3163 * The VFS layer already does all the dentry stuff for rename,
3164 * we just have to decrement the usage count for the target if
3165 * it exists so that the VFS layer correctly free's it when it
3166 * gets overwritten.
3167 */
3168 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3169 {
3170 struct inode *inode = d_inode(old_dentry);
3171 int they_are_dirs = S_ISDIR(inode->i_mode);
3172
3173 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3174 return -EINVAL;
3175
3176 if (flags & RENAME_EXCHANGE)
3177 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3178
3179 if (!simple_empty(new_dentry))
3180 return -ENOTEMPTY;
3181
3182 if (flags & RENAME_WHITEOUT) {
3183 int error;
3184
3185 error = shmem_whiteout(old_dir, old_dentry);
3186 if (error)
3187 return error;
3188 }
3189
3190 if (d_really_is_positive(new_dentry)) {
3191 (void) shmem_unlink(new_dir, new_dentry);
3192 if (they_are_dirs) {
3193 drop_nlink(d_inode(new_dentry));
3194 drop_nlink(old_dir);
3195 }
3196 } else if (they_are_dirs) {
3197 drop_nlink(old_dir);
3198 inc_nlink(new_dir);
3199 }
3200
3201 old_dir->i_size -= BOGO_DIRENT_SIZE;
3202 new_dir->i_size += BOGO_DIRENT_SIZE;
3203 old_dir->i_ctime = old_dir->i_mtime =
3204 new_dir->i_ctime = new_dir->i_mtime =
3205 inode->i_ctime = current_time(old_dir);
3206 return 0;
3207 }
3208
3209 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3210 {
3211 int error;
3212 int len;
3213 struct inode *inode;
3214 struct page *page;
3215 struct shmem_inode_info *info;
3216
3217 len = strlen(symname) + 1;
3218 if (len > PAGE_SIZE)
3219 return -ENAMETOOLONG;
3220
3221 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
3222 if (!inode)
3223 return -ENOSPC;
3224
3225 error = security_inode_init_security(inode, dir, &dentry->d_name,
3226 shmem_initxattrs, NULL);
3227 if (error) {
3228 if (error != -EOPNOTSUPP) {
3229 iput(inode);
3230 return error;
3231 }
3232 error = 0;
3233 }
3234
3235 info = SHMEM_I(inode);
3236 inode->i_size = len-1;
3237 if (len <= SHORT_SYMLINK_LEN) {
3238 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3239 if (!inode->i_link) {
3240 iput(inode);
3241 return -ENOMEM;
3242 }
3243 inode->i_op = &shmem_short_symlink_operations;
3244 } else {
3245 inode_nohighmem(inode);
3246 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3247 if (error) {
3248 iput(inode);
3249 return error;
3250 }
3251 inode->i_mapping->a_ops = &shmem_aops;
3252 inode->i_op = &shmem_symlink_inode_operations;
3253 memcpy(page_address(page), symname, len);
3254 SetPageUptodate(page);
3255 set_page_dirty(page);
3256 unlock_page(page);
3257 put_page(page);
3258 }
3259 dir->i_size += BOGO_DIRENT_SIZE;
3260 dir->i_ctime = dir->i_mtime = current_time(dir);
3261 d_instantiate(dentry, inode);
3262 dget(dentry);
3263 return 0;
3264 }
3265
3266 static void shmem_put_link(void *arg)
3267 {
3268 mark_page_accessed(arg);
3269 put_page(arg);
3270 }
3271
3272 static const char *shmem_get_link(struct dentry *dentry,
3273 struct inode *inode,
3274 struct delayed_call *done)
3275 {
3276 struct page *page = NULL;
3277 int error;
3278 if (!dentry) {
3279 page = find_get_page(inode->i_mapping, 0);
3280 if (!page)
3281 return ERR_PTR(-ECHILD);
3282 if (!PageUptodate(page)) {
3283 put_page(page);
3284 return ERR_PTR(-ECHILD);
3285 }
3286 } else {
3287 error = shmem_getpage(inode, 0, &page, SGP_READ);
3288 if (error)
3289 return ERR_PTR(error);
3290 unlock_page(page);
3291 }
3292 set_delayed_call(done, shmem_put_link, page);
3293 return page_address(page);
3294 }
3295
3296 #ifdef CONFIG_TMPFS_XATTR
3297 /*
3298 * Superblocks without xattr inode operations may get some security.* xattr
3299 * support from the LSM "for free". As soon as we have any other xattrs
3300 * like ACLs, we also need to implement the security.* handlers at
3301 * filesystem level, though.
3302 */
3303
3304 /*
3305 * Callback for security_inode_init_security() for acquiring xattrs.
3306 */
3307 static int shmem_initxattrs(struct inode *inode,
3308 const struct xattr *xattr_array,
3309 void *fs_info)
3310 {
3311 struct shmem_inode_info *info = SHMEM_I(inode);
3312 const struct xattr *xattr;
3313 struct simple_xattr *new_xattr;
3314 size_t len;
3315
3316 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3317 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3318 if (!new_xattr)
3319 return -ENOMEM;
3320
3321 len = strlen(xattr->name) + 1;
3322 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3323 GFP_KERNEL);
3324 if (!new_xattr->name) {
3325 kfree(new_xattr);
3326 return -ENOMEM;
3327 }
3328
3329 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3330 XATTR_SECURITY_PREFIX_LEN);
3331 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3332 xattr->name, len);
3333
3334 simple_xattr_list_add(&info->xattrs, new_xattr);
3335 }
3336
3337 return 0;
3338 }
3339
3340 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3341 struct dentry *unused, struct inode *inode,
3342 const char *name, void *buffer, size_t size)
3343 {
3344 struct shmem_inode_info *info = SHMEM_I(inode);
3345
3346 name = xattr_full_name(handler, name);
3347 return simple_xattr_get(&info->xattrs, name, buffer, size);
3348 }
3349
3350 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3351 struct dentry *unused, struct inode *inode,
3352 const char *name, const void *value,
3353 size_t size, int flags)
3354 {
3355 struct shmem_inode_info *info = SHMEM_I(inode);
3356
3357 name = xattr_full_name(handler, name);
3358 return simple_xattr_set(&info->xattrs, name, value, size, flags);
3359 }
3360
3361 static const struct xattr_handler shmem_security_xattr_handler = {
3362 .prefix = XATTR_SECURITY_PREFIX,
3363 .get = shmem_xattr_handler_get,
3364 .set = shmem_xattr_handler_set,
3365 };
3366
3367 static const struct xattr_handler shmem_trusted_xattr_handler = {
3368 .prefix = XATTR_TRUSTED_PREFIX,
3369 .get = shmem_xattr_handler_get,
3370 .set = shmem_xattr_handler_set,
3371 };
3372
3373 static const struct xattr_handler *shmem_xattr_handlers[] = {
3374 #ifdef CONFIG_TMPFS_POSIX_ACL
3375 &posix_acl_access_xattr_handler,
3376 &posix_acl_default_xattr_handler,
3377 #endif
3378 &shmem_security_xattr_handler,
3379 &shmem_trusted_xattr_handler,
3380 NULL
3381 };
3382
3383 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3384 {
3385 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3386 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3387 }
3388 #endif /* CONFIG_TMPFS_XATTR */
3389
3390 static const struct inode_operations shmem_short_symlink_operations = {
3391 .get_link = simple_get_link,
3392 #ifdef CONFIG_TMPFS_XATTR
3393 .listxattr = shmem_listxattr,
3394 #endif
3395 };
3396
3397 static const struct inode_operations shmem_symlink_inode_operations = {
3398 .get_link = shmem_get_link,
3399 #ifdef CONFIG_TMPFS_XATTR
3400 .listxattr = shmem_listxattr,
3401 #endif
3402 };
3403
3404 static struct dentry *shmem_get_parent(struct dentry *child)
3405 {
3406 return ERR_PTR(-ESTALE);
3407 }
3408
3409 static int shmem_match(struct inode *ino, void *vfh)
3410 {
3411 __u32 *fh = vfh;
3412 __u64 inum = fh[1];
3413 return ino->i_ino == inum && fh[0] == ino->i_generation;
3414 }
3415
3416 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3417 struct fid *fid, int fh_len, int fh_type)
3418 {
3419 struct inode *inode;
3420 struct dentry *dentry = NULL;
3421 u64 inum;
3422
3423 if (fh_len < 2)
3424 return NULL;
3425
3426 inum = fid->raw[1];
3427 inode = ilookup5(sb, inum, shmem_match, fid->raw);
3428 if (inode) {
3429 dentry = d_find_alias(inode);
3430 iput(inode);
3431 }
3432
3433 return dentry;
3434 }
3435
3436 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3437 struct inode *parent)
3438 {
3439 if (*len < 2) {
3440 *len = 2;
3441 return FILEID_INVALID;
3442 }
3443
3444 fh[0] = inode->i_generation;
3445 fh[1] = inode->i_ino;
3446
3447 *len = 2;
3448 return 1;
3449 }
3450
3451 static const struct export_operations shmem_export_ops = {
3452 .get_parent = shmem_get_parent,
3453 .encode_fh = shmem_encode_fh,
3454 .fh_to_dentry = shmem_fh_to_dentry,
3455 };
3456
3457 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3458 bool remount)
3459 {
3460 char *this_char, *value, *rest;
3461 struct mempolicy *mpol = NULL;
3462 uid_t uid;
3463 gid_t gid;
3464
3465 while (options != NULL) {
3466 this_char = options;
3467 for (;;) {
3468 /*
3469 * NUL-terminate this option: unfortunately,
3470 * mount options form a comma-separated list,
3471 * but mpol's nodelist may also contain commas.
3472 */
3473 options = strchr(options, ',');
3474 if (options == NULL)
3475 break;
3476 options++;
3477 if (!isdigit(*options)) {
3478 options[-1] = '\0';
3479 break;
3480 }
3481 }
3482 if (!*this_char)
3483 continue;
3484 if ((value = strchr(this_char,'=')) != NULL) {
3485 *value++ = 0;
3486 } else {
3487 pr_err("tmpfs: No value for mount option '%s'\n",
3488 this_char);
3489 goto error;
3490 }
3491
3492 if (!strcmp(this_char,"size")) {
3493 unsigned long long size;
3494 size = memparse(value,&rest);
3495 if (*rest == '%') {
3496 size <<= PAGE_SHIFT;
3497 size *= totalram_pages;
3498 do_div(size, 100);
3499 rest++;
3500 }
3501 if (*rest)
3502 goto bad_val;
3503 sbinfo->max_blocks =
3504 DIV_ROUND_UP(size, PAGE_SIZE);
3505 } else if (!strcmp(this_char,"nr_blocks")) {
3506 sbinfo->max_blocks = memparse(value, &rest);
3507 if (*rest)
3508 goto bad_val;
3509 } else if (!strcmp(this_char,"nr_inodes")) {
3510 sbinfo->max_inodes = memparse(value, &rest);
3511 if (*rest || sbinfo->max_inodes < 2)
3512 goto bad_val;
3513 } else if (!strcmp(this_char,"mode")) {
3514 if (remount)
3515 continue;
3516 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3517 if (*rest)
3518 goto bad_val;
3519 } else if (!strcmp(this_char,"uid")) {
3520 if (remount)
3521 continue;
3522 uid = simple_strtoul(value, &rest, 0);
3523 if (*rest)
3524 goto bad_val;
3525 sbinfo->uid = make_kuid(current_user_ns(), uid);
3526 if (!uid_valid(sbinfo->uid))
3527 goto bad_val;
3528 } else if (!strcmp(this_char,"gid")) {
3529 if (remount)
3530 continue;
3531 gid = simple_strtoul(value, &rest, 0);
3532 if (*rest)
3533 goto bad_val;
3534 sbinfo->gid = make_kgid(current_user_ns(), gid);
3535 if (!gid_valid(sbinfo->gid))
3536 goto bad_val;
3537 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3538 } else if (!strcmp(this_char, "huge")) {
3539 int huge;
3540 huge = shmem_parse_huge(value);
3541 if (huge < 0)
3542 goto bad_val;
3543 if (!has_transparent_hugepage() &&
3544 huge != SHMEM_HUGE_NEVER)
3545 goto bad_val;
3546 sbinfo->huge = huge;
3547 #endif
3548 #ifdef CONFIG_NUMA
3549 } else if (!strcmp(this_char,"mpol")) {
3550 mpol_put(mpol);
3551 mpol = NULL;
3552 if (mpol_parse_str(value, &mpol))
3553 goto bad_val;
3554 #endif
3555 } else {
3556 pr_err("tmpfs: Bad mount option %s\n", this_char);
3557 goto error;
3558 }
3559 }
3560 sbinfo->mpol = mpol;
3561 return 0;
3562
3563 bad_val:
3564 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3565 value, this_char);
3566 error:
3567 mpol_put(mpol);
3568 return 1;
3569
3570 }
3571
3572 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3573 {
3574 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3575 struct shmem_sb_info config = *sbinfo;
3576 int inodes;
3577 int error = -EINVAL;
3578
3579 config.mpol = NULL;
3580 if (shmem_parse_options(data, &config, true))
3581 return error;
3582
3583 spin_lock(&sbinfo->stat_lock);
3584 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3585 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3586 goto out;
3587 if (config.max_inodes < inodes)
3588 goto out;
3589 /*
3590 * Those tests disallow limited->unlimited while any are in use;
3591 * but we must separately disallow unlimited->limited, because
3592 * in that case we have no record of how much is already in use.
3593 */
3594 if (config.max_blocks && !sbinfo->max_blocks)
3595 goto out;
3596 if (config.max_inodes && !sbinfo->max_inodes)
3597 goto out;
3598
3599 error = 0;
3600 sbinfo->huge = config.huge;
3601 sbinfo->max_blocks = config.max_blocks;
3602 sbinfo->max_inodes = config.max_inodes;
3603 sbinfo->free_inodes = config.max_inodes - inodes;
3604
3605 /*
3606 * Preserve previous mempolicy unless mpol remount option was specified.
3607 */
3608 if (config.mpol) {
3609 mpol_put(sbinfo->mpol);
3610 sbinfo->mpol = config.mpol; /* transfers initial ref */
3611 }
3612 out:
3613 spin_unlock(&sbinfo->stat_lock);
3614 return error;
3615 }
3616
3617 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3618 {
3619 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3620
3621 if (sbinfo->max_blocks != shmem_default_max_blocks())
3622 seq_printf(seq, ",size=%luk",
3623 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3624 if (sbinfo->max_inodes != shmem_default_max_inodes())
3625 seq_printf(seq, ",nr_inodes=%d", sbinfo->max_inodes);
3626 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
3627 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3628 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3629 seq_printf(seq, ",uid=%u",
3630 from_kuid_munged(&init_user_ns, sbinfo->uid));
3631 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3632 seq_printf(seq, ",gid=%u",
3633 from_kgid_munged(&init_user_ns, sbinfo->gid));
3634 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3635 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3636 if (sbinfo->huge)
3637 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3638 #endif
3639 shmem_show_mpol(seq, sbinfo->mpol);
3640 return 0;
3641 }
3642
3643 #define MFD_NAME_PREFIX "memfd:"
3644 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3645 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3646
3647 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
3648
3649 SYSCALL_DEFINE2(memfd_create,
3650 const char __user *, uname,
3651 unsigned int, flags)
3652 {
3653 struct shmem_inode_info *info;
3654 struct file *file;
3655 int fd, error;
3656 char *name;
3657 long len;
3658
3659 if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3660 return -EINVAL;
3661
3662 /* length includes terminating zero */
3663 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3664 if (len <= 0)
3665 return -EFAULT;
3666 if (len > MFD_NAME_MAX_LEN + 1)
3667 return -EINVAL;
3668
3669 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
3670 if (!name)
3671 return -ENOMEM;
3672
3673 strcpy(name, MFD_NAME_PREFIX);
3674 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3675 error = -EFAULT;
3676 goto err_name;
3677 }
3678
3679 /* terminating-zero may have changed after strnlen_user() returned */
3680 if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3681 error = -EFAULT;
3682 goto err_name;
3683 }
3684
3685 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3686 if (fd < 0) {
3687 error = fd;
3688 goto err_name;
3689 }
3690
3691 file = shmem_file_setup(name, 0, VM_NORESERVE);
3692 if (IS_ERR(file)) {
3693 error = PTR_ERR(file);
3694 goto err_fd;
3695 }
3696 info = SHMEM_I(file_inode(file));
3697 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3698 file->f_flags |= O_RDWR | O_LARGEFILE;
3699 if (flags & MFD_ALLOW_SEALING)
3700 info->seals &= ~F_SEAL_SEAL;
3701
3702 fd_install(fd, file);
3703 kfree(name);
3704 return fd;
3705
3706 err_fd:
3707 put_unused_fd(fd);
3708 err_name:
3709 kfree(name);
3710 return error;
3711 }
3712
3713 #endif /* CONFIG_TMPFS */
3714
3715 static void shmem_put_super(struct super_block *sb)
3716 {
3717 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3718
3719 if (!sbinfo->idr_nouse)
3720 idr_destroy(&sbinfo->idr);
3721 percpu_counter_destroy(&sbinfo->used_blocks);
3722 mpol_put(sbinfo->mpol);
3723 kfree(sbinfo);
3724 sb->s_fs_info = NULL;
3725 }
3726
3727 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3728 {
3729 struct inode *inode;
3730 struct shmem_sb_info *sbinfo;
3731 int err = -ENOMEM;
3732
3733 /* Round up to L1_CACHE_BYTES to resist false sharing */
3734 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3735 L1_CACHE_BYTES), GFP_KERNEL);
3736 if (!sbinfo)
3737 return -ENOMEM;
3738
3739 mutex_init(&sbinfo->idr_lock);
3740 idr_init(&sbinfo->idr);
3741 sbinfo->mode = S_IRWXUGO | S_ISVTX;
3742 sbinfo->uid = current_fsuid();
3743 sbinfo->gid = current_fsgid();
3744 sb->s_fs_info = sbinfo;
3745
3746 #ifdef CONFIG_TMPFS
3747 /*
3748 * Per default we only allow half of the physical ram per
3749 * tmpfs instance, limiting inodes to one per page of lowmem;
3750 * but the internal instance is left unlimited.
3751 */
3752 if (!(sb->s_flags & MS_KERNMOUNT)) {
3753 sbinfo->max_blocks = shmem_default_max_blocks();
3754 sbinfo->max_inodes = shmem_default_max_inodes();
3755 if (shmem_parse_options(data, sbinfo, false)) {
3756 err = -EINVAL;
3757 goto failed;
3758 }
3759 } else {
3760 sb->s_flags |= MS_NOUSER;
3761 }
3762 sb->s_export_op = &shmem_export_ops;
3763 sb->s_flags |= MS_NOSEC;
3764 #else
3765 sb->s_flags |= MS_NOUSER;
3766 #endif
3767
3768 spin_lock_init(&sbinfo->stat_lock);
3769 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3770 goto failed;
3771 sbinfo->free_inodes = sbinfo->max_inodes;
3772 spin_lock_init(&sbinfo->shrinklist_lock);
3773 INIT_LIST_HEAD(&sbinfo->shrinklist);
3774
3775 sb->s_maxbytes = MAX_LFS_FILESIZE;
3776 sb->s_blocksize = PAGE_SIZE;
3777 sb->s_blocksize_bits = PAGE_SHIFT;
3778 sb->s_magic = TMPFS_MAGIC;
3779 sb->s_op = &shmem_ops;
3780 sb->s_time_gran = 1;
3781 #ifdef CONFIG_TMPFS_XATTR
3782 sb->s_xattr = shmem_xattr_handlers;
3783 #endif
3784 #ifdef CONFIG_TMPFS_POSIX_ACL
3785 sb->s_flags |= MS_POSIXACL;
3786 #endif
3787 uuid_gen(&sb->s_uuid);
3788
3789 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3790 if (!inode)
3791 goto failed;
3792 inode->i_uid = sbinfo->uid;
3793 inode->i_gid = sbinfo->gid;
3794 sb->s_root = d_make_root(inode);
3795 if (!sb->s_root)
3796 goto failed;
3797 return 0;
3798
3799 failed:
3800 shmem_put_super(sb);
3801 return err;
3802 }
3803
3804 static struct kmem_cache *shmem_inode_cachep;
3805
3806 static struct inode *shmem_alloc_inode(struct super_block *sb)
3807 {
3808 struct shmem_inode_info *info;
3809 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3810 if (!info)
3811 return NULL;
3812 return &info->vfs_inode;
3813 }
3814
3815 static void shmem_destroy_callback(struct rcu_head *head)
3816 {
3817 struct inode *inode = container_of(head, struct inode, i_rcu);
3818 if (S_ISLNK(inode->i_mode))
3819 kfree(inode->i_link);
3820 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3821 }
3822
3823 static void shmem_destroy_inode(struct inode *inode)
3824 {
3825 if (S_ISREG(inode->i_mode))
3826 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3827 call_rcu(&inode->i_rcu, shmem_destroy_callback);
3828 }
3829
3830 static void shmem_init_inode(void *foo)
3831 {
3832 struct shmem_inode_info *info = foo;
3833 inode_init_once(&info->vfs_inode);
3834 }
3835
3836 static int shmem_init_inodecache(void)
3837 {
3838 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3839 sizeof(struct shmem_inode_info),
3840 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3841 return 0;
3842 }
3843
3844 static void shmem_destroy_inodecache(void)
3845 {
3846 kmem_cache_destroy(shmem_inode_cachep);
3847 }
3848
3849 static __init void shmem_no_idr(struct super_block *sb)
3850 {
3851 struct shmem_sb_info *sbinfo;
3852
3853 sbinfo = SHMEM_SB(sb);
3854 sbinfo->idr_nouse = true;
3855 idr_destroy(&sbinfo->idr);
3856 }
3857
3858 static const struct address_space_operations shmem_aops = {
3859 .writepage = shmem_writepage,
3860 .set_page_dirty = __set_page_dirty_no_writeback,
3861 #ifdef CONFIG_TMPFS
3862 .write_begin = shmem_write_begin,
3863 .write_end = shmem_write_end,
3864 #endif
3865 #ifdef CONFIG_MIGRATION
3866 .migratepage = migrate_page,
3867 #endif
3868 .error_remove_page = generic_error_remove_page,
3869 };
3870
3871 static const struct file_operations shmem_file_operations = {
3872 .mmap = shmem_mmap,
3873 .get_unmapped_area = shmem_get_unmapped_area,
3874 #ifdef CONFIG_TMPFS
3875 .llseek = shmem_file_llseek,
3876 .read_iter = shmem_file_read_iter,
3877 .write_iter = generic_file_write_iter,
3878 .fsync = noop_fsync,
3879 .splice_read = generic_file_splice_read,
3880 .splice_write = iter_file_splice_write,
3881 .fallocate = shmem_fallocate,
3882 #endif
3883 };
3884
3885 static const struct inode_operations shmem_inode_operations = {
3886 .getattr = shmem_getattr,
3887 .setattr = shmem_setattr,
3888 #ifdef CONFIG_TMPFS_XATTR
3889 .listxattr = shmem_listxattr,
3890 .set_acl = simple_set_acl,
3891 #endif
3892 };
3893
3894 static const struct inode_operations shmem_dir_inode_operations = {
3895 #ifdef CONFIG_TMPFS
3896 .create = shmem_create,
3897 .lookup = simple_lookup,
3898 .link = shmem_link,
3899 .unlink = shmem_unlink,
3900 .symlink = shmem_symlink,
3901 .mkdir = shmem_mkdir,
3902 .rmdir = shmem_rmdir,
3903 .mknod = shmem_mknod,
3904 .rename = shmem_rename2,
3905 .tmpfile = shmem_tmpfile,
3906 #endif
3907 #ifdef CONFIG_TMPFS_XATTR
3908 .listxattr = shmem_listxattr,
3909 #endif
3910 #ifdef CONFIG_TMPFS_POSIX_ACL
3911 .setattr = shmem_setattr,
3912 .set_acl = simple_set_acl,
3913 #endif
3914 };
3915
3916 static const struct inode_operations shmem_special_inode_operations = {
3917 #ifdef CONFIG_TMPFS_XATTR
3918 .listxattr = shmem_listxattr,
3919 #endif
3920 #ifdef CONFIG_TMPFS_POSIX_ACL
3921 .setattr = shmem_setattr,
3922 .set_acl = simple_set_acl,
3923 #endif
3924 };
3925
3926 static const struct super_operations shmem_ops = {
3927 .alloc_inode = shmem_alloc_inode,
3928 .destroy_inode = shmem_destroy_inode,
3929 #ifdef CONFIG_TMPFS
3930 .statfs = shmem_statfs,
3931 .remount_fs = shmem_remount_fs,
3932 .show_options = shmem_show_options,
3933 #endif
3934 .evict_inode = shmem_evict_inode,
3935 .drop_inode = generic_delete_inode,
3936 .put_super = shmem_put_super,
3937 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3938 .nr_cached_objects = shmem_unused_huge_count,
3939 .free_cached_objects = shmem_unused_huge_scan,
3940 #endif
3941 };
3942
3943 static const struct vm_operations_struct shmem_vm_ops = {
3944 .fault = shmem_fault,
3945 .map_pages = filemap_map_pages,
3946 #ifdef CONFIG_NUMA
3947 .set_policy = shmem_set_policy,
3948 .get_policy = shmem_get_policy,
3949 #endif
3950 };
3951
3952 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3953 int flags, const char *dev_name, void *data)
3954 {
3955 return mount_nodev(fs_type, flags, data, shmem_fill_super);
3956 }
3957
3958 static struct file_system_type shmem_fs_type = {
3959 .owner = THIS_MODULE,
3960 .name = "tmpfs",
3961 .mount = shmem_mount,
3962 .kill_sb = kill_litter_super,
3963 .fs_flags = FS_USERNS_MOUNT,
3964 };
3965
3966 int __init shmem_init(void)
3967 {
3968 int error;
3969
3970 /* If rootfs called this, don't re-init */
3971 if (shmem_inode_cachep)
3972 return 0;
3973
3974 error = shmem_init_inodecache();
3975 if (error)
3976 goto out3;
3977
3978 error = register_filesystem(&shmem_fs_type);
3979 if (error) {
3980 pr_err("Could not register tmpfs\n");
3981 goto out2;
3982 }
3983
3984 shm_mnt = kern_mount(&shmem_fs_type);
3985 if (IS_ERR(shm_mnt)) {
3986 error = PTR_ERR(shm_mnt);
3987 pr_err("Could not kern_mount tmpfs\n");
3988 goto out1;
3989 }
3990 shmem_no_idr(shm_mnt->mnt_sb);
3991
3992 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3993 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3994 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3995 else
3996 shmem_huge = 0; /* just in case it was patched */
3997 #endif
3998 return 0;
3999
4000 out1:
4001 unregister_filesystem(&shmem_fs_type);
4002 out2:
4003 shmem_destroy_inodecache();
4004 out3:
4005 shm_mnt = ERR_PTR(error);
4006 return error;
4007 }
4008
4009 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
4010 static ssize_t shmem_enabled_show(struct kobject *kobj,
4011 struct kobj_attribute *attr, char *buf)
4012 {
4013 int values[] = {
4014 SHMEM_HUGE_ALWAYS,
4015 SHMEM_HUGE_WITHIN_SIZE,
4016 SHMEM_HUGE_ADVISE,
4017 SHMEM_HUGE_NEVER,
4018 SHMEM_HUGE_DENY,
4019 SHMEM_HUGE_FORCE,
4020 };
4021 int i, count;
4022
4023 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
4024 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
4025
4026 count += sprintf(buf + count, fmt,
4027 shmem_format_huge(values[i]));
4028 }
4029 buf[count - 1] = '\n';
4030 return count;
4031 }
4032
4033 static ssize_t shmem_enabled_store(struct kobject *kobj,
4034 struct kobj_attribute *attr, const char *buf, size_t count)
4035 {
4036 char tmp[16];
4037 int huge;
4038
4039 if (count + 1 > sizeof(tmp))
4040 return -EINVAL;
4041 memcpy(tmp, buf, count);
4042 tmp[count] = '\0';
4043 if (count && tmp[count - 1] == '\n')
4044 tmp[count - 1] = '\0';
4045
4046 huge = shmem_parse_huge(tmp);
4047 if (huge == -EINVAL)
4048 return -EINVAL;
4049 if (!has_transparent_hugepage() &&
4050 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4051 return -EINVAL;
4052
4053 shmem_huge = huge;
4054 if (shmem_huge > SHMEM_HUGE_DENY)
4055 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4056 return count;
4057 }
4058
4059 struct kobj_attribute shmem_enabled_attr =
4060 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
4061 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
4062
4063 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
4064 bool shmem_huge_enabled(struct vm_area_struct *vma)
4065 {
4066 struct inode *inode = file_inode(vma->vm_file);
4067 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4068 loff_t i_size;
4069 pgoff_t off;
4070
4071 if (shmem_huge == SHMEM_HUGE_FORCE)
4072 return true;
4073 if (shmem_huge == SHMEM_HUGE_DENY)
4074 return false;
4075 switch (sbinfo->huge) {
4076 case SHMEM_HUGE_NEVER:
4077 return false;
4078 case SHMEM_HUGE_ALWAYS:
4079 return true;
4080 case SHMEM_HUGE_WITHIN_SIZE:
4081 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4082 i_size = round_up(i_size_read(inode), PAGE_SIZE);
4083 if (i_size >= HPAGE_PMD_SIZE &&
4084 i_size >> PAGE_SHIFT >= off)
4085 return true;
4086 case SHMEM_HUGE_ADVISE:
4087 /* TODO: implement fadvise() hints */
4088 return (vma->vm_flags & VM_HUGEPAGE);
4089 default:
4090 VM_BUG_ON(1);
4091 return false;
4092 }
4093 }
4094 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
4095
4096 #else /* !CONFIG_SHMEM */
4097
4098 /*
4099 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4100 *
4101 * This is intended for small system where the benefits of the full
4102 * shmem code (swap-backed and resource-limited) are outweighed by
4103 * their complexity. On systems without swap this code should be
4104 * effectively equivalent, but much lighter weight.
4105 */
4106
4107 static struct file_system_type shmem_fs_type = {
4108 .name = "tmpfs",
4109 .mount = ramfs_mount,
4110 .kill_sb = kill_litter_super,
4111 .fs_flags = FS_USERNS_MOUNT,
4112 };
4113
4114 int __init shmem_init(void)
4115 {
4116 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4117
4118 shm_mnt = kern_mount(&shmem_fs_type);
4119 BUG_ON(IS_ERR(shm_mnt));
4120
4121 return 0;
4122 }
4123
4124 int shmem_unuse(swp_entry_t swap, struct page *page)
4125 {
4126 return 0;
4127 }
4128
4129 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4130 {
4131 return 0;
4132 }
4133
4134 void shmem_unlock_mapping(struct address_space *mapping)
4135 {
4136 }
4137
4138 #ifdef CONFIG_MMU
4139 unsigned long shmem_get_unmapped_area(struct file *file,
4140 unsigned long addr, unsigned long len,
4141 unsigned long pgoff, unsigned long flags)
4142 {
4143 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4144 }
4145 #endif
4146
4147 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4148 {
4149 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4150 }
4151 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4152
4153 #define shmem_vm_ops generic_file_vm_ops
4154 #define shmem_file_operations ramfs_file_operations
4155 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
4156 #define shmem_acct_size(flags, size) 0
4157 #define shmem_unacct_size(flags, size) do {} while (0)
4158
4159 #endif /* CONFIG_SHMEM */
4160
4161 /* common code */
4162
4163 static const struct dentry_operations anon_ops = {
4164 .d_dname = simple_dname
4165 };
4166
4167 static struct file *__shmem_file_setup(const char *name, loff_t size,
4168 unsigned long flags, unsigned int i_flags)
4169 {
4170 struct file *res;
4171 struct inode *inode;
4172 struct path path;
4173 struct super_block *sb;
4174 struct qstr this;
4175
4176 if (IS_ERR(shm_mnt))
4177 return ERR_CAST(shm_mnt);
4178
4179 if (size < 0 || size > MAX_LFS_FILESIZE)
4180 return ERR_PTR(-EINVAL);
4181
4182 if (shmem_acct_size(flags, size))
4183 return ERR_PTR(-ENOMEM);
4184
4185 res = ERR_PTR(-ENOMEM);
4186 this.name = name;
4187 this.len = strlen(name);
4188 this.hash = 0; /* will go */
4189 sb = shm_mnt->mnt_sb;
4190 path.mnt = mntget(shm_mnt);
4191 path.dentry = d_alloc_pseudo(sb, &this);
4192 if (!path.dentry)
4193 goto put_memory;
4194 d_set_d_op(path.dentry, &anon_ops);
4195
4196 res = ERR_PTR(-ENOSPC);
4197 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
4198 if (!inode)
4199 goto put_memory;
4200
4201 inode->i_flags |= i_flags;
4202 d_instantiate(path.dentry, inode);
4203 inode->i_size = size;
4204 clear_nlink(inode); /* It is unlinked */
4205 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4206 if (IS_ERR(res))
4207 goto put_path;
4208
4209 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4210 &shmem_file_operations);
4211 if (IS_ERR(res))
4212 goto put_path;
4213
4214 return res;
4215
4216 put_memory:
4217 shmem_unacct_size(flags, size);
4218 put_path:
4219 path_put(&path);
4220 return res;
4221 }
4222
4223 /**
4224 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4225 * kernel internal. There will be NO LSM permission checks against the
4226 * underlying inode. So users of this interface must do LSM checks at a
4227 * higher layer. The users are the big_key and shm implementations. LSM
4228 * checks are provided at the key or shm level rather than the inode.
4229 * @name: name for dentry (to be seen in /proc/<pid>/maps
4230 * @size: size to be set for the file
4231 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4232 */
4233 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4234 {
4235 return __shmem_file_setup(name, size, flags, S_PRIVATE);
4236 }
4237
4238 /**
4239 * shmem_file_setup - get an unlinked file living in tmpfs
4240 * @name: name for dentry (to be seen in /proc/<pid>/maps
4241 * @size: size to be set for the file
4242 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4243 */
4244 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4245 {
4246 return __shmem_file_setup(name, size, flags, 0);
4247 }
4248 EXPORT_SYMBOL_GPL(shmem_file_setup);
4249
4250 /**
4251 * shmem_zero_setup - setup a shared anonymous mapping
4252 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4253 */
4254 int shmem_zero_setup(struct vm_area_struct *vma)
4255 {
4256 struct file *file;
4257 loff_t size = vma->vm_end - vma->vm_start;
4258
4259 /*
4260 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4261 * between XFS directory reading and selinux: since this file is only
4262 * accessible to the user through its mapping, use S_PRIVATE flag to
4263 * bypass file security, in the same way as shmem_kernel_file_setup().
4264 */
4265 file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
4266 if (IS_ERR(file))
4267 return PTR_ERR(file);
4268
4269 if (vma->vm_file)
4270 fput(vma->vm_file);
4271 vma->vm_file = file;
4272 vma->vm_ops = &shmem_vm_ops;
4273
4274 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4275 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4276 (vma->vm_end & HPAGE_PMD_MASK)) {
4277 khugepaged_enter(vma, vma->vm_flags);
4278 }
4279
4280 return 0;
4281 }
4282
4283 /**
4284 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4285 * @mapping: the page's address_space
4286 * @index: the page index
4287 * @gfp: the page allocator flags to use if allocating
4288 *
4289 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4290 * with any new page allocations done using the specified allocation flags.
4291 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4292 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4293 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4294 *
4295 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4296 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4297 */
4298 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4299 pgoff_t index, gfp_t gfp)
4300 {
4301 #ifdef CONFIG_SHMEM
4302 struct inode *inode = mapping->host;
4303 struct page *page;
4304 int error;
4305
4306 BUG_ON(mapping->a_ops != &shmem_aops);
4307 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4308 gfp, NULL, NULL, NULL);
4309 if (error)
4310 page = ERR_PTR(error);
4311 else
4312 unlock_page(page);
4313 return page;
4314 #else
4315 /*
4316 * The tiny !SHMEM case uses ramfs without swap
4317 */
4318 return read_cache_page_gfp(mapping, index, gfp);
4319 #endif
4320 }
4321 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);