]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/slab.h
UBUNTU: [Config] CONFIG_NET_DSA_LOOP=m
[mirror_ubuntu-artful-kernel.git] / mm / slab.h
1 #ifndef MM_SLAB_H
2 #define MM_SLAB_H
3 /*
4 * Internal slab definitions
5 */
6
7 #ifdef CONFIG_SLOB
8 /*
9 * Common fields provided in kmem_cache by all slab allocators
10 * This struct is either used directly by the allocator (SLOB)
11 * or the allocator must include definitions for all fields
12 * provided in kmem_cache_common in their definition of kmem_cache.
13 *
14 * Once we can do anonymous structs (C11 standard) we could put a
15 * anonymous struct definition in these allocators so that the
16 * separate allocations in the kmem_cache structure of SLAB and
17 * SLUB is no longer needed.
18 */
19 struct kmem_cache {
20 unsigned int object_size;/* The original size of the object */
21 unsigned int size; /* The aligned/padded/added on size */
22 unsigned int align; /* Alignment as calculated */
23 unsigned long flags; /* Active flags on the slab */
24 const char *name; /* Slab name for sysfs */
25 int refcount; /* Use counter */
26 void (*ctor)(void *); /* Called on object slot creation */
27 struct list_head list; /* List of all slab caches on the system */
28 };
29
30 #endif /* CONFIG_SLOB */
31
32 #ifdef CONFIG_SLAB
33 #include <linux/slab_def.h>
34 #endif
35
36 #ifdef CONFIG_SLUB
37 #include <linux/slub_def.h>
38 #endif
39
40 #include <linux/memcontrol.h>
41 #include <linux/fault-inject.h>
42 #include <linux/kmemcheck.h>
43 #include <linux/kasan.h>
44 #include <linux/kmemleak.h>
45 #include <linux/random.h>
46
47 /*
48 * State of the slab allocator.
49 *
50 * This is used to describe the states of the allocator during bootup.
51 * Allocators use this to gradually bootstrap themselves. Most allocators
52 * have the problem that the structures used for managing slab caches are
53 * allocated from slab caches themselves.
54 */
55 enum slab_state {
56 DOWN, /* No slab functionality yet */
57 PARTIAL, /* SLUB: kmem_cache_node available */
58 PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */
59 UP, /* Slab caches usable but not all extras yet */
60 FULL /* Everything is working */
61 };
62
63 extern enum slab_state slab_state;
64
65 /* The slab cache mutex protects the management structures during changes */
66 extern struct mutex slab_mutex;
67
68 /* The list of all slab caches on the system */
69 extern struct list_head slab_caches;
70
71 /* The slab cache that manages slab cache information */
72 extern struct kmem_cache *kmem_cache;
73
74 /* A table of kmalloc cache names and sizes */
75 extern const struct kmalloc_info_struct {
76 const char *name;
77 unsigned long size;
78 } kmalloc_info[];
79
80 unsigned long calculate_alignment(unsigned long flags,
81 unsigned long align, unsigned long size);
82
83 #ifndef CONFIG_SLOB
84 /* Kmalloc array related functions */
85 void setup_kmalloc_cache_index_table(void);
86 void create_kmalloc_caches(unsigned long);
87
88 /* Find the kmalloc slab corresponding for a certain size */
89 struct kmem_cache *kmalloc_slab(size_t, gfp_t);
90 #endif
91
92
93 /* Functions provided by the slab allocators */
94 extern int __kmem_cache_create(struct kmem_cache *, unsigned long flags);
95
96 extern struct kmem_cache *create_kmalloc_cache(const char *name, size_t size,
97 unsigned long flags);
98 extern void create_boot_cache(struct kmem_cache *, const char *name,
99 size_t size, unsigned long flags);
100
101 int slab_unmergeable(struct kmem_cache *s);
102 struct kmem_cache *find_mergeable(size_t size, size_t align,
103 unsigned long flags, const char *name, void (*ctor)(void *));
104 #ifndef CONFIG_SLOB
105 struct kmem_cache *
106 __kmem_cache_alias(const char *name, size_t size, size_t align,
107 unsigned long flags, void (*ctor)(void *));
108
109 unsigned long kmem_cache_flags(unsigned long object_size,
110 unsigned long flags, const char *name,
111 void (*ctor)(void *));
112 #else
113 static inline struct kmem_cache *
114 __kmem_cache_alias(const char *name, size_t size, size_t align,
115 unsigned long flags, void (*ctor)(void *))
116 { return NULL; }
117
118 static inline unsigned long kmem_cache_flags(unsigned long object_size,
119 unsigned long flags, const char *name,
120 void (*ctor)(void *))
121 {
122 return flags;
123 }
124 #endif
125
126
127 /* Legal flag mask for kmem_cache_create(), for various configurations */
128 #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | SLAB_PANIC | \
129 SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS )
130
131 #if defined(CONFIG_DEBUG_SLAB)
132 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
133 #elif defined(CONFIG_SLUB_DEBUG)
134 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
135 SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
136 #else
137 #define SLAB_DEBUG_FLAGS (0)
138 #endif
139
140 #if defined(CONFIG_SLAB)
141 #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
142 SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
143 SLAB_NOTRACK | SLAB_ACCOUNT)
144 #elif defined(CONFIG_SLUB)
145 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
146 SLAB_TEMPORARY | SLAB_NOTRACK | SLAB_ACCOUNT)
147 #else
148 #define SLAB_CACHE_FLAGS (0)
149 #endif
150
151 /* Common flags available with current configuration */
152 #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
153
154 /* Common flags permitted for kmem_cache_create */
155 #define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
156 SLAB_RED_ZONE | \
157 SLAB_POISON | \
158 SLAB_STORE_USER | \
159 SLAB_TRACE | \
160 SLAB_CONSISTENCY_CHECKS | \
161 SLAB_MEM_SPREAD | \
162 SLAB_NOLEAKTRACE | \
163 SLAB_RECLAIM_ACCOUNT | \
164 SLAB_TEMPORARY | \
165 SLAB_NOTRACK | \
166 SLAB_ACCOUNT)
167
168 int __kmem_cache_shutdown(struct kmem_cache *);
169 void __kmem_cache_release(struct kmem_cache *);
170 int __kmem_cache_shrink(struct kmem_cache *);
171 void __kmemcg_cache_deactivate(struct kmem_cache *s);
172 void slab_kmem_cache_release(struct kmem_cache *);
173
174 struct seq_file;
175 struct file;
176
177 struct slabinfo {
178 unsigned long active_objs;
179 unsigned long num_objs;
180 unsigned long active_slabs;
181 unsigned long num_slabs;
182 unsigned long shared_avail;
183 unsigned int limit;
184 unsigned int batchcount;
185 unsigned int shared;
186 unsigned int objects_per_slab;
187 unsigned int cache_order;
188 };
189
190 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
191 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
192 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
193 size_t count, loff_t *ppos);
194
195 /*
196 * Generic implementation of bulk operations
197 * These are useful for situations in which the allocator cannot
198 * perform optimizations. In that case segments of the object listed
199 * may be allocated or freed using these operations.
200 */
201 void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
202 int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
203
204 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
205
206 /* List of all root caches. */
207 extern struct list_head slab_root_caches;
208 #define root_caches_node memcg_params.__root_caches_node
209
210 /*
211 * Iterate over all memcg caches of the given root cache. The caller must hold
212 * slab_mutex.
213 */
214 #define for_each_memcg_cache(iter, root) \
215 list_for_each_entry(iter, &(root)->memcg_params.children, \
216 memcg_params.children_node)
217
218 static inline bool is_root_cache(struct kmem_cache *s)
219 {
220 return !s->memcg_params.root_cache;
221 }
222
223 static inline bool slab_equal_or_root(struct kmem_cache *s,
224 struct kmem_cache *p)
225 {
226 return p == s || p == s->memcg_params.root_cache;
227 }
228
229 /*
230 * We use suffixes to the name in memcg because we can't have caches
231 * created in the system with the same name. But when we print them
232 * locally, better refer to them with the base name
233 */
234 static inline const char *cache_name(struct kmem_cache *s)
235 {
236 if (!is_root_cache(s))
237 s = s->memcg_params.root_cache;
238 return s->name;
239 }
240
241 /*
242 * Note, we protect with RCU only the memcg_caches array, not per-memcg caches.
243 * That said the caller must assure the memcg's cache won't go away by either
244 * taking a css reference to the owner cgroup, or holding the slab_mutex.
245 */
246 static inline struct kmem_cache *
247 cache_from_memcg_idx(struct kmem_cache *s, int idx)
248 {
249 struct kmem_cache *cachep;
250 struct memcg_cache_array *arr;
251
252 rcu_read_lock();
253 arr = rcu_dereference(s->memcg_params.memcg_caches);
254
255 /*
256 * Make sure we will access the up-to-date value. The code updating
257 * memcg_caches issues a write barrier to match this (see
258 * memcg_create_kmem_cache()).
259 */
260 cachep = READ_ONCE(arr->entries[idx]);
261 rcu_read_unlock();
262
263 return cachep;
264 }
265
266 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
267 {
268 if (is_root_cache(s))
269 return s;
270 return s->memcg_params.root_cache;
271 }
272
273 static __always_inline int memcg_charge_slab(struct page *page,
274 gfp_t gfp, int order,
275 struct kmem_cache *s)
276 {
277 if (!memcg_kmem_enabled())
278 return 0;
279 if (is_root_cache(s))
280 return 0;
281 return memcg_kmem_charge_memcg(page, gfp, order, s->memcg_params.memcg);
282 }
283
284 static __always_inline void memcg_uncharge_slab(struct page *page, int order,
285 struct kmem_cache *s)
286 {
287 if (!memcg_kmem_enabled())
288 return;
289 memcg_kmem_uncharge(page, order);
290 }
291
292 extern void slab_init_memcg_params(struct kmem_cache *);
293 extern void memcg_link_cache(struct kmem_cache *s);
294 extern void slab_deactivate_memcg_cache_rcu_sched(struct kmem_cache *s,
295 void (*deact_fn)(struct kmem_cache *));
296
297 #else /* CONFIG_MEMCG && !CONFIG_SLOB */
298
299 /* If !memcg, all caches are root. */
300 #define slab_root_caches slab_caches
301 #define root_caches_node list
302
303 #define for_each_memcg_cache(iter, root) \
304 for ((void)(iter), (void)(root); 0; )
305
306 static inline bool is_root_cache(struct kmem_cache *s)
307 {
308 return true;
309 }
310
311 static inline bool slab_equal_or_root(struct kmem_cache *s,
312 struct kmem_cache *p)
313 {
314 return true;
315 }
316
317 static inline const char *cache_name(struct kmem_cache *s)
318 {
319 return s->name;
320 }
321
322 static inline struct kmem_cache *
323 cache_from_memcg_idx(struct kmem_cache *s, int idx)
324 {
325 return NULL;
326 }
327
328 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
329 {
330 return s;
331 }
332
333 static inline int memcg_charge_slab(struct page *page, gfp_t gfp, int order,
334 struct kmem_cache *s)
335 {
336 return 0;
337 }
338
339 static inline void memcg_uncharge_slab(struct page *page, int order,
340 struct kmem_cache *s)
341 {
342 }
343
344 static inline void slab_init_memcg_params(struct kmem_cache *s)
345 {
346 }
347
348 static inline void memcg_link_cache(struct kmem_cache *s)
349 {
350 }
351
352 #endif /* CONFIG_MEMCG && !CONFIG_SLOB */
353
354 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
355 {
356 struct kmem_cache *cachep;
357 struct page *page;
358
359 /*
360 * When kmemcg is not being used, both assignments should return the
361 * same value. but we don't want to pay the assignment price in that
362 * case. If it is not compiled in, the compiler should be smart enough
363 * to not do even the assignment. In that case, slab_equal_or_root
364 * will also be a constant.
365 */
366 if (!memcg_kmem_enabled() &&
367 !unlikely(s->flags & SLAB_CONSISTENCY_CHECKS))
368 return s;
369
370 page = virt_to_head_page(x);
371 cachep = page->slab_cache;
372 if (slab_equal_or_root(cachep, s))
373 return cachep;
374
375 pr_err("%s: Wrong slab cache. %s but object is from %s\n",
376 __func__, s->name, cachep->name);
377 WARN_ON_ONCE(1);
378 return s;
379 }
380
381 static inline size_t slab_ksize(const struct kmem_cache *s)
382 {
383 #ifndef CONFIG_SLUB
384 return s->object_size;
385
386 #else /* CONFIG_SLUB */
387 # ifdef CONFIG_SLUB_DEBUG
388 /*
389 * Debugging requires use of the padding between object
390 * and whatever may come after it.
391 */
392 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
393 return s->object_size;
394 # endif
395 if (s->flags & SLAB_KASAN)
396 return s->object_size;
397 /*
398 * If we have the need to store the freelist pointer
399 * back there or track user information then we can
400 * only use the space before that information.
401 */
402 if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER))
403 return s->inuse;
404 /*
405 * Else we can use all the padding etc for the allocation
406 */
407 return s->size;
408 #endif
409 }
410
411 static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
412 gfp_t flags)
413 {
414 flags &= gfp_allowed_mask;
415 lockdep_trace_alloc(flags);
416 might_sleep_if(gfpflags_allow_blocking(flags));
417
418 if (should_failslab(s, flags))
419 return NULL;
420
421 if (memcg_kmem_enabled() &&
422 ((flags & __GFP_ACCOUNT) || (s->flags & SLAB_ACCOUNT)))
423 return memcg_kmem_get_cache(s);
424
425 return s;
426 }
427
428 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
429 size_t size, void **p)
430 {
431 size_t i;
432
433 flags &= gfp_allowed_mask;
434 for (i = 0; i < size; i++) {
435 void *object = p[i];
436
437 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
438 kmemleak_alloc_recursive(object, s->object_size, 1,
439 s->flags, flags);
440 kasan_slab_alloc(s, object, flags);
441 }
442
443 if (memcg_kmem_enabled())
444 memcg_kmem_put_cache(s);
445 }
446
447 #ifndef CONFIG_SLOB
448 /*
449 * The slab lists for all objects.
450 */
451 struct kmem_cache_node {
452 spinlock_t list_lock;
453
454 #ifdef CONFIG_SLAB
455 struct list_head slabs_partial; /* partial list first, better asm code */
456 struct list_head slabs_full;
457 struct list_head slabs_free;
458 unsigned long total_slabs; /* length of all slab lists */
459 unsigned long free_slabs; /* length of free slab list only */
460 unsigned long free_objects;
461 unsigned int free_limit;
462 unsigned int colour_next; /* Per-node cache coloring */
463 struct array_cache *shared; /* shared per node */
464 struct alien_cache **alien; /* on other nodes */
465 unsigned long next_reap; /* updated without locking */
466 int free_touched; /* updated without locking */
467 #endif
468
469 #ifdef CONFIG_SLUB
470 unsigned long nr_partial;
471 struct list_head partial;
472 #ifdef CONFIG_SLUB_DEBUG
473 atomic_long_t nr_slabs;
474 atomic_long_t total_objects;
475 struct list_head full;
476 #endif
477 #endif
478
479 };
480
481 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
482 {
483 return s->node[node];
484 }
485
486 /*
487 * Iterator over all nodes. The body will be executed for each node that has
488 * a kmem_cache_node structure allocated (which is true for all online nodes)
489 */
490 #define for_each_kmem_cache_node(__s, __node, __n) \
491 for (__node = 0; __node < nr_node_ids; __node++) \
492 if ((__n = get_node(__s, __node)))
493
494 #endif
495
496 void *slab_start(struct seq_file *m, loff_t *pos);
497 void *slab_next(struct seq_file *m, void *p, loff_t *pos);
498 void slab_stop(struct seq_file *m, void *p);
499 void *memcg_slab_start(struct seq_file *m, loff_t *pos);
500 void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos);
501 void memcg_slab_stop(struct seq_file *m, void *p);
502 int memcg_slab_show(struct seq_file *m, void *p);
503
504 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);
505
506 #ifdef CONFIG_SLAB_FREELIST_RANDOM
507 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
508 gfp_t gfp);
509 void cache_random_seq_destroy(struct kmem_cache *cachep);
510 #else
511 static inline int cache_random_seq_create(struct kmem_cache *cachep,
512 unsigned int count, gfp_t gfp)
513 {
514 return 0;
515 }
516 static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
517 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
518
519 #endif /* MM_SLAB_H */