]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/slub.c
seccomp: Add filter flag to opt-out of SSB mitigation
[mirror_ubuntu-artful-kernel.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
10 */
11
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/kmemcheck.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/debugobjects.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memory.h>
32 #include <linux/math64.h>
33 #include <linux/fault-inject.h>
34 #include <linux/stacktrace.h>
35 #include <linux/prefetch.h>
36 #include <linux/memcontrol.h>
37
38 #include <trace/events/kmem.h>
39
40 #include "internal.h"
41
42 /*
43 * Lock order:
44 * 1. slab_mutex (Global Mutex)
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
47 *
48 * slab_mutex
49 *
50 * The role of the slab_mutex is to protect the list of all the slabs
51 * and to synchronize major metadata changes to slab cache structures.
52 *
53 * The slab_lock is only used for debugging and on arches that do not
54 * have the ability to do a cmpxchg_double. It only protects the second
55 * double word in the page struct. Meaning
56 * A. page->freelist -> List of object free in a page
57 * B. page->counters -> Counters of objects
58 * C. page->frozen -> frozen state
59 *
60 * If a slab is frozen then it is exempt from list management. It is not
61 * on any list. The processor that froze the slab is the one who can
62 * perform list operations on the page. Other processors may put objects
63 * onto the freelist but the processor that froze the slab is the only
64 * one that can retrieve the objects from the page's freelist.
65 *
66 * The list_lock protects the partial and full list on each node and
67 * the partial slab counter. If taken then no new slabs may be added or
68 * removed from the lists nor make the number of partial slabs be modified.
69 * (Note that the total number of slabs is an atomic value that may be
70 * modified without taking the list lock).
71 *
72 * The list_lock is a centralized lock and thus we avoid taking it as
73 * much as possible. As long as SLUB does not have to handle partial
74 * slabs, operations can continue without any centralized lock. F.e.
75 * allocating a long series of objects that fill up slabs does not require
76 * the list lock.
77 * Interrupts are disabled during allocation and deallocation in order to
78 * make the slab allocator safe to use in the context of an irq. In addition
79 * interrupts are disabled to ensure that the processor does not change
80 * while handling per_cpu slabs, due to kernel preemption.
81 *
82 * SLUB assigns one slab for allocation to each processor.
83 * Allocations only occur from these slabs called cpu slabs.
84 *
85 * Slabs with free elements are kept on a partial list and during regular
86 * operations no list for full slabs is used. If an object in a full slab is
87 * freed then the slab will show up again on the partial lists.
88 * We track full slabs for debugging purposes though because otherwise we
89 * cannot scan all objects.
90 *
91 * Slabs are freed when they become empty. Teardown and setup is
92 * minimal so we rely on the page allocators per cpu caches for
93 * fast frees and allocs.
94 *
95 * Overloading of page flags that are otherwise used for LRU management.
96 *
97 * PageActive The slab is frozen and exempt from list processing.
98 * This means that the slab is dedicated to a purpose
99 * such as satisfying allocations for a specific
100 * processor. Objects may be freed in the slab while
101 * it is frozen but slab_free will then skip the usual
102 * list operations. It is up to the processor holding
103 * the slab to integrate the slab into the slab lists
104 * when the slab is no longer needed.
105 *
106 * One use of this flag is to mark slabs that are
107 * used for allocations. Then such a slab becomes a cpu
108 * slab. The cpu slab may be equipped with an additional
109 * freelist that allows lockless access to
110 * free objects in addition to the regular freelist
111 * that requires the slab lock.
112 *
113 * PageError Slab requires special handling due to debug
114 * options set. This moves slab handling out of
115 * the fast path and disables lockless freelists.
116 */
117
118 static inline int kmem_cache_debug(struct kmem_cache *s)
119 {
120 #ifdef CONFIG_SLUB_DEBUG
121 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
122 #else
123 return 0;
124 #endif
125 }
126
127 void *fixup_red_left(struct kmem_cache *s, void *p)
128 {
129 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
130 p += s->red_left_pad;
131
132 return p;
133 }
134
135 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
136 {
137 #ifdef CONFIG_SLUB_CPU_PARTIAL
138 return !kmem_cache_debug(s);
139 #else
140 return false;
141 #endif
142 }
143
144 /*
145 * Issues still to be resolved:
146 *
147 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
148 *
149 * - Variable sizing of the per node arrays
150 */
151
152 /* Enable to test recovery from slab corruption on boot */
153 #undef SLUB_RESILIENCY_TEST
154
155 /* Enable to log cmpxchg failures */
156 #undef SLUB_DEBUG_CMPXCHG
157
158 /*
159 * Mininum number of partial slabs. These will be left on the partial
160 * lists even if they are empty. kmem_cache_shrink may reclaim them.
161 */
162 #define MIN_PARTIAL 5
163
164 /*
165 * Maximum number of desirable partial slabs.
166 * The existence of more partial slabs makes kmem_cache_shrink
167 * sort the partial list by the number of objects in use.
168 */
169 #define MAX_PARTIAL 10
170
171 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
172 SLAB_POISON | SLAB_STORE_USER)
173
174 /*
175 * These debug flags cannot use CMPXCHG because there might be consistency
176 * issues when checking or reading debug information
177 */
178 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
179 SLAB_TRACE)
180
181
182 /*
183 * Debugging flags that require metadata to be stored in the slab. These get
184 * disabled when slub_debug=O is used and a cache's min order increases with
185 * metadata.
186 */
187 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
188
189 #define OO_SHIFT 16
190 #define OO_MASK ((1 << OO_SHIFT) - 1)
191 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
192
193 /* Internal SLUB flags */
194 #define __OBJECT_POISON 0x80000000UL /* Poison object */
195 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
196
197 /*
198 * Tracking user of a slab.
199 */
200 #define TRACK_ADDRS_COUNT 16
201 struct track {
202 unsigned long addr; /* Called from address */
203 #ifdef CONFIG_STACKTRACE
204 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
205 #endif
206 int cpu; /* Was running on cpu */
207 int pid; /* Pid context */
208 unsigned long when; /* When did the operation occur */
209 };
210
211 enum track_item { TRACK_ALLOC, TRACK_FREE };
212
213 #ifdef CONFIG_SYSFS
214 static int sysfs_slab_add(struct kmem_cache *);
215 static int sysfs_slab_alias(struct kmem_cache *, const char *);
216 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
217 static void sysfs_slab_remove(struct kmem_cache *s);
218 #else
219 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
220 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
221 { return 0; }
222 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
223 static inline void sysfs_slab_remove(struct kmem_cache *s) { }
224 #endif
225
226 static inline void stat(const struct kmem_cache *s, enum stat_item si)
227 {
228 #ifdef CONFIG_SLUB_STATS
229 /*
230 * The rmw is racy on a preemptible kernel but this is acceptable, so
231 * avoid this_cpu_add()'s irq-disable overhead.
232 */
233 raw_cpu_inc(s->cpu_slab->stat[si]);
234 #endif
235 }
236
237 /********************************************************************
238 * Core slab cache functions
239 *******************************************************************/
240
241 static inline void *get_freepointer(struct kmem_cache *s, void *object)
242 {
243 return *(void **)(object + s->offset);
244 }
245
246 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
247 {
248 prefetch(object + s->offset);
249 }
250
251 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
252 {
253 void *p;
254
255 if (!debug_pagealloc_enabled())
256 return get_freepointer(s, object);
257
258 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
259 return p;
260 }
261
262 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
263 {
264 *(void **)(object + s->offset) = fp;
265 }
266
267 /* Loop over all objects in a slab */
268 #define for_each_object(__p, __s, __addr, __objects) \
269 for (__p = fixup_red_left(__s, __addr); \
270 __p < (__addr) + (__objects) * (__s)->size; \
271 __p += (__s)->size)
272
273 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
274 for (__p = fixup_red_left(__s, __addr), __idx = 1; \
275 __idx <= __objects; \
276 __p += (__s)->size, __idx++)
277
278 /* Determine object index from a given position */
279 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
280 {
281 return (p - addr) / s->size;
282 }
283
284 static inline int order_objects(int order, unsigned long size, int reserved)
285 {
286 return ((PAGE_SIZE << order) - reserved) / size;
287 }
288
289 static inline struct kmem_cache_order_objects oo_make(int order,
290 unsigned long size, int reserved)
291 {
292 struct kmem_cache_order_objects x = {
293 (order << OO_SHIFT) + order_objects(order, size, reserved)
294 };
295
296 return x;
297 }
298
299 static inline int oo_order(struct kmem_cache_order_objects x)
300 {
301 return x.x >> OO_SHIFT;
302 }
303
304 static inline int oo_objects(struct kmem_cache_order_objects x)
305 {
306 return x.x & OO_MASK;
307 }
308
309 /*
310 * Per slab locking using the pagelock
311 */
312 static __always_inline void slab_lock(struct page *page)
313 {
314 VM_BUG_ON_PAGE(PageTail(page), page);
315 bit_spin_lock(PG_locked, &page->flags);
316 }
317
318 static __always_inline void slab_unlock(struct page *page)
319 {
320 VM_BUG_ON_PAGE(PageTail(page), page);
321 __bit_spin_unlock(PG_locked, &page->flags);
322 }
323
324 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
325 {
326 struct page tmp;
327 tmp.counters = counters_new;
328 /*
329 * page->counters can cover frozen/inuse/objects as well
330 * as page->_refcount. If we assign to ->counters directly
331 * we run the risk of losing updates to page->_refcount, so
332 * be careful and only assign to the fields we need.
333 */
334 page->frozen = tmp.frozen;
335 page->inuse = tmp.inuse;
336 page->objects = tmp.objects;
337 }
338
339 /* Interrupts must be disabled (for the fallback code to work right) */
340 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
341 void *freelist_old, unsigned long counters_old,
342 void *freelist_new, unsigned long counters_new,
343 const char *n)
344 {
345 VM_BUG_ON(!irqs_disabled());
346 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
347 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
348 if (s->flags & __CMPXCHG_DOUBLE) {
349 if (cmpxchg_double(&page->freelist, &page->counters,
350 freelist_old, counters_old,
351 freelist_new, counters_new))
352 return true;
353 } else
354 #endif
355 {
356 slab_lock(page);
357 if (page->freelist == freelist_old &&
358 page->counters == counters_old) {
359 page->freelist = freelist_new;
360 set_page_slub_counters(page, counters_new);
361 slab_unlock(page);
362 return true;
363 }
364 slab_unlock(page);
365 }
366
367 cpu_relax();
368 stat(s, CMPXCHG_DOUBLE_FAIL);
369
370 #ifdef SLUB_DEBUG_CMPXCHG
371 pr_info("%s %s: cmpxchg double redo ", n, s->name);
372 #endif
373
374 return false;
375 }
376
377 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
378 void *freelist_old, unsigned long counters_old,
379 void *freelist_new, unsigned long counters_new,
380 const char *n)
381 {
382 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
383 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
384 if (s->flags & __CMPXCHG_DOUBLE) {
385 if (cmpxchg_double(&page->freelist, &page->counters,
386 freelist_old, counters_old,
387 freelist_new, counters_new))
388 return true;
389 } else
390 #endif
391 {
392 unsigned long flags;
393
394 local_irq_save(flags);
395 slab_lock(page);
396 if (page->freelist == freelist_old &&
397 page->counters == counters_old) {
398 page->freelist = freelist_new;
399 set_page_slub_counters(page, counters_new);
400 slab_unlock(page);
401 local_irq_restore(flags);
402 return true;
403 }
404 slab_unlock(page);
405 local_irq_restore(flags);
406 }
407
408 cpu_relax();
409 stat(s, CMPXCHG_DOUBLE_FAIL);
410
411 #ifdef SLUB_DEBUG_CMPXCHG
412 pr_info("%s %s: cmpxchg double redo ", n, s->name);
413 #endif
414
415 return false;
416 }
417
418 #ifdef CONFIG_SLUB_DEBUG
419 /*
420 * Determine a map of object in use on a page.
421 *
422 * Node listlock must be held to guarantee that the page does
423 * not vanish from under us.
424 */
425 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
426 {
427 void *p;
428 void *addr = page_address(page);
429
430 for (p = page->freelist; p; p = get_freepointer(s, p))
431 set_bit(slab_index(p, s, addr), map);
432 }
433
434 static inline int size_from_object(struct kmem_cache *s)
435 {
436 if (s->flags & SLAB_RED_ZONE)
437 return s->size - s->red_left_pad;
438
439 return s->size;
440 }
441
442 static inline void *restore_red_left(struct kmem_cache *s, void *p)
443 {
444 if (s->flags & SLAB_RED_ZONE)
445 p -= s->red_left_pad;
446
447 return p;
448 }
449
450 /*
451 * Debug settings:
452 */
453 #if defined(CONFIG_SLUB_DEBUG_ON)
454 static int slub_debug = DEBUG_DEFAULT_FLAGS;
455 #else
456 static int slub_debug;
457 #endif
458
459 static char *slub_debug_slabs;
460 static int disable_higher_order_debug;
461
462 /*
463 * slub is about to manipulate internal object metadata. This memory lies
464 * outside the range of the allocated object, so accessing it would normally
465 * be reported by kasan as a bounds error. metadata_access_enable() is used
466 * to tell kasan that these accesses are OK.
467 */
468 static inline void metadata_access_enable(void)
469 {
470 kasan_disable_current();
471 }
472
473 static inline void metadata_access_disable(void)
474 {
475 kasan_enable_current();
476 }
477
478 /*
479 * Object debugging
480 */
481
482 /* Verify that a pointer has an address that is valid within a slab page */
483 static inline int check_valid_pointer(struct kmem_cache *s,
484 struct page *page, void *object)
485 {
486 void *base;
487
488 if (!object)
489 return 1;
490
491 base = page_address(page);
492 object = restore_red_left(s, object);
493 if (object < base || object >= base + page->objects * s->size ||
494 (object - base) % s->size) {
495 return 0;
496 }
497
498 return 1;
499 }
500
501 static void print_section(char *level, char *text, u8 *addr,
502 unsigned int length)
503 {
504 metadata_access_enable();
505 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
506 length, 1);
507 metadata_access_disable();
508 }
509
510 static struct track *get_track(struct kmem_cache *s, void *object,
511 enum track_item alloc)
512 {
513 struct track *p;
514
515 if (s->offset)
516 p = object + s->offset + sizeof(void *);
517 else
518 p = object + s->inuse;
519
520 return p + alloc;
521 }
522
523 static void set_track(struct kmem_cache *s, void *object,
524 enum track_item alloc, unsigned long addr)
525 {
526 struct track *p = get_track(s, object, alloc);
527
528 if (addr) {
529 #ifdef CONFIG_STACKTRACE
530 struct stack_trace trace;
531 int i;
532
533 trace.nr_entries = 0;
534 trace.max_entries = TRACK_ADDRS_COUNT;
535 trace.entries = p->addrs;
536 trace.skip = 3;
537 metadata_access_enable();
538 save_stack_trace(&trace);
539 metadata_access_disable();
540
541 /* See rant in lockdep.c */
542 if (trace.nr_entries != 0 &&
543 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
544 trace.nr_entries--;
545
546 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
547 p->addrs[i] = 0;
548 #endif
549 p->addr = addr;
550 p->cpu = smp_processor_id();
551 p->pid = current->pid;
552 p->when = jiffies;
553 } else
554 memset(p, 0, sizeof(struct track));
555 }
556
557 static void init_tracking(struct kmem_cache *s, void *object)
558 {
559 if (!(s->flags & SLAB_STORE_USER))
560 return;
561
562 set_track(s, object, TRACK_FREE, 0UL);
563 set_track(s, object, TRACK_ALLOC, 0UL);
564 }
565
566 static void print_track(const char *s, struct track *t)
567 {
568 if (!t->addr)
569 return;
570
571 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
572 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
573 #ifdef CONFIG_STACKTRACE
574 {
575 int i;
576 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
577 if (t->addrs[i])
578 pr_err("\t%pS\n", (void *)t->addrs[i]);
579 else
580 break;
581 }
582 #endif
583 }
584
585 static void print_tracking(struct kmem_cache *s, void *object)
586 {
587 if (!(s->flags & SLAB_STORE_USER))
588 return;
589
590 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
591 print_track("Freed", get_track(s, object, TRACK_FREE));
592 }
593
594 static void print_page_info(struct page *page)
595 {
596 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
597 page, page->objects, page->inuse, page->freelist, page->flags);
598
599 }
600
601 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
602 {
603 struct va_format vaf;
604 va_list args;
605
606 va_start(args, fmt);
607 vaf.fmt = fmt;
608 vaf.va = &args;
609 pr_err("=============================================================================\n");
610 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
611 pr_err("-----------------------------------------------------------------------------\n\n");
612
613 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
614 va_end(args);
615 }
616
617 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
618 {
619 struct va_format vaf;
620 va_list args;
621
622 va_start(args, fmt);
623 vaf.fmt = fmt;
624 vaf.va = &args;
625 pr_err("FIX %s: %pV\n", s->name, &vaf);
626 va_end(args);
627 }
628
629 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
630 {
631 unsigned int off; /* Offset of last byte */
632 u8 *addr = page_address(page);
633
634 print_tracking(s, p);
635
636 print_page_info(page);
637
638 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
639 p, p - addr, get_freepointer(s, p));
640
641 if (s->flags & SLAB_RED_ZONE)
642 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
643 s->red_left_pad);
644 else if (p > addr + 16)
645 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
646
647 print_section(KERN_ERR, "Object ", p,
648 min_t(unsigned long, s->object_size, PAGE_SIZE));
649 if (s->flags & SLAB_RED_ZONE)
650 print_section(KERN_ERR, "Redzone ", p + s->object_size,
651 s->inuse - s->object_size);
652
653 if (s->offset)
654 off = s->offset + sizeof(void *);
655 else
656 off = s->inuse;
657
658 if (s->flags & SLAB_STORE_USER)
659 off += 2 * sizeof(struct track);
660
661 off += kasan_metadata_size(s);
662
663 if (off != size_from_object(s))
664 /* Beginning of the filler is the free pointer */
665 print_section(KERN_ERR, "Padding ", p + off,
666 size_from_object(s) - off);
667
668 dump_stack();
669 }
670
671 void object_err(struct kmem_cache *s, struct page *page,
672 u8 *object, char *reason)
673 {
674 slab_bug(s, "%s", reason);
675 print_trailer(s, page, object);
676 }
677
678 static void slab_err(struct kmem_cache *s, struct page *page,
679 const char *fmt, ...)
680 {
681 va_list args;
682 char buf[100];
683
684 va_start(args, fmt);
685 vsnprintf(buf, sizeof(buf), fmt, args);
686 va_end(args);
687 slab_bug(s, "%s", buf);
688 print_page_info(page);
689 dump_stack();
690 }
691
692 static void init_object(struct kmem_cache *s, void *object, u8 val)
693 {
694 u8 *p = object;
695
696 if (s->flags & SLAB_RED_ZONE)
697 memset(p - s->red_left_pad, val, s->red_left_pad);
698
699 if (s->flags & __OBJECT_POISON) {
700 memset(p, POISON_FREE, s->object_size - 1);
701 p[s->object_size - 1] = POISON_END;
702 }
703
704 if (s->flags & SLAB_RED_ZONE)
705 memset(p + s->object_size, val, s->inuse - s->object_size);
706 }
707
708 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
709 void *from, void *to)
710 {
711 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
712 memset(from, data, to - from);
713 }
714
715 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
716 u8 *object, char *what,
717 u8 *start, unsigned int value, unsigned int bytes)
718 {
719 u8 *fault;
720 u8 *end;
721
722 metadata_access_enable();
723 fault = memchr_inv(start, value, bytes);
724 metadata_access_disable();
725 if (!fault)
726 return 1;
727
728 end = start + bytes;
729 while (end > fault && end[-1] == value)
730 end--;
731
732 slab_bug(s, "%s overwritten", what);
733 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
734 fault, end - 1, fault[0], value);
735 print_trailer(s, page, object);
736
737 restore_bytes(s, what, value, fault, end);
738 return 0;
739 }
740
741 /*
742 * Object layout:
743 *
744 * object address
745 * Bytes of the object to be managed.
746 * If the freepointer may overlay the object then the free
747 * pointer is the first word of the object.
748 *
749 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
750 * 0xa5 (POISON_END)
751 *
752 * object + s->object_size
753 * Padding to reach word boundary. This is also used for Redzoning.
754 * Padding is extended by another word if Redzoning is enabled and
755 * object_size == inuse.
756 *
757 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
758 * 0xcc (RED_ACTIVE) for objects in use.
759 *
760 * object + s->inuse
761 * Meta data starts here.
762 *
763 * A. Free pointer (if we cannot overwrite object on free)
764 * B. Tracking data for SLAB_STORE_USER
765 * C. Padding to reach required alignment boundary or at mininum
766 * one word if debugging is on to be able to detect writes
767 * before the word boundary.
768 *
769 * Padding is done using 0x5a (POISON_INUSE)
770 *
771 * object + s->size
772 * Nothing is used beyond s->size.
773 *
774 * If slabcaches are merged then the object_size and inuse boundaries are mostly
775 * ignored. And therefore no slab options that rely on these boundaries
776 * may be used with merged slabcaches.
777 */
778
779 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
780 {
781 unsigned long off = s->inuse; /* The end of info */
782
783 if (s->offset)
784 /* Freepointer is placed after the object. */
785 off += sizeof(void *);
786
787 if (s->flags & SLAB_STORE_USER)
788 /* We also have user information there */
789 off += 2 * sizeof(struct track);
790
791 off += kasan_metadata_size(s);
792
793 if (size_from_object(s) == off)
794 return 1;
795
796 return check_bytes_and_report(s, page, p, "Object padding",
797 p + off, POISON_INUSE, size_from_object(s) - off);
798 }
799
800 /* Check the pad bytes at the end of a slab page */
801 static int slab_pad_check(struct kmem_cache *s, struct page *page)
802 {
803 u8 *start;
804 u8 *fault;
805 u8 *end;
806 int length;
807 int remainder;
808
809 if (!(s->flags & SLAB_POISON))
810 return 1;
811
812 start = page_address(page);
813 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
814 end = start + length;
815 remainder = length % s->size;
816 if (!remainder)
817 return 1;
818
819 metadata_access_enable();
820 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
821 metadata_access_disable();
822 if (!fault)
823 return 1;
824 while (end > fault && end[-1] == POISON_INUSE)
825 end--;
826
827 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
828 print_section(KERN_ERR, "Padding ", end - remainder, remainder);
829
830 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
831 return 0;
832 }
833
834 static int check_object(struct kmem_cache *s, struct page *page,
835 void *object, u8 val)
836 {
837 u8 *p = object;
838 u8 *endobject = object + s->object_size;
839
840 if (s->flags & SLAB_RED_ZONE) {
841 if (!check_bytes_and_report(s, page, object, "Redzone",
842 object - s->red_left_pad, val, s->red_left_pad))
843 return 0;
844
845 if (!check_bytes_and_report(s, page, object, "Redzone",
846 endobject, val, s->inuse - s->object_size))
847 return 0;
848 } else {
849 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
850 check_bytes_and_report(s, page, p, "Alignment padding",
851 endobject, POISON_INUSE,
852 s->inuse - s->object_size);
853 }
854 }
855
856 if (s->flags & SLAB_POISON) {
857 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
858 (!check_bytes_and_report(s, page, p, "Poison", p,
859 POISON_FREE, s->object_size - 1) ||
860 !check_bytes_and_report(s, page, p, "Poison",
861 p + s->object_size - 1, POISON_END, 1)))
862 return 0;
863 /*
864 * check_pad_bytes cleans up on its own.
865 */
866 check_pad_bytes(s, page, p);
867 }
868
869 if (!s->offset && val == SLUB_RED_ACTIVE)
870 /*
871 * Object and freepointer overlap. Cannot check
872 * freepointer while object is allocated.
873 */
874 return 1;
875
876 /* Check free pointer validity */
877 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
878 object_err(s, page, p, "Freepointer corrupt");
879 /*
880 * No choice but to zap it and thus lose the remainder
881 * of the free objects in this slab. May cause
882 * another error because the object count is now wrong.
883 */
884 set_freepointer(s, p, NULL);
885 return 0;
886 }
887 return 1;
888 }
889
890 static int check_slab(struct kmem_cache *s, struct page *page)
891 {
892 int maxobj;
893
894 VM_BUG_ON(!irqs_disabled());
895
896 if (!PageSlab(page)) {
897 slab_err(s, page, "Not a valid slab page");
898 return 0;
899 }
900
901 maxobj = order_objects(compound_order(page), s->size, s->reserved);
902 if (page->objects > maxobj) {
903 slab_err(s, page, "objects %u > max %u",
904 page->objects, maxobj);
905 return 0;
906 }
907 if (page->inuse > page->objects) {
908 slab_err(s, page, "inuse %u > max %u",
909 page->inuse, page->objects);
910 return 0;
911 }
912 /* Slab_pad_check fixes things up after itself */
913 slab_pad_check(s, page);
914 return 1;
915 }
916
917 /*
918 * Determine if a certain object on a page is on the freelist. Must hold the
919 * slab lock to guarantee that the chains are in a consistent state.
920 */
921 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
922 {
923 int nr = 0;
924 void *fp;
925 void *object = NULL;
926 int max_objects;
927
928 fp = page->freelist;
929 while (fp && nr <= page->objects) {
930 if (fp == search)
931 return 1;
932 if (!check_valid_pointer(s, page, fp)) {
933 if (object) {
934 object_err(s, page, object,
935 "Freechain corrupt");
936 set_freepointer(s, object, NULL);
937 } else {
938 slab_err(s, page, "Freepointer corrupt");
939 page->freelist = NULL;
940 page->inuse = page->objects;
941 slab_fix(s, "Freelist cleared");
942 return 0;
943 }
944 break;
945 }
946 object = fp;
947 fp = get_freepointer(s, object);
948 nr++;
949 }
950
951 max_objects = order_objects(compound_order(page), s->size, s->reserved);
952 if (max_objects > MAX_OBJS_PER_PAGE)
953 max_objects = MAX_OBJS_PER_PAGE;
954
955 if (page->objects != max_objects) {
956 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
957 page->objects, max_objects);
958 page->objects = max_objects;
959 slab_fix(s, "Number of objects adjusted.");
960 }
961 if (page->inuse != page->objects - nr) {
962 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
963 page->inuse, page->objects - nr);
964 page->inuse = page->objects - nr;
965 slab_fix(s, "Object count adjusted.");
966 }
967 return search == NULL;
968 }
969
970 static void trace(struct kmem_cache *s, struct page *page, void *object,
971 int alloc)
972 {
973 if (s->flags & SLAB_TRACE) {
974 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
975 s->name,
976 alloc ? "alloc" : "free",
977 object, page->inuse,
978 page->freelist);
979
980 if (!alloc)
981 print_section(KERN_INFO, "Object ", (void *)object,
982 s->object_size);
983
984 dump_stack();
985 }
986 }
987
988 /*
989 * Tracking of fully allocated slabs for debugging purposes.
990 */
991 static void add_full(struct kmem_cache *s,
992 struct kmem_cache_node *n, struct page *page)
993 {
994 if (!(s->flags & SLAB_STORE_USER))
995 return;
996
997 lockdep_assert_held(&n->list_lock);
998 list_add(&page->lru, &n->full);
999 }
1000
1001 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1002 {
1003 if (!(s->flags & SLAB_STORE_USER))
1004 return;
1005
1006 lockdep_assert_held(&n->list_lock);
1007 list_del(&page->lru);
1008 }
1009
1010 /* Tracking of the number of slabs for debugging purposes */
1011 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1012 {
1013 struct kmem_cache_node *n = get_node(s, node);
1014
1015 return atomic_long_read(&n->nr_slabs);
1016 }
1017
1018 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1019 {
1020 return atomic_long_read(&n->nr_slabs);
1021 }
1022
1023 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1024 {
1025 struct kmem_cache_node *n = get_node(s, node);
1026
1027 /*
1028 * May be called early in order to allocate a slab for the
1029 * kmem_cache_node structure. Solve the chicken-egg
1030 * dilemma by deferring the increment of the count during
1031 * bootstrap (see early_kmem_cache_node_alloc).
1032 */
1033 if (likely(n)) {
1034 atomic_long_inc(&n->nr_slabs);
1035 atomic_long_add(objects, &n->total_objects);
1036 }
1037 }
1038 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1039 {
1040 struct kmem_cache_node *n = get_node(s, node);
1041
1042 atomic_long_dec(&n->nr_slabs);
1043 atomic_long_sub(objects, &n->total_objects);
1044 }
1045
1046 /* Object debug checks for alloc/free paths */
1047 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1048 void *object)
1049 {
1050 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1051 return;
1052
1053 init_object(s, object, SLUB_RED_INACTIVE);
1054 init_tracking(s, object);
1055 }
1056
1057 static inline int alloc_consistency_checks(struct kmem_cache *s,
1058 struct page *page,
1059 void *object, unsigned long addr)
1060 {
1061 if (!check_slab(s, page))
1062 return 0;
1063
1064 if (!check_valid_pointer(s, page, object)) {
1065 object_err(s, page, object, "Freelist Pointer check fails");
1066 return 0;
1067 }
1068
1069 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1070 return 0;
1071
1072 return 1;
1073 }
1074
1075 static noinline int alloc_debug_processing(struct kmem_cache *s,
1076 struct page *page,
1077 void *object, unsigned long addr)
1078 {
1079 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1080 if (!alloc_consistency_checks(s, page, object, addr))
1081 goto bad;
1082 }
1083
1084 /* Success perform special debug activities for allocs */
1085 if (s->flags & SLAB_STORE_USER)
1086 set_track(s, object, TRACK_ALLOC, addr);
1087 trace(s, page, object, 1);
1088 init_object(s, object, SLUB_RED_ACTIVE);
1089 return 1;
1090
1091 bad:
1092 if (PageSlab(page)) {
1093 /*
1094 * If this is a slab page then lets do the best we can
1095 * to avoid issues in the future. Marking all objects
1096 * as used avoids touching the remaining objects.
1097 */
1098 slab_fix(s, "Marking all objects used");
1099 page->inuse = page->objects;
1100 page->freelist = NULL;
1101 }
1102 return 0;
1103 }
1104
1105 static inline int free_consistency_checks(struct kmem_cache *s,
1106 struct page *page, void *object, unsigned long addr)
1107 {
1108 if (!check_valid_pointer(s, page, object)) {
1109 slab_err(s, page, "Invalid object pointer 0x%p", object);
1110 return 0;
1111 }
1112
1113 if (on_freelist(s, page, object)) {
1114 object_err(s, page, object, "Object already free");
1115 return 0;
1116 }
1117
1118 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1119 return 0;
1120
1121 if (unlikely(s != page->slab_cache)) {
1122 if (!PageSlab(page)) {
1123 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1124 object);
1125 } else if (!page->slab_cache) {
1126 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1127 object);
1128 dump_stack();
1129 } else
1130 object_err(s, page, object,
1131 "page slab pointer corrupt.");
1132 return 0;
1133 }
1134 return 1;
1135 }
1136
1137 /* Supports checking bulk free of a constructed freelist */
1138 static noinline int free_debug_processing(
1139 struct kmem_cache *s, struct page *page,
1140 void *head, void *tail, int bulk_cnt,
1141 unsigned long addr)
1142 {
1143 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1144 void *object = head;
1145 int cnt = 0;
1146 unsigned long uninitialized_var(flags);
1147 int ret = 0;
1148
1149 spin_lock_irqsave(&n->list_lock, flags);
1150 slab_lock(page);
1151
1152 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1153 if (!check_slab(s, page))
1154 goto out;
1155 }
1156
1157 next_object:
1158 cnt++;
1159
1160 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1161 if (!free_consistency_checks(s, page, object, addr))
1162 goto out;
1163 }
1164
1165 if (s->flags & SLAB_STORE_USER)
1166 set_track(s, object, TRACK_FREE, addr);
1167 trace(s, page, object, 0);
1168 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1169 init_object(s, object, SLUB_RED_INACTIVE);
1170
1171 /* Reached end of constructed freelist yet? */
1172 if (object != tail) {
1173 object = get_freepointer(s, object);
1174 goto next_object;
1175 }
1176 ret = 1;
1177
1178 out:
1179 if (cnt != bulk_cnt)
1180 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1181 bulk_cnt, cnt);
1182
1183 slab_unlock(page);
1184 spin_unlock_irqrestore(&n->list_lock, flags);
1185 if (!ret)
1186 slab_fix(s, "Object at 0x%p not freed", object);
1187 return ret;
1188 }
1189
1190 static int __init setup_slub_debug(char *str)
1191 {
1192 slub_debug = DEBUG_DEFAULT_FLAGS;
1193 if (*str++ != '=' || !*str)
1194 /*
1195 * No options specified. Switch on full debugging.
1196 */
1197 goto out;
1198
1199 if (*str == ',')
1200 /*
1201 * No options but restriction on slabs. This means full
1202 * debugging for slabs matching a pattern.
1203 */
1204 goto check_slabs;
1205
1206 slub_debug = 0;
1207 if (*str == '-')
1208 /*
1209 * Switch off all debugging measures.
1210 */
1211 goto out;
1212
1213 /*
1214 * Determine which debug features should be switched on
1215 */
1216 for (; *str && *str != ','; str++) {
1217 switch (tolower(*str)) {
1218 case 'f':
1219 slub_debug |= SLAB_CONSISTENCY_CHECKS;
1220 break;
1221 case 'z':
1222 slub_debug |= SLAB_RED_ZONE;
1223 break;
1224 case 'p':
1225 slub_debug |= SLAB_POISON;
1226 break;
1227 case 'u':
1228 slub_debug |= SLAB_STORE_USER;
1229 break;
1230 case 't':
1231 slub_debug |= SLAB_TRACE;
1232 break;
1233 case 'a':
1234 slub_debug |= SLAB_FAILSLAB;
1235 break;
1236 case 'o':
1237 /*
1238 * Avoid enabling debugging on caches if its minimum
1239 * order would increase as a result.
1240 */
1241 disable_higher_order_debug = 1;
1242 break;
1243 default:
1244 pr_err("slub_debug option '%c' unknown. skipped\n",
1245 *str);
1246 }
1247 }
1248
1249 check_slabs:
1250 if (*str == ',')
1251 slub_debug_slabs = str + 1;
1252 out:
1253 return 1;
1254 }
1255
1256 __setup("slub_debug", setup_slub_debug);
1257
1258 unsigned long kmem_cache_flags(unsigned long object_size,
1259 unsigned long flags, const char *name,
1260 void (*ctor)(void *))
1261 {
1262 /*
1263 * Enable debugging if selected on the kernel commandline.
1264 */
1265 if (slub_debug && (!slub_debug_slabs || (name &&
1266 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1267 flags |= slub_debug;
1268
1269 return flags;
1270 }
1271 #else /* !CONFIG_SLUB_DEBUG */
1272 static inline void setup_object_debug(struct kmem_cache *s,
1273 struct page *page, void *object) {}
1274
1275 static inline int alloc_debug_processing(struct kmem_cache *s,
1276 struct page *page, void *object, unsigned long addr) { return 0; }
1277
1278 static inline int free_debug_processing(
1279 struct kmem_cache *s, struct page *page,
1280 void *head, void *tail, int bulk_cnt,
1281 unsigned long addr) { return 0; }
1282
1283 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1284 { return 1; }
1285 static inline int check_object(struct kmem_cache *s, struct page *page,
1286 void *object, u8 val) { return 1; }
1287 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1288 struct page *page) {}
1289 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1290 struct page *page) {}
1291 unsigned long kmem_cache_flags(unsigned long object_size,
1292 unsigned long flags, const char *name,
1293 void (*ctor)(void *))
1294 {
1295 return flags;
1296 }
1297 #define slub_debug 0
1298
1299 #define disable_higher_order_debug 0
1300
1301 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1302 { return 0; }
1303 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1304 { return 0; }
1305 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1306 int objects) {}
1307 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1308 int objects) {}
1309
1310 #endif /* CONFIG_SLUB_DEBUG */
1311
1312 /*
1313 * Hooks for other subsystems that check memory allocations. In a typical
1314 * production configuration these hooks all should produce no code at all.
1315 */
1316 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1317 {
1318 kmemleak_alloc(ptr, size, 1, flags);
1319 kasan_kmalloc_large(ptr, size, flags);
1320 }
1321
1322 static inline void kfree_hook(const void *x)
1323 {
1324 kmemleak_free(x);
1325 kasan_kfree_large(x);
1326 }
1327
1328 static inline void *slab_free_hook(struct kmem_cache *s, void *x)
1329 {
1330 void *freeptr;
1331
1332 kmemleak_free_recursive(x, s->flags);
1333
1334 /*
1335 * Trouble is that we may no longer disable interrupts in the fast path
1336 * So in order to make the debug calls that expect irqs to be
1337 * disabled we need to disable interrupts temporarily.
1338 */
1339 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1340 {
1341 unsigned long flags;
1342
1343 local_irq_save(flags);
1344 kmemcheck_slab_free(s, x, s->object_size);
1345 debug_check_no_locks_freed(x, s->object_size);
1346 local_irq_restore(flags);
1347 }
1348 #endif
1349 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1350 debug_check_no_obj_freed(x, s->object_size);
1351
1352 freeptr = get_freepointer(s, x);
1353 /*
1354 * kasan_slab_free() may put x into memory quarantine, delaying its
1355 * reuse. In this case the object's freelist pointer is changed.
1356 */
1357 kasan_slab_free(s, x);
1358 return freeptr;
1359 }
1360
1361 static inline void slab_free_freelist_hook(struct kmem_cache *s,
1362 void *head, void *tail)
1363 {
1364 /*
1365 * Compiler cannot detect this function can be removed if slab_free_hook()
1366 * evaluates to nothing. Thus, catch all relevant config debug options here.
1367 */
1368 #if defined(CONFIG_KMEMCHECK) || \
1369 defined(CONFIG_LOCKDEP) || \
1370 defined(CONFIG_DEBUG_KMEMLEAK) || \
1371 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1372 defined(CONFIG_KASAN)
1373
1374 void *object = head;
1375 void *tail_obj = tail ? : head;
1376 void *freeptr;
1377
1378 do {
1379 freeptr = slab_free_hook(s, object);
1380 } while ((object != tail_obj) && (object = freeptr));
1381 #endif
1382 }
1383
1384 static void setup_object(struct kmem_cache *s, struct page *page,
1385 void *object)
1386 {
1387 setup_object_debug(s, page, object);
1388 kasan_init_slab_obj(s, object);
1389 if (unlikely(s->ctor)) {
1390 kasan_unpoison_object_data(s, object);
1391 s->ctor(object);
1392 kasan_poison_object_data(s, object);
1393 }
1394 }
1395
1396 /*
1397 * Slab allocation and freeing
1398 */
1399 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1400 gfp_t flags, int node, struct kmem_cache_order_objects oo)
1401 {
1402 struct page *page;
1403 int order = oo_order(oo);
1404
1405 flags |= __GFP_NOTRACK;
1406
1407 if (node == NUMA_NO_NODE)
1408 page = alloc_pages(flags, order);
1409 else
1410 page = __alloc_pages_node(node, flags, order);
1411
1412 if (page && memcg_charge_slab(page, flags, order, s)) {
1413 __free_pages(page, order);
1414 page = NULL;
1415 }
1416
1417 return page;
1418 }
1419
1420 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1421 /* Pre-initialize the random sequence cache */
1422 static int init_cache_random_seq(struct kmem_cache *s)
1423 {
1424 int err;
1425 unsigned long i, count = oo_objects(s->oo);
1426
1427 /* Bailout if already initialised */
1428 if (s->random_seq)
1429 return 0;
1430
1431 err = cache_random_seq_create(s, count, GFP_KERNEL);
1432 if (err) {
1433 pr_err("SLUB: Unable to initialize free list for %s\n",
1434 s->name);
1435 return err;
1436 }
1437
1438 /* Transform to an offset on the set of pages */
1439 if (s->random_seq) {
1440 for (i = 0; i < count; i++)
1441 s->random_seq[i] *= s->size;
1442 }
1443 return 0;
1444 }
1445
1446 /* Initialize each random sequence freelist per cache */
1447 static void __init init_freelist_randomization(void)
1448 {
1449 struct kmem_cache *s;
1450
1451 mutex_lock(&slab_mutex);
1452
1453 list_for_each_entry(s, &slab_caches, list)
1454 init_cache_random_seq(s);
1455
1456 mutex_unlock(&slab_mutex);
1457 }
1458
1459 /* Get the next entry on the pre-computed freelist randomized */
1460 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1461 unsigned long *pos, void *start,
1462 unsigned long page_limit,
1463 unsigned long freelist_count)
1464 {
1465 unsigned int idx;
1466
1467 /*
1468 * If the target page allocation failed, the number of objects on the
1469 * page might be smaller than the usual size defined by the cache.
1470 */
1471 do {
1472 idx = s->random_seq[*pos];
1473 *pos += 1;
1474 if (*pos >= freelist_count)
1475 *pos = 0;
1476 } while (unlikely(idx >= page_limit));
1477
1478 return (char *)start + idx;
1479 }
1480
1481 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1482 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1483 {
1484 void *start;
1485 void *cur;
1486 void *next;
1487 unsigned long idx, pos, page_limit, freelist_count;
1488
1489 if (page->objects < 2 || !s->random_seq)
1490 return false;
1491
1492 freelist_count = oo_objects(s->oo);
1493 pos = get_random_int() % freelist_count;
1494
1495 page_limit = page->objects * s->size;
1496 start = fixup_red_left(s, page_address(page));
1497
1498 /* First entry is used as the base of the freelist */
1499 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1500 freelist_count);
1501 page->freelist = cur;
1502
1503 for (idx = 1; idx < page->objects; idx++) {
1504 setup_object(s, page, cur);
1505 next = next_freelist_entry(s, page, &pos, start, page_limit,
1506 freelist_count);
1507 set_freepointer(s, cur, next);
1508 cur = next;
1509 }
1510 setup_object(s, page, cur);
1511 set_freepointer(s, cur, NULL);
1512
1513 return true;
1514 }
1515 #else
1516 static inline int init_cache_random_seq(struct kmem_cache *s)
1517 {
1518 return 0;
1519 }
1520 static inline void init_freelist_randomization(void) { }
1521 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1522 {
1523 return false;
1524 }
1525 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1526
1527 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1528 {
1529 struct page *page;
1530 struct kmem_cache_order_objects oo = s->oo;
1531 gfp_t alloc_gfp;
1532 void *start, *p;
1533 int idx, order;
1534 bool shuffle;
1535
1536 flags &= gfp_allowed_mask;
1537
1538 if (gfpflags_allow_blocking(flags))
1539 local_irq_enable();
1540
1541 flags |= s->allocflags;
1542
1543 /*
1544 * Let the initial higher-order allocation fail under memory pressure
1545 * so we fall-back to the minimum order allocation.
1546 */
1547 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1548 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1549 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1550
1551 page = alloc_slab_page(s, alloc_gfp, node, oo);
1552 if (unlikely(!page)) {
1553 oo = s->min;
1554 alloc_gfp = flags;
1555 /*
1556 * Allocation may have failed due to fragmentation.
1557 * Try a lower order alloc if possible
1558 */
1559 page = alloc_slab_page(s, alloc_gfp, node, oo);
1560 if (unlikely(!page))
1561 goto out;
1562 stat(s, ORDER_FALLBACK);
1563 }
1564
1565 if (kmemcheck_enabled &&
1566 !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1567 int pages = 1 << oo_order(oo);
1568
1569 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1570
1571 /*
1572 * Objects from caches that have a constructor don't get
1573 * cleared when they're allocated, so we need to do it here.
1574 */
1575 if (s->ctor)
1576 kmemcheck_mark_uninitialized_pages(page, pages);
1577 else
1578 kmemcheck_mark_unallocated_pages(page, pages);
1579 }
1580
1581 page->objects = oo_objects(oo);
1582
1583 order = compound_order(page);
1584 page->slab_cache = s;
1585 __SetPageSlab(page);
1586 if (page_is_pfmemalloc(page))
1587 SetPageSlabPfmemalloc(page);
1588
1589 start = page_address(page);
1590
1591 if (unlikely(s->flags & SLAB_POISON))
1592 memset(start, POISON_INUSE, PAGE_SIZE << order);
1593
1594 kasan_poison_slab(page);
1595
1596 shuffle = shuffle_freelist(s, page);
1597
1598 if (!shuffle) {
1599 for_each_object_idx(p, idx, s, start, page->objects) {
1600 setup_object(s, page, p);
1601 if (likely(idx < page->objects))
1602 set_freepointer(s, p, p + s->size);
1603 else
1604 set_freepointer(s, p, NULL);
1605 }
1606 page->freelist = fixup_red_left(s, start);
1607 }
1608
1609 page->inuse = page->objects;
1610 page->frozen = 1;
1611
1612 out:
1613 if (gfpflags_allow_blocking(flags))
1614 local_irq_disable();
1615 if (!page)
1616 return NULL;
1617
1618 mod_lruvec_page_state(page,
1619 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1620 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1621 1 << oo_order(oo));
1622
1623 inc_slabs_node(s, page_to_nid(page), page->objects);
1624
1625 return page;
1626 }
1627
1628 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1629 {
1630 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1631 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1632 flags &= ~GFP_SLAB_BUG_MASK;
1633 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1634 invalid_mask, &invalid_mask, flags, &flags);
1635 dump_stack();
1636 }
1637
1638 return allocate_slab(s,
1639 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1640 }
1641
1642 static void __free_slab(struct kmem_cache *s, struct page *page)
1643 {
1644 int order = compound_order(page);
1645 int pages = 1 << order;
1646
1647 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1648 void *p;
1649
1650 slab_pad_check(s, page);
1651 for_each_object(p, s, page_address(page),
1652 page->objects)
1653 check_object(s, page, p, SLUB_RED_INACTIVE);
1654 }
1655
1656 kmemcheck_free_shadow(page, compound_order(page));
1657
1658 mod_lruvec_page_state(page,
1659 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1660 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1661 -pages);
1662
1663 __ClearPageSlabPfmemalloc(page);
1664 __ClearPageSlab(page);
1665
1666 page_mapcount_reset(page);
1667 if (current->reclaim_state)
1668 current->reclaim_state->reclaimed_slab += pages;
1669 memcg_uncharge_slab(page, order, s);
1670 __free_pages(page, order);
1671 }
1672
1673 #define need_reserve_slab_rcu \
1674 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1675
1676 static void rcu_free_slab(struct rcu_head *h)
1677 {
1678 struct page *page;
1679
1680 if (need_reserve_slab_rcu)
1681 page = virt_to_head_page(h);
1682 else
1683 page = container_of((struct list_head *)h, struct page, lru);
1684
1685 __free_slab(page->slab_cache, page);
1686 }
1687
1688 static void free_slab(struct kmem_cache *s, struct page *page)
1689 {
1690 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1691 struct rcu_head *head;
1692
1693 if (need_reserve_slab_rcu) {
1694 int order = compound_order(page);
1695 int offset = (PAGE_SIZE << order) - s->reserved;
1696
1697 VM_BUG_ON(s->reserved != sizeof(*head));
1698 head = page_address(page) + offset;
1699 } else {
1700 head = &page->rcu_head;
1701 }
1702
1703 call_rcu(head, rcu_free_slab);
1704 } else
1705 __free_slab(s, page);
1706 }
1707
1708 static void discard_slab(struct kmem_cache *s, struct page *page)
1709 {
1710 dec_slabs_node(s, page_to_nid(page), page->objects);
1711 free_slab(s, page);
1712 }
1713
1714 /*
1715 * Management of partially allocated slabs.
1716 */
1717 static inline void
1718 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1719 {
1720 n->nr_partial++;
1721 if (tail == DEACTIVATE_TO_TAIL)
1722 list_add_tail(&page->lru, &n->partial);
1723 else
1724 list_add(&page->lru, &n->partial);
1725 }
1726
1727 static inline void add_partial(struct kmem_cache_node *n,
1728 struct page *page, int tail)
1729 {
1730 lockdep_assert_held(&n->list_lock);
1731 __add_partial(n, page, tail);
1732 }
1733
1734 static inline void remove_partial(struct kmem_cache_node *n,
1735 struct page *page)
1736 {
1737 lockdep_assert_held(&n->list_lock);
1738 list_del(&page->lru);
1739 n->nr_partial--;
1740 }
1741
1742 /*
1743 * Remove slab from the partial list, freeze it and
1744 * return the pointer to the freelist.
1745 *
1746 * Returns a list of objects or NULL if it fails.
1747 */
1748 static inline void *acquire_slab(struct kmem_cache *s,
1749 struct kmem_cache_node *n, struct page *page,
1750 int mode, int *objects)
1751 {
1752 void *freelist;
1753 unsigned long counters;
1754 struct page new;
1755
1756 lockdep_assert_held(&n->list_lock);
1757
1758 /*
1759 * Zap the freelist and set the frozen bit.
1760 * The old freelist is the list of objects for the
1761 * per cpu allocation list.
1762 */
1763 freelist = page->freelist;
1764 counters = page->counters;
1765 new.counters = counters;
1766 *objects = new.objects - new.inuse;
1767 if (mode) {
1768 new.inuse = page->objects;
1769 new.freelist = NULL;
1770 } else {
1771 new.freelist = freelist;
1772 }
1773
1774 VM_BUG_ON(new.frozen);
1775 new.frozen = 1;
1776
1777 if (!__cmpxchg_double_slab(s, page,
1778 freelist, counters,
1779 new.freelist, new.counters,
1780 "acquire_slab"))
1781 return NULL;
1782
1783 remove_partial(n, page);
1784 WARN_ON(!freelist);
1785 return freelist;
1786 }
1787
1788 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1789 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1790
1791 /*
1792 * Try to allocate a partial slab from a specific node.
1793 */
1794 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1795 struct kmem_cache_cpu *c, gfp_t flags)
1796 {
1797 struct page *page, *page2;
1798 void *object = NULL;
1799 int available = 0;
1800 int objects;
1801
1802 /*
1803 * Racy check. If we mistakenly see no partial slabs then we
1804 * just allocate an empty slab. If we mistakenly try to get a
1805 * partial slab and there is none available then get_partials()
1806 * will return NULL.
1807 */
1808 if (!n || !n->nr_partial)
1809 return NULL;
1810
1811 spin_lock(&n->list_lock);
1812 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1813 void *t;
1814
1815 if (!pfmemalloc_match(page, flags))
1816 continue;
1817
1818 t = acquire_slab(s, n, page, object == NULL, &objects);
1819 if (!t)
1820 break;
1821
1822 available += objects;
1823 if (!object) {
1824 c->page = page;
1825 stat(s, ALLOC_FROM_PARTIAL);
1826 object = t;
1827 } else {
1828 put_cpu_partial(s, page, 0);
1829 stat(s, CPU_PARTIAL_NODE);
1830 }
1831 if (!kmem_cache_has_cpu_partial(s)
1832 || available > slub_cpu_partial(s) / 2)
1833 break;
1834
1835 }
1836 spin_unlock(&n->list_lock);
1837 return object;
1838 }
1839
1840 /*
1841 * Get a page from somewhere. Search in increasing NUMA distances.
1842 */
1843 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1844 struct kmem_cache_cpu *c)
1845 {
1846 #ifdef CONFIG_NUMA
1847 struct zonelist *zonelist;
1848 struct zoneref *z;
1849 struct zone *zone;
1850 enum zone_type high_zoneidx = gfp_zone(flags);
1851 void *object;
1852 unsigned int cpuset_mems_cookie;
1853
1854 /*
1855 * The defrag ratio allows a configuration of the tradeoffs between
1856 * inter node defragmentation and node local allocations. A lower
1857 * defrag_ratio increases the tendency to do local allocations
1858 * instead of attempting to obtain partial slabs from other nodes.
1859 *
1860 * If the defrag_ratio is set to 0 then kmalloc() always
1861 * returns node local objects. If the ratio is higher then kmalloc()
1862 * may return off node objects because partial slabs are obtained
1863 * from other nodes and filled up.
1864 *
1865 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1866 * (which makes defrag_ratio = 1000) then every (well almost)
1867 * allocation will first attempt to defrag slab caches on other nodes.
1868 * This means scanning over all nodes to look for partial slabs which
1869 * may be expensive if we do it every time we are trying to find a slab
1870 * with available objects.
1871 */
1872 if (!s->remote_node_defrag_ratio ||
1873 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1874 return NULL;
1875
1876 do {
1877 cpuset_mems_cookie = read_mems_allowed_begin();
1878 zonelist = node_zonelist(mempolicy_slab_node(), flags);
1879 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1880 struct kmem_cache_node *n;
1881
1882 n = get_node(s, zone_to_nid(zone));
1883
1884 if (n && cpuset_zone_allowed(zone, flags) &&
1885 n->nr_partial > s->min_partial) {
1886 object = get_partial_node(s, n, c, flags);
1887 if (object) {
1888 /*
1889 * Don't check read_mems_allowed_retry()
1890 * here - if mems_allowed was updated in
1891 * parallel, that was a harmless race
1892 * between allocation and the cpuset
1893 * update
1894 */
1895 return object;
1896 }
1897 }
1898 }
1899 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1900 #endif
1901 return NULL;
1902 }
1903
1904 /*
1905 * Get a partial page, lock it and return it.
1906 */
1907 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1908 struct kmem_cache_cpu *c)
1909 {
1910 void *object;
1911 int searchnode = node;
1912
1913 if (node == NUMA_NO_NODE)
1914 searchnode = numa_mem_id();
1915 else if (!node_present_pages(node))
1916 searchnode = node_to_mem_node(node);
1917
1918 object = get_partial_node(s, get_node(s, searchnode), c, flags);
1919 if (object || node != NUMA_NO_NODE)
1920 return object;
1921
1922 return get_any_partial(s, flags, c);
1923 }
1924
1925 #ifdef CONFIG_PREEMPT
1926 /*
1927 * Calculate the next globally unique transaction for disambiguiation
1928 * during cmpxchg. The transactions start with the cpu number and are then
1929 * incremented by CONFIG_NR_CPUS.
1930 */
1931 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1932 #else
1933 /*
1934 * No preemption supported therefore also no need to check for
1935 * different cpus.
1936 */
1937 #define TID_STEP 1
1938 #endif
1939
1940 static inline unsigned long next_tid(unsigned long tid)
1941 {
1942 return tid + TID_STEP;
1943 }
1944
1945 static inline unsigned int tid_to_cpu(unsigned long tid)
1946 {
1947 return tid % TID_STEP;
1948 }
1949
1950 static inline unsigned long tid_to_event(unsigned long tid)
1951 {
1952 return tid / TID_STEP;
1953 }
1954
1955 static inline unsigned int init_tid(int cpu)
1956 {
1957 return cpu;
1958 }
1959
1960 static inline void note_cmpxchg_failure(const char *n,
1961 const struct kmem_cache *s, unsigned long tid)
1962 {
1963 #ifdef SLUB_DEBUG_CMPXCHG
1964 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1965
1966 pr_info("%s %s: cmpxchg redo ", n, s->name);
1967
1968 #ifdef CONFIG_PREEMPT
1969 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1970 pr_warn("due to cpu change %d -> %d\n",
1971 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1972 else
1973 #endif
1974 if (tid_to_event(tid) != tid_to_event(actual_tid))
1975 pr_warn("due to cpu running other code. Event %ld->%ld\n",
1976 tid_to_event(tid), tid_to_event(actual_tid));
1977 else
1978 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1979 actual_tid, tid, next_tid(tid));
1980 #endif
1981 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1982 }
1983
1984 static void init_kmem_cache_cpus(struct kmem_cache *s)
1985 {
1986 int cpu;
1987
1988 for_each_possible_cpu(cpu)
1989 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1990 }
1991
1992 /*
1993 * Remove the cpu slab
1994 */
1995 static void deactivate_slab(struct kmem_cache *s, struct page *page,
1996 void *freelist, struct kmem_cache_cpu *c)
1997 {
1998 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1999 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2000 int lock = 0;
2001 enum slab_modes l = M_NONE, m = M_NONE;
2002 void *nextfree;
2003 int tail = DEACTIVATE_TO_HEAD;
2004 struct page new;
2005 struct page old;
2006
2007 if (page->freelist) {
2008 stat(s, DEACTIVATE_REMOTE_FREES);
2009 tail = DEACTIVATE_TO_TAIL;
2010 }
2011
2012 /*
2013 * Stage one: Free all available per cpu objects back
2014 * to the page freelist while it is still frozen. Leave the
2015 * last one.
2016 *
2017 * There is no need to take the list->lock because the page
2018 * is still frozen.
2019 */
2020 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2021 void *prior;
2022 unsigned long counters;
2023
2024 do {
2025 prior = page->freelist;
2026 counters = page->counters;
2027 set_freepointer(s, freelist, prior);
2028 new.counters = counters;
2029 new.inuse--;
2030 VM_BUG_ON(!new.frozen);
2031
2032 } while (!__cmpxchg_double_slab(s, page,
2033 prior, counters,
2034 freelist, new.counters,
2035 "drain percpu freelist"));
2036
2037 freelist = nextfree;
2038 }
2039
2040 /*
2041 * Stage two: Ensure that the page is unfrozen while the
2042 * list presence reflects the actual number of objects
2043 * during unfreeze.
2044 *
2045 * We setup the list membership and then perform a cmpxchg
2046 * with the count. If there is a mismatch then the page
2047 * is not unfrozen but the page is on the wrong list.
2048 *
2049 * Then we restart the process which may have to remove
2050 * the page from the list that we just put it on again
2051 * because the number of objects in the slab may have
2052 * changed.
2053 */
2054 redo:
2055
2056 old.freelist = page->freelist;
2057 old.counters = page->counters;
2058 VM_BUG_ON(!old.frozen);
2059
2060 /* Determine target state of the slab */
2061 new.counters = old.counters;
2062 if (freelist) {
2063 new.inuse--;
2064 set_freepointer(s, freelist, old.freelist);
2065 new.freelist = freelist;
2066 } else
2067 new.freelist = old.freelist;
2068
2069 new.frozen = 0;
2070
2071 if (!new.inuse && n->nr_partial >= s->min_partial)
2072 m = M_FREE;
2073 else if (new.freelist) {
2074 m = M_PARTIAL;
2075 if (!lock) {
2076 lock = 1;
2077 /*
2078 * Taking the spinlock removes the possiblity
2079 * that acquire_slab() will see a slab page that
2080 * is frozen
2081 */
2082 spin_lock(&n->list_lock);
2083 }
2084 } else {
2085 m = M_FULL;
2086 if (kmem_cache_debug(s) && !lock) {
2087 lock = 1;
2088 /*
2089 * This also ensures that the scanning of full
2090 * slabs from diagnostic functions will not see
2091 * any frozen slabs.
2092 */
2093 spin_lock(&n->list_lock);
2094 }
2095 }
2096
2097 if (l != m) {
2098
2099 if (l == M_PARTIAL)
2100
2101 remove_partial(n, page);
2102
2103 else if (l == M_FULL)
2104
2105 remove_full(s, n, page);
2106
2107 if (m == M_PARTIAL) {
2108
2109 add_partial(n, page, tail);
2110 stat(s, tail);
2111
2112 } else if (m == M_FULL) {
2113
2114 stat(s, DEACTIVATE_FULL);
2115 add_full(s, n, page);
2116
2117 }
2118 }
2119
2120 l = m;
2121 if (!__cmpxchg_double_slab(s, page,
2122 old.freelist, old.counters,
2123 new.freelist, new.counters,
2124 "unfreezing slab"))
2125 goto redo;
2126
2127 if (lock)
2128 spin_unlock(&n->list_lock);
2129
2130 if (m == M_FREE) {
2131 stat(s, DEACTIVATE_EMPTY);
2132 discard_slab(s, page);
2133 stat(s, FREE_SLAB);
2134 }
2135
2136 c->page = NULL;
2137 c->freelist = NULL;
2138 }
2139
2140 /*
2141 * Unfreeze all the cpu partial slabs.
2142 *
2143 * This function must be called with interrupts disabled
2144 * for the cpu using c (or some other guarantee must be there
2145 * to guarantee no concurrent accesses).
2146 */
2147 static void unfreeze_partials(struct kmem_cache *s,
2148 struct kmem_cache_cpu *c)
2149 {
2150 #ifdef CONFIG_SLUB_CPU_PARTIAL
2151 struct kmem_cache_node *n = NULL, *n2 = NULL;
2152 struct page *page, *discard_page = NULL;
2153
2154 while ((page = c->partial)) {
2155 struct page new;
2156 struct page old;
2157
2158 c->partial = page->next;
2159
2160 n2 = get_node(s, page_to_nid(page));
2161 if (n != n2) {
2162 if (n)
2163 spin_unlock(&n->list_lock);
2164
2165 n = n2;
2166 spin_lock(&n->list_lock);
2167 }
2168
2169 do {
2170
2171 old.freelist = page->freelist;
2172 old.counters = page->counters;
2173 VM_BUG_ON(!old.frozen);
2174
2175 new.counters = old.counters;
2176 new.freelist = old.freelist;
2177
2178 new.frozen = 0;
2179
2180 } while (!__cmpxchg_double_slab(s, page,
2181 old.freelist, old.counters,
2182 new.freelist, new.counters,
2183 "unfreezing slab"));
2184
2185 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2186 page->next = discard_page;
2187 discard_page = page;
2188 } else {
2189 add_partial(n, page, DEACTIVATE_TO_TAIL);
2190 stat(s, FREE_ADD_PARTIAL);
2191 }
2192 }
2193
2194 if (n)
2195 spin_unlock(&n->list_lock);
2196
2197 while (discard_page) {
2198 page = discard_page;
2199 discard_page = discard_page->next;
2200
2201 stat(s, DEACTIVATE_EMPTY);
2202 discard_slab(s, page);
2203 stat(s, FREE_SLAB);
2204 }
2205 #endif
2206 }
2207
2208 /*
2209 * Put a page that was just frozen (in __slab_free) into a partial page
2210 * slot if available. This is done without interrupts disabled and without
2211 * preemption disabled. The cmpxchg is racy and may put the partial page
2212 * onto a random cpus partial slot.
2213 *
2214 * If we did not find a slot then simply move all the partials to the
2215 * per node partial list.
2216 */
2217 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2218 {
2219 #ifdef CONFIG_SLUB_CPU_PARTIAL
2220 struct page *oldpage;
2221 int pages;
2222 int pobjects;
2223
2224 preempt_disable();
2225 do {
2226 pages = 0;
2227 pobjects = 0;
2228 oldpage = this_cpu_read(s->cpu_slab->partial);
2229
2230 if (oldpage) {
2231 pobjects = oldpage->pobjects;
2232 pages = oldpage->pages;
2233 if (drain && pobjects > s->cpu_partial) {
2234 unsigned long flags;
2235 /*
2236 * partial array is full. Move the existing
2237 * set to the per node partial list.
2238 */
2239 local_irq_save(flags);
2240 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2241 local_irq_restore(flags);
2242 oldpage = NULL;
2243 pobjects = 0;
2244 pages = 0;
2245 stat(s, CPU_PARTIAL_DRAIN);
2246 }
2247 }
2248
2249 pages++;
2250 pobjects += page->objects - page->inuse;
2251
2252 page->pages = pages;
2253 page->pobjects = pobjects;
2254 page->next = oldpage;
2255
2256 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2257 != oldpage);
2258 if (unlikely(!s->cpu_partial)) {
2259 unsigned long flags;
2260
2261 local_irq_save(flags);
2262 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2263 local_irq_restore(flags);
2264 }
2265 preempt_enable();
2266 #endif
2267 }
2268
2269 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2270 {
2271 stat(s, CPUSLAB_FLUSH);
2272 deactivate_slab(s, c->page, c->freelist, c);
2273
2274 c->tid = next_tid(c->tid);
2275 }
2276
2277 /*
2278 * Flush cpu slab.
2279 *
2280 * Called from IPI handler with interrupts disabled.
2281 */
2282 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2283 {
2284 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2285
2286 if (likely(c)) {
2287 if (c->page)
2288 flush_slab(s, c);
2289
2290 unfreeze_partials(s, c);
2291 }
2292 }
2293
2294 static void flush_cpu_slab(void *d)
2295 {
2296 struct kmem_cache *s = d;
2297
2298 __flush_cpu_slab(s, smp_processor_id());
2299 }
2300
2301 static bool has_cpu_slab(int cpu, void *info)
2302 {
2303 struct kmem_cache *s = info;
2304 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2305
2306 return c->page || slub_percpu_partial(c);
2307 }
2308
2309 static void flush_all(struct kmem_cache *s)
2310 {
2311 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2312 }
2313
2314 /*
2315 * Use the cpu notifier to insure that the cpu slabs are flushed when
2316 * necessary.
2317 */
2318 static int slub_cpu_dead(unsigned int cpu)
2319 {
2320 struct kmem_cache *s;
2321 unsigned long flags;
2322
2323 mutex_lock(&slab_mutex);
2324 list_for_each_entry(s, &slab_caches, list) {
2325 local_irq_save(flags);
2326 __flush_cpu_slab(s, cpu);
2327 local_irq_restore(flags);
2328 }
2329 mutex_unlock(&slab_mutex);
2330 return 0;
2331 }
2332
2333 /*
2334 * Check if the objects in a per cpu structure fit numa
2335 * locality expectations.
2336 */
2337 static inline int node_match(struct page *page, int node)
2338 {
2339 #ifdef CONFIG_NUMA
2340 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2341 return 0;
2342 #endif
2343 return 1;
2344 }
2345
2346 #ifdef CONFIG_SLUB_DEBUG
2347 static int count_free(struct page *page)
2348 {
2349 return page->objects - page->inuse;
2350 }
2351
2352 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2353 {
2354 return atomic_long_read(&n->total_objects);
2355 }
2356 #endif /* CONFIG_SLUB_DEBUG */
2357
2358 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2359 static unsigned long count_partial(struct kmem_cache_node *n,
2360 int (*get_count)(struct page *))
2361 {
2362 unsigned long flags;
2363 unsigned long x = 0;
2364 struct page *page;
2365
2366 spin_lock_irqsave(&n->list_lock, flags);
2367 list_for_each_entry(page, &n->partial, lru)
2368 x += get_count(page);
2369 spin_unlock_irqrestore(&n->list_lock, flags);
2370 return x;
2371 }
2372 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2373
2374 static noinline void
2375 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2376 {
2377 #ifdef CONFIG_SLUB_DEBUG
2378 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2379 DEFAULT_RATELIMIT_BURST);
2380 int node;
2381 struct kmem_cache_node *n;
2382
2383 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2384 return;
2385
2386 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2387 nid, gfpflags, &gfpflags);
2388 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2389 s->name, s->object_size, s->size, oo_order(s->oo),
2390 oo_order(s->min));
2391
2392 if (oo_order(s->min) > get_order(s->object_size))
2393 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2394 s->name);
2395
2396 for_each_kmem_cache_node(s, node, n) {
2397 unsigned long nr_slabs;
2398 unsigned long nr_objs;
2399 unsigned long nr_free;
2400
2401 nr_free = count_partial(n, count_free);
2402 nr_slabs = node_nr_slabs(n);
2403 nr_objs = node_nr_objs(n);
2404
2405 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2406 node, nr_slabs, nr_objs, nr_free);
2407 }
2408 #endif
2409 }
2410
2411 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2412 int node, struct kmem_cache_cpu **pc)
2413 {
2414 void *freelist;
2415 struct kmem_cache_cpu *c = *pc;
2416 struct page *page;
2417
2418 freelist = get_partial(s, flags, node, c);
2419
2420 if (freelist)
2421 return freelist;
2422
2423 page = new_slab(s, flags, node);
2424 if (page) {
2425 c = raw_cpu_ptr(s->cpu_slab);
2426 if (c->page)
2427 flush_slab(s, c);
2428
2429 /*
2430 * No other reference to the page yet so we can
2431 * muck around with it freely without cmpxchg
2432 */
2433 freelist = page->freelist;
2434 page->freelist = NULL;
2435
2436 stat(s, ALLOC_SLAB);
2437 c->page = page;
2438 *pc = c;
2439 } else
2440 freelist = NULL;
2441
2442 return freelist;
2443 }
2444
2445 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2446 {
2447 if (unlikely(PageSlabPfmemalloc(page)))
2448 return gfp_pfmemalloc_allowed(gfpflags);
2449
2450 return true;
2451 }
2452
2453 /*
2454 * Check the page->freelist of a page and either transfer the freelist to the
2455 * per cpu freelist or deactivate the page.
2456 *
2457 * The page is still frozen if the return value is not NULL.
2458 *
2459 * If this function returns NULL then the page has been unfrozen.
2460 *
2461 * This function must be called with interrupt disabled.
2462 */
2463 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2464 {
2465 struct page new;
2466 unsigned long counters;
2467 void *freelist;
2468
2469 do {
2470 freelist = page->freelist;
2471 counters = page->counters;
2472
2473 new.counters = counters;
2474 VM_BUG_ON(!new.frozen);
2475
2476 new.inuse = page->objects;
2477 new.frozen = freelist != NULL;
2478
2479 } while (!__cmpxchg_double_slab(s, page,
2480 freelist, counters,
2481 NULL, new.counters,
2482 "get_freelist"));
2483
2484 return freelist;
2485 }
2486
2487 /*
2488 * Slow path. The lockless freelist is empty or we need to perform
2489 * debugging duties.
2490 *
2491 * Processing is still very fast if new objects have been freed to the
2492 * regular freelist. In that case we simply take over the regular freelist
2493 * as the lockless freelist and zap the regular freelist.
2494 *
2495 * If that is not working then we fall back to the partial lists. We take the
2496 * first element of the freelist as the object to allocate now and move the
2497 * rest of the freelist to the lockless freelist.
2498 *
2499 * And if we were unable to get a new slab from the partial slab lists then
2500 * we need to allocate a new slab. This is the slowest path since it involves
2501 * a call to the page allocator and the setup of a new slab.
2502 *
2503 * Version of __slab_alloc to use when we know that interrupts are
2504 * already disabled (which is the case for bulk allocation).
2505 */
2506 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2507 unsigned long addr, struct kmem_cache_cpu *c)
2508 {
2509 void *freelist;
2510 struct page *page;
2511
2512 page = c->page;
2513 if (!page)
2514 goto new_slab;
2515 redo:
2516
2517 if (unlikely(!node_match(page, node))) {
2518 int searchnode = node;
2519
2520 if (node != NUMA_NO_NODE && !node_present_pages(node))
2521 searchnode = node_to_mem_node(node);
2522
2523 if (unlikely(!node_match(page, searchnode))) {
2524 stat(s, ALLOC_NODE_MISMATCH);
2525 deactivate_slab(s, page, c->freelist, c);
2526 goto new_slab;
2527 }
2528 }
2529
2530 /*
2531 * By rights, we should be searching for a slab page that was
2532 * PFMEMALLOC but right now, we are losing the pfmemalloc
2533 * information when the page leaves the per-cpu allocator
2534 */
2535 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2536 deactivate_slab(s, page, c->freelist, c);
2537 goto new_slab;
2538 }
2539
2540 /* must check again c->freelist in case of cpu migration or IRQ */
2541 freelist = c->freelist;
2542 if (freelist)
2543 goto load_freelist;
2544
2545 freelist = get_freelist(s, page);
2546
2547 if (!freelist) {
2548 c->page = NULL;
2549 stat(s, DEACTIVATE_BYPASS);
2550 goto new_slab;
2551 }
2552
2553 stat(s, ALLOC_REFILL);
2554
2555 load_freelist:
2556 /*
2557 * freelist is pointing to the list of objects to be used.
2558 * page is pointing to the page from which the objects are obtained.
2559 * That page must be frozen for per cpu allocations to work.
2560 */
2561 VM_BUG_ON(!c->page->frozen);
2562 c->freelist = get_freepointer(s, freelist);
2563 c->tid = next_tid(c->tid);
2564 return freelist;
2565
2566 new_slab:
2567
2568 if (slub_percpu_partial(c)) {
2569 page = c->page = slub_percpu_partial(c);
2570 slub_set_percpu_partial(c, page);
2571 stat(s, CPU_PARTIAL_ALLOC);
2572 goto redo;
2573 }
2574
2575 freelist = new_slab_objects(s, gfpflags, node, &c);
2576
2577 if (unlikely(!freelist)) {
2578 slab_out_of_memory(s, gfpflags, node);
2579 return NULL;
2580 }
2581
2582 page = c->page;
2583 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2584 goto load_freelist;
2585
2586 /* Only entered in the debug case */
2587 if (kmem_cache_debug(s) &&
2588 !alloc_debug_processing(s, page, freelist, addr))
2589 goto new_slab; /* Slab failed checks. Next slab needed */
2590
2591 deactivate_slab(s, page, get_freepointer(s, freelist), c);
2592 return freelist;
2593 }
2594
2595 /*
2596 * Another one that disabled interrupt and compensates for possible
2597 * cpu changes by refetching the per cpu area pointer.
2598 */
2599 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2600 unsigned long addr, struct kmem_cache_cpu *c)
2601 {
2602 void *p;
2603 unsigned long flags;
2604
2605 local_irq_save(flags);
2606 #ifdef CONFIG_PREEMPT
2607 /*
2608 * We may have been preempted and rescheduled on a different
2609 * cpu before disabling interrupts. Need to reload cpu area
2610 * pointer.
2611 */
2612 c = this_cpu_ptr(s->cpu_slab);
2613 #endif
2614
2615 p = ___slab_alloc(s, gfpflags, node, addr, c);
2616 local_irq_restore(flags);
2617 return p;
2618 }
2619
2620 /*
2621 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2622 * have the fastpath folded into their functions. So no function call
2623 * overhead for requests that can be satisfied on the fastpath.
2624 *
2625 * The fastpath works by first checking if the lockless freelist can be used.
2626 * If not then __slab_alloc is called for slow processing.
2627 *
2628 * Otherwise we can simply pick the next object from the lockless free list.
2629 */
2630 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2631 gfp_t gfpflags, int node, unsigned long addr)
2632 {
2633 void *object;
2634 struct kmem_cache_cpu *c;
2635 struct page *page;
2636 unsigned long tid;
2637
2638 s = slab_pre_alloc_hook(s, gfpflags);
2639 if (!s)
2640 return NULL;
2641 redo:
2642 /*
2643 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2644 * enabled. We may switch back and forth between cpus while
2645 * reading from one cpu area. That does not matter as long
2646 * as we end up on the original cpu again when doing the cmpxchg.
2647 *
2648 * We should guarantee that tid and kmem_cache are retrieved on
2649 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2650 * to check if it is matched or not.
2651 */
2652 do {
2653 tid = this_cpu_read(s->cpu_slab->tid);
2654 c = raw_cpu_ptr(s->cpu_slab);
2655 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2656 unlikely(tid != READ_ONCE(c->tid)));
2657
2658 /*
2659 * Irqless object alloc/free algorithm used here depends on sequence
2660 * of fetching cpu_slab's data. tid should be fetched before anything
2661 * on c to guarantee that object and page associated with previous tid
2662 * won't be used with current tid. If we fetch tid first, object and
2663 * page could be one associated with next tid and our alloc/free
2664 * request will be failed. In this case, we will retry. So, no problem.
2665 */
2666 barrier();
2667
2668 /*
2669 * The transaction ids are globally unique per cpu and per operation on
2670 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2671 * occurs on the right processor and that there was no operation on the
2672 * linked list in between.
2673 */
2674
2675 object = c->freelist;
2676 page = c->page;
2677 if (unlikely(!object || !node_match(page, node))) {
2678 object = __slab_alloc(s, gfpflags, node, addr, c);
2679 stat(s, ALLOC_SLOWPATH);
2680 } else {
2681 void *next_object = get_freepointer_safe(s, object);
2682
2683 /*
2684 * The cmpxchg will only match if there was no additional
2685 * operation and if we are on the right processor.
2686 *
2687 * The cmpxchg does the following atomically (without lock
2688 * semantics!)
2689 * 1. Relocate first pointer to the current per cpu area.
2690 * 2. Verify that tid and freelist have not been changed
2691 * 3. If they were not changed replace tid and freelist
2692 *
2693 * Since this is without lock semantics the protection is only
2694 * against code executing on this cpu *not* from access by
2695 * other cpus.
2696 */
2697 if (unlikely(!this_cpu_cmpxchg_double(
2698 s->cpu_slab->freelist, s->cpu_slab->tid,
2699 object, tid,
2700 next_object, next_tid(tid)))) {
2701
2702 note_cmpxchg_failure("slab_alloc", s, tid);
2703 goto redo;
2704 }
2705 prefetch_freepointer(s, next_object);
2706 stat(s, ALLOC_FASTPATH);
2707 }
2708
2709 if (unlikely(gfpflags & __GFP_ZERO) && object)
2710 memset(object, 0, s->object_size);
2711
2712 slab_post_alloc_hook(s, gfpflags, 1, &object);
2713
2714 return object;
2715 }
2716
2717 static __always_inline void *slab_alloc(struct kmem_cache *s,
2718 gfp_t gfpflags, unsigned long addr)
2719 {
2720 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2721 }
2722
2723 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2724 {
2725 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2726
2727 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2728 s->size, gfpflags);
2729
2730 return ret;
2731 }
2732 EXPORT_SYMBOL(kmem_cache_alloc);
2733
2734 #ifdef CONFIG_TRACING
2735 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2736 {
2737 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2738 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2739 kasan_kmalloc(s, ret, size, gfpflags);
2740 return ret;
2741 }
2742 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2743 #endif
2744
2745 #ifdef CONFIG_NUMA
2746 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2747 {
2748 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2749
2750 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2751 s->object_size, s->size, gfpflags, node);
2752
2753 return ret;
2754 }
2755 EXPORT_SYMBOL(kmem_cache_alloc_node);
2756
2757 #ifdef CONFIG_TRACING
2758 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2759 gfp_t gfpflags,
2760 int node, size_t size)
2761 {
2762 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2763
2764 trace_kmalloc_node(_RET_IP_, ret,
2765 size, s->size, gfpflags, node);
2766
2767 kasan_kmalloc(s, ret, size, gfpflags);
2768 return ret;
2769 }
2770 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2771 #endif
2772 #endif
2773
2774 /*
2775 * Slow path handling. This may still be called frequently since objects
2776 * have a longer lifetime than the cpu slabs in most processing loads.
2777 *
2778 * So we still attempt to reduce cache line usage. Just take the slab
2779 * lock and free the item. If there is no additional partial page
2780 * handling required then we can return immediately.
2781 */
2782 static void __slab_free(struct kmem_cache *s, struct page *page,
2783 void *head, void *tail, int cnt,
2784 unsigned long addr)
2785
2786 {
2787 void *prior;
2788 int was_frozen;
2789 struct page new;
2790 unsigned long counters;
2791 struct kmem_cache_node *n = NULL;
2792 unsigned long uninitialized_var(flags);
2793
2794 stat(s, FREE_SLOWPATH);
2795
2796 if (kmem_cache_debug(s) &&
2797 !free_debug_processing(s, page, head, tail, cnt, addr))
2798 return;
2799
2800 do {
2801 if (unlikely(n)) {
2802 spin_unlock_irqrestore(&n->list_lock, flags);
2803 n = NULL;
2804 }
2805 prior = page->freelist;
2806 counters = page->counters;
2807 set_freepointer(s, tail, prior);
2808 new.counters = counters;
2809 was_frozen = new.frozen;
2810 new.inuse -= cnt;
2811 if ((!new.inuse || !prior) && !was_frozen) {
2812
2813 if (kmem_cache_has_cpu_partial(s) && !prior) {
2814
2815 /*
2816 * Slab was on no list before and will be
2817 * partially empty
2818 * We can defer the list move and instead
2819 * freeze it.
2820 */
2821 new.frozen = 1;
2822
2823 } else { /* Needs to be taken off a list */
2824
2825 n = get_node(s, page_to_nid(page));
2826 /*
2827 * Speculatively acquire the list_lock.
2828 * If the cmpxchg does not succeed then we may
2829 * drop the list_lock without any processing.
2830 *
2831 * Otherwise the list_lock will synchronize with
2832 * other processors updating the list of slabs.
2833 */
2834 spin_lock_irqsave(&n->list_lock, flags);
2835
2836 }
2837 }
2838
2839 } while (!cmpxchg_double_slab(s, page,
2840 prior, counters,
2841 head, new.counters,
2842 "__slab_free"));
2843
2844 if (likely(!n)) {
2845
2846 /*
2847 * If we just froze the page then put it onto the
2848 * per cpu partial list.
2849 */
2850 if (new.frozen && !was_frozen) {
2851 put_cpu_partial(s, page, 1);
2852 stat(s, CPU_PARTIAL_FREE);
2853 }
2854 /*
2855 * The list lock was not taken therefore no list
2856 * activity can be necessary.
2857 */
2858 if (was_frozen)
2859 stat(s, FREE_FROZEN);
2860 return;
2861 }
2862
2863 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2864 goto slab_empty;
2865
2866 /*
2867 * Objects left in the slab. If it was not on the partial list before
2868 * then add it.
2869 */
2870 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2871 if (kmem_cache_debug(s))
2872 remove_full(s, n, page);
2873 add_partial(n, page, DEACTIVATE_TO_TAIL);
2874 stat(s, FREE_ADD_PARTIAL);
2875 }
2876 spin_unlock_irqrestore(&n->list_lock, flags);
2877 return;
2878
2879 slab_empty:
2880 if (prior) {
2881 /*
2882 * Slab on the partial list.
2883 */
2884 remove_partial(n, page);
2885 stat(s, FREE_REMOVE_PARTIAL);
2886 } else {
2887 /* Slab must be on the full list */
2888 remove_full(s, n, page);
2889 }
2890
2891 spin_unlock_irqrestore(&n->list_lock, flags);
2892 stat(s, FREE_SLAB);
2893 discard_slab(s, page);
2894 }
2895
2896 /*
2897 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2898 * can perform fastpath freeing without additional function calls.
2899 *
2900 * The fastpath is only possible if we are freeing to the current cpu slab
2901 * of this processor. This typically the case if we have just allocated
2902 * the item before.
2903 *
2904 * If fastpath is not possible then fall back to __slab_free where we deal
2905 * with all sorts of special processing.
2906 *
2907 * Bulk free of a freelist with several objects (all pointing to the
2908 * same page) possible by specifying head and tail ptr, plus objects
2909 * count (cnt). Bulk free indicated by tail pointer being set.
2910 */
2911 static __always_inline void do_slab_free(struct kmem_cache *s,
2912 struct page *page, void *head, void *tail,
2913 int cnt, unsigned long addr)
2914 {
2915 void *tail_obj = tail ? : head;
2916 struct kmem_cache_cpu *c;
2917 unsigned long tid;
2918 redo:
2919 /*
2920 * Determine the currently cpus per cpu slab.
2921 * The cpu may change afterward. However that does not matter since
2922 * data is retrieved via this pointer. If we are on the same cpu
2923 * during the cmpxchg then the free will succeed.
2924 */
2925 do {
2926 tid = this_cpu_read(s->cpu_slab->tid);
2927 c = raw_cpu_ptr(s->cpu_slab);
2928 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2929 unlikely(tid != READ_ONCE(c->tid)));
2930
2931 /* Same with comment on barrier() in slab_alloc_node() */
2932 barrier();
2933
2934 if (likely(page == c->page)) {
2935 set_freepointer(s, tail_obj, c->freelist);
2936
2937 if (unlikely(!this_cpu_cmpxchg_double(
2938 s->cpu_slab->freelist, s->cpu_slab->tid,
2939 c->freelist, tid,
2940 head, next_tid(tid)))) {
2941
2942 note_cmpxchg_failure("slab_free", s, tid);
2943 goto redo;
2944 }
2945 stat(s, FREE_FASTPATH);
2946 } else
2947 __slab_free(s, page, head, tail_obj, cnt, addr);
2948
2949 }
2950
2951 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2952 void *head, void *tail, int cnt,
2953 unsigned long addr)
2954 {
2955 slab_free_freelist_hook(s, head, tail);
2956 /*
2957 * slab_free_freelist_hook() could have put the items into quarantine.
2958 * If so, no need to free them.
2959 */
2960 if (s->flags & SLAB_KASAN && !(s->flags & SLAB_TYPESAFE_BY_RCU))
2961 return;
2962 do_slab_free(s, page, head, tail, cnt, addr);
2963 }
2964
2965 #ifdef CONFIG_KASAN
2966 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
2967 {
2968 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
2969 }
2970 #endif
2971
2972 void kmem_cache_free(struct kmem_cache *s, void *x)
2973 {
2974 s = cache_from_obj(s, x);
2975 if (!s)
2976 return;
2977 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
2978 trace_kmem_cache_free(_RET_IP_, x);
2979 }
2980 EXPORT_SYMBOL(kmem_cache_free);
2981
2982 struct detached_freelist {
2983 struct page *page;
2984 void *tail;
2985 void *freelist;
2986 int cnt;
2987 struct kmem_cache *s;
2988 };
2989
2990 /*
2991 * This function progressively scans the array with free objects (with
2992 * a limited look ahead) and extract objects belonging to the same
2993 * page. It builds a detached freelist directly within the given
2994 * page/objects. This can happen without any need for
2995 * synchronization, because the objects are owned by running process.
2996 * The freelist is build up as a single linked list in the objects.
2997 * The idea is, that this detached freelist can then be bulk
2998 * transferred to the real freelist(s), but only requiring a single
2999 * synchronization primitive. Look ahead in the array is limited due
3000 * to performance reasons.
3001 */
3002 static inline
3003 int build_detached_freelist(struct kmem_cache *s, size_t size,
3004 void **p, struct detached_freelist *df)
3005 {
3006 size_t first_skipped_index = 0;
3007 int lookahead = 3;
3008 void *object;
3009 struct page *page;
3010
3011 /* Always re-init detached_freelist */
3012 df->page = NULL;
3013
3014 do {
3015 object = p[--size];
3016 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3017 } while (!object && size);
3018
3019 if (!object)
3020 return 0;
3021
3022 page = virt_to_head_page(object);
3023 if (!s) {
3024 /* Handle kalloc'ed objects */
3025 if (unlikely(!PageSlab(page))) {
3026 BUG_ON(!PageCompound(page));
3027 kfree_hook(object);
3028 __free_pages(page, compound_order(page));
3029 p[size] = NULL; /* mark object processed */
3030 return size;
3031 }
3032 /* Derive kmem_cache from object */
3033 df->s = page->slab_cache;
3034 } else {
3035 df->s = cache_from_obj(s, object); /* Support for memcg */
3036 }
3037
3038 /* Start new detached freelist */
3039 df->page = page;
3040 set_freepointer(df->s, object, NULL);
3041 df->tail = object;
3042 df->freelist = object;
3043 p[size] = NULL; /* mark object processed */
3044 df->cnt = 1;
3045
3046 while (size) {
3047 object = p[--size];
3048 if (!object)
3049 continue; /* Skip processed objects */
3050
3051 /* df->page is always set at this point */
3052 if (df->page == virt_to_head_page(object)) {
3053 /* Opportunity build freelist */
3054 set_freepointer(df->s, object, df->freelist);
3055 df->freelist = object;
3056 df->cnt++;
3057 p[size] = NULL; /* mark object processed */
3058
3059 continue;
3060 }
3061
3062 /* Limit look ahead search */
3063 if (!--lookahead)
3064 break;
3065
3066 if (!first_skipped_index)
3067 first_skipped_index = size + 1;
3068 }
3069
3070 return first_skipped_index;
3071 }
3072
3073 /* Note that interrupts must be enabled when calling this function. */
3074 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3075 {
3076 if (WARN_ON(!size))
3077 return;
3078
3079 do {
3080 struct detached_freelist df;
3081
3082 size = build_detached_freelist(s, size, p, &df);
3083 if (!df.page)
3084 continue;
3085
3086 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3087 } while (likely(size));
3088 }
3089 EXPORT_SYMBOL(kmem_cache_free_bulk);
3090
3091 /* Note that interrupts must be enabled when calling this function. */
3092 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3093 void **p)
3094 {
3095 struct kmem_cache_cpu *c;
3096 int i;
3097
3098 /* memcg and kmem_cache debug support */
3099 s = slab_pre_alloc_hook(s, flags);
3100 if (unlikely(!s))
3101 return false;
3102 /*
3103 * Drain objects in the per cpu slab, while disabling local
3104 * IRQs, which protects against PREEMPT and interrupts
3105 * handlers invoking normal fastpath.
3106 */
3107 local_irq_disable();
3108 c = this_cpu_ptr(s->cpu_slab);
3109
3110 for (i = 0; i < size; i++) {
3111 void *object = c->freelist;
3112
3113 if (unlikely(!object)) {
3114 /*
3115 * Invoking slow path likely have side-effect
3116 * of re-populating per CPU c->freelist
3117 */
3118 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3119 _RET_IP_, c);
3120 if (unlikely(!p[i]))
3121 goto error;
3122
3123 c = this_cpu_ptr(s->cpu_slab);
3124 continue; /* goto for-loop */
3125 }
3126 c->freelist = get_freepointer(s, object);
3127 p[i] = object;
3128 }
3129 c->tid = next_tid(c->tid);
3130 local_irq_enable();
3131
3132 /* Clear memory outside IRQ disabled fastpath loop */
3133 if (unlikely(flags & __GFP_ZERO)) {
3134 int j;
3135
3136 for (j = 0; j < i; j++)
3137 memset(p[j], 0, s->object_size);
3138 }
3139
3140 /* memcg and kmem_cache debug support */
3141 slab_post_alloc_hook(s, flags, size, p);
3142 return i;
3143 error:
3144 local_irq_enable();
3145 slab_post_alloc_hook(s, flags, i, p);
3146 __kmem_cache_free_bulk(s, i, p);
3147 return 0;
3148 }
3149 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3150
3151
3152 /*
3153 * Object placement in a slab is made very easy because we always start at
3154 * offset 0. If we tune the size of the object to the alignment then we can
3155 * get the required alignment by putting one properly sized object after
3156 * another.
3157 *
3158 * Notice that the allocation order determines the sizes of the per cpu
3159 * caches. Each processor has always one slab available for allocations.
3160 * Increasing the allocation order reduces the number of times that slabs
3161 * must be moved on and off the partial lists and is therefore a factor in
3162 * locking overhead.
3163 */
3164
3165 /*
3166 * Mininum / Maximum order of slab pages. This influences locking overhead
3167 * and slab fragmentation. A higher order reduces the number of partial slabs
3168 * and increases the number of allocations possible without having to
3169 * take the list_lock.
3170 */
3171 static int slub_min_order;
3172 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3173 static int slub_min_objects;
3174
3175 /*
3176 * Calculate the order of allocation given an slab object size.
3177 *
3178 * The order of allocation has significant impact on performance and other
3179 * system components. Generally order 0 allocations should be preferred since
3180 * order 0 does not cause fragmentation in the page allocator. Larger objects
3181 * be problematic to put into order 0 slabs because there may be too much
3182 * unused space left. We go to a higher order if more than 1/16th of the slab
3183 * would be wasted.
3184 *
3185 * In order to reach satisfactory performance we must ensure that a minimum
3186 * number of objects is in one slab. Otherwise we may generate too much
3187 * activity on the partial lists which requires taking the list_lock. This is
3188 * less a concern for large slabs though which are rarely used.
3189 *
3190 * slub_max_order specifies the order where we begin to stop considering the
3191 * number of objects in a slab as critical. If we reach slub_max_order then
3192 * we try to keep the page order as low as possible. So we accept more waste
3193 * of space in favor of a small page order.
3194 *
3195 * Higher order allocations also allow the placement of more objects in a
3196 * slab and thereby reduce object handling overhead. If the user has
3197 * requested a higher mininum order then we start with that one instead of
3198 * the smallest order which will fit the object.
3199 */
3200 static inline int slab_order(int size, int min_objects,
3201 int max_order, int fract_leftover, int reserved)
3202 {
3203 int order;
3204 int rem;
3205 int min_order = slub_min_order;
3206
3207 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
3208 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3209
3210 for (order = max(min_order, get_order(min_objects * size + reserved));
3211 order <= max_order; order++) {
3212
3213 unsigned long slab_size = PAGE_SIZE << order;
3214
3215 rem = (slab_size - reserved) % size;
3216
3217 if (rem <= slab_size / fract_leftover)
3218 break;
3219 }
3220
3221 return order;
3222 }
3223
3224 static inline int calculate_order(int size, int reserved)
3225 {
3226 int order;
3227 int min_objects;
3228 int fraction;
3229 int max_objects;
3230
3231 /*
3232 * Attempt to find best configuration for a slab. This
3233 * works by first attempting to generate a layout with
3234 * the best configuration and backing off gradually.
3235 *
3236 * First we increase the acceptable waste in a slab. Then
3237 * we reduce the minimum objects required in a slab.
3238 */
3239 min_objects = slub_min_objects;
3240 if (!min_objects)
3241 min_objects = 4 * (fls(nr_cpu_ids) + 1);
3242 max_objects = order_objects(slub_max_order, size, reserved);
3243 min_objects = min(min_objects, max_objects);
3244
3245 while (min_objects > 1) {
3246 fraction = 16;
3247 while (fraction >= 4) {
3248 order = slab_order(size, min_objects,
3249 slub_max_order, fraction, reserved);
3250 if (order <= slub_max_order)
3251 return order;
3252 fraction /= 2;
3253 }
3254 min_objects--;
3255 }
3256
3257 /*
3258 * We were unable to place multiple objects in a slab. Now
3259 * lets see if we can place a single object there.
3260 */
3261 order = slab_order(size, 1, slub_max_order, 1, reserved);
3262 if (order <= slub_max_order)
3263 return order;
3264
3265 /*
3266 * Doh this slab cannot be placed using slub_max_order.
3267 */
3268 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
3269 if (order < MAX_ORDER)
3270 return order;
3271 return -ENOSYS;
3272 }
3273
3274 static void
3275 init_kmem_cache_node(struct kmem_cache_node *n)
3276 {
3277 n->nr_partial = 0;
3278 spin_lock_init(&n->list_lock);
3279 INIT_LIST_HEAD(&n->partial);
3280 #ifdef CONFIG_SLUB_DEBUG
3281 atomic_long_set(&n->nr_slabs, 0);
3282 atomic_long_set(&n->total_objects, 0);
3283 INIT_LIST_HEAD(&n->full);
3284 #endif
3285 }
3286
3287 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3288 {
3289 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3290 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3291
3292 /*
3293 * Must align to double word boundary for the double cmpxchg
3294 * instructions to work; see __pcpu_double_call_return_bool().
3295 */
3296 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3297 2 * sizeof(void *));
3298
3299 if (!s->cpu_slab)
3300 return 0;
3301
3302 init_kmem_cache_cpus(s);
3303
3304 return 1;
3305 }
3306
3307 static struct kmem_cache *kmem_cache_node;
3308
3309 /*
3310 * No kmalloc_node yet so do it by hand. We know that this is the first
3311 * slab on the node for this slabcache. There are no concurrent accesses
3312 * possible.
3313 *
3314 * Note that this function only works on the kmem_cache_node
3315 * when allocating for the kmem_cache_node. This is used for bootstrapping
3316 * memory on a fresh node that has no slab structures yet.
3317 */
3318 static void early_kmem_cache_node_alloc(int node)
3319 {
3320 struct page *page;
3321 struct kmem_cache_node *n;
3322
3323 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3324
3325 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3326
3327 BUG_ON(!page);
3328 if (page_to_nid(page) != node) {
3329 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3330 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3331 }
3332
3333 n = page->freelist;
3334 BUG_ON(!n);
3335 page->freelist = get_freepointer(kmem_cache_node, n);
3336 page->inuse = 1;
3337 page->frozen = 0;
3338 kmem_cache_node->node[node] = n;
3339 #ifdef CONFIG_SLUB_DEBUG
3340 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3341 init_tracking(kmem_cache_node, n);
3342 #endif
3343 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3344 GFP_KERNEL);
3345 init_kmem_cache_node(n);
3346 inc_slabs_node(kmem_cache_node, node, page->objects);
3347
3348 /*
3349 * No locks need to be taken here as it has just been
3350 * initialized and there is no concurrent access.
3351 */
3352 __add_partial(n, page, DEACTIVATE_TO_HEAD);
3353 }
3354
3355 static void free_kmem_cache_nodes(struct kmem_cache *s)
3356 {
3357 int node;
3358 struct kmem_cache_node *n;
3359
3360 for_each_kmem_cache_node(s, node, n) {
3361 kmem_cache_free(kmem_cache_node, n);
3362 s->node[node] = NULL;
3363 }
3364 }
3365
3366 void __kmem_cache_release(struct kmem_cache *s)
3367 {
3368 cache_random_seq_destroy(s);
3369 free_percpu(s->cpu_slab);
3370 free_kmem_cache_nodes(s);
3371 }
3372
3373 static int init_kmem_cache_nodes(struct kmem_cache *s)
3374 {
3375 int node;
3376
3377 for_each_node_state(node, N_NORMAL_MEMORY) {
3378 struct kmem_cache_node *n;
3379
3380 if (slab_state == DOWN) {
3381 early_kmem_cache_node_alloc(node);
3382 continue;
3383 }
3384 n = kmem_cache_alloc_node(kmem_cache_node,
3385 GFP_KERNEL, node);
3386
3387 if (!n) {
3388 free_kmem_cache_nodes(s);
3389 return 0;
3390 }
3391
3392 s->node[node] = n;
3393 init_kmem_cache_node(n);
3394 }
3395 return 1;
3396 }
3397
3398 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3399 {
3400 if (min < MIN_PARTIAL)
3401 min = MIN_PARTIAL;
3402 else if (min > MAX_PARTIAL)
3403 min = MAX_PARTIAL;
3404 s->min_partial = min;
3405 }
3406
3407 static void set_cpu_partial(struct kmem_cache *s)
3408 {
3409 #ifdef CONFIG_SLUB_CPU_PARTIAL
3410 /*
3411 * cpu_partial determined the maximum number of objects kept in the
3412 * per cpu partial lists of a processor.
3413 *
3414 * Per cpu partial lists mainly contain slabs that just have one
3415 * object freed. If they are used for allocation then they can be
3416 * filled up again with minimal effort. The slab will never hit the
3417 * per node partial lists and therefore no locking will be required.
3418 *
3419 * This setting also determines
3420 *
3421 * A) The number of objects from per cpu partial slabs dumped to the
3422 * per node list when we reach the limit.
3423 * B) The number of objects in cpu partial slabs to extract from the
3424 * per node list when we run out of per cpu objects. We only fetch
3425 * 50% to keep some capacity around for frees.
3426 */
3427 if (!kmem_cache_has_cpu_partial(s))
3428 s->cpu_partial = 0;
3429 else if (s->size >= PAGE_SIZE)
3430 s->cpu_partial = 2;
3431 else if (s->size >= 1024)
3432 s->cpu_partial = 6;
3433 else if (s->size >= 256)
3434 s->cpu_partial = 13;
3435 else
3436 s->cpu_partial = 30;
3437 #endif
3438 }
3439
3440 /*
3441 * calculate_sizes() determines the order and the distribution of data within
3442 * a slab object.
3443 */
3444 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3445 {
3446 unsigned long flags = s->flags;
3447 size_t size = s->object_size;
3448 int order;
3449
3450 /*
3451 * Round up object size to the next word boundary. We can only
3452 * place the free pointer at word boundaries and this determines
3453 * the possible location of the free pointer.
3454 */
3455 size = ALIGN(size, sizeof(void *));
3456
3457 #ifdef CONFIG_SLUB_DEBUG
3458 /*
3459 * Determine if we can poison the object itself. If the user of
3460 * the slab may touch the object after free or before allocation
3461 * then we should never poison the object itself.
3462 */
3463 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3464 !s->ctor)
3465 s->flags |= __OBJECT_POISON;
3466 else
3467 s->flags &= ~__OBJECT_POISON;
3468
3469
3470 /*
3471 * If we are Redzoning then check if there is some space between the
3472 * end of the object and the free pointer. If not then add an
3473 * additional word to have some bytes to store Redzone information.
3474 */
3475 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3476 size += sizeof(void *);
3477 #endif
3478
3479 /*
3480 * With that we have determined the number of bytes in actual use
3481 * by the object. This is the potential offset to the free pointer.
3482 */
3483 s->inuse = size;
3484
3485 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3486 s->ctor)) {
3487 /*
3488 * Relocate free pointer after the object if it is not
3489 * permitted to overwrite the first word of the object on
3490 * kmem_cache_free.
3491 *
3492 * This is the case if we do RCU, have a constructor or
3493 * destructor or are poisoning the objects.
3494 */
3495 s->offset = size;
3496 size += sizeof(void *);
3497 }
3498
3499 #ifdef CONFIG_SLUB_DEBUG
3500 if (flags & SLAB_STORE_USER)
3501 /*
3502 * Need to store information about allocs and frees after
3503 * the object.
3504 */
3505 size += 2 * sizeof(struct track);
3506 #endif
3507
3508 kasan_cache_create(s, &size, &s->flags);
3509 #ifdef CONFIG_SLUB_DEBUG
3510 if (flags & SLAB_RED_ZONE) {
3511 /*
3512 * Add some empty padding so that we can catch
3513 * overwrites from earlier objects rather than let
3514 * tracking information or the free pointer be
3515 * corrupted if a user writes before the start
3516 * of the object.
3517 */
3518 size += sizeof(void *);
3519
3520 s->red_left_pad = sizeof(void *);
3521 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3522 size += s->red_left_pad;
3523 }
3524 #endif
3525
3526 /*
3527 * SLUB stores one object immediately after another beginning from
3528 * offset 0. In order to align the objects we have to simply size
3529 * each object to conform to the alignment.
3530 */
3531 size = ALIGN(size, s->align);
3532 s->size = size;
3533 if (forced_order >= 0)
3534 order = forced_order;
3535 else
3536 order = calculate_order(size, s->reserved);
3537
3538 if (order < 0)
3539 return 0;
3540
3541 s->allocflags = 0;
3542 if (order)
3543 s->allocflags |= __GFP_COMP;
3544
3545 if (s->flags & SLAB_CACHE_DMA)
3546 s->allocflags |= GFP_DMA;
3547
3548 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3549 s->allocflags |= __GFP_RECLAIMABLE;
3550
3551 /*
3552 * Determine the number of objects per slab
3553 */
3554 s->oo = oo_make(order, size, s->reserved);
3555 s->min = oo_make(get_order(size), size, s->reserved);
3556 if (oo_objects(s->oo) > oo_objects(s->max))
3557 s->max = s->oo;
3558
3559 return !!oo_objects(s->oo);
3560 }
3561
3562 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3563 {
3564 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3565 s->reserved = 0;
3566
3567 if (need_reserve_slab_rcu && (s->flags & SLAB_TYPESAFE_BY_RCU))
3568 s->reserved = sizeof(struct rcu_head);
3569
3570 if (!calculate_sizes(s, -1))
3571 goto error;
3572 if (disable_higher_order_debug) {
3573 /*
3574 * Disable debugging flags that store metadata if the min slab
3575 * order increased.
3576 */
3577 if (get_order(s->size) > get_order(s->object_size)) {
3578 s->flags &= ~DEBUG_METADATA_FLAGS;
3579 s->offset = 0;
3580 if (!calculate_sizes(s, -1))
3581 goto error;
3582 }
3583 }
3584
3585 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3586 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3587 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3588 /* Enable fast mode */
3589 s->flags |= __CMPXCHG_DOUBLE;
3590 #endif
3591
3592 /*
3593 * The larger the object size is, the more pages we want on the partial
3594 * list to avoid pounding the page allocator excessively.
3595 */
3596 set_min_partial(s, ilog2(s->size) / 2);
3597
3598 set_cpu_partial(s);
3599
3600 #ifdef CONFIG_NUMA
3601 s->remote_node_defrag_ratio = 1000;
3602 #endif
3603
3604 /* Initialize the pre-computed randomized freelist if slab is up */
3605 if (slab_state >= UP) {
3606 if (init_cache_random_seq(s))
3607 goto error;
3608 }
3609
3610 if (!init_kmem_cache_nodes(s))
3611 goto error;
3612
3613 if (alloc_kmem_cache_cpus(s))
3614 return 0;
3615
3616 free_kmem_cache_nodes(s);
3617 error:
3618 if (flags & SLAB_PANIC)
3619 panic("Cannot create slab %s size=%lu realsize=%u order=%u offset=%u flags=%lx\n",
3620 s->name, (unsigned long)s->size, s->size,
3621 oo_order(s->oo), s->offset, flags);
3622 return -EINVAL;
3623 }
3624
3625 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3626 const char *text)
3627 {
3628 #ifdef CONFIG_SLUB_DEBUG
3629 void *addr = page_address(page);
3630 void *p;
3631 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3632 sizeof(long), GFP_ATOMIC);
3633 if (!map)
3634 return;
3635 slab_err(s, page, text, s->name);
3636 slab_lock(page);
3637
3638 get_map(s, page, map);
3639 for_each_object(p, s, addr, page->objects) {
3640
3641 if (!test_bit(slab_index(p, s, addr), map)) {
3642 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3643 print_tracking(s, p);
3644 }
3645 }
3646 slab_unlock(page);
3647 kfree(map);
3648 #endif
3649 }
3650
3651 /*
3652 * Attempt to free all partial slabs on a node.
3653 * This is called from __kmem_cache_shutdown(). We must take list_lock
3654 * because sysfs file might still access partial list after the shutdowning.
3655 */
3656 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3657 {
3658 LIST_HEAD(discard);
3659 struct page *page, *h;
3660
3661 BUG_ON(irqs_disabled());
3662 spin_lock_irq(&n->list_lock);
3663 list_for_each_entry_safe(page, h, &n->partial, lru) {
3664 if (!page->inuse) {
3665 remove_partial(n, page);
3666 list_add(&page->lru, &discard);
3667 } else {
3668 list_slab_objects(s, page,
3669 "Objects remaining in %s on __kmem_cache_shutdown()");
3670 }
3671 }
3672 spin_unlock_irq(&n->list_lock);
3673
3674 list_for_each_entry_safe(page, h, &discard, lru)
3675 discard_slab(s, page);
3676 }
3677
3678 /*
3679 * Release all resources used by a slab cache.
3680 */
3681 int __kmem_cache_shutdown(struct kmem_cache *s)
3682 {
3683 int node;
3684 struct kmem_cache_node *n;
3685
3686 flush_all(s);
3687 /* Attempt to free all objects */
3688 for_each_kmem_cache_node(s, node, n) {
3689 free_partial(s, n);
3690 if (n->nr_partial || slabs_node(s, node))
3691 return 1;
3692 }
3693 sysfs_slab_remove(s);
3694 return 0;
3695 }
3696
3697 /********************************************************************
3698 * Kmalloc subsystem
3699 *******************************************************************/
3700
3701 static int __init setup_slub_min_order(char *str)
3702 {
3703 get_option(&str, &slub_min_order);
3704
3705 return 1;
3706 }
3707
3708 __setup("slub_min_order=", setup_slub_min_order);
3709
3710 static int __init setup_slub_max_order(char *str)
3711 {
3712 get_option(&str, &slub_max_order);
3713 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3714
3715 return 1;
3716 }
3717
3718 __setup("slub_max_order=", setup_slub_max_order);
3719
3720 static int __init setup_slub_min_objects(char *str)
3721 {
3722 get_option(&str, &slub_min_objects);
3723
3724 return 1;
3725 }
3726
3727 __setup("slub_min_objects=", setup_slub_min_objects);
3728
3729 void *__kmalloc(size_t size, gfp_t flags)
3730 {
3731 struct kmem_cache *s;
3732 void *ret;
3733
3734 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3735 return kmalloc_large(size, flags);
3736
3737 s = kmalloc_slab(size, flags);
3738
3739 if (unlikely(ZERO_OR_NULL_PTR(s)))
3740 return s;
3741
3742 ret = slab_alloc(s, flags, _RET_IP_);
3743
3744 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3745
3746 kasan_kmalloc(s, ret, size, flags);
3747
3748 return ret;
3749 }
3750 EXPORT_SYMBOL(__kmalloc);
3751
3752 #ifdef CONFIG_NUMA
3753 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3754 {
3755 struct page *page;
3756 void *ptr = NULL;
3757
3758 flags |= __GFP_COMP | __GFP_NOTRACK;
3759 page = alloc_pages_node(node, flags, get_order(size));
3760 if (page)
3761 ptr = page_address(page);
3762
3763 kmalloc_large_node_hook(ptr, size, flags);
3764 return ptr;
3765 }
3766
3767 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3768 {
3769 struct kmem_cache *s;
3770 void *ret;
3771
3772 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3773 ret = kmalloc_large_node(size, flags, node);
3774
3775 trace_kmalloc_node(_RET_IP_, ret,
3776 size, PAGE_SIZE << get_order(size),
3777 flags, node);
3778
3779 return ret;
3780 }
3781
3782 s = kmalloc_slab(size, flags);
3783
3784 if (unlikely(ZERO_OR_NULL_PTR(s)))
3785 return s;
3786
3787 ret = slab_alloc_node(s, flags, node, _RET_IP_);
3788
3789 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3790
3791 kasan_kmalloc(s, ret, size, flags);
3792
3793 return ret;
3794 }
3795 EXPORT_SYMBOL(__kmalloc_node);
3796 #endif
3797
3798 #ifdef CONFIG_HARDENED_USERCOPY
3799 /*
3800 * Rejects objects that are incorrectly sized.
3801 *
3802 * Returns NULL if check passes, otherwise const char * to name of cache
3803 * to indicate an error.
3804 */
3805 const char *__check_heap_object(const void *ptr, unsigned long n,
3806 struct page *page)
3807 {
3808 struct kmem_cache *s;
3809 unsigned long offset;
3810 size_t object_size;
3811
3812 /* Find object and usable object size. */
3813 s = page->slab_cache;
3814 object_size = slab_ksize(s);
3815
3816 /* Reject impossible pointers. */
3817 if (ptr < page_address(page))
3818 return s->name;
3819
3820 /* Find offset within object. */
3821 offset = (ptr - page_address(page)) % s->size;
3822
3823 /* Adjust for redzone and reject if within the redzone. */
3824 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3825 if (offset < s->red_left_pad)
3826 return s->name;
3827 offset -= s->red_left_pad;
3828 }
3829
3830 /* Allow address range falling entirely within object size. */
3831 if (offset <= object_size && n <= object_size - offset)
3832 return NULL;
3833
3834 return s->name;
3835 }
3836 #endif /* CONFIG_HARDENED_USERCOPY */
3837
3838 static size_t __ksize(const void *object)
3839 {
3840 struct page *page;
3841
3842 if (unlikely(object == ZERO_SIZE_PTR))
3843 return 0;
3844
3845 page = virt_to_head_page(object);
3846
3847 if (unlikely(!PageSlab(page))) {
3848 WARN_ON(!PageCompound(page));
3849 return PAGE_SIZE << compound_order(page);
3850 }
3851
3852 return slab_ksize(page->slab_cache);
3853 }
3854
3855 size_t ksize(const void *object)
3856 {
3857 size_t size = __ksize(object);
3858 /* We assume that ksize callers could use whole allocated area,
3859 * so we need to unpoison this area.
3860 */
3861 kasan_unpoison_shadow(object, size);
3862 return size;
3863 }
3864 EXPORT_SYMBOL(ksize);
3865
3866 void kfree(const void *x)
3867 {
3868 struct page *page;
3869 void *object = (void *)x;
3870
3871 trace_kfree(_RET_IP_, x);
3872
3873 if (unlikely(ZERO_OR_NULL_PTR(x)))
3874 return;
3875
3876 page = virt_to_head_page(x);
3877 if (unlikely(!PageSlab(page))) {
3878 BUG_ON(!PageCompound(page));
3879 kfree_hook(x);
3880 __free_pages(page, compound_order(page));
3881 return;
3882 }
3883 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
3884 }
3885 EXPORT_SYMBOL(kfree);
3886
3887 #define SHRINK_PROMOTE_MAX 32
3888
3889 /*
3890 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3891 * up most to the head of the partial lists. New allocations will then
3892 * fill those up and thus they can be removed from the partial lists.
3893 *
3894 * The slabs with the least items are placed last. This results in them
3895 * being allocated from last increasing the chance that the last objects
3896 * are freed in them.
3897 */
3898 int __kmem_cache_shrink(struct kmem_cache *s)
3899 {
3900 int node;
3901 int i;
3902 struct kmem_cache_node *n;
3903 struct page *page;
3904 struct page *t;
3905 struct list_head discard;
3906 struct list_head promote[SHRINK_PROMOTE_MAX];
3907 unsigned long flags;
3908 int ret = 0;
3909
3910 flush_all(s);
3911 for_each_kmem_cache_node(s, node, n) {
3912 INIT_LIST_HEAD(&discard);
3913 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3914 INIT_LIST_HEAD(promote + i);
3915
3916 spin_lock_irqsave(&n->list_lock, flags);
3917
3918 /*
3919 * Build lists of slabs to discard or promote.
3920 *
3921 * Note that concurrent frees may occur while we hold the
3922 * list_lock. page->inuse here is the upper limit.
3923 */
3924 list_for_each_entry_safe(page, t, &n->partial, lru) {
3925 int free = page->objects - page->inuse;
3926
3927 /* Do not reread page->inuse */
3928 barrier();
3929
3930 /* We do not keep full slabs on the list */
3931 BUG_ON(free <= 0);
3932
3933 if (free == page->objects) {
3934 list_move(&page->lru, &discard);
3935 n->nr_partial--;
3936 } else if (free <= SHRINK_PROMOTE_MAX)
3937 list_move(&page->lru, promote + free - 1);
3938 }
3939
3940 /*
3941 * Promote the slabs filled up most to the head of the
3942 * partial list.
3943 */
3944 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3945 list_splice(promote + i, &n->partial);
3946
3947 spin_unlock_irqrestore(&n->list_lock, flags);
3948
3949 /* Release empty slabs */
3950 list_for_each_entry_safe(page, t, &discard, lru)
3951 discard_slab(s, page);
3952
3953 if (slabs_node(s, node))
3954 ret = 1;
3955 }
3956
3957 return ret;
3958 }
3959
3960 #ifdef CONFIG_MEMCG
3961 static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s)
3962 {
3963 /*
3964 * Called with all the locks held after a sched RCU grace period.
3965 * Even if @s becomes empty after shrinking, we can't know that @s
3966 * doesn't have allocations already in-flight and thus can't
3967 * destroy @s until the associated memcg is released.
3968 *
3969 * However, let's remove the sysfs files for empty caches here.
3970 * Each cache has a lot of interface files which aren't
3971 * particularly useful for empty draining caches; otherwise, we can
3972 * easily end up with millions of unnecessary sysfs files on
3973 * systems which have a lot of memory and transient cgroups.
3974 */
3975 if (!__kmem_cache_shrink(s))
3976 sysfs_slab_remove(s);
3977 }
3978
3979 void __kmemcg_cache_deactivate(struct kmem_cache *s)
3980 {
3981 /*
3982 * Disable empty slabs caching. Used to avoid pinning offline
3983 * memory cgroups by kmem pages that can be freed.
3984 */
3985 slub_set_cpu_partial(s, 0);
3986 s->min_partial = 0;
3987
3988 /*
3989 * s->cpu_partial is checked locklessly (see put_cpu_partial), so
3990 * we have to make sure the change is visible before shrinking.
3991 */
3992 slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu);
3993 }
3994 #endif
3995
3996 static int slab_mem_going_offline_callback(void *arg)
3997 {
3998 struct kmem_cache *s;
3999
4000 mutex_lock(&slab_mutex);
4001 list_for_each_entry(s, &slab_caches, list)
4002 __kmem_cache_shrink(s);
4003 mutex_unlock(&slab_mutex);
4004
4005 return 0;
4006 }
4007
4008 static void slab_mem_offline_callback(void *arg)
4009 {
4010 struct kmem_cache_node *n;
4011 struct kmem_cache *s;
4012 struct memory_notify *marg = arg;
4013 int offline_node;
4014
4015 offline_node = marg->status_change_nid_normal;
4016
4017 /*
4018 * If the node still has available memory. we need kmem_cache_node
4019 * for it yet.
4020 */
4021 if (offline_node < 0)
4022 return;
4023
4024 mutex_lock(&slab_mutex);
4025 list_for_each_entry(s, &slab_caches, list) {
4026 n = get_node(s, offline_node);
4027 if (n) {
4028 /*
4029 * if n->nr_slabs > 0, slabs still exist on the node
4030 * that is going down. We were unable to free them,
4031 * and offline_pages() function shouldn't call this
4032 * callback. So, we must fail.
4033 */
4034 BUG_ON(slabs_node(s, offline_node));
4035
4036 s->node[offline_node] = NULL;
4037 kmem_cache_free(kmem_cache_node, n);
4038 }
4039 }
4040 mutex_unlock(&slab_mutex);
4041 }
4042
4043 static int slab_mem_going_online_callback(void *arg)
4044 {
4045 struct kmem_cache_node *n;
4046 struct kmem_cache *s;
4047 struct memory_notify *marg = arg;
4048 int nid = marg->status_change_nid_normal;
4049 int ret = 0;
4050
4051 /*
4052 * If the node's memory is already available, then kmem_cache_node is
4053 * already created. Nothing to do.
4054 */
4055 if (nid < 0)
4056 return 0;
4057
4058 /*
4059 * We are bringing a node online. No memory is available yet. We must
4060 * allocate a kmem_cache_node structure in order to bring the node
4061 * online.
4062 */
4063 mutex_lock(&slab_mutex);
4064 list_for_each_entry(s, &slab_caches, list) {
4065 /*
4066 * XXX: kmem_cache_alloc_node will fallback to other nodes
4067 * since memory is not yet available from the node that
4068 * is brought up.
4069 */
4070 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4071 if (!n) {
4072 ret = -ENOMEM;
4073 goto out;
4074 }
4075 init_kmem_cache_node(n);
4076 s->node[nid] = n;
4077 }
4078 out:
4079 mutex_unlock(&slab_mutex);
4080 return ret;
4081 }
4082
4083 static int slab_memory_callback(struct notifier_block *self,
4084 unsigned long action, void *arg)
4085 {
4086 int ret = 0;
4087
4088 switch (action) {
4089 case MEM_GOING_ONLINE:
4090 ret = slab_mem_going_online_callback(arg);
4091 break;
4092 case MEM_GOING_OFFLINE:
4093 ret = slab_mem_going_offline_callback(arg);
4094 break;
4095 case MEM_OFFLINE:
4096 case MEM_CANCEL_ONLINE:
4097 slab_mem_offline_callback(arg);
4098 break;
4099 case MEM_ONLINE:
4100 case MEM_CANCEL_OFFLINE:
4101 break;
4102 }
4103 if (ret)
4104 ret = notifier_from_errno(ret);
4105 else
4106 ret = NOTIFY_OK;
4107 return ret;
4108 }
4109
4110 static struct notifier_block slab_memory_callback_nb = {
4111 .notifier_call = slab_memory_callback,
4112 .priority = SLAB_CALLBACK_PRI,
4113 };
4114
4115 /********************************************************************
4116 * Basic setup of slabs
4117 *******************************************************************/
4118
4119 /*
4120 * Used for early kmem_cache structures that were allocated using
4121 * the page allocator. Allocate them properly then fix up the pointers
4122 * that may be pointing to the wrong kmem_cache structure.
4123 */
4124
4125 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4126 {
4127 int node;
4128 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4129 struct kmem_cache_node *n;
4130
4131 memcpy(s, static_cache, kmem_cache->object_size);
4132
4133 /*
4134 * This runs very early, and only the boot processor is supposed to be
4135 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4136 * IPIs around.
4137 */
4138 __flush_cpu_slab(s, smp_processor_id());
4139 for_each_kmem_cache_node(s, node, n) {
4140 struct page *p;
4141
4142 list_for_each_entry(p, &n->partial, lru)
4143 p->slab_cache = s;
4144
4145 #ifdef CONFIG_SLUB_DEBUG
4146 list_for_each_entry(p, &n->full, lru)
4147 p->slab_cache = s;
4148 #endif
4149 }
4150 slab_init_memcg_params(s);
4151 list_add(&s->list, &slab_caches);
4152 memcg_link_cache(s);
4153 return s;
4154 }
4155
4156 void __init kmem_cache_init(void)
4157 {
4158 static __initdata struct kmem_cache boot_kmem_cache,
4159 boot_kmem_cache_node;
4160
4161 if (debug_guardpage_minorder())
4162 slub_max_order = 0;
4163
4164 kmem_cache_node = &boot_kmem_cache_node;
4165 kmem_cache = &boot_kmem_cache;
4166
4167 create_boot_cache(kmem_cache_node, "kmem_cache_node",
4168 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
4169
4170 register_hotmemory_notifier(&slab_memory_callback_nb);
4171
4172 /* Able to allocate the per node structures */
4173 slab_state = PARTIAL;
4174
4175 create_boot_cache(kmem_cache, "kmem_cache",
4176 offsetof(struct kmem_cache, node) +
4177 nr_node_ids * sizeof(struct kmem_cache_node *),
4178 SLAB_HWCACHE_ALIGN);
4179
4180 kmem_cache = bootstrap(&boot_kmem_cache);
4181
4182 /*
4183 * Allocate kmem_cache_node properly from the kmem_cache slab.
4184 * kmem_cache_node is separately allocated so no need to
4185 * update any list pointers.
4186 */
4187 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4188
4189 /* Now we can use the kmem_cache to allocate kmalloc slabs */
4190 setup_kmalloc_cache_index_table();
4191 create_kmalloc_caches(0);
4192
4193 /* Setup random freelists for each cache */
4194 init_freelist_randomization();
4195
4196 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4197 slub_cpu_dead);
4198
4199 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
4200 cache_line_size(),
4201 slub_min_order, slub_max_order, slub_min_objects,
4202 nr_cpu_ids, nr_node_ids);
4203 }
4204
4205 void __init kmem_cache_init_late(void)
4206 {
4207 }
4208
4209 struct kmem_cache *
4210 __kmem_cache_alias(const char *name, size_t size, size_t align,
4211 unsigned long flags, void (*ctor)(void *))
4212 {
4213 struct kmem_cache *s, *c;
4214
4215 s = find_mergeable(size, align, flags, name, ctor);
4216 if (s) {
4217 s->refcount++;
4218
4219 /*
4220 * Adjust the object sizes so that we clear
4221 * the complete object on kzalloc.
4222 */
4223 s->object_size = max(s->object_size, (int)size);
4224 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
4225
4226 for_each_memcg_cache(c, s) {
4227 c->object_size = s->object_size;
4228 c->inuse = max_t(int, c->inuse,
4229 ALIGN(size, sizeof(void *)));
4230 }
4231
4232 if (sysfs_slab_alias(s, name)) {
4233 s->refcount--;
4234 s = NULL;
4235 }
4236 }
4237
4238 return s;
4239 }
4240
4241 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
4242 {
4243 int err;
4244
4245 err = kmem_cache_open(s, flags);
4246 if (err)
4247 return err;
4248
4249 /* Mutex is not taken during early boot */
4250 if (slab_state <= UP)
4251 return 0;
4252
4253 memcg_propagate_slab_attrs(s);
4254 err = sysfs_slab_add(s);
4255 if (err)
4256 __kmem_cache_release(s);
4257
4258 return err;
4259 }
4260
4261 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4262 {
4263 struct kmem_cache *s;
4264 void *ret;
4265
4266 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4267 return kmalloc_large(size, gfpflags);
4268
4269 s = kmalloc_slab(size, gfpflags);
4270
4271 if (unlikely(ZERO_OR_NULL_PTR(s)))
4272 return s;
4273
4274 ret = slab_alloc(s, gfpflags, caller);
4275
4276 /* Honor the call site pointer we received. */
4277 trace_kmalloc(caller, ret, size, s->size, gfpflags);
4278
4279 return ret;
4280 }
4281
4282 #ifdef CONFIG_NUMA
4283 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4284 int node, unsigned long caller)
4285 {
4286 struct kmem_cache *s;
4287 void *ret;
4288
4289 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4290 ret = kmalloc_large_node(size, gfpflags, node);
4291
4292 trace_kmalloc_node(caller, ret,
4293 size, PAGE_SIZE << get_order(size),
4294 gfpflags, node);
4295
4296 return ret;
4297 }
4298
4299 s = kmalloc_slab(size, gfpflags);
4300
4301 if (unlikely(ZERO_OR_NULL_PTR(s)))
4302 return s;
4303
4304 ret = slab_alloc_node(s, gfpflags, node, caller);
4305
4306 /* Honor the call site pointer we received. */
4307 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4308
4309 return ret;
4310 }
4311 #endif
4312
4313 #ifdef CONFIG_SYSFS
4314 static int count_inuse(struct page *page)
4315 {
4316 return page->inuse;
4317 }
4318
4319 static int count_total(struct page *page)
4320 {
4321 return page->objects;
4322 }
4323 #endif
4324
4325 #ifdef CONFIG_SLUB_DEBUG
4326 static int validate_slab(struct kmem_cache *s, struct page *page,
4327 unsigned long *map)
4328 {
4329 void *p;
4330 void *addr = page_address(page);
4331
4332 if (!check_slab(s, page) ||
4333 !on_freelist(s, page, NULL))
4334 return 0;
4335
4336 /* Now we know that a valid freelist exists */
4337 bitmap_zero(map, page->objects);
4338
4339 get_map(s, page, map);
4340 for_each_object(p, s, addr, page->objects) {
4341 if (test_bit(slab_index(p, s, addr), map))
4342 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4343 return 0;
4344 }
4345
4346 for_each_object(p, s, addr, page->objects)
4347 if (!test_bit(slab_index(p, s, addr), map))
4348 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4349 return 0;
4350 return 1;
4351 }
4352
4353 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4354 unsigned long *map)
4355 {
4356 slab_lock(page);
4357 validate_slab(s, page, map);
4358 slab_unlock(page);
4359 }
4360
4361 static int validate_slab_node(struct kmem_cache *s,
4362 struct kmem_cache_node *n, unsigned long *map)
4363 {
4364 unsigned long count = 0;
4365 struct page *page;
4366 unsigned long flags;
4367
4368 spin_lock_irqsave(&n->list_lock, flags);
4369
4370 list_for_each_entry(page, &n->partial, lru) {
4371 validate_slab_slab(s, page, map);
4372 count++;
4373 }
4374 if (count != n->nr_partial)
4375 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4376 s->name, count, n->nr_partial);
4377
4378 if (!(s->flags & SLAB_STORE_USER))
4379 goto out;
4380
4381 list_for_each_entry(page, &n->full, lru) {
4382 validate_slab_slab(s, page, map);
4383 count++;
4384 }
4385 if (count != atomic_long_read(&n->nr_slabs))
4386 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4387 s->name, count, atomic_long_read(&n->nr_slabs));
4388
4389 out:
4390 spin_unlock_irqrestore(&n->list_lock, flags);
4391 return count;
4392 }
4393
4394 static long validate_slab_cache(struct kmem_cache *s)
4395 {
4396 int node;
4397 unsigned long count = 0;
4398 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4399 sizeof(unsigned long), GFP_KERNEL);
4400 struct kmem_cache_node *n;
4401
4402 if (!map)
4403 return -ENOMEM;
4404
4405 flush_all(s);
4406 for_each_kmem_cache_node(s, node, n)
4407 count += validate_slab_node(s, n, map);
4408 kfree(map);
4409 return count;
4410 }
4411 /*
4412 * Generate lists of code addresses where slabcache objects are allocated
4413 * and freed.
4414 */
4415
4416 struct location {
4417 unsigned long count;
4418 unsigned long addr;
4419 long long sum_time;
4420 long min_time;
4421 long max_time;
4422 long min_pid;
4423 long max_pid;
4424 DECLARE_BITMAP(cpus, NR_CPUS);
4425 nodemask_t nodes;
4426 };
4427
4428 struct loc_track {
4429 unsigned long max;
4430 unsigned long count;
4431 struct location *loc;
4432 };
4433
4434 static void free_loc_track(struct loc_track *t)
4435 {
4436 if (t->max)
4437 free_pages((unsigned long)t->loc,
4438 get_order(sizeof(struct location) * t->max));
4439 }
4440
4441 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4442 {
4443 struct location *l;
4444 int order;
4445
4446 order = get_order(sizeof(struct location) * max);
4447
4448 l = (void *)__get_free_pages(flags, order);
4449 if (!l)
4450 return 0;
4451
4452 if (t->count) {
4453 memcpy(l, t->loc, sizeof(struct location) * t->count);
4454 free_loc_track(t);
4455 }
4456 t->max = max;
4457 t->loc = l;
4458 return 1;
4459 }
4460
4461 static int add_location(struct loc_track *t, struct kmem_cache *s,
4462 const struct track *track)
4463 {
4464 long start, end, pos;
4465 struct location *l;
4466 unsigned long caddr;
4467 unsigned long age = jiffies - track->when;
4468
4469 start = -1;
4470 end = t->count;
4471
4472 for ( ; ; ) {
4473 pos = start + (end - start + 1) / 2;
4474
4475 /*
4476 * There is nothing at "end". If we end up there
4477 * we need to add something to before end.
4478 */
4479 if (pos == end)
4480 break;
4481
4482 caddr = t->loc[pos].addr;
4483 if (track->addr == caddr) {
4484
4485 l = &t->loc[pos];
4486 l->count++;
4487 if (track->when) {
4488 l->sum_time += age;
4489 if (age < l->min_time)
4490 l->min_time = age;
4491 if (age > l->max_time)
4492 l->max_time = age;
4493
4494 if (track->pid < l->min_pid)
4495 l->min_pid = track->pid;
4496 if (track->pid > l->max_pid)
4497 l->max_pid = track->pid;
4498
4499 cpumask_set_cpu(track->cpu,
4500 to_cpumask(l->cpus));
4501 }
4502 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4503 return 1;
4504 }
4505
4506 if (track->addr < caddr)
4507 end = pos;
4508 else
4509 start = pos;
4510 }
4511
4512 /*
4513 * Not found. Insert new tracking element.
4514 */
4515 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4516 return 0;
4517
4518 l = t->loc + pos;
4519 if (pos < t->count)
4520 memmove(l + 1, l,
4521 (t->count - pos) * sizeof(struct location));
4522 t->count++;
4523 l->count = 1;
4524 l->addr = track->addr;
4525 l->sum_time = age;
4526 l->min_time = age;
4527 l->max_time = age;
4528 l->min_pid = track->pid;
4529 l->max_pid = track->pid;
4530 cpumask_clear(to_cpumask(l->cpus));
4531 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4532 nodes_clear(l->nodes);
4533 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4534 return 1;
4535 }
4536
4537 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4538 struct page *page, enum track_item alloc,
4539 unsigned long *map)
4540 {
4541 void *addr = page_address(page);
4542 void *p;
4543
4544 bitmap_zero(map, page->objects);
4545 get_map(s, page, map);
4546
4547 for_each_object(p, s, addr, page->objects)
4548 if (!test_bit(slab_index(p, s, addr), map))
4549 add_location(t, s, get_track(s, p, alloc));
4550 }
4551
4552 static int list_locations(struct kmem_cache *s, char *buf,
4553 enum track_item alloc)
4554 {
4555 int len = 0;
4556 unsigned long i;
4557 struct loc_track t = { 0, 0, NULL };
4558 int node;
4559 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4560 sizeof(unsigned long), GFP_KERNEL);
4561 struct kmem_cache_node *n;
4562
4563 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4564 GFP_TEMPORARY)) {
4565 kfree(map);
4566 return sprintf(buf, "Out of memory\n");
4567 }
4568 /* Push back cpu slabs */
4569 flush_all(s);
4570
4571 for_each_kmem_cache_node(s, node, n) {
4572 unsigned long flags;
4573 struct page *page;
4574
4575 if (!atomic_long_read(&n->nr_slabs))
4576 continue;
4577
4578 spin_lock_irqsave(&n->list_lock, flags);
4579 list_for_each_entry(page, &n->partial, lru)
4580 process_slab(&t, s, page, alloc, map);
4581 list_for_each_entry(page, &n->full, lru)
4582 process_slab(&t, s, page, alloc, map);
4583 spin_unlock_irqrestore(&n->list_lock, flags);
4584 }
4585
4586 for (i = 0; i < t.count; i++) {
4587 struct location *l = &t.loc[i];
4588
4589 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4590 break;
4591 len += sprintf(buf + len, "%7ld ", l->count);
4592
4593 if (l->addr)
4594 len += sprintf(buf + len, "%pS", (void *)l->addr);
4595 else
4596 len += sprintf(buf + len, "<not-available>");
4597
4598 if (l->sum_time != l->min_time) {
4599 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4600 l->min_time,
4601 (long)div_u64(l->sum_time, l->count),
4602 l->max_time);
4603 } else
4604 len += sprintf(buf + len, " age=%ld",
4605 l->min_time);
4606
4607 if (l->min_pid != l->max_pid)
4608 len += sprintf(buf + len, " pid=%ld-%ld",
4609 l->min_pid, l->max_pid);
4610 else
4611 len += sprintf(buf + len, " pid=%ld",
4612 l->min_pid);
4613
4614 if (num_online_cpus() > 1 &&
4615 !cpumask_empty(to_cpumask(l->cpus)) &&
4616 len < PAGE_SIZE - 60)
4617 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4618 " cpus=%*pbl",
4619 cpumask_pr_args(to_cpumask(l->cpus)));
4620
4621 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4622 len < PAGE_SIZE - 60)
4623 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4624 " nodes=%*pbl",
4625 nodemask_pr_args(&l->nodes));
4626
4627 len += sprintf(buf + len, "\n");
4628 }
4629
4630 free_loc_track(&t);
4631 kfree(map);
4632 if (!t.count)
4633 len += sprintf(buf, "No data\n");
4634 return len;
4635 }
4636 #endif
4637
4638 #ifdef SLUB_RESILIENCY_TEST
4639 static void __init resiliency_test(void)
4640 {
4641 u8 *p;
4642
4643 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4644
4645 pr_err("SLUB resiliency testing\n");
4646 pr_err("-----------------------\n");
4647 pr_err("A. Corruption after allocation\n");
4648
4649 p = kzalloc(16, GFP_KERNEL);
4650 p[16] = 0x12;
4651 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4652 p + 16);
4653
4654 validate_slab_cache(kmalloc_caches[4]);
4655
4656 /* Hmmm... The next two are dangerous */
4657 p = kzalloc(32, GFP_KERNEL);
4658 p[32 + sizeof(void *)] = 0x34;
4659 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4660 p);
4661 pr_err("If allocated object is overwritten then not detectable\n\n");
4662
4663 validate_slab_cache(kmalloc_caches[5]);
4664 p = kzalloc(64, GFP_KERNEL);
4665 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4666 *p = 0x56;
4667 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4668 p);
4669 pr_err("If allocated object is overwritten then not detectable\n\n");
4670 validate_slab_cache(kmalloc_caches[6]);
4671
4672 pr_err("\nB. Corruption after free\n");
4673 p = kzalloc(128, GFP_KERNEL);
4674 kfree(p);
4675 *p = 0x78;
4676 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4677 validate_slab_cache(kmalloc_caches[7]);
4678
4679 p = kzalloc(256, GFP_KERNEL);
4680 kfree(p);
4681 p[50] = 0x9a;
4682 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4683 validate_slab_cache(kmalloc_caches[8]);
4684
4685 p = kzalloc(512, GFP_KERNEL);
4686 kfree(p);
4687 p[512] = 0xab;
4688 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4689 validate_slab_cache(kmalloc_caches[9]);
4690 }
4691 #else
4692 #ifdef CONFIG_SYSFS
4693 static void resiliency_test(void) {};
4694 #endif
4695 #endif
4696
4697 #ifdef CONFIG_SYSFS
4698 enum slab_stat_type {
4699 SL_ALL, /* All slabs */
4700 SL_PARTIAL, /* Only partially allocated slabs */
4701 SL_CPU, /* Only slabs used for cpu caches */
4702 SL_OBJECTS, /* Determine allocated objects not slabs */
4703 SL_TOTAL /* Determine object capacity not slabs */
4704 };
4705
4706 #define SO_ALL (1 << SL_ALL)
4707 #define SO_PARTIAL (1 << SL_PARTIAL)
4708 #define SO_CPU (1 << SL_CPU)
4709 #define SO_OBJECTS (1 << SL_OBJECTS)
4710 #define SO_TOTAL (1 << SL_TOTAL)
4711
4712 #ifdef CONFIG_MEMCG
4713 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4714
4715 static int __init setup_slub_memcg_sysfs(char *str)
4716 {
4717 int v;
4718
4719 if (get_option(&str, &v) > 0)
4720 memcg_sysfs_enabled = v;
4721
4722 return 1;
4723 }
4724
4725 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4726 #endif
4727
4728 static ssize_t show_slab_objects(struct kmem_cache *s,
4729 char *buf, unsigned long flags)
4730 {
4731 unsigned long total = 0;
4732 int node;
4733 int x;
4734 unsigned long *nodes;
4735
4736 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4737 if (!nodes)
4738 return -ENOMEM;
4739
4740 if (flags & SO_CPU) {
4741 int cpu;
4742
4743 for_each_possible_cpu(cpu) {
4744 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4745 cpu);
4746 int node;
4747 struct page *page;
4748
4749 page = READ_ONCE(c->page);
4750 if (!page)
4751 continue;
4752
4753 node = page_to_nid(page);
4754 if (flags & SO_TOTAL)
4755 x = page->objects;
4756 else if (flags & SO_OBJECTS)
4757 x = page->inuse;
4758 else
4759 x = 1;
4760
4761 total += x;
4762 nodes[node] += x;
4763
4764 page = slub_percpu_partial_read_once(c);
4765 if (page) {
4766 node = page_to_nid(page);
4767 if (flags & SO_TOTAL)
4768 WARN_ON_ONCE(1);
4769 else if (flags & SO_OBJECTS)
4770 WARN_ON_ONCE(1);
4771 else
4772 x = page->pages;
4773 total += x;
4774 nodes[node] += x;
4775 }
4776 }
4777 }
4778
4779 get_online_mems();
4780 #ifdef CONFIG_SLUB_DEBUG
4781 if (flags & SO_ALL) {
4782 struct kmem_cache_node *n;
4783
4784 for_each_kmem_cache_node(s, node, n) {
4785
4786 if (flags & SO_TOTAL)
4787 x = atomic_long_read(&n->total_objects);
4788 else if (flags & SO_OBJECTS)
4789 x = atomic_long_read(&n->total_objects) -
4790 count_partial(n, count_free);
4791 else
4792 x = atomic_long_read(&n->nr_slabs);
4793 total += x;
4794 nodes[node] += x;
4795 }
4796
4797 } else
4798 #endif
4799 if (flags & SO_PARTIAL) {
4800 struct kmem_cache_node *n;
4801
4802 for_each_kmem_cache_node(s, node, n) {
4803 if (flags & SO_TOTAL)
4804 x = count_partial(n, count_total);
4805 else if (flags & SO_OBJECTS)
4806 x = count_partial(n, count_inuse);
4807 else
4808 x = n->nr_partial;
4809 total += x;
4810 nodes[node] += x;
4811 }
4812 }
4813 x = sprintf(buf, "%lu", total);
4814 #ifdef CONFIG_NUMA
4815 for (node = 0; node < nr_node_ids; node++)
4816 if (nodes[node])
4817 x += sprintf(buf + x, " N%d=%lu",
4818 node, nodes[node]);
4819 #endif
4820 put_online_mems();
4821 kfree(nodes);
4822 return x + sprintf(buf + x, "\n");
4823 }
4824
4825 #ifdef CONFIG_SLUB_DEBUG
4826 static int any_slab_objects(struct kmem_cache *s)
4827 {
4828 int node;
4829 struct kmem_cache_node *n;
4830
4831 for_each_kmem_cache_node(s, node, n)
4832 if (atomic_long_read(&n->total_objects))
4833 return 1;
4834
4835 return 0;
4836 }
4837 #endif
4838
4839 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4840 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4841
4842 struct slab_attribute {
4843 struct attribute attr;
4844 ssize_t (*show)(struct kmem_cache *s, char *buf);
4845 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4846 };
4847
4848 #define SLAB_ATTR_RO(_name) \
4849 static struct slab_attribute _name##_attr = \
4850 __ATTR(_name, 0400, _name##_show, NULL)
4851
4852 #define SLAB_ATTR(_name) \
4853 static struct slab_attribute _name##_attr = \
4854 __ATTR(_name, 0600, _name##_show, _name##_store)
4855
4856 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4857 {
4858 return sprintf(buf, "%d\n", s->size);
4859 }
4860 SLAB_ATTR_RO(slab_size);
4861
4862 static ssize_t align_show(struct kmem_cache *s, char *buf)
4863 {
4864 return sprintf(buf, "%d\n", s->align);
4865 }
4866 SLAB_ATTR_RO(align);
4867
4868 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4869 {
4870 return sprintf(buf, "%d\n", s->object_size);
4871 }
4872 SLAB_ATTR_RO(object_size);
4873
4874 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4875 {
4876 return sprintf(buf, "%d\n", oo_objects(s->oo));
4877 }
4878 SLAB_ATTR_RO(objs_per_slab);
4879
4880 static ssize_t order_store(struct kmem_cache *s,
4881 const char *buf, size_t length)
4882 {
4883 unsigned long order;
4884 int err;
4885
4886 err = kstrtoul(buf, 10, &order);
4887 if (err)
4888 return err;
4889
4890 if (order > slub_max_order || order < slub_min_order)
4891 return -EINVAL;
4892
4893 calculate_sizes(s, order);
4894 return length;
4895 }
4896
4897 static ssize_t order_show(struct kmem_cache *s, char *buf)
4898 {
4899 return sprintf(buf, "%d\n", oo_order(s->oo));
4900 }
4901 SLAB_ATTR(order);
4902
4903 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4904 {
4905 return sprintf(buf, "%lu\n", s->min_partial);
4906 }
4907
4908 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4909 size_t length)
4910 {
4911 unsigned long min;
4912 int err;
4913
4914 err = kstrtoul(buf, 10, &min);
4915 if (err)
4916 return err;
4917
4918 set_min_partial(s, min);
4919 return length;
4920 }
4921 SLAB_ATTR(min_partial);
4922
4923 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4924 {
4925 return sprintf(buf, "%u\n", slub_cpu_partial(s));
4926 }
4927
4928 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4929 size_t length)
4930 {
4931 unsigned long objects;
4932 int err;
4933
4934 err = kstrtoul(buf, 10, &objects);
4935 if (err)
4936 return err;
4937 if (objects && !kmem_cache_has_cpu_partial(s))
4938 return -EINVAL;
4939
4940 slub_set_cpu_partial(s, objects);
4941 flush_all(s);
4942 return length;
4943 }
4944 SLAB_ATTR(cpu_partial);
4945
4946 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4947 {
4948 if (!s->ctor)
4949 return 0;
4950 return sprintf(buf, "%pS\n", s->ctor);
4951 }
4952 SLAB_ATTR_RO(ctor);
4953
4954 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4955 {
4956 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
4957 }
4958 SLAB_ATTR_RO(aliases);
4959
4960 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4961 {
4962 return show_slab_objects(s, buf, SO_PARTIAL);
4963 }
4964 SLAB_ATTR_RO(partial);
4965
4966 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4967 {
4968 return show_slab_objects(s, buf, SO_CPU);
4969 }
4970 SLAB_ATTR_RO(cpu_slabs);
4971
4972 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4973 {
4974 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4975 }
4976 SLAB_ATTR_RO(objects);
4977
4978 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4979 {
4980 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4981 }
4982 SLAB_ATTR_RO(objects_partial);
4983
4984 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4985 {
4986 int objects = 0;
4987 int pages = 0;
4988 int cpu;
4989 int len;
4990
4991 for_each_online_cpu(cpu) {
4992 struct page *page;
4993
4994 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
4995
4996 if (page) {
4997 pages += page->pages;
4998 objects += page->pobjects;
4999 }
5000 }
5001
5002 len = sprintf(buf, "%d(%d)", objects, pages);
5003
5004 #ifdef CONFIG_SMP
5005 for_each_online_cpu(cpu) {
5006 struct page *page;
5007
5008 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5009
5010 if (page && len < PAGE_SIZE - 20)
5011 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5012 page->pobjects, page->pages);
5013 }
5014 #endif
5015 return len + sprintf(buf + len, "\n");
5016 }
5017 SLAB_ATTR_RO(slabs_cpu_partial);
5018
5019 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5020 {
5021 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5022 }
5023
5024 static ssize_t reclaim_account_store(struct kmem_cache *s,
5025 const char *buf, size_t length)
5026 {
5027 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5028 if (buf[0] == '1')
5029 s->flags |= SLAB_RECLAIM_ACCOUNT;
5030 return length;
5031 }
5032 SLAB_ATTR(reclaim_account);
5033
5034 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5035 {
5036 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5037 }
5038 SLAB_ATTR_RO(hwcache_align);
5039
5040 #ifdef CONFIG_ZONE_DMA
5041 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5042 {
5043 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5044 }
5045 SLAB_ATTR_RO(cache_dma);
5046 #endif
5047
5048 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5049 {
5050 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5051 }
5052 SLAB_ATTR_RO(destroy_by_rcu);
5053
5054 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
5055 {
5056 return sprintf(buf, "%d\n", s->reserved);
5057 }
5058 SLAB_ATTR_RO(reserved);
5059
5060 #ifdef CONFIG_SLUB_DEBUG
5061 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5062 {
5063 return show_slab_objects(s, buf, SO_ALL);
5064 }
5065 SLAB_ATTR_RO(slabs);
5066
5067 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5068 {
5069 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5070 }
5071 SLAB_ATTR_RO(total_objects);
5072
5073 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5074 {
5075 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5076 }
5077
5078 static ssize_t sanity_checks_store(struct kmem_cache *s,
5079 const char *buf, size_t length)
5080 {
5081 s->flags &= ~SLAB_CONSISTENCY_CHECKS;
5082 if (buf[0] == '1') {
5083 s->flags &= ~__CMPXCHG_DOUBLE;
5084 s->flags |= SLAB_CONSISTENCY_CHECKS;
5085 }
5086 return length;
5087 }
5088 SLAB_ATTR(sanity_checks);
5089
5090 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5091 {
5092 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5093 }
5094
5095 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5096 size_t length)
5097 {
5098 /*
5099 * Tracing a merged cache is going to give confusing results
5100 * as well as cause other issues like converting a mergeable
5101 * cache into an umergeable one.
5102 */
5103 if (s->refcount > 1)
5104 return -EINVAL;
5105
5106 s->flags &= ~SLAB_TRACE;
5107 if (buf[0] == '1') {
5108 s->flags &= ~__CMPXCHG_DOUBLE;
5109 s->flags |= SLAB_TRACE;
5110 }
5111 return length;
5112 }
5113 SLAB_ATTR(trace);
5114
5115 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5116 {
5117 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5118 }
5119
5120 static ssize_t red_zone_store(struct kmem_cache *s,
5121 const char *buf, size_t length)
5122 {
5123 if (any_slab_objects(s))
5124 return -EBUSY;
5125
5126 s->flags &= ~SLAB_RED_ZONE;
5127 if (buf[0] == '1') {
5128 s->flags |= SLAB_RED_ZONE;
5129 }
5130 calculate_sizes(s, -1);
5131 return length;
5132 }
5133 SLAB_ATTR(red_zone);
5134
5135 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5136 {
5137 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5138 }
5139
5140 static ssize_t poison_store(struct kmem_cache *s,
5141 const char *buf, size_t length)
5142 {
5143 if (any_slab_objects(s))
5144 return -EBUSY;
5145
5146 s->flags &= ~SLAB_POISON;
5147 if (buf[0] == '1') {
5148 s->flags |= SLAB_POISON;
5149 }
5150 calculate_sizes(s, -1);
5151 return length;
5152 }
5153 SLAB_ATTR(poison);
5154
5155 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5156 {
5157 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5158 }
5159
5160 static ssize_t store_user_store(struct kmem_cache *s,
5161 const char *buf, size_t length)
5162 {
5163 if (any_slab_objects(s))
5164 return -EBUSY;
5165
5166 s->flags &= ~SLAB_STORE_USER;
5167 if (buf[0] == '1') {
5168 s->flags &= ~__CMPXCHG_DOUBLE;
5169 s->flags |= SLAB_STORE_USER;
5170 }
5171 calculate_sizes(s, -1);
5172 return length;
5173 }
5174 SLAB_ATTR(store_user);
5175
5176 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5177 {
5178 return 0;
5179 }
5180
5181 static ssize_t validate_store(struct kmem_cache *s,
5182 const char *buf, size_t length)
5183 {
5184 int ret = -EINVAL;
5185
5186 if (buf[0] == '1') {
5187 ret = validate_slab_cache(s);
5188 if (ret >= 0)
5189 ret = length;
5190 }
5191 return ret;
5192 }
5193 SLAB_ATTR(validate);
5194
5195 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5196 {
5197 if (!(s->flags & SLAB_STORE_USER))
5198 return -ENOSYS;
5199 return list_locations(s, buf, TRACK_ALLOC);
5200 }
5201 SLAB_ATTR_RO(alloc_calls);
5202
5203 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5204 {
5205 if (!(s->flags & SLAB_STORE_USER))
5206 return -ENOSYS;
5207 return list_locations(s, buf, TRACK_FREE);
5208 }
5209 SLAB_ATTR_RO(free_calls);
5210 #endif /* CONFIG_SLUB_DEBUG */
5211
5212 #ifdef CONFIG_FAILSLAB
5213 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5214 {
5215 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5216 }
5217
5218 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5219 size_t length)
5220 {
5221 if (s->refcount > 1)
5222 return -EINVAL;
5223
5224 s->flags &= ~SLAB_FAILSLAB;
5225 if (buf[0] == '1')
5226 s->flags |= SLAB_FAILSLAB;
5227 return length;
5228 }
5229 SLAB_ATTR(failslab);
5230 #endif
5231
5232 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5233 {
5234 return 0;
5235 }
5236
5237 static ssize_t shrink_store(struct kmem_cache *s,
5238 const char *buf, size_t length)
5239 {
5240 if (buf[0] == '1')
5241 kmem_cache_shrink(s);
5242 else
5243 return -EINVAL;
5244 return length;
5245 }
5246 SLAB_ATTR(shrink);
5247
5248 #ifdef CONFIG_NUMA
5249 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5250 {
5251 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
5252 }
5253
5254 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5255 const char *buf, size_t length)
5256 {
5257 unsigned long ratio;
5258 int err;
5259
5260 err = kstrtoul(buf, 10, &ratio);
5261 if (err)
5262 return err;
5263
5264 if (ratio <= 100)
5265 s->remote_node_defrag_ratio = ratio * 10;
5266
5267 return length;
5268 }
5269 SLAB_ATTR(remote_node_defrag_ratio);
5270 #endif
5271
5272 #ifdef CONFIG_SLUB_STATS
5273 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5274 {
5275 unsigned long sum = 0;
5276 int cpu;
5277 int len;
5278 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5279
5280 if (!data)
5281 return -ENOMEM;
5282
5283 for_each_online_cpu(cpu) {
5284 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5285
5286 data[cpu] = x;
5287 sum += x;
5288 }
5289
5290 len = sprintf(buf, "%lu", sum);
5291
5292 #ifdef CONFIG_SMP
5293 for_each_online_cpu(cpu) {
5294 if (data[cpu] && len < PAGE_SIZE - 20)
5295 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5296 }
5297 #endif
5298 kfree(data);
5299 return len + sprintf(buf + len, "\n");
5300 }
5301
5302 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5303 {
5304 int cpu;
5305
5306 for_each_online_cpu(cpu)
5307 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5308 }
5309
5310 #define STAT_ATTR(si, text) \
5311 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5312 { \
5313 return show_stat(s, buf, si); \
5314 } \
5315 static ssize_t text##_store(struct kmem_cache *s, \
5316 const char *buf, size_t length) \
5317 { \
5318 if (buf[0] != '0') \
5319 return -EINVAL; \
5320 clear_stat(s, si); \
5321 return length; \
5322 } \
5323 SLAB_ATTR(text); \
5324
5325 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5326 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5327 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5328 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5329 STAT_ATTR(FREE_FROZEN, free_frozen);
5330 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5331 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5332 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5333 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5334 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5335 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5336 STAT_ATTR(FREE_SLAB, free_slab);
5337 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5338 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5339 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5340 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5341 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5342 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5343 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5344 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5345 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5346 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5347 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5348 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5349 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5350 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5351 #endif
5352
5353 static struct attribute *slab_attrs[] = {
5354 &slab_size_attr.attr,
5355 &object_size_attr.attr,
5356 &objs_per_slab_attr.attr,
5357 &order_attr.attr,
5358 &min_partial_attr.attr,
5359 &cpu_partial_attr.attr,
5360 &objects_attr.attr,
5361 &objects_partial_attr.attr,
5362 &partial_attr.attr,
5363 &cpu_slabs_attr.attr,
5364 &ctor_attr.attr,
5365 &aliases_attr.attr,
5366 &align_attr.attr,
5367 &hwcache_align_attr.attr,
5368 &reclaim_account_attr.attr,
5369 &destroy_by_rcu_attr.attr,
5370 &shrink_attr.attr,
5371 &reserved_attr.attr,
5372 &slabs_cpu_partial_attr.attr,
5373 #ifdef CONFIG_SLUB_DEBUG
5374 &total_objects_attr.attr,
5375 &slabs_attr.attr,
5376 &sanity_checks_attr.attr,
5377 &trace_attr.attr,
5378 &red_zone_attr.attr,
5379 &poison_attr.attr,
5380 &store_user_attr.attr,
5381 &validate_attr.attr,
5382 &alloc_calls_attr.attr,
5383 &free_calls_attr.attr,
5384 #endif
5385 #ifdef CONFIG_ZONE_DMA
5386 &cache_dma_attr.attr,
5387 #endif
5388 #ifdef CONFIG_NUMA
5389 &remote_node_defrag_ratio_attr.attr,
5390 #endif
5391 #ifdef CONFIG_SLUB_STATS
5392 &alloc_fastpath_attr.attr,
5393 &alloc_slowpath_attr.attr,
5394 &free_fastpath_attr.attr,
5395 &free_slowpath_attr.attr,
5396 &free_frozen_attr.attr,
5397 &free_add_partial_attr.attr,
5398 &free_remove_partial_attr.attr,
5399 &alloc_from_partial_attr.attr,
5400 &alloc_slab_attr.attr,
5401 &alloc_refill_attr.attr,
5402 &alloc_node_mismatch_attr.attr,
5403 &free_slab_attr.attr,
5404 &cpuslab_flush_attr.attr,
5405 &deactivate_full_attr.attr,
5406 &deactivate_empty_attr.attr,
5407 &deactivate_to_head_attr.attr,
5408 &deactivate_to_tail_attr.attr,
5409 &deactivate_remote_frees_attr.attr,
5410 &deactivate_bypass_attr.attr,
5411 &order_fallback_attr.attr,
5412 &cmpxchg_double_fail_attr.attr,
5413 &cmpxchg_double_cpu_fail_attr.attr,
5414 &cpu_partial_alloc_attr.attr,
5415 &cpu_partial_free_attr.attr,
5416 &cpu_partial_node_attr.attr,
5417 &cpu_partial_drain_attr.attr,
5418 #endif
5419 #ifdef CONFIG_FAILSLAB
5420 &failslab_attr.attr,
5421 #endif
5422
5423 NULL
5424 };
5425
5426 static struct attribute_group slab_attr_group = {
5427 .attrs = slab_attrs,
5428 };
5429
5430 static ssize_t slab_attr_show(struct kobject *kobj,
5431 struct attribute *attr,
5432 char *buf)
5433 {
5434 struct slab_attribute *attribute;
5435 struct kmem_cache *s;
5436 int err;
5437
5438 attribute = to_slab_attr(attr);
5439 s = to_slab(kobj);
5440
5441 if (!attribute->show)
5442 return -EIO;
5443
5444 err = attribute->show(s, buf);
5445
5446 return err;
5447 }
5448
5449 static ssize_t slab_attr_store(struct kobject *kobj,
5450 struct attribute *attr,
5451 const char *buf, size_t len)
5452 {
5453 struct slab_attribute *attribute;
5454 struct kmem_cache *s;
5455 int err;
5456
5457 attribute = to_slab_attr(attr);
5458 s = to_slab(kobj);
5459
5460 if (!attribute->store)
5461 return -EIO;
5462
5463 err = attribute->store(s, buf, len);
5464 #ifdef CONFIG_MEMCG
5465 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5466 struct kmem_cache *c;
5467
5468 mutex_lock(&slab_mutex);
5469 if (s->max_attr_size < len)
5470 s->max_attr_size = len;
5471
5472 /*
5473 * This is a best effort propagation, so this function's return
5474 * value will be determined by the parent cache only. This is
5475 * basically because not all attributes will have a well
5476 * defined semantics for rollbacks - most of the actions will
5477 * have permanent effects.
5478 *
5479 * Returning the error value of any of the children that fail
5480 * is not 100 % defined, in the sense that users seeing the
5481 * error code won't be able to know anything about the state of
5482 * the cache.
5483 *
5484 * Only returning the error code for the parent cache at least
5485 * has well defined semantics. The cache being written to
5486 * directly either failed or succeeded, in which case we loop
5487 * through the descendants with best-effort propagation.
5488 */
5489 for_each_memcg_cache(c, s)
5490 attribute->store(c, buf, len);
5491 mutex_unlock(&slab_mutex);
5492 }
5493 #endif
5494 return err;
5495 }
5496
5497 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5498 {
5499 #ifdef CONFIG_MEMCG
5500 int i;
5501 char *buffer = NULL;
5502 struct kmem_cache *root_cache;
5503
5504 if (is_root_cache(s))
5505 return;
5506
5507 root_cache = s->memcg_params.root_cache;
5508
5509 /*
5510 * This mean this cache had no attribute written. Therefore, no point
5511 * in copying default values around
5512 */
5513 if (!root_cache->max_attr_size)
5514 return;
5515
5516 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5517 char mbuf[64];
5518 char *buf;
5519 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5520 ssize_t len;
5521
5522 if (!attr || !attr->store || !attr->show)
5523 continue;
5524
5525 /*
5526 * It is really bad that we have to allocate here, so we will
5527 * do it only as a fallback. If we actually allocate, though,
5528 * we can just use the allocated buffer until the end.
5529 *
5530 * Most of the slub attributes will tend to be very small in
5531 * size, but sysfs allows buffers up to a page, so they can
5532 * theoretically happen.
5533 */
5534 if (buffer)
5535 buf = buffer;
5536 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5537 buf = mbuf;
5538 else {
5539 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5540 if (WARN_ON(!buffer))
5541 continue;
5542 buf = buffer;
5543 }
5544
5545 len = attr->show(root_cache, buf);
5546 if (len > 0)
5547 attr->store(s, buf, len);
5548 }
5549
5550 if (buffer)
5551 free_page((unsigned long)buffer);
5552 #endif
5553 }
5554
5555 static void kmem_cache_release(struct kobject *k)
5556 {
5557 slab_kmem_cache_release(to_slab(k));
5558 }
5559
5560 static const struct sysfs_ops slab_sysfs_ops = {
5561 .show = slab_attr_show,
5562 .store = slab_attr_store,
5563 };
5564
5565 static struct kobj_type slab_ktype = {
5566 .sysfs_ops = &slab_sysfs_ops,
5567 .release = kmem_cache_release,
5568 };
5569
5570 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5571 {
5572 struct kobj_type *ktype = get_ktype(kobj);
5573
5574 if (ktype == &slab_ktype)
5575 return 1;
5576 return 0;
5577 }
5578
5579 static const struct kset_uevent_ops slab_uevent_ops = {
5580 .filter = uevent_filter,
5581 };
5582
5583 static struct kset *slab_kset;
5584
5585 static inline struct kset *cache_kset(struct kmem_cache *s)
5586 {
5587 #ifdef CONFIG_MEMCG
5588 if (!is_root_cache(s))
5589 return s->memcg_params.root_cache->memcg_kset;
5590 #endif
5591 return slab_kset;
5592 }
5593
5594 #define ID_STR_LENGTH 64
5595
5596 /* Create a unique string id for a slab cache:
5597 *
5598 * Format :[flags-]size
5599 */
5600 static char *create_unique_id(struct kmem_cache *s)
5601 {
5602 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5603 char *p = name;
5604
5605 BUG_ON(!name);
5606
5607 *p++ = ':';
5608 /*
5609 * First flags affecting slabcache operations. We will only
5610 * get here for aliasable slabs so we do not need to support
5611 * too many flags. The flags here must cover all flags that
5612 * are matched during merging to guarantee that the id is
5613 * unique.
5614 */
5615 if (s->flags & SLAB_CACHE_DMA)
5616 *p++ = 'd';
5617 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5618 *p++ = 'a';
5619 if (s->flags & SLAB_CONSISTENCY_CHECKS)
5620 *p++ = 'F';
5621 if (!(s->flags & SLAB_NOTRACK))
5622 *p++ = 't';
5623 if (s->flags & SLAB_ACCOUNT)
5624 *p++ = 'A';
5625 if (p != name + 1)
5626 *p++ = '-';
5627 p += sprintf(p, "%07d", s->size);
5628
5629 BUG_ON(p > name + ID_STR_LENGTH - 1);
5630 return name;
5631 }
5632
5633 static void sysfs_slab_remove_workfn(struct work_struct *work)
5634 {
5635 struct kmem_cache *s =
5636 container_of(work, struct kmem_cache, kobj_remove_work);
5637
5638 if (!s->kobj.state_in_sysfs)
5639 /*
5640 * For a memcg cache, this may be called during
5641 * deactivation and again on shutdown. Remove only once.
5642 * A cache is never shut down before deactivation is
5643 * complete, so no need to worry about synchronization.
5644 */
5645 goto out;
5646
5647 #ifdef CONFIG_MEMCG
5648 kset_unregister(s->memcg_kset);
5649 #endif
5650 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5651 kobject_del(&s->kobj);
5652 out:
5653 kobject_put(&s->kobj);
5654 }
5655
5656 static int sysfs_slab_add(struct kmem_cache *s)
5657 {
5658 int err;
5659 const char *name;
5660 struct kset *kset = cache_kset(s);
5661 int unmergeable = slab_unmergeable(s);
5662
5663 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5664
5665 if (!kset) {
5666 kobject_init(&s->kobj, &slab_ktype);
5667 return 0;
5668 }
5669
5670 if (unmergeable) {
5671 /*
5672 * Slabcache can never be merged so we can use the name proper.
5673 * This is typically the case for debug situations. In that
5674 * case we can catch duplicate names easily.
5675 */
5676 sysfs_remove_link(&slab_kset->kobj, s->name);
5677 name = s->name;
5678 } else {
5679 /*
5680 * Create a unique name for the slab as a target
5681 * for the symlinks.
5682 */
5683 name = create_unique_id(s);
5684 }
5685
5686 s->kobj.kset = kset;
5687 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5688 if (err)
5689 goto out;
5690
5691 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5692 if (err)
5693 goto out_del_kobj;
5694
5695 #ifdef CONFIG_MEMCG
5696 if (is_root_cache(s) && memcg_sysfs_enabled) {
5697 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5698 if (!s->memcg_kset) {
5699 err = -ENOMEM;
5700 goto out_del_kobj;
5701 }
5702 }
5703 #endif
5704
5705 kobject_uevent(&s->kobj, KOBJ_ADD);
5706 if (!unmergeable) {
5707 /* Setup first alias */
5708 sysfs_slab_alias(s, s->name);
5709 }
5710 out:
5711 if (!unmergeable)
5712 kfree(name);
5713 return err;
5714 out_del_kobj:
5715 kobject_del(&s->kobj);
5716 goto out;
5717 }
5718
5719 static void sysfs_slab_remove(struct kmem_cache *s)
5720 {
5721 if (slab_state < FULL)
5722 /*
5723 * Sysfs has not been setup yet so no need to remove the
5724 * cache from sysfs.
5725 */
5726 return;
5727
5728 kobject_get(&s->kobj);
5729 schedule_work(&s->kobj_remove_work);
5730 }
5731
5732 void sysfs_slab_release(struct kmem_cache *s)
5733 {
5734 if (slab_state >= FULL)
5735 kobject_put(&s->kobj);
5736 }
5737
5738 /*
5739 * Need to buffer aliases during bootup until sysfs becomes
5740 * available lest we lose that information.
5741 */
5742 struct saved_alias {
5743 struct kmem_cache *s;
5744 const char *name;
5745 struct saved_alias *next;
5746 };
5747
5748 static struct saved_alias *alias_list;
5749
5750 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5751 {
5752 struct saved_alias *al;
5753
5754 if (slab_state == FULL) {
5755 /*
5756 * If we have a leftover link then remove it.
5757 */
5758 sysfs_remove_link(&slab_kset->kobj, name);
5759 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5760 }
5761
5762 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5763 if (!al)
5764 return -ENOMEM;
5765
5766 al->s = s;
5767 al->name = name;
5768 al->next = alias_list;
5769 alias_list = al;
5770 return 0;
5771 }
5772
5773 static int __init slab_sysfs_init(void)
5774 {
5775 struct kmem_cache *s;
5776 int err;
5777
5778 mutex_lock(&slab_mutex);
5779
5780 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5781 if (!slab_kset) {
5782 mutex_unlock(&slab_mutex);
5783 pr_err("Cannot register slab subsystem.\n");
5784 return -ENOSYS;
5785 }
5786
5787 slab_state = FULL;
5788
5789 list_for_each_entry(s, &slab_caches, list) {
5790 err = sysfs_slab_add(s);
5791 if (err)
5792 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5793 s->name);
5794 }
5795
5796 while (alias_list) {
5797 struct saved_alias *al = alias_list;
5798
5799 alias_list = alias_list->next;
5800 err = sysfs_slab_alias(al->s, al->name);
5801 if (err)
5802 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5803 al->name);
5804 kfree(al);
5805 }
5806
5807 mutex_unlock(&slab_mutex);
5808 resiliency_test();
5809 return 0;
5810 }
5811
5812 __initcall(slab_sysfs_init);
5813 #endif /* CONFIG_SYSFS */
5814
5815 /*
5816 * The /proc/slabinfo ABI
5817 */
5818 #ifdef CONFIG_SLABINFO
5819 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5820 {
5821 unsigned long nr_slabs = 0;
5822 unsigned long nr_objs = 0;
5823 unsigned long nr_free = 0;
5824 int node;
5825 struct kmem_cache_node *n;
5826
5827 for_each_kmem_cache_node(s, node, n) {
5828 nr_slabs += node_nr_slabs(n);
5829 nr_objs += node_nr_objs(n);
5830 nr_free += count_partial(n, count_free);
5831 }
5832
5833 sinfo->active_objs = nr_objs - nr_free;
5834 sinfo->num_objs = nr_objs;
5835 sinfo->active_slabs = nr_slabs;
5836 sinfo->num_slabs = nr_slabs;
5837 sinfo->objects_per_slab = oo_objects(s->oo);
5838 sinfo->cache_order = oo_order(s->oo);
5839 }
5840
5841 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5842 {
5843 }
5844
5845 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5846 size_t count, loff_t *ppos)
5847 {
5848 return -EIO;
5849 }
5850 #endif /* CONFIG_SLABINFO */