]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/swap_state.c
UBUNTU: Ubuntu-4.13.0-45.50
[mirror_ubuntu-artful-kernel.git] / mm / swap_state.c
1 /*
2 * linux/mm/swap_state.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 *
7 * Rewritten to use page cache, (C) 1998 Stephen Tweedie
8 */
9 #include <linux/mm.h>
10 #include <linux/gfp.h>
11 #include <linux/kernel_stat.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/init.h>
15 #include <linux/pagemap.h>
16 #include <linux/backing-dev.h>
17 #include <linux/blkdev.h>
18 #include <linux/pagevec.h>
19 #include <linux/migrate.h>
20 #include <linux/vmalloc.h>
21 #include <linux/swap_slots.h>
22 #include <linux/huge_mm.h>
23
24 #include <asm/pgtable.h>
25
26 /*
27 * swapper_space is a fiction, retained to simplify the path through
28 * vmscan's shrink_page_list.
29 */
30 static const struct address_space_operations swap_aops = {
31 .writepage = swap_writepage,
32 .set_page_dirty = swap_set_page_dirty,
33 #ifdef CONFIG_MIGRATION
34 .migratepage = migrate_page,
35 #endif
36 };
37
38 struct address_space *swapper_spaces[MAX_SWAPFILES];
39 static unsigned int nr_swapper_spaces[MAX_SWAPFILES];
40
41 #define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0)
42 #define ADD_CACHE_INFO(x, nr) do { swap_cache_info.x += (nr); } while (0)
43
44 static struct {
45 unsigned long add_total;
46 unsigned long del_total;
47 unsigned long find_success;
48 unsigned long find_total;
49 } swap_cache_info;
50
51 unsigned long total_swapcache_pages(void)
52 {
53 unsigned int i, j, nr;
54 unsigned long ret = 0;
55 struct address_space *spaces;
56
57 rcu_read_lock();
58 for (i = 0; i < MAX_SWAPFILES; i++) {
59 /*
60 * The corresponding entries in nr_swapper_spaces and
61 * swapper_spaces will be reused only after at least
62 * one grace period. So it is impossible for them
63 * belongs to different usage.
64 */
65 nr = nr_swapper_spaces[i];
66 spaces = rcu_dereference(swapper_spaces[i]);
67 if (!nr || !spaces)
68 continue;
69 for (j = 0; j < nr; j++)
70 ret += spaces[j].nrpages;
71 }
72 rcu_read_unlock();
73 return ret;
74 }
75
76 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
77
78 void show_swap_cache_info(void)
79 {
80 printk("%lu pages in swap cache\n", total_swapcache_pages());
81 printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
82 swap_cache_info.add_total, swap_cache_info.del_total,
83 swap_cache_info.find_success, swap_cache_info.find_total);
84 printk("Free swap = %ldkB\n",
85 get_nr_swap_pages() << (PAGE_SHIFT - 10));
86 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
87 }
88
89 /*
90 * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
91 * but sets SwapCache flag and private instead of mapping and index.
92 */
93 int __add_to_swap_cache(struct page *page, swp_entry_t entry)
94 {
95 int error, i, nr = hpage_nr_pages(page);
96 struct address_space *address_space;
97 pgoff_t idx = swp_offset(entry);
98
99 VM_BUG_ON_PAGE(!PageLocked(page), page);
100 VM_BUG_ON_PAGE(PageSwapCache(page), page);
101 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
102
103 page_ref_add(page, nr);
104 SetPageSwapCache(page);
105
106 address_space = swap_address_space(entry);
107 spin_lock_irq(&address_space->tree_lock);
108 for (i = 0; i < nr; i++) {
109 set_page_private(page + i, entry.val + i);
110 error = radix_tree_insert(&address_space->page_tree,
111 idx + i, page + i);
112 if (unlikely(error))
113 break;
114 }
115 if (likely(!error)) {
116 address_space->nrpages += nr;
117 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
118 ADD_CACHE_INFO(add_total, nr);
119 } else {
120 /*
121 * Only the context which have set SWAP_HAS_CACHE flag
122 * would call add_to_swap_cache().
123 * So add_to_swap_cache() doesn't returns -EEXIST.
124 */
125 VM_BUG_ON(error == -EEXIST);
126 set_page_private(page + i, 0UL);
127 while (i--) {
128 radix_tree_delete(&address_space->page_tree, idx + i);
129 set_page_private(page + i, 0UL);
130 }
131 ClearPageSwapCache(page);
132 page_ref_sub(page, nr);
133 }
134 spin_unlock_irq(&address_space->tree_lock);
135
136 return error;
137 }
138
139
140 int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
141 {
142 int error;
143
144 error = radix_tree_maybe_preload_order(gfp_mask, compound_order(page));
145 if (!error) {
146 error = __add_to_swap_cache(page, entry);
147 radix_tree_preload_end();
148 }
149 return error;
150 }
151
152 /*
153 * This must be called only on pages that have
154 * been verified to be in the swap cache.
155 */
156 void __delete_from_swap_cache(struct page *page)
157 {
158 struct address_space *address_space;
159 int i, nr = hpage_nr_pages(page);
160 swp_entry_t entry;
161 pgoff_t idx;
162
163 VM_BUG_ON_PAGE(!PageLocked(page), page);
164 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
165 VM_BUG_ON_PAGE(PageWriteback(page), page);
166
167 entry.val = page_private(page);
168 address_space = swap_address_space(entry);
169 idx = swp_offset(entry);
170 for (i = 0; i < nr; i++) {
171 radix_tree_delete(&address_space->page_tree, idx + i);
172 set_page_private(page + i, 0);
173 }
174 ClearPageSwapCache(page);
175 address_space->nrpages -= nr;
176 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
177 ADD_CACHE_INFO(del_total, nr);
178 }
179
180 /**
181 * add_to_swap - allocate swap space for a page
182 * @page: page we want to move to swap
183 *
184 * Allocate swap space for the page and add the page to the
185 * swap cache. Caller needs to hold the page lock.
186 */
187 int add_to_swap(struct page *page)
188 {
189 swp_entry_t entry;
190 int err;
191
192 VM_BUG_ON_PAGE(!PageLocked(page), page);
193 VM_BUG_ON_PAGE(!PageUptodate(page), page);
194
195 entry = get_swap_page(page);
196 if (!entry.val)
197 return 0;
198
199 if (mem_cgroup_try_charge_swap(page, entry))
200 goto fail;
201
202 /*
203 * Radix-tree node allocations from PF_MEMALLOC contexts could
204 * completely exhaust the page allocator. __GFP_NOMEMALLOC
205 * stops emergency reserves from being allocated.
206 *
207 * TODO: this could cause a theoretical memory reclaim
208 * deadlock in the swap out path.
209 */
210 /*
211 * Add it to the swap cache.
212 */
213 err = add_to_swap_cache(page, entry,
214 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
215 /* -ENOMEM radix-tree allocation failure */
216 if (err)
217 /*
218 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
219 * clear SWAP_HAS_CACHE flag.
220 */
221 goto fail;
222 /*
223 * Normally the page will be dirtied in unmap because its pte should be
224 * dirty. A special case is MADV_FREE page. The page'e pte could have
225 * dirty bit cleared but the page's SwapBacked bit is still set because
226 * clearing the dirty bit and SwapBacked bit has no lock protected. For
227 * such page, unmap will not set dirty bit for it, so page reclaim will
228 * not write the page out. This can cause data corruption when the page
229 * is swap in later. Always setting the dirty bit for the page solves
230 * the problem.
231 */
232 set_page_dirty(page);
233
234 return 1;
235
236 fail:
237 put_swap_page(page, entry);
238 return 0;
239 }
240
241 /*
242 * This must be called only on pages that have
243 * been verified to be in the swap cache and locked.
244 * It will never put the page into the free list,
245 * the caller has a reference on the page.
246 */
247 void delete_from_swap_cache(struct page *page)
248 {
249 swp_entry_t entry;
250 struct address_space *address_space;
251
252 entry.val = page_private(page);
253
254 address_space = swap_address_space(entry);
255 spin_lock_irq(&address_space->tree_lock);
256 __delete_from_swap_cache(page);
257 spin_unlock_irq(&address_space->tree_lock);
258
259 put_swap_page(page, entry);
260 page_ref_sub(page, hpage_nr_pages(page));
261 }
262
263 /*
264 * If we are the only user, then try to free up the swap cache.
265 *
266 * Its ok to check for PageSwapCache without the page lock
267 * here because we are going to recheck again inside
268 * try_to_free_swap() _with_ the lock.
269 * - Marcelo
270 */
271 static inline void free_swap_cache(struct page *page)
272 {
273 if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
274 try_to_free_swap(page);
275 unlock_page(page);
276 }
277 }
278
279 /*
280 * Perform a free_page(), also freeing any swap cache associated with
281 * this page if it is the last user of the page.
282 */
283 void free_page_and_swap_cache(struct page *page)
284 {
285 free_swap_cache(page);
286 if (!is_huge_zero_page(page))
287 put_page(page);
288 }
289
290 /*
291 * Passed an array of pages, drop them all from swapcache and then release
292 * them. They are removed from the LRU and freed if this is their last use.
293 */
294 void free_pages_and_swap_cache(struct page **pages, int nr)
295 {
296 struct page **pagep = pages;
297 int i;
298
299 lru_add_drain();
300 for (i = 0; i < nr; i++)
301 free_swap_cache(pagep[i]);
302 release_pages(pagep, nr, false);
303 }
304
305 /*
306 * Lookup a swap entry in the swap cache. A found page will be returned
307 * unlocked and with its refcount incremented - we rely on the kernel
308 * lock getting page table operations atomic even if we drop the page
309 * lock before returning.
310 */
311 struct page * lookup_swap_cache(swp_entry_t entry)
312 {
313 struct page *page;
314
315 page = find_get_page(swap_address_space(entry), swp_offset(entry));
316
317 if (page && likely(!PageTransCompound(page))) {
318 INC_CACHE_INFO(find_success);
319 if (TestClearPageReadahead(page))
320 atomic_inc(&swapin_readahead_hits);
321 }
322
323 INC_CACHE_INFO(find_total);
324 return page;
325 }
326
327 struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
328 struct vm_area_struct *vma, unsigned long addr,
329 bool *new_page_allocated)
330 {
331 struct page *found_page, *new_page = NULL;
332 struct address_space *swapper_space = swap_address_space(entry);
333 int err;
334 *new_page_allocated = false;
335
336 do {
337 /*
338 * First check the swap cache. Since this is normally
339 * called after lookup_swap_cache() failed, re-calling
340 * that would confuse statistics.
341 */
342 found_page = find_get_page(swapper_space, swp_offset(entry));
343 if (found_page)
344 break;
345
346 /*
347 * Just skip read ahead for unused swap slot.
348 * During swap_off when swap_slot_cache is disabled,
349 * we have to handle the race between putting
350 * swap entry in swap cache and marking swap slot
351 * as SWAP_HAS_CACHE. That's done in later part of code or
352 * else swap_off will be aborted if we return NULL.
353 */
354 if (!__swp_swapcount(entry) && swap_slot_cache_enabled)
355 break;
356
357 /*
358 * Get a new page to read into from swap.
359 */
360 if (!new_page) {
361 new_page = alloc_page_vma(gfp_mask, vma, addr);
362 if (!new_page)
363 break; /* Out of memory */
364 }
365
366 /*
367 * call radix_tree_preload() while we can wait.
368 */
369 err = radix_tree_maybe_preload(gfp_mask & GFP_KERNEL);
370 if (err)
371 break;
372
373 /*
374 * Swap entry may have been freed since our caller observed it.
375 */
376 err = swapcache_prepare(entry);
377 if (err == -EEXIST) {
378 radix_tree_preload_end();
379 /*
380 * We might race against get_swap_page() and stumble
381 * across a SWAP_HAS_CACHE swap_map entry whose page
382 * has not been brought into the swapcache yet.
383 */
384 cond_resched();
385 continue;
386 }
387 if (err) { /* swp entry is obsolete ? */
388 radix_tree_preload_end();
389 break;
390 }
391
392 /* May fail (-ENOMEM) if radix-tree node allocation failed. */
393 __SetPageLocked(new_page);
394 __SetPageSwapBacked(new_page);
395 err = __add_to_swap_cache(new_page, entry);
396 if (likely(!err)) {
397 radix_tree_preload_end();
398 /*
399 * Initiate read into locked page and return.
400 */
401 lru_cache_add_anon(new_page);
402 *new_page_allocated = true;
403 return new_page;
404 }
405 radix_tree_preload_end();
406 __ClearPageLocked(new_page);
407 /*
408 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
409 * clear SWAP_HAS_CACHE flag.
410 */
411 put_swap_page(new_page, entry);
412 } while (err != -ENOMEM);
413
414 if (new_page)
415 put_page(new_page);
416 return found_page;
417 }
418
419 /*
420 * Locate a page of swap in physical memory, reserving swap cache space
421 * and reading the disk if it is not already cached.
422 * A failure return means that either the page allocation failed or that
423 * the swap entry is no longer in use.
424 */
425 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
426 struct vm_area_struct *vma, unsigned long addr, bool do_poll)
427 {
428 bool page_was_allocated;
429 struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
430 vma, addr, &page_was_allocated);
431
432 if (page_was_allocated)
433 swap_readpage(retpage, do_poll);
434
435 return retpage;
436 }
437
438 static unsigned long swapin_nr_pages(unsigned long offset)
439 {
440 static unsigned long prev_offset;
441 unsigned int pages, max_pages, last_ra;
442 static atomic_t last_readahead_pages;
443
444 max_pages = 1 << READ_ONCE(page_cluster);
445 if (max_pages <= 1)
446 return 1;
447
448 /*
449 * This heuristic has been found to work well on both sequential and
450 * random loads, swapping to hard disk or to SSD: please don't ask
451 * what the "+ 2" means, it just happens to work well, that's all.
452 */
453 pages = atomic_xchg(&swapin_readahead_hits, 0) + 2;
454 if (pages == 2) {
455 /*
456 * We can have no readahead hits to judge by: but must not get
457 * stuck here forever, so check for an adjacent offset instead
458 * (and don't even bother to check whether swap type is same).
459 */
460 if (offset != prev_offset + 1 && offset != prev_offset - 1)
461 pages = 1;
462 prev_offset = offset;
463 } else {
464 unsigned int roundup = 4;
465 while (roundup < pages)
466 roundup <<= 1;
467 pages = roundup;
468 }
469
470 if (pages > max_pages)
471 pages = max_pages;
472
473 /* Don't shrink readahead too fast */
474 last_ra = atomic_read(&last_readahead_pages) / 2;
475 if (pages < last_ra)
476 pages = last_ra;
477 atomic_set(&last_readahead_pages, pages);
478
479 return pages;
480 }
481
482 /**
483 * swapin_readahead - swap in pages in hope we need them soon
484 * @entry: swap entry of this memory
485 * @gfp_mask: memory allocation flags
486 * @vma: user vma this address belongs to
487 * @addr: target address for mempolicy
488 *
489 * Returns the struct page for entry and addr, after queueing swapin.
490 *
491 * Primitive swap readahead code. We simply read an aligned block of
492 * (1 << page_cluster) entries in the swap area. This method is chosen
493 * because it doesn't cost us any seek time. We also make sure to queue
494 * the 'original' request together with the readahead ones...
495 *
496 * This has been extended to use the NUMA policies from the mm triggering
497 * the readahead.
498 *
499 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
500 */
501 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
502 struct vm_area_struct *vma, unsigned long addr)
503 {
504 struct page *page;
505 unsigned long entry_offset = swp_offset(entry);
506 unsigned long offset = entry_offset;
507 unsigned long start_offset, end_offset;
508 unsigned long mask;
509 struct blk_plug plug;
510 bool do_poll = true;
511
512 mask = swapin_nr_pages(offset) - 1;
513 if (!mask)
514 goto skip;
515
516 do_poll = false;
517 /* Read a page_cluster sized and aligned cluster around offset. */
518 start_offset = offset & ~mask;
519 end_offset = offset | mask;
520 if (!start_offset) /* First page is swap header. */
521 start_offset++;
522
523 blk_start_plug(&plug);
524 for (offset = start_offset; offset <= end_offset ; offset++) {
525 /* Ok, do the async read-ahead now */
526 page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
527 gfp_mask, vma, addr, false);
528 if (!page)
529 continue;
530 if (offset != entry_offset && likely(!PageTransCompound(page)))
531 SetPageReadahead(page);
532 put_page(page);
533 }
534 blk_finish_plug(&plug);
535
536 lru_add_drain(); /* Push any new pages onto the LRU now */
537 skip:
538 return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll);
539 }
540
541 int init_swap_address_space(unsigned int type, unsigned long nr_pages)
542 {
543 struct address_space *spaces, *space;
544 unsigned int i, nr;
545
546 nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
547 spaces = kvzalloc(sizeof(struct address_space) * nr, GFP_KERNEL);
548 if (!spaces)
549 return -ENOMEM;
550 for (i = 0; i < nr; i++) {
551 space = spaces + i;
552 INIT_RADIX_TREE(&space->page_tree, GFP_ATOMIC|__GFP_NOWARN);
553 atomic_set(&space->i_mmap_writable, 0);
554 space->a_ops = &swap_aops;
555 /* swap cache doesn't use writeback related tags */
556 mapping_set_no_writeback_tags(space);
557 spin_lock_init(&space->tree_lock);
558 }
559 nr_swapper_spaces[type] = nr;
560 rcu_assign_pointer(swapper_spaces[type], spaces);
561
562 return 0;
563 }
564
565 void exit_swap_address_space(unsigned int type)
566 {
567 struct address_space *spaces;
568
569 spaces = swapper_spaces[type];
570 nr_swapper_spaces[type] = 0;
571 rcu_assign_pointer(swapper_spaces[type], NULL);
572 synchronize_rcu();
573 kvfree(spaces);
574 }