]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/swapfile.c
Merge branch 'pm-pci'
[mirror_ubuntu-artful-kernel.git] / mm / swapfile.c
1 /*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
8 #include <linux/mm.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/task.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mman.h>
13 #include <linux/slab.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/swap.h>
16 #include <linux/vmalloc.h>
17 #include <linux/pagemap.h>
18 #include <linux/namei.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/random.h>
22 #include <linux/writeback.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25 #include <linux/init.h>
26 #include <linux/ksm.h>
27 #include <linux/rmap.h>
28 #include <linux/security.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mutex.h>
31 #include <linux/capability.h>
32 #include <linux/syscalls.h>
33 #include <linux/memcontrol.h>
34 #include <linux/poll.h>
35 #include <linux/oom.h>
36 #include <linux/frontswap.h>
37 #include <linux/swapfile.h>
38 #include <linux/export.h>
39 #include <linux/swap_slots.h>
40 #include <linux/sort.h>
41
42 #include <asm/pgtable.h>
43 #include <asm/tlbflush.h>
44 #include <linux/swapops.h>
45 #include <linux/swap_cgroup.h>
46
47 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
48 unsigned char);
49 static void free_swap_count_continuations(struct swap_info_struct *);
50 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
51
52 DEFINE_SPINLOCK(swap_lock);
53 static unsigned int nr_swapfiles;
54 atomic_long_t nr_swap_pages;
55 /*
56 * Some modules use swappable objects and may try to swap them out under
57 * memory pressure (via the shrinker). Before doing so, they may wish to
58 * check to see if any swap space is available.
59 */
60 EXPORT_SYMBOL_GPL(nr_swap_pages);
61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
62 long total_swap_pages;
63 static int least_priority;
64
65 static const char Bad_file[] = "Bad swap file entry ";
66 static const char Unused_file[] = "Unused swap file entry ";
67 static const char Bad_offset[] = "Bad swap offset entry ";
68 static const char Unused_offset[] = "Unused swap offset entry ";
69
70 /*
71 * all active swap_info_structs
72 * protected with swap_lock, and ordered by priority.
73 */
74 PLIST_HEAD(swap_active_head);
75
76 /*
77 * all available (active, not full) swap_info_structs
78 * protected with swap_avail_lock, ordered by priority.
79 * This is used by get_swap_page() instead of swap_active_head
80 * because swap_active_head includes all swap_info_structs,
81 * but get_swap_page() doesn't need to look at full ones.
82 * This uses its own lock instead of swap_lock because when a
83 * swap_info_struct changes between not-full/full, it needs to
84 * add/remove itself to/from this list, but the swap_info_struct->lock
85 * is held and the locking order requires swap_lock to be taken
86 * before any swap_info_struct->lock.
87 */
88 static PLIST_HEAD(swap_avail_head);
89 static DEFINE_SPINLOCK(swap_avail_lock);
90
91 struct swap_info_struct *swap_info[MAX_SWAPFILES];
92
93 static DEFINE_MUTEX(swapon_mutex);
94
95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96 /* Activity counter to indicate that a swapon or swapoff has occurred */
97 static atomic_t proc_poll_event = ATOMIC_INIT(0);
98
99 static inline unsigned char swap_count(unsigned char ent)
100 {
101 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
102 }
103
104 /* returns 1 if swap entry is freed */
105 static int
106 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
107 {
108 swp_entry_t entry = swp_entry(si->type, offset);
109 struct page *page;
110 int ret = 0;
111
112 page = find_get_page(swap_address_space(entry), swp_offset(entry));
113 if (!page)
114 return 0;
115 /*
116 * This function is called from scan_swap_map() and it's called
117 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
118 * We have to use trylock for avoiding deadlock. This is a special
119 * case and you should use try_to_free_swap() with explicit lock_page()
120 * in usual operations.
121 */
122 if (trylock_page(page)) {
123 ret = try_to_free_swap(page);
124 unlock_page(page);
125 }
126 put_page(page);
127 return ret;
128 }
129
130 /*
131 * swapon tell device that all the old swap contents can be discarded,
132 * to allow the swap device to optimize its wear-levelling.
133 */
134 static int discard_swap(struct swap_info_struct *si)
135 {
136 struct swap_extent *se;
137 sector_t start_block;
138 sector_t nr_blocks;
139 int err = 0;
140
141 /* Do not discard the swap header page! */
142 se = &si->first_swap_extent;
143 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
144 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
145 if (nr_blocks) {
146 err = blkdev_issue_discard(si->bdev, start_block,
147 nr_blocks, GFP_KERNEL, 0);
148 if (err)
149 return err;
150 cond_resched();
151 }
152
153 list_for_each_entry(se, &si->first_swap_extent.list, list) {
154 start_block = se->start_block << (PAGE_SHIFT - 9);
155 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
156
157 err = blkdev_issue_discard(si->bdev, start_block,
158 nr_blocks, GFP_KERNEL, 0);
159 if (err)
160 break;
161
162 cond_resched();
163 }
164 return err; /* That will often be -EOPNOTSUPP */
165 }
166
167 /*
168 * swap allocation tell device that a cluster of swap can now be discarded,
169 * to allow the swap device to optimize its wear-levelling.
170 */
171 static void discard_swap_cluster(struct swap_info_struct *si,
172 pgoff_t start_page, pgoff_t nr_pages)
173 {
174 struct swap_extent *se = si->curr_swap_extent;
175 int found_extent = 0;
176
177 while (nr_pages) {
178 if (se->start_page <= start_page &&
179 start_page < se->start_page + se->nr_pages) {
180 pgoff_t offset = start_page - se->start_page;
181 sector_t start_block = se->start_block + offset;
182 sector_t nr_blocks = se->nr_pages - offset;
183
184 if (nr_blocks > nr_pages)
185 nr_blocks = nr_pages;
186 start_page += nr_blocks;
187 nr_pages -= nr_blocks;
188
189 if (!found_extent++)
190 si->curr_swap_extent = se;
191
192 start_block <<= PAGE_SHIFT - 9;
193 nr_blocks <<= PAGE_SHIFT - 9;
194 if (blkdev_issue_discard(si->bdev, start_block,
195 nr_blocks, GFP_NOIO, 0))
196 break;
197 }
198
199 se = list_next_entry(se, list);
200 }
201 }
202
203 #ifdef CONFIG_THP_SWAP
204 #define SWAPFILE_CLUSTER HPAGE_PMD_NR
205 #else
206 #define SWAPFILE_CLUSTER 256
207 #endif
208 #define LATENCY_LIMIT 256
209
210 static inline void cluster_set_flag(struct swap_cluster_info *info,
211 unsigned int flag)
212 {
213 info->flags = flag;
214 }
215
216 static inline unsigned int cluster_count(struct swap_cluster_info *info)
217 {
218 return info->data;
219 }
220
221 static inline void cluster_set_count(struct swap_cluster_info *info,
222 unsigned int c)
223 {
224 info->data = c;
225 }
226
227 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
228 unsigned int c, unsigned int f)
229 {
230 info->flags = f;
231 info->data = c;
232 }
233
234 static inline unsigned int cluster_next(struct swap_cluster_info *info)
235 {
236 return info->data;
237 }
238
239 static inline void cluster_set_next(struct swap_cluster_info *info,
240 unsigned int n)
241 {
242 info->data = n;
243 }
244
245 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
246 unsigned int n, unsigned int f)
247 {
248 info->flags = f;
249 info->data = n;
250 }
251
252 static inline bool cluster_is_free(struct swap_cluster_info *info)
253 {
254 return info->flags & CLUSTER_FLAG_FREE;
255 }
256
257 static inline bool cluster_is_null(struct swap_cluster_info *info)
258 {
259 return info->flags & CLUSTER_FLAG_NEXT_NULL;
260 }
261
262 static inline void cluster_set_null(struct swap_cluster_info *info)
263 {
264 info->flags = CLUSTER_FLAG_NEXT_NULL;
265 info->data = 0;
266 }
267
268 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
269 unsigned long offset)
270 {
271 struct swap_cluster_info *ci;
272
273 ci = si->cluster_info;
274 if (ci) {
275 ci += offset / SWAPFILE_CLUSTER;
276 spin_lock(&ci->lock);
277 }
278 return ci;
279 }
280
281 static inline void unlock_cluster(struct swap_cluster_info *ci)
282 {
283 if (ci)
284 spin_unlock(&ci->lock);
285 }
286
287 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
288 struct swap_info_struct *si,
289 unsigned long offset)
290 {
291 struct swap_cluster_info *ci;
292
293 ci = lock_cluster(si, offset);
294 if (!ci)
295 spin_lock(&si->lock);
296
297 return ci;
298 }
299
300 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
301 struct swap_cluster_info *ci)
302 {
303 if (ci)
304 unlock_cluster(ci);
305 else
306 spin_unlock(&si->lock);
307 }
308
309 static inline bool cluster_list_empty(struct swap_cluster_list *list)
310 {
311 return cluster_is_null(&list->head);
312 }
313
314 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
315 {
316 return cluster_next(&list->head);
317 }
318
319 static void cluster_list_init(struct swap_cluster_list *list)
320 {
321 cluster_set_null(&list->head);
322 cluster_set_null(&list->tail);
323 }
324
325 static void cluster_list_add_tail(struct swap_cluster_list *list,
326 struct swap_cluster_info *ci,
327 unsigned int idx)
328 {
329 if (cluster_list_empty(list)) {
330 cluster_set_next_flag(&list->head, idx, 0);
331 cluster_set_next_flag(&list->tail, idx, 0);
332 } else {
333 struct swap_cluster_info *ci_tail;
334 unsigned int tail = cluster_next(&list->tail);
335
336 /*
337 * Nested cluster lock, but both cluster locks are
338 * only acquired when we held swap_info_struct->lock
339 */
340 ci_tail = ci + tail;
341 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
342 cluster_set_next(ci_tail, idx);
343 spin_unlock(&ci_tail->lock);
344 cluster_set_next_flag(&list->tail, idx, 0);
345 }
346 }
347
348 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
349 struct swap_cluster_info *ci)
350 {
351 unsigned int idx;
352
353 idx = cluster_next(&list->head);
354 if (cluster_next(&list->tail) == idx) {
355 cluster_set_null(&list->head);
356 cluster_set_null(&list->tail);
357 } else
358 cluster_set_next_flag(&list->head,
359 cluster_next(&ci[idx]), 0);
360
361 return idx;
362 }
363
364 /* Add a cluster to discard list and schedule it to do discard */
365 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
366 unsigned int idx)
367 {
368 /*
369 * If scan_swap_map() can't find a free cluster, it will check
370 * si->swap_map directly. To make sure the discarding cluster isn't
371 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
372 * will be cleared after discard
373 */
374 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
375 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
376
377 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
378
379 schedule_work(&si->discard_work);
380 }
381
382 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
383 {
384 struct swap_cluster_info *ci = si->cluster_info;
385
386 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
387 cluster_list_add_tail(&si->free_clusters, ci, idx);
388 }
389
390 /*
391 * Doing discard actually. After a cluster discard is finished, the cluster
392 * will be added to free cluster list. caller should hold si->lock.
393 */
394 static void swap_do_scheduled_discard(struct swap_info_struct *si)
395 {
396 struct swap_cluster_info *info, *ci;
397 unsigned int idx;
398
399 info = si->cluster_info;
400
401 while (!cluster_list_empty(&si->discard_clusters)) {
402 idx = cluster_list_del_first(&si->discard_clusters, info);
403 spin_unlock(&si->lock);
404
405 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
406 SWAPFILE_CLUSTER);
407
408 spin_lock(&si->lock);
409 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
410 __free_cluster(si, idx);
411 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
412 0, SWAPFILE_CLUSTER);
413 unlock_cluster(ci);
414 }
415 }
416
417 static void swap_discard_work(struct work_struct *work)
418 {
419 struct swap_info_struct *si;
420
421 si = container_of(work, struct swap_info_struct, discard_work);
422
423 spin_lock(&si->lock);
424 swap_do_scheduled_discard(si);
425 spin_unlock(&si->lock);
426 }
427
428 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
429 {
430 struct swap_cluster_info *ci = si->cluster_info;
431
432 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
433 cluster_list_del_first(&si->free_clusters, ci);
434 cluster_set_count_flag(ci + idx, 0, 0);
435 }
436
437 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
438 {
439 struct swap_cluster_info *ci = si->cluster_info + idx;
440
441 VM_BUG_ON(cluster_count(ci) != 0);
442 /*
443 * If the swap is discardable, prepare discard the cluster
444 * instead of free it immediately. The cluster will be freed
445 * after discard.
446 */
447 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
448 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
449 swap_cluster_schedule_discard(si, idx);
450 return;
451 }
452
453 __free_cluster(si, idx);
454 }
455
456 /*
457 * The cluster corresponding to page_nr will be used. The cluster will be
458 * removed from free cluster list and its usage counter will be increased.
459 */
460 static void inc_cluster_info_page(struct swap_info_struct *p,
461 struct swap_cluster_info *cluster_info, unsigned long page_nr)
462 {
463 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
464
465 if (!cluster_info)
466 return;
467 if (cluster_is_free(&cluster_info[idx]))
468 alloc_cluster(p, idx);
469
470 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
471 cluster_set_count(&cluster_info[idx],
472 cluster_count(&cluster_info[idx]) + 1);
473 }
474
475 /*
476 * The cluster corresponding to page_nr decreases one usage. If the usage
477 * counter becomes 0, which means no page in the cluster is in using, we can
478 * optionally discard the cluster and add it to free cluster list.
479 */
480 static void dec_cluster_info_page(struct swap_info_struct *p,
481 struct swap_cluster_info *cluster_info, unsigned long page_nr)
482 {
483 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
484
485 if (!cluster_info)
486 return;
487
488 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
489 cluster_set_count(&cluster_info[idx],
490 cluster_count(&cluster_info[idx]) - 1);
491
492 if (cluster_count(&cluster_info[idx]) == 0)
493 free_cluster(p, idx);
494 }
495
496 /*
497 * It's possible scan_swap_map() uses a free cluster in the middle of free
498 * cluster list. Avoiding such abuse to avoid list corruption.
499 */
500 static bool
501 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
502 unsigned long offset)
503 {
504 struct percpu_cluster *percpu_cluster;
505 bool conflict;
506
507 offset /= SWAPFILE_CLUSTER;
508 conflict = !cluster_list_empty(&si->free_clusters) &&
509 offset != cluster_list_first(&si->free_clusters) &&
510 cluster_is_free(&si->cluster_info[offset]);
511
512 if (!conflict)
513 return false;
514
515 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
516 cluster_set_null(&percpu_cluster->index);
517 return true;
518 }
519
520 /*
521 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
522 * might involve allocating a new cluster for current CPU too.
523 */
524 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
525 unsigned long *offset, unsigned long *scan_base)
526 {
527 struct percpu_cluster *cluster;
528 struct swap_cluster_info *ci;
529 bool found_free;
530 unsigned long tmp, max;
531
532 new_cluster:
533 cluster = this_cpu_ptr(si->percpu_cluster);
534 if (cluster_is_null(&cluster->index)) {
535 if (!cluster_list_empty(&si->free_clusters)) {
536 cluster->index = si->free_clusters.head;
537 cluster->next = cluster_next(&cluster->index) *
538 SWAPFILE_CLUSTER;
539 } else if (!cluster_list_empty(&si->discard_clusters)) {
540 /*
541 * we don't have free cluster but have some clusters in
542 * discarding, do discard now and reclaim them
543 */
544 swap_do_scheduled_discard(si);
545 *scan_base = *offset = si->cluster_next;
546 goto new_cluster;
547 } else
548 return false;
549 }
550
551 found_free = false;
552
553 /*
554 * Other CPUs can use our cluster if they can't find a free cluster,
555 * check if there is still free entry in the cluster
556 */
557 tmp = cluster->next;
558 max = min_t(unsigned long, si->max,
559 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
560 if (tmp >= max) {
561 cluster_set_null(&cluster->index);
562 goto new_cluster;
563 }
564 ci = lock_cluster(si, tmp);
565 while (tmp < max) {
566 if (!si->swap_map[tmp]) {
567 found_free = true;
568 break;
569 }
570 tmp++;
571 }
572 unlock_cluster(ci);
573 if (!found_free) {
574 cluster_set_null(&cluster->index);
575 goto new_cluster;
576 }
577 cluster->next = tmp + 1;
578 *offset = tmp;
579 *scan_base = tmp;
580 return found_free;
581 }
582
583 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
584 unsigned int nr_entries)
585 {
586 unsigned int end = offset + nr_entries - 1;
587
588 if (offset == si->lowest_bit)
589 si->lowest_bit += nr_entries;
590 if (end == si->highest_bit)
591 si->highest_bit -= nr_entries;
592 si->inuse_pages += nr_entries;
593 if (si->inuse_pages == si->pages) {
594 si->lowest_bit = si->max;
595 si->highest_bit = 0;
596 spin_lock(&swap_avail_lock);
597 plist_del(&si->avail_list, &swap_avail_head);
598 spin_unlock(&swap_avail_lock);
599 }
600 }
601
602 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
603 unsigned int nr_entries)
604 {
605 unsigned long end = offset + nr_entries - 1;
606 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
607
608 if (offset < si->lowest_bit)
609 si->lowest_bit = offset;
610 if (end > si->highest_bit) {
611 bool was_full = !si->highest_bit;
612
613 si->highest_bit = end;
614 if (was_full && (si->flags & SWP_WRITEOK)) {
615 spin_lock(&swap_avail_lock);
616 WARN_ON(!plist_node_empty(&si->avail_list));
617 if (plist_node_empty(&si->avail_list))
618 plist_add(&si->avail_list, &swap_avail_head);
619 spin_unlock(&swap_avail_lock);
620 }
621 }
622 atomic_long_add(nr_entries, &nr_swap_pages);
623 si->inuse_pages -= nr_entries;
624 if (si->flags & SWP_BLKDEV)
625 swap_slot_free_notify =
626 si->bdev->bd_disk->fops->swap_slot_free_notify;
627 else
628 swap_slot_free_notify = NULL;
629 while (offset <= end) {
630 frontswap_invalidate_page(si->type, offset);
631 if (swap_slot_free_notify)
632 swap_slot_free_notify(si->bdev, offset);
633 offset++;
634 }
635 }
636
637 static int scan_swap_map_slots(struct swap_info_struct *si,
638 unsigned char usage, int nr,
639 swp_entry_t slots[])
640 {
641 struct swap_cluster_info *ci;
642 unsigned long offset;
643 unsigned long scan_base;
644 unsigned long last_in_cluster = 0;
645 int latency_ration = LATENCY_LIMIT;
646 int n_ret = 0;
647
648 if (nr > SWAP_BATCH)
649 nr = SWAP_BATCH;
650
651 /*
652 * We try to cluster swap pages by allocating them sequentially
653 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
654 * way, however, we resort to first-free allocation, starting
655 * a new cluster. This prevents us from scattering swap pages
656 * all over the entire swap partition, so that we reduce
657 * overall disk seek times between swap pages. -- sct
658 * But we do now try to find an empty cluster. -Andrea
659 * And we let swap pages go all over an SSD partition. Hugh
660 */
661
662 si->flags += SWP_SCANNING;
663 scan_base = offset = si->cluster_next;
664
665 /* SSD algorithm */
666 if (si->cluster_info) {
667 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
668 goto checks;
669 else
670 goto scan;
671 }
672
673 if (unlikely(!si->cluster_nr--)) {
674 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
675 si->cluster_nr = SWAPFILE_CLUSTER - 1;
676 goto checks;
677 }
678
679 spin_unlock(&si->lock);
680
681 /*
682 * If seek is expensive, start searching for new cluster from
683 * start of partition, to minimize the span of allocated swap.
684 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
685 * case, just handled by scan_swap_map_try_ssd_cluster() above.
686 */
687 scan_base = offset = si->lowest_bit;
688 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
689
690 /* Locate the first empty (unaligned) cluster */
691 for (; last_in_cluster <= si->highest_bit; offset++) {
692 if (si->swap_map[offset])
693 last_in_cluster = offset + SWAPFILE_CLUSTER;
694 else if (offset == last_in_cluster) {
695 spin_lock(&si->lock);
696 offset -= SWAPFILE_CLUSTER - 1;
697 si->cluster_next = offset;
698 si->cluster_nr = SWAPFILE_CLUSTER - 1;
699 goto checks;
700 }
701 if (unlikely(--latency_ration < 0)) {
702 cond_resched();
703 latency_ration = LATENCY_LIMIT;
704 }
705 }
706
707 offset = scan_base;
708 spin_lock(&si->lock);
709 si->cluster_nr = SWAPFILE_CLUSTER - 1;
710 }
711
712 checks:
713 if (si->cluster_info) {
714 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
715 /* take a break if we already got some slots */
716 if (n_ret)
717 goto done;
718 if (!scan_swap_map_try_ssd_cluster(si, &offset,
719 &scan_base))
720 goto scan;
721 }
722 }
723 if (!(si->flags & SWP_WRITEOK))
724 goto no_page;
725 if (!si->highest_bit)
726 goto no_page;
727 if (offset > si->highest_bit)
728 scan_base = offset = si->lowest_bit;
729
730 ci = lock_cluster(si, offset);
731 /* reuse swap entry of cache-only swap if not busy. */
732 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
733 int swap_was_freed;
734 unlock_cluster(ci);
735 spin_unlock(&si->lock);
736 swap_was_freed = __try_to_reclaim_swap(si, offset);
737 spin_lock(&si->lock);
738 /* entry was freed successfully, try to use this again */
739 if (swap_was_freed)
740 goto checks;
741 goto scan; /* check next one */
742 }
743
744 if (si->swap_map[offset]) {
745 unlock_cluster(ci);
746 if (!n_ret)
747 goto scan;
748 else
749 goto done;
750 }
751 si->swap_map[offset] = usage;
752 inc_cluster_info_page(si, si->cluster_info, offset);
753 unlock_cluster(ci);
754
755 swap_range_alloc(si, offset, 1);
756 si->cluster_next = offset + 1;
757 slots[n_ret++] = swp_entry(si->type, offset);
758
759 /* got enough slots or reach max slots? */
760 if ((n_ret == nr) || (offset >= si->highest_bit))
761 goto done;
762
763 /* search for next available slot */
764
765 /* time to take a break? */
766 if (unlikely(--latency_ration < 0)) {
767 if (n_ret)
768 goto done;
769 spin_unlock(&si->lock);
770 cond_resched();
771 spin_lock(&si->lock);
772 latency_ration = LATENCY_LIMIT;
773 }
774
775 /* try to get more slots in cluster */
776 if (si->cluster_info) {
777 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
778 goto checks;
779 else
780 goto done;
781 }
782 /* non-ssd case */
783 ++offset;
784
785 /* non-ssd case, still more slots in cluster? */
786 if (si->cluster_nr && !si->swap_map[offset]) {
787 --si->cluster_nr;
788 goto checks;
789 }
790
791 done:
792 si->flags -= SWP_SCANNING;
793 return n_ret;
794
795 scan:
796 spin_unlock(&si->lock);
797 while (++offset <= si->highest_bit) {
798 if (!si->swap_map[offset]) {
799 spin_lock(&si->lock);
800 goto checks;
801 }
802 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
803 spin_lock(&si->lock);
804 goto checks;
805 }
806 if (unlikely(--latency_ration < 0)) {
807 cond_resched();
808 latency_ration = LATENCY_LIMIT;
809 }
810 }
811 offset = si->lowest_bit;
812 while (offset < scan_base) {
813 if (!si->swap_map[offset]) {
814 spin_lock(&si->lock);
815 goto checks;
816 }
817 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
818 spin_lock(&si->lock);
819 goto checks;
820 }
821 if (unlikely(--latency_ration < 0)) {
822 cond_resched();
823 latency_ration = LATENCY_LIMIT;
824 }
825 offset++;
826 }
827 spin_lock(&si->lock);
828
829 no_page:
830 si->flags -= SWP_SCANNING;
831 return n_ret;
832 }
833
834 #ifdef CONFIG_THP_SWAP
835 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
836 {
837 unsigned long idx;
838 struct swap_cluster_info *ci;
839 unsigned long offset, i;
840 unsigned char *map;
841
842 if (cluster_list_empty(&si->free_clusters))
843 return 0;
844
845 idx = cluster_list_first(&si->free_clusters);
846 offset = idx * SWAPFILE_CLUSTER;
847 ci = lock_cluster(si, offset);
848 alloc_cluster(si, idx);
849 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, 0);
850
851 map = si->swap_map + offset;
852 for (i = 0; i < SWAPFILE_CLUSTER; i++)
853 map[i] = SWAP_HAS_CACHE;
854 unlock_cluster(ci);
855 swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
856 *slot = swp_entry(si->type, offset);
857
858 return 1;
859 }
860
861 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
862 {
863 unsigned long offset = idx * SWAPFILE_CLUSTER;
864 struct swap_cluster_info *ci;
865
866 ci = lock_cluster(si, offset);
867 cluster_set_count_flag(ci, 0, 0);
868 free_cluster(si, idx);
869 unlock_cluster(ci);
870 swap_range_free(si, offset, SWAPFILE_CLUSTER);
871 }
872 #else
873 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
874 {
875 VM_WARN_ON_ONCE(1);
876 return 0;
877 }
878 #endif /* CONFIG_THP_SWAP */
879
880 static unsigned long scan_swap_map(struct swap_info_struct *si,
881 unsigned char usage)
882 {
883 swp_entry_t entry;
884 int n_ret;
885
886 n_ret = scan_swap_map_slots(si, usage, 1, &entry);
887
888 if (n_ret)
889 return swp_offset(entry);
890 else
891 return 0;
892
893 }
894
895 int get_swap_pages(int n_goal, bool cluster, swp_entry_t swp_entries[])
896 {
897 unsigned long nr_pages = cluster ? SWAPFILE_CLUSTER : 1;
898 struct swap_info_struct *si, *next;
899 long avail_pgs;
900 int n_ret = 0;
901
902 /* Only single cluster request supported */
903 WARN_ON_ONCE(n_goal > 1 && cluster);
904
905 avail_pgs = atomic_long_read(&nr_swap_pages) / nr_pages;
906 if (avail_pgs <= 0)
907 goto noswap;
908
909 if (n_goal > SWAP_BATCH)
910 n_goal = SWAP_BATCH;
911
912 if (n_goal > avail_pgs)
913 n_goal = avail_pgs;
914
915 atomic_long_sub(n_goal * nr_pages, &nr_swap_pages);
916
917 spin_lock(&swap_avail_lock);
918
919 start_over:
920 plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
921 /* requeue si to after same-priority siblings */
922 plist_requeue(&si->avail_list, &swap_avail_head);
923 spin_unlock(&swap_avail_lock);
924 spin_lock(&si->lock);
925 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
926 spin_lock(&swap_avail_lock);
927 if (plist_node_empty(&si->avail_list)) {
928 spin_unlock(&si->lock);
929 goto nextsi;
930 }
931 WARN(!si->highest_bit,
932 "swap_info %d in list but !highest_bit\n",
933 si->type);
934 WARN(!(si->flags & SWP_WRITEOK),
935 "swap_info %d in list but !SWP_WRITEOK\n",
936 si->type);
937 plist_del(&si->avail_list, &swap_avail_head);
938 spin_unlock(&si->lock);
939 goto nextsi;
940 }
941 if (cluster)
942 n_ret = swap_alloc_cluster(si, swp_entries);
943 else
944 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
945 n_goal, swp_entries);
946 spin_unlock(&si->lock);
947 if (n_ret || cluster)
948 goto check_out;
949 pr_debug("scan_swap_map of si %d failed to find offset\n",
950 si->type);
951
952 spin_lock(&swap_avail_lock);
953 nextsi:
954 /*
955 * if we got here, it's likely that si was almost full before,
956 * and since scan_swap_map() can drop the si->lock, multiple
957 * callers probably all tried to get a page from the same si
958 * and it filled up before we could get one; or, the si filled
959 * up between us dropping swap_avail_lock and taking si->lock.
960 * Since we dropped the swap_avail_lock, the swap_avail_head
961 * list may have been modified; so if next is still in the
962 * swap_avail_head list then try it, otherwise start over
963 * if we have not gotten any slots.
964 */
965 if (plist_node_empty(&next->avail_list))
966 goto start_over;
967 }
968
969 spin_unlock(&swap_avail_lock);
970
971 check_out:
972 if (n_ret < n_goal)
973 atomic_long_add((long)(n_goal - n_ret) * nr_pages,
974 &nr_swap_pages);
975 noswap:
976 return n_ret;
977 }
978
979 /* The only caller of this function is now suspend routine */
980 swp_entry_t get_swap_page_of_type(int type)
981 {
982 struct swap_info_struct *si;
983 pgoff_t offset;
984
985 si = swap_info[type];
986 spin_lock(&si->lock);
987 if (si && (si->flags & SWP_WRITEOK)) {
988 atomic_long_dec(&nr_swap_pages);
989 /* This is called for allocating swap entry, not cache */
990 offset = scan_swap_map(si, 1);
991 if (offset) {
992 spin_unlock(&si->lock);
993 return swp_entry(type, offset);
994 }
995 atomic_long_inc(&nr_swap_pages);
996 }
997 spin_unlock(&si->lock);
998 return (swp_entry_t) {0};
999 }
1000
1001 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1002 {
1003 struct swap_info_struct *p;
1004 unsigned long offset, type;
1005
1006 if (!entry.val)
1007 goto out;
1008 type = swp_type(entry);
1009 if (type >= nr_swapfiles)
1010 goto bad_nofile;
1011 p = swap_info[type];
1012 if (!(p->flags & SWP_USED))
1013 goto bad_device;
1014 offset = swp_offset(entry);
1015 if (offset >= p->max)
1016 goto bad_offset;
1017 return p;
1018
1019 bad_offset:
1020 pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1021 goto out;
1022 bad_device:
1023 pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1024 goto out;
1025 bad_nofile:
1026 pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1027 out:
1028 return NULL;
1029 }
1030
1031 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1032 {
1033 struct swap_info_struct *p;
1034
1035 p = __swap_info_get(entry);
1036 if (!p)
1037 goto out;
1038 if (!p->swap_map[swp_offset(entry)])
1039 goto bad_free;
1040 return p;
1041
1042 bad_free:
1043 pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1044 goto out;
1045 out:
1046 return NULL;
1047 }
1048
1049 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1050 {
1051 struct swap_info_struct *p;
1052
1053 p = _swap_info_get(entry);
1054 if (p)
1055 spin_lock(&p->lock);
1056 return p;
1057 }
1058
1059 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1060 struct swap_info_struct *q)
1061 {
1062 struct swap_info_struct *p;
1063
1064 p = _swap_info_get(entry);
1065
1066 if (p != q) {
1067 if (q != NULL)
1068 spin_unlock(&q->lock);
1069 if (p != NULL)
1070 spin_lock(&p->lock);
1071 }
1072 return p;
1073 }
1074
1075 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1076 swp_entry_t entry, unsigned char usage)
1077 {
1078 struct swap_cluster_info *ci;
1079 unsigned long offset = swp_offset(entry);
1080 unsigned char count;
1081 unsigned char has_cache;
1082
1083 ci = lock_cluster_or_swap_info(p, offset);
1084
1085 count = p->swap_map[offset];
1086
1087 has_cache = count & SWAP_HAS_CACHE;
1088 count &= ~SWAP_HAS_CACHE;
1089
1090 if (usage == SWAP_HAS_CACHE) {
1091 VM_BUG_ON(!has_cache);
1092 has_cache = 0;
1093 } else if (count == SWAP_MAP_SHMEM) {
1094 /*
1095 * Or we could insist on shmem.c using a special
1096 * swap_shmem_free() and free_shmem_swap_and_cache()...
1097 */
1098 count = 0;
1099 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1100 if (count == COUNT_CONTINUED) {
1101 if (swap_count_continued(p, offset, count))
1102 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1103 else
1104 count = SWAP_MAP_MAX;
1105 } else
1106 count--;
1107 }
1108
1109 usage = count | has_cache;
1110 p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1111
1112 unlock_cluster_or_swap_info(p, ci);
1113
1114 return usage;
1115 }
1116
1117 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1118 {
1119 struct swap_cluster_info *ci;
1120 unsigned long offset = swp_offset(entry);
1121 unsigned char count;
1122
1123 ci = lock_cluster(p, offset);
1124 count = p->swap_map[offset];
1125 VM_BUG_ON(count != SWAP_HAS_CACHE);
1126 p->swap_map[offset] = 0;
1127 dec_cluster_info_page(p, p->cluster_info, offset);
1128 unlock_cluster(ci);
1129
1130 mem_cgroup_uncharge_swap(entry, 1);
1131 swap_range_free(p, offset, 1);
1132 }
1133
1134 /*
1135 * Caller has made sure that the swap device corresponding to entry
1136 * is still around or has not been recycled.
1137 */
1138 void swap_free(swp_entry_t entry)
1139 {
1140 struct swap_info_struct *p;
1141
1142 p = _swap_info_get(entry);
1143 if (p) {
1144 if (!__swap_entry_free(p, entry, 1))
1145 free_swap_slot(entry);
1146 }
1147 }
1148
1149 /*
1150 * Called after dropping swapcache to decrease refcnt to swap entries.
1151 */
1152 static void swapcache_free(swp_entry_t entry)
1153 {
1154 struct swap_info_struct *p;
1155
1156 p = _swap_info_get(entry);
1157 if (p) {
1158 if (!__swap_entry_free(p, entry, SWAP_HAS_CACHE))
1159 free_swap_slot(entry);
1160 }
1161 }
1162
1163 #ifdef CONFIG_THP_SWAP
1164 static void swapcache_free_cluster(swp_entry_t entry)
1165 {
1166 unsigned long offset = swp_offset(entry);
1167 unsigned long idx = offset / SWAPFILE_CLUSTER;
1168 struct swap_cluster_info *ci;
1169 struct swap_info_struct *si;
1170 unsigned char *map;
1171 unsigned int i;
1172
1173 si = swap_info_get(entry);
1174 if (!si)
1175 return;
1176
1177 ci = lock_cluster(si, offset);
1178 map = si->swap_map + offset;
1179 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1180 VM_BUG_ON(map[i] != SWAP_HAS_CACHE);
1181 map[i] = 0;
1182 }
1183 unlock_cluster(ci);
1184 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1185 swap_free_cluster(si, idx);
1186 spin_unlock(&si->lock);
1187 }
1188 #else
1189 static inline void swapcache_free_cluster(swp_entry_t entry)
1190 {
1191 }
1192 #endif /* CONFIG_THP_SWAP */
1193
1194 void put_swap_page(struct page *page, swp_entry_t entry)
1195 {
1196 if (!PageTransHuge(page))
1197 swapcache_free(entry);
1198 else
1199 swapcache_free_cluster(entry);
1200 }
1201
1202 static int swp_entry_cmp(const void *ent1, const void *ent2)
1203 {
1204 const swp_entry_t *e1 = ent1, *e2 = ent2;
1205
1206 return (int)swp_type(*e1) - (int)swp_type(*e2);
1207 }
1208
1209 void swapcache_free_entries(swp_entry_t *entries, int n)
1210 {
1211 struct swap_info_struct *p, *prev;
1212 int i;
1213
1214 if (n <= 0)
1215 return;
1216
1217 prev = NULL;
1218 p = NULL;
1219
1220 /*
1221 * Sort swap entries by swap device, so each lock is only taken once.
1222 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1223 * so low that it isn't necessary to optimize further.
1224 */
1225 if (nr_swapfiles > 1)
1226 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1227 for (i = 0; i < n; ++i) {
1228 p = swap_info_get_cont(entries[i], prev);
1229 if (p)
1230 swap_entry_free(p, entries[i]);
1231 prev = p;
1232 }
1233 if (p)
1234 spin_unlock(&p->lock);
1235 }
1236
1237 /*
1238 * How many references to page are currently swapped out?
1239 * This does not give an exact answer when swap count is continued,
1240 * but does include the high COUNT_CONTINUED flag to allow for that.
1241 */
1242 int page_swapcount(struct page *page)
1243 {
1244 int count = 0;
1245 struct swap_info_struct *p;
1246 struct swap_cluster_info *ci;
1247 swp_entry_t entry;
1248 unsigned long offset;
1249
1250 entry.val = page_private(page);
1251 p = _swap_info_get(entry);
1252 if (p) {
1253 offset = swp_offset(entry);
1254 ci = lock_cluster_or_swap_info(p, offset);
1255 count = swap_count(p->swap_map[offset]);
1256 unlock_cluster_or_swap_info(p, ci);
1257 }
1258 return count;
1259 }
1260
1261 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1262 {
1263 int count = 0;
1264 pgoff_t offset = swp_offset(entry);
1265 struct swap_cluster_info *ci;
1266
1267 ci = lock_cluster_or_swap_info(si, offset);
1268 count = swap_count(si->swap_map[offset]);
1269 unlock_cluster_or_swap_info(si, ci);
1270 return count;
1271 }
1272
1273 /*
1274 * How many references to @entry are currently swapped out?
1275 * This does not give an exact answer when swap count is continued,
1276 * but does include the high COUNT_CONTINUED flag to allow for that.
1277 */
1278 int __swp_swapcount(swp_entry_t entry)
1279 {
1280 int count = 0;
1281 struct swap_info_struct *si;
1282
1283 si = __swap_info_get(entry);
1284 if (si)
1285 count = swap_swapcount(si, entry);
1286 return count;
1287 }
1288
1289 /*
1290 * How many references to @entry are currently swapped out?
1291 * This considers COUNT_CONTINUED so it returns exact answer.
1292 */
1293 int swp_swapcount(swp_entry_t entry)
1294 {
1295 int count, tmp_count, n;
1296 struct swap_info_struct *p;
1297 struct swap_cluster_info *ci;
1298 struct page *page;
1299 pgoff_t offset;
1300 unsigned char *map;
1301
1302 p = _swap_info_get(entry);
1303 if (!p)
1304 return 0;
1305
1306 offset = swp_offset(entry);
1307
1308 ci = lock_cluster_or_swap_info(p, offset);
1309
1310 count = swap_count(p->swap_map[offset]);
1311 if (!(count & COUNT_CONTINUED))
1312 goto out;
1313
1314 count &= ~COUNT_CONTINUED;
1315 n = SWAP_MAP_MAX + 1;
1316
1317 page = vmalloc_to_page(p->swap_map + offset);
1318 offset &= ~PAGE_MASK;
1319 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1320
1321 do {
1322 page = list_next_entry(page, lru);
1323 map = kmap_atomic(page);
1324 tmp_count = map[offset];
1325 kunmap_atomic(map);
1326
1327 count += (tmp_count & ~COUNT_CONTINUED) * n;
1328 n *= (SWAP_CONT_MAX + 1);
1329 } while (tmp_count & COUNT_CONTINUED);
1330 out:
1331 unlock_cluster_or_swap_info(p, ci);
1332 return count;
1333 }
1334
1335 /*
1336 * We can write to an anon page without COW if there are no other references
1337 * to it. And as a side-effect, free up its swap: because the old content
1338 * on disk will never be read, and seeking back there to write new content
1339 * later would only waste time away from clustering.
1340 *
1341 * NOTE: total_mapcount should not be relied upon by the caller if
1342 * reuse_swap_page() returns false, but it may be always overwritten
1343 * (see the other implementation for CONFIG_SWAP=n).
1344 */
1345 bool reuse_swap_page(struct page *page, int *total_mapcount)
1346 {
1347 int count;
1348
1349 VM_BUG_ON_PAGE(!PageLocked(page), page);
1350 if (unlikely(PageKsm(page)))
1351 return false;
1352 count = page_trans_huge_mapcount(page, total_mapcount);
1353 if (count <= 1 && PageSwapCache(page)) {
1354 count += page_swapcount(page);
1355 if (count != 1)
1356 goto out;
1357 if (!PageWriteback(page)) {
1358 delete_from_swap_cache(page);
1359 SetPageDirty(page);
1360 } else {
1361 swp_entry_t entry;
1362 struct swap_info_struct *p;
1363
1364 entry.val = page_private(page);
1365 p = swap_info_get(entry);
1366 if (p->flags & SWP_STABLE_WRITES) {
1367 spin_unlock(&p->lock);
1368 return false;
1369 }
1370 spin_unlock(&p->lock);
1371 }
1372 }
1373 out:
1374 return count <= 1;
1375 }
1376
1377 /*
1378 * If swap is getting full, or if there are no more mappings of this page,
1379 * then try_to_free_swap is called to free its swap space.
1380 */
1381 int try_to_free_swap(struct page *page)
1382 {
1383 VM_BUG_ON_PAGE(!PageLocked(page), page);
1384
1385 if (!PageSwapCache(page))
1386 return 0;
1387 if (PageWriteback(page))
1388 return 0;
1389 if (page_swapcount(page))
1390 return 0;
1391
1392 /*
1393 * Once hibernation has begun to create its image of memory,
1394 * there's a danger that one of the calls to try_to_free_swap()
1395 * - most probably a call from __try_to_reclaim_swap() while
1396 * hibernation is allocating its own swap pages for the image,
1397 * but conceivably even a call from memory reclaim - will free
1398 * the swap from a page which has already been recorded in the
1399 * image as a clean swapcache page, and then reuse its swap for
1400 * another page of the image. On waking from hibernation, the
1401 * original page might be freed under memory pressure, then
1402 * later read back in from swap, now with the wrong data.
1403 *
1404 * Hibernation suspends storage while it is writing the image
1405 * to disk so check that here.
1406 */
1407 if (pm_suspended_storage())
1408 return 0;
1409
1410 delete_from_swap_cache(page);
1411 SetPageDirty(page);
1412 return 1;
1413 }
1414
1415 /*
1416 * Free the swap entry like above, but also try to
1417 * free the page cache entry if it is the last user.
1418 */
1419 int free_swap_and_cache(swp_entry_t entry)
1420 {
1421 struct swap_info_struct *p;
1422 struct page *page = NULL;
1423 unsigned char count;
1424
1425 if (non_swap_entry(entry))
1426 return 1;
1427
1428 p = _swap_info_get(entry);
1429 if (p) {
1430 count = __swap_entry_free(p, entry, 1);
1431 if (count == SWAP_HAS_CACHE) {
1432 page = find_get_page(swap_address_space(entry),
1433 swp_offset(entry));
1434 if (page && !trylock_page(page)) {
1435 put_page(page);
1436 page = NULL;
1437 }
1438 } else if (!count)
1439 free_swap_slot(entry);
1440 }
1441 if (page) {
1442 /*
1443 * Not mapped elsewhere, or swap space full? Free it!
1444 * Also recheck PageSwapCache now page is locked (above).
1445 */
1446 if (PageSwapCache(page) && !PageWriteback(page) &&
1447 (!page_mapped(page) || mem_cgroup_swap_full(page)) &&
1448 !swap_swapcount(p, entry)) {
1449 delete_from_swap_cache(page);
1450 SetPageDirty(page);
1451 }
1452 unlock_page(page);
1453 put_page(page);
1454 }
1455 return p != NULL;
1456 }
1457
1458 #ifdef CONFIG_HIBERNATION
1459 /*
1460 * Find the swap type that corresponds to given device (if any).
1461 *
1462 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1463 * from 0, in which the swap header is expected to be located.
1464 *
1465 * This is needed for the suspend to disk (aka swsusp).
1466 */
1467 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1468 {
1469 struct block_device *bdev = NULL;
1470 int type;
1471
1472 if (device)
1473 bdev = bdget(device);
1474
1475 spin_lock(&swap_lock);
1476 for (type = 0; type < nr_swapfiles; type++) {
1477 struct swap_info_struct *sis = swap_info[type];
1478
1479 if (!(sis->flags & SWP_WRITEOK))
1480 continue;
1481
1482 if (!bdev) {
1483 if (bdev_p)
1484 *bdev_p = bdgrab(sis->bdev);
1485
1486 spin_unlock(&swap_lock);
1487 return type;
1488 }
1489 if (bdev == sis->bdev) {
1490 struct swap_extent *se = &sis->first_swap_extent;
1491
1492 if (se->start_block == offset) {
1493 if (bdev_p)
1494 *bdev_p = bdgrab(sis->bdev);
1495
1496 spin_unlock(&swap_lock);
1497 bdput(bdev);
1498 return type;
1499 }
1500 }
1501 }
1502 spin_unlock(&swap_lock);
1503 if (bdev)
1504 bdput(bdev);
1505
1506 return -ENODEV;
1507 }
1508
1509 /*
1510 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1511 * corresponding to given index in swap_info (swap type).
1512 */
1513 sector_t swapdev_block(int type, pgoff_t offset)
1514 {
1515 struct block_device *bdev;
1516
1517 if ((unsigned int)type >= nr_swapfiles)
1518 return 0;
1519 if (!(swap_info[type]->flags & SWP_WRITEOK))
1520 return 0;
1521 return map_swap_entry(swp_entry(type, offset), &bdev);
1522 }
1523
1524 /*
1525 * Return either the total number of swap pages of given type, or the number
1526 * of free pages of that type (depending on @free)
1527 *
1528 * This is needed for software suspend
1529 */
1530 unsigned int count_swap_pages(int type, int free)
1531 {
1532 unsigned int n = 0;
1533
1534 spin_lock(&swap_lock);
1535 if ((unsigned int)type < nr_swapfiles) {
1536 struct swap_info_struct *sis = swap_info[type];
1537
1538 spin_lock(&sis->lock);
1539 if (sis->flags & SWP_WRITEOK) {
1540 n = sis->pages;
1541 if (free)
1542 n -= sis->inuse_pages;
1543 }
1544 spin_unlock(&sis->lock);
1545 }
1546 spin_unlock(&swap_lock);
1547 return n;
1548 }
1549 #endif /* CONFIG_HIBERNATION */
1550
1551 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1552 {
1553 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1554 }
1555
1556 /*
1557 * No need to decide whether this PTE shares the swap entry with others,
1558 * just let do_wp_page work it out if a write is requested later - to
1559 * force COW, vm_page_prot omits write permission from any private vma.
1560 */
1561 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1562 unsigned long addr, swp_entry_t entry, struct page *page)
1563 {
1564 struct page *swapcache;
1565 struct mem_cgroup *memcg;
1566 spinlock_t *ptl;
1567 pte_t *pte;
1568 int ret = 1;
1569
1570 swapcache = page;
1571 page = ksm_might_need_to_copy(page, vma, addr);
1572 if (unlikely(!page))
1573 return -ENOMEM;
1574
1575 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1576 &memcg, false)) {
1577 ret = -ENOMEM;
1578 goto out_nolock;
1579 }
1580
1581 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1582 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1583 mem_cgroup_cancel_charge(page, memcg, false);
1584 ret = 0;
1585 goto out;
1586 }
1587
1588 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1589 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1590 get_page(page);
1591 set_pte_at(vma->vm_mm, addr, pte,
1592 pte_mkold(mk_pte(page, vma->vm_page_prot)));
1593 if (page == swapcache) {
1594 page_add_anon_rmap(page, vma, addr, false);
1595 mem_cgroup_commit_charge(page, memcg, true, false);
1596 } else { /* ksm created a completely new copy */
1597 page_add_new_anon_rmap(page, vma, addr, false);
1598 mem_cgroup_commit_charge(page, memcg, false, false);
1599 lru_cache_add_active_or_unevictable(page, vma);
1600 }
1601 swap_free(entry);
1602 /*
1603 * Move the page to the active list so it is not
1604 * immediately swapped out again after swapon.
1605 */
1606 activate_page(page);
1607 out:
1608 pte_unmap_unlock(pte, ptl);
1609 out_nolock:
1610 if (page != swapcache) {
1611 unlock_page(page);
1612 put_page(page);
1613 }
1614 return ret;
1615 }
1616
1617 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1618 unsigned long addr, unsigned long end,
1619 swp_entry_t entry, struct page *page)
1620 {
1621 pte_t swp_pte = swp_entry_to_pte(entry);
1622 pte_t *pte;
1623 int ret = 0;
1624
1625 /*
1626 * We don't actually need pte lock while scanning for swp_pte: since
1627 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1628 * page table while we're scanning; though it could get zapped, and on
1629 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1630 * of unmatched parts which look like swp_pte, so unuse_pte must
1631 * recheck under pte lock. Scanning without pte lock lets it be
1632 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1633 */
1634 pte = pte_offset_map(pmd, addr);
1635 do {
1636 /*
1637 * swapoff spends a _lot_ of time in this loop!
1638 * Test inline before going to call unuse_pte.
1639 */
1640 if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
1641 pte_unmap(pte);
1642 ret = unuse_pte(vma, pmd, addr, entry, page);
1643 if (ret)
1644 goto out;
1645 pte = pte_offset_map(pmd, addr);
1646 }
1647 } while (pte++, addr += PAGE_SIZE, addr != end);
1648 pte_unmap(pte - 1);
1649 out:
1650 return ret;
1651 }
1652
1653 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1654 unsigned long addr, unsigned long end,
1655 swp_entry_t entry, struct page *page)
1656 {
1657 pmd_t *pmd;
1658 unsigned long next;
1659 int ret;
1660
1661 pmd = pmd_offset(pud, addr);
1662 do {
1663 cond_resched();
1664 next = pmd_addr_end(addr, end);
1665 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1666 continue;
1667 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1668 if (ret)
1669 return ret;
1670 } while (pmd++, addr = next, addr != end);
1671 return 0;
1672 }
1673
1674 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1675 unsigned long addr, unsigned long end,
1676 swp_entry_t entry, struct page *page)
1677 {
1678 pud_t *pud;
1679 unsigned long next;
1680 int ret;
1681
1682 pud = pud_offset(p4d, addr);
1683 do {
1684 next = pud_addr_end(addr, end);
1685 if (pud_none_or_clear_bad(pud))
1686 continue;
1687 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1688 if (ret)
1689 return ret;
1690 } while (pud++, addr = next, addr != end);
1691 return 0;
1692 }
1693
1694 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1695 unsigned long addr, unsigned long end,
1696 swp_entry_t entry, struct page *page)
1697 {
1698 p4d_t *p4d;
1699 unsigned long next;
1700 int ret;
1701
1702 p4d = p4d_offset(pgd, addr);
1703 do {
1704 next = p4d_addr_end(addr, end);
1705 if (p4d_none_or_clear_bad(p4d))
1706 continue;
1707 ret = unuse_pud_range(vma, p4d, addr, next, entry, page);
1708 if (ret)
1709 return ret;
1710 } while (p4d++, addr = next, addr != end);
1711 return 0;
1712 }
1713
1714 static int unuse_vma(struct vm_area_struct *vma,
1715 swp_entry_t entry, struct page *page)
1716 {
1717 pgd_t *pgd;
1718 unsigned long addr, end, next;
1719 int ret;
1720
1721 if (page_anon_vma(page)) {
1722 addr = page_address_in_vma(page, vma);
1723 if (addr == -EFAULT)
1724 return 0;
1725 else
1726 end = addr + PAGE_SIZE;
1727 } else {
1728 addr = vma->vm_start;
1729 end = vma->vm_end;
1730 }
1731
1732 pgd = pgd_offset(vma->vm_mm, addr);
1733 do {
1734 next = pgd_addr_end(addr, end);
1735 if (pgd_none_or_clear_bad(pgd))
1736 continue;
1737 ret = unuse_p4d_range(vma, pgd, addr, next, entry, page);
1738 if (ret)
1739 return ret;
1740 } while (pgd++, addr = next, addr != end);
1741 return 0;
1742 }
1743
1744 static int unuse_mm(struct mm_struct *mm,
1745 swp_entry_t entry, struct page *page)
1746 {
1747 struct vm_area_struct *vma;
1748 int ret = 0;
1749
1750 if (!down_read_trylock(&mm->mmap_sem)) {
1751 /*
1752 * Activate page so shrink_inactive_list is unlikely to unmap
1753 * its ptes while lock is dropped, so swapoff can make progress.
1754 */
1755 activate_page(page);
1756 unlock_page(page);
1757 down_read(&mm->mmap_sem);
1758 lock_page(page);
1759 }
1760 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1761 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1762 break;
1763 cond_resched();
1764 }
1765 up_read(&mm->mmap_sem);
1766 return (ret < 0)? ret: 0;
1767 }
1768
1769 /*
1770 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1771 * from current position to next entry still in use.
1772 * Recycle to start on reaching the end, returning 0 when empty.
1773 */
1774 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1775 unsigned int prev, bool frontswap)
1776 {
1777 unsigned int max = si->max;
1778 unsigned int i = prev;
1779 unsigned char count;
1780
1781 /*
1782 * No need for swap_lock here: we're just looking
1783 * for whether an entry is in use, not modifying it; false
1784 * hits are okay, and sys_swapoff() has already prevented new
1785 * allocations from this area (while holding swap_lock).
1786 */
1787 for (;;) {
1788 if (++i >= max) {
1789 if (!prev) {
1790 i = 0;
1791 break;
1792 }
1793 /*
1794 * No entries in use at top of swap_map,
1795 * loop back to start and recheck there.
1796 */
1797 max = prev + 1;
1798 prev = 0;
1799 i = 1;
1800 }
1801 count = READ_ONCE(si->swap_map[i]);
1802 if (count && swap_count(count) != SWAP_MAP_BAD)
1803 if (!frontswap || frontswap_test(si, i))
1804 break;
1805 if ((i % LATENCY_LIMIT) == 0)
1806 cond_resched();
1807 }
1808 return i;
1809 }
1810
1811 /*
1812 * We completely avoid races by reading each swap page in advance,
1813 * and then search for the process using it. All the necessary
1814 * page table adjustments can then be made atomically.
1815 *
1816 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1817 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1818 */
1819 int try_to_unuse(unsigned int type, bool frontswap,
1820 unsigned long pages_to_unuse)
1821 {
1822 struct swap_info_struct *si = swap_info[type];
1823 struct mm_struct *start_mm;
1824 volatile unsigned char *swap_map; /* swap_map is accessed without
1825 * locking. Mark it as volatile
1826 * to prevent compiler doing
1827 * something odd.
1828 */
1829 unsigned char swcount;
1830 struct page *page;
1831 swp_entry_t entry;
1832 unsigned int i = 0;
1833 int retval = 0;
1834
1835 /*
1836 * When searching mms for an entry, a good strategy is to
1837 * start at the first mm we freed the previous entry from
1838 * (though actually we don't notice whether we or coincidence
1839 * freed the entry). Initialize this start_mm with a hold.
1840 *
1841 * A simpler strategy would be to start at the last mm we
1842 * freed the previous entry from; but that would take less
1843 * advantage of mmlist ordering, which clusters forked mms
1844 * together, child after parent. If we race with dup_mmap(), we
1845 * prefer to resolve parent before child, lest we miss entries
1846 * duplicated after we scanned child: using last mm would invert
1847 * that.
1848 */
1849 start_mm = &init_mm;
1850 mmget(&init_mm);
1851
1852 /*
1853 * Keep on scanning until all entries have gone. Usually,
1854 * one pass through swap_map is enough, but not necessarily:
1855 * there are races when an instance of an entry might be missed.
1856 */
1857 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1858 if (signal_pending(current)) {
1859 retval = -EINTR;
1860 break;
1861 }
1862
1863 /*
1864 * Get a page for the entry, using the existing swap
1865 * cache page if there is one. Otherwise, get a clean
1866 * page and read the swap into it.
1867 */
1868 swap_map = &si->swap_map[i];
1869 entry = swp_entry(type, i);
1870 page = read_swap_cache_async(entry,
1871 GFP_HIGHUSER_MOVABLE, NULL, 0);
1872 if (!page) {
1873 /*
1874 * Either swap_duplicate() failed because entry
1875 * has been freed independently, and will not be
1876 * reused since sys_swapoff() already disabled
1877 * allocation from here, or alloc_page() failed.
1878 */
1879 swcount = *swap_map;
1880 /*
1881 * We don't hold lock here, so the swap entry could be
1882 * SWAP_MAP_BAD (when the cluster is discarding).
1883 * Instead of fail out, We can just skip the swap
1884 * entry because swapoff will wait for discarding
1885 * finish anyway.
1886 */
1887 if (!swcount || swcount == SWAP_MAP_BAD)
1888 continue;
1889 retval = -ENOMEM;
1890 break;
1891 }
1892
1893 /*
1894 * Don't hold on to start_mm if it looks like exiting.
1895 */
1896 if (atomic_read(&start_mm->mm_users) == 1) {
1897 mmput(start_mm);
1898 start_mm = &init_mm;
1899 mmget(&init_mm);
1900 }
1901
1902 /*
1903 * Wait for and lock page. When do_swap_page races with
1904 * try_to_unuse, do_swap_page can handle the fault much
1905 * faster than try_to_unuse can locate the entry. This
1906 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1907 * defer to do_swap_page in such a case - in some tests,
1908 * do_swap_page and try_to_unuse repeatedly compete.
1909 */
1910 wait_on_page_locked(page);
1911 wait_on_page_writeback(page);
1912 lock_page(page);
1913 wait_on_page_writeback(page);
1914
1915 /*
1916 * Remove all references to entry.
1917 */
1918 swcount = *swap_map;
1919 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1920 retval = shmem_unuse(entry, page);
1921 /* page has already been unlocked and released */
1922 if (retval < 0)
1923 break;
1924 continue;
1925 }
1926 if (swap_count(swcount) && start_mm != &init_mm)
1927 retval = unuse_mm(start_mm, entry, page);
1928
1929 if (swap_count(*swap_map)) {
1930 int set_start_mm = (*swap_map >= swcount);
1931 struct list_head *p = &start_mm->mmlist;
1932 struct mm_struct *new_start_mm = start_mm;
1933 struct mm_struct *prev_mm = start_mm;
1934 struct mm_struct *mm;
1935
1936 mmget(new_start_mm);
1937 mmget(prev_mm);
1938 spin_lock(&mmlist_lock);
1939 while (swap_count(*swap_map) && !retval &&
1940 (p = p->next) != &start_mm->mmlist) {
1941 mm = list_entry(p, struct mm_struct, mmlist);
1942 if (!mmget_not_zero(mm))
1943 continue;
1944 spin_unlock(&mmlist_lock);
1945 mmput(prev_mm);
1946 prev_mm = mm;
1947
1948 cond_resched();
1949
1950 swcount = *swap_map;
1951 if (!swap_count(swcount)) /* any usage ? */
1952 ;
1953 else if (mm == &init_mm)
1954 set_start_mm = 1;
1955 else
1956 retval = unuse_mm(mm, entry, page);
1957
1958 if (set_start_mm && *swap_map < swcount) {
1959 mmput(new_start_mm);
1960 mmget(mm);
1961 new_start_mm = mm;
1962 set_start_mm = 0;
1963 }
1964 spin_lock(&mmlist_lock);
1965 }
1966 spin_unlock(&mmlist_lock);
1967 mmput(prev_mm);
1968 mmput(start_mm);
1969 start_mm = new_start_mm;
1970 }
1971 if (retval) {
1972 unlock_page(page);
1973 put_page(page);
1974 break;
1975 }
1976
1977 /*
1978 * If a reference remains (rare), we would like to leave
1979 * the page in the swap cache; but try_to_unmap could
1980 * then re-duplicate the entry once we drop page lock,
1981 * so we might loop indefinitely; also, that page could
1982 * not be swapped out to other storage meanwhile. So:
1983 * delete from cache even if there's another reference,
1984 * after ensuring that the data has been saved to disk -
1985 * since if the reference remains (rarer), it will be
1986 * read from disk into another page. Splitting into two
1987 * pages would be incorrect if swap supported "shared
1988 * private" pages, but they are handled by tmpfs files.
1989 *
1990 * Given how unuse_vma() targets one particular offset
1991 * in an anon_vma, once the anon_vma has been determined,
1992 * this splitting happens to be just what is needed to
1993 * handle where KSM pages have been swapped out: re-reading
1994 * is unnecessarily slow, but we can fix that later on.
1995 */
1996 if (swap_count(*swap_map) &&
1997 PageDirty(page) && PageSwapCache(page)) {
1998 struct writeback_control wbc = {
1999 .sync_mode = WB_SYNC_NONE,
2000 };
2001
2002 swap_writepage(page, &wbc);
2003 lock_page(page);
2004 wait_on_page_writeback(page);
2005 }
2006
2007 /*
2008 * It is conceivable that a racing task removed this page from
2009 * swap cache just before we acquired the page lock at the top,
2010 * or while we dropped it in unuse_mm(). The page might even
2011 * be back in swap cache on another swap area: that we must not
2012 * delete, since it may not have been written out to swap yet.
2013 */
2014 if (PageSwapCache(page) &&
2015 likely(page_private(page) == entry.val))
2016 delete_from_swap_cache(page);
2017
2018 /*
2019 * So we could skip searching mms once swap count went
2020 * to 1, we did not mark any present ptes as dirty: must
2021 * mark page dirty so shrink_page_list will preserve it.
2022 */
2023 SetPageDirty(page);
2024 unlock_page(page);
2025 put_page(page);
2026
2027 /*
2028 * Make sure that we aren't completely killing
2029 * interactive performance.
2030 */
2031 cond_resched();
2032 if (frontswap && pages_to_unuse > 0) {
2033 if (!--pages_to_unuse)
2034 break;
2035 }
2036 }
2037
2038 mmput(start_mm);
2039 return retval;
2040 }
2041
2042 /*
2043 * After a successful try_to_unuse, if no swap is now in use, we know
2044 * we can empty the mmlist. swap_lock must be held on entry and exit.
2045 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2046 * added to the mmlist just after page_duplicate - before would be racy.
2047 */
2048 static void drain_mmlist(void)
2049 {
2050 struct list_head *p, *next;
2051 unsigned int type;
2052
2053 for (type = 0; type < nr_swapfiles; type++)
2054 if (swap_info[type]->inuse_pages)
2055 return;
2056 spin_lock(&mmlist_lock);
2057 list_for_each_safe(p, next, &init_mm.mmlist)
2058 list_del_init(p);
2059 spin_unlock(&mmlist_lock);
2060 }
2061
2062 /*
2063 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2064 * corresponds to page offset for the specified swap entry.
2065 * Note that the type of this function is sector_t, but it returns page offset
2066 * into the bdev, not sector offset.
2067 */
2068 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2069 {
2070 struct swap_info_struct *sis;
2071 struct swap_extent *start_se;
2072 struct swap_extent *se;
2073 pgoff_t offset;
2074
2075 sis = swap_info[swp_type(entry)];
2076 *bdev = sis->bdev;
2077
2078 offset = swp_offset(entry);
2079 start_se = sis->curr_swap_extent;
2080 se = start_se;
2081
2082 for ( ; ; ) {
2083 if (se->start_page <= offset &&
2084 offset < (se->start_page + se->nr_pages)) {
2085 return se->start_block + (offset - se->start_page);
2086 }
2087 se = list_next_entry(se, list);
2088 sis->curr_swap_extent = se;
2089 BUG_ON(se == start_se); /* It *must* be present */
2090 }
2091 }
2092
2093 /*
2094 * Returns the page offset into bdev for the specified page's swap entry.
2095 */
2096 sector_t map_swap_page(struct page *page, struct block_device **bdev)
2097 {
2098 swp_entry_t entry;
2099 entry.val = page_private(page);
2100 return map_swap_entry(entry, bdev);
2101 }
2102
2103 /*
2104 * Free all of a swapdev's extent information
2105 */
2106 static void destroy_swap_extents(struct swap_info_struct *sis)
2107 {
2108 while (!list_empty(&sis->first_swap_extent.list)) {
2109 struct swap_extent *se;
2110
2111 se = list_first_entry(&sis->first_swap_extent.list,
2112 struct swap_extent, list);
2113 list_del(&se->list);
2114 kfree(se);
2115 }
2116
2117 if (sis->flags & SWP_FILE) {
2118 struct file *swap_file = sis->swap_file;
2119 struct address_space *mapping = swap_file->f_mapping;
2120
2121 sis->flags &= ~SWP_FILE;
2122 mapping->a_ops->swap_deactivate(swap_file);
2123 }
2124 }
2125
2126 /*
2127 * Add a block range (and the corresponding page range) into this swapdev's
2128 * extent list. The extent list is kept sorted in page order.
2129 *
2130 * This function rather assumes that it is called in ascending page order.
2131 */
2132 int
2133 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2134 unsigned long nr_pages, sector_t start_block)
2135 {
2136 struct swap_extent *se;
2137 struct swap_extent *new_se;
2138 struct list_head *lh;
2139
2140 if (start_page == 0) {
2141 se = &sis->first_swap_extent;
2142 sis->curr_swap_extent = se;
2143 se->start_page = 0;
2144 se->nr_pages = nr_pages;
2145 se->start_block = start_block;
2146 return 1;
2147 } else {
2148 lh = sis->first_swap_extent.list.prev; /* Highest extent */
2149 se = list_entry(lh, struct swap_extent, list);
2150 BUG_ON(se->start_page + se->nr_pages != start_page);
2151 if (se->start_block + se->nr_pages == start_block) {
2152 /* Merge it */
2153 se->nr_pages += nr_pages;
2154 return 0;
2155 }
2156 }
2157
2158 /*
2159 * No merge. Insert a new extent, preserving ordering.
2160 */
2161 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2162 if (new_se == NULL)
2163 return -ENOMEM;
2164 new_se->start_page = start_page;
2165 new_se->nr_pages = nr_pages;
2166 new_se->start_block = start_block;
2167
2168 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
2169 return 1;
2170 }
2171
2172 /*
2173 * A `swap extent' is a simple thing which maps a contiguous range of pages
2174 * onto a contiguous range of disk blocks. An ordered list of swap extents
2175 * is built at swapon time and is then used at swap_writepage/swap_readpage
2176 * time for locating where on disk a page belongs.
2177 *
2178 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2179 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2180 * swap files identically.
2181 *
2182 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2183 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2184 * swapfiles are handled *identically* after swapon time.
2185 *
2186 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2187 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
2188 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2189 * requirements, they are simply tossed out - we will never use those blocks
2190 * for swapping.
2191 *
2192 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
2193 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
2194 * which will scribble on the fs.
2195 *
2196 * The amount of disk space which a single swap extent represents varies.
2197 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2198 * extents in the list. To avoid much list walking, we cache the previous
2199 * search location in `curr_swap_extent', and start new searches from there.
2200 * This is extremely effective. The average number of iterations in
2201 * map_swap_page() has been measured at about 0.3 per page. - akpm.
2202 */
2203 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2204 {
2205 struct file *swap_file = sis->swap_file;
2206 struct address_space *mapping = swap_file->f_mapping;
2207 struct inode *inode = mapping->host;
2208 int ret;
2209
2210 if (S_ISBLK(inode->i_mode)) {
2211 ret = add_swap_extent(sis, 0, sis->max, 0);
2212 *span = sis->pages;
2213 return ret;
2214 }
2215
2216 if (mapping->a_ops->swap_activate) {
2217 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2218 if (!ret) {
2219 sis->flags |= SWP_FILE;
2220 ret = add_swap_extent(sis, 0, sis->max, 0);
2221 *span = sis->pages;
2222 }
2223 return ret;
2224 }
2225
2226 return generic_swapfile_activate(sis, swap_file, span);
2227 }
2228
2229 static void _enable_swap_info(struct swap_info_struct *p, int prio,
2230 unsigned char *swap_map,
2231 struct swap_cluster_info *cluster_info)
2232 {
2233 if (prio >= 0)
2234 p->prio = prio;
2235 else
2236 p->prio = --least_priority;
2237 /*
2238 * the plist prio is negated because plist ordering is
2239 * low-to-high, while swap ordering is high-to-low
2240 */
2241 p->list.prio = -p->prio;
2242 p->avail_list.prio = -p->prio;
2243 p->swap_map = swap_map;
2244 p->cluster_info = cluster_info;
2245 p->flags |= SWP_WRITEOK;
2246 atomic_long_add(p->pages, &nr_swap_pages);
2247 total_swap_pages += p->pages;
2248
2249 assert_spin_locked(&swap_lock);
2250 /*
2251 * both lists are plists, and thus priority ordered.
2252 * swap_active_head needs to be priority ordered for swapoff(),
2253 * which on removal of any swap_info_struct with an auto-assigned
2254 * (i.e. negative) priority increments the auto-assigned priority
2255 * of any lower-priority swap_info_structs.
2256 * swap_avail_head needs to be priority ordered for get_swap_page(),
2257 * which allocates swap pages from the highest available priority
2258 * swap_info_struct.
2259 */
2260 plist_add(&p->list, &swap_active_head);
2261 spin_lock(&swap_avail_lock);
2262 plist_add(&p->avail_list, &swap_avail_head);
2263 spin_unlock(&swap_avail_lock);
2264 }
2265
2266 static void enable_swap_info(struct swap_info_struct *p, int prio,
2267 unsigned char *swap_map,
2268 struct swap_cluster_info *cluster_info,
2269 unsigned long *frontswap_map)
2270 {
2271 frontswap_init(p->type, frontswap_map);
2272 spin_lock(&swap_lock);
2273 spin_lock(&p->lock);
2274 _enable_swap_info(p, prio, swap_map, cluster_info);
2275 spin_unlock(&p->lock);
2276 spin_unlock(&swap_lock);
2277 }
2278
2279 static void reinsert_swap_info(struct swap_info_struct *p)
2280 {
2281 spin_lock(&swap_lock);
2282 spin_lock(&p->lock);
2283 _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2284 spin_unlock(&p->lock);
2285 spin_unlock(&swap_lock);
2286 }
2287
2288 bool has_usable_swap(void)
2289 {
2290 bool ret = true;
2291
2292 spin_lock(&swap_lock);
2293 if (plist_head_empty(&swap_active_head))
2294 ret = false;
2295 spin_unlock(&swap_lock);
2296 return ret;
2297 }
2298
2299 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2300 {
2301 struct swap_info_struct *p = NULL;
2302 unsigned char *swap_map;
2303 struct swap_cluster_info *cluster_info;
2304 unsigned long *frontswap_map;
2305 struct file *swap_file, *victim;
2306 struct address_space *mapping;
2307 struct inode *inode;
2308 struct filename *pathname;
2309 int err, found = 0;
2310 unsigned int old_block_size;
2311
2312 if (!capable(CAP_SYS_ADMIN))
2313 return -EPERM;
2314
2315 BUG_ON(!current->mm);
2316
2317 pathname = getname(specialfile);
2318 if (IS_ERR(pathname))
2319 return PTR_ERR(pathname);
2320
2321 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2322 err = PTR_ERR(victim);
2323 if (IS_ERR(victim))
2324 goto out;
2325
2326 mapping = victim->f_mapping;
2327 spin_lock(&swap_lock);
2328 plist_for_each_entry(p, &swap_active_head, list) {
2329 if (p->flags & SWP_WRITEOK) {
2330 if (p->swap_file->f_mapping == mapping) {
2331 found = 1;
2332 break;
2333 }
2334 }
2335 }
2336 if (!found) {
2337 err = -EINVAL;
2338 spin_unlock(&swap_lock);
2339 goto out_dput;
2340 }
2341 if (!security_vm_enough_memory_mm(current->mm, p->pages))
2342 vm_unacct_memory(p->pages);
2343 else {
2344 err = -ENOMEM;
2345 spin_unlock(&swap_lock);
2346 goto out_dput;
2347 }
2348 spin_lock(&swap_avail_lock);
2349 plist_del(&p->avail_list, &swap_avail_head);
2350 spin_unlock(&swap_avail_lock);
2351 spin_lock(&p->lock);
2352 if (p->prio < 0) {
2353 struct swap_info_struct *si = p;
2354
2355 plist_for_each_entry_continue(si, &swap_active_head, list) {
2356 si->prio++;
2357 si->list.prio--;
2358 si->avail_list.prio--;
2359 }
2360 least_priority++;
2361 }
2362 plist_del(&p->list, &swap_active_head);
2363 atomic_long_sub(p->pages, &nr_swap_pages);
2364 total_swap_pages -= p->pages;
2365 p->flags &= ~SWP_WRITEOK;
2366 spin_unlock(&p->lock);
2367 spin_unlock(&swap_lock);
2368
2369 disable_swap_slots_cache_lock();
2370
2371 set_current_oom_origin();
2372 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2373 clear_current_oom_origin();
2374
2375 if (err) {
2376 /* re-insert swap space back into swap_list */
2377 reinsert_swap_info(p);
2378 reenable_swap_slots_cache_unlock();
2379 goto out_dput;
2380 }
2381
2382 reenable_swap_slots_cache_unlock();
2383
2384 flush_work(&p->discard_work);
2385
2386 destroy_swap_extents(p);
2387 if (p->flags & SWP_CONTINUED)
2388 free_swap_count_continuations(p);
2389
2390 mutex_lock(&swapon_mutex);
2391 spin_lock(&swap_lock);
2392 spin_lock(&p->lock);
2393 drain_mmlist();
2394
2395 /* wait for anyone still in scan_swap_map */
2396 p->highest_bit = 0; /* cuts scans short */
2397 while (p->flags >= SWP_SCANNING) {
2398 spin_unlock(&p->lock);
2399 spin_unlock(&swap_lock);
2400 schedule_timeout_uninterruptible(1);
2401 spin_lock(&swap_lock);
2402 spin_lock(&p->lock);
2403 }
2404
2405 swap_file = p->swap_file;
2406 old_block_size = p->old_block_size;
2407 p->swap_file = NULL;
2408 p->max = 0;
2409 swap_map = p->swap_map;
2410 p->swap_map = NULL;
2411 cluster_info = p->cluster_info;
2412 p->cluster_info = NULL;
2413 frontswap_map = frontswap_map_get(p);
2414 spin_unlock(&p->lock);
2415 spin_unlock(&swap_lock);
2416 frontswap_invalidate_area(p->type);
2417 frontswap_map_set(p, NULL);
2418 mutex_unlock(&swapon_mutex);
2419 free_percpu(p->percpu_cluster);
2420 p->percpu_cluster = NULL;
2421 vfree(swap_map);
2422 kvfree(cluster_info);
2423 kvfree(frontswap_map);
2424 /* Destroy swap account information */
2425 swap_cgroup_swapoff(p->type);
2426 exit_swap_address_space(p->type);
2427
2428 inode = mapping->host;
2429 if (S_ISBLK(inode->i_mode)) {
2430 struct block_device *bdev = I_BDEV(inode);
2431 set_blocksize(bdev, old_block_size);
2432 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2433 } else {
2434 inode_lock(inode);
2435 inode->i_flags &= ~S_SWAPFILE;
2436 inode_unlock(inode);
2437 }
2438 filp_close(swap_file, NULL);
2439
2440 /*
2441 * Clear the SWP_USED flag after all resources are freed so that swapon
2442 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2443 * not hold p->lock after we cleared its SWP_WRITEOK.
2444 */
2445 spin_lock(&swap_lock);
2446 p->flags = 0;
2447 spin_unlock(&swap_lock);
2448
2449 err = 0;
2450 atomic_inc(&proc_poll_event);
2451 wake_up_interruptible(&proc_poll_wait);
2452
2453 out_dput:
2454 filp_close(victim, NULL);
2455 out:
2456 putname(pathname);
2457 return err;
2458 }
2459
2460 #ifdef CONFIG_PROC_FS
2461 static unsigned swaps_poll(struct file *file, poll_table *wait)
2462 {
2463 struct seq_file *seq = file->private_data;
2464
2465 poll_wait(file, &proc_poll_wait, wait);
2466
2467 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2468 seq->poll_event = atomic_read(&proc_poll_event);
2469 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
2470 }
2471
2472 return POLLIN | POLLRDNORM;
2473 }
2474
2475 /* iterator */
2476 static void *swap_start(struct seq_file *swap, loff_t *pos)
2477 {
2478 struct swap_info_struct *si;
2479 int type;
2480 loff_t l = *pos;
2481
2482 mutex_lock(&swapon_mutex);
2483
2484 if (!l)
2485 return SEQ_START_TOKEN;
2486
2487 for (type = 0; type < nr_swapfiles; type++) {
2488 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2489 si = swap_info[type];
2490 if (!(si->flags & SWP_USED) || !si->swap_map)
2491 continue;
2492 if (!--l)
2493 return si;
2494 }
2495
2496 return NULL;
2497 }
2498
2499 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2500 {
2501 struct swap_info_struct *si = v;
2502 int type;
2503
2504 if (v == SEQ_START_TOKEN)
2505 type = 0;
2506 else
2507 type = si->type + 1;
2508
2509 for (; type < nr_swapfiles; type++) {
2510 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2511 si = swap_info[type];
2512 if (!(si->flags & SWP_USED) || !si->swap_map)
2513 continue;
2514 ++*pos;
2515 return si;
2516 }
2517
2518 return NULL;
2519 }
2520
2521 static void swap_stop(struct seq_file *swap, void *v)
2522 {
2523 mutex_unlock(&swapon_mutex);
2524 }
2525
2526 static int swap_show(struct seq_file *swap, void *v)
2527 {
2528 struct swap_info_struct *si = v;
2529 struct file *file;
2530 int len;
2531
2532 if (si == SEQ_START_TOKEN) {
2533 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2534 return 0;
2535 }
2536
2537 file = si->swap_file;
2538 len = seq_file_path(swap, file, " \t\n\\");
2539 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2540 len < 40 ? 40 - len : 1, " ",
2541 S_ISBLK(file_inode(file)->i_mode) ?
2542 "partition" : "file\t",
2543 si->pages << (PAGE_SHIFT - 10),
2544 si->inuse_pages << (PAGE_SHIFT - 10),
2545 si->prio);
2546 return 0;
2547 }
2548
2549 static const struct seq_operations swaps_op = {
2550 .start = swap_start,
2551 .next = swap_next,
2552 .stop = swap_stop,
2553 .show = swap_show
2554 };
2555
2556 static int swaps_open(struct inode *inode, struct file *file)
2557 {
2558 struct seq_file *seq;
2559 int ret;
2560
2561 ret = seq_open(file, &swaps_op);
2562 if (ret)
2563 return ret;
2564
2565 seq = file->private_data;
2566 seq->poll_event = atomic_read(&proc_poll_event);
2567 return 0;
2568 }
2569
2570 static const struct file_operations proc_swaps_operations = {
2571 .open = swaps_open,
2572 .read = seq_read,
2573 .llseek = seq_lseek,
2574 .release = seq_release,
2575 .poll = swaps_poll,
2576 };
2577
2578 static int __init procswaps_init(void)
2579 {
2580 proc_create("swaps", 0, NULL, &proc_swaps_operations);
2581 return 0;
2582 }
2583 __initcall(procswaps_init);
2584 #endif /* CONFIG_PROC_FS */
2585
2586 #ifdef MAX_SWAPFILES_CHECK
2587 static int __init max_swapfiles_check(void)
2588 {
2589 MAX_SWAPFILES_CHECK();
2590 return 0;
2591 }
2592 late_initcall(max_swapfiles_check);
2593 #endif
2594
2595 static struct swap_info_struct *alloc_swap_info(void)
2596 {
2597 struct swap_info_struct *p;
2598 unsigned int type;
2599
2600 p = kzalloc(sizeof(*p), GFP_KERNEL);
2601 if (!p)
2602 return ERR_PTR(-ENOMEM);
2603
2604 spin_lock(&swap_lock);
2605 for (type = 0; type < nr_swapfiles; type++) {
2606 if (!(swap_info[type]->flags & SWP_USED))
2607 break;
2608 }
2609 if (type >= MAX_SWAPFILES) {
2610 spin_unlock(&swap_lock);
2611 kfree(p);
2612 return ERR_PTR(-EPERM);
2613 }
2614 if (type >= nr_swapfiles) {
2615 p->type = type;
2616 swap_info[type] = p;
2617 /*
2618 * Write swap_info[type] before nr_swapfiles, in case a
2619 * racing procfs swap_start() or swap_next() is reading them.
2620 * (We never shrink nr_swapfiles, we never free this entry.)
2621 */
2622 smp_wmb();
2623 nr_swapfiles++;
2624 } else {
2625 kfree(p);
2626 p = swap_info[type];
2627 /*
2628 * Do not memset this entry: a racing procfs swap_next()
2629 * would be relying on p->type to remain valid.
2630 */
2631 }
2632 INIT_LIST_HEAD(&p->first_swap_extent.list);
2633 plist_node_init(&p->list, 0);
2634 plist_node_init(&p->avail_list, 0);
2635 p->flags = SWP_USED;
2636 spin_unlock(&swap_lock);
2637 spin_lock_init(&p->lock);
2638
2639 return p;
2640 }
2641
2642 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2643 {
2644 int error;
2645
2646 if (S_ISBLK(inode->i_mode)) {
2647 p->bdev = bdgrab(I_BDEV(inode));
2648 error = blkdev_get(p->bdev,
2649 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2650 if (error < 0) {
2651 p->bdev = NULL;
2652 return error;
2653 }
2654 p->old_block_size = block_size(p->bdev);
2655 error = set_blocksize(p->bdev, PAGE_SIZE);
2656 if (error < 0)
2657 return error;
2658 p->flags |= SWP_BLKDEV;
2659 } else if (S_ISREG(inode->i_mode)) {
2660 p->bdev = inode->i_sb->s_bdev;
2661 inode_lock(inode);
2662 if (IS_SWAPFILE(inode))
2663 return -EBUSY;
2664 } else
2665 return -EINVAL;
2666
2667 return 0;
2668 }
2669
2670 static unsigned long read_swap_header(struct swap_info_struct *p,
2671 union swap_header *swap_header,
2672 struct inode *inode)
2673 {
2674 int i;
2675 unsigned long maxpages;
2676 unsigned long swapfilepages;
2677 unsigned long last_page;
2678
2679 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2680 pr_err("Unable to find swap-space signature\n");
2681 return 0;
2682 }
2683
2684 /* swap partition endianess hack... */
2685 if (swab32(swap_header->info.version) == 1) {
2686 swab32s(&swap_header->info.version);
2687 swab32s(&swap_header->info.last_page);
2688 swab32s(&swap_header->info.nr_badpages);
2689 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2690 return 0;
2691 for (i = 0; i < swap_header->info.nr_badpages; i++)
2692 swab32s(&swap_header->info.badpages[i]);
2693 }
2694 /* Check the swap header's sub-version */
2695 if (swap_header->info.version != 1) {
2696 pr_warn("Unable to handle swap header version %d\n",
2697 swap_header->info.version);
2698 return 0;
2699 }
2700
2701 p->lowest_bit = 1;
2702 p->cluster_next = 1;
2703 p->cluster_nr = 0;
2704
2705 /*
2706 * Find out how many pages are allowed for a single swap
2707 * device. There are two limiting factors: 1) the number
2708 * of bits for the swap offset in the swp_entry_t type, and
2709 * 2) the number of bits in the swap pte as defined by the
2710 * different architectures. In order to find the
2711 * largest possible bit mask, a swap entry with swap type 0
2712 * and swap offset ~0UL is created, encoded to a swap pte,
2713 * decoded to a swp_entry_t again, and finally the swap
2714 * offset is extracted. This will mask all the bits from
2715 * the initial ~0UL mask that can't be encoded in either
2716 * the swp_entry_t or the architecture definition of a
2717 * swap pte.
2718 */
2719 maxpages = swp_offset(pte_to_swp_entry(
2720 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2721 last_page = swap_header->info.last_page;
2722 if (last_page > maxpages) {
2723 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2724 maxpages << (PAGE_SHIFT - 10),
2725 last_page << (PAGE_SHIFT - 10));
2726 }
2727 if (maxpages > last_page) {
2728 maxpages = last_page + 1;
2729 /* p->max is an unsigned int: don't overflow it */
2730 if ((unsigned int)maxpages == 0)
2731 maxpages = UINT_MAX;
2732 }
2733 p->highest_bit = maxpages - 1;
2734
2735 if (!maxpages)
2736 return 0;
2737 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2738 if (swapfilepages && maxpages > swapfilepages) {
2739 pr_warn("Swap area shorter than signature indicates\n");
2740 return 0;
2741 }
2742 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2743 return 0;
2744 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2745 return 0;
2746
2747 return maxpages;
2748 }
2749
2750 #define SWAP_CLUSTER_INFO_COLS \
2751 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2752 #define SWAP_CLUSTER_SPACE_COLS \
2753 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2754 #define SWAP_CLUSTER_COLS \
2755 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2756
2757 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2758 union swap_header *swap_header,
2759 unsigned char *swap_map,
2760 struct swap_cluster_info *cluster_info,
2761 unsigned long maxpages,
2762 sector_t *span)
2763 {
2764 unsigned int j, k;
2765 unsigned int nr_good_pages;
2766 int nr_extents;
2767 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2768 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2769 unsigned long i, idx;
2770
2771 nr_good_pages = maxpages - 1; /* omit header page */
2772
2773 cluster_list_init(&p->free_clusters);
2774 cluster_list_init(&p->discard_clusters);
2775
2776 for (i = 0; i < swap_header->info.nr_badpages; i++) {
2777 unsigned int page_nr = swap_header->info.badpages[i];
2778 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2779 return -EINVAL;
2780 if (page_nr < maxpages) {
2781 swap_map[page_nr] = SWAP_MAP_BAD;
2782 nr_good_pages--;
2783 /*
2784 * Haven't marked the cluster free yet, no list
2785 * operation involved
2786 */
2787 inc_cluster_info_page(p, cluster_info, page_nr);
2788 }
2789 }
2790
2791 /* Haven't marked the cluster free yet, no list operation involved */
2792 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2793 inc_cluster_info_page(p, cluster_info, i);
2794
2795 if (nr_good_pages) {
2796 swap_map[0] = SWAP_MAP_BAD;
2797 /*
2798 * Not mark the cluster free yet, no list
2799 * operation involved
2800 */
2801 inc_cluster_info_page(p, cluster_info, 0);
2802 p->max = maxpages;
2803 p->pages = nr_good_pages;
2804 nr_extents = setup_swap_extents(p, span);
2805 if (nr_extents < 0)
2806 return nr_extents;
2807 nr_good_pages = p->pages;
2808 }
2809 if (!nr_good_pages) {
2810 pr_warn("Empty swap-file\n");
2811 return -EINVAL;
2812 }
2813
2814 if (!cluster_info)
2815 return nr_extents;
2816
2817
2818 /*
2819 * Reduce false cache line sharing between cluster_info and
2820 * sharing same address space.
2821 */
2822 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2823 j = (k + col) % SWAP_CLUSTER_COLS;
2824 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2825 idx = i * SWAP_CLUSTER_COLS + j;
2826 if (idx >= nr_clusters)
2827 continue;
2828 if (cluster_count(&cluster_info[idx]))
2829 continue;
2830 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2831 cluster_list_add_tail(&p->free_clusters, cluster_info,
2832 idx);
2833 }
2834 }
2835 return nr_extents;
2836 }
2837
2838 /*
2839 * Helper to sys_swapon determining if a given swap
2840 * backing device queue supports DISCARD operations.
2841 */
2842 static bool swap_discardable(struct swap_info_struct *si)
2843 {
2844 struct request_queue *q = bdev_get_queue(si->bdev);
2845
2846 if (!q || !blk_queue_discard(q))
2847 return false;
2848
2849 return true;
2850 }
2851
2852 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2853 {
2854 struct swap_info_struct *p;
2855 struct filename *name;
2856 struct file *swap_file = NULL;
2857 struct address_space *mapping;
2858 int prio;
2859 int error;
2860 union swap_header *swap_header;
2861 int nr_extents;
2862 sector_t span;
2863 unsigned long maxpages;
2864 unsigned char *swap_map = NULL;
2865 struct swap_cluster_info *cluster_info = NULL;
2866 unsigned long *frontswap_map = NULL;
2867 struct page *page = NULL;
2868 struct inode *inode = NULL;
2869
2870 if (swap_flags & ~SWAP_FLAGS_VALID)
2871 return -EINVAL;
2872
2873 if (!capable(CAP_SYS_ADMIN))
2874 return -EPERM;
2875
2876 p = alloc_swap_info();
2877 if (IS_ERR(p))
2878 return PTR_ERR(p);
2879
2880 INIT_WORK(&p->discard_work, swap_discard_work);
2881
2882 name = getname(specialfile);
2883 if (IS_ERR(name)) {
2884 error = PTR_ERR(name);
2885 name = NULL;
2886 goto bad_swap;
2887 }
2888 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
2889 if (IS_ERR(swap_file)) {
2890 error = PTR_ERR(swap_file);
2891 swap_file = NULL;
2892 goto bad_swap;
2893 }
2894
2895 p->swap_file = swap_file;
2896 mapping = swap_file->f_mapping;
2897 inode = mapping->host;
2898
2899 /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
2900 error = claim_swapfile(p, inode);
2901 if (unlikely(error))
2902 goto bad_swap;
2903
2904 /*
2905 * Read the swap header.
2906 */
2907 if (!mapping->a_ops->readpage) {
2908 error = -EINVAL;
2909 goto bad_swap;
2910 }
2911 page = read_mapping_page(mapping, 0, swap_file);
2912 if (IS_ERR(page)) {
2913 error = PTR_ERR(page);
2914 goto bad_swap;
2915 }
2916 swap_header = kmap(page);
2917
2918 maxpages = read_swap_header(p, swap_header, inode);
2919 if (unlikely(!maxpages)) {
2920 error = -EINVAL;
2921 goto bad_swap;
2922 }
2923
2924 /* OK, set up the swap map and apply the bad block list */
2925 swap_map = vzalloc(maxpages);
2926 if (!swap_map) {
2927 error = -ENOMEM;
2928 goto bad_swap;
2929 }
2930
2931 if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
2932 p->flags |= SWP_STABLE_WRITES;
2933
2934 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2935 int cpu;
2936 unsigned long ci, nr_cluster;
2937
2938 p->flags |= SWP_SOLIDSTATE;
2939 /*
2940 * select a random position to start with to help wear leveling
2941 * SSD
2942 */
2943 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2944 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2945
2946 cluster_info = kvzalloc(nr_cluster * sizeof(*cluster_info),
2947 GFP_KERNEL);
2948 if (!cluster_info) {
2949 error = -ENOMEM;
2950 goto bad_swap;
2951 }
2952
2953 for (ci = 0; ci < nr_cluster; ci++)
2954 spin_lock_init(&((cluster_info + ci)->lock));
2955
2956 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2957 if (!p->percpu_cluster) {
2958 error = -ENOMEM;
2959 goto bad_swap;
2960 }
2961 for_each_possible_cpu(cpu) {
2962 struct percpu_cluster *cluster;
2963 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
2964 cluster_set_null(&cluster->index);
2965 }
2966 }
2967
2968 error = swap_cgroup_swapon(p->type, maxpages);
2969 if (error)
2970 goto bad_swap;
2971
2972 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2973 cluster_info, maxpages, &span);
2974 if (unlikely(nr_extents < 0)) {
2975 error = nr_extents;
2976 goto bad_swap;
2977 }
2978 /* frontswap enabled? set up bit-per-page map for frontswap */
2979 if (IS_ENABLED(CONFIG_FRONTSWAP))
2980 frontswap_map = kvzalloc(BITS_TO_LONGS(maxpages) * sizeof(long),
2981 GFP_KERNEL);
2982
2983 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2984 /*
2985 * When discard is enabled for swap with no particular
2986 * policy flagged, we set all swap discard flags here in
2987 * order to sustain backward compatibility with older
2988 * swapon(8) releases.
2989 */
2990 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2991 SWP_PAGE_DISCARD);
2992
2993 /*
2994 * By flagging sys_swapon, a sysadmin can tell us to
2995 * either do single-time area discards only, or to just
2996 * perform discards for released swap page-clusters.
2997 * Now it's time to adjust the p->flags accordingly.
2998 */
2999 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3000 p->flags &= ~SWP_PAGE_DISCARD;
3001 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3002 p->flags &= ~SWP_AREA_DISCARD;
3003
3004 /* issue a swapon-time discard if it's still required */
3005 if (p->flags & SWP_AREA_DISCARD) {
3006 int err = discard_swap(p);
3007 if (unlikely(err))
3008 pr_err("swapon: discard_swap(%p): %d\n",
3009 p, err);
3010 }
3011 }
3012
3013 error = init_swap_address_space(p->type, maxpages);
3014 if (error)
3015 goto bad_swap;
3016
3017 mutex_lock(&swapon_mutex);
3018 prio = -1;
3019 if (swap_flags & SWAP_FLAG_PREFER)
3020 prio =
3021 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3022 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3023
3024 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3025 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3026 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3027 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3028 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3029 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3030 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3031 (frontswap_map) ? "FS" : "");
3032
3033 mutex_unlock(&swapon_mutex);
3034 atomic_inc(&proc_poll_event);
3035 wake_up_interruptible(&proc_poll_wait);
3036
3037 if (S_ISREG(inode->i_mode))
3038 inode->i_flags |= S_SWAPFILE;
3039 error = 0;
3040 goto out;
3041 bad_swap:
3042 free_percpu(p->percpu_cluster);
3043 p->percpu_cluster = NULL;
3044 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3045 set_blocksize(p->bdev, p->old_block_size);
3046 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3047 }
3048 destroy_swap_extents(p);
3049 swap_cgroup_swapoff(p->type);
3050 spin_lock(&swap_lock);
3051 p->swap_file = NULL;
3052 p->flags = 0;
3053 spin_unlock(&swap_lock);
3054 vfree(swap_map);
3055 vfree(cluster_info);
3056 if (swap_file) {
3057 if (inode && S_ISREG(inode->i_mode)) {
3058 inode_unlock(inode);
3059 inode = NULL;
3060 }
3061 filp_close(swap_file, NULL);
3062 }
3063 out:
3064 if (page && !IS_ERR(page)) {
3065 kunmap(page);
3066 put_page(page);
3067 }
3068 if (name)
3069 putname(name);
3070 if (inode && S_ISREG(inode->i_mode))
3071 inode_unlock(inode);
3072 if (!error)
3073 enable_swap_slots_cache();
3074 return error;
3075 }
3076
3077 void si_swapinfo(struct sysinfo *val)
3078 {
3079 unsigned int type;
3080 unsigned long nr_to_be_unused = 0;
3081
3082 spin_lock(&swap_lock);
3083 for (type = 0; type < nr_swapfiles; type++) {
3084 struct swap_info_struct *si = swap_info[type];
3085
3086 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3087 nr_to_be_unused += si->inuse_pages;
3088 }
3089 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3090 val->totalswap = total_swap_pages + nr_to_be_unused;
3091 spin_unlock(&swap_lock);
3092 }
3093
3094 /*
3095 * Verify that a swap entry is valid and increment its swap map count.
3096 *
3097 * Returns error code in following case.
3098 * - success -> 0
3099 * - swp_entry is invalid -> EINVAL
3100 * - swp_entry is migration entry -> EINVAL
3101 * - swap-cache reference is requested but there is already one. -> EEXIST
3102 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3103 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3104 */
3105 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3106 {
3107 struct swap_info_struct *p;
3108 struct swap_cluster_info *ci;
3109 unsigned long offset, type;
3110 unsigned char count;
3111 unsigned char has_cache;
3112 int err = -EINVAL;
3113
3114 if (non_swap_entry(entry))
3115 goto out;
3116
3117 type = swp_type(entry);
3118 if (type >= nr_swapfiles)
3119 goto bad_file;
3120 p = swap_info[type];
3121 offset = swp_offset(entry);
3122 if (unlikely(offset >= p->max))
3123 goto out;
3124
3125 ci = lock_cluster_or_swap_info(p, offset);
3126
3127 count = p->swap_map[offset];
3128
3129 /*
3130 * swapin_readahead() doesn't check if a swap entry is valid, so the
3131 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3132 */
3133 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3134 err = -ENOENT;
3135 goto unlock_out;
3136 }
3137
3138 has_cache = count & SWAP_HAS_CACHE;
3139 count &= ~SWAP_HAS_CACHE;
3140 err = 0;
3141
3142 if (usage == SWAP_HAS_CACHE) {
3143
3144 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3145 if (!has_cache && count)
3146 has_cache = SWAP_HAS_CACHE;
3147 else if (has_cache) /* someone else added cache */
3148 err = -EEXIST;
3149 else /* no users remaining */
3150 err = -ENOENT;
3151
3152 } else if (count || has_cache) {
3153
3154 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3155 count += usage;
3156 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3157 err = -EINVAL;
3158 else if (swap_count_continued(p, offset, count))
3159 count = COUNT_CONTINUED;
3160 else
3161 err = -ENOMEM;
3162 } else
3163 err = -ENOENT; /* unused swap entry */
3164
3165 p->swap_map[offset] = count | has_cache;
3166
3167 unlock_out:
3168 unlock_cluster_or_swap_info(p, ci);
3169 out:
3170 return err;
3171
3172 bad_file:
3173 pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
3174 goto out;
3175 }
3176
3177 /*
3178 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3179 * (in which case its reference count is never incremented).
3180 */
3181 void swap_shmem_alloc(swp_entry_t entry)
3182 {
3183 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3184 }
3185
3186 /*
3187 * Increase reference count of swap entry by 1.
3188 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3189 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3190 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3191 * might occur if a page table entry has got corrupted.
3192 */
3193 int swap_duplicate(swp_entry_t entry)
3194 {
3195 int err = 0;
3196
3197 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3198 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3199 return err;
3200 }
3201
3202 /*
3203 * @entry: swap entry for which we allocate swap cache.
3204 *
3205 * Called when allocating swap cache for existing swap entry,
3206 * This can return error codes. Returns 0 at success.
3207 * -EBUSY means there is a swap cache.
3208 * Note: return code is different from swap_duplicate().
3209 */
3210 int swapcache_prepare(swp_entry_t entry)
3211 {
3212 return __swap_duplicate(entry, SWAP_HAS_CACHE);
3213 }
3214
3215 struct swap_info_struct *page_swap_info(struct page *page)
3216 {
3217 swp_entry_t swap = { .val = page_private(page) };
3218 return swap_info[swp_type(swap)];
3219 }
3220
3221 /*
3222 * out-of-line __page_file_ methods to avoid include hell.
3223 */
3224 struct address_space *__page_file_mapping(struct page *page)
3225 {
3226 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
3227 return page_swap_info(page)->swap_file->f_mapping;
3228 }
3229 EXPORT_SYMBOL_GPL(__page_file_mapping);
3230
3231 pgoff_t __page_file_index(struct page *page)
3232 {
3233 swp_entry_t swap = { .val = page_private(page) };
3234 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
3235 return swp_offset(swap);
3236 }
3237 EXPORT_SYMBOL_GPL(__page_file_index);
3238
3239 /*
3240 * add_swap_count_continuation - called when a swap count is duplicated
3241 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3242 * page of the original vmalloc'ed swap_map, to hold the continuation count
3243 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3244 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3245 *
3246 * These continuation pages are seldom referenced: the common paths all work
3247 * on the original swap_map, only referring to a continuation page when the
3248 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3249 *
3250 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3251 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3252 * can be called after dropping locks.
3253 */
3254 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3255 {
3256 struct swap_info_struct *si;
3257 struct swap_cluster_info *ci;
3258 struct page *head;
3259 struct page *page;
3260 struct page *list_page;
3261 pgoff_t offset;
3262 unsigned char count;
3263
3264 /*
3265 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3266 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3267 */
3268 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3269
3270 si = swap_info_get(entry);
3271 if (!si) {
3272 /*
3273 * An acceptable race has occurred since the failing
3274 * __swap_duplicate(): the swap entry has been freed,
3275 * perhaps even the whole swap_map cleared for swapoff.
3276 */
3277 goto outer;
3278 }
3279
3280 offset = swp_offset(entry);
3281
3282 ci = lock_cluster(si, offset);
3283
3284 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3285
3286 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3287 /*
3288 * The higher the swap count, the more likely it is that tasks
3289 * will race to add swap count continuation: we need to avoid
3290 * over-provisioning.
3291 */
3292 goto out;
3293 }
3294
3295 if (!page) {
3296 unlock_cluster(ci);
3297 spin_unlock(&si->lock);
3298 return -ENOMEM;
3299 }
3300
3301 /*
3302 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3303 * no architecture is using highmem pages for kernel page tables: so it
3304 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3305 */
3306 head = vmalloc_to_page(si->swap_map + offset);
3307 offset &= ~PAGE_MASK;
3308
3309 /*
3310 * Page allocation does not initialize the page's lru field,
3311 * but it does always reset its private field.
3312 */
3313 if (!page_private(head)) {
3314 BUG_ON(count & COUNT_CONTINUED);
3315 INIT_LIST_HEAD(&head->lru);
3316 set_page_private(head, SWP_CONTINUED);
3317 si->flags |= SWP_CONTINUED;
3318 }
3319
3320 list_for_each_entry(list_page, &head->lru, lru) {
3321 unsigned char *map;
3322
3323 /*
3324 * If the previous map said no continuation, but we've found
3325 * a continuation page, free our allocation and use this one.
3326 */
3327 if (!(count & COUNT_CONTINUED))
3328 goto out;
3329
3330 map = kmap_atomic(list_page) + offset;
3331 count = *map;
3332 kunmap_atomic(map);
3333
3334 /*
3335 * If this continuation count now has some space in it,
3336 * free our allocation and use this one.
3337 */
3338 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3339 goto out;
3340 }
3341
3342 list_add_tail(&page->lru, &head->lru);
3343 page = NULL; /* now it's attached, don't free it */
3344 out:
3345 unlock_cluster(ci);
3346 spin_unlock(&si->lock);
3347 outer:
3348 if (page)
3349 __free_page(page);
3350 return 0;
3351 }
3352
3353 /*
3354 * swap_count_continued - when the original swap_map count is incremented
3355 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3356 * into, carry if so, or else fail until a new continuation page is allocated;
3357 * when the original swap_map count is decremented from 0 with continuation,
3358 * borrow from the continuation and report whether it still holds more.
3359 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3360 * lock.
3361 */
3362 static bool swap_count_continued(struct swap_info_struct *si,
3363 pgoff_t offset, unsigned char count)
3364 {
3365 struct page *head;
3366 struct page *page;
3367 unsigned char *map;
3368
3369 head = vmalloc_to_page(si->swap_map + offset);
3370 if (page_private(head) != SWP_CONTINUED) {
3371 BUG_ON(count & COUNT_CONTINUED);
3372 return false; /* need to add count continuation */
3373 }
3374
3375 offset &= ~PAGE_MASK;
3376 page = list_entry(head->lru.next, struct page, lru);
3377 map = kmap_atomic(page) + offset;
3378
3379 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3380 goto init_map; /* jump over SWAP_CONT_MAX checks */
3381
3382 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3383 /*
3384 * Think of how you add 1 to 999
3385 */
3386 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3387 kunmap_atomic(map);
3388 page = list_entry(page->lru.next, struct page, lru);
3389 BUG_ON(page == head);
3390 map = kmap_atomic(page) + offset;
3391 }
3392 if (*map == SWAP_CONT_MAX) {
3393 kunmap_atomic(map);
3394 page = list_entry(page->lru.next, struct page, lru);
3395 if (page == head)
3396 return false; /* add count continuation */
3397 map = kmap_atomic(page) + offset;
3398 init_map: *map = 0; /* we didn't zero the page */
3399 }
3400 *map += 1;
3401 kunmap_atomic(map);
3402 page = list_entry(page->lru.prev, struct page, lru);
3403 while (page != head) {
3404 map = kmap_atomic(page) + offset;
3405 *map = COUNT_CONTINUED;
3406 kunmap_atomic(map);
3407 page = list_entry(page->lru.prev, struct page, lru);
3408 }
3409 return true; /* incremented */
3410
3411 } else { /* decrementing */
3412 /*
3413 * Think of how you subtract 1 from 1000
3414 */
3415 BUG_ON(count != COUNT_CONTINUED);
3416 while (*map == COUNT_CONTINUED) {
3417 kunmap_atomic(map);
3418 page = list_entry(page->lru.next, struct page, lru);
3419 BUG_ON(page == head);
3420 map = kmap_atomic(page) + offset;
3421 }
3422 BUG_ON(*map == 0);
3423 *map -= 1;
3424 if (*map == 0)
3425 count = 0;
3426 kunmap_atomic(map);
3427 page = list_entry(page->lru.prev, struct page, lru);
3428 while (page != head) {
3429 map = kmap_atomic(page) + offset;
3430 *map = SWAP_CONT_MAX | count;
3431 count = COUNT_CONTINUED;
3432 kunmap_atomic(map);
3433 page = list_entry(page->lru.prev, struct page, lru);
3434 }
3435 return count == COUNT_CONTINUED;
3436 }
3437 }
3438
3439 /*
3440 * free_swap_count_continuations - swapoff free all the continuation pages
3441 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3442 */
3443 static void free_swap_count_continuations(struct swap_info_struct *si)
3444 {
3445 pgoff_t offset;
3446
3447 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3448 struct page *head;
3449 head = vmalloc_to_page(si->swap_map + offset);
3450 if (page_private(head)) {
3451 struct page *page, *next;
3452
3453 list_for_each_entry_safe(page, next, &head->lru, lru) {
3454 list_del(&page->lru);
3455 __free_page(page);
3456 }
3457 }
3458 }
3459 }