]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/truncate.c
PCI / PM: Always check PME wakeup capability for runtime wakeup support
[mirror_ubuntu-artful-kernel.git] / mm / truncate.c
1 /*
2 * mm/truncate.c - code for taking down pages from address_spaces
3 *
4 * Copyright (C) 2002, Linus Torvalds
5 *
6 * 10Sep2002 Andrew Morton
7 * Initial version.
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/backing-dev.h>
12 #include <linux/dax.h>
13 #include <linux/gfp.h>
14 #include <linux/mm.h>
15 #include <linux/swap.h>
16 #include <linux/export.h>
17 #include <linux/pagemap.h>
18 #include <linux/highmem.h>
19 #include <linux/pagevec.h>
20 #include <linux/task_io_accounting_ops.h>
21 #include <linux/buffer_head.h> /* grr. try_to_release_page,
22 do_invalidatepage */
23 #include <linux/shmem_fs.h>
24 #include <linux/cleancache.h>
25 #include <linux/rmap.h>
26 #include "internal.h"
27
28 static void clear_shadow_entry(struct address_space *mapping, pgoff_t index,
29 void *entry)
30 {
31 struct radix_tree_node *node;
32 void **slot;
33
34 spin_lock_irq(&mapping->tree_lock);
35 /*
36 * Regular page slots are stabilized by the page lock even
37 * without the tree itself locked. These unlocked entries
38 * need verification under the tree lock.
39 */
40 if (!__radix_tree_lookup(&mapping->page_tree, index, &node, &slot))
41 goto unlock;
42 if (*slot != entry)
43 goto unlock;
44 __radix_tree_replace(&mapping->page_tree, node, slot, NULL,
45 workingset_update_node, mapping);
46 mapping->nrexceptional--;
47 unlock:
48 spin_unlock_irq(&mapping->tree_lock);
49 }
50
51 /*
52 * Unconditionally remove exceptional entry. Usually called from truncate path.
53 */
54 static void truncate_exceptional_entry(struct address_space *mapping,
55 pgoff_t index, void *entry)
56 {
57 /* Handled by shmem itself */
58 if (shmem_mapping(mapping))
59 return;
60
61 if (dax_mapping(mapping)) {
62 dax_delete_mapping_entry(mapping, index);
63 return;
64 }
65 clear_shadow_entry(mapping, index, entry);
66 }
67
68 /*
69 * Invalidate exceptional entry if easily possible. This handles exceptional
70 * entries for invalidate_inode_pages().
71 */
72 static int invalidate_exceptional_entry(struct address_space *mapping,
73 pgoff_t index, void *entry)
74 {
75 /* Handled by shmem itself, or for DAX we do nothing. */
76 if (shmem_mapping(mapping) || dax_mapping(mapping))
77 return 1;
78 clear_shadow_entry(mapping, index, entry);
79 return 1;
80 }
81
82 /*
83 * Invalidate exceptional entry if clean. This handles exceptional entries for
84 * invalidate_inode_pages2() so for DAX it evicts only clean entries.
85 */
86 static int invalidate_exceptional_entry2(struct address_space *mapping,
87 pgoff_t index, void *entry)
88 {
89 /* Handled by shmem itself */
90 if (shmem_mapping(mapping))
91 return 1;
92 if (dax_mapping(mapping))
93 return dax_invalidate_mapping_entry_sync(mapping, index);
94 clear_shadow_entry(mapping, index, entry);
95 return 1;
96 }
97
98 /**
99 * do_invalidatepage - invalidate part or all of a page
100 * @page: the page which is affected
101 * @offset: start of the range to invalidate
102 * @length: length of the range to invalidate
103 *
104 * do_invalidatepage() is called when all or part of the page has become
105 * invalidated by a truncate operation.
106 *
107 * do_invalidatepage() does not have to release all buffers, but it must
108 * ensure that no dirty buffer is left outside @offset and that no I/O
109 * is underway against any of the blocks which are outside the truncation
110 * point. Because the caller is about to free (and possibly reuse) those
111 * blocks on-disk.
112 */
113 void do_invalidatepage(struct page *page, unsigned int offset,
114 unsigned int length)
115 {
116 void (*invalidatepage)(struct page *, unsigned int, unsigned int);
117
118 invalidatepage = page->mapping->a_ops->invalidatepage;
119 #ifdef CONFIG_BLOCK
120 if (!invalidatepage)
121 invalidatepage = block_invalidatepage;
122 #endif
123 if (invalidatepage)
124 (*invalidatepage)(page, offset, length);
125 }
126
127 /*
128 * If truncate cannot remove the fs-private metadata from the page, the page
129 * becomes orphaned. It will be left on the LRU and may even be mapped into
130 * user pagetables if we're racing with filemap_fault().
131 *
132 * We need to bale out if page->mapping is no longer equal to the original
133 * mapping. This happens a) when the VM reclaimed the page while we waited on
134 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
135 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
136 */
137 static int
138 truncate_complete_page(struct address_space *mapping, struct page *page)
139 {
140 if (page->mapping != mapping)
141 return -EIO;
142
143 if (page_has_private(page))
144 do_invalidatepage(page, 0, PAGE_SIZE);
145
146 /*
147 * Some filesystems seem to re-dirty the page even after
148 * the VM has canceled the dirty bit (eg ext3 journaling).
149 * Hence dirty accounting check is placed after invalidation.
150 */
151 cancel_dirty_page(page);
152 ClearPageMappedToDisk(page);
153 delete_from_page_cache(page);
154 return 0;
155 }
156
157 /*
158 * This is for invalidate_mapping_pages(). That function can be called at
159 * any time, and is not supposed to throw away dirty pages. But pages can
160 * be marked dirty at any time too, so use remove_mapping which safely
161 * discards clean, unused pages.
162 *
163 * Returns non-zero if the page was successfully invalidated.
164 */
165 static int
166 invalidate_complete_page(struct address_space *mapping, struct page *page)
167 {
168 int ret;
169
170 if (page->mapping != mapping)
171 return 0;
172
173 if (page_has_private(page) && !try_to_release_page(page, 0))
174 return 0;
175
176 ret = remove_mapping(mapping, page);
177
178 return ret;
179 }
180
181 int truncate_inode_page(struct address_space *mapping, struct page *page)
182 {
183 loff_t holelen;
184 VM_BUG_ON_PAGE(PageTail(page), page);
185
186 holelen = PageTransHuge(page) ? HPAGE_PMD_SIZE : PAGE_SIZE;
187 if (page_mapped(page)) {
188 unmap_mapping_range(mapping,
189 (loff_t)page->index << PAGE_SHIFT,
190 holelen, 0);
191 }
192 return truncate_complete_page(mapping, page);
193 }
194
195 /*
196 * Used to get rid of pages on hardware memory corruption.
197 */
198 int generic_error_remove_page(struct address_space *mapping, struct page *page)
199 {
200 if (!mapping)
201 return -EINVAL;
202 /*
203 * Only punch for normal data pages for now.
204 * Handling other types like directories would need more auditing.
205 */
206 if (!S_ISREG(mapping->host->i_mode))
207 return -EIO;
208 return truncate_inode_page(mapping, page);
209 }
210 EXPORT_SYMBOL(generic_error_remove_page);
211
212 /*
213 * Safely invalidate one page from its pagecache mapping.
214 * It only drops clean, unused pages. The page must be locked.
215 *
216 * Returns 1 if the page is successfully invalidated, otherwise 0.
217 */
218 int invalidate_inode_page(struct page *page)
219 {
220 struct address_space *mapping = page_mapping(page);
221 if (!mapping)
222 return 0;
223 if (PageDirty(page) || PageWriteback(page))
224 return 0;
225 if (page_mapped(page))
226 return 0;
227 return invalidate_complete_page(mapping, page);
228 }
229
230 /**
231 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
232 * @mapping: mapping to truncate
233 * @lstart: offset from which to truncate
234 * @lend: offset to which to truncate (inclusive)
235 *
236 * Truncate the page cache, removing the pages that are between
237 * specified offsets (and zeroing out partial pages
238 * if lstart or lend + 1 is not page aligned).
239 *
240 * Truncate takes two passes - the first pass is nonblocking. It will not
241 * block on page locks and it will not block on writeback. The second pass
242 * will wait. This is to prevent as much IO as possible in the affected region.
243 * The first pass will remove most pages, so the search cost of the second pass
244 * is low.
245 *
246 * We pass down the cache-hot hint to the page freeing code. Even if the
247 * mapping is large, it is probably the case that the final pages are the most
248 * recently touched, and freeing happens in ascending file offset order.
249 *
250 * Note that since ->invalidatepage() accepts range to invalidate
251 * truncate_inode_pages_range is able to handle cases where lend + 1 is not
252 * page aligned properly.
253 */
254 void truncate_inode_pages_range(struct address_space *mapping,
255 loff_t lstart, loff_t lend)
256 {
257 pgoff_t start; /* inclusive */
258 pgoff_t end; /* exclusive */
259 unsigned int partial_start; /* inclusive */
260 unsigned int partial_end; /* exclusive */
261 struct pagevec pvec;
262 pgoff_t indices[PAGEVEC_SIZE];
263 pgoff_t index;
264 int i;
265
266 if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
267 goto out;
268
269 /* Offsets within partial pages */
270 partial_start = lstart & (PAGE_SIZE - 1);
271 partial_end = (lend + 1) & (PAGE_SIZE - 1);
272
273 /*
274 * 'start' and 'end' always covers the range of pages to be fully
275 * truncated. Partial pages are covered with 'partial_start' at the
276 * start of the range and 'partial_end' at the end of the range.
277 * Note that 'end' is exclusive while 'lend' is inclusive.
278 */
279 start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
280 if (lend == -1)
281 /*
282 * lend == -1 indicates end-of-file so we have to set 'end'
283 * to the highest possible pgoff_t and since the type is
284 * unsigned we're using -1.
285 */
286 end = -1;
287 else
288 end = (lend + 1) >> PAGE_SHIFT;
289
290 pagevec_init(&pvec, 0);
291 index = start;
292 while (index < end && pagevec_lookup_entries(&pvec, mapping, index,
293 min(end - index, (pgoff_t)PAGEVEC_SIZE),
294 indices)) {
295 for (i = 0; i < pagevec_count(&pvec); i++) {
296 struct page *page = pvec.pages[i];
297
298 /* We rely upon deletion not changing page->index */
299 index = indices[i];
300 if (index >= end)
301 break;
302
303 if (radix_tree_exceptional_entry(page)) {
304 truncate_exceptional_entry(mapping, index,
305 page);
306 continue;
307 }
308
309 if (!trylock_page(page))
310 continue;
311 WARN_ON(page_to_index(page) != index);
312 if (PageWriteback(page)) {
313 unlock_page(page);
314 continue;
315 }
316 truncate_inode_page(mapping, page);
317 unlock_page(page);
318 }
319 pagevec_remove_exceptionals(&pvec);
320 pagevec_release(&pvec);
321 cond_resched();
322 index++;
323 }
324
325 if (partial_start) {
326 struct page *page = find_lock_page(mapping, start - 1);
327 if (page) {
328 unsigned int top = PAGE_SIZE;
329 if (start > end) {
330 /* Truncation within a single page */
331 top = partial_end;
332 partial_end = 0;
333 }
334 wait_on_page_writeback(page);
335 zero_user_segment(page, partial_start, top);
336 cleancache_invalidate_page(mapping, page);
337 if (page_has_private(page))
338 do_invalidatepage(page, partial_start,
339 top - partial_start);
340 unlock_page(page);
341 put_page(page);
342 }
343 }
344 if (partial_end) {
345 struct page *page = find_lock_page(mapping, end);
346 if (page) {
347 wait_on_page_writeback(page);
348 zero_user_segment(page, 0, partial_end);
349 cleancache_invalidate_page(mapping, page);
350 if (page_has_private(page))
351 do_invalidatepage(page, 0,
352 partial_end);
353 unlock_page(page);
354 put_page(page);
355 }
356 }
357 /*
358 * If the truncation happened within a single page no pages
359 * will be released, just zeroed, so we can bail out now.
360 */
361 if (start >= end)
362 goto out;
363
364 index = start;
365 for ( ; ; ) {
366 cond_resched();
367 if (!pagevec_lookup_entries(&pvec, mapping, index,
368 min(end - index, (pgoff_t)PAGEVEC_SIZE), indices)) {
369 /* If all gone from start onwards, we're done */
370 if (index == start)
371 break;
372 /* Otherwise restart to make sure all gone */
373 index = start;
374 continue;
375 }
376 if (index == start && indices[0] >= end) {
377 /* All gone out of hole to be punched, we're done */
378 pagevec_remove_exceptionals(&pvec);
379 pagevec_release(&pvec);
380 break;
381 }
382 for (i = 0; i < pagevec_count(&pvec); i++) {
383 struct page *page = pvec.pages[i];
384
385 /* We rely upon deletion not changing page->index */
386 index = indices[i];
387 if (index >= end) {
388 /* Restart punch to make sure all gone */
389 index = start - 1;
390 break;
391 }
392
393 if (radix_tree_exceptional_entry(page)) {
394 truncate_exceptional_entry(mapping, index,
395 page);
396 continue;
397 }
398
399 lock_page(page);
400 WARN_ON(page_to_index(page) != index);
401 wait_on_page_writeback(page);
402 truncate_inode_page(mapping, page);
403 unlock_page(page);
404 }
405 pagevec_remove_exceptionals(&pvec);
406 pagevec_release(&pvec);
407 index++;
408 }
409
410 out:
411 cleancache_invalidate_inode(mapping);
412 }
413 EXPORT_SYMBOL(truncate_inode_pages_range);
414
415 /**
416 * truncate_inode_pages - truncate *all* the pages from an offset
417 * @mapping: mapping to truncate
418 * @lstart: offset from which to truncate
419 *
420 * Called under (and serialised by) inode->i_mutex.
421 *
422 * Note: When this function returns, there can be a page in the process of
423 * deletion (inside __delete_from_page_cache()) in the specified range. Thus
424 * mapping->nrpages can be non-zero when this function returns even after
425 * truncation of the whole mapping.
426 */
427 void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
428 {
429 truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
430 }
431 EXPORT_SYMBOL(truncate_inode_pages);
432
433 /**
434 * truncate_inode_pages_final - truncate *all* pages before inode dies
435 * @mapping: mapping to truncate
436 *
437 * Called under (and serialized by) inode->i_mutex.
438 *
439 * Filesystems have to use this in the .evict_inode path to inform the
440 * VM that this is the final truncate and the inode is going away.
441 */
442 void truncate_inode_pages_final(struct address_space *mapping)
443 {
444 unsigned long nrexceptional;
445 unsigned long nrpages;
446
447 /*
448 * Page reclaim can not participate in regular inode lifetime
449 * management (can't call iput()) and thus can race with the
450 * inode teardown. Tell it when the address space is exiting,
451 * so that it does not install eviction information after the
452 * final truncate has begun.
453 */
454 mapping_set_exiting(mapping);
455
456 /*
457 * When reclaim installs eviction entries, it increases
458 * nrexceptional first, then decreases nrpages. Make sure we see
459 * this in the right order or we might miss an entry.
460 */
461 nrpages = mapping->nrpages;
462 smp_rmb();
463 nrexceptional = mapping->nrexceptional;
464
465 if (nrpages || nrexceptional) {
466 /*
467 * As truncation uses a lockless tree lookup, cycle
468 * the tree lock to make sure any ongoing tree
469 * modification that does not see AS_EXITING is
470 * completed before starting the final truncate.
471 */
472 spin_lock_irq(&mapping->tree_lock);
473 spin_unlock_irq(&mapping->tree_lock);
474
475 truncate_inode_pages(mapping, 0);
476 }
477 }
478 EXPORT_SYMBOL(truncate_inode_pages_final);
479
480 /**
481 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
482 * @mapping: the address_space which holds the pages to invalidate
483 * @start: the offset 'from' which to invalidate
484 * @end: the offset 'to' which to invalidate (inclusive)
485 *
486 * This function only removes the unlocked pages, if you want to
487 * remove all the pages of one inode, you must call truncate_inode_pages.
488 *
489 * invalidate_mapping_pages() will not block on IO activity. It will not
490 * invalidate pages which are dirty, locked, under writeback or mapped into
491 * pagetables.
492 */
493 unsigned long invalidate_mapping_pages(struct address_space *mapping,
494 pgoff_t start, pgoff_t end)
495 {
496 pgoff_t indices[PAGEVEC_SIZE];
497 struct pagevec pvec;
498 pgoff_t index = start;
499 unsigned long ret;
500 unsigned long count = 0;
501 int i;
502
503 pagevec_init(&pvec, 0);
504 while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
505 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
506 indices)) {
507 for (i = 0; i < pagevec_count(&pvec); i++) {
508 struct page *page = pvec.pages[i];
509
510 /* We rely upon deletion not changing page->index */
511 index = indices[i];
512 if (index > end)
513 break;
514
515 if (radix_tree_exceptional_entry(page)) {
516 invalidate_exceptional_entry(mapping, index,
517 page);
518 continue;
519 }
520
521 if (!trylock_page(page))
522 continue;
523
524 WARN_ON(page_to_index(page) != index);
525
526 /* Middle of THP: skip */
527 if (PageTransTail(page)) {
528 unlock_page(page);
529 continue;
530 } else if (PageTransHuge(page)) {
531 index += HPAGE_PMD_NR - 1;
532 i += HPAGE_PMD_NR - 1;
533 /*
534 * 'end' is in the middle of THP. Don't
535 * invalidate the page as the part outside of
536 * 'end' could be still useful.
537 */
538 if (index > end) {
539 unlock_page(page);
540 continue;
541 }
542 }
543
544 ret = invalidate_inode_page(page);
545 unlock_page(page);
546 /*
547 * Invalidation is a hint that the page is no longer
548 * of interest and try to speed up its reclaim.
549 */
550 if (!ret)
551 deactivate_file_page(page);
552 count += ret;
553 }
554 pagevec_remove_exceptionals(&pvec);
555 pagevec_release(&pvec);
556 cond_resched();
557 index++;
558 }
559 return count;
560 }
561 EXPORT_SYMBOL(invalidate_mapping_pages);
562
563 /*
564 * This is like invalidate_complete_page(), except it ignores the page's
565 * refcount. We do this because invalidate_inode_pages2() needs stronger
566 * invalidation guarantees, and cannot afford to leave pages behind because
567 * shrink_page_list() has a temp ref on them, or because they're transiently
568 * sitting in the lru_cache_add() pagevecs.
569 */
570 static int
571 invalidate_complete_page2(struct address_space *mapping, struct page *page)
572 {
573 unsigned long flags;
574
575 if (page->mapping != mapping)
576 return 0;
577
578 if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
579 return 0;
580
581 spin_lock_irqsave(&mapping->tree_lock, flags);
582 if (PageDirty(page))
583 goto failed;
584
585 BUG_ON(page_has_private(page));
586 __delete_from_page_cache(page, NULL);
587 spin_unlock_irqrestore(&mapping->tree_lock, flags);
588
589 if (mapping->a_ops->freepage)
590 mapping->a_ops->freepage(page);
591
592 put_page(page); /* pagecache ref */
593 return 1;
594 failed:
595 spin_unlock_irqrestore(&mapping->tree_lock, flags);
596 return 0;
597 }
598
599 static int do_launder_page(struct address_space *mapping, struct page *page)
600 {
601 if (!PageDirty(page))
602 return 0;
603 if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
604 return 0;
605 return mapping->a_ops->launder_page(page);
606 }
607
608 /**
609 * invalidate_inode_pages2_range - remove range of pages from an address_space
610 * @mapping: the address_space
611 * @start: the page offset 'from' which to invalidate
612 * @end: the page offset 'to' which to invalidate (inclusive)
613 *
614 * Any pages which are found to be mapped into pagetables are unmapped prior to
615 * invalidation.
616 *
617 * Returns -EBUSY if any pages could not be invalidated.
618 */
619 int invalidate_inode_pages2_range(struct address_space *mapping,
620 pgoff_t start, pgoff_t end)
621 {
622 pgoff_t indices[PAGEVEC_SIZE];
623 struct pagevec pvec;
624 pgoff_t index;
625 int i;
626 int ret = 0;
627 int ret2 = 0;
628 int did_range_unmap = 0;
629
630 if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
631 goto out;
632
633 pagevec_init(&pvec, 0);
634 index = start;
635 while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
636 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
637 indices)) {
638 for (i = 0; i < pagevec_count(&pvec); i++) {
639 struct page *page = pvec.pages[i];
640
641 /* We rely upon deletion not changing page->index */
642 index = indices[i];
643 if (index > end)
644 break;
645
646 if (radix_tree_exceptional_entry(page)) {
647 if (!invalidate_exceptional_entry2(mapping,
648 index, page))
649 ret = -EBUSY;
650 continue;
651 }
652
653 lock_page(page);
654 WARN_ON(page_to_index(page) != index);
655 if (page->mapping != mapping) {
656 unlock_page(page);
657 continue;
658 }
659 wait_on_page_writeback(page);
660 if (page_mapped(page)) {
661 if (!did_range_unmap) {
662 /*
663 * Zap the rest of the file in one hit.
664 */
665 unmap_mapping_range(mapping,
666 (loff_t)index << PAGE_SHIFT,
667 (loff_t)(1 + end - index)
668 << PAGE_SHIFT,
669 0);
670 did_range_unmap = 1;
671 } else {
672 /*
673 * Just zap this page
674 */
675 unmap_mapping_range(mapping,
676 (loff_t)index << PAGE_SHIFT,
677 PAGE_SIZE, 0);
678 }
679 }
680 BUG_ON(page_mapped(page));
681 ret2 = do_launder_page(mapping, page);
682 if (ret2 == 0) {
683 if (!invalidate_complete_page2(mapping, page))
684 ret2 = -EBUSY;
685 }
686 if (ret2 < 0)
687 ret = ret2;
688 unlock_page(page);
689 }
690 pagevec_remove_exceptionals(&pvec);
691 pagevec_release(&pvec);
692 cond_resched();
693 index++;
694 }
695 /*
696 * For DAX we invalidate page tables after invalidating radix tree. We
697 * could invalidate page tables while invalidating each entry however
698 * that would be expensive. And doing range unmapping before doesn't
699 * work as we have no cheap way to find whether radix tree entry didn't
700 * get remapped later.
701 */
702 if (dax_mapping(mapping)) {
703 unmap_mapping_range(mapping, (loff_t)start << PAGE_SHIFT,
704 (loff_t)(end - start + 1) << PAGE_SHIFT, 0);
705 }
706 out:
707 cleancache_invalidate_inode(mapping);
708 return ret;
709 }
710 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
711
712 /**
713 * invalidate_inode_pages2 - remove all pages from an address_space
714 * @mapping: the address_space
715 *
716 * Any pages which are found to be mapped into pagetables are unmapped prior to
717 * invalidation.
718 *
719 * Returns -EBUSY if any pages could not be invalidated.
720 */
721 int invalidate_inode_pages2(struct address_space *mapping)
722 {
723 return invalidate_inode_pages2_range(mapping, 0, -1);
724 }
725 EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
726
727 /**
728 * truncate_pagecache - unmap and remove pagecache that has been truncated
729 * @inode: inode
730 * @newsize: new file size
731 *
732 * inode's new i_size must already be written before truncate_pagecache
733 * is called.
734 *
735 * This function should typically be called before the filesystem
736 * releases resources associated with the freed range (eg. deallocates
737 * blocks). This way, pagecache will always stay logically coherent
738 * with on-disk format, and the filesystem would not have to deal with
739 * situations such as writepage being called for a page that has already
740 * had its underlying blocks deallocated.
741 */
742 void truncate_pagecache(struct inode *inode, loff_t newsize)
743 {
744 struct address_space *mapping = inode->i_mapping;
745 loff_t holebegin = round_up(newsize, PAGE_SIZE);
746
747 /*
748 * unmap_mapping_range is called twice, first simply for
749 * efficiency so that truncate_inode_pages does fewer
750 * single-page unmaps. However after this first call, and
751 * before truncate_inode_pages finishes, it is possible for
752 * private pages to be COWed, which remain after
753 * truncate_inode_pages finishes, hence the second
754 * unmap_mapping_range call must be made for correctness.
755 */
756 unmap_mapping_range(mapping, holebegin, 0, 1);
757 truncate_inode_pages(mapping, newsize);
758 unmap_mapping_range(mapping, holebegin, 0, 1);
759 }
760 EXPORT_SYMBOL(truncate_pagecache);
761
762 /**
763 * truncate_setsize - update inode and pagecache for a new file size
764 * @inode: inode
765 * @newsize: new file size
766 *
767 * truncate_setsize updates i_size and performs pagecache truncation (if
768 * necessary) to @newsize. It will be typically be called from the filesystem's
769 * setattr function when ATTR_SIZE is passed in.
770 *
771 * Must be called with a lock serializing truncates and writes (generally
772 * i_mutex but e.g. xfs uses a different lock) and before all filesystem
773 * specific block truncation has been performed.
774 */
775 void truncate_setsize(struct inode *inode, loff_t newsize)
776 {
777 loff_t oldsize = inode->i_size;
778
779 i_size_write(inode, newsize);
780 if (newsize > oldsize)
781 pagecache_isize_extended(inode, oldsize, newsize);
782 truncate_pagecache(inode, newsize);
783 }
784 EXPORT_SYMBOL(truncate_setsize);
785
786 /**
787 * pagecache_isize_extended - update pagecache after extension of i_size
788 * @inode: inode for which i_size was extended
789 * @from: original inode size
790 * @to: new inode size
791 *
792 * Handle extension of inode size either caused by extending truncate or by
793 * write starting after current i_size. We mark the page straddling current
794 * i_size RO so that page_mkwrite() is called on the nearest write access to
795 * the page. This way filesystem can be sure that page_mkwrite() is called on
796 * the page before user writes to the page via mmap after the i_size has been
797 * changed.
798 *
799 * The function must be called after i_size is updated so that page fault
800 * coming after we unlock the page will already see the new i_size.
801 * The function must be called while we still hold i_mutex - this not only
802 * makes sure i_size is stable but also that userspace cannot observe new
803 * i_size value before we are prepared to store mmap writes at new inode size.
804 */
805 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
806 {
807 int bsize = i_blocksize(inode);
808 loff_t rounded_from;
809 struct page *page;
810 pgoff_t index;
811
812 WARN_ON(to > inode->i_size);
813
814 if (from >= to || bsize == PAGE_SIZE)
815 return;
816 /* Page straddling @from will not have any hole block created? */
817 rounded_from = round_up(from, bsize);
818 if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1)))
819 return;
820
821 index = from >> PAGE_SHIFT;
822 page = find_lock_page(inode->i_mapping, index);
823 /* Page not cached? Nothing to do */
824 if (!page)
825 return;
826 /*
827 * See clear_page_dirty_for_io() for details why set_page_dirty()
828 * is needed.
829 */
830 if (page_mkclean(page))
831 set_page_dirty(page);
832 unlock_page(page);
833 put_page(page);
834 }
835 EXPORT_SYMBOL(pagecache_isize_extended);
836
837 /**
838 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
839 * @inode: inode
840 * @lstart: offset of beginning of hole
841 * @lend: offset of last byte of hole
842 *
843 * This function should typically be called before the filesystem
844 * releases resources associated with the freed range (eg. deallocates
845 * blocks). This way, pagecache will always stay logically coherent
846 * with on-disk format, and the filesystem would not have to deal with
847 * situations such as writepage being called for a page that has already
848 * had its underlying blocks deallocated.
849 */
850 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
851 {
852 struct address_space *mapping = inode->i_mapping;
853 loff_t unmap_start = round_up(lstart, PAGE_SIZE);
854 loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
855 /*
856 * This rounding is currently just for example: unmap_mapping_range
857 * expands its hole outwards, whereas we want it to contract the hole
858 * inwards. However, existing callers of truncate_pagecache_range are
859 * doing their own page rounding first. Note that unmap_mapping_range
860 * allows holelen 0 for all, and we allow lend -1 for end of file.
861 */
862
863 /*
864 * Unlike in truncate_pagecache, unmap_mapping_range is called only
865 * once (before truncating pagecache), and without "even_cows" flag:
866 * hole-punching should not remove private COWed pages from the hole.
867 */
868 if ((u64)unmap_end > (u64)unmap_start)
869 unmap_mapping_range(mapping, unmap_start,
870 1 + unmap_end - unmap_start, 0);
871 truncate_inode_pages_range(mapping, lstart, lend);
872 }
873 EXPORT_SYMBOL(truncate_pagecache_range);