]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/socket.c
KVM: SVM: Move spec control call after restore of GS
[mirror_ubuntu-artful-kernel.git] / net / socket.c
1 /*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92
93 #include <linux/uaccess.h>
94 #include <asm/unistd.h>
95
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
119
120 static int sock_close(struct inode *inode, struct file *file);
121 static unsigned int sock_poll(struct file *file,
122 struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126 unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 struct pipe_inode_info *pipe, size_t len,
133 unsigned int flags);
134
135 /*
136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137 * in the operation structures but are done directly via the socketcall() multiplexor.
138 */
139
140 static const struct file_operations socket_file_ops = {
141 .owner = THIS_MODULE,
142 .llseek = no_llseek,
143 .read_iter = sock_read_iter,
144 .write_iter = sock_write_iter,
145 .poll = sock_poll,
146 .unlocked_ioctl = sock_ioctl,
147 #ifdef CONFIG_COMPAT
148 .compat_ioctl = compat_sock_ioctl,
149 #endif
150 .mmap = sock_mmap,
151 .release = sock_close,
152 .fasync = sock_fasync,
153 .sendpage = sock_sendpage,
154 .splice_write = generic_splice_sendpage,
155 .splice_read = sock_splice_read,
156 };
157
158 /*
159 * The protocol list. Each protocol is registered in here.
160 */
161
162 static DEFINE_SPINLOCK(net_family_lock);
163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
164
165 /*
166 * Statistics counters of the socket lists
167 */
168
169 static DEFINE_PER_CPU(int, sockets_in_use);
170
171 /*
172 * Support routines.
173 * Move socket addresses back and forth across the kernel/user
174 * divide and look after the messy bits.
175 */
176
177 /**
178 * move_addr_to_kernel - copy a socket address into kernel space
179 * @uaddr: Address in user space
180 * @kaddr: Address in kernel space
181 * @ulen: Length in user space
182 *
183 * The address is copied into kernel space. If the provided address is
184 * too long an error code of -EINVAL is returned. If the copy gives
185 * invalid addresses -EFAULT is returned. On a success 0 is returned.
186 */
187
188 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
189 {
190 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
191 return -EINVAL;
192 if (ulen == 0)
193 return 0;
194 if (copy_from_user(kaddr, uaddr, ulen))
195 return -EFAULT;
196 return audit_sockaddr(ulen, kaddr);
197 }
198
199 /**
200 * move_addr_to_user - copy an address to user space
201 * @kaddr: kernel space address
202 * @klen: length of address in kernel
203 * @uaddr: user space address
204 * @ulen: pointer to user length field
205 *
206 * The value pointed to by ulen on entry is the buffer length available.
207 * This is overwritten with the buffer space used. -EINVAL is returned
208 * if an overlong buffer is specified or a negative buffer size. -EFAULT
209 * is returned if either the buffer or the length field are not
210 * accessible.
211 * After copying the data up to the limit the user specifies, the true
212 * length of the data is written over the length limit the user
213 * specified. Zero is returned for a success.
214 */
215
216 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
217 void __user *uaddr, int __user *ulen)
218 {
219 int err;
220 int len;
221
222 BUG_ON(klen > sizeof(struct sockaddr_storage));
223 err = get_user(len, ulen);
224 if (err)
225 return err;
226 if (len > klen)
227 len = klen;
228 if (len < 0)
229 return -EINVAL;
230 if (len) {
231 if (audit_sockaddr(klen, kaddr))
232 return -ENOMEM;
233 if (copy_to_user(uaddr, kaddr, len))
234 return -EFAULT;
235 }
236 /*
237 * "fromlen shall refer to the value before truncation.."
238 * 1003.1g
239 */
240 return __put_user(klen, ulen);
241 }
242
243 static struct kmem_cache *sock_inode_cachep __read_mostly;
244
245 static struct inode *sock_alloc_inode(struct super_block *sb)
246 {
247 struct socket_alloc *ei;
248 struct socket_wq *wq;
249
250 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
251 if (!ei)
252 return NULL;
253 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
254 if (!wq) {
255 kmem_cache_free(sock_inode_cachep, ei);
256 return NULL;
257 }
258 init_waitqueue_head(&wq->wait);
259 wq->fasync_list = NULL;
260 wq->flags = 0;
261 RCU_INIT_POINTER(ei->socket.wq, wq);
262
263 ei->socket.state = SS_UNCONNECTED;
264 ei->socket.flags = 0;
265 ei->socket.ops = NULL;
266 ei->socket.sk = NULL;
267 ei->socket.file = NULL;
268
269 return &ei->vfs_inode;
270 }
271
272 static void sock_destroy_inode(struct inode *inode)
273 {
274 struct socket_alloc *ei;
275 struct socket_wq *wq;
276
277 ei = container_of(inode, struct socket_alloc, vfs_inode);
278 wq = rcu_dereference_protected(ei->socket.wq, 1);
279 kfree_rcu(wq, rcu);
280 kmem_cache_free(sock_inode_cachep, ei);
281 }
282
283 static void init_once(void *foo)
284 {
285 struct socket_alloc *ei = (struct socket_alloc *)foo;
286
287 inode_init_once(&ei->vfs_inode);
288 }
289
290 static void init_inodecache(void)
291 {
292 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
293 sizeof(struct socket_alloc),
294 0,
295 (SLAB_HWCACHE_ALIGN |
296 SLAB_RECLAIM_ACCOUNT |
297 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
298 init_once);
299 BUG_ON(sock_inode_cachep == NULL);
300 }
301
302 static const struct super_operations sockfs_ops = {
303 .alloc_inode = sock_alloc_inode,
304 .destroy_inode = sock_destroy_inode,
305 .statfs = simple_statfs,
306 };
307
308 /*
309 * sockfs_dname() is called from d_path().
310 */
311 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
312 {
313 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
314 d_inode(dentry)->i_ino);
315 }
316
317 static const struct dentry_operations sockfs_dentry_operations = {
318 .d_dname = sockfs_dname,
319 };
320
321 static int sockfs_xattr_get(const struct xattr_handler *handler,
322 struct dentry *dentry, struct inode *inode,
323 const char *suffix, void *value, size_t size)
324 {
325 if (value) {
326 if (dentry->d_name.len + 1 > size)
327 return -ERANGE;
328 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
329 }
330 return dentry->d_name.len + 1;
331 }
332
333 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
334 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
335 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
336
337 static const struct xattr_handler sockfs_xattr_handler = {
338 .name = XATTR_NAME_SOCKPROTONAME,
339 .get = sockfs_xattr_get,
340 };
341
342 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
343 struct dentry *dentry, struct inode *inode,
344 const char *suffix, const void *value,
345 size_t size, int flags)
346 {
347 /* Handled by LSM. */
348 return -EAGAIN;
349 }
350
351 static const struct xattr_handler sockfs_security_xattr_handler = {
352 .prefix = XATTR_SECURITY_PREFIX,
353 .set = sockfs_security_xattr_set,
354 };
355
356 static const struct xattr_handler *sockfs_xattr_handlers[] = {
357 &sockfs_xattr_handler,
358 &sockfs_security_xattr_handler,
359 NULL
360 };
361
362 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
363 int flags, const char *dev_name, void *data)
364 {
365 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
366 sockfs_xattr_handlers,
367 &sockfs_dentry_operations, SOCKFS_MAGIC);
368 }
369
370 static struct vfsmount *sock_mnt __read_mostly;
371
372 static struct file_system_type sock_fs_type = {
373 .name = "sockfs",
374 .mount = sockfs_mount,
375 .kill_sb = kill_anon_super,
376 };
377
378 /*
379 * Obtains the first available file descriptor and sets it up for use.
380 *
381 * These functions create file structures and maps them to fd space
382 * of the current process. On success it returns file descriptor
383 * and file struct implicitly stored in sock->file.
384 * Note that another thread may close file descriptor before we return
385 * from this function. We use the fact that now we do not refer
386 * to socket after mapping. If one day we will need it, this
387 * function will increment ref. count on file by 1.
388 *
389 * In any case returned fd MAY BE not valid!
390 * This race condition is unavoidable
391 * with shared fd spaces, we cannot solve it inside kernel,
392 * but we take care of internal coherence yet.
393 */
394
395 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
396 {
397 struct qstr name = { .name = "" };
398 struct path path;
399 struct file *file;
400
401 if (dname) {
402 name.name = dname;
403 name.len = strlen(name.name);
404 } else if (sock->sk) {
405 name.name = sock->sk->sk_prot_creator->name;
406 name.len = strlen(name.name);
407 }
408 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
409 if (unlikely(!path.dentry))
410 return ERR_PTR(-ENOMEM);
411 path.mnt = mntget(sock_mnt);
412
413 d_instantiate(path.dentry, SOCK_INODE(sock));
414
415 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
416 &socket_file_ops);
417 if (IS_ERR(file)) {
418 /* drop dentry, keep inode */
419 ihold(d_inode(path.dentry));
420 path_put(&path);
421 return file;
422 }
423
424 sock->file = file;
425 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
426 file->private_data = sock;
427 return file;
428 }
429 EXPORT_SYMBOL(sock_alloc_file);
430
431 static int sock_map_fd(struct socket *sock, int flags)
432 {
433 struct file *newfile;
434 int fd = get_unused_fd_flags(flags);
435 if (unlikely(fd < 0))
436 return fd;
437
438 newfile = sock_alloc_file(sock, flags, NULL);
439 if (likely(!IS_ERR(newfile))) {
440 fd_install(fd, newfile);
441 return fd;
442 }
443
444 put_unused_fd(fd);
445 return PTR_ERR(newfile);
446 }
447
448 struct socket *sock_from_file(struct file *file, int *err)
449 {
450 if (file->f_op == &socket_file_ops)
451 return file->private_data; /* set in sock_map_fd */
452
453 *err = -ENOTSOCK;
454 return NULL;
455 }
456 EXPORT_SYMBOL(sock_from_file);
457
458 /**
459 * sockfd_lookup - Go from a file number to its socket slot
460 * @fd: file handle
461 * @err: pointer to an error code return
462 *
463 * The file handle passed in is locked and the socket it is bound
464 * to is returned. If an error occurs the err pointer is overwritten
465 * with a negative errno code and NULL is returned. The function checks
466 * for both invalid handles and passing a handle which is not a socket.
467 *
468 * On a success the socket object pointer is returned.
469 */
470
471 struct socket *sockfd_lookup(int fd, int *err)
472 {
473 struct file *file;
474 struct socket *sock;
475
476 file = fget(fd);
477 if (!file) {
478 *err = -EBADF;
479 return NULL;
480 }
481
482 sock = sock_from_file(file, err);
483 if (!sock)
484 fput(file);
485 return sock;
486 }
487 EXPORT_SYMBOL(sockfd_lookup);
488
489 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
490 {
491 struct fd f = fdget(fd);
492 struct socket *sock;
493
494 *err = -EBADF;
495 if (f.file) {
496 sock = sock_from_file(f.file, err);
497 if (likely(sock)) {
498 *fput_needed = f.flags;
499 return sock;
500 }
501 fdput(f);
502 }
503 return NULL;
504 }
505
506 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
507 size_t size)
508 {
509 ssize_t len;
510 ssize_t used = 0;
511
512 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
513 if (len < 0)
514 return len;
515 used += len;
516 if (buffer) {
517 if (size < used)
518 return -ERANGE;
519 buffer += len;
520 }
521
522 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
523 used += len;
524 if (buffer) {
525 if (size < used)
526 return -ERANGE;
527 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
528 buffer += len;
529 }
530
531 return used;
532 }
533
534 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
535 {
536 int err = simple_setattr(dentry, iattr);
537
538 if (!err && (iattr->ia_valid & ATTR_UID)) {
539 struct socket *sock = SOCKET_I(d_inode(dentry));
540
541 sock->sk->sk_uid = iattr->ia_uid;
542 }
543
544 return err;
545 }
546
547 static const struct inode_operations sockfs_inode_ops = {
548 .listxattr = sockfs_listxattr,
549 .setattr = sockfs_setattr,
550 };
551
552 /**
553 * sock_alloc - allocate a socket
554 *
555 * Allocate a new inode and socket object. The two are bound together
556 * and initialised. The socket is then returned. If we are out of inodes
557 * NULL is returned.
558 */
559
560 struct socket *sock_alloc(void)
561 {
562 struct inode *inode;
563 struct socket *sock;
564
565 inode = new_inode_pseudo(sock_mnt->mnt_sb);
566 if (!inode)
567 return NULL;
568
569 sock = SOCKET_I(inode);
570
571 kmemcheck_annotate_bitfield(sock, type);
572 inode->i_ino = get_next_ino();
573 inode->i_mode = S_IFSOCK | S_IRWXUGO;
574 inode->i_uid = current_fsuid();
575 inode->i_gid = current_fsgid();
576 inode->i_op = &sockfs_inode_ops;
577
578 this_cpu_add(sockets_in_use, 1);
579 return sock;
580 }
581 EXPORT_SYMBOL(sock_alloc);
582
583 /**
584 * sock_release - close a socket
585 * @sock: socket to close
586 *
587 * The socket is released from the protocol stack if it has a release
588 * callback, and the inode is then released if the socket is bound to
589 * an inode not a file.
590 */
591
592 void sock_release(struct socket *sock)
593 {
594 if (sock->ops) {
595 struct module *owner = sock->ops->owner;
596
597 sock->ops->release(sock);
598 sock->ops = NULL;
599 module_put(owner);
600 }
601
602 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
603 pr_err("%s: fasync list not empty!\n", __func__);
604
605 this_cpu_sub(sockets_in_use, 1);
606 if (!sock->file) {
607 iput(SOCK_INODE(sock));
608 return;
609 }
610 sock->file = NULL;
611 }
612 EXPORT_SYMBOL(sock_release);
613
614 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
615 {
616 u8 flags = *tx_flags;
617
618 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
619 flags |= SKBTX_HW_TSTAMP;
620
621 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
622 flags |= SKBTX_SW_TSTAMP;
623
624 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
625 flags |= SKBTX_SCHED_TSTAMP;
626
627 *tx_flags = flags;
628 }
629 EXPORT_SYMBOL(__sock_tx_timestamp);
630
631 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
632 {
633 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
634 BUG_ON(ret == -EIOCBQUEUED);
635 return ret;
636 }
637
638 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
639 {
640 int err = security_socket_sendmsg(sock, msg,
641 msg_data_left(msg));
642
643 return err ?: sock_sendmsg_nosec(sock, msg);
644 }
645 EXPORT_SYMBOL(sock_sendmsg);
646
647 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
648 struct kvec *vec, size_t num, size_t size)
649 {
650 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
651 return sock_sendmsg(sock, msg);
652 }
653 EXPORT_SYMBOL(kernel_sendmsg);
654
655 static bool skb_is_err_queue(const struct sk_buff *skb)
656 {
657 /* pkt_type of skbs enqueued on the error queue are set to
658 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
659 * in recvmsg, since skbs received on a local socket will never
660 * have a pkt_type of PACKET_OUTGOING.
661 */
662 return skb->pkt_type == PACKET_OUTGOING;
663 }
664
665 /* On transmit, software and hardware timestamps are returned independently.
666 * As the two skb clones share the hardware timestamp, which may be updated
667 * before the software timestamp is received, a hardware TX timestamp may be
668 * returned only if there is no software TX timestamp. Ignore false software
669 * timestamps, which may be made in the __sock_recv_timestamp() call when the
670 * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a
671 * hardware timestamp.
672 */
673 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
674 {
675 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
676 }
677
678 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
679 {
680 struct scm_ts_pktinfo ts_pktinfo;
681 struct net_device *orig_dev;
682
683 if (!skb_mac_header_was_set(skb))
684 return;
685
686 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
687
688 rcu_read_lock();
689 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
690 if (orig_dev)
691 ts_pktinfo.if_index = orig_dev->ifindex;
692 rcu_read_unlock();
693
694 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
695 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
696 sizeof(ts_pktinfo), &ts_pktinfo);
697 }
698
699 /*
700 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
701 */
702 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
703 struct sk_buff *skb)
704 {
705 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
706 struct scm_timestamping tss;
707 int empty = 1, false_tstamp = 0;
708 struct skb_shared_hwtstamps *shhwtstamps =
709 skb_hwtstamps(skb);
710
711 /* Race occurred between timestamp enabling and packet
712 receiving. Fill in the current time for now. */
713 if (need_software_tstamp && skb->tstamp == 0) {
714 __net_timestamp(skb);
715 false_tstamp = 1;
716 }
717
718 if (need_software_tstamp) {
719 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
720 struct timeval tv;
721 skb_get_timestamp(skb, &tv);
722 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
723 sizeof(tv), &tv);
724 } else {
725 struct timespec ts;
726 skb_get_timestampns(skb, &ts);
727 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
728 sizeof(ts), &ts);
729 }
730 }
731
732 memset(&tss, 0, sizeof(tss));
733 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
734 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
735 empty = 0;
736 if (shhwtstamps &&
737 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
738 !skb_is_swtx_tstamp(skb, false_tstamp) &&
739 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
740 empty = 0;
741 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
742 !skb_is_err_queue(skb))
743 put_ts_pktinfo(msg, skb);
744 }
745 if (!empty) {
746 put_cmsg(msg, SOL_SOCKET,
747 SCM_TIMESTAMPING, sizeof(tss), &tss);
748
749 if (skb_is_err_queue(skb) && skb->len &&
750 SKB_EXT_ERR(skb)->opt_stats)
751 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
752 skb->len, skb->data);
753 }
754 }
755 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
756
757 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
758 struct sk_buff *skb)
759 {
760 int ack;
761
762 if (!sock_flag(sk, SOCK_WIFI_STATUS))
763 return;
764 if (!skb->wifi_acked_valid)
765 return;
766
767 ack = skb->wifi_acked;
768
769 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
770 }
771 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
772
773 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
774 struct sk_buff *skb)
775 {
776 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
777 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
778 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
779 }
780
781 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
782 struct sk_buff *skb)
783 {
784 sock_recv_timestamp(msg, sk, skb);
785 sock_recv_drops(msg, sk, skb);
786 }
787 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
788
789 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
790 int flags)
791 {
792 return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
793 }
794
795 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
796 {
797 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
798
799 return err ?: sock_recvmsg_nosec(sock, msg, flags);
800 }
801 EXPORT_SYMBOL(sock_recvmsg);
802
803 /**
804 * kernel_recvmsg - Receive a message from a socket (kernel space)
805 * @sock: The socket to receive the message from
806 * @msg: Received message
807 * @vec: Input s/g array for message data
808 * @num: Size of input s/g array
809 * @size: Number of bytes to read
810 * @flags: Message flags (MSG_DONTWAIT, etc...)
811 *
812 * On return the msg structure contains the scatter/gather array passed in the
813 * vec argument. The array is modified so that it consists of the unfilled
814 * portion of the original array.
815 *
816 * The returned value is the total number of bytes received, or an error.
817 */
818 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
819 struct kvec *vec, size_t num, size_t size, int flags)
820 {
821 mm_segment_t oldfs = get_fs();
822 int result;
823
824 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
825 set_fs(KERNEL_DS);
826 result = sock_recvmsg(sock, msg, flags);
827 set_fs(oldfs);
828 return result;
829 }
830 EXPORT_SYMBOL(kernel_recvmsg);
831
832 static ssize_t sock_sendpage(struct file *file, struct page *page,
833 int offset, size_t size, loff_t *ppos, int more)
834 {
835 struct socket *sock;
836 int flags;
837
838 sock = file->private_data;
839
840 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
841 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
842 flags |= more;
843
844 return kernel_sendpage(sock, page, offset, size, flags);
845 }
846
847 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
848 struct pipe_inode_info *pipe, size_t len,
849 unsigned int flags)
850 {
851 struct socket *sock = file->private_data;
852
853 if (unlikely(!sock->ops->splice_read))
854 return -EINVAL;
855
856 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
857 }
858
859 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
860 {
861 struct file *file = iocb->ki_filp;
862 struct socket *sock = file->private_data;
863 struct msghdr msg = {.msg_iter = *to,
864 .msg_iocb = iocb};
865 ssize_t res;
866
867 if (file->f_flags & O_NONBLOCK)
868 msg.msg_flags = MSG_DONTWAIT;
869
870 if (iocb->ki_pos != 0)
871 return -ESPIPE;
872
873 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
874 return 0;
875
876 res = sock_recvmsg(sock, &msg, msg.msg_flags);
877 *to = msg.msg_iter;
878 return res;
879 }
880
881 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
882 {
883 struct file *file = iocb->ki_filp;
884 struct socket *sock = file->private_data;
885 struct msghdr msg = {.msg_iter = *from,
886 .msg_iocb = iocb};
887 ssize_t res;
888
889 if (iocb->ki_pos != 0)
890 return -ESPIPE;
891
892 if (file->f_flags & O_NONBLOCK)
893 msg.msg_flags = MSG_DONTWAIT;
894
895 if (sock->type == SOCK_SEQPACKET)
896 msg.msg_flags |= MSG_EOR;
897
898 res = sock_sendmsg(sock, &msg);
899 *from = msg.msg_iter;
900 return res;
901 }
902
903 /*
904 * Atomic setting of ioctl hooks to avoid race
905 * with module unload.
906 */
907
908 static DEFINE_MUTEX(br_ioctl_mutex);
909 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
910
911 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
912 {
913 mutex_lock(&br_ioctl_mutex);
914 br_ioctl_hook = hook;
915 mutex_unlock(&br_ioctl_mutex);
916 }
917 EXPORT_SYMBOL(brioctl_set);
918
919 static DEFINE_MUTEX(vlan_ioctl_mutex);
920 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
921
922 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
923 {
924 mutex_lock(&vlan_ioctl_mutex);
925 vlan_ioctl_hook = hook;
926 mutex_unlock(&vlan_ioctl_mutex);
927 }
928 EXPORT_SYMBOL(vlan_ioctl_set);
929
930 static DEFINE_MUTEX(dlci_ioctl_mutex);
931 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
932
933 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
934 {
935 mutex_lock(&dlci_ioctl_mutex);
936 dlci_ioctl_hook = hook;
937 mutex_unlock(&dlci_ioctl_mutex);
938 }
939 EXPORT_SYMBOL(dlci_ioctl_set);
940
941 static long sock_do_ioctl(struct net *net, struct socket *sock,
942 unsigned int cmd, unsigned long arg)
943 {
944 int err;
945 void __user *argp = (void __user *)arg;
946
947 err = sock->ops->ioctl(sock, cmd, arg);
948
949 /*
950 * If this ioctl is unknown try to hand it down
951 * to the NIC driver.
952 */
953 if (err == -ENOIOCTLCMD)
954 err = dev_ioctl(net, cmd, argp);
955
956 return err;
957 }
958
959 /*
960 * With an ioctl, arg may well be a user mode pointer, but we don't know
961 * what to do with it - that's up to the protocol still.
962 */
963
964 static struct ns_common *get_net_ns(struct ns_common *ns)
965 {
966 return &get_net(container_of(ns, struct net, ns))->ns;
967 }
968
969 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
970 {
971 struct socket *sock;
972 struct sock *sk;
973 void __user *argp = (void __user *)arg;
974 int pid, err;
975 struct net *net;
976
977 sock = file->private_data;
978 sk = sock->sk;
979 net = sock_net(sk);
980 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
981 err = dev_ioctl(net, cmd, argp);
982 } else
983 #ifdef CONFIG_WEXT_CORE
984 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
985 err = dev_ioctl(net, cmd, argp);
986 } else
987 #endif
988 switch (cmd) {
989 case FIOSETOWN:
990 case SIOCSPGRP:
991 err = -EFAULT;
992 if (get_user(pid, (int __user *)argp))
993 break;
994 err = f_setown(sock->file, pid, 1);
995 break;
996 case FIOGETOWN:
997 case SIOCGPGRP:
998 err = put_user(f_getown(sock->file),
999 (int __user *)argp);
1000 break;
1001 case SIOCGIFBR:
1002 case SIOCSIFBR:
1003 case SIOCBRADDBR:
1004 case SIOCBRDELBR:
1005 err = -ENOPKG;
1006 if (!br_ioctl_hook)
1007 request_module("bridge");
1008
1009 mutex_lock(&br_ioctl_mutex);
1010 if (br_ioctl_hook)
1011 err = br_ioctl_hook(net, cmd, argp);
1012 mutex_unlock(&br_ioctl_mutex);
1013 break;
1014 case SIOCGIFVLAN:
1015 case SIOCSIFVLAN:
1016 err = -ENOPKG;
1017 if (!vlan_ioctl_hook)
1018 request_module("8021q");
1019
1020 mutex_lock(&vlan_ioctl_mutex);
1021 if (vlan_ioctl_hook)
1022 err = vlan_ioctl_hook(net, argp);
1023 mutex_unlock(&vlan_ioctl_mutex);
1024 break;
1025 case SIOCADDDLCI:
1026 case SIOCDELDLCI:
1027 err = -ENOPKG;
1028 if (!dlci_ioctl_hook)
1029 request_module("dlci");
1030
1031 mutex_lock(&dlci_ioctl_mutex);
1032 if (dlci_ioctl_hook)
1033 err = dlci_ioctl_hook(cmd, argp);
1034 mutex_unlock(&dlci_ioctl_mutex);
1035 break;
1036 case SIOCGSKNS:
1037 err = -EPERM;
1038 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1039 break;
1040
1041 err = open_related_ns(&net->ns, get_net_ns);
1042 break;
1043 default:
1044 err = sock_do_ioctl(net, sock, cmd, arg);
1045 break;
1046 }
1047 return err;
1048 }
1049
1050 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1051 {
1052 int err;
1053 struct socket *sock = NULL;
1054
1055 err = security_socket_create(family, type, protocol, 1);
1056 if (err)
1057 goto out;
1058
1059 sock = sock_alloc();
1060 if (!sock) {
1061 err = -ENOMEM;
1062 goto out;
1063 }
1064
1065 sock->type = type;
1066 err = security_socket_post_create(sock, family, type, protocol, 1);
1067 if (err)
1068 goto out_release;
1069
1070 out:
1071 *res = sock;
1072 return err;
1073 out_release:
1074 sock_release(sock);
1075 sock = NULL;
1076 goto out;
1077 }
1078 EXPORT_SYMBOL(sock_create_lite);
1079
1080 /* No kernel lock held - perfect */
1081 static unsigned int sock_poll(struct file *file, poll_table *wait)
1082 {
1083 unsigned int busy_flag = 0;
1084 struct socket *sock;
1085
1086 /*
1087 * We can't return errors to poll, so it's either yes or no.
1088 */
1089 sock = file->private_data;
1090
1091 if (sk_can_busy_loop(sock->sk)) {
1092 /* this socket can poll_ll so tell the system call */
1093 busy_flag = POLL_BUSY_LOOP;
1094
1095 /* once, only if requested by syscall */
1096 if (wait && (wait->_key & POLL_BUSY_LOOP))
1097 sk_busy_loop(sock->sk, 1);
1098 }
1099
1100 return busy_flag | sock->ops->poll(file, sock, wait);
1101 }
1102
1103 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1104 {
1105 struct socket *sock = file->private_data;
1106
1107 return sock->ops->mmap(file, sock, vma);
1108 }
1109
1110 static int sock_close(struct inode *inode, struct file *filp)
1111 {
1112 sock_release(SOCKET_I(inode));
1113 return 0;
1114 }
1115
1116 /*
1117 * Update the socket async list
1118 *
1119 * Fasync_list locking strategy.
1120 *
1121 * 1. fasync_list is modified only under process context socket lock
1122 * i.e. under semaphore.
1123 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1124 * or under socket lock
1125 */
1126
1127 static int sock_fasync(int fd, struct file *filp, int on)
1128 {
1129 struct socket *sock = filp->private_data;
1130 struct sock *sk = sock->sk;
1131 struct socket_wq *wq;
1132
1133 if (sk == NULL)
1134 return -EINVAL;
1135
1136 lock_sock(sk);
1137 wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk));
1138 fasync_helper(fd, filp, on, &wq->fasync_list);
1139
1140 if (!wq->fasync_list)
1141 sock_reset_flag(sk, SOCK_FASYNC);
1142 else
1143 sock_set_flag(sk, SOCK_FASYNC);
1144
1145 release_sock(sk);
1146 return 0;
1147 }
1148
1149 /* This function may be called only under rcu_lock */
1150
1151 int sock_wake_async(struct socket_wq *wq, int how, int band)
1152 {
1153 if (!wq || !wq->fasync_list)
1154 return -1;
1155
1156 switch (how) {
1157 case SOCK_WAKE_WAITD:
1158 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1159 break;
1160 goto call_kill;
1161 case SOCK_WAKE_SPACE:
1162 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1163 break;
1164 /* fall through */
1165 case SOCK_WAKE_IO:
1166 call_kill:
1167 kill_fasync(&wq->fasync_list, SIGIO, band);
1168 break;
1169 case SOCK_WAKE_URG:
1170 kill_fasync(&wq->fasync_list, SIGURG, band);
1171 }
1172
1173 return 0;
1174 }
1175 EXPORT_SYMBOL(sock_wake_async);
1176
1177 int __sock_create(struct net *net, int family, int type, int protocol,
1178 struct socket **res, int kern)
1179 {
1180 int err;
1181 struct socket *sock;
1182 const struct net_proto_family *pf;
1183
1184 /*
1185 * Check protocol is in range
1186 */
1187 if (family < 0 || family >= NPROTO)
1188 return -EAFNOSUPPORT;
1189 if (type < 0 || type >= SOCK_MAX)
1190 return -EINVAL;
1191
1192 /* Compatibility.
1193
1194 This uglymoron is moved from INET layer to here to avoid
1195 deadlock in module load.
1196 */
1197 if (family == PF_INET && type == SOCK_PACKET) {
1198 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1199 current->comm);
1200 family = PF_PACKET;
1201 }
1202
1203 err = security_socket_create(family, type, protocol, kern);
1204 if (err)
1205 return err;
1206
1207 /*
1208 * Allocate the socket and allow the family to set things up. if
1209 * the protocol is 0, the family is instructed to select an appropriate
1210 * default.
1211 */
1212 sock = sock_alloc();
1213 if (!sock) {
1214 net_warn_ratelimited("socket: no more sockets\n");
1215 return -ENFILE; /* Not exactly a match, but its the
1216 closest posix thing */
1217 }
1218
1219 sock->type = type;
1220
1221 #ifdef CONFIG_MODULES
1222 /* Attempt to load a protocol module if the find failed.
1223 *
1224 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1225 * requested real, full-featured networking support upon configuration.
1226 * Otherwise module support will break!
1227 */
1228 if (rcu_access_pointer(net_families[family]) == NULL)
1229 request_module("net-pf-%d", family);
1230 #endif
1231
1232 rcu_read_lock();
1233 pf = rcu_dereference(net_families[family]);
1234 err = -EAFNOSUPPORT;
1235 if (!pf)
1236 goto out_release;
1237
1238 /*
1239 * We will call the ->create function, that possibly is in a loadable
1240 * module, so we have to bump that loadable module refcnt first.
1241 */
1242 if (!try_module_get(pf->owner))
1243 goto out_release;
1244
1245 /* Now protected by module ref count */
1246 rcu_read_unlock();
1247
1248 err = pf->create(net, sock, protocol, kern);
1249 if (err < 0)
1250 goto out_module_put;
1251
1252 /*
1253 * Now to bump the refcnt of the [loadable] module that owns this
1254 * socket at sock_release time we decrement its refcnt.
1255 */
1256 if (!try_module_get(sock->ops->owner))
1257 goto out_module_busy;
1258
1259 /*
1260 * Now that we're done with the ->create function, the [loadable]
1261 * module can have its refcnt decremented
1262 */
1263 module_put(pf->owner);
1264 err = security_socket_post_create(sock, family, type, protocol, kern);
1265 if (err)
1266 goto out_sock_release;
1267 *res = sock;
1268
1269 return 0;
1270
1271 out_module_busy:
1272 err = -EAFNOSUPPORT;
1273 out_module_put:
1274 sock->ops = NULL;
1275 module_put(pf->owner);
1276 out_sock_release:
1277 sock_release(sock);
1278 return err;
1279
1280 out_release:
1281 rcu_read_unlock();
1282 goto out_sock_release;
1283 }
1284 EXPORT_SYMBOL(__sock_create);
1285
1286 int sock_create(int family, int type, int protocol, struct socket **res)
1287 {
1288 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1289 }
1290 EXPORT_SYMBOL(sock_create);
1291
1292 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1293 {
1294 return __sock_create(net, family, type, protocol, res, 1);
1295 }
1296 EXPORT_SYMBOL(sock_create_kern);
1297
1298 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1299 {
1300 int retval;
1301 struct socket *sock;
1302 int flags;
1303
1304 /* Check the SOCK_* constants for consistency. */
1305 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1306 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1307 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1308 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1309
1310 flags = type & ~SOCK_TYPE_MASK;
1311 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1312 return -EINVAL;
1313 type &= SOCK_TYPE_MASK;
1314
1315 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1316 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1317
1318 retval = sock_create(family, type, protocol, &sock);
1319 if (retval < 0)
1320 goto out;
1321
1322 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1323 if (retval < 0)
1324 goto out_release;
1325
1326 out:
1327 /* It may be already another descriptor 8) Not kernel problem. */
1328 return retval;
1329
1330 out_release:
1331 sock_release(sock);
1332 return retval;
1333 }
1334
1335 /*
1336 * Create a pair of connected sockets.
1337 */
1338
1339 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1340 int __user *, usockvec)
1341 {
1342 struct socket *sock1, *sock2;
1343 int fd1, fd2, err;
1344 struct file *newfile1, *newfile2;
1345 int flags;
1346
1347 flags = type & ~SOCK_TYPE_MASK;
1348 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1349 return -EINVAL;
1350 type &= SOCK_TYPE_MASK;
1351
1352 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1353 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1354
1355 /*
1356 * Obtain the first socket and check if the underlying protocol
1357 * supports the socketpair call.
1358 */
1359
1360 err = sock_create(family, type, protocol, &sock1);
1361 if (err < 0)
1362 goto out;
1363
1364 err = sock_create(family, type, protocol, &sock2);
1365 if (err < 0)
1366 goto out_release_1;
1367
1368 err = sock1->ops->socketpair(sock1, sock2);
1369 if (err < 0)
1370 goto out_release_both;
1371
1372 fd1 = get_unused_fd_flags(flags);
1373 if (unlikely(fd1 < 0)) {
1374 err = fd1;
1375 goto out_release_both;
1376 }
1377
1378 fd2 = get_unused_fd_flags(flags);
1379 if (unlikely(fd2 < 0)) {
1380 err = fd2;
1381 goto out_put_unused_1;
1382 }
1383
1384 newfile1 = sock_alloc_file(sock1, flags, NULL);
1385 if (IS_ERR(newfile1)) {
1386 err = PTR_ERR(newfile1);
1387 goto out_put_unused_both;
1388 }
1389
1390 newfile2 = sock_alloc_file(sock2, flags, NULL);
1391 if (IS_ERR(newfile2)) {
1392 err = PTR_ERR(newfile2);
1393 goto out_fput_1;
1394 }
1395
1396 err = put_user(fd1, &usockvec[0]);
1397 if (err)
1398 goto out_fput_both;
1399
1400 err = put_user(fd2, &usockvec[1]);
1401 if (err)
1402 goto out_fput_both;
1403
1404 audit_fd_pair(fd1, fd2);
1405
1406 fd_install(fd1, newfile1);
1407 fd_install(fd2, newfile2);
1408 /* fd1 and fd2 may be already another descriptors.
1409 * Not kernel problem.
1410 */
1411
1412 return 0;
1413
1414 out_fput_both:
1415 fput(newfile2);
1416 fput(newfile1);
1417 put_unused_fd(fd2);
1418 put_unused_fd(fd1);
1419 goto out;
1420
1421 out_fput_1:
1422 fput(newfile1);
1423 put_unused_fd(fd2);
1424 put_unused_fd(fd1);
1425 sock_release(sock2);
1426 goto out;
1427
1428 out_put_unused_both:
1429 put_unused_fd(fd2);
1430 out_put_unused_1:
1431 put_unused_fd(fd1);
1432 out_release_both:
1433 sock_release(sock2);
1434 out_release_1:
1435 sock_release(sock1);
1436 out:
1437 return err;
1438 }
1439
1440 /*
1441 * Bind a name to a socket. Nothing much to do here since it's
1442 * the protocol's responsibility to handle the local address.
1443 *
1444 * We move the socket address to kernel space before we call
1445 * the protocol layer (having also checked the address is ok).
1446 */
1447
1448 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1449 {
1450 struct socket *sock;
1451 struct sockaddr_storage address;
1452 int err, fput_needed;
1453
1454 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1455 if (sock) {
1456 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1457 if (err >= 0) {
1458 err = security_socket_bind(sock,
1459 (struct sockaddr *)&address,
1460 addrlen);
1461 if (!err)
1462 err = sock->ops->bind(sock,
1463 (struct sockaddr *)
1464 &address, addrlen);
1465 }
1466 fput_light(sock->file, fput_needed);
1467 }
1468 return err;
1469 }
1470
1471 /*
1472 * Perform a listen. Basically, we allow the protocol to do anything
1473 * necessary for a listen, and if that works, we mark the socket as
1474 * ready for listening.
1475 */
1476
1477 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1478 {
1479 struct socket *sock;
1480 int err, fput_needed;
1481 int somaxconn;
1482
1483 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1484 if (sock) {
1485 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1486 if ((unsigned int)backlog > somaxconn)
1487 backlog = somaxconn;
1488
1489 err = security_socket_listen(sock, backlog);
1490 if (!err)
1491 err = sock->ops->listen(sock, backlog);
1492
1493 fput_light(sock->file, fput_needed);
1494 }
1495 return err;
1496 }
1497
1498 /*
1499 * For accept, we attempt to create a new socket, set up the link
1500 * with the client, wake up the client, then return the new
1501 * connected fd. We collect the address of the connector in kernel
1502 * space and move it to user at the very end. This is unclean because
1503 * we open the socket then return an error.
1504 *
1505 * 1003.1g adds the ability to recvmsg() to query connection pending
1506 * status to recvmsg. We need to add that support in a way thats
1507 * clean when we restucture accept also.
1508 */
1509
1510 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1511 int __user *, upeer_addrlen, int, flags)
1512 {
1513 struct socket *sock, *newsock;
1514 struct file *newfile;
1515 int err, len, newfd, fput_needed;
1516 struct sockaddr_storage address;
1517
1518 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1519 return -EINVAL;
1520
1521 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1522 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1523
1524 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1525 if (!sock)
1526 goto out;
1527
1528 err = -ENFILE;
1529 newsock = sock_alloc();
1530 if (!newsock)
1531 goto out_put;
1532
1533 newsock->type = sock->type;
1534 newsock->ops = sock->ops;
1535
1536 /*
1537 * We don't need try_module_get here, as the listening socket (sock)
1538 * has the protocol module (sock->ops->owner) held.
1539 */
1540 __module_get(newsock->ops->owner);
1541
1542 newfd = get_unused_fd_flags(flags);
1543 if (unlikely(newfd < 0)) {
1544 err = newfd;
1545 sock_release(newsock);
1546 goto out_put;
1547 }
1548 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1549 if (IS_ERR(newfile)) {
1550 err = PTR_ERR(newfile);
1551 put_unused_fd(newfd);
1552 sock_release(newsock);
1553 goto out_put;
1554 }
1555
1556 err = security_socket_accept(sock, newsock);
1557 if (err)
1558 goto out_fd;
1559
1560 err = sock->ops->accept(sock, newsock, sock->file->f_flags, false);
1561 if (err < 0)
1562 goto out_fd;
1563
1564 if (upeer_sockaddr) {
1565 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1566 &len, 2) < 0) {
1567 err = -ECONNABORTED;
1568 goto out_fd;
1569 }
1570 err = move_addr_to_user(&address,
1571 len, upeer_sockaddr, upeer_addrlen);
1572 if (err < 0)
1573 goto out_fd;
1574 }
1575
1576 /* File flags are not inherited via accept() unlike another OSes. */
1577
1578 fd_install(newfd, newfile);
1579 err = newfd;
1580
1581 out_put:
1582 fput_light(sock->file, fput_needed);
1583 out:
1584 return err;
1585 out_fd:
1586 fput(newfile);
1587 put_unused_fd(newfd);
1588 goto out_put;
1589 }
1590
1591 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1592 int __user *, upeer_addrlen)
1593 {
1594 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1595 }
1596
1597 /*
1598 * Attempt to connect to a socket with the server address. The address
1599 * is in user space so we verify it is OK and move it to kernel space.
1600 *
1601 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1602 * break bindings
1603 *
1604 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1605 * other SEQPACKET protocols that take time to connect() as it doesn't
1606 * include the -EINPROGRESS status for such sockets.
1607 */
1608
1609 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1610 int, addrlen)
1611 {
1612 struct socket *sock;
1613 struct sockaddr_storage address;
1614 int err, fput_needed;
1615
1616 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1617 if (!sock)
1618 goto out;
1619 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1620 if (err < 0)
1621 goto out_put;
1622
1623 err =
1624 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1625 if (err)
1626 goto out_put;
1627
1628 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1629 sock->file->f_flags);
1630 out_put:
1631 fput_light(sock->file, fput_needed);
1632 out:
1633 return err;
1634 }
1635
1636 /*
1637 * Get the local address ('name') of a socket object. Move the obtained
1638 * name to user space.
1639 */
1640
1641 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1642 int __user *, usockaddr_len)
1643 {
1644 struct socket *sock;
1645 struct sockaddr_storage address;
1646 int len, err, fput_needed;
1647
1648 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1649 if (!sock)
1650 goto out;
1651
1652 err = security_socket_getsockname(sock);
1653 if (err)
1654 goto out_put;
1655
1656 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1657 if (err)
1658 goto out_put;
1659 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1660
1661 out_put:
1662 fput_light(sock->file, fput_needed);
1663 out:
1664 return err;
1665 }
1666
1667 /*
1668 * Get the remote address ('name') of a socket object. Move the obtained
1669 * name to user space.
1670 */
1671
1672 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1673 int __user *, usockaddr_len)
1674 {
1675 struct socket *sock;
1676 struct sockaddr_storage address;
1677 int len, err, fput_needed;
1678
1679 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1680 if (sock != NULL) {
1681 err = security_socket_getpeername(sock);
1682 if (err) {
1683 fput_light(sock->file, fput_needed);
1684 return err;
1685 }
1686
1687 err =
1688 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1689 1);
1690 if (!err)
1691 err = move_addr_to_user(&address, len, usockaddr,
1692 usockaddr_len);
1693 fput_light(sock->file, fput_needed);
1694 }
1695 return err;
1696 }
1697
1698 /*
1699 * Send a datagram to a given address. We move the address into kernel
1700 * space and check the user space data area is readable before invoking
1701 * the protocol.
1702 */
1703
1704 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1705 unsigned int, flags, struct sockaddr __user *, addr,
1706 int, addr_len)
1707 {
1708 struct socket *sock;
1709 struct sockaddr_storage address;
1710 int err;
1711 struct msghdr msg;
1712 struct iovec iov;
1713 int fput_needed;
1714
1715 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1716 if (unlikely(err))
1717 return err;
1718 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1719 if (!sock)
1720 goto out;
1721
1722 msg.msg_name = NULL;
1723 msg.msg_control = NULL;
1724 msg.msg_controllen = 0;
1725 msg.msg_namelen = 0;
1726 if (addr) {
1727 err = move_addr_to_kernel(addr, addr_len, &address);
1728 if (err < 0)
1729 goto out_put;
1730 msg.msg_name = (struct sockaddr *)&address;
1731 msg.msg_namelen = addr_len;
1732 }
1733 if (sock->file->f_flags & O_NONBLOCK)
1734 flags |= MSG_DONTWAIT;
1735 msg.msg_flags = flags;
1736 err = sock_sendmsg(sock, &msg);
1737
1738 out_put:
1739 fput_light(sock->file, fput_needed);
1740 out:
1741 return err;
1742 }
1743
1744 /*
1745 * Send a datagram down a socket.
1746 */
1747
1748 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1749 unsigned int, flags)
1750 {
1751 return sys_sendto(fd, buff, len, flags, NULL, 0);
1752 }
1753
1754 /*
1755 * Receive a frame from the socket and optionally record the address of the
1756 * sender. We verify the buffers are writable and if needed move the
1757 * sender address from kernel to user space.
1758 */
1759
1760 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1761 unsigned int, flags, struct sockaddr __user *, addr,
1762 int __user *, addr_len)
1763 {
1764 struct socket *sock;
1765 struct iovec iov;
1766 struct msghdr msg;
1767 struct sockaddr_storage address;
1768 int err, err2;
1769 int fput_needed;
1770
1771 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1772 if (unlikely(err))
1773 return err;
1774 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1775 if (!sock)
1776 goto out;
1777
1778 msg.msg_control = NULL;
1779 msg.msg_controllen = 0;
1780 /* Save some cycles and don't copy the address if not needed */
1781 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1782 /* We assume all kernel code knows the size of sockaddr_storage */
1783 msg.msg_namelen = 0;
1784 msg.msg_iocb = NULL;
1785 msg.msg_flags = 0;
1786 if (sock->file->f_flags & O_NONBLOCK)
1787 flags |= MSG_DONTWAIT;
1788 err = sock_recvmsg(sock, &msg, flags);
1789
1790 if (err >= 0 && addr != NULL) {
1791 err2 = move_addr_to_user(&address,
1792 msg.msg_namelen, addr, addr_len);
1793 if (err2 < 0)
1794 err = err2;
1795 }
1796
1797 fput_light(sock->file, fput_needed);
1798 out:
1799 return err;
1800 }
1801
1802 /*
1803 * Receive a datagram from a socket.
1804 */
1805
1806 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1807 unsigned int, flags)
1808 {
1809 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1810 }
1811
1812 /*
1813 * Set a socket option. Because we don't know the option lengths we have
1814 * to pass the user mode parameter for the protocols to sort out.
1815 */
1816
1817 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1818 char __user *, optval, int, optlen)
1819 {
1820 int err, fput_needed;
1821 struct socket *sock;
1822
1823 if (optlen < 0)
1824 return -EINVAL;
1825
1826 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1827 if (sock != NULL) {
1828 err = security_socket_setsockopt(sock, level, optname);
1829 if (err)
1830 goto out_put;
1831
1832 if (level == SOL_SOCKET)
1833 err =
1834 sock_setsockopt(sock, level, optname, optval,
1835 optlen);
1836 else
1837 err =
1838 sock->ops->setsockopt(sock, level, optname, optval,
1839 optlen);
1840 out_put:
1841 fput_light(sock->file, fput_needed);
1842 }
1843 return err;
1844 }
1845
1846 /*
1847 * Get a socket option. Because we don't know the option lengths we have
1848 * to pass a user mode parameter for the protocols to sort out.
1849 */
1850
1851 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1852 char __user *, optval, int __user *, optlen)
1853 {
1854 int err, fput_needed;
1855 struct socket *sock;
1856
1857 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1858 if (sock != NULL) {
1859 err = security_socket_getsockopt(sock, level, optname);
1860 if (err)
1861 goto out_put;
1862
1863 if (level == SOL_SOCKET)
1864 err =
1865 sock_getsockopt(sock, level, optname, optval,
1866 optlen);
1867 else
1868 err =
1869 sock->ops->getsockopt(sock, level, optname, optval,
1870 optlen);
1871 out_put:
1872 fput_light(sock->file, fput_needed);
1873 }
1874 return err;
1875 }
1876
1877 /*
1878 * Shutdown a socket.
1879 */
1880
1881 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1882 {
1883 int err, fput_needed;
1884 struct socket *sock;
1885
1886 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1887 if (sock != NULL) {
1888 err = security_socket_shutdown(sock, how);
1889 if (!err)
1890 err = sock->ops->shutdown(sock, how);
1891 fput_light(sock->file, fput_needed);
1892 }
1893 return err;
1894 }
1895
1896 /* A couple of helpful macros for getting the address of the 32/64 bit
1897 * fields which are the same type (int / unsigned) on our platforms.
1898 */
1899 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1900 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1901 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1902
1903 struct used_address {
1904 struct sockaddr_storage name;
1905 unsigned int name_len;
1906 };
1907
1908 static int copy_msghdr_from_user(struct msghdr *kmsg,
1909 struct user_msghdr __user *umsg,
1910 struct sockaddr __user **save_addr,
1911 struct iovec **iov)
1912 {
1913 struct user_msghdr msg;
1914 ssize_t err;
1915
1916 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
1917 return -EFAULT;
1918
1919 kmsg->msg_control = (void __force *)msg.msg_control;
1920 kmsg->msg_controllen = msg.msg_controllen;
1921 kmsg->msg_flags = msg.msg_flags;
1922
1923 kmsg->msg_namelen = msg.msg_namelen;
1924 if (!msg.msg_name)
1925 kmsg->msg_namelen = 0;
1926
1927 if (kmsg->msg_namelen < 0)
1928 return -EINVAL;
1929
1930 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1931 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1932
1933 if (save_addr)
1934 *save_addr = msg.msg_name;
1935
1936 if (msg.msg_name && kmsg->msg_namelen) {
1937 if (!save_addr) {
1938 err = move_addr_to_kernel(msg.msg_name,
1939 kmsg->msg_namelen,
1940 kmsg->msg_name);
1941 if (err < 0)
1942 return err;
1943 }
1944 } else {
1945 kmsg->msg_name = NULL;
1946 kmsg->msg_namelen = 0;
1947 }
1948
1949 if (msg.msg_iovlen > UIO_MAXIOV)
1950 return -EMSGSIZE;
1951
1952 kmsg->msg_iocb = NULL;
1953
1954 return import_iovec(save_addr ? READ : WRITE,
1955 msg.msg_iov, msg.msg_iovlen,
1956 UIO_FASTIOV, iov, &kmsg->msg_iter);
1957 }
1958
1959 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1960 struct msghdr *msg_sys, unsigned int flags,
1961 struct used_address *used_address,
1962 unsigned int allowed_msghdr_flags)
1963 {
1964 struct compat_msghdr __user *msg_compat =
1965 (struct compat_msghdr __user *)msg;
1966 struct sockaddr_storage address;
1967 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1968 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1969 __aligned(sizeof(__kernel_size_t));
1970 /* 20 is size of ipv6_pktinfo */
1971 unsigned char *ctl_buf = ctl;
1972 int ctl_len;
1973 ssize_t err;
1974
1975 msg_sys->msg_name = &address;
1976
1977 if (MSG_CMSG_COMPAT & flags)
1978 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1979 else
1980 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1981 if (err < 0)
1982 return err;
1983
1984 err = -ENOBUFS;
1985
1986 if (msg_sys->msg_controllen > INT_MAX)
1987 goto out_freeiov;
1988 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
1989 ctl_len = msg_sys->msg_controllen;
1990 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1991 err =
1992 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1993 sizeof(ctl));
1994 if (err)
1995 goto out_freeiov;
1996 ctl_buf = msg_sys->msg_control;
1997 ctl_len = msg_sys->msg_controllen;
1998 } else if (ctl_len) {
1999 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2000 CMSG_ALIGN(sizeof(struct cmsghdr)));
2001 if (ctl_len > sizeof(ctl)) {
2002 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2003 if (ctl_buf == NULL)
2004 goto out_freeiov;
2005 }
2006 err = -EFAULT;
2007 /*
2008 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2009 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2010 * checking falls down on this.
2011 */
2012 if (copy_from_user(ctl_buf,
2013 (void __user __force *)msg_sys->msg_control,
2014 ctl_len))
2015 goto out_freectl;
2016 msg_sys->msg_control = ctl_buf;
2017 }
2018 msg_sys->msg_flags = flags;
2019
2020 if (sock->file->f_flags & O_NONBLOCK)
2021 msg_sys->msg_flags |= MSG_DONTWAIT;
2022 /*
2023 * If this is sendmmsg() and current destination address is same as
2024 * previously succeeded address, omit asking LSM's decision.
2025 * used_address->name_len is initialized to UINT_MAX so that the first
2026 * destination address never matches.
2027 */
2028 if (used_address && msg_sys->msg_name &&
2029 used_address->name_len == msg_sys->msg_namelen &&
2030 !memcmp(&used_address->name, msg_sys->msg_name,
2031 used_address->name_len)) {
2032 err = sock_sendmsg_nosec(sock, msg_sys);
2033 goto out_freectl;
2034 }
2035 err = sock_sendmsg(sock, msg_sys);
2036 /*
2037 * If this is sendmmsg() and sending to current destination address was
2038 * successful, remember it.
2039 */
2040 if (used_address && err >= 0) {
2041 used_address->name_len = msg_sys->msg_namelen;
2042 if (msg_sys->msg_name)
2043 memcpy(&used_address->name, msg_sys->msg_name,
2044 used_address->name_len);
2045 }
2046
2047 out_freectl:
2048 if (ctl_buf != ctl)
2049 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2050 out_freeiov:
2051 kfree(iov);
2052 return err;
2053 }
2054
2055 /*
2056 * BSD sendmsg interface
2057 */
2058
2059 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2060 {
2061 int fput_needed, err;
2062 struct msghdr msg_sys;
2063 struct socket *sock;
2064
2065 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2066 if (!sock)
2067 goto out;
2068
2069 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2070
2071 fput_light(sock->file, fput_needed);
2072 out:
2073 return err;
2074 }
2075
2076 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2077 {
2078 if (flags & MSG_CMSG_COMPAT)
2079 return -EINVAL;
2080 return __sys_sendmsg(fd, msg, flags);
2081 }
2082
2083 /*
2084 * Linux sendmmsg interface
2085 */
2086
2087 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2088 unsigned int flags)
2089 {
2090 int fput_needed, err, datagrams;
2091 struct socket *sock;
2092 struct mmsghdr __user *entry;
2093 struct compat_mmsghdr __user *compat_entry;
2094 struct msghdr msg_sys;
2095 struct used_address used_address;
2096 unsigned int oflags = flags;
2097
2098 if (vlen > UIO_MAXIOV)
2099 vlen = UIO_MAXIOV;
2100
2101 datagrams = 0;
2102
2103 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2104 if (!sock)
2105 return err;
2106
2107 used_address.name_len = UINT_MAX;
2108 entry = mmsg;
2109 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2110 err = 0;
2111 flags |= MSG_BATCH;
2112
2113 while (datagrams < vlen) {
2114 if (datagrams == vlen - 1)
2115 flags = oflags;
2116
2117 if (MSG_CMSG_COMPAT & flags) {
2118 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2119 &msg_sys, flags, &used_address, MSG_EOR);
2120 if (err < 0)
2121 break;
2122 err = __put_user(err, &compat_entry->msg_len);
2123 ++compat_entry;
2124 } else {
2125 err = ___sys_sendmsg(sock,
2126 (struct user_msghdr __user *)entry,
2127 &msg_sys, flags, &used_address, MSG_EOR);
2128 if (err < 0)
2129 break;
2130 err = put_user(err, &entry->msg_len);
2131 ++entry;
2132 }
2133
2134 if (err)
2135 break;
2136 ++datagrams;
2137 if (msg_data_left(&msg_sys))
2138 break;
2139 cond_resched();
2140 }
2141
2142 fput_light(sock->file, fput_needed);
2143
2144 /* We only return an error if no datagrams were able to be sent */
2145 if (datagrams != 0)
2146 return datagrams;
2147
2148 return err;
2149 }
2150
2151 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2152 unsigned int, vlen, unsigned int, flags)
2153 {
2154 if (flags & MSG_CMSG_COMPAT)
2155 return -EINVAL;
2156 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2157 }
2158
2159 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2160 struct msghdr *msg_sys, unsigned int flags, int nosec)
2161 {
2162 struct compat_msghdr __user *msg_compat =
2163 (struct compat_msghdr __user *)msg;
2164 struct iovec iovstack[UIO_FASTIOV];
2165 struct iovec *iov = iovstack;
2166 unsigned long cmsg_ptr;
2167 int len;
2168 ssize_t err;
2169
2170 /* kernel mode address */
2171 struct sockaddr_storage addr;
2172
2173 /* user mode address pointers */
2174 struct sockaddr __user *uaddr;
2175 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2176
2177 msg_sys->msg_name = &addr;
2178
2179 if (MSG_CMSG_COMPAT & flags)
2180 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2181 else
2182 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2183 if (err < 0)
2184 return err;
2185
2186 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2187 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2188
2189 /* We assume all kernel code knows the size of sockaddr_storage */
2190 msg_sys->msg_namelen = 0;
2191
2192 if (sock->file->f_flags & O_NONBLOCK)
2193 flags |= MSG_DONTWAIT;
2194 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2195 if (err < 0)
2196 goto out_freeiov;
2197 len = err;
2198
2199 if (uaddr != NULL) {
2200 err = move_addr_to_user(&addr,
2201 msg_sys->msg_namelen, uaddr,
2202 uaddr_len);
2203 if (err < 0)
2204 goto out_freeiov;
2205 }
2206 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2207 COMPAT_FLAGS(msg));
2208 if (err)
2209 goto out_freeiov;
2210 if (MSG_CMSG_COMPAT & flags)
2211 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2212 &msg_compat->msg_controllen);
2213 else
2214 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2215 &msg->msg_controllen);
2216 if (err)
2217 goto out_freeiov;
2218 err = len;
2219
2220 out_freeiov:
2221 kfree(iov);
2222 return err;
2223 }
2224
2225 /*
2226 * BSD recvmsg interface
2227 */
2228
2229 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2230 {
2231 int fput_needed, err;
2232 struct msghdr msg_sys;
2233 struct socket *sock;
2234
2235 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2236 if (!sock)
2237 goto out;
2238
2239 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2240
2241 fput_light(sock->file, fput_needed);
2242 out:
2243 return err;
2244 }
2245
2246 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2247 unsigned int, flags)
2248 {
2249 if (flags & MSG_CMSG_COMPAT)
2250 return -EINVAL;
2251 return __sys_recvmsg(fd, msg, flags);
2252 }
2253
2254 /*
2255 * Linux recvmmsg interface
2256 */
2257
2258 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2259 unsigned int flags, struct timespec *timeout)
2260 {
2261 int fput_needed, err, datagrams;
2262 struct socket *sock;
2263 struct mmsghdr __user *entry;
2264 struct compat_mmsghdr __user *compat_entry;
2265 struct msghdr msg_sys;
2266 struct timespec64 end_time;
2267 struct timespec64 timeout64;
2268
2269 if (timeout &&
2270 poll_select_set_timeout(&end_time, timeout->tv_sec,
2271 timeout->tv_nsec))
2272 return -EINVAL;
2273
2274 datagrams = 0;
2275
2276 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2277 if (!sock)
2278 return err;
2279
2280 err = sock_error(sock->sk);
2281 if (err) {
2282 datagrams = err;
2283 goto out_put;
2284 }
2285
2286 entry = mmsg;
2287 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2288
2289 while (datagrams < vlen) {
2290 /*
2291 * No need to ask LSM for more than the first datagram.
2292 */
2293 if (MSG_CMSG_COMPAT & flags) {
2294 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2295 &msg_sys, flags & ~MSG_WAITFORONE,
2296 datagrams);
2297 if (err < 0)
2298 break;
2299 err = __put_user(err, &compat_entry->msg_len);
2300 ++compat_entry;
2301 } else {
2302 err = ___sys_recvmsg(sock,
2303 (struct user_msghdr __user *)entry,
2304 &msg_sys, flags & ~MSG_WAITFORONE,
2305 datagrams);
2306 if (err < 0)
2307 break;
2308 err = put_user(err, &entry->msg_len);
2309 ++entry;
2310 }
2311
2312 if (err)
2313 break;
2314 ++datagrams;
2315
2316 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2317 if (flags & MSG_WAITFORONE)
2318 flags |= MSG_DONTWAIT;
2319
2320 if (timeout) {
2321 ktime_get_ts64(&timeout64);
2322 *timeout = timespec64_to_timespec(
2323 timespec64_sub(end_time, timeout64));
2324 if (timeout->tv_sec < 0) {
2325 timeout->tv_sec = timeout->tv_nsec = 0;
2326 break;
2327 }
2328
2329 /* Timeout, return less than vlen datagrams */
2330 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2331 break;
2332 }
2333
2334 /* Out of band data, return right away */
2335 if (msg_sys.msg_flags & MSG_OOB)
2336 break;
2337 cond_resched();
2338 }
2339
2340 if (err == 0)
2341 goto out_put;
2342
2343 if (datagrams == 0) {
2344 datagrams = err;
2345 goto out_put;
2346 }
2347
2348 /*
2349 * We may return less entries than requested (vlen) if the
2350 * sock is non block and there aren't enough datagrams...
2351 */
2352 if (err != -EAGAIN) {
2353 /*
2354 * ... or if recvmsg returns an error after we
2355 * received some datagrams, where we record the
2356 * error to return on the next call or if the
2357 * app asks about it using getsockopt(SO_ERROR).
2358 */
2359 sock->sk->sk_err = -err;
2360 }
2361 out_put:
2362 fput_light(sock->file, fput_needed);
2363
2364 return datagrams;
2365 }
2366
2367 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2368 unsigned int, vlen, unsigned int, flags,
2369 struct timespec __user *, timeout)
2370 {
2371 int datagrams;
2372 struct timespec timeout_sys;
2373
2374 if (flags & MSG_CMSG_COMPAT)
2375 return -EINVAL;
2376
2377 if (!timeout)
2378 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2379
2380 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2381 return -EFAULT;
2382
2383 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2384
2385 if (datagrams > 0 &&
2386 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2387 datagrams = -EFAULT;
2388
2389 return datagrams;
2390 }
2391
2392 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2393 /* Argument list sizes for sys_socketcall */
2394 #define AL(x) ((x) * sizeof(unsigned long))
2395 static const unsigned char nargs[21] = {
2396 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2397 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2398 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2399 AL(4), AL(5), AL(4)
2400 };
2401
2402 #undef AL
2403
2404 /*
2405 * System call vectors.
2406 *
2407 * Argument checking cleaned up. Saved 20% in size.
2408 * This function doesn't need to set the kernel lock because
2409 * it is set by the callees.
2410 */
2411
2412 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2413 {
2414 unsigned long a[AUDITSC_ARGS];
2415 unsigned long a0, a1;
2416 int err;
2417 unsigned int len;
2418
2419 if (call < 1 || call > SYS_SENDMMSG)
2420 return -EINVAL;
2421
2422 len = nargs[call];
2423 if (len > sizeof(a))
2424 return -EINVAL;
2425
2426 /* copy_from_user should be SMP safe. */
2427 if (copy_from_user(a, args, len))
2428 return -EFAULT;
2429
2430 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2431 if (err)
2432 return err;
2433
2434 a0 = a[0];
2435 a1 = a[1];
2436
2437 switch (call) {
2438 case SYS_SOCKET:
2439 err = sys_socket(a0, a1, a[2]);
2440 break;
2441 case SYS_BIND:
2442 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2443 break;
2444 case SYS_CONNECT:
2445 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2446 break;
2447 case SYS_LISTEN:
2448 err = sys_listen(a0, a1);
2449 break;
2450 case SYS_ACCEPT:
2451 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2452 (int __user *)a[2], 0);
2453 break;
2454 case SYS_GETSOCKNAME:
2455 err =
2456 sys_getsockname(a0, (struct sockaddr __user *)a1,
2457 (int __user *)a[2]);
2458 break;
2459 case SYS_GETPEERNAME:
2460 err =
2461 sys_getpeername(a0, (struct sockaddr __user *)a1,
2462 (int __user *)a[2]);
2463 break;
2464 case SYS_SOCKETPAIR:
2465 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2466 break;
2467 case SYS_SEND:
2468 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2469 break;
2470 case SYS_SENDTO:
2471 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2472 (struct sockaddr __user *)a[4], a[5]);
2473 break;
2474 case SYS_RECV:
2475 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2476 break;
2477 case SYS_RECVFROM:
2478 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2479 (struct sockaddr __user *)a[4],
2480 (int __user *)a[5]);
2481 break;
2482 case SYS_SHUTDOWN:
2483 err = sys_shutdown(a0, a1);
2484 break;
2485 case SYS_SETSOCKOPT:
2486 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2487 break;
2488 case SYS_GETSOCKOPT:
2489 err =
2490 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2491 (int __user *)a[4]);
2492 break;
2493 case SYS_SENDMSG:
2494 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2495 break;
2496 case SYS_SENDMMSG:
2497 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2498 break;
2499 case SYS_RECVMSG:
2500 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2501 break;
2502 case SYS_RECVMMSG:
2503 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2504 (struct timespec __user *)a[4]);
2505 break;
2506 case SYS_ACCEPT4:
2507 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2508 (int __user *)a[2], a[3]);
2509 break;
2510 default:
2511 err = -EINVAL;
2512 break;
2513 }
2514 return err;
2515 }
2516
2517 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2518
2519 /**
2520 * sock_register - add a socket protocol handler
2521 * @ops: description of protocol
2522 *
2523 * This function is called by a protocol handler that wants to
2524 * advertise its address family, and have it linked into the
2525 * socket interface. The value ops->family corresponds to the
2526 * socket system call protocol family.
2527 */
2528 int sock_register(const struct net_proto_family *ops)
2529 {
2530 int err;
2531
2532 if (ops->family >= NPROTO) {
2533 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2534 return -ENOBUFS;
2535 }
2536
2537 spin_lock(&net_family_lock);
2538 if (rcu_dereference_protected(net_families[ops->family],
2539 lockdep_is_held(&net_family_lock)))
2540 err = -EEXIST;
2541 else {
2542 rcu_assign_pointer(net_families[ops->family], ops);
2543 err = 0;
2544 }
2545 spin_unlock(&net_family_lock);
2546
2547 pr_info("NET: Registered protocol family %d\n", ops->family);
2548 return err;
2549 }
2550 EXPORT_SYMBOL(sock_register);
2551
2552 /**
2553 * sock_unregister - remove a protocol handler
2554 * @family: protocol family to remove
2555 *
2556 * This function is called by a protocol handler that wants to
2557 * remove its address family, and have it unlinked from the
2558 * new socket creation.
2559 *
2560 * If protocol handler is a module, then it can use module reference
2561 * counts to protect against new references. If protocol handler is not
2562 * a module then it needs to provide its own protection in
2563 * the ops->create routine.
2564 */
2565 void sock_unregister(int family)
2566 {
2567 BUG_ON(family < 0 || family >= NPROTO);
2568
2569 spin_lock(&net_family_lock);
2570 RCU_INIT_POINTER(net_families[family], NULL);
2571 spin_unlock(&net_family_lock);
2572
2573 synchronize_rcu();
2574
2575 pr_info("NET: Unregistered protocol family %d\n", family);
2576 }
2577 EXPORT_SYMBOL(sock_unregister);
2578
2579 static int __init sock_init(void)
2580 {
2581 int err;
2582 /*
2583 * Initialize the network sysctl infrastructure.
2584 */
2585 err = net_sysctl_init();
2586 if (err)
2587 goto out;
2588
2589 /*
2590 * Initialize skbuff SLAB cache
2591 */
2592 skb_init();
2593
2594 /*
2595 * Initialize the protocols module.
2596 */
2597
2598 init_inodecache();
2599
2600 err = register_filesystem(&sock_fs_type);
2601 if (err)
2602 goto out_fs;
2603 sock_mnt = kern_mount(&sock_fs_type);
2604 if (IS_ERR(sock_mnt)) {
2605 err = PTR_ERR(sock_mnt);
2606 goto out_mount;
2607 }
2608
2609 /* The real protocol initialization is performed in later initcalls.
2610 */
2611
2612 #ifdef CONFIG_NETFILTER
2613 err = netfilter_init();
2614 if (err)
2615 goto out;
2616 #endif
2617
2618 ptp_classifier_init();
2619
2620 out:
2621 return err;
2622
2623 out_mount:
2624 unregister_filesystem(&sock_fs_type);
2625 out_fs:
2626 goto out;
2627 }
2628
2629 core_initcall(sock_init); /* early initcall */
2630
2631 #ifdef CONFIG_PROC_FS
2632 void socket_seq_show(struct seq_file *seq)
2633 {
2634 int cpu;
2635 int counter = 0;
2636
2637 for_each_possible_cpu(cpu)
2638 counter += per_cpu(sockets_in_use, cpu);
2639
2640 /* It can be negative, by the way. 8) */
2641 if (counter < 0)
2642 counter = 0;
2643
2644 seq_printf(seq, "sockets: used %d\n", counter);
2645 }
2646 #endif /* CONFIG_PROC_FS */
2647
2648 #ifdef CONFIG_COMPAT
2649 static int do_siocgstamp(struct net *net, struct socket *sock,
2650 unsigned int cmd, void __user *up)
2651 {
2652 mm_segment_t old_fs = get_fs();
2653 struct timeval ktv;
2654 int err;
2655
2656 set_fs(KERNEL_DS);
2657 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2658 set_fs(old_fs);
2659 if (!err)
2660 err = compat_put_timeval(&ktv, up);
2661
2662 return err;
2663 }
2664
2665 static int do_siocgstampns(struct net *net, struct socket *sock,
2666 unsigned int cmd, void __user *up)
2667 {
2668 mm_segment_t old_fs = get_fs();
2669 struct timespec kts;
2670 int err;
2671
2672 set_fs(KERNEL_DS);
2673 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2674 set_fs(old_fs);
2675 if (!err)
2676 err = compat_put_timespec(&kts, up);
2677
2678 return err;
2679 }
2680
2681 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2682 {
2683 struct ifreq __user *uifr;
2684 int err;
2685
2686 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2687 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2688 return -EFAULT;
2689
2690 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2691 if (err)
2692 return err;
2693
2694 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2695 return -EFAULT;
2696
2697 return 0;
2698 }
2699
2700 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2701 {
2702 struct compat_ifconf ifc32;
2703 struct ifconf ifc;
2704 struct ifconf __user *uifc;
2705 struct compat_ifreq __user *ifr32;
2706 struct ifreq __user *ifr;
2707 unsigned int i, j;
2708 int err;
2709
2710 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2711 return -EFAULT;
2712
2713 memset(&ifc, 0, sizeof(ifc));
2714 if (ifc32.ifcbuf == 0) {
2715 ifc32.ifc_len = 0;
2716 ifc.ifc_len = 0;
2717 ifc.ifc_req = NULL;
2718 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2719 } else {
2720 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2721 sizeof(struct ifreq);
2722 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2723 ifc.ifc_len = len;
2724 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2725 ifr32 = compat_ptr(ifc32.ifcbuf);
2726 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2727 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2728 return -EFAULT;
2729 ifr++;
2730 ifr32++;
2731 }
2732 }
2733 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2734 return -EFAULT;
2735
2736 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2737 if (err)
2738 return err;
2739
2740 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2741 return -EFAULT;
2742
2743 ifr = ifc.ifc_req;
2744 ifr32 = compat_ptr(ifc32.ifcbuf);
2745 for (i = 0, j = 0;
2746 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2747 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2748 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2749 return -EFAULT;
2750 ifr32++;
2751 ifr++;
2752 }
2753
2754 if (ifc32.ifcbuf == 0) {
2755 /* Translate from 64-bit structure multiple to
2756 * a 32-bit one.
2757 */
2758 i = ifc.ifc_len;
2759 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2760 ifc32.ifc_len = i;
2761 } else {
2762 ifc32.ifc_len = i;
2763 }
2764 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2765 return -EFAULT;
2766
2767 return 0;
2768 }
2769
2770 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2771 {
2772 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2773 bool convert_in = false, convert_out = false;
2774 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2775 struct ethtool_rxnfc __user *rxnfc;
2776 struct ifreq __user *ifr;
2777 u32 rule_cnt = 0, actual_rule_cnt;
2778 u32 ethcmd;
2779 u32 data;
2780 int ret;
2781
2782 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2783 return -EFAULT;
2784
2785 compat_rxnfc = compat_ptr(data);
2786
2787 if (get_user(ethcmd, &compat_rxnfc->cmd))
2788 return -EFAULT;
2789
2790 /* Most ethtool structures are defined without padding.
2791 * Unfortunately struct ethtool_rxnfc is an exception.
2792 */
2793 switch (ethcmd) {
2794 default:
2795 break;
2796 case ETHTOOL_GRXCLSRLALL:
2797 /* Buffer size is variable */
2798 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2799 return -EFAULT;
2800 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2801 return -ENOMEM;
2802 buf_size += rule_cnt * sizeof(u32);
2803 /* fall through */
2804 case ETHTOOL_GRXRINGS:
2805 case ETHTOOL_GRXCLSRLCNT:
2806 case ETHTOOL_GRXCLSRULE:
2807 case ETHTOOL_SRXCLSRLINS:
2808 convert_out = true;
2809 /* fall through */
2810 case ETHTOOL_SRXCLSRLDEL:
2811 buf_size += sizeof(struct ethtool_rxnfc);
2812 convert_in = true;
2813 break;
2814 }
2815
2816 ifr = compat_alloc_user_space(buf_size);
2817 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2818
2819 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2820 return -EFAULT;
2821
2822 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2823 &ifr->ifr_ifru.ifru_data))
2824 return -EFAULT;
2825
2826 if (convert_in) {
2827 /* We expect there to be holes between fs.m_ext and
2828 * fs.ring_cookie and at the end of fs, but nowhere else.
2829 */
2830 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2831 sizeof(compat_rxnfc->fs.m_ext) !=
2832 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2833 sizeof(rxnfc->fs.m_ext));
2834 BUILD_BUG_ON(
2835 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2836 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2837 offsetof(struct ethtool_rxnfc, fs.location) -
2838 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2839
2840 if (copy_in_user(rxnfc, compat_rxnfc,
2841 (void __user *)(&rxnfc->fs.m_ext + 1) -
2842 (void __user *)rxnfc) ||
2843 copy_in_user(&rxnfc->fs.ring_cookie,
2844 &compat_rxnfc->fs.ring_cookie,
2845 (void __user *)(&rxnfc->fs.location + 1) -
2846 (void __user *)&rxnfc->fs.ring_cookie) ||
2847 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2848 sizeof(rxnfc->rule_cnt)))
2849 return -EFAULT;
2850 }
2851
2852 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2853 if (ret)
2854 return ret;
2855
2856 if (convert_out) {
2857 if (copy_in_user(compat_rxnfc, rxnfc,
2858 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2859 (const void __user *)rxnfc) ||
2860 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2861 &rxnfc->fs.ring_cookie,
2862 (const void __user *)(&rxnfc->fs.location + 1) -
2863 (const void __user *)&rxnfc->fs.ring_cookie) ||
2864 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2865 sizeof(rxnfc->rule_cnt)))
2866 return -EFAULT;
2867
2868 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2869 /* As an optimisation, we only copy the actual
2870 * number of rules that the underlying
2871 * function returned. Since Mallory might
2872 * change the rule count in user memory, we
2873 * check that it is less than the rule count
2874 * originally given (as the user buffer size),
2875 * which has been range-checked.
2876 */
2877 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2878 return -EFAULT;
2879 if (actual_rule_cnt < rule_cnt)
2880 rule_cnt = actual_rule_cnt;
2881 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2882 &rxnfc->rule_locs[0],
2883 rule_cnt * sizeof(u32)))
2884 return -EFAULT;
2885 }
2886 }
2887
2888 return 0;
2889 }
2890
2891 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2892 {
2893 void __user *uptr;
2894 compat_uptr_t uptr32;
2895 struct ifreq __user *uifr;
2896
2897 uifr = compat_alloc_user_space(sizeof(*uifr));
2898 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2899 return -EFAULT;
2900
2901 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2902 return -EFAULT;
2903
2904 uptr = compat_ptr(uptr32);
2905
2906 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2907 return -EFAULT;
2908
2909 return dev_ioctl(net, SIOCWANDEV, uifr);
2910 }
2911
2912 static int bond_ioctl(struct net *net, unsigned int cmd,
2913 struct compat_ifreq __user *ifr32)
2914 {
2915 struct ifreq kifr;
2916 mm_segment_t old_fs;
2917 int err;
2918
2919 switch (cmd) {
2920 case SIOCBONDENSLAVE:
2921 case SIOCBONDRELEASE:
2922 case SIOCBONDSETHWADDR:
2923 case SIOCBONDCHANGEACTIVE:
2924 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2925 return -EFAULT;
2926
2927 old_fs = get_fs();
2928 set_fs(KERNEL_DS);
2929 err = dev_ioctl(net, cmd,
2930 (struct ifreq __user __force *) &kifr);
2931 set_fs(old_fs);
2932
2933 return err;
2934 default:
2935 return -ENOIOCTLCMD;
2936 }
2937 }
2938
2939 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2940 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2941 struct compat_ifreq __user *u_ifreq32)
2942 {
2943 struct ifreq __user *u_ifreq64;
2944 char tmp_buf[IFNAMSIZ];
2945 void __user *data64;
2946 u32 data32;
2947
2948 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2949 IFNAMSIZ))
2950 return -EFAULT;
2951 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2952 return -EFAULT;
2953 data64 = compat_ptr(data32);
2954
2955 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2956
2957 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2958 IFNAMSIZ))
2959 return -EFAULT;
2960 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2961 return -EFAULT;
2962
2963 return dev_ioctl(net, cmd, u_ifreq64);
2964 }
2965
2966 static int dev_ifsioc(struct net *net, struct socket *sock,
2967 unsigned int cmd, struct compat_ifreq __user *uifr32)
2968 {
2969 struct ifreq __user *uifr;
2970 int err;
2971
2972 uifr = compat_alloc_user_space(sizeof(*uifr));
2973 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2974 return -EFAULT;
2975
2976 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2977
2978 if (!err) {
2979 switch (cmd) {
2980 case SIOCGIFFLAGS:
2981 case SIOCGIFMETRIC:
2982 case SIOCGIFMTU:
2983 case SIOCGIFMEM:
2984 case SIOCGIFHWADDR:
2985 case SIOCGIFINDEX:
2986 case SIOCGIFADDR:
2987 case SIOCGIFBRDADDR:
2988 case SIOCGIFDSTADDR:
2989 case SIOCGIFNETMASK:
2990 case SIOCGIFPFLAGS:
2991 case SIOCGIFTXQLEN:
2992 case SIOCGMIIPHY:
2993 case SIOCGMIIREG:
2994 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2995 err = -EFAULT;
2996 break;
2997 }
2998 }
2999 return err;
3000 }
3001
3002 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3003 struct compat_ifreq __user *uifr32)
3004 {
3005 struct ifreq ifr;
3006 struct compat_ifmap __user *uifmap32;
3007 mm_segment_t old_fs;
3008 int err;
3009
3010 uifmap32 = &uifr32->ifr_ifru.ifru_map;
3011 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3012 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3013 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3014 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3015 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3016 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3017 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3018 if (err)
3019 return -EFAULT;
3020
3021 old_fs = get_fs();
3022 set_fs(KERNEL_DS);
3023 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
3024 set_fs(old_fs);
3025
3026 if (cmd == SIOCGIFMAP && !err) {
3027 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3028 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3029 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3030 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3031 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3032 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3033 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3034 if (err)
3035 err = -EFAULT;
3036 }
3037 return err;
3038 }
3039
3040 struct rtentry32 {
3041 u32 rt_pad1;
3042 struct sockaddr rt_dst; /* target address */
3043 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3044 struct sockaddr rt_genmask; /* target network mask (IP) */
3045 unsigned short rt_flags;
3046 short rt_pad2;
3047 u32 rt_pad3;
3048 unsigned char rt_tos;
3049 unsigned char rt_class;
3050 short rt_pad4;
3051 short rt_metric; /* +1 for binary compatibility! */
3052 /* char * */ u32 rt_dev; /* forcing the device at add */
3053 u32 rt_mtu; /* per route MTU/Window */
3054 u32 rt_window; /* Window clamping */
3055 unsigned short rt_irtt; /* Initial RTT */
3056 };
3057
3058 struct in6_rtmsg32 {
3059 struct in6_addr rtmsg_dst;
3060 struct in6_addr rtmsg_src;
3061 struct in6_addr rtmsg_gateway;
3062 u32 rtmsg_type;
3063 u16 rtmsg_dst_len;
3064 u16 rtmsg_src_len;
3065 u32 rtmsg_metric;
3066 u32 rtmsg_info;
3067 u32 rtmsg_flags;
3068 s32 rtmsg_ifindex;
3069 };
3070
3071 static int routing_ioctl(struct net *net, struct socket *sock,
3072 unsigned int cmd, void __user *argp)
3073 {
3074 int ret;
3075 void *r = NULL;
3076 struct in6_rtmsg r6;
3077 struct rtentry r4;
3078 char devname[16];
3079 u32 rtdev;
3080 mm_segment_t old_fs = get_fs();
3081
3082 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3083 struct in6_rtmsg32 __user *ur6 = argp;
3084 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3085 3 * sizeof(struct in6_addr));
3086 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3087 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3088 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3089 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3090 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3091 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3092 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3093
3094 r = (void *) &r6;
3095 } else { /* ipv4 */
3096 struct rtentry32 __user *ur4 = argp;
3097 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3098 3 * sizeof(struct sockaddr));
3099 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3100 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3101 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3102 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3103 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3104 ret |= get_user(rtdev, &(ur4->rt_dev));
3105 if (rtdev) {
3106 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3107 r4.rt_dev = (char __user __force *)devname;
3108 devname[15] = 0;
3109 } else
3110 r4.rt_dev = NULL;
3111
3112 r = (void *) &r4;
3113 }
3114
3115 if (ret) {
3116 ret = -EFAULT;
3117 goto out;
3118 }
3119
3120 set_fs(KERNEL_DS);
3121 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3122 set_fs(old_fs);
3123
3124 out:
3125 return ret;
3126 }
3127
3128 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3129 * for some operations; this forces use of the newer bridge-utils that
3130 * use compatible ioctls
3131 */
3132 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3133 {
3134 compat_ulong_t tmp;
3135
3136 if (get_user(tmp, argp))
3137 return -EFAULT;
3138 if (tmp == BRCTL_GET_VERSION)
3139 return BRCTL_VERSION + 1;
3140 return -EINVAL;
3141 }
3142
3143 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3144 unsigned int cmd, unsigned long arg)
3145 {
3146 void __user *argp = compat_ptr(arg);
3147 struct sock *sk = sock->sk;
3148 struct net *net = sock_net(sk);
3149
3150 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3151 return compat_ifr_data_ioctl(net, cmd, argp);
3152
3153 switch (cmd) {
3154 case SIOCSIFBR:
3155 case SIOCGIFBR:
3156 return old_bridge_ioctl(argp);
3157 case SIOCGIFNAME:
3158 return dev_ifname32(net, argp);
3159 case SIOCGIFCONF:
3160 return dev_ifconf(net, argp);
3161 case SIOCETHTOOL:
3162 return ethtool_ioctl(net, argp);
3163 case SIOCWANDEV:
3164 return compat_siocwandev(net, argp);
3165 case SIOCGIFMAP:
3166 case SIOCSIFMAP:
3167 return compat_sioc_ifmap(net, cmd, argp);
3168 case SIOCBONDENSLAVE:
3169 case SIOCBONDRELEASE:
3170 case SIOCBONDSETHWADDR:
3171 case SIOCBONDCHANGEACTIVE:
3172 return bond_ioctl(net, cmd, argp);
3173 case SIOCADDRT:
3174 case SIOCDELRT:
3175 return routing_ioctl(net, sock, cmd, argp);
3176 case SIOCGSTAMP:
3177 return do_siocgstamp(net, sock, cmd, argp);
3178 case SIOCGSTAMPNS:
3179 return do_siocgstampns(net, sock, cmd, argp);
3180 case SIOCBONDSLAVEINFOQUERY:
3181 case SIOCBONDINFOQUERY:
3182 case SIOCSHWTSTAMP:
3183 case SIOCGHWTSTAMP:
3184 return compat_ifr_data_ioctl(net, cmd, argp);
3185
3186 case FIOSETOWN:
3187 case SIOCSPGRP:
3188 case FIOGETOWN:
3189 case SIOCGPGRP:
3190 case SIOCBRADDBR:
3191 case SIOCBRDELBR:
3192 case SIOCGIFVLAN:
3193 case SIOCSIFVLAN:
3194 case SIOCADDDLCI:
3195 case SIOCDELDLCI:
3196 case SIOCGSKNS:
3197 return sock_ioctl(file, cmd, arg);
3198
3199 case SIOCGIFFLAGS:
3200 case SIOCSIFFLAGS:
3201 case SIOCGIFMETRIC:
3202 case SIOCSIFMETRIC:
3203 case SIOCGIFMTU:
3204 case SIOCSIFMTU:
3205 case SIOCGIFMEM:
3206 case SIOCSIFMEM:
3207 case SIOCGIFHWADDR:
3208 case SIOCSIFHWADDR:
3209 case SIOCADDMULTI:
3210 case SIOCDELMULTI:
3211 case SIOCGIFINDEX:
3212 case SIOCGIFADDR:
3213 case SIOCSIFADDR:
3214 case SIOCSIFHWBROADCAST:
3215 case SIOCDIFADDR:
3216 case SIOCGIFBRDADDR:
3217 case SIOCSIFBRDADDR:
3218 case SIOCGIFDSTADDR:
3219 case SIOCSIFDSTADDR:
3220 case SIOCGIFNETMASK:
3221 case SIOCSIFNETMASK:
3222 case SIOCSIFPFLAGS:
3223 case SIOCGIFPFLAGS:
3224 case SIOCGIFTXQLEN:
3225 case SIOCSIFTXQLEN:
3226 case SIOCBRADDIF:
3227 case SIOCBRDELIF:
3228 case SIOCSIFNAME:
3229 case SIOCGMIIPHY:
3230 case SIOCGMIIREG:
3231 case SIOCSMIIREG:
3232 return dev_ifsioc(net, sock, cmd, argp);
3233
3234 case SIOCSARP:
3235 case SIOCGARP:
3236 case SIOCDARP:
3237 case SIOCATMARK:
3238 return sock_do_ioctl(net, sock, cmd, arg);
3239 }
3240
3241 return -ENOIOCTLCMD;
3242 }
3243
3244 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3245 unsigned long arg)
3246 {
3247 struct socket *sock = file->private_data;
3248 int ret = -ENOIOCTLCMD;
3249 struct sock *sk;
3250 struct net *net;
3251
3252 sk = sock->sk;
3253 net = sock_net(sk);
3254
3255 if (sock->ops->compat_ioctl)
3256 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3257
3258 if (ret == -ENOIOCTLCMD &&
3259 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3260 ret = compat_wext_handle_ioctl(net, cmd, arg);
3261
3262 if (ret == -ENOIOCTLCMD)
3263 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3264
3265 return ret;
3266 }
3267 #endif
3268
3269 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3270 {
3271 return sock->ops->bind(sock, addr, addrlen);
3272 }
3273 EXPORT_SYMBOL(kernel_bind);
3274
3275 int kernel_listen(struct socket *sock, int backlog)
3276 {
3277 return sock->ops->listen(sock, backlog);
3278 }
3279 EXPORT_SYMBOL(kernel_listen);
3280
3281 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3282 {
3283 struct sock *sk = sock->sk;
3284 int err;
3285
3286 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3287 newsock);
3288 if (err < 0)
3289 goto done;
3290
3291 err = sock->ops->accept(sock, *newsock, flags, true);
3292 if (err < 0) {
3293 sock_release(*newsock);
3294 *newsock = NULL;
3295 goto done;
3296 }
3297
3298 (*newsock)->ops = sock->ops;
3299 __module_get((*newsock)->ops->owner);
3300
3301 done:
3302 return err;
3303 }
3304 EXPORT_SYMBOL(kernel_accept);
3305
3306 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3307 int flags)
3308 {
3309 return sock->ops->connect(sock, addr, addrlen, flags);
3310 }
3311 EXPORT_SYMBOL(kernel_connect);
3312
3313 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3314 int *addrlen)
3315 {
3316 return sock->ops->getname(sock, addr, addrlen, 0);
3317 }
3318 EXPORT_SYMBOL(kernel_getsockname);
3319
3320 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3321 int *addrlen)
3322 {
3323 return sock->ops->getname(sock, addr, addrlen, 1);
3324 }
3325 EXPORT_SYMBOL(kernel_getpeername);
3326
3327 int kernel_getsockopt(struct socket *sock, int level, int optname,
3328 char *optval, int *optlen)
3329 {
3330 mm_segment_t oldfs = get_fs();
3331 char __user *uoptval;
3332 int __user *uoptlen;
3333 int err;
3334
3335 uoptval = (char __user __force *) optval;
3336 uoptlen = (int __user __force *) optlen;
3337
3338 set_fs(KERNEL_DS);
3339 if (level == SOL_SOCKET)
3340 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3341 else
3342 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3343 uoptlen);
3344 set_fs(oldfs);
3345 return err;
3346 }
3347 EXPORT_SYMBOL(kernel_getsockopt);
3348
3349 int kernel_setsockopt(struct socket *sock, int level, int optname,
3350 char *optval, unsigned int optlen)
3351 {
3352 mm_segment_t oldfs = get_fs();
3353 char __user *uoptval;
3354 int err;
3355
3356 uoptval = (char __user __force *) optval;
3357
3358 set_fs(KERNEL_DS);
3359 if (level == SOL_SOCKET)
3360 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3361 else
3362 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3363 optlen);
3364 set_fs(oldfs);
3365 return err;
3366 }
3367 EXPORT_SYMBOL(kernel_setsockopt);
3368
3369 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3370 size_t size, int flags)
3371 {
3372 if (sock->ops->sendpage)
3373 return sock->ops->sendpage(sock, page, offset, size, flags);
3374
3375 return sock_no_sendpage(sock, page, offset, size, flags);
3376 }
3377 EXPORT_SYMBOL(kernel_sendpage);
3378
3379 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3380 {
3381 mm_segment_t oldfs = get_fs();
3382 int err;
3383
3384 set_fs(KERNEL_DS);
3385 err = sock->ops->ioctl(sock, cmd, arg);
3386 set_fs(oldfs);
3387
3388 return err;
3389 }
3390 EXPORT_SYMBOL(kernel_sock_ioctl);
3391
3392 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3393 {
3394 return sock->ops->shutdown(sock, how);
3395 }
3396 EXPORT_SYMBOL(kernel_sock_shutdown);
3397
3398 /* This routine returns the IP overhead imposed by a socket i.e.
3399 * the length of the underlying IP header, depending on whether
3400 * this is an IPv4 or IPv6 socket and the length from IP options turned
3401 * on at the socket. Assumes that the caller has a lock on the socket.
3402 */
3403 u32 kernel_sock_ip_overhead(struct sock *sk)
3404 {
3405 struct inet_sock *inet;
3406 struct ip_options_rcu *opt;
3407 u32 overhead = 0;
3408 bool owned_by_user;
3409 #if IS_ENABLED(CONFIG_IPV6)
3410 struct ipv6_pinfo *np;
3411 struct ipv6_txoptions *optv6 = NULL;
3412 #endif /* IS_ENABLED(CONFIG_IPV6) */
3413
3414 if (!sk)
3415 return overhead;
3416
3417 owned_by_user = sock_owned_by_user(sk);
3418 switch (sk->sk_family) {
3419 case AF_INET:
3420 inet = inet_sk(sk);
3421 overhead += sizeof(struct iphdr);
3422 opt = rcu_dereference_protected(inet->inet_opt,
3423 owned_by_user);
3424 if (opt)
3425 overhead += opt->opt.optlen;
3426 return overhead;
3427 #if IS_ENABLED(CONFIG_IPV6)
3428 case AF_INET6:
3429 np = inet6_sk(sk);
3430 overhead += sizeof(struct ipv6hdr);
3431 if (np)
3432 optv6 = rcu_dereference_protected(np->opt,
3433 owned_by_user);
3434 if (optv6)
3435 overhead += (optv6->opt_flen + optv6->opt_nflen);
3436 return overhead;
3437 #endif /* IS_ENABLED(CONFIG_IPV6) */
3438 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3439 return overhead;
3440 }
3441 }
3442 EXPORT_SYMBOL(kernel_sock_ip_overhead);