]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - sound/core/pcm_lib.c
sched/headers: Prepare to move signal wakeup & sigpending methods from <linux/sched...
[mirror_ubuntu-artful-kernel.git] / sound / core / pcm_lib.c
1 /*
2 * Digital Audio (PCM) abstract layer
3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4 * Abramo Bagnara <abramo@alsa-project.org>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 */
22
23 #include <linux/slab.h>
24 #include <linux/sched/signal.h>
25 #include <linux/time.h>
26 #include <linux/math64.h>
27 #include <linux/export.h>
28 #include <sound/core.h>
29 #include <sound/control.h>
30 #include <sound/tlv.h>
31 #include <sound/info.h>
32 #include <sound/pcm.h>
33 #include <sound/pcm_params.h>
34 #include <sound/timer.h>
35
36 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
37 #define CREATE_TRACE_POINTS
38 #include "pcm_trace.h"
39 #else
40 #define trace_hwptr(substream, pos, in_interrupt)
41 #define trace_xrun(substream)
42 #define trace_hw_ptr_error(substream, reason)
43 #endif
44
45 /*
46 * fill ring buffer with silence
47 * runtime->silence_start: starting pointer to silence area
48 * runtime->silence_filled: size filled with silence
49 * runtime->silence_threshold: threshold from application
50 * runtime->silence_size: maximal size from application
51 *
52 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
53 */
54 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
55 {
56 struct snd_pcm_runtime *runtime = substream->runtime;
57 snd_pcm_uframes_t frames, ofs, transfer;
58
59 if (runtime->silence_size < runtime->boundary) {
60 snd_pcm_sframes_t noise_dist, n;
61 if (runtime->silence_start != runtime->control->appl_ptr) {
62 n = runtime->control->appl_ptr - runtime->silence_start;
63 if (n < 0)
64 n += runtime->boundary;
65 if ((snd_pcm_uframes_t)n < runtime->silence_filled)
66 runtime->silence_filled -= n;
67 else
68 runtime->silence_filled = 0;
69 runtime->silence_start = runtime->control->appl_ptr;
70 }
71 if (runtime->silence_filled >= runtime->buffer_size)
72 return;
73 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
74 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
75 return;
76 frames = runtime->silence_threshold - noise_dist;
77 if (frames > runtime->silence_size)
78 frames = runtime->silence_size;
79 } else {
80 if (new_hw_ptr == ULONG_MAX) { /* initialization */
81 snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
82 if (avail > runtime->buffer_size)
83 avail = runtime->buffer_size;
84 runtime->silence_filled = avail > 0 ? avail : 0;
85 runtime->silence_start = (runtime->status->hw_ptr +
86 runtime->silence_filled) %
87 runtime->boundary;
88 } else {
89 ofs = runtime->status->hw_ptr;
90 frames = new_hw_ptr - ofs;
91 if ((snd_pcm_sframes_t)frames < 0)
92 frames += runtime->boundary;
93 runtime->silence_filled -= frames;
94 if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
95 runtime->silence_filled = 0;
96 runtime->silence_start = new_hw_ptr;
97 } else {
98 runtime->silence_start = ofs;
99 }
100 }
101 frames = runtime->buffer_size - runtime->silence_filled;
102 }
103 if (snd_BUG_ON(frames > runtime->buffer_size))
104 return;
105 if (frames == 0)
106 return;
107 ofs = runtime->silence_start % runtime->buffer_size;
108 while (frames > 0) {
109 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
110 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
111 runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
112 if (substream->ops->silence) {
113 int err;
114 err = substream->ops->silence(substream, -1, ofs, transfer);
115 snd_BUG_ON(err < 0);
116 } else {
117 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
118 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
119 }
120 } else {
121 unsigned int c;
122 unsigned int channels = runtime->channels;
123 if (substream->ops->silence) {
124 for (c = 0; c < channels; ++c) {
125 int err;
126 err = substream->ops->silence(substream, c, ofs, transfer);
127 snd_BUG_ON(err < 0);
128 }
129 } else {
130 size_t dma_csize = runtime->dma_bytes / channels;
131 for (c = 0; c < channels; ++c) {
132 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
133 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
134 }
135 }
136 }
137 runtime->silence_filled += transfer;
138 frames -= transfer;
139 ofs = 0;
140 }
141 }
142
143 #ifdef CONFIG_SND_DEBUG
144 void snd_pcm_debug_name(struct snd_pcm_substream *substream,
145 char *name, size_t len)
146 {
147 snprintf(name, len, "pcmC%dD%d%c:%d",
148 substream->pcm->card->number,
149 substream->pcm->device,
150 substream->stream ? 'c' : 'p',
151 substream->number);
152 }
153 EXPORT_SYMBOL(snd_pcm_debug_name);
154 #endif
155
156 #define XRUN_DEBUG_BASIC (1<<0)
157 #define XRUN_DEBUG_STACK (1<<1) /* dump also stack */
158 #define XRUN_DEBUG_JIFFIESCHECK (1<<2) /* do jiffies check */
159
160 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
161
162 #define xrun_debug(substream, mask) \
163 ((substream)->pstr->xrun_debug & (mask))
164 #else
165 #define xrun_debug(substream, mask) 0
166 #endif
167
168 #define dump_stack_on_xrun(substream) do { \
169 if (xrun_debug(substream, XRUN_DEBUG_STACK)) \
170 dump_stack(); \
171 } while (0)
172
173 static void xrun(struct snd_pcm_substream *substream)
174 {
175 struct snd_pcm_runtime *runtime = substream->runtime;
176
177 trace_xrun(substream);
178 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
179 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
180 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
181 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
182 char name[16];
183 snd_pcm_debug_name(substream, name, sizeof(name));
184 pcm_warn(substream->pcm, "XRUN: %s\n", name);
185 dump_stack_on_xrun(substream);
186 }
187 }
188
189 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
190 #define hw_ptr_error(substream, in_interrupt, reason, fmt, args...) \
191 do { \
192 trace_hw_ptr_error(substream, reason); \
193 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { \
194 pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
195 (in_interrupt) ? 'Q' : 'P', ##args); \
196 dump_stack_on_xrun(substream); \
197 } \
198 } while (0)
199
200 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
201
202 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
203
204 #endif
205
206 int snd_pcm_update_state(struct snd_pcm_substream *substream,
207 struct snd_pcm_runtime *runtime)
208 {
209 snd_pcm_uframes_t avail;
210
211 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
212 avail = snd_pcm_playback_avail(runtime);
213 else
214 avail = snd_pcm_capture_avail(runtime);
215 if (avail > runtime->avail_max)
216 runtime->avail_max = avail;
217 if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
218 if (avail >= runtime->buffer_size) {
219 snd_pcm_drain_done(substream);
220 return -EPIPE;
221 }
222 } else {
223 if (avail >= runtime->stop_threshold) {
224 xrun(substream);
225 return -EPIPE;
226 }
227 }
228 if (runtime->twake) {
229 if (avail >= runtime->twake)
230 wake_up(&runtime->tsleep);
231 } else if (avail >= runtime->control->avail_min)
232 wake_up(&runtime->sleep);
233 return 0;
234 }
235
236 static void update_audio_tstamp(struct snd_pcm_substream *substream,
237 struct timespec *curr_tstamp,
238 struct timespec *audio_tstamp)
239 {
240 struct snd_pcm_runtime *runtime = substream->runtime;
241 u64 audio_frames, audio_nsecs;
242 struct timespec driver_tstamp;
243
244 if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE)
245 return;
246
247 if (!(substream->ops->get_time_info) ||
248 (runtime->audio_tstamp_report.actual_type ==
249 SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
250
251 /*
252 * provide audio timestamp derived from pointer position
253 * add delay only if requested
254 */
255
256 audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr;
257
258 if (runtime->audio_tstamp_config.report_delay) {
259 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
260 audio_frames -= runtime->delay;
261 else
262 audio_frames += runtime->delay;
263 }
264 audio_nsecs = div_u64(audio_frames * 1000000000LL,
265 runtime->rate);
266 *audio_tstamp = ns_to_timespec(audio_nsecs);
267 }
268 runtime->status->audio_tstamp = *audio_tstamp;
269 runtime->status->tstamp = *curr_tstamp;
270
271 /*
272 * re-take a driver timestamp to let apps detect if the reference tstamp
273 * read by low-level hardware was provided with a delay
274 */
275 snd_pcm_gettime(substream->runtime, (struct timespec *)&driver_tstamp);
276 runtime->driver_tstamp = driver_tstamp;
277 }
278
279 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
280 unsigned int in_interrupt)
281 {
282 struct snd_pcm_runtime *runtime = substream->runtime;
283 snd_pcm_uframes_t pos;
284 snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
285 snd_pcm_sframes_t hdelta, delta;
286 unsigned long jdelta;
287 unsigned long curr_jiffies;
288 struct timespec curr_tstamp;
289 struct timespec audio_tstamp;
290 int crossed_boundary = 0;
291
292 old_hw_ptr = runtime->status->hw_ptr;
293
294 /*
295 * group pointer, time and jiffies reads to allow for more
296 * accurate correlations/corrections.
297 * The values are stored at the end of this routine after
298 * corrections for hw_ptr position
299 */
300 pos = substream->ops->pointer(substream);
301 curr_jiffies = jiffies;
302 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
303 if ((substream->ops->get_time_info) &&
304 (runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
305 substream->ops->get_time_info(substream, &curr_tstamp,
306 &audio_tstamp,
307 &runtime->audio_tstamp_config,
308 &runtime->audio_tstamp_report);
309
310 /* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */
311 if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)
312 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
313 } else
314 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
315 }
316
317 if (pos == SNDRV_PCM_POS_XRUN) {
318 xrun(substream);
319 return -EPIPE;
320 }
321 if (pos >= runtime->buffer_size) {
322 if (printk_ratelimit()) {
323 char name[16];
324 snd_pcm_debug_name(substream, name, sizeof(name));
325 pcm_err(substream->pcm,
326 "invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
327 name, pos, runtime->buffer_size,
328 runtime->period_size);
329 }
330 pos = 0;
331 }
332 pos -= pos % runtime->min_align;
333 trace_hwptr(substream, pos, in_interrupt);
334 hw_base = runtime->hw_ptr_base;
335 new_hw_ptr = hw_base + pos;
336 if (in_interrupt) {
337 /* we know that one period was processed */
338 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
339 delta = runtime->hw_ptr_interrupt + runtime->period_size;
340 if (delta > new_hw_ptr) {
341 /* check for double acknowledged interrupts */
342 hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
343 if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) {
344 hw_base += runtime->buffer_size;
345 if (hw_base >= runtime->boundary) {
346 hw_base = 0;
347 crossed_boundary++;
348 }
349 new_hw_ptr = hw_base + pos;
350 goto __delta;
351 }
352 }
353 }
354 /* new_hw_ptr might be lower than old_hw_ptr in case when */
355 /* pointer crosses the end of the ring buffer */
356 if (new_hw_ptr < old_hw_ptr) {
357 hw_base += runtime->buffer_size;
358 if (hw_base >= runtime->boundary) {
359 hw_base = 0;
360 crossed_boundary++;
361 }
362 new_hw_ptr = hw_base + pos;
363 }
364 __delta:
365 delta = new_hw_ptr - old_hw_ptr;
366 if (delta < 0)
367 delta += runtime->boundary;
368
369 if (runtime->no_period_wakeup) {
370 snd_pcm_sframes_t xrun_threshold;
371 /*
372 * Without regular period interrupts, we have to check
373 * the elapsed time to detect xruns.
374 */
375 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
376 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
377 goto no_delta_check;
378 hdelta = jdelta - delta * HZ / runtime->rate;
379 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
380 while (hdelta > xrun_threshold) {
381 delta += runtime->buffer_size;
382 hw_base += runtime->buffer_size;
383 if (hw_base >= runtime->boundary) {
384 hw_base = 0;
385 crossed_boundary++;
386 }
387 new_hw_ptr = hw_base + pos;
388 hdelta -= runtime->hw_ptr_buffer_jiffies;
389 }
390 goto no_delta_check;
391 }
392
393 /* something must be really wrong */
394 if (delta >= runtime->buffer_size + runtime->period_size) {
395 hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr",
396 "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
397 substream->stream, (long)pos,
398 (long)new_hw_ptr, (long)old_hw_ptr);
399 return 0;
400 }
401
402 /* Do jiffies check only in xrun_debug mode */
403 if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
404 goto no_jiffies_check;
405
406 /* Skip the jiffies check for hardwares with BATCH flag.
407 * Such hardware usually just increases the position at each IRQ,
408 * thus it can't give any strange position.
409 */
410 if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
411 goto no_jiffies_check;
412 hdelta = delta;
413 if (hdelta < runtime->delay)
414 goto no_jiffies_check;
415 hdelta -= runtime->delay;
416 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
417 if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
418 delta = jdelta /
419 (((runtime->period_size * HZ) / runtime->rate)
420 + HZ/100);
421 /* move new_hw_ptr according jiffies not pos variable */
422 new_hw_ptr = old_hw_ptr;
423 hw_base = delta;
424 /* use loop to avoid checks for delta overflows */
425 /* the delta value is small or zero in most cases */
426 while (delta > 0) {
427 new_hw_ptr += runtime->period_size;
428 if (new_hw_ptr >= runtime->boundary) {
429 new_hw_ptr -= runtime->boundary;
430 crossed_boundary--;
431 }
432 delta--;
433 }
434 /* align hw_base to buffer_size */
435 hw_ptr_error(substream, in_interrupt, "hw_ptr skipping",
436 "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
437 (long)pos, (long)hdelta,
438 (long)runtime->period_size, jdelta,
439 ((hdelta * HZ) / runtime->rate), hw_base,
440 (unsigned long)old_hw_ptr,
441 (unsigned long)new_hw_ptr);
442 /* reset values to proper state */
443 delta = 0;
444 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
445 }
446 no_jiffies_check:
447 if (delta > runtime->period_size + runtime->period_size / 2) {
448 hw_ptr_error(substream, in_interrupt,
449 "Lost interrupts?",
450 "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
451 substream->stream, (long)delta,
452 (long)new_hw_ptr,
453 (long)old_hw_ptr);
454 }
455
456 no_delta_check:
457 if (runtime->status->hw_ptr == new_hw_ptr) {
458 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
459 return 0;
460 }
461
462 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
463 runtime->silence_size > 0)
464 snd_pcm_playback_silence(substream, new_hw_ptr);
465
466 if (in_interrupt) {
467 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
468 if (delta < 0)
469 delta += runtime->boundary;
470 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
471 runtime->hw_ptr_interrupt += delta;
472 if (runtime->hw_ptr_interrupt >= runtime->boundary)
473 runtime->hw_ptr_interrupt -= runtime->boundary;
474 }
475 runtime->hw_ptr_base = hw_base;
476 runtime->status->hw_ptr = new_hw_ptr;
477 runtime->hw_ptr_jiffies = curr_jiffies;
478 if (crossed_boundary) {
479 snd_BUG_ON(crossed_boundary != 1);
480 runtime->hw_ptr_wrap += runtime->boundary;
481 }
482
483 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
484
485 return snd_pcm_update_state(substream, runtime);
486 }
487
488 /* CAUTION: call it with irq disabled */
489 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
490 {
491 return snd_pcm_update_hw_ptr0(substream, 0);
492 }
493
494 /**
495 * snd_pcm_set_ops - set the PCM operators
496 * @pcm: the pcm instance
497 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
498 * @ops: the operator table
499 *
500 * Sets the given PCM operators to the pcm instance.
501 */
502 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
503 const struct snd_pcm_ops *ops)
504 {
505 struct snd_pcm_str *stream = &pcm->streams[direction];
506 struct snd_pcm_substream *substream;
507
508 for (substream = stream->substream; substream != NULL; substream = substream->next)
509 substream->ops = ops;
510 }
511
512 EXPORT_SYMBOL(snd_pcm_set_ops);
513
514 /**
515 * snd_pcm_sync - set the PCM sync id
516 * @substream: the pcm substream
517 *
518 * Sets the PCM sync identifier for the card.
519 */
520 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
521 {
522 struct snd_pcm_runtime *runtime = substream->runtime;
523
524 runtime->sync.id32[0] = substream->pcm->card->number;
525 runtime->sync.id32[1] = -1;
526 runtime->sync.id32[2] = -1;
527 runtime->sync.id32[3] = -1;
528 }
529
530 EXPORT_SYMBOL(snd_pcm_set_sync);
531
532 /*
533 * Standard ioctl routine
534 */
535
536 static inline unsigned int div32(unsigned int a, unsigned int b,
537 unsigned int *r)
538 {
539 if (b == 0) {
540 *r = 0;
541 return UINT_MAX;
542 }
543 *r = a % b;
544 return a / b;
545 }
546
547 static inline unsigned int div_down(unsigned int a, unsigned int b)
548 {
549 if (b == 0)
550 return UINT_MAX;
551 return a / b;
552 }
553
554 static inline unsigned int div_up(unsigned int a, unsigned int b)
555 {
556 unsigned int r;
557 unsigned int q;
558 if (b == 0)
559 return UINT_MAX;
560 q = div32(a, b, &r);
561 if (r)
562 ++q;
563 return q;
564 }
565
566 static inline unsigned int mul(unsigned int a, unsigned int b)
567 {
568 if (a == 0)
569 return 0;
570 if (div_down(UINT_MAX, a) < b)
571 return UINT_MAX;
572 return a * b;
573 }
574
575 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
576 unsigned int c, unsigned int *r)
577 {
578 u_int64_t n = (u_int64_t) a * b;
579 if (c == 0) {
580 snd_BUG_ON(!n);
581 *r = 0;
582 return UINT_MAX;
583 }
584 n = div_u64_rem(n, c, r);
585 if (n >= UINT_MAX) {
586 *r = 0;
587 return UINT_MAX;
588 }
589 return n;
590 }
591
592 /**
593 * snd_interval_refine - refine the interval value of configurator
594 * @i: the interval value to refine
595 * @v: the interval value to refer to
596 *
597 * Refines the interval value with the reference value.
598 * The interval is changed to the range satisfying both intervals.
599 * The interval status (min, max, integer, etc.) are evaluated.
600 *
601 * Return: Positive if the value is changed, zero if it's not changed, or a
602 * negative error code.
603 */
604 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
605 {
606 int changed = 0;
607 if (snd_BUG_ON(snd_interval_empty(i)))
608 return -EINVAL;
609 if (i->min < v->min) {
610 i->min = v->min;
611 i->openmin = v->openmin;
612 changed = 1;
613 } else if (i->min == v->min && !i->openmin && v->openmin) {
614 i->openmin = 1;
615 changed = 1;
616 }
617 if (i->max > v->max) {
618 i->max = v->max;
619 i->openmax = v->openmax;
620 changed = 1;
621 } else if (i->max == v->max && !i->openmax && v->openmax) {
622 i->openmax = 1;
623 changed = 1;
624 }
625 if (!i->integer && v->integer) {
626 i->integer = 1;
627 changed = 1;
628 }
629 if (i->integer) {
630 if (i->openmin) {
631 i->min++;
632 i->openmin = 0;
633 }
634 if (i->openmax) {
635 i->max--;
636 i->openmax = 0;
637 }
638 } else if (!i->openmin && !i->openmax && i->min == i->max)
639 i->integer = 1;
640 if (snd_interval_checkempty(i)) {
641 snd_interval_none(i);
642 return -EINVAL;
643 }
644 return changed;
645 }
646
647 EXPORT_SYMBOL(snd_interval_refine);
648
649 static int snd_interval_refine_first(struct snd_interval *i)
650 {
651 if (snd_BUG_ON(snd_interval_empty(i)))
652 return -EINVAL;
653 if (snd_interval_single(i))
654 return 0;
655 i->max = i->min;
656 i->openmax = i->openmin;
657 if (i->openmax)
658 i->max++;
659 return 1;
660 }
661
662 static int snd_interval_refine_last(struct snd_interval *i)
663 {
664 if (snd_BUG_ON(snd_interval_empty(i)))
665 return -EINVAL;
666 if (snd_interval_single(i))
667 return 0;
668 i->min = i->max;
669 i->openmin = i->openmax;
670 if (i->openmin)
671 i->min--;
672 return 1;
673 }
674
675 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
676 {
677 if (a->empty || b->empty) {
678 snd_interval_none(c);
679 return;
680 }
681 c->empty = 0;
682 c->min = mul(a->min, b->min);
683 c->openmin = (a->openmin || b->openmin);
684 c->max = mul(a->max, b->max);
685 c->openmax = (a->openmax || b->openmax);
686 c->integer = (a->integer && b->integer);
687 }
688
689 /**
690 * snd_interval_div - refine the interval value with division
691 * @a: dividend
692 * @b: divisor
693 * @c: quotient
694 *
695 * c = a / b
696 *
697 * Returns non-zero if the value is changed, zero if not changed.
698 */
699 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
700 {
701 unsigned int r;
702 if (a->empty || b->empty) {
703 snd_interval_none(c);
704 return;
705 }
706 c->empty = 0;
707 c->min = div32(a->min, b->max, &r);
708 c->openmin = (r || a->openmin || b->openmax);
709 if (b->min > 0) {
710 c->max = div32(a->max, b->min, &r);
711 if (r) {
712 c->max++;
713 c->openmax = 1;
714 } else
715 c->openmax = (a->openmax || b->openmin);
716 } else {
717 c->max = UINT_MAX;
718 c->openmax = 0;
719 }
720 c->integer = 0;
721 }
722
723 /**
724 * snd_interval_muldivk - refine the interval value
725 * @a: dividend 1
726 * @b: dividend 2
727 * @k: divisor (as integer)
728 * @c: result
729 *
730 * c = a * b / k
731 *
732 * Returns non-zero if the value is changed, zero if not changed.
733 */
734 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
735 unsigned int k, struct snd_interval *c)
736 {
737 unsigned int r;
738 if (a->empty || b->empty) {
739 snd_interval_none(c);
740 return;
741 }
742 c->empty = 0;
743 c->min = muldiv32(a->min, b->min, k, &r);
744 c->openmin = (r || a->openmin || b->openmin);
745 c->max = muldiv32(a->max, b->max, k, &r);
746 if (r) {
747 c->max++;
748 c->openmax = 1;
749 } else
750 c->openmax = (a->openmax || b->openmax);
751 c->integer = 0;
752 }
753
754 /**
755 * snd_interval_mulkdiv - refine the interval value
756 * @a: dividend 1
757 * @k: dividend 2 (as integer)
758 * @b: divisor
759 * @c: result
760 *
761 * c = a * k / b
762 *
763 * Returns non-zero if the value is changed, zero if not changed.
764 */
765 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
766 const struct snd_interval *b, struct snd_interval *c)
767 {
768 unsigned int r;
769 if (a->empty || b->empty) {
770 snd_interval_none(c);
771 return;
772 }
773 c->empty = 0;
774 c->min = muldiv32(a->min, k, b->max, &r);
775 c->openmin = (r || a->openmin || b->openmax);
776 if (b->min > 0) {
777 c->max = muldiv32(a->max, k, b->min, &r);
778 if (r) {
779 c->max++;
780 c->openmax = 1;
781 } else
782 c->openmax = (a->openmax || b->openmin);
783 } else {
784 c->max = UINT_MAX;
785 c->openmax = 0;
786 }
787 c->integer = 0;
788 }
789
790 /* ---- */
791
792
793 /**
794 * snd_interval_ratnum - refine the interval value
795 * @i: interval to refine
796 * @rats_count: number of ratnum_t
797 * @rats: ratnum_t array
798 * @nump: pointer to store the resultant numerator
799 * @denp: pointer to store the resultant denominator
800 *
801 * Return: Positive if the value is changed, zero if it's not changed, or a
802 * negative error code.
803 */
804 int snd_interval_ratnum(struct snd_interval *i,
805 unsigned int rats_count, const struct snd_ratnum *rats,
806 unsigned int *nump, unsigned int *denp)
807 {
808 unsigned int best_num, best_den;
809 int best_diff;
810 unsigned int k;
811 struct snd_interval t;
812 int err;
813 unsigned int result_num, result_den;
814 int result_diff;
815
816 best_num = best_den = best_diff = 0;
817 for (k = 0; k < rats_count; ++k) {
818 unsigned int num = rats[k].num;
819 unsigned int den;
820 unsigned int q = i->min;
821 int diff;
822 if (q == 0)
823 q = 1;
824 den = div_up(num, q);
825 if (den < rats[k].den_min)
826 continue;
827 if (den > rats[k].den_max)
828 den = rats[k].den_max;
829 else {
830 unsigned int r;
831 r = (den - rats[k].den_min) % rats[k].den_step;
832 if (r != 0)
833 den -= r;
834 }
835 diff = num - q * den;
836 if (diff < 0)
837 diff = -diff;
838 if (best_num == 0 ||
839 diff * best_den < best_diff * den) {
840 best_diff = diff;
841 best_den = den;
842 best_num = num;
843 }
844 }
845 if (best_den == 0) {
846 i->empty = 1;
847 return -EINVAL;
848 }
849 t.min = div_down(best_num, best_den);
850 t.openmin = !!(best_num % best_den);
851
852 result_num = best_num;
853 result_diff = best_diff;
854 result_den = best_den;
855 best_num = best_den = best_diff = 0;
856 for (k = 0; k < rats_count; ++k) {
857 unsigned int num = rats[k].num;
858 unsigned int den;
859 unsigned int q = i->max;
860 int diff;
861 if (q == 0) {
862 i->empty = 1;
863 return -EINVAL;
864 }
865 den = div_down(num, q);
866 if (den > rats[k].den_max)
867 continue;
868 if (den < rats[k].den_min)
869 den = rats[k].den_min;
870 else {
871 unsigned int r;
872 r = (den - rats[k].den_min) % rats[k].den_step;
873 if (r != 0)
874 den += rats[k].den_step - r;
875 }
876 diff = q * den - num;
877 if (diff < 0)
878 diff = -diff;
879 if (best_num == 0 ||
880 diff * best_den < best_diff * den) {
881 best_diff = diff;
882 best_den = den;
883 best_num = num;
884 }
885 }
886 if (best_den == 0) {
887 i->empty = 1;
888 return -EINVAL;
889 }
890 t.max = div_up(best_num, best_den);
891 t.openmax = !!(best_num % best_den);
892 t.integer = 0;
893 err = snd_interval_refine(i, &t);
894 if (err < 0)
895 return err;
896
897 if (snd_interval_single(i)) {
898 if (best_diff * result_den < result_diff * best_den) {
899 result_num = best_num;
900 result_den = best_den;
901 }
902 if (nump)
903 *nump = result_num;
904 if (denp)
905 *denp = result_den;
906 }
907 return err;
908 }
909
910 EXPORT_SYMBOL(snd_interval_ratnum);
911
912 /**
913 * snd_interval_ratden - refine the interval value
914 * @i: interval to refine
915 * @rats_count: number of struct ratden
916 * @rats: struct ratden array
917 * @nump: pointer to store the resultant numerator
918 * @denp: pointer to store the resultant denominator
919 *
920 * Return: Positive if the value is changed, zero if it's not changed, or a
921 * negative error code.
922 */
923 static int snd_interval_ratden(struct snd_interval *i,
924 unsigned int rats_count,
925 const struct snd_ratden *rats,
926 unsigned int *nump, unsigned int *denp)
927 {
928 unsigned int best_num, best_diff, best_den;
929 unsigned int k;
930 struct snd_interval t;
931 int err;
932
933 best_num = best_den = best_diff = 0;
934 for (k = 0; k < rats_count; ++k) {
935 unsigned int num;
936 unsigned int den = rats[k].den;
937 unsigned int q = i->min;
938 int diff;
939 num = mul(q, den);
940 if (num > rats[k].num_max)
941 continue;
942 if (num < rats[k].num_min)
943 num = rats[k].num_max;
944 else {
945 unsigned int r;
946 r = (num - rats[k].num_min) % rats[k].num_step;
947 if (r != 0)
948 num += rats[k].num_step - r;
949 }
950 diff = num - q * den;
951 if (best_num == 0 ||
952 diff * best_den < best_diff * den) {
953 best_diff = diff;
954 best_den = den;
955 best_num = num;
956 }
957 }
958 if (best_den == 0) {
959 i->empty = 1;
960 return -EINVAL;
961 }
962 t.min = div_down(best_num, best_den);
963 t.openmin = !!(best_num % best_den);
964
965 best_num = best_den = best_diff = 0;
966 for (k = 0; k < rats_count; ++k) {
967 unsigned int num;
968 unsigned int den = rats[k].den;
969 unsigned int q = i->max;
970 int diff;
971 num = mul(q, den);
972 if (num < rats[k].num_min)
973 continue;
974 if (num > rats[k].num_max)
975 num = rats[k].num_max;
976 else {
977 unsigned int r;
978 r = (num - rats[k].num_min) % rats[k].num_step;
979 if (r != 0)
980 num -= r;
981 }
982 diff = q * den - num;
983 if (best_num == 0 ||
984 diff * best_den < best_diff * den) {
985 best_diff = diff;
986 best_den = den;
987 best_num = num;
988 }
989 }
990 if (best_den == 0) {
991 i->empty = 1;
992 return -EINVAL;
993 }
994 t.max = div_up(best_num, best_den);
995 t.openmax = !!(best_num % best_den);
996 t.integer = 0;
997 err = snd_interval_refine(i, &t);
998 if (err < 0)
999 return err;
1000
1001 if (snd_interval_single(i)) {
1002 if (nump)
1003 *nump = best_num;
1004 if (denp)
1005 *denp = best_den;
1006 }
1007 return err;
1008 }
1009
1010 /**
1011 * snd_interval_list - refine the interval value from the list
1012 * @i: the interval value to refine
1013 * @count: the number of elements in the list
1014 * @list: the value list
1015 * @mask: the bit-mask to evaluate
1016 *
1017 * Refines the interval value from the list.
1018 * When mask is non-zero, only the elements corresponding to bit 1 are
1019 * evaluated.
1020 *
1021 * Return: Positive if the value is changed, zero if it's not changed, or a
1022 * negative error code.
1023 */
1024 int snd_interval_list(struct snd_interval *i, unsigned int count,
1025 const unsigned int *list, unsigned int mask)
1026 {
1027 unsigned int k;
1028 struct snd_interval list_range;
1029
1030 if (!count) {
1031 i->empty = 1;
1032 return -EINVAL;
1033 }
1034 snd_interval_any(&list_range);
1035 list_range.min = UINT_MAX;
1036 list_range.max = 0;
1037 for (k = 0; k < count; k++) {
1038 if (mask && !(mask & (1 << k)))
1039 continue;
1040 if (!snd_interval_test(i, list[k]))
1041 continue;
1042 list_range.min = min(list_range.min, list[k]);
1043 list_range.max = max(list_range.max, list[k]);
1044 }
1045 return snd_interval_refine(i, &list_range);
1046 }
1047
1048 EXPORT_SYMBOL(snd_interval_list);
1049
1050 /**
1051 * snd_interval_ranges - refine the interval value from the list of ranges
1052 * @i: the interval value to refine
1053 * @count: the number of elements in the list of ranges
1054 * @ranges: the ranges list
1055 * @mask: the bit-mask to evaluate
1056 *
1057 * Refines the interval value from the list of ranges.
1058 * When mask is non-zero, only the elements corresponding to bit 1 are
1059 * evaluated.
1060 *
1061 * Return: Positive if the value is changed, zero if it's not changed, or a
1062 * negative error code.
1063 */
1064 int snd_interval_ranges(struct snd_interval *i, unsigned int count,
1065 const struct snd_interval *ranges, unsigned int mask)
1066 {
1067 unsigned int k;
1068 struct snd_interval range_union;
1069 struct snd_interval range;
1070
1071 if (!count) {
1072 snd_interval_none(i);
1073 return -EINVAL;
1074 }
1075 snd_interval_any(&range_union);
1076 range_union.min = UINT_MAX;
1077 range_union.max = 0;
1078 for (k = 0; k < count; k++) {
1079 if (mask && !(mask & (1 << k)))
1080 continue;
1081 snd_interval_copy(&range, &ranges[k]);
1082 if (snd_interval_refine(&range, i) < 0)
1083 continue;
1084 if (snd_interval_empty(&range))
1085 continue;
1086
1087 if (range.min < range_union.min) {
1088 range_union.min = range.min;
1089 range_union.openmin = 1;
1090 }
1091 if (range.min == range_union.min && !range.openmin)
1092 range_union.openmin = 0;
1093 if (range.max > range_union.max) {
1094 range_union.max = range.max;
1095 range_union.openmax = 1;
1096 }
1097 if (range.max == range_union.max && !range.openmax)
1098 range_union.openmax = 0;
1099 }
1100 return snd_interval_refine(i, &range_union);
1101 }
1102 EXPORT_SYMBOL(snd_interval_ranges);
1103
1104 static int snd_interval_step(struct snd_interval *i, unsigned int step)
1105 {
1106 unsigned int n;
1107 int changed = 0;
1108 n = i->min % step;
1109 if (n != 0 || i->openmin) {
1110 i->min += step - n;
1111 i->openmin = 0;
1112 changed = 1;
1113 }
1114 n = i->max % step;
1115 if (n != 0 || i->openmax) {
1116 i->max -= n;
1117 i->openmax = 0;
1118 changed = 1;
1119 }
1120 if (snd_interval_checkempty(i)) {
1121 i->empty = 1;
1122 return -EINVAL;
1123 }
1124 return changed;
1125 }
1126
1127 /* Info constraints helpers */
1128
1129 /**
1130 * snd_pcm_hw_rule_add - add the hw-constraint rule
1131 * @runtime: the pcm runtime instance
1132 * @cond: condition bits
1133 * @var: the variable to evaluate
1134 * @func: the evaluation function
1135 * @private: the private data pointer passed to function
1136 * @dep: the dependent variables
1137 *
1138 * Return: Zero if successful, or a negative error code on failure.
1139 */
1140 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1141 int var,
1142 snd_pcm_hw_rule_func_t func, void *private,
1143 int dep, ...)
1144 {
1145 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1146 struct snd_pcm_hw_rule *c;
1147 unsigned int k;
1148 va_list args;
1149 va_start(args, dep);
1150 if (constrs->rules_num >= constrs->rules_all) {
1151 struct snd_pcm_hw_rule *new;
1152 unsigned int new_rules = constrs->rules_all + 16;
1153 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1154 if (!new) {
1155 va_end(args);
1156 return -ENOMEM;
1157 }
1158 if (constrs->rules) {
1159 memcpy(new, constrs->rules,
1160 constrs->rules_num * sizeof(*c));
1161 kfree(constrs->rules);
1162 }
1163 constrs->rules = new;
1164 constrs->rules_all = new_rules;
1165 }
1166 c = &constrs->rules[constrs->rules_num];
1167 c->cond = cond;
1168 c->func = func;
1169 c->var = var;
1170 c->private = private;
1171 k = 0;
1172 while (1) {
1173 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1174 va_end(args);
1175 return -EINVAL;
1176 }
1177 c->deps[k++] = dep;
1178 if (dep < 0)
1179 break;
1180 dep = va_arg(args, int);
1181 }
1182 constrs->rules_num++;
1183 va_end(args);
1184 return 0;
1185 }
1186
1187 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1188
1189 /**
1190 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1191 * @runtime: PCM runtime instance
1192 * @var: hw_params variable to apply the mask
1193 * @mask: the bitmap mask
1194 *
1195 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1196 *
1197 * Return: Zero if successful, or a negative error code on failure.
1198 */
1199 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1200 u_int32_t mask)
1201 {
1202 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1203 struct snd_mask *maskp = constrs_mask(constrs, var);
1204 *maskp->bits &= mask;
1205 memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1206 if (*maskp->bits == 0)
1207 return -EINVAL;
1208 return 0;
1209 }
1210
1211 /**
1212 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1213 * @runtime: PCM runtime instance
1214 * @var: hw_params variable to apply the mask
1215 * @mask: the 64bit bitmap mask
1216 *
1217 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1218 *
1219 * Return: Zero if successful, or a negative error code on failure.
1220 */
1221 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1222 u_int64_t mask)
1223 {
1224 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1225 struct snd_mask *maskp = constrs_mask(constrs, var);
1226 maskp->bits[0] &= (u_int32_t)mask;
1227 maskp->bits[1] &= (u_int32_t)(mask >> 32);
1228 memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1229 if (! maskp->bits[0] && ! maskp->bits[1])
1230 return -EINVAL;
1231 return 0;
1232 }
1233 EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1234
1235 /**
1236 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1237 * @runtime: PCM runtime instance
1238 * @var: hw_params variable to apply the integer constraint
1239 *
1240 * Apply the constraint of integer to an interval parameter.
1241 *
1242 * Return: Positive if the value is changed, zero if it's not changed, or a
1243 * negative error code.
1244 */
1245 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1246 {
1247 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1248 return snd_interval_setinteger(constrs_interval(constrs, var));
1249 }
1250
1251 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1252
1253 /**
1254 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1255 * @runtime: PCM runtime instance
1256 * @var: hw_params variable to apply the range
1257 * @min: the minimal value
1258 * @max: the maximal value
1259 *
1260 * Apply the min/max range constraint to an interval parameter.
1261 *
1262 * Return: Positive if the value is changed, zero if it's not changed, or a
1263 * negative error code.
1264 */
1265 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1266 unsigned int min, unsigned int max)
1267 {
1268 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1269 struct snd_interval t;
1270 t.min = min;
1271 t.max = max;
1272 t.openmin = t.openmax = 0;
1273 t.integer = 0;
1274 return snd_interval_refine(constrs_interval(constrs, var), &t);
1275 }
1276
1277 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1278
1279 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1280 struct snd_pcm_hw_rule *rule)
1281 {
1282 struct snd_pcm_hw_constraint_list *list = rule->private;
1283 return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1284 }
1285
1286
1287 /**
1288 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1289 * @runtime: PCM runtime instance
1290 * @cond: condition bits
1291 * @var: hw_params variable to apply the list constraint
1292 * @l: list
1293 *
1294 * Apply the list of constraints to an interval parameter.
1295 *
1296 * Return: Zero if successful, or a negative error code on failure.
1297 */
1298 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1299 unsigned int cond,
1300 snd_pcm_hw_param_t var,
1301 const struct snd_pcm_hw_constraint_list *l)
1302 {
1303 return snd_pcm_hw_rule_add(runtime, cond, var,
1304 snd_pcm_hw_rule_list, (void *)l,
1305 var, -1);
1306 }
1307
1308 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1309
1310 static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params,
1311 struct snd_pcm_hw_rule *rule)
1312 {
1313 struct snd_pcm_hw_constraint_ranges *r = rule->private;
1314 return snd_interval_ranges(hw_param_interval(params, rule->var),
1315 r->count, r->ranges, r->mask);
1316 }
1317
1318
1319 /**
1320 * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
1321 * @runtime: PCM runtime instance
1322 * @cond: condition bits
1323 * @var: hw_params variable to apply the list of range constraints
1324 * @r: ranges
1325 *
1326 * Apply the list of range constraints to an interval parameter.
1327 *
1328 * Return: Zero if successful, or a negative error code on failure.
1329 */
1330 int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime,
1331 unsigned int cond,
1332 snd_pcm_hw_param_t var,
1333 const struct snd_pcm_hw_constraint_ranges *r)
1334 {
1335 return snd_pcm_hw_rule_add(runtime, cond, var,
1336 snd_pcm_hw_rule_ranges, (void *)r,
1337 var, -1);
1338 }
1339 EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges);
1340
1341 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1342 struct snd_pcm_hw_rule *rule)
1343 {
1344 const struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1345 unsigned int num = 0, den = 0;
1346 int err;
1347 err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1348 r->nrats, r->rats, &num, &den);
1349 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1350 params->rate_num = num;
1351 params->rate_den = den;
1352 }
1353 return err;
1354 }
1355
1356 /**
1357 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1358 * @runtime: PCM runtime instance
1359 * @cond: condition bits
1360 * @var: hw_params variable to apply the ratnums constraint
1361 * @r: struct snd_ratnums constriants
1362 *
1363 * Return: Zero if successful, or a negative error code on failure.
1364 */
1365 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime,
1366 unsigned int cond,
1367 snd_pcm_hw_param_t var,
1368 const struct snd_pcm_hw_constraint_ratnums *r)
1369 {
1370 return snd_pcm_hw_rule_add(runtime, cond, var,
1371 snd_pcm_hw_rule_ratnums, (void *)r,
1372 var, -1);
1373 }
1374
1375 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1376
1377 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1378 struct snd_pcm_hw_rule *rule)
1379 {
1380 const struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1381 unsigned int num = 0, den = 0;
1382 int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1383 r->nrats, r->rats, &num, &den);
1384 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1385 params->rate_num = num;
1386 params->rate_den = den;
1387 }
1388 return err;
1389 }
1390
1391 /**
1392 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1393 * @runtime: PCM runtime instance
1394 * @cond: condition bits
1395 * @var: hw_params variable to apply the ratdens constraint
1396 * @r: struct snd_ratdens constriants
1397 *
1398 * Return: Zero if successful, or a negative error code on failure.
1399 */
1400 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime,
1401 unsigned int cond,
1402 snd_pcm_hw_param_t var,
1403 const struct snd_pcm_hw_constraint_ratdens *r)
1404 {
1405 return snd_pcm_hw_rule_add(runtime, cond, var,
1406 snd_pcm_hw_rule_ratdens, (void *)r,
1407 var, -1);
1408 }
1409
1410 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1411
1412 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1413 struct snd_pcm_hw_rule *rule)
1414 {
1415 unsigned int l = (unsigned long) rule->private;
1416 int width = l & 0xffff;
1417 unsigned int msbits = l >> 16;
1418 struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1419
1420 if (!snd_interval_single(i))
1421 return 0;
1422
1423 if ((snd_interval_value(i) == width) ||
1424 (width == 0 && snd_interval_value(i) > msbits))
1425 params->msbits = min_not_zero(params->msbits, msbits);
1426
1427 return 0;
1428 }
1429
1430 /**
1431 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1432 * @runtime: PCM runtime instance
1433 * @cond: condition bits
1434 * @width: sample bits width
1435 * @msbits: msbits width
1436 *
1437 * This constraint will set the number of most significant bits (msbits) if a
1438 * sample format with the specified width has been select. If width is set to 0
1439 * the msbits will be set for any sample format with a width larger than the
1440 * specified msbits.
1441 *
1442 * Return: Zero if successful, or a negative error code on failure.
1443 */
1444 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime,
1445 unsigned int cond,
1446 unsigned int width,
1447 unsigned int msbits)
1448 {
1449 unsigned long l = (msbits << 16) | width;
1450 return snd_pcm_hw_rule_add(runtime, cond, -1,
1451 snd_pcm_hw_rule_msbits,
1452 (void*) l,
1453 SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1454 }
1455
1456 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1457
1458 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1459 struct snd_pcm_hw_rule *rule)
1460 {
1461 unsigned long step = (unsigned long) rule->private;
1462 return snd_interval_step(hw_param_interval(params, rule->var), step);
1463 }
1464
1465 /**
1466 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1467 * @runtime: PCM runtime instance
1468 * @cond: condition bits
1469 * @var: hw_params variable to apply the step constraint
1470 * @step: step size
1471 *
1472 * Return: Zero if successful, or a negative error code on failure.
1473 */
1474 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1475 unsigned int cond,
1476 snd_pcm_hw_param_t var,
1477 unsigned long step)
1478 {
1479 return snd_pcm_hw_rule_add(runtime, cond, var,
1480 snd_pcm_hw_rule_step, (void *) step,
1481 var, -1);
1482 }
1483
1484 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1485
1486 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1487 {
1488 static unsigned int pow2_sizes[] = {
1489 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1490 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1491 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1492 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1493 };
1494 return snd_interval_list(hw_param_interval(params, rule->var),
1495 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1496 }
1497
1498 /**
1499 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1500 * @runtime: PCM runtime instance
1501 * @cond: condition bits
1502 * @var: hw_params variable to apply the power-of-2 constraint
1503 *
1504 * Return: Zero if successful, or a negative error code on failure.
1505 */
1506 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1507 unsigned int cond,
1508 snd_pcm_hw_param_t var)
1509 {
1510 return snd_pcm_hw_rule_add(runtime, cond, var,
1511 snd_pcm_hw_rule_pow2, NULL,
1512 var, -1);
1513 }
1514
1515 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1516
1517 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1518 struct snd_pcm_hw_rule *rule)
1519 {
1520 unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1521 struct snd_interval *rate;
1522
1523 rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1524 return snd_interval_list(rate, 1, &base_rate, 0);
1525 }
1526
1527 /**
1528 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1529 * @runtime: PCM runtime instance
1530 * @base_rate: the rate at which the hardware does not resample
1531 *
1532 * Return: Zero if successful, or a negative error code on failure.
1533 */
1534 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1535 unsigned int base_rate)
1536 {
1537 return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1538 SNDRV_PCM_HW_PARAM_RATE,
1539 snd_pcm_hw_rule_noresample_func,
1540 (void *)(uintptr_t)base_rate,
1541 SNDRV_PCM_HW_PARAM_RATE, -1);
1542 }
1543 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1544
1545 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1546 snd_pcm_hw_param_t var)
1547 {
1548 if (hw_is_mask(var)) {
1549 snd_mask_any(hw_param_mask(params, var));
1550 params->cmask |= 1 << var;
1551 params->rmask |= 1 << var;
1552 return;
1553 }
1554 if (hw_is_interval(var)) {
1555 snd_interval_any(hw_param_interval(params, var));
1556 params->cmask |= 1 << var;
1557 params->rmask |= 1 << var;
1558 return;
1559 }
1560 snd_BUG();
1561 }
1562
1563 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1564 {
1565 unsigned int k;
1566 memset(params, 0, sizeof(*params));
1567 for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1568 _snd_pcm_hw_param_any(params, k);
1569 for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1570 _snd_pcm_hw_param_any(params, k);
1571 params->info = ~0U;
1572 }
1573
1574 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1575
1576 /**
1577 * snd_pcm_hw_param_value - return @params field @var value
1578 * @params: the hw_params instance
1579 * @var: parameter to retrieve
1580 * @dir: pointer to the direction (-1,0,1) or %NULL
1581 *
1582 * Return: The value for field @var if it's fixed in configuration space
1583 * defined by @params. -%EINVAL otherwise.
1584 */
1585 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1586 snd_pcm_hw_param_t var, int *dir)
1587 {
1588 if (hw_is_mask(var)) {
1589 const struct snd_mask *mask = hw_param_mask_c(params, var);
1590 if (!snd_mask_single(mask))
1591 return -EINVAL;
1592 if (dir)
1593 *dir = 0;
1594 return snd_mask_value(mask);
1595 }
1596 if (hw_is_interval(var)) {
1597 const struct snd_interval *i = hw_param_interval_c(params, var);
1598 if (!snd_interval_single(i))
1599 return -EINVAL;
1600 if (dir)
1601 *dir = i->openmin;
1602 return snd_interval_value(i);
1603 }
1604 return -EINVAL;
1605 }
1606
1607 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1608
1609 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1610 snd_pcm_hw_param_t var)
1611 {
1612 if (hw_is_mask(var)) {
1613 snd_mask_none(hw_param_mask(params, var));
1614 params->cmask |= 1 << var;
1615 params->rmask |= 1 << var;
1616 } else if (hw_is_interval(var)) {
1617 snd_interval_none(hw_param_interval(params, var));
1618 params->cmask |= 1 << var;
1619 params->rmask |= 1 << var;
1620 } else {
1621 snd_BUG();
1622 }
1623 }
1624
1625 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1626
1627 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1628 snd_pcm_hw_param_t var)
1629 {
1630 int changed;
1631 if (hw_is_mask(var))
1632 changed = snd_mask_refine_first(hw_param_mask(params, var));
1633 else if (hw_is_interval(var))
1634 changed = snd_interval_refine_first(hw_param_interval(params, var));
1635 else
1636 return -EINVAL;
1637 if (changed) {
1638 params->cmask |= 1 << var;
1639 params->rmask |= 1 << var;
1640 }
1641 return changed;
1642 }
1643
1644
1645 /**
1646 * snd_pcm_hw_param_first - refine config space and return minimum value
1647 * @pcm: PCM instance
1648 * @params: the hw_params instance
1649 * @var: parameter to retrieve
1650 * @dir: pointer to the direction (-1,0,1) or %NULL
1651 *
1652 * Inside configuration space defined by @params remove from @var all
1653 * values > minimum. Reduce configuration space accordingly.
1654 *
1655 * Return: The minimum, or a negative error code on failure.
1656 */
1657 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm,
1658 struct snd_pcm_hw_params *params,
1659 snd_pcm_hw_param_t var, int *dir)
1660 {
1661 int changed = _snd_pcm_hw_param_first(params, var);
1662 if (changed < 0)
1663 return changed;
1664 if (params->rmask) {
1665 int err = snd_pcm_hw_refine(pcm, params);
1666 if (snd_BUG_ON(err < 0))
1667 return err;
1668 }
1669 return snd_pcm_hw_param_value(params, var, dir);
1670 }
1671
1672 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1673
1674 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1675 snd_pcm_hw_param_t var)
1676 {
1677 int changed;
1678 if (hw_is_mask(var))
1679 changed = snd_mask_refine_last(hw_param_mask(params, var));
1680 else if (hw_is_interval(var))
1681 changed = snd_interval_refine_last(hw_param_interval(params, var));
1682 else
1683 return -EINVAL;
1684 if (changed) {
1685 params->cmask |= 1 << var;
1686 params->rmask |= 1 << var;
1687 }
1688 return changed;
1689 }
1690
1691
1692 /**
1693 * snd_pcm_hw_param_last - refine config space and return maximum value
1694 * @pcm: PCM instance
1695 * @params: the hw_params instance
1696 * @var: parameter to retrieve
1697 * @dir: pointer to the direction (-1,0,1) or %NULL
1698 *
1699 * Inside configuration space defined by @params remove from @var all
1700 * values < maximum. Reduce configuration space accordingly.
1701 *
1702 * Return: The maximum, or a negative error code on failure.
1703 */
1704 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm,
1705 struct snd_pcm_hw_params *params,
1706 snd_pcm_hw_param_t var, int *dir)
1707 {
1708 int changed = _snd_pcm_hw_param_last(params, var);
1709 if (changed < 0)
1710 return changed;
1711 if (params->rmask) {
1712 int err = snd_pcm_hw_refine(pcm, params);
1713 if (snd_BUG_ON(err < 0))
1714 return err;
1715 }
1716 return snd_pcm_hw_param_value(params, var, dir);
1717 }
1718
1719 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1720
1721 /**
1722 * snd_pcm_hw_param_choose - choose a configuration defined by @params
1723 * @pcm: PCM instance
1724 * @params: the hw_params instance
1725 *
1726 * Choose one configuration from configuration space defined by @params.
1727 * The configuration chosen is that obtained fixing in this order:
1728 * first access, first format, first subformat, min channels,
1729 * min rate, min period time, max buffer size, min tick time
1730 *
1731 * Return: Zero if successful, or a negative error code on failure.
1732 */
1733 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1734 struct snd_pcm_hw_params *params)
1735 {
1736 static int vars[] = {
1737 SNDRV_PCM_HW_PARAM_ACCESS,
1738 SNDRV_PCM_HW_PARAM_FORMAT,
1739 SNDRV_PCM_HW_PARAM_SUBFORMAT,
1740 SNDRV_PCM_HW_PARAM_CHANNELS,
1741 SNDRV_PCM_HW_PARAM_RATE,
1742 SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1743 SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1744 SNDRV_PCM_HW_PARAM_TICK_TIME,
1745 -1
1746 };
1747 int err, *v;
1748
1749 for (v = vars; *v != -1; v++) {
1750 if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1751 err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1752 else
1753 err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1754 if (snd_BUG_ON(err < 0))
1755 return err;
1756 }
1757 return 0;
1758 }
1759
1760 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1761 void *arg)
1762 {
1763 struct snd_pcm_runtime *runtime = substream->runtime;
1764 unsigned long flags;
1765 snd_pcm_stream_lock_irqsave(substream, flags);
1766 if (snd_pcm_running(substream) &&
1767 snd_pcm_update_hw_ptr(substream) >= 0)
1768 runtime->status->hw_ptr %= runtime->buffer_size;
1769 else {
1770 runtime->status->hw_ptr = 0;
1771 runtime->hw_ptr_wrap = 0;
1772 }
1773 snd_pcm_stream_unlock_irqrestore(substream, flags);
1774 return 0;
1775 }
1776
1777 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1778 void *arg)
1779 {
1780 struct snd_pcm_channel_info *info = arg;
1781 struct snd_pcm_runtime *runtime = substream->runtime;
1782 int width;
1783 if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1784 info->offset = -1;
1785 return 0;
1786 }
1787 width = snd_pcm_format_physical_width(runtime->format);
1788 if (width < 0)
1789 return width;
1790 info->offset = 0;
1791 switch (runtime->access) {
1792 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1793 case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1794 info->first = info->channel * width;
1795 info->step = runtime->channels * width;
1796 break;
1797 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1798 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1799 {
1800 size_t size = runtime->dma_bytes / runtime->channels;
1801 info->first = info->channel * size * 8;
1802 info->step = width;
1803 break;
1804 }
1805 default:
1806 snd_BUG();
1807 break;
1808 }
1809 return 0;
1810 }
1811
1812 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1813 void *arg)
1814 {
1815 struct snd_pcm_hw_params *params = arg;
1816 snd_pcm_format_t format;
1817 int channels;
1818 ssize_t frame_size;
1819
1820 params->fifo_size = substream->runtime->hw.fifo_size;
1821 if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1822 format = params_format(params);
1823 channels = params_channels(params);
1824 frame_size = snd_pcm_format_size(format, channels);
1825 if (frame_size > 0)
1826 params->fifo_size /= (unsigned)frame_size;
1827 }
1828 return 0;
1829 }
1830
1831 /**
1832 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1833 * @substream: the pcm substream instance
1834 * @cmd: ioctl command
1835 * @arg: ioctl argument
1836 *
1837 * Processes the generic ioctl commands for PCM.
1838 * Can be passed as the ioctl callback for PCM ops.
1839 *
1840 * Return: Zero if successful, or a negative error code on failure.
1841 */
1842 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1843 unsigned int cmd, void *arg)
1844 {
1845 switch (cmd) {
1846 case SNDRV_PCM_IOCTL1_INFO:
1847 return 0;
1848 case SNDRV_PCM_IOCTL1_RESET:
1849 return snd_pcm_lib_ioctl_reset(substream, arg);
1850 case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1851 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1852 case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1853 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1854 }
1855 return -ENXIO;
1856 }
1857
1858 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1859
1860 /**
1861 * snd_pcm_period_elapsed - update the pcm status for the next period
1862 * @substream: the pcm substream instance
1863 *
1864 * This function is called from the interrupt handler when the
1865 * PCM has processed the period size. It will update the current
1866 * pointer, wake up sleepers, etc.
1867 *
1868 * Even if more than one periods have elapsed since the last call, you
1869 * have to call this only once.
1870 */
1871 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1872 {
1873 struct snd_pcm_runtime *runtime;
1874 unsigned long flags;
1875
1876 if (PCM_RUNTIME_CHECK(substream))
1877 return;
1878 runtime = substream->runtime;
1879
1880 snd_pcm_stream_lock_irqsave(substream, flags);
1881 if (!snd_pcm_running(substream) ||
1882 snd_pcm_update_hw_ptr0(substream, 1) < 0)
1883 goto _end;
1884
1885 #ifdef CONFIG_SND_PCM_TIMER
1886 if (substream->timer_running)
1887 snd_timer_interrupt(substream->timer, 1);
1888 #endif
1889 _end:
1890 kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1891 snd_pcm_stream_unlock_irqrestore(substream, flags);
1892 }
1893
1894 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1895
1896 /*
1897 * Wait until avail_min data becomes available
1898 * Returns a negative error code if any error occurs during operation.
1899 * The available space is stored on availp. When err = 0 and avail = 0
1900 * on the capture stream, it indicates the stream is in DRAINING state.
1901 */
1902 static int wait_for_avail(struct snd_pcm_substream *substream,
1903 snd_pcm_uframes_t *availp)
1904 {
1905 struct snd_pcm_runtime *runtime = substream->runtime;
1906 int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1907 wait_queue_t wait;
1908 int err = 0;
1909 snd_pcm_uframes_t avail = 0;
1910 long wait_time, tout;
1911
1912 init_waitqueue_entry(&wait, current);
1913 set_current_state(TASK_INTERRUPTIBLE);
1914 add_wait_queue(&runtime->tsleep, &wait);
1915
1916 if (runtime->no_period_wakeup)
1917 wait_time = MAX_SCHEDULE_TIMEOUT;
1918 else {
1919 wait_time = 10;
1920 if (runtime->rate) {
1921 long t = runtime->period_size * 2 / runtime->rate;
1922 wait_time = max(t, wait_time);
1923 }
1924 wait_time = msecs_to_jiffies(wait_time * 1000);
1925 }
1926
1927 for (;;) {
1928 if (signal_pending(current)) {
1929 err = -ERESTARTSYS;
1930 break;
1931 }
1932
1933 /*
1934 * We need to check if space became available already
1935 * (and thus the wakeup happened already) first to close
1936 * the race of space already having become available.
1937 * This check must happen after been added to the waitqueue
1938 * and having current state be INTERRUPTIBLE.
1939 */
1940 if (is_playback)
1941 avail = snd_pcm_playback_avail(runtime);
1942 else
1943 avail = snd_pcm_capture_avail(runtime);
1944 if (avail >= runtime->twake)
1945 break;
1946 snd_pcm_stream_unlock_irq(substream);
1947
1948 tout = schedule_timeout(wait_time);
1949
1950 snd_pcm_stream_lock_irq(substream);
1951 set_current_state(TASK_INTERRUPTIBLE);
1952 switch (runtime->status->state) {
1953 case SNDRV_PCM_STATE_SUSPENDED:
1954 err = -ESTRPIPE;
1955 goto _endloop;
1956 case SNDRV_PCM_STATE_XRUN:
1957 err = -EPIPE;
1958 goto _endloop;
1959 case SNDRV_PCM_STATE_DRAINING:
1960 if (is_playback)
1961 err = -EPIPE;
1962 else
1963 avail = 0; /* indicate draining */
1964 goto _endloop;
1965 case SNDRV_PCM_STATE_OPEN:
1966 case SNDRV_PCM_STATE_SETUP:
1967 case SNDRV_PCM_STATE_DISCONNECTED:
1968 err = -EBADFD;
1969 goto _endloop;
1970 case SNDRV_PCM_STATE_PAUSED:
1971 continue;
1972 }
1973 if (!tout) {
1974 pcm_dbg(substream->pcm,
1975 "%s write error (DMA or IRQ trouble?)\n",
1976 is_playback ? "playback" : "capture");
1977 err = -EIO;
1978 break;
1979 }
1980 }
1981 _endloop:
1982 set_current_state(TASK_RUNNING);
1983 remove_wait_queue(&runtime->tsleep, &wait);
1984 *availp = avail;
1985 return err;
1986 }
1987
1988 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1989 unsigned int hwoff,
1990 unsigned long data, unsigned int off,
1991 snd_pcm_uframes_t frames)
1992 {
1993 struct snd_pcm_runtime *runtime = substream->runtime;
1994 int err;
1995 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1996 if (substream->ops->copy) {
1997 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1998 return err;
1999 } else {
2000 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2001 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
2002 return -EFAULT;
2003 }
2004 return 0;
2005 }
2006
2007 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
2008 unsigned long data, unsigned int off,
2009 snd_pcm_uframes_t size);
2010
2011 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream,
2012 unsigned long data,
2013 snd_pcm_uframes_t size,
2014 int nonblock,
2015 transfer_f transfer)
2016 {
2017 struct snd_pcm_runtime *runtime = substream->runtime;
2018 snd_pcm_uframes_t xfer = 0;
2019 snd_pcm_uframes_t offset = 0;
2020 snd_pcm_uframes_t avail;
2021 int err = 0;
2022
2023 if (size == 0)
2024 return 0;
2025
2026 snd_pcm_stream_lock_irq(substream);
2027 switch (runtime->status->state) {
2028 case SNDRV_PCM_STATE_PREPARED:
2029 case SNDRV_PCM_STATE_RUNNING:
2030 case SNDRV_PCM_STATE_PAUSED:
2031 break;
2032 case SNDRV_PCM_STATE_XRUN:
2033 err = -EPIPE;
2034 goto _end_unlock;
2035 case SNDRV_PCM_STATE_SUSPENDED:
2036 err = -ESTRPIPE;
2037 goto _end_unlock;
2038 default:
2039 err = -EBADFD;
2040 goto _end_unlock;
2041 }
2042
2043 runtime->twake = runtime->control->avail_min ? : 1;
2044 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2045 snd_pcm_update_hw_ptr(substream);
2046 avail = snd_pcm_playback_avail(runtime);
2047 while (size > 0) {
2048 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2049 snd_pcm_uframes_t cont;
2050 if (!avail) {
2051 if (nonblock) {
2052 err = -EAGAIN;
2053 goto _end_unlock;
2054 }
2055 runtime->twake = min_t(snd_pcm_uframes_t, size,
2056 runtime->control->avail_min ? : 1);
2057 err = wait_for_avail(substream, &avail);
2058 if (err < 0)
2059 goto _end_unlock;
2060 }
2061 frames = size > avail ? avail : size;
2062 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2063 if (frames > cont)
2064 frames = cont;
2065 if (snd_BUG_ON(!frames)) {
2066 runtime->twake = 0;
2067 snd_pcm_stream_unlock_irq(substream);
2068 return -EINVAL;
2069 }
2070 appl_ptr = runtime->control->appl_ptr;
2071 appl_ofs = appl_ptr % runtime->buffer_size;
2072 snd_pcm_stream_unlock_irq(substream);
2073 err = transfer(substream, appl_ofs, data, offset, frames);
2074 snd_pcm_stream_lock_irq(substream);
2075 if (err < 0)
2076 goto _end_unlock;
2077 switch (runtime->status->state) {
2078 case SNDRV_PCM_STATE_XRUN:
2079 err = -EPIPE;
2080 goto _end_unlock;
2081 case SNDRV_PCM_STATE_SUSPENDED:
2082 err = -ESTRPIPE;
2083 goto _end_unlock;
2084 default:
2085 break;
2086 }
2087 appl_ptr += frames;
2088 if (appl_ptr >= runtime->boundary)
2089 appl_ptr -= runtime->boundary;
2090 runtime->control->appl_ptr = appl_ptr;
2091 if (substream->ops->ack)
2092 substream->ops->ack(substream);
2093
2094 offset += frames;
2095 size -= frames;
2096 xfer += frames;
2097 avail -= frames;
2098 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2099 snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2100 err = snd_pcm_start(substream);
2101 if (err < 0)
2102 goto _end_unlock;
2103 }
2104 }
2105 _end_unlock:
2106 runtime->twake = 0;
2107 if (xfer > 0 && err >= 0)
2108 snd_pcm_update_state(substream, runtime);
2109 snd_pcm_stream_unlock_irq(substream);
2110 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2111 }
2112
2113 /* sanity-check for read/write methods */
2114 static int pcm_sanity_check(struct snd_pcm_substream *substream)
2115 {
2116 struct snd_pcm_runtime *runtime;
2117 if (PCM_RUNTIME_CHECK(substream))
2118 return -ENXIO;
2119 runtime = substream->runtime;
2120 if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
2121 return -EINVAL;
2122 if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2123 return -EBADFD;
2124 return 0;
2125 }
2126
2127 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
2128 {
2129 struct snd_pcm_runtime *runtime;
2130 int nonblock;
2131 int err;
2132
2133 err = pcm_sanity_check(substream);
2134 if (err < 0)
2135 return err;
2136 runtime = substream->runtime;
2137 nonblock = !!(substream->f_flags & O_NONBLOCK);
2138
2139 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2140 runtime->channels > 1)
2141 return -EINVAL;
2142 return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
2143 snd_pcm_lib_write_transfer);
2144 }
2145
2146 EXPORT_SYMBOL(snd_pcm_lib_write);
2147
2148 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
2149 unsigned int hwoff,
2150 unsigned long data, unsigned int off,
2151 snd_pcm_uframes_t frames)
2152 {
2153 struct snd_pcm_runtime *runtime = substream->runtime;
2154 int err;
2155 void __user **bufs = (void __user **)data;
2156 int channels = runtime->channels;
2157 int c;
2158 if (substream->ops->copy) {
2159 if (snd_BUG_ON(!substream->ops->silence))
2160 return -EINVAL;
2161 for (c = 0; c < channels; ++c, ++bufs) {
2162 if (*bufs == NULL) {
2163 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
2164 return err;
2165 } else {
2166 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2167 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2168 return err;
2169 }
2170 }
2171 } else {
2172 /* default transfer behaviour */
2173 size_t dma_csize = runtime->dma_bytes / channels;
2174 for (c = 0; c < channels; ++c, ++bufs) {
2175 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2176 if (*bufs == NULL) {
2177 snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
2178 } else {
2179 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2180 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
2181 return -EFAULT;
2182 }
2183 }
2184 }
2185 return 0;
2186 }
2187
2188 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
2189 void __user **bufs,
2190 snd_pcm_uframes_t frames)
2191 {
2192 struct snd_pcm_runtime *runtime;
2193 int nonblock;
2194 int err;
2195
2196 err = pcm_sanity_check(substream);
2197 if (err < 0)
2198 return err;
2199 runtime = substream->runtime;
2200 nonblock = !!(substream->f_flags & O_NONBLOCK);
2201
2202 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2203 return -EINVAL;
2204 return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
2205 nonblock, snd_pcm_lib_writev_transfer);
2206 }
2207
2208 EXPORT_SYMBOL(snd_pcm_lib_writev);
2209
2210 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream,
2211 unsigned int hwoff,
2212 unsigned long data, unsigned int off,
2213 snd_pcm_uframes_t frames)
2214 {
2215 struct snd_pcm_runtime *runtime = substream->runtime;
2216 int err;
2217 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2218 if (substream->ops->copy) {
2219 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2220 return err;
2221 } else {
2222 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2223 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2224 return -EFAULT;
2225 }
2226 return 0;
2227 }
2228
2229 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
2230 unsigned long data,
2231 snd_pcm_uframes_t size,
2232 int nonblock,
2233 transfer_f transfer)
2234 {
2235 struct snd_pcm_runtime *runtime = substream->runtime;
2236 snd_pcm_uframes_t xfer = 0;
2237 snd_pcm_uframes_t offset = 0;
2238 snd_pcm_uframes_t avail;
2239 int err = 0;
2240
2241 if (size == 0)
2242 return 0;
2243
2244 snd_pcm_stream_lock_irq(substream);
2245 switch (runtime->status->state) {
2246 case SNDRV_PCM_STATE_PREPARED:
2247 if (size >= runtime->start_threshold) {
2248 err = snd_pcm_start(substream);
2249 if (err < 0)
2250 goto _end_unlock;
2251 }
2252 break;
2253 case SNDRV_PCM_STATE_DRAINING:
2254 case SNDRV_PCM_STATE_RUNNING:
2255 case SNDRV_PCM_STATE_PAUSED:
2256 break;
2257 case SNDRV_PCM_STATE_XRUN:
2258 err = -EPIPE;
2259 goto _end_unlock;
2260 case SNDRV_PCM_STATE_SUSPENDED:
2261 err = -ESTRPIPE;
2262 goto _end_unlock;
2263 default:
2264 err = -EBADFD;
2265 goto _end_unlock;
2266 }
2267
2268 runtime->twake = runtime->control->avail_min ? : 1;
2269 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2270 snd_pcm_update_hw_ptr(substream);
2271 avail = snd_pcm_capture_avail(runtime);
2272 while (size > 0) {
2273 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2274 snd_pcm_uframes_t cont;
2275 if (!avail) {
2276 if (runtime->status->state ==
2277 SNDRV_PCM_STATE_DRAINING) {
2278 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2279 goto _end_unlock;
2280 }
2281 if (nonblock) {
2282 err = -EAGAIN;
2283 goto _end_unlock;
2284 }
2285 runtime->twake = min_t(snd_pcm_uframes_t, size,
2286 runtime->control->avail_min ? : 1);
2287 err = wait_for_avail(substream, &avail);
2288 if (err < 0)
2289 goto _end_unlock;
2290 if (!avail)
2291 continue; /* draining */
2292 }
2293 frames = size > avail ? avail : size;
2294 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2295 if (frames > cont)
2296 frames = cont;
2297 if (snd_BUG_ON(!frames)) {
2298 runtime->twake = 0;
2299 snd_pcm_stream_unlock_irq(substream);
2300 return -EINVAL;
2301 }
2302 appl_ptr = runtime->control->appl_ptr;
2303 appl_ofs = appl_ptr % runtime->buffer_size;
2304 snd_pcm_stream_unlock_irq(substream);
2305 err = transfer(substream, appl_ofs, data, offset, frames);
2306 snd_pcm_stream_lock_irq(substream);
2307 if (err < 0)
2308 goto _end_unlock;
2309 switch (runtime->status->state) {
2310 case SNDRV_PCM_STATE_XRUN:
2311 err = -EPIPE;
2312 goto _end_unlock;
2313 case SNDRV_PCM_STATE_SUSPENDED:
2314 err = -ESTRPIPE;
2315 goto _end_unlock;
2316 default:
2317 break;
2318 }
2319 appl_ptr += frames;
2320 if (appl_ptr >= runtime->boundary)
2321 appl_ptr -= runtime->boundary;
2322 runtime->control->appl_ptr = appl_ptr;
2323 if (substream->ops->ack)
2324 substream->ops->ack(substream);
2325
2326 offset += frames;
2327 size -= frames;
2328 xfer += frames;
2329 avail -= frames;
2330 }
2331 _end_unlock:
2332 runtime->twake = 0;
2333 if (xfer > 0 && err >= 0)
2334 snd_pcm_update_state(substream, runtime);
2335 snd_pcm_stream_unlock_irq(substream);
2336 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2337 }
2338
2339 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2340 {
2341 struct snd_pcm_runtime *runtime;
2342 int nonblock;
2343 int err;
2344
2345 err = pcm_sanity_check(substream);
2346 if (err < 0)
2347 return err;
2348 runtime = substream->runtime;
2349 nonblock = !!(substream->f_flags & O_NONBLOCK);
2350 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2351 return -EINVAL;
2352 return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2353 }
2354
2355 EXPORT_SYMBOL(snd_pcm_lib_read);
2356
2357 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2358 unsigned int hwoff,
2359 unsigned long data, unsigned int off,
2360 snd_pcm_uframes_t frames)
2361 {
2362 struct snd_pcm_runtime *runtime = substream->runtime;
2363 int err;
2364 void __user **bufs = (void __user **)data;
2365 int channels = runtime->channels;
2366 int c;
2367 if (substream->ops->copy) {
2368 for (c = 0; c < channels; ++c, ++bufs) {
2369 char __user *buf;
2370 if (*bufs == NULL)
2371 continue;
2372 buf = *bufs + samples_to_bytes(runtime, off);
2373 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2374 return err;
2375 }
2376 } else {
2377 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2378 for (c = 0; c < channels; ++c, ++bufs) {
2379 char *hwbuf;
2380 char __user *buf;
2381 if (*bufs == NULL)
2382 continue;
2383
2384 hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2385 buf = *bufs + samples_to_bytes(runtime, off);
2386 if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2387 return -EFAULT;
2388 }
2389 }
2390 return 0;
2391 }
2392
2393 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2394 void __user **bufs,
2395 snd_pcm_uframes_t frames)
2396 {
2397 struct snd_pcm_runtime *runtime;
2398 int nonblock;
2399 int err;
2400
2401 err = pcm_sanity_check(substream);
2402 if (err < 0)
2403 return err;
2404 runtime = substream->runtime;
2405 if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2406 return -EBADFD;
2407
2408 nonblock = !!(substream->f_flags & O_NONBLOCK);
2409 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2410 return -EINVAL;
2411 return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2412 }
2413
2414 EXPORT_SYMBOL(snd_pcm_lib_readv);
2415
2416 /*
2417 * standard channel mapping helpers
2418 */
2419
2420 /* default channel maps for multi-channel playbacks, up to 8 channels */
2421 const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2422 { .channels = 1,
2423 .map = { SNDRV_CHMAP_MONO } },
2424 { .channels = 2,
2425 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2426 { .channels = 4,
2427 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2428 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2429 { .channels = 6,
2430 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2431 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2432 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2433 { .channels = 8,
2434 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2435 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2436 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2437 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2438 { }
2439 };
2440 EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2441
2442 /* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2443 const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2444 { .channels = 1,
2445 .map = { SNDRV_CHMAP_MONO } },
2446 { .channels = 2,
2447 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2448 { .channels = 4,
2449 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2450 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2451 { .channels = 6,
2452 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2453 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2454 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2455 { .channels = 8,
2456 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2457 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2458 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2459 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2460 { }
2461 };
2462 EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2463
2464 static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2465 {
2466 if (ch > info->max_channels)
2467 return false;
2468 return !info->channel_mask || (info->channel_mask & (1U << ch));
2469 }
2470
2471 static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2472 struct snd_ctl_elem_info *uinfo)
2473 {
2474 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2475
2476 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2477 uinfo->count = 0;
2478 uinfo->count = info->max_channels;
2479 uinfo->value.integer.min = 0;
2480 uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2481 return 0;
2482 }
2483
2484 /* get callback for channel map ctl element
2485 * stores the channel position firstly matching with the current channels
2486 */
2487 static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2488 struct snd_ctl_elem_value *ucontrol)
2489 {
2490 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2491 unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2492 struct snd_pcm_substream *substream;
2493 const struct snd_pcm_chmap_elem *map;
2494
2495 if (snd_BUG_ON(!info->chmap))
2496 return -EINVAL;
2497 substream = snd_pcm_chmap_substream(info, idx);
2498 if (!substream)
2499 return -ENODEV;
2500 memset(ucontrol->value.integer.value, 0,
2501 sizeof(ucontrol->value.integer.value));
2502 if (!substream->runtime)
2503 return 0; /* no channels set */
2504 for (map = info->chmap; map->channels; map++) {
2505 int i;
2506 if (map->channels == substream->runtime->channels &&
2507 valid_chmap_channels(info, map->channels)) {
2508 for (i = 0; i < map->channels; i++)
2509 ucontrol->value.integer.value[i] = map->map[i];
2510 return 0;
2511 }
2512 }
2513 return -EINVAL;
2514 }
2515
2516 /* tlv callback for channel map ctl element
2517 * expands the pre-defined channel maps in a form of TLV
2518 */
2519 static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2520 unsigned int size, unsigned int __user *tlv)
2521 {
2522 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2523 const struct snd_pcm_chmap_elem *map;
2524 unsigned int __user *dst;
2525 int c, count = 0;
2526
2527 if (snd_BUG_ON(!info->chmap))
2528 return -EINVAL;
2529 if (size < 8)
2530 return -ENOMEM;
2531 if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2532 return -EFAULT;
2533 size -= 8;
2534 dst = tlv + 2;
2535 for (map = info->chmap; map->channels; map++) {
2536 int chs_bytes = map->channels * 4;
2537 if (!valid_chmap_channels(info, map->channels))
2538 continue;
2539 if (size < 8)
2540 return -ENOMEM;
2541 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2542 put_user(chs_bytes, dst + 1))
2543 return -EFAULT;
2544 dst += 2;
2545 size -= 8;
2546 count += 8;
2547 if (size < chs_bytes)
2548 return -ENOMEM;
2549 size -= chs_bytes;
2550 count += chs_bytes;
2551 for (c = 0; c < map->channels; c++) {
2552 if (put_user(map->map[c], dst))
2553 return -EFAULT;
2554 dst++;
2555 }
2556 }
2557 if (put_user(count, tlv + 1))
2558 return -EFAULT;
2559 return 0;
2560 }
2561
2562 static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2563 {
2564 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2565 info->pcm->streams[info->stream].chmap_kctl = NULL;
2566 kfree(info);
2567 }
2568
2569 /**
2570 * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2571 * @pcm: the assigned PCM instance
2572 * @stream: stream direction
2573 * @chmap: channel map elements (for query)
2574 * @max_channels: the max number of channels for the stream
2575 * @private_value: the value passed to each kcontrol's private_value field
2576 * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2577 *
2578 * Create channel-mapping control elements assigned to the given PCM stream(s).
2579 * Return: Zero if successful, or a negative error value.
2580 */
2581 int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2582 const struct snd_pcm_chmap_elem *chmap,
2583 int max_channels,
2584 unsigned long private_value,
2585 struct snd_pcm_chmap **info_ret)
2586 {
2587 struct snd_pcm_chmap *info;
2588 struct snd_kcontrol_new knew = {
2589 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
2590 .access = SNDRV_CTL_ELEM_ACCESS_READ |
2591 SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2592 SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2593 .info = pcm_chmap_ctl_info,
2594 .get = pcm_chmap_ctl_get,
2595 .tlv.c = pcm_chmap_ctl_tlv,
2596 };
2597 int err;
2598
2599 if (WARN_ON(pcm->streams[stream].chmap_kctl))
2600 return -EBUSY;
2601 info = kzalloc(sizeof(*info), GFP_KERNEL);
2602 if (!info)
2603 return -ENOMEM;
2604 info->pcm = pcm;
2605 info->stream = stream;
2606 info->chmap = chmap;
2607 info->max_channels = max_channels;
2608 if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2609 knew.name = "Playback Channel Map";
2610 else
2611 knew.name = "Capture Channel Map";
2612 knew.device = pcm->device;
2613 knew.count = pcm->streams[stream].substream_count;
2614 knew.private_value = private_value;
2615 info->kctl = snd_ctl_new1(&knew, info);
2616 if (!info->kctl) {
2617 kfree(info);
2618 return -ENOMEM;
2619 }
2620 info->kctl->private_free = pcm_chmap_ctl_private_free;
2621 err = snd_ctl_add(pcm->card, info->kctl);
2622 if (err < 0)
2623 return err;
2624 pcm->streams[stream].chmap_kctl = info->kctl;
2625 if (info_ret)
2626 *info_ret = info;
2627 return 0;
2628 }
2629 EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);