]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - ubuntu/vbox/r0drv/linux/memobj-r0drv-linux.c
4bc2a9ba94440c4da2f54a029e6393f7f115da79
[mirror_ubuntu-artful-kernel.git] / ubuntu / vbox / r0drv / linux / memobj-r0drv-linux.c
1 /* $Id: memobj-r0drv-linux.c $ */
2 /** @file
3 * IPRT - Ring-0 Memory Objects, Linux.
4 */
5
6 /*
7 * Copyright (C) 2006-2016 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * The contents of this file may alternatively be used under the terms
18 * of the Common Development and Distribution License Version 1.0
19 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
20 * VirtualBox OSE distribution, in which case the provisions of the
21 * CDDL are applicable instead of those of the GPL.
22 *
23 * You may elect to license modified versions of this file under the
24 * terms and conditions of either the GPL or the CDDL or both.
25 */
26
27
28 /*********************************************************************************************************************************
29 * Header Files *
30 *********************************************************************************************************************************/
31 #include "the-linux-kernel.h"
32
33 #include <iprt/memobj.h>
34 #include <iprt/alloc.h>
35 #include <iprt/assert.h>
36 #include <iprt/log.h>
37 #include <iprt/process.h>
38 #include <iprt/string.h>
39 #include "internal/memobj.h"
40
41
42 /*********************************************************************************************************************************
43 * Defined Constants And Macros *
44 *********************************************************************************************************************************/
45 /* early 2.6 kernels */
46 #ifndef PAGE_SHARED_EXEC
47 # define PAGE_SHARED_EXEC PAGE_SHARED
48 #endif
49 #ifndef PAGE_READONLY_EXEC
50 # define PAGE_READONLY_EXEC PAGE_READONLY
51 #endif
52
53 /*
54 * 2.6.29+ kernels don't work with remap_pfn_range() anymore because
55 * track_pfn_vma_new() is apparently not defined for non-RAM pages.
56 * It should be safe to use vm_insert_page() older kernels as well.
57 */
58 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 23)
59 # define VBOX_USE_INSERT_PAGE
60 #endif
61 #if defined(CONFIG_X86_PAE) \
62 && ( defined(HAVE_26_STYLE_REMAP_PAGE_RANGE) \
63 || ( LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) \
64 && LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 11)))
65 # define VBOX_USE_PAE_HACK
66 #endif
67
68
69 /*********************************************************************************************************************************
70 * Structures and Typedefs *
71 *********************************************************************************************************************************/
72 /**
73 * The Darwin version of the memory object structure.
74 */
75 typedef struct RTR0MEMOBJLNX
76 {
77 /** The core structure. */
78 RTR0MEMOBJINTERNAL Core;
79 /** Set if the allocation is contiguous.
80 * This means it has to be given back as one chunk. */
81 bool fContiguous;
82 /** Set if we've vmap'ed the memory into ring-0. */
83 bool fMappedToRing0;
84 /** The pages in the apPages array. */
85 size_t cPages;
86 /** Array of struct page pointers. (variable size) */
87 struct page *apPages[1];
88 } RTR0MEMOBJLNX, *PRTR0MEMOBJLNX;
89
90
91 static void rtR0MemObjLinuxFreePages(PRTR0MEMOBJLNX pMemLnx);
92
93
94 /**
95 * Helper that converts from a RTR0PROCESS handle to a linux task.
96 *
97 * @returns The corresponding Linux task.
98 * @param R0Process IPRT ring-0 process handle.
99 */
100 static struct task_struct *rtR0ProcessToLinuxTask(RTR0PROCESS R0Process)
101 {
102 /** @todo fix rtR0ProcessToLinuxTask!! */
103 /** @todo many (all?) callers currently assume that we return 'current'! */
104 return R0Process == RTR0ProcHandleSelf() ? current : NULL;
105 }
106
107
108 /**
109 * Compute order. Some functions allocate 2^order pages.
110 *
111 * @returns order.
112 * @param cPages Number of pages.
113 */
114 static int rtR0MemObjLinuxOrder(size_t cPages)
115 {
116 int iOrder;
117 size_t cTmp;
118
119 for (iOrder = 0, cTmp = cPages; cTmp >>= 1; ++iOrder)
120 ;
121 if (cPages & ~((size_t)1 << iOrder))
122 ++iOrder;
123
124 return iOrder;
125 }
126
127
128 /**
129 * Converts from RTMEM_PROT_* to Linux PAGE_*.
130 *
131 * @returns Linux page protection constant.
132 * @param fProt The IPRT protection mask.
133 * @param fKernel Whether it applies to kernel or user space.
134 */
135 static pgprot_t rtR0MemObjLinuxConvertProt(unsigned fProt, bool fKernel)
136 {
137 switch (fProt)
138 {
139 default:
140 AssertMsgFailed(("%#x %d\n", fProt, fKernel));
141 case RTMEM_PROT_NONE:
142 return PAGE_NONE;
143
144 case RTMEM_PROT_READ:
145 return fKernel ? PAGE_KERNEL_RO : PAGE_READONLY;
146
147 case RTMEM_PROT_WRITE:
148 case RTMEM_PROT_WRITE | RTMEM_PROT_READ:
149 return fKernel ? PAGE_KERNEL : PAGE_SHARED;
150
151 case RTMEM_PROT_EXEC:
152 case RTMEM_PROT_EXEC | RTMEM_PROT_READ:
153 #if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
154 if (fKernel)
155 {
156 pgprot_t fPg = MY_PAGE_KERNEL_EXEC;
157 pgprot_val(fPg) &= ~_PAGE_RW;
158 return fPg;
159 }
160 return PAGE_READONLY_EXEC;
161 #else
162 return fKernel ? MY_PAGE_KERNEL_EXEC : PAGE_READONLY_EXEC;
163 #endif
164
165 case RTMEM_PROT_WRITE | RTMEM_PROT_EXEC:
166 case RTMEM_PROT_WRITE | RTMEM_PROT_EXEC | RTMEM_PROT_READ:
167 return fKernel ? MY_PAGE_KERNEL_EXEC : PAGE_SHARED_EXEC;
168 }
169 }
170
171
172 /**
173 * Worker for rtR0MemObjNativeReserveUser and rtR0MemObjNativerMapUser that creates
174 * an empty user space mapping.
175 *
176 * We acquire the mmap_sem of the task!
177 *
178 * @returns Pointer to the mapping.
179 * (void *)-1 on failure.
180 * @param R3PtrFixed (RTR3PTR)-1 if anywhere, otherwise a specific location.
181 * @param cb The size of the mapping.
182 * @param uAlignment The alignment of the mapping.
183 * @param pTask The Linux task to create this mapping in.
184 * @param fProt The RTMEM_PROT_* mask.
185 */
186 static void *rtR0MemObjLinuxDoMmap(RTR3PTR R3PtrFixed, size_t cb, size_t uAlignment, struct task_struct *pTask, unsigned fProt)
187 {
188 unsigned fLnxProt;
189 unsigned long ulAddr;
190
191 Assert(pTask == current); /* do_mmap */
192 RT_NOREF_PV(pTask);
193
194 /*
195 * Convert from IPRT protection to mman.h PROT_ and call do_mmap.
196 */
197 fProt &= (RTMEM_PROT_NONE | RTMEM_PROT_READ | RTMEM_PROT_WRITE | RTMEM_PROT_EXEC);
198 if (fProt == RTMEM_PROT_NONE)
199 fLnxProt = PROT_NONE;
200 else
201 {
202 fLnxProt = 0;
203 if (fProt & RTMEM_PROT_READ)
204 fLnxProt |= PROT_READ;
205 if (fProt & RTMEM_PROT_WRITE)
206 fLnxProt |= PROT_WRITE;
207 if (fProt & RTMEM_PROT_EXEC)
208 fLnxProt |= PROT_EXEC;
209 }
210
211 if (R3PtrFixed != (RTR3PTR)-1)
212 {
213 #if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 5, 0)
214 ulAddr = vm_mmap(NULL, R3PtrFixed, cb, fLnxProt, MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, 0);
215 #else
216 down_write(&pTask->mm->mmap_sem);
217 ulAddr = do_mmap(NULL, R3PtrFixed, cb, fLnxProt, MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, 0);
218 up_write(&pTask->mm->mmap_sem);
219 #endif
220 }
221 else
222 {
223 #if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 5, 0)
224 ulAddr = vm_mmap(NULL, 0, cb, fLnxProt, MAP_SHARED | MAP_ANONYMOUS, 0);
225 #else
226 down_write(&pTask->mm->mmap_sem);
227 ulAddr = do_mmap(NULL, 0, cb, fLnxProt, MAP_SHARED | MAP_ANONYMOUS, 0);
228 up_write(&pTask->mm->mmap_sem);
229 #endif
230 if ( !(ulAddr & ~PAGE_MASK)
231 && (ulAddr & (uAlignment - 1)))
232 {
233 /** @todo implement uAlignment properly... We'll probably need to make some dummy mappings to fill
234 * up alignment gaps. This is of course complicated by fragmentation (which we might have cause
235 * ourselves) and further by there begin two mmap strategies (top / bottom). */
236 /* For now, just ignore uAlignment requirements... */
237 }
238 }
239
240
241 if (ulAddr & ~PAGE_MASK) /* ~PAGE_MASK == PAGE_OFFSET_MASK */
242 return (void *)-1;
243 return (void *)ulAddr;
244 }
245
246
247 /**
248 * Worker that destroys a user space mapping.
249 * Undoes what rtR0MemObjLinuxDoMmap did.
250 *
251 * We acquire the mmap_sem of the task!
252 *
253 * @param pv The ring-3 mapping.
254 * @param cb The size of the mapping.
255 * @param pTask The Linux task to destroy this mapping in.
256 */
257 static void rtR0MemObjLinuxDoMunmap(void *pv, size_t cb, struct task_struct *pTask)
258 {
259 #if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 5, 0)
260 Assert(pTask == current); RT_NOREF_PV(pTask);
261 vm_munmap((unsigned long)pv, cb);
262 #elif defined(USE_RHEL4_MUNMAP)
263 down_write(&pTask->mm->mmap_sem);
264 do_munmap(pTask->mm, (unsigned long)pv, cb, 0); /* should it be 1 or 0? */
265 up_write(&pTask->mm->mmap_sem);
266 #else
267 down_write(&pTask->mm->mmap_sem);
268 do_munmap(pTask->mm, (unsigned long)pv, cb);
269 up_write(&pTask->mm->mmap_sem);
270 #endif
271 }
272
273
274 /**
275 * Internal worker that allocates physical pages and creates the memory object for them.
276 *
277 * @returns IPRT status code.
278 * @param ppMemLnx Where to store the memory object pointer.
279 * @param enmType The object type.
280 * @param cb The number of bytes to allocate.
281 * @param uAlignment The alignment of the physical memory.
282 * Only valid if fContiguous == true, ignored otherwise.
283 * @param fFlagsLnx The page allocation flags (GPFs).
284 * @param fContiguous Whether the allocation must be contiguous.
285 * @param rcNoMem What to return when we're out of pages.
286 */
287 static int rtR0MemObjLinuxAllocPages(PRTR0MEMOBJLNX *ppMemLnx, RTR0MEMOBJTYPE enmType, size_t cb,
288 size_t uAlignment, unsigned fFlagsLnx, bool fContiguous, int rcNoMem)
289 {
290 size_t iPage;
291 size_t const cPages = cb >> PAGE_SHIFT;
292 struct page *paPages;
293
294 /*
295 * Allocate a memory object structure that's large enough to contain
296 * the page pointer array.
297 */
298 PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJLNX, apPages[cPages]), enmType, NULL, cb);
299 if (!pMemLnx)
300 return VERR_NO_MEMORY;
301 pMemLnx->cPages = cPages;
302
303 if (cPages > 255)
304 {
305 # ifdef __GFP_REPEAT
306 /* Try hard to allocate the memory, but the allocation attempt might fail. */
307 fFlagsLnx |= __GFP_REPEAT;
308 # endif
309 # ifdef __GFP_NOMEMALLOC
310 /* Introduced with Linux 2.6.12: Don't use emergency reserves */
311 fFlagsLnx |= __GFP_NOMEMALLOC;
312 # endif
313 }
314
315 /*
316 * Allocate the pages.
317 * For small allocations we'll try contiguous first and then fall back on page by page.
318 */
319 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
320 if ( fContiguous
321 || cb <= PAGE_SIZE * 2)
322 {
323 # ifdef VBOX_USE_INSERT_PAGE
324 paPages = alloc_pages(fFlagsLnx | __GFP_COMP | __GFP_NOWARN, rtR0MemObjLinuxOrder(cPages));
325 # else
326 paPages = alloc_pages(fFlagsLnx | __GFP_NOWARN, rtR0MemObjLinuxOrder(cPages));
327 # endif
328 if (paPages)
329 {
330 fContiguous = true;
331 for (iPage = 0; iPage < cPages; iPage++)
332 pMemLnx->apPages[iPage] = &paPages[iPage];
333 }
334 else if (fContiguous)
335 {
336 rtR0MemObjDelete(&pMemLnx->Core);
337 return rcNoMem;
338 }
339 }
340
341 if (!fContiguous)
342 {
343 for (iPage = 0; iPage < cPages; iPage++)
344 {
345 pMemLnx->apPages[iPage] = alloc_page(fFlagsLnx | __GFP_NOWARN);
346 if (RT_UNLIKELY(!pMemLnx->apPages[iPage]))
347 {
348 while (iPage-- > 0)
349 __free_page(pMemLnx->apPages[iPage]);
350 rtR0MemObjDelete(&pMemLnx->Core);
351 return rcNoMem;
352 }
353 }
354 }
355
356 #else /* < 2.4.22 */
357 /** @todo figure out why we didn't allocate page-by-page on 2.4.21 and older... */
358 paPages = alloc_pages(fFlagsLnx, rtR0MemObjLinuxOrder(cPages));
359 if (!paPages)
360 {
361 rtR0MemObjDelete(&pMemLnx->Core);
362 return rcNoMem;
363 }
364 for (iPage = 0; iPage < cPages; iPage++)
365 {
366 pMemLnx->apPages[iPage] = &paPages[iPage];
367 MY_SET_PAGES_EXEC(pMemLnx->apPages[iPage], 1);
368 if (PageHighMem(pMemLnx->apPages[iPage]))
369 BUG();
370 }
371
372 fContiguous = true;
373 #endif /* < 2.4.22 */
374 pMemLnx->fContiguous = fContiguous;
375
376 #if LINUX_VERSION_CODE < KERNEL_VERSION(4, 5, 0)
377 /*
378 * Reserve the pages.
379 *
380 * Linux >= 4.5 with CONFIG_DEBUG_VM panics when setting PG_reserved on compound
381 * pages. According to Michal Hocko this shouldn't be necessary anyway because
382 * as pages which are not on the LRU list are never evictable.
383 */
384 for (iPage = 0; iPage < cPages; iPage++)
385 SetPageReserved(pMemLnx->apPages[iPage]);
386 #endif
387
388 /*
389 * Note that the physical address of memory allocated with alloc_pages(flags, order)
390 * is always 2^(PAGE_SHIFT+order)-aligned.
391 */
392 if ( fContiguous
393 && uAlignment > PAGE_SIZE)
394 {
395 /*
396 * Check for alignment constraints. The physical address of memory allocated with
397 * alloc_pages(flags, order) is always 2^(PAGE_SHIFT+order)-aligned.
398 */
399 if (RT_UNLIKELY(page_to_phys(pMemLnx->apPages[0]) & (uAlignment - 1)))
400 {
401 /*
402 * This should never happen!
403 */
404 printk("rtR0MemObjLinuxAllocPages(cb=0x%lx, uAlignment=0x%lx): alloc_pages(..., %d) returned physical memory at 0x%lx!\n",
405 (unsigned long)cb, (unsigned long)uAlignment, rtR0MemObjLinuxOrder(cPages), (unsigned long)page_to_phys(pMemLnx->apPages[0]));
406 rtR0MemObjLinuxFreePages(pMemLnx);
407 return rcNoMem;
408 }
409 }
410
411 *ppMemLnx = pMemLnx;
412 return VINF_SUCCESS;
413 }
414
415
416 /**
417 * Frees the physical pages allocated by the rtR0MemObjLinuxAllocPages() call.
418 *
419 * This method does NOT free the object.
420 *
421 * @param pMemLnx The object which physical pages should be freed.
422 */
423 static void rtR0MemObjLinuxFreePages(PRTR0MEMOBJLNX pMemLnx)
424 {
425 size_t iPage = pMemLnx->cPages;
426 if (iPage > 0)
427 {
428 /*
429 * Restore the page flags.
430 */
431 while (iPage-- > 0)
432 {
433 #if LINUX_VERSION_CODE < KERNEL_VERSION(4, 5, 0)
434 /*
435 * See SetPageReserved() in rtR0MemObjLinuxAllocPages()
436 */
437 ClearPageReserved(pMemLnx->apPages[iPage]);
438 #endif
439 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
440 #else
441 MY_SET_PAGES_NOEXEC(pMemLnx->apPages[iPage], 1);
442 #endif
443 }
444
445 /*
446 * Free the pages.
447 */
448 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
449 if (!pMemLnx->fContiguous)
450 {
451 iPage = pMemLnx->cPages;
452 while (iPage-- > 0)
453 __free_page(pMemLnx->apPages[iPage]);
454 }
455 else
456 #endif
457 __free_pages(pMemLnx->apPages[0], rtR0MemObjLinuxOrder(pMemLnx->cPages));
458
459 pMemLnx->cPages = 0;
460 }
461 }
462
463
464 /**
465 * Maps the allocation into ring-0.
466 *
467 * This will update the RTR0MEMOBJLNX::Core.pv and RTR0MEMOBJ::fMappedToRing0 members.
468 *
469 * Contiguous mappings that isn't in 'high' memory will already be mapped into kernel
470 * space, so we'll use that mapping if possible. If execute access is required, we'll
471 * play safe and do our own mapping.
472 *
473 * @returns IPRT status code.
474 * @param pMemLnx The linux memory object to map.
475 * @param fExecutable Whether execute access is required.
476 */
477 static int rtR0MemObjLinuxVMap(PRTR0MEMOBJLNX pMemLnx, bool fExecutable)
478 {
479 int rc = VINF_SUCCESS;
480
481 /*
482 * Choose mapping strategy.
483 */
484 bool fMustMap = fExecutable
485 || !pMemLnx->fContiguous;
486 if (!fMustMap)
487 {
488 size_t iPage = pMemLnx->cPages;
489 while (iPage-- > 0)
490 if (PageHighMem(pMemLnx->apPages[iPage]))
491 {
492 fMustMap = true;
493 break;
494 }
495 }
496
497 Assert(!pMemLnx->Core.pv);
498 Assert(!pMemLnx->fMappedToRing0);
499
500 if (fMustMap)
501 {
502 /*
503 * Use vmap - 2.4.22 and later.
504 */
505 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
506 pgprot_t fPg;
507 pgprot_val(fPg) = _PAGE_PRESENT | _PAGE_RW;
508 # ifdef _PAGE_NX
509 if (!fExecutable)
510 pgprot_val(fPg) |= _PAGE_NX;
511 # endif
512
513 # ifdef VM_MAP
514 pMemLnx->Core.pv = vmap(&pMemLnx->apPages[0], pMemLnx->cPages, VM_MAP, fPg);
515 # else
516 pMemLnx->Core.pv = vmap(&pMemLnx->apPages[0], pMemLnx->cPages, VM_ALLOC, fPg);
517 # endif
518 if (pMemLnx->Core.pv)
519 pMemLnx->fMappedToRing0 = true;
520 else
521 rc = VERR_MAP_FAILED;
522 #else /* < 2.4.22 */
523 rc = VERR_NOT_SUPPORTED;
524 #endif
525 }
526 else
527 {
528 /*
529 * Use the kernel RAM mapping.
530 */
531 pMemLnx->Core.pv = phys_to_virt(page_to_phys(pMemLnx->apPages[0]));
532 Assert(pMemLnx->Core.pv);
533 }
534
535 return rc;
536 }
537
538
539 /**
540 * Undoes what rtR0MemObjLinuxVMap() did.
541 *
542 * @param pMemLnx The linux memory object.
543 */
544 static void rtR0MemObjLinuxVUnmap(PRTR0MEMOBJLNX pMemLnx)
545 {
546 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
547 if (pMemLnx->fMappedToRing0)
548 {
549 Assert(pMemLnx->Core.pv);
550 vunmap(pMemLnx->Core.pv);
551 pMemLnx->fMappedToRing0 = false;
552 }
553 #else /* < 2.4.22 */
554 Assert(!pMemLnx->fMappedToRing0);
555 #endif
556 pMemLnx->Core.pv = NULL;
557 }
558
559
560 DECLHIDDEN(int) rtR0MemObjNativeFree(RTR0MEMOBJ pMem)
561 {
562 IPRT_LINUX_SAVE_EFL_AC();
563 PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)pMem;
564
565 /*
566 * Release any memory that we've allocated or locked.
567 */
568 switch (pMemLnx->Core.enmType)
569 {
570 case RTR0MEMOBJTYPE_LOW:
571 case RTR0MEMOBJTYPE_PAGE:
572 case RTR0MEMOBJTYPE_CONT:
573 case RTR0MEMOBJTYPE_PHYS:
574 case RTR0MEMOBJTYPE_PHYS_NC:
575 rtR0MemObjLinuxVUnmap(pMemLnx);
576 rtR0MemObjLinuxFreePages(pMemLnx);
577 break;
578
579 case RTR0MEMOBJTYPE_LOCK:
580 if (pMemLnx->Core.u.Lock.R0Process != NIL_RTR0PROCESS)
581 {
582 struct task_struct *pTask = rtR0ProcessToLinuxTask(pMemLnx->Core.u.Lock.R0Process);
583 size_t iPage;
584 Assert(pTask);
585 if (pTask && pTask->mm)
586 down_read(&pTask->mm->mmap_sem);
587
588 iPage = pMemLnx->cPages;
589 while (iPage-- > 0)
590 {
591 if (!PageReserved(pMemLnx->apPages[iPage]))
592 SetPageDirty(pMemLnx->apPages[iPage]);
593 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 6, 0)
594 put_page(pMemLnx->apPages[iPage]);
595 #else
596 page_cache_release(pMemLnx->apPages[iPage]);
597 #endif
598 }
599
600 if (pTask && pTask->mm)
601 up_read(&pTask->mm->mmap_sem);
602 }
603 /* else: kernel memory - nothing to do here. */
604 break;
605
606 case RTR0MEMOBJTYPE_RES_VIRT:
607 Assert(pMemLnx->Core.pv);
608 if (pMemLnx->Core.u.ResVirt.R0Process != NIL_RTR0PROCESS)
609 {
610 struct task_struct *pTask = rtR0ProcessToLinuxTask(pMemLnx->Core.u.Lock.R0Process);
611 Assert(pTask);
612 if (pTask && pTask->mm)
613 rtR0MemObjLinuxDoMunmap(pMemLnx->Core.pv, pMemLnx->Core.cb, pTask);
614 }
615 else
616 {
617 vunmap(pMemLnx->Core.pv);
618
619 Assert(pMemLnx->cPages == 1 && pMemLnx->apPages[0] != NULL);
620 __free_page(pMemLnx->apPages[0]);
621 pMemLnx->apPages[0] = NULL;
622 pMemLnx->cPages = 0;
623 }
624 pMemLnx->Core.pv = NULL;
625 break;
626
627 case RTR0MEMOBJTYPE_MAPPING:
628 Assert(pMemLnx->cPages == 0); Assert(pMemLnx->Core.pv);
629 if (pMemLnx->Core.u.ResVirt.R0Process != NIL_RTR0PROCESS)
630 {
631 struct task_struct *pTask = rtR0ProcessToLinuxTask(pMemLnx->Core.u.Lock.R0Process);
632 Assert(pTask);
633 if (pTask && pTask->mm)
634 rtR0MemObjLinuxDoMunmap(pMemLnx->Core.pv, pMemLnx->Core.cb, pTask);
635 }
636 else
637 vunmap(pMemLnx->Core.pv);
638 pMemLnx->Core.pv = NULL;
639 break;
640
641 default:
642 AssertMsgFailed(("enmType=%d\n", pMemLnx->Core.enmType));
643 return VERR_INTERNAL_ERROR;
644 }
645 IPRT_LINUX_RESTORE_EFL_ONLY_AC();
646 return VINF_SUCCESS;
647 }
648
649
650 DECLHIDDEN(int) rtR0MemObjNativeAllocPage(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
651 {
652 IPRT_LINUX_SAVE_EFL_AC();
653 PRTR0MEMOBJLNX pMemLnx;
654 int rc;
655
656 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
657 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_PAGE, cb, PAGE_SIZE, GFP_HIGHUSER,
658 false /* non-contiguous */, VERR_NO_MEMORY);
659 #else
660 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_PAGE, cb, PAGE_SIZE, GFP_USER,
661 false /* non-contiguous */, VERR_NO_MEMORY);
662 #endif
663 if (RT_SUCCESS(rc))
664 {
665 rc = rtR0MemObjLinuxVMap(pMemLnx, fExecutable);
666 if (RT_SUCCESS(rc))
667 {
668 *ppMem = &pMemLnx->Core;
669 IPRT_LINUX_RESTORE_EFL_AC();
670 return rc;
671 }
672
673 rtR0MemObjLinuxFreePages(pMemLnx);
674 rtR0MemObjDelete(&pMemLnx->Core);
675 }
676
677 IPRT_LINUX_RESTORE_EFL_AC();
678 return rc;
679 }
680
681
682 DECLHIDDEN(int) rtR0MemObjNativeAllocLow(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
683 {
684 IPRT_LINUX_SAVE_EFL_AC();
685 PRTR0MEMOBJLNX pMemLnx;
686 int rc;
687
688 /* Try to avoid GFP_DMA. GFM_DMA32 was introduced with Linux 2.6.15. */
689 #if (defined(RT_ARCH_AMD64) || defined(CONFIG_X86_PAE)) && defined(GFP_DMA32)
690 /* ZONE_DMA32: 0-4GB */
691 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_LOW, cb, PAGE_SIZE, GFP_DMA32,
692 false /* non-contiguous */, VERR_NO_LOW_MEMORY);
693 if (RT_FAILURE(rc))
694 #endif
695 #ifdef RT_ARCH_AMD64
696 /* ZONE_DMA: 0-16MB */
697 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_LOW, cb, PAGE_SIZE, GFP_DMA,
698 false /* non-contiguous */, VERR_NO_LOW_MEMORY);
699 #else
700 # ifdef CONFIG_X86_PAE
701 # endif
702 /* ZONE_NORMAL: 0-896MB */
703 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_LOW, cb, PAGE_SIZE, GFP_USER,
704 false /* non-contiguous */, VERR_NO_LOW_MEMORY);
705 #endif
706 if (RT_SUCCESS(rc))
707 {
708 rc = rtR0MemObjLinuxVMap(pMemLnx, fExecutable);
709 if (RT_SUCCESS(rc))
710 {
711 *ppMem = &pMemLnx->Core;
712 IPRT_LINUX_RESTORE_EFL_AC();
713 return rc;
714 }
715
716 rtR0MemObjLinuxFreePages(pMemLnx);
717 rtR0MemObjDelete(&pMemLnx->Core);
718 }
719
720 IPRT_LINUX_RESTORE_EFL_AC();
721 return rc;
722 }
723
724
725 DECLHIDDEN(int) rtR0MemObjNativeAllocCont(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
726 {
727 IPRT_LINUX_SAVE_EFL_AC();
728 PRTR0MEMOBJLNX pMemLnx;
729 int rc;
730
731 #if (defined(RT_ARCH_AMD64) || defined(CONFIG_X86_PAE)) && defined(GFP_DMA32)
732 /* ZONE_DMA32: 0-4GB */
733 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_CONT, cb, PAGE_SIZE, GFP_DMA32,
734 true /* contiguous */, VERR_NO_CONT_MEMORY);
735 if (RT_FAILURE(rc))
736 #endif
737 #ifdef RT_ARCH_AMD64
738 /* ZONE_DMA: 0-16MB */
739 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_CONT, cb, PAGE_SIZE, GFP_DMA,
740 true /* contiguous */, VERR_NO_CONT_MEMORY);
741 #else
742 /* ZONE_NORMAL (32-bit hosts): 0-896MB */
743 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_CONT, cb, PAGE_SIZE, GFP_USER,
744 true /* contiguous */, VERR_NO_CONT_MEMORY);
745 #endif
746 if (RT_SUCCESS(rc))
747 {
748 rc = rtR0MemObjLinuxVMap(pMemLnx, fExecutable);
749 if (RT_SUCCESS(rc))
750 {
751 #if defined(RT_STRICT) && (defined(RT_ARCH_AMD64) || defined(CONFIG_HIGHMEM64G))
752 size_t iPage = pMemLnx->cPages;
753 while (iPage-- > 0)
754 Assert(page_to_phys(pMemLnx->apPages[iPage]) < _4G);
755 #endif
756 pMemLnx->Core.u.Cont.Phys = page_to_phys(pMemLnx->apPages[0]);
757 *ppMem = &pMemLnx->Core;
758 IPRT_LINUX_RESTORE_EFL_AC();
759 return rc;
760 }
761
762 rtR0MemObjLinuxFreePages(pMemLnx);
763 rtR0MemObjDelete(&pMemLnx->Core);
764 }
765
766 IPRT_LINUX_RESTORE_EFL_AC();
767 return rc;
768 }
769
770
771 /**
772 * Worker for rtR0MemObjLinuxAllocPhysSub that tries one allocation strategy.
773 *
774 * @returns IPRT status code.
775 * @param ppMemLnx Where to
776 * @param enmType The object type.
777 * @param cb The size of the allocation.
778 * @param uAlignment The alignment of the physical memory.
779 * Only valid for fContiguous == true, ignored otherwise.
780 * @param PhysHighest See rtR0MemObjNativeAllocPhys.
781 * @param fGfp The Linux GFP flags to use for the allocation.
782 */
783 static int rtR0MemObjLinuxAllocPhysSub2(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJTYPE enmType,
784 size_t cb, size_t uAlignment, RTHCPHYS PhysHighest, unsigned fGfp)
785 {
786 PRTR0MEMOBJLNX pMemLnx;
787 int rc;
788
789 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, enmType, cb, uAlignment, fGfp,
790 enmType == RTR0MEMOBJTYPE_PHYS /* contiguous / non-contiguous */,
791 VERR_NO_PHYS_MEMORY);
792 if (RT_FAILURE(rc))
793 return rc;
794
795 /*
796 * Check the addresses if necessary. (Can be optimized a bit for PHYS.)
797 */
798 if (PhysHighest != NIL_RTHCPHYS)
799 {
800 size_t iPage = pMemLnx->cPages;
801 while (iPage-- > 0)
802 if (page_to_phys(pMemLnx->apPages[iPage]) > PhysHighest)
803 {
804 rtR0MemObjLinuxFreePages(pMemLnx);
805 rtR0MemObjDelete(&pMemLnx->Core);
806 return VERR_NO_MEMORY;
807 }
808 }
809
810 /*
811 * Complete the object.
812 */
813 if (enmType == RTR0MEMOBJTYPE_PHYS)
814 {
815 pMemLnx->Core.u.Phys.PhysBase = page_to_phys(pMemLnx->apPages[0]);
816 pMemLnx->Core.u.Phys.fAllocated = true;
817 }
818 *ppMem = &pMemLnx->Core;
819 return rc;
820 }
821
822
823 /**
824 * Worker for rtR0MemObjNativeAllocPhys and rtR0MemObjNativeAllocPhysNC.
825 *
826 * @returns IPRT status code.
827 * @param ppMem Where to store the memory object pointer on success.
828 * @param enmType The object type.
829 * @param cb The size of the allocation.
830 * @param uAlignment The alignment of the physical memory.
831 * Only valid for enmType == RTR0MEMOBJTYPE_PHYS, ignored otherwise.
832 * @param PhysHighest See rtR0MemObjNativeAllocPhys.
833 */
834 static int rtR0MemObjLinuxAllocPhysSub(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJTYPE enmType,
835 size_t cb, size_t uAlignment, RTHCPHYS PhysHighest)
836 {
837 int rc;
838 IPRT_LINUX_SAVE_EFL_AC();
839
840 /*
841 * There are two clear cases and that's the <=16MB and anything-goes ones.
842 * When the physical address limit is somewhere in-between those two we'll
843 * just have to try, starting with HIGHUSER and working our way thru the
844 * different types, hoping we'll get lucky.
845 *
846 * We should probably move this physical address restriction logic up to
847 * the page alloc function as it would be more efficient there. But since
848 * we don't expect this to be a performance issue just yet it can wait.
849 */
850 if (PhysHighest == NIL_RTHCPHYS)
851 /* ZONE_HIGHMEM: the whole physical memory */
852 rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_HIGHUSER);
853 else if (PhysHighest <= _1M * 16)
854 /* ZONE_DMA: 0-16MB */
855 rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_DMA);
856 else
857 {
858 rc = VERR_NO_MEMORY;
859 if (RT_FAILURE(rc))
860 /* ZONE_HIGHMEM: the whole physical memory */
861 rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_HIGHUSER);
862 if (RT_FAILURE(rc))
863 /* ZONE_NORMAL: 0-896MB */
864 rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_USER);
865 #ifdef GFP_DMA32
866 if (RT_FAILURE(rc))
867 /* ZONE_DMA32: 0-4GB */
868 rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_DMA32);
869 #endif
870 if (RT_FAILURE(rc))
871 /* ZONE_DMA: 0-16MB */
872 rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_DMA);
873 }
874 IPRT_LINUX_RESTORE_EFL_AC();
875 return rc;
876 }
877
878
879 /**
880 * Translates a kernel virtual address to a linux page structure by walking the
881 * page tables.
882 *
883 * @note We do assume that the page tables will not change as we are walking
884 * them. This assumption is rather forced by the fact that I could not
885 * immediately see any way of preventing this from happening. So, we
886 * take some extra care when accessing them.
887 *
888 * Because of this, we don't want to use this function on memory where
889 * attribute changes to nearby pages is likely to cause large pages to
890 * be used or split up. So, don't use this for the linear mapping of
891 * physical memory.
892 *
893 * @returns Pointer to the page structur or NULL if it could not be found.
894 * @param pv The kernel virtual address.
895 */
896 static struct page *rtR0MemObjLinuxVirtToPage(void *pv)
897 {
898 unsigned long ulAddr = (unsigned long)pv;
899 unsigned long pfn;
900 struct page *pPage;
901 pte_t *pEntry;
902 union
903 {
904 pgd_t Global;
905 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 11)
906 pud_t Upper;
907 #endif
908 pmd_t Middle;
909 pte_t Entry;
910 } u;
911
912 /* Should this happen in a situation this code will be called in? And if
913 * so, can it change under our feet? See also
914 * "Documentation/vm/active_mm.txt" in the kernel sources. */
915 if (RT_UNLIKELY(!current->active_mm))
916 return NULL;
917 u.Global = *pgd_offset(current->active_mm, ulAddr);
918 if (RT_UNLIKELY(pgd_none(u.Global)))
919 return NULL;
920
921 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 11)
922 u.Upper = *pud_offset(&u.Global, ulAddr);
923 if (RT_UNLIKELY(pud_none(u.Upper)))
924 return NULL;
925 # if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 25)
926 if (pud_large(u.Upper))
927 {
928 pPage = pud_page(u.Upper);
929 AssertReturn(pPage, NULL);
930 pfn = page_to_pfn(pPage); /* doing the safe way... */
931 pfn += (ulAddr >> PAGE_SHIFT) & ((UINT32_C(1) << (PUD_SHIFT - PAGE_SHIFT)) - 1);
932 return pfn_to_page(pfn);
933 }
934 # endif
935
936 u.Middle = *pmd_offset(&u.Upper, ulAddr);
937 #else /* < 2.6.11 */
938 u.Middle = *pmd_offset(&u.Global, ulAddr);
939 #endif /* < 2.6.11 */
940 if (RT_UNLIKELY(pmd_none(u.Middle)))
941 return NULL;
942 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0)
943 if (pmd_large(u.Middle))
944 {
945 pPage = pmd_page(u.Middle);
946 AssertReturn(pPage, NULL);
947 pfn = page_to_pfn(pPage); /* doing the safe way... */
948 pfn += (ulAddr >> PAGE_SHIFT) & ((UINT32_C(1) << (PMD_SHIFT - PAGE_SHIFT)) - 1);
949 return pfn_to_page(pfn);
950 }
951 #endif
952
953 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 5, 5) || defined(pte_offset_map) /* As usual, RHEL 3 had pte_offset_map earlier. */
954 pEntry = pte_offset_map(&u.Middle, ulAddr);
955 #else
956 pEntry = pte_offset(&u.Middle, ulAddr);
957 #endif
958 if (RT_UNLIKELY(!pEntry))
959 return NULL;
960 u.Entry = *pEntry;
961 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 5, 5) || defined(pte_offset_map)
962 pte_unmap(pEntry);
963 #endif
964
965 if (RT_UNLIKELY(!pte_present(u.Entry)))
966 return NULL;
967 return pte_page(u.Entry);
968 }
969
970
971 DECLHIDDEN(int) rtR0MemObjNativeAllocPhys(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest, size_t uAlignment)
972 {
973 return rtR0MemObjLinuxAllocPhysSub(ppMem, RTR0MEMOBJTYPE_PHYS, cb, uAlignment, PhysHighest);
974 }
975
976
977 DECLHIDDEN(int) rtR0MemObjNativeAllocPhysNC(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest)
978 {
979 return rtR0MemObjLinuxAllocPhysSub(ppMem, RTR0MEMOBJTYPE_PHYS_NC, cb, PAGE_SIZE, PhysHighest);
980 }
981
982
983 DECLHIDDEN(int) rtR0MemObjNativeEnterPhys(PPRTR0MEMOBJINTERNAL ppMem, RTHCPHYS Phys, size_t cb, uint32_t uCachePolicy)
984 {
985 IPRT_LINUX_SAVE_EFL_AC();
986
987 /*
988 * All we need to do here is to validate that we can use
989 * ioremap on the specified address (32/64-bit dma_addr_t).
990 */
991 PRTR0MEMOBJLNX pMemLnx;
992 dma_addr_t PhysAddr = Phys;
993 AssertMsgReturn(PhysAddr == Phys, ("%#llx\n", (unsigned long long)Phys), VERR_ADDRESS_TOO_BIG);
994
995 pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_PHYS, NULL, cb);
996 if (!pMemLnx)
997 {
998 IPRT_LINUX_RESTORE_EFL_AC();
999 return VERR_NO_MEMORY;
1000 }
1001
1002 pMemLnx->Core.u.Phys.PhysBase = PhysAddr;
1003 pMemLnx->Core.u.Phys.fAllocated = false;
1004 pMemLnx->Core.u.Phys.uCachePolicy = uCachePolicy;
1005 Assert(!pMemLnx->cPages);
1006 *ppMem = &pMemLnx->Core;
1007 IPRT_LINUX_RESTORE_EFL_AC();
1008 return VINF_SUCCESS;
1009 }
1010
1011
1012 DECLHIDDEN(int) rtR0MemObjNativeLockUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3Ptr, size_t cb, uint32_t fAccess, RTR0PROCESS R0Process)
1013 {
1014 IPRT_LINUX_SAVE_EFL_AC();
1015 const int cPages = cb >> PAGE_SHIFT;
1016 struct task_struct *pTask = rtR0ProcessToLinuxTask(R0Process);
1017 struct vm_area_struct **papVMAs;
1018 PRTR0MEMOBJLNX pMemLnx;
1019 int rc = VERR_NO_MEMORY;
1020 int const fWrite = fAccess & RTMEM_PROT_WRITE ? 1 : 0;
1021
1022 /*
1023 * Check for valid task and size overflows.
1024 */
1025 if (!pTask)
1026 return VERR_NOT_SUPPORTED;
1027 if (((size_t)cPages << PAGE_SHIFT) != cb)
1028 return VERR_OUT_OF_RANGE;
1029
1030 /*
1031 * Allocate the memory object and a temporary buffer for the VMAs.
1032 */
1033 pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJLNX, apPages[cPages]), RTR0MEMOBJTYPE_LOCK, (void *)R3Ptr, cb);
1034 if (!pMemLnx)
1035 {
1036 IPRT_LINUX_RESTORE_EFL_AC();
1037 return VERR_NO_MEMORY;
1038 }
1039
1040 papVMAs = (struct vm_area_struct **)RTMemAlloc(sizeof(*papVMAs) * cPages);
1041 if (papVMAs)
1042 {
1043 down_read(&pTask->mm->mmap_sem);
1044
1045 /*
1046 * Get user pages.
1047 */
1048 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 6, 0)
1049 if (R0Process == RTR0ProcHandleSelf())
1050 rc = get_user_pages(R3Ptr, /* Where from. */
1051 cPages, /* How many pages. */
1052 # if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 9, 0)
1053 fWrite ? FOLL_WRITE | /* Write to memory. */
1054 FOLL_FORCE /* force write access. */
1055 : 0, /* Write to memory. */
1056 # else
1057 fWrite, /* Write to memory. */
1058 fWrite, /* force write access. */
1059 # endif
1060 &pMemLnx->apPages[0], /* Page array. */
1061 papVMAs); /* vmas */
1062 /*
1063 * Actually this should not happen at the moment as call this function
1064 * only for our own process.
1065 */
1066 else
1067 rc = get_user_pages_remote(
1068 pTask, /* Task for fault accounting. */
1069 pTask->mm, /* Whose pages. */
1070 R3Ptr, /* Where from. */
1071 cPages, /* How many pages. */
1072 # if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 9, 0)
1073 fWrite ? FOLL_WRITE | /* Write to memory. */
1074 FOLL_FORCE /* force write access. */
1075 : 0, /* Write to memory. */
1076 # else
1077 fWrite, /* Write to memory. */
1078 fWrite, /* force write access. */
1079 # endif
1080 &pMemLnx->apPages[0], /* Page array. */
1081 papVMAs /* vmas */
1082 # if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 10, 0)
1083 , NULL /* locked */
1084 # endif
1085 );
1086 #else /* LINUX_VERSION_CODE < KERNEL_VERSION(4, 6, 0) */
1087 rc = get_user_pages(pTask, /* Task for fault accounting. */
1088 pTask->mm, /* Whose pages. */
1089 R3Ptr, /* Where from. */
1090 cPages, /* How many pages. */
1091 # if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 9, 0)
1092 fWrite ? FOLL_WRITE | /* Write to memory. */
1093 FOLL_FORCE /* force write access. */
1094 : 0, /* Write to memory. */
1095 # else
1096 fWrite, /* Write to memory. */
1097 fWrite, /* force write access. */
1098 # endif
1099 &pMemLnx->apPages[0], /* Page array. */
1100 papVMAs); /* vmas */
1101 #endif /* LINUX_VERSION_CODE < KERNEL_VERSION(4, 6, 0) */
1102 if (rc == cPages)
1103 {
1104 /*
1105 * Flush dcache (required?), protect against fork and _really_ pin the page
1106 * table entries. get_user_pages() will protect against swapping out the
1107 * pages but it will NOT protect against removing page table entries. This
1108 * can be achieved with
1109 * - using mlock / mmap(..., MAP_LOCKED, ...) from userland. This requires
1110 * an appropriate limit set up with setrlimit(..., RLIMIT_MEMLOCK, ...).
1111 * Usual Linux distributions support only a limited size of locked pages
1112 * (e.g. 32KB).
1113 * - setting the PageReserved bit (as we do in rtR0MemObjLinuxAllocPages()
1114 * or by
1115 * - setting the VM_LOCKED flag. This is the same as doing mlock() without
1116 * a range check.
1117 */
1118 /** @todo The Linux fork() protection will require more work if this API
1119 * is to be used for anything but locking VM pages. */
1120 while (rc-- > 0)
1121 {
1122 flush_dcache_page(pMemLnx->apPages[rc]);
1123 papVMAs[rc]->vm_flags |= (VM_DONTCOPY | VM_LOCKED);
1124 }
1125
1126 up_read(&pTask->mm->mmap_sem);
1127
1128 RTMemFree(papVMAs);
1129
1130 pMemLnx->Core.u.Lock.R0Process = R0Process;
1131 pMemLnx->cPages = cPages;
1132 Assert(!pMemLnx->fMappedToRing0);
1133 *ppMem = &pMemLnx->Core;
1134
1135 IPRT_LINUX_RESTORE_EFL_AC();
1136 return VINF_SUCCESS;
1137 }
1138
1139 /*
1140 * Failed - we need to unlock any pages that we succeeded to lock.
1141 */
1142 while (rc-- > 0)
1143 {
1144 if (!PageReserved(pMemLnx->apPages[rc]))
1145 SetPageDirty(pMemLnx->apPages[rc]);
1146 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 6, 0)
1147 put_page(pMemLnx->apPages[rc]);
1148 #else
1149 page_cache_release(pMemLnx->apPages[rc]);
1150 #endif
1151 }
1152
1153 up_read(&pTask->mm->mmap_sem);
1154
1155 RTMemFree(papVMAs);
1156 rc = VERR_LOCK_FAILED;
1157 }
1158
1159 rtR0MemObjDelete(&pMemLnx->Core);
1160 IPRT_LINUX_RESTORE_EFL_AC();
1161 return rc;
1162 }
1163
1164
1165 DECLHIDDEN(int) rtR0MemObjNativeLockKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pv, size_t cb, uint32_t fAccess)
1166 {
1167 IPRT_LINUX_SAVE_EFL_AC();
1168 void *pvLast = (uint8_t *)pv + cb - 1;
1169 size_t const cPages = cb >> PAGE_SHIFT;
1170 PRTR0MEMOBJLNX pMemLnx;
1171 bool fLinearMapping;
1172 int rc;
1173 uint8_t *pbPage;
1174 size_t iPage;
1175 NOREF(fAccess);
1176
1177 if ( !RTR0MemKernelIsValidAddr(pv)
1178 || !RTR0MemKernelIsValidAddr(pv + cb))
1179 return VERR_INVALID_PARAMETER;
1180
1181 /*
1182 * The lower part of the kernel memory has a linear mapping between
1183 * physical and virtual addresses. So we take a short cut here. This is
1184 * assumed to be the cleanest way to handle those addresses (and the code
1185 * is well tested, though the test for determining it is not very nice).
1186 * If we ever decide it isn't we can still remove it.
1187 */
1188 #if 0
1189 fLinearMapping = (unsigned long)pvLast < VMALLOC_START;
1190 #else
1191 fLinearMapping = (unsigned long)pv >= (unsigned long)__va(0)
1192 && (unsigned long)pvLast < (unsigned long)high_memory;
1193 #endif
1194
1195 /*
1196 * Allocate the memory object.
1197 */
1198 pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJLNX, apPages[cPages]), RTR0MEMOBJTYPE_LOCK, pv, cb);
1199 if (!pMemLnx)
1200 {
1201 IPRT_LINUX_RESTORE_EFL_AC();
1202 return VERR_NO_MEMORY;
1203 }
1204
1205 /*
1206 * Gather the pages.
1207 * We ASSUME all kernel pages are non-swappable and non-movable.
1208 */
1209 rc = VINF_SUCCESS;
1210 pbPage = (uint8_t *)pvLast;
1211 iPage = cPages;
1212 if (!fLinearMapping)
1213 {
1214 while (iPage-- > 0)
1215 {
1216 struct page *pPage = rtR0MemObjLinuxVirtToPage(pbPage);
1217 if (RT_UNLIKELY(!pPage))
1218 {
1219 rc = VERR_LOCK_FAILED;
1220 break;
1221 }
1222 pMemLnx->apPages[iPage] = pPage;
1223 pbPage -= PAGE_SIZE;
1224 }
1225 }
1226 else
1227 {
1228 while (iPage-- > 0)
1229 {
1230 pMemLnx->apPages[iPage] = virt_to_page(pbPage);
1231 pbPage -= PAGE_SIZE;
1232 }
1233 }
1234 if (RT_SUCCESS(rc))
1235 {
1236 /*
1237 * Complete the memory object and return.
1238 */
1239 pMemLnx->Core.u.Lock.R0Process = NIL_RTR0PROCESS;
1240 pMemLnx->cPages = cPages;
1241 Assert(!pMemLnx->fMappedToRing0);
1242 *ppMem = &pMemLnx->Core;
1243
1244 IPRT_LINUX_RESTORE_EFL_AC();
1245 return VINF_SUCCESS;
1246 }
1247
1248 rtR0MemObjDelete(&pMemLnx->Core);
1249 IPRT_LINUX_RESTORE_EFL_AC();
1250 return rc;
1251 }
1252
1253
1254 DECLHIDDEN(int) rtR0MemObjNativeReserveKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pvFixed, size_t cb, size_t uAlignment)
1255 {
1256 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
1257 IPRT_LINUX_SAVE_EFL_AC();
1258 const size_t cPages = cb >> PAGE_SHIFT;
1259 struct page *pDummyPage;
1260 struct page **papPages;
1261
1262 /* check for unsupported stuff. */
1263 AssertMsgReturn(pvFixed == (void *)-1, ("%p\n", pvFixed), VERR_NOT_SUPPORTED);
1264 if (uAlignment > PAGE_SIZE)
1265 return VERR_NOT_SUPPORTED;
1266
1267 /*
1268 * Allocate a dummy page and create a page pointer array for vmap such that
1269 * the dummy page is mapped all over the reserved area.
1270 */
1271 pDummyPage = alloc_page(GFP_HIGHUSER | __GFP_NOWARN);
1272 if (pDummyPage)
1273 {
1274 papPages = RTMemAlloc(sizeof(*papPages) * cPages);
1275 if (papPages)
1276 {
1277 void *pv;
1278 size_t iPage = cPages;
1279 while (iPage-- > 0)
1280 papPages[iPage] = pDummyPage;
1281 # ifdef VM_MAP
1282 pv = vmap(papPages, cPages, VM_MAP, PAGE_KERNEL_RO);
1283 # else
1284 pv = vmap(papPages, cPages, VM_ALLOC, PAGE_KERNEL_RO);
1285 # endif
1286 RTMemFree(papPages);
1287 if (pv)
1288 {
1289 PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_RES_VIRT, pv, cb);
1290 if (pMemLnx)
1291 {
1292 pMemLnx->Core.u.ResVirt.R0Process = NIL_RTR0PROCESS;
1293 pMemLnx->cPages = 1;
1294 pMemLnx->apPages[0] = pDummyPage;
1295 *ppMem = &pMemLnx->Core;
1296 IPRT_LINUX_RESTORE_EFL_AC();
1297 return VINF_SUCCESS;
1298 }
1299 vunmap(pv);
1300 }
1301 }
1302 __free_page(pDummyPage);
1303 }
1304 IPRT_LINUX_RESTORE_EFL_AC();
1305 return VERR_NO_MEMORY;
1306
1307 #else /* < 2.4.22 */
1308 /*
1309 * Could probably use ioremap here, but the caller is in a better position than us
1310 * to select some safe physical memory.
1311 */
1312 return VERR_NOT_SUPPORTED;
1313 #endif
1314 }
1315
1316
1317 DECLHIDDEN(int) rtR0MemObjNativeReserveUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3PtrFixed, size_t cb, size_t uAlignment, RTR0PROCESS R0Process)
1318 {
1319 IPRT_LINUX_SAVE_EFL_AC();
1320 PRTR0MEMOBJLNX pMemLnx;
1321 void *pv;
1322 struct task_struct *pTask = rtR0ProcessToLinuxTask(R0Process);
1323 if (!pTask)
1324 return VERR_NOT_SUPPORTED;
1325
1326 /*
1327 * Check that the specified alignment is supported.
1328 */
1329 if (uAlignment > PAGE_SIZE)
1330 return VERR_NOT_SUPPORTED;
1331
1332 /*
1333 * Let rtR0MemObjLinuxDoMmap do the difficult bits.
1334 */
1335 pv = rtR0MemObjLinuxDoMmap(R3PtrFixed, cb, uAlignment, pTask, RTMEM_PROT_NONE);
1336 if (pv == (void *)-1)
1337 {
1338 IPRT_LINUX_RESTORE_EFL_AC();
1339 return VERR_NO_MEMORY;
1340 }
1341
1342 pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_RES_VIRT, pv, cb);
1343 if (!pMemLnx)
1344 {
1345 rtR0MemObjLinuxDoMunmap(pv, cb, pTask);
1346 IPRT_LINUX_RESTORE_EFL_AC();
1347 return VERR_NO_MEMORY;
1348 }
1349
1350 pMemLnx->Core.u.ResVirt.R0Process = R0Process;
1351 *ppMem = &pMemLnx->Core;
1352 IPRT_LINUX_RESTORE_EFL_AC();
1353 return VINF_SUCCESS;
1354 }
1355
1356
1357 DECLHIDDEN(int) rtR0MemObjNativeMapKernel(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap,
1358 void *pvFixed, size_t uAlignment,
1359 unsigned fProt, size_t offSub, size_t cbSub)
1360 {
1361 int rc = VERR_NO_MEMORY;
1362 PRTR0MEMOBJLNX pMemLnxToMap = (PRTR0MEMOBJLNX)pMemToMap;
1363 PRTR0MEMOBJLNX pMemLnx;
1364 IPRT_LINUX_SAVE_EFL_AC();
1365
1366 /* Fail if requested to do something we can't. */
1367 AssertMsgReturn(!offSub && !cbSub, ("%#x %#x\n", offSub, cbSub), VERR_NOT_SUPPORTED);
1368 AssertMsgReturn(pvFixed == (void *)-1, ("%p\n", pvFixed), VERR_NOT_SUPPORTED);
1369 if (uAlignment > PAGE_SIZE)
1370 return VERR_NOT_SUPPORTED;
1371
1372 /*
1373 * Create the IPRT memory object.
1374 */
1375 pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_MAPPING, NULL, pMemLnxToMap->Core.cb);
1376 if (pMemLnx)
1377 {
1378 if (pMemLnxToMap->cPages)
1379 {
1380 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
1381 /*
1382 * Use vmap - 2.4.22 and later.
1383 */
1384 pgprot_t fPg = rtR0MemObjLinuxConvertProt(fProt, true /* kernel */);
1385 # ifdef VM_MAP
1386 pMemLnx->Core.pv = vmap(&pMemLnxToMap->apPages[0], pMemLnxToMap->cPages, VM_MAP, fPg);
1387 # else
1388 pMemLnx->Core.pv = vmap(&pMemLnxToMap->apPages[0], pMemLnxToMap->cPages, VM_ALLOC, fPg);
1389 # endif
1390 if (pMemLnx->Core.pv)
1391 {
1392 pMemLnx->fMappedToRing0 = true;
1393 rc = VINF_SUCCESS;
1394 }
1395 else
1396 rc = VERR_MAP_FAILED;
1397
1398 #else /* < 2.4.22 */
1399 /*
1400 * Only option here is to share mappings if possible and forget about fProt.
1401 */
1402 if (rtR0MemObjIsRing3(pMemToMap))
1403 rc = VERR_NOT_SUPPORTED;
1404 else
1405 {
1406 rc = VINF_SUCCESS;
1407 if (!pMemLnxToMap->Core.pv)
1408 rc = rtR0MemObjLinuxVMap(pMemLnxToMap, !!(fProt & RTMEM_PROT_EXEC));
1409 if (RT_SUCCESS(rc))
1410 {
1411 Assert(pMemLnxToMap->Core.pv);
1412 pMemLnx->Core.pv = pMemLnxToMap->Core.pv;
1413 }
1414 }
1415 #endif
1416 }
1417 else
1418 {
1419 /*
1420 * MMIO / physical memory.
1421 */
1422 Assert(pMemLnxToMap->Core.enmType == RTR0MEMOBJTYPE_PHYS && !pMemLnxToMap->Core.u.Phys.fAllocated);
1423 pMemLnx->Core.pv = pMemLnxToMap->Core.u.Phys.uCachePolicy == RTMEM_CACHE_POLICY_MMIO
1424 ? ioremap_nocache(pMemLnxToMap->Core.u.Phys.PhysBase, pMemLnxToMap->Core.cb)
1425 : ioremap(pMemLnxToMap->Core.u.Phys.PhysBase, pMemLnxToMap->Core.cb);
1426 if (pMemLnx->Core.pv)
1427 {
1428 /** @todo fix protection. */
1429 rc = VINF_SUCCESS;
1430 }
1431 }
1432 if (RT_SUCCESS(rc))
1433 {
1434 pMemLnx->Core.u.Mapping.R0Process = NIL_RTR0PROCESS;
1435 *ppMem = &pMemLnx->Core;
1436 IPRT_LINUX_RESTORE_EFL_AC();
1437 return VINF_SUCCESS;
1438 }
1439 rtR0MemObjDelete(&pMemLnx->Core);
1440 }
1441
1442 IPRT_LINUX_RESTORE_EFL_AC();
1443 return rc;
1444 }
1445
1446
1447 #ifdef VBOX_USE_PAE_HACK
1448 /**
1449 * Replace the PFN of a PTE with the address of the actual page.
1450 *
1451 * The caller maps a reserved dummy page at the address with the desired access
1452 * and flags.
1453 *
1454 * This hack is required for older Linux kernels which don't provide
1455 * remap_pfn_range().
1456 *
1457 * @returns 0 on success, -ENOMEM on failure.
1458 * @param mm The memory context.
1459 * @param ulAddr The mapping address.
1460 * @param Phys The physical address of the page to map.
1461 */
1462 static int rtR0MemObjLinuxFixPte(struct mm_struct *mm, unsigned long ulAddr, RTHCPHYS Phys)
1463 {
1464 int rc = -ENOMEM;
1465 pgd_t *pgd;
1466
1467 spin_lock(&mm->page_table_lock);
1468
1469 pgd = pgd_offset(mm, ulAddr);
1470 if (!pgd_none(*pgd) && !pgd_bad(*pgd))
1471 {
1472 pmd_t *pmd = pmd_offset(pgd, ulAddr);
1473 if (!pmd_none(*pmd))
1474 {
1475 pte_t *ptep = pte_offset_map(pmd, ulAddr);
1476 if (ptep)
1477 {
1478 pte_t pte = *ptep;
1479 pte.pte_high &= 0xfff00000;
1480 pte.pte_high |= ((Phys >> 32) & 0x000fffff);
1481 pte.pte_low &= 0x00000fff;
1482 pte.pte_low |= (Phys & 0xfffff000);
1483 set_pte(ptep, pte);
1484 pte_unmap(ptep);
1485 rc = 0;
1486 }
1487 }
1488 }
1489
1490 spin_unlock(&mm->page_table_lock);
1491 return rc;
1492 }
1493 #endif /* VBOX_USE_PAE_HACK */
1494
1495
1496 DECLHIDDEN(int) rtR0MemObjNativeMapUser(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, RTR3PTR R3PtrFixed,
1497 size_t uAlignment, unsigned fProt, RTR0PROCESS R0Process)
1498 {
1499 struct task_struct *pTask = rtR0ProcessToLinuxTask(R0Process);
1500 PRTR0MEMOBJLNX pMemLnxToMap = (PRTR0MEMOBJLNX)pMemToMap;
1501 int rc = VERR_NO_MEMORY;
1502 PRTR0MEMOBJLNX pMemLnx;
1503 #ifdef VBOX_USE_PAE_HACK
1504 struct page *pDummyPage;
1505 RTHCPHYS DummyPhys;
1506 #endif
1507 IPRT_LINUX_SAVE_EFL_AC();
1508
1509 /*
1510 * Check for restrictions.
1511 */
1512 if (!pTask)
1513 return VERR_NOT_SUPPORTED;
1514 if (uAlignment > PAGE_SIZE)
1515 return VERR_NOT_SUPPORTED;
1516
1517 #ifdef VBOX_USE_PAE_HACK
1518 /*
1519 * Allocate a dummy page for use when mapping the memory.
1520 */
1521 pDummyPage = alloc_page(GFP_USER | __GFP_NOWARN);
1522 if (!pDummyPage)
1523 {
1524 IPRT_LINUX_RESTORE_EFL_AC();
1525 return VERR_NO_MEMORY;
1526 }
1527 SetPageReserved(pDummyPage);
1528 DummyPhys = page_to_phys(pDummyPage);
1529 #endif
1530
1531 /*
1532 * Create the IPRT memory object.
1533 */
1534 pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_MAPPING, NULL, pMemLnxToMap->Core.cb);
1535 if (pMemLnx)
1536 {
1537 /*
1538 * Allocate user space mapping.
1539 */
1540 void *pv;
1541 pv = rtR0MemObjLinuxDoMmap(R3PtrFixed, pMemLnxToMap->Core.cb, uAlignment, pTask, fProt);
1542 if (pv != (void *)-1)
1543 {
1544 /*
1545 * Map page by page into the mmap area.
1546 * This is generic, paranoid and not very efficient.
1547 */
1548 pgprot_t fPg = rtR0MemObjLinuxConvertProt(fProt, false /* user */);
1549 unsigned long ulAddrCur = (unsigned long)pv;
1550 const size_t cPages = pMemLnxToMap->Core.cb >> PAGE_SHIFT;
1551 size_t iPage;
1552
1553 down_write(&pTask->mm->mmap_sem);
1554
1555 rc = VINF_SUCCESS;
1556 if (pMemLnxToMap->cPages)
1557 {
1558 for (iPage = 0; iPage < cPages; iPage++, ulAddrCur += PAGE_SIZE)
1559 {
1560 #if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 11)
1561 RTHCPHYS Phys = page_to_phys(pMemLnxToMap->apPages[iPage]);
1562 #endif
1563 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE)
1564 struct vm_area_struct *vma = find_vma(pTask->mm, ulAddrCur); /* this is probably the same for all the pages... */
1565 AssertBreakStmt(vma, rc = VERR_INTERNAL_ERROR);
1566 #endif
1567 #if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 0) && defined(RT_ARCH_X86)
1568 /* remap_page_range() limitation on x86 */
1569 AssertBreakStmt(Phys < _4G, rc = VERR_NO_MEMORY);
1570 #endif
1571
1572 #if defined(VBOX_USE_INSERT_PAGE) && LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 22)
1573 rc = vm_insert_page(vma, ulAddrCur, pMemLnxToMap->apPages[iPage]);
1574 /* Thes flags help making 100% sure some bad stuff wont happen (swap, core, ++).
1575 * See remap_pfn_range() in mm/memory.c */
1576 #if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 7, 0)
1577 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
1578 #else
1579 vma->vm_flags |= VM_RESERVED;
1580 #endif
1581 #elif LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 11)
1582 rc = remap_pfn_range(vma, ulAddrCur, page_to_pfn(pMemLnxToMap->apPages[iPage]), PAGE_SIZE, fPg);
1583 #elif defined(VBOX_USE_PAE_HACK)
1584 rc = remap_page_range(vma, ulAddrCur, DummyPhys, PAGE_SIZE, fPg);
1585 if (!rc)
1586 rc = rtR0MemObjLinuxFixPte(pTask->mm, ulAddrCur, Phys);
1587 #elif LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE)
1588 rc = remap_page_range(vma, ulAddrCur, Phys, PAGE_SIZE, fPg);
1589 #else /* 2.4 */
1590 rc = remap_page_range(ulAddrCur, Phys, PAGE_SIZE, fPg);
1591 #endif
1592 if (rc)
1593 {
1594 rc = VERR_NO_MEMORY;
1595 break;
1596 }
1597 }
1598 }
1599 else
1600 {
1601 RTHCPHYS Phys;
1602 if (pMemLnxToMap->Core.enmType == RTR0MEMOBJTYPE_PHYS)
1603 Phys = pMemLnxToMap->Core.u.Phys.PhysBase;
1604 else if (pMemLnxToMap->Core.enmType == RTR0MEMOBJTYPE_CONT)
1605 Phys = pMemLnxToMap->Core.u.Cont.Phys;
1606 else
1607 {
1608 AssertMsgFailed(("%d\n", pMemLnxToMap->Core.enmType));
1609 Phys = NIL_RTHCPHYS;
1610 }
1611 if (Phys != NIL_RTHCPHYS)
1612 {
1613 for (iPage = 0; iPage < cPages; iPage++, ulAddrCur += PAGE_SIZE, Phys += PAGE_SIZE)
1614 {
1615 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE)
1616 struct vm_area_struct *vma = find_vma(pTask->mm, ulAddrCur); /* this is probably the same for all the pages... */
1617 AssertBreakStmt(vma, rc = VERR_INTERNAL_ERROR);
1618 #endif
1619 #if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 0) && defined(RT_ARCH_X86)
1620 /* remap_page_range() limitation on x86 */
1621 AssertBreakStmt(Phys < _4G, rc = VERR_NO_MEMORY);
1622 #endif
1623
1624 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 11)
1625 rc = remap_pfn_range(vma, ulAddrCur, Phys, PAGE_SIZE, fPg);
1626 #elif defined(VBOX_USE_PAE_HACK)
1627 rc = remap_page_range(vma, ulAddrCur, DummyPhys, PAGE_SIZE, fPg);
1628 if (!rc)
1629 rc = rtR0MemObjLinuxFixPte(pTask->mm, ulAddrCur, Phys);
1630 #elif LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE)
1631 rc = remap_page_range(vma, ulAddrCur, Phys, PAGE_SIZE, fPg);
1632 #else /* 2.4 */
1633 rc = remap_page_range(ulAddrCur, Phys, PAGE_SIZE, fPg);
1634 #endif
1635 if (rc)
1636 {
1637 rc = VERR_NO_MEMORY;
1638 break;
1639 }
1640 }
1641 }
1642 }
1643
1644 #ifdef CONFIG_NUMA_BALANCING
1645 # if LINUX_VERSION_CODE < KERNEL_VERSION(3, 13, 0)
1646 # ifdef RHEL_RELEASE_CODE
1647 # if RHEL_RELEASE_CODE < RHEL_RELEASE_VERSION(7, 0)
1648 # define VBOX_NUMA_HACK_OLD
1649 # endif
1650 # endif
1651 # endif
1652 if (RT_SUCCESS(rc))
1653 {
1654 /** @todo Ugly hack! But right now we have no other means to
1655 * disable automatic NUMA page balancing. */
1656 # ifdef RT_OS_X86
1657 # ifdef VBOX_NUMA_HACK_OLD
1658 pTask->mm->numa_next_reset = jiffies + 0x7fffffffUL;
1659 # endif
1660 pTask->mm->numa_next_scan = jiffies + 0x7fffffffUL;
1661 # else
1662 # ifdef VBOX_NUMA_HACK_OLD
1663 pTask->mm->numa_next_reset = jiffies + 0x7fffffffffffffffUL;
1664 # endif
1665 pTask->mm->numa_next_scan = jiffies + 0x7fffffffffffffffUL;
1666 # endif
1667 }
1668 #endif /* CONFIG_NUMA_BALANCING */
1669
1670 up_write(&pTask->mm->mmap_sem);
1671
1672 if (RT_SUCCESS(rc))
1673 {
1674 #ifdef VBOX_USE_PAE_HACK
1675 __free_page(pDummyPage);
1676 #endif
1677 pMemLnx->Core.pv = pv;
1678 pMemLnx->Core.u.Mapping.R0Process = R0Process;
1679 *ppMem = &pMemLnx->Core;
1680 IPRT_LINUX_RESTORE_EFL_AC();
1681 return VINF_SUCCESS;
1682 }
1683
1684 /*
1685 * Bail out.
1686 */
1687 rtR0MemObjLinuxDoMunmap(pv, pMemLnxToMap->Core.cb, pTask);
1688 }
1689 rtR0MemObjDelete(&pMemLnx->Core);
1690 }
1691 #ifdef VBOX_USE_PAE_HACK
1692 __free_page(pDummyPage);
1693 #endif
1694
1695 IPRT_LINUX_RESTORE_EFL_AC();
1696 return rc;
1697 }
1698
1699
1700 DECLHIDDEN(int) rtR0MemObjNativeProtect(PRTR0MEMOBJINTERNAL pMem, size_t offSub, size_t cbSub, uint32_t fProt)
1701 {
1702 NOREF(pMem);
1703 NOREF(offSub);
1704 NOREF(cbSub);
1705 NOREF(fProt);
1706 return VERR_NOT_SUPPORTED;
1707 }
1708
1709
1710 DECLHIDDEN(RTHCPHYS) rtR0MemObjNativeGetPagePhysAddr(PRTR0MEMOBJINTERNAL pMem, size_t iPage)
1711 {
1712 PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)pMem;
1713
1714 if (pMemLnx->cPages)
1715 return page_to_phys(pMemLnx->apPages[iPage]);
1716
1717 switch (pMemLnx->Core.enmType)
1718 {
1719 case RTR0MEMOBJTYPE_CONT:
1720 return pMemLnx->Core.u.Cont.Phys + (iPage << PAGE_SHIFT);
1721
1722 case RTR0MEMOBJTYPE_PHYS:
1723 return pMemLnx->Core.u.Phys.PhysBase + (iPage << PAGE_SHIFT);
1724
1725 /* the parent knows */
1726 case RTR0MEMOBJTYPE_MAPPING:
1727 return rtR0MemObjNativeGetPagePhysAddr(pMemLnx->Core.uRel.Child.pParent, iPage);
1728
1729 /* cPages > 0 */
1730 case RTR0MEMOBJTYPE_LOW:
1731 case RTR0MEMOBJTYPE_LOCK:
1732 case RTR0MEMOBJTYPE_PHYS_NC:
1733 case RTR0MEMOBJTYPE_PAGE:
1734 default:
1735 AssertMsgFailed(("%d\n", pMemLnx->Core.enmType));
1736 /* fall thru */
1737
1738 case RTR0MEMOBJTYPE_RES_VIRT:
1739 return NIL_RTHCPHYS;
1740 }
1741 }
1742