]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - virt/kvm/arm/arm.c
arm64: KVM: Use per-CPU vector when BP hardening is enabled
[mirror_ubuntu-artful-kernel.git] / virt / kvm / arm / arm.c
1 /*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
18
19 #include <linux/cpu_pm.h>
20 #include <linux/errno.h>
21 #include <linux/err.h>
22 #include <linux/kvm_host.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
26 #include <linux/fs.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <trace/events/kvm.h>
31 #include <kvm/arm_pmu.h>
32
33 #define CREATE_TRACE_POINTS
34 #include "trace.h"
35
36 #include <linux/uaccess.h>
37 #include <asm/ptrace.h>
38 #include <asm/mman.h>
39 #include <asm/tlbflush.h>
40 #include <asm/cacheflush.h>
41 #include <asm/virt.h>
42 #include <asm/kvm_arm.h>
43 #include <asm/kvm_asm.h>
44 #include <asm/kvm_mmu.h>
45 #include <asm/kvm_emulate.h>
46 #include <asm/kvm_coproc.h>
47 #include <asm/kvm_psci.h>
48 #include <asm/sections.h>
49
50 #ifdef REQUIRES_VIRT
51 __asm__(".arch_extension virt");
52 #endif
53
54 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
55 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
56
57 /* Per-CPU variable containing the currently running vcpu. */
58 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
59
60 /* The VMID used in the VTTBR */
61 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
62 static u32 kvm_next_vmid;
63 static unsigned int kvm_vmid_bits __read_mostly;
64 static DEFINE_SPINLOCK(kvm_vmid_lock);
65
66 static bool vgic_present;
67
68 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
69
70 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
71 {
72 BUG_ON(preemptible());
73 __this_cpu_write(kvm_arm_running_vcpu, vcpu);
74 }
75
76 /**
77 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
78 * Must be called from non-preemptible context
79 */
80 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
81 {
82 BUG_ON(preemptible());
83 return __this_cpu_read(kvm_arm_running_vcpu);
84 }
85
86 /**
87 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
88 */
89 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
90 {
91 return &kvm_arm_running_vcpu;
92 }
93
94 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
95 {
96 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
97 }
98
99 int kvm_arch_hardware_setup(void)
100 {
101 return 0;
102 }
103
104 void kvm_arch_check_processor_compat(void *rtn)
105 {
106 *(int *)rtn = 0;
107 }
108
109
110 /**
111 * kvm_arch_init_vm - initializes a VM data structure
112 * @kvm: pointer to the KVM struct
113 */
114 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
115 {
116 int ret, cpu;
117
118 if (type)
119 return -EINVAL;
120
121 kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
122 if (!kvm->arch.last_vcpu_ran)
123 return -ENOMEM;
124
125 for_each_possible_cpu(cpu)
126 *per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;
127
128 ret = kvm_alloc_stage2_pgd(kvm);
129 if (ret)
130 goto out_fail_alloc;
131
132 ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
133 if (ret)
134 goto out_free_stage2_pgd;
135
136 kvm_vgic_early_init(kvm);
137
138 /* Mark the initial VMID generation invalid */
139 kvm->arch.vmid_gen = 0;
140
141 /* The maximum number of VCPUs is limited by the host's GIC model */
142 kvm->arch.max_vcpus = vgic_present ?
143 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
144
145 return ret;
146 out_free_stage2_pgd:
147 kvm_free_stage2_pgd(kvm);
148 out_fail_alloc:
149 free_percpu(kvm->arch.last_vcpu_ran);
150 kvm->arch.last_vcpu_ran = NULL;
151 return ret;
152 }
153
154 bool kvm_arch_has_vcpu_debugfs(void)
155 {
156 return false;
157 }
158
159 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
160 {
161 return 0;
162 }
163
164 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
165 {
166 return VM_FAULT_SIGBUS;
167 }
168
169
170 /**
171 * kvm_arch_destroy_vm - destroy the VM data structure
172 * @kvm: pointer to the KVM struct
173 */
174 void kvm_arch_destroy_vm(struct kvm *kvm)
175 {
176 int i;
177
178 free_percpu(kvm->arch.last_vcpu_ran);
179 kvm->arch.last_vcpu_ran = NULL;
180
181 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
182 if (kvm->vcpus[i]) {
183 kvm_arch_vcpu_free(kvm->vcpus[i]);
184 kvm->vcpus[i] = NULL;
185 }
186 }
187
188 kvm_vgic_destroy(kvm);
189 }
190
191 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
192 {
193 int r;
194 switch (ext) {
195 case KVM_CAP_IRQCHIP:
196 r = vgic_present;
197 break;
198 case KVM_CAP_IOEVENTFD:
199 case KVM_CAP_DEVICE_CTRL:
200 case KVM_CAP_USER_MEMORY:
201 case KVM_CAP_SYNC_MMU:
202 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
203 case KVM_CAP_ONE_REG:
204 case KVM_CAP_ARM_PSCI:
205 case KVM_CAP_ARM_PSCI_0_2:
206 case KVM_CAP_READONLY_MEM:
207 case KVM_CAP_MP_STATE:
208 case KVM_CAP_IMMEDIATE_EXIT:
209 r = 1;
210 break;
211 case KVM_CAP_ARM_SET_DEVICE_ADDR:
212 r = 1;
213 break;
214 case KVM_CAP_NR_VCPUS:
215 r = num_online_cpus();
216 break;
217 case KVM_CAP_MAX_VCPUS:
218 r = KVM_MAX_VCPUS;
219 break;
220 case KVM_CAP_NR_MEMSLOTS:
221 r = KVM_USER_MEM_SLOTS;
222 break;
223 case KVM_CAP_MSI_DEVID:
224 if (!kvm)
225 r = -EINVAL;
226 else
227 r = kvm->arch.vgic.msis_require_devid;
228 break;
229 case KVM_CAP_ARM_USER_IRQ:
230 /*
231 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
232 * (bump this number if adding more devices)
233 */
234 r = 1;
235 break;
236 default:
237 r = kvm_arch_dev_ioctl_check_extension(kvm, ext);
238 break;
239 }
240 return r;
241 }
242
243 long kvm_arch_dev_ioctl(struct file *filp,
244 unsigned int ioctl, unsigned long arg)
245 {
246 return -EINVAL;
247 }
248
249
250 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
251 {
252 int err;
253 struct kvm_vcpu *vcpu;
254
255 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
256 err = -EBUSY;
257 goto out;
258 }
259
260 if (id >= kvm->arch.max_vcpus) {
261 err = -EINVAL;
262 goto out;
263 }
264
265 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
266 if (!vcpu) {
267 err = -ENOMEM;
268 goto out;
269 }
270
271 err = kvm_vcpu_init(vcpu, kvm, id);
272 if (err)
273 goto free_vcpu;
274
275 err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
276 if (err)
277 goto vcpu_uninit;
278
279 return vcpu;
280 vcpu_uninit:
281 kvm_vcpu_uninit(vcpu);
282 free_vcpu:
283 kmem_cache_free(kvm_vcpu_cache, vcpu);
284 out:
285 return ERR_PTR(err);
286 }
287
288 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
289 {
290 kvm_vgic_vcpu_early_init(vcpu);
291 }
292
293 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
294 {
295 kvm_mmu_free_memory_caches(vcpu);
296 kvm_timer_vcpu_terminate(vcpu);
297 kvm_vgic_vcpu_destroy(vcpu);
298 kvm_pmu_vcpu_destroy(vcpu);
299 kvm_vcpu_uninit(vcpu);
300 kmem_cache_free(kvm_vcpu_cache, vcpu);
301 }
302
303 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
304 {
305 kvm_arch_vcpu_free(vcpu);
306 }
307
308 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
309 {
310 return kvm_timer_should_fire(vcpu_vtimer(vcpu)) ||
311 kvm_timer_should_fire(vcpu_ptimer(vcpu));
312 }
313
314 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
315 {
316 kvm_timer_schedule(vcpu);
317 }
318
319 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
320 {
321 kvm_timer_unschedule(vcpu);
322 }
323
324 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
325 {
326 /* Force users to call KVM_ARM_VCPU_INIT */
327 vcpu->arch.target = -1;
328 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
329
330 /* Set up the timer */
331 kvm_timer_vcpu_init(vcpu);
332
333 kvm_arm_reset_debug_ptr(vcpu);
334
335 return kvm_vgic_vcpu_init(vcpu);
336 }
337
338 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
339 {
340 int *last_ran;
341
342 last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
343
344 /*
345 * We might get preempted before the vCPU actually runs, but
346 * over-invalidation doesn't affect correctness.
347 */
348 if (*last_ran != vcpu->vcpu_id) {
349 kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
350 *last_ran = vcpu->vcpu_id;
351 }
352
353 vcpu->cpu = cpu;
354 vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
355
356 kvm_arm_set_running_vcpu(vcpu);
357
358 kvm_vgic_load(vcpu);
359 }
360
361 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
362 {
363 kvm_vgic_put(vcpu);
364
365 vcpu->cpu = -1;
366
367 kvm_arm_set_running_vcpu(NULL);
368 kvm_timer_vcpu_put(vcpu);
369 }
370
371 static void vcpu_power_off(struct kvm_vcpu *vcpu)
372 {
373 vcpu->arch.power_off = true;
374 kvm_make_request(KVM_REQ_SLEEP, vcpu);
375 kvm_vcpu_kick(vcpu);
376 }
377
378 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
379 struct kvm_mp_state *mp_state)
380 {
381 if (vcpu->arch.power_off)
382 mp_state->mp_state = KVM_MP_STATE_STOPPED;
383 else
384 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
385
386 return 0;
387 }
388
389 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
390 struct kvm_mp_state *mp_state)
391 {
392 switch (mp_state->mp_state) {
393 case KVM_MP_STATE_RUNNABLE:
394 vcpu->arch.power_off = false;
395 break;
396 case KVM_MP_STATE_STOPPED:
397 vcpu_power_off(vcpu);
398 break;
399 default:
400 return -EINVAL;
401 }
402
403 return 0;
404 }
405
406 /**
407 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
408 * @v: The VCPU pointer
409 *
410 * If the guest CPU is not waiting for interrupts or an interrupt line is
411 * asserted, the CPU is by definition runnable.
412 */
413 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
414 {
415 return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
416 && !v->arch.power_off && !v->arch.pause);
417 }
418
419 /* Just ensure a guest exit from a particular CPU */
420 static void exit_vm_noop(void *info)
421 {
422 }
423
424 void force_vm_exit(const cpumask_t *mask)
425 {
426 preempt_disable();
427 smp_call_function_many(mask, exit_vm_noop, NULL, true);
428 preempt_enable();
429 }
430
431 /**
432 * need_new_vmid_gen - check that the VMID is still valid
433 * @kvm: The VM's VMID to check
434 *
435 * return true if there is a new generation of VMIDs being used
436 *
437 * The hardware supports only 256 values with the value zero reserved for the
438 * host, so we check if an assigned value belongs to a previous generation,
439 * which which requires us to assign a new value. If we're the first to use a
440 * VMID for the new generation, we must flush necessary caches and TLBs on all
441 * CPUs.
442 */
443 static bool need_new_vmid_gen(struct kvm *kvm)
444 {
445 return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
446 }
447
448 /**
449 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
450 * @kvm The guest that we are about to run
451 *
452 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
453 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
454 * caches and TLBs.
455 */
456 static void update_vttbr(struct kvm *kvm)
457 {
458 phys_addr_t pgd_phys;
459 u64 vmid;
460
461 if (!need_new_vmid_gen(kvm))
462 return;
463
464 spin_lock(&kvm_vmid_lock);
465
466 /*
467 * We need to re-check the vmid_gen here to ensure that if another vcpu
468 * already allocated a valid vmid for this vm, then this vcpu should
469 * use the same vmid.
470 */
471 if (!need_new_vmid_gen(kvm)) {
472 spin_unlock(&kvm_vmid_lock);
473 return;
474 }
475
476 /* First user of a new VMID generation? */
477 if (unlikely(kvm_next_vmid == 0)) {
478 atomic64_inc(&kvm_vmid_gen);
479 kvm_next_vmid = 1;
480
481 /*
482 * On SMP we know no other CPUs can use this CPU's or each
483 * other's VMID after force_vm_exit returns since the
484 * kvm_vmid_lock blocks them from reentry to the guest.
485 */
486 force_vm_exit(cpu_all_mask);
487 /*
488 * Now broadcast TLB + ICACHE invalidation over the inner
489 * shareable domain to make sure all data structures are
490 * clean.
491 */
492 kvm_call_hyp(__kvm_flush_vm_context);
493 }
494
495 kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
496 kvm->arch.vmid = kvm_next_vmid;
497 kvm_next_vmid++;
498 kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
499
500 /* update vttbr to be used with the new vmid */
501 pgd_phys = virt_to_phys(kvm->arch.pgd);
502 BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
503 vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
504 kvm->arch.vttbr = pgd_phys | vmid;
505
506 spin_unlock(&kvm_vmid_lock);
507 }
508
509 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
510 {
511 struct kvm *kvm = vcpu->kvm;
512 int ret = 0;
513
514 if (likely(vcpu->arch.has_run_once))
515 return 0;
516
517 vcpu->arch.has_run_once = true;
518
519 /*
520 * Map the VGIC hardware resources before running a vcpu the first
521 * time on this VM.
522 */
523 if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
524 ret = kvm_vgic_map_resources(kvm);
525 if (ret)
526 return ret;
527 }
528
529 ret = kvm_timer_enable(vcpu);
530 if (ret)
531 return ret;
532
533 ret = kvm_arm_pmu_v3_enable(vcpu);
534
535 return ret;
536 }
537
538 bool kvm_arch_intc_initialized(struct kvm *kvm)
539 {
540 return vgic_initialized(kvm);
541 }
542
543 void kvm_arm_halt_guest(struct kvm *kvm)
544 {
545 int i;
546 struct kvm_vcpu *vcpu;
547
548 kvm_for_each_vcpu(i, vcpu, kvm)
549 vcpu->arch.pause = true;
550 kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
551 }
552
553 void kvm_arm_resume_guest(struct kvm *kvm)
554 {
555 int i;
556 struct kvm_vcpu *vcpu;
557
558 kvm_for_each_vcpu(i, vcpu, kvm) {
559 vcpu->arch.pause = false;
560 swake_up(kvm_arch_vcpu_wq(vcpu));
561 }
562 }
563
564 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
565 {
566 struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
567
568 swait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
569 (!vcpu->arch.pause)));
570
571 if (vcpu->arch.power_off || vcpu->arch.pause) {
572 /* Awaken to handle a signal, request we sleep again later. */
573 kvm_make_request(KVM_REQ_SLEEP, vcpu);
574 }
575 }
576
577 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
578 {
579 return vcpu->arch.target >= 0;
580 }
581
582 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
583 {
584 if (kvm_request_pending(vcpu)) {
585 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
586 vcpu_req_sleep(vcpu);
587
588 /*
589 * Clear IRQ_PENDING requests that were made to guarantee
590 * that a VCPU sees new virtual interrupts.
591 */
592 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
593 }
594 }
595
596 /**
597 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
598 * @vcpu: The VCPU pointer
599 * @run: The kvm_run structure pointer used for userspace state exchange
600 *
601 * This function is called through the VCPU_RUN ioctl called from user space. It
602 * will execute VM code in a loop until the time slice for the process is used
603 * or some emulation is needed from user space in which case the function will
604 * return with return value 0 and with the kvm_run structure filled in with the
605 * required data for the requested emulation.
606 */
607 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
608 {
609 int ret;
610 sigset_t sigsaved;
611
612 if (unlikely(!kvm_vcpu_initialized(vcpu)))
613 return -ENOEXEC;
614
615 ret = kvm_vcpu_first_run_init(vcpu);
616 if (ret)
617 return ret;
618
619 if (run->exit_reason == KVM_EXIT_MMIO) {
620 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
621 if (ret)
622 return ret;
623 }
624
625 if (run->immediate_exit)
626 return -EINTR;
627
628 if (vcpu->sigset_active)
629 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
630
631 ret = 1;
632 run->exit_reason = KVM_EXIT_UNKNOWN;
633 while (ret > 0) {
634 /*
635 * Check conditions before entering the guest
636 */
637 cond_resched();
638
639 update_vttbr(vcpu->kvm);
640
641 check_vcpu_requests(vcpu);
642
643 /*
644 * Preparing the interrupts to be injected also
645 * involves poking the GIC, which must be done in a
646 * non-preemptible context.
647 */
648 preempt_disable();
649
650 kvm_pmu_flush_hwstate(vcpu);
651
652 kvm_timer_flush_hwstate(vcpu);
653 kvm_vgic_flush_hwstate(vcpu);
654
655 local_irq_disable();
656
657 /*
658 * If we have a singal pending, or need to notify a userspace
659 * irqchip about timer or PMU level changes, then we exit (and
660 * update the timer level state in kvm_timer_update_run
661 * below).
662 */
663 if (signal_pending(current) ||
664 kvm_timer_should_notify_user(vcpu) ||
665 kvm_pmu_should_notify_user(vcpu)) {
666 ret = -EINTR;
667 run->exit_reason = KVM_EXIT_INTR;
668 }
669
670 /*
671 * Ensure we set mode to IN_GUEST_MODE after we disable
672 * interrupts and before the final VCPU requests check.
673 * See the comment in kvm_vcpu_exiting_guest_mode() and
674 * Documentation/virtual/kvm/vcpu-requests.rst
675 */
676 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
677
678 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
679 kvm_request_pending(vcpu)) {
680 vcpu->mode = OUTSIDE_GUEST_MODE;
681 local_irq_enable();
682 kvm_pmu_sync_hwstate(vcpu);
683 kvm_timer_sync_hwstate(vcpu);
684 kvm_vgic_sync_hwstate(vcpu);
685 preempt_enable();
686 continue;
687 }
688
689 kvm_arm_setup_debug(vcpu);
690
691 /**************************************************************
692 * Enter the guest
693 */
694 trace_kvm_entry(*vcpu_pc(vcpu));
695 guest_enter_irqoff();
696
697 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
698
699 vcpu->mode = OUTSIDE_GUEST_MODE;
700 vcpu->stat.exits++;
701 /*
702 * Back from guest
703 *************************************************************/
704
705 kvm_arm_clear_debug(vcpu);
706
707 /*
708 * We may have taken a host interrupt in HYP mode (ie
709 * while executing the guest). This interrupt is still
710 * pending, as we haven't serviced it yet!
711 *
712 * We're now back in SVC mode, with interrupts
713 * disabled. Enabling the interrupts now will have
714 * the effect of taking the interrupt again, in SVC
715 * mode this time.
716 */
717 local_irq_enable();
718
719 /*
720 * We do local_irq_enable() before calling guest_exit() so
721 * that if a timer interrupt hits while running the guest we
722 * account that tick as being spent in the guest. We enable
723 * preemption after calling guest_exit() so that if we get
724 * preempted we make sure ticks after that is not counted as
725 * guest time.
726 */
727 guest_exit();
728 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
729
730 /*
731 * We must sync the PMU and timer state before the vgic state so
732 * that the vgic can properly sample the updated state of the
733 * interrupt line.
734 */
735 kvm_pmu_sync_hwstate(vcpu);
736 kvm_timer_sync_hwstate(vcpu);
737
738 kvm_vgic_sync_hwstate(vcpu);
739
740 preempt_enable();
741
742 ret = handle_exit(vcpu, run, ret);
743 }
744
745 /* Tell userspace about in-kernel device output levels */
746 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
747 kvm_timer_update_run(vcpu);
748 kvm_pmu_update_run(vcpu);
749 }
750
751 if (vcpu->sigset_active)
752 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
753 return ret;
754 }
755
756 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
757 {
758 int bit_index;
759 bool set;
760 unsigned long *ptr;
761
762 if (number == KVM_ARM_IRQ_CPU_IRQ)
763 bit_index = __ffs(HCR_VI);
764 else /* KVM_ARM_IRQ_CPU_FIQ */
765 bit_index = __ffs(HCR_VF);
766
767 ptr = (unsigned long *)&vcpu->arch.irq_lines;
768 if (level)
769 set = test_and_set_bit(bit_index, ptr);
770 else
771 set = test_and_clear_bit(bit_index, ptr);
772
773 /*
774 * If we didn't change anything, no need to wake up or kick other CPUs
775 */
776 if (set == level)
777 return 0;
778
779 /*
780 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
781 * trigger a world-switch round on the running physical CPU to set the
782 * virtual IRQ/FIQ fields in the HCR appropriately.
783 */
784 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
785 kvm_vcpu_kick(vcpu);
786
787 return 0;
788 }
789
790 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
791 bool line_status)
792 {
793 u32 irq = irq_level->irq;
794 unsigned int irq_type, vcpu_idx, irq_num;
795 int nrcpus = atomic_read(&kvm->online_vcpus);
796 struct kvm_vcpu *vcpu = NULL;
797 bool level = irq_level->level;
798
799 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
800 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
801 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
802
803 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
804
805 switch (irq_type) {
806 case KVM_ARM_IRQ_TYPE_CPU:
807 if (irqchip_in_kernel(kvm))
808 return -ENXIO;
809
810 if (vcpu_idx >= nrcpus)
811 return -EINVAL;
812
813 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
814 if (!vcpu)
815 return -EINVAL;
816
817 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
818 return -EINVAL;
819
820 return vcpu_interrupt_line(vcpu, irq_num, level);
821 case KVM_ARM_IRQ_TYPE_PPI:
822 if (!irqchip_in_kernel(kvm))
823 return -ENXIO;
824
825 if (vcpu_idx >= nrcpus)
826 return -EINVAL;
827
828 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
829 if (!vcpu)
830 return -EINVAL;
831
832 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
833 return -EINVAL;
834
835 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
836 case KVM_ARM_IRQ_TYPE_SPI:
837 if (!irqchip_in_kernel(kvm))
838 return -ENXIO;
839
840 if (irq_num < VGIC_NR_PRIVATE_IRQS)
841 return -EINVAL;
842
843 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
844 }
845
846 return -EINVAL;
847 }
848
849 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
850 const struct kvm_vcpu_init *init)
851 {
852 unsigned int i;
853 int phys_target = kvm_target_cpu();
854
855 if (init->target != phys_target)
856 return -EINVAL;
857
858 /*
859 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
860 * use the same target.
861 */
862 if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
863 return -EINVAL;
864
865 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
866 for (i = 0; i < sizeof(init->features) * 8; i++) {
867 bool set = (init->features[i / 32] & (1 << (i % 32)));
868
869 if (set && i >= KVM_VCPU_MAX_FEATURES)
870 return -ENOENT;
871
872 /*
873 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
874 * use the same feature set.
875 */
876 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
877 test_bit(i, vcpu->arch.features) != set)
878 return -EINVAL;
879
880 if (set)
881 set_bit(i, vcpu->arch.features);
882 }
883
884 vcpu->arch.target = phys_target;
885
886 /* Now we know what it is, we can reset it. */
887 return kvm_reset_vcpu(vcpu);
888 }
889
890
891 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
892 struct kvm_vcpu_init *init)
893 {
894 int ret;
895
896 ret = kvm_vcpu_set_target(vcpu, init);
897 if (ret)
898 return ret;
899
900 /*
901 * Ensure a rebooted VM will fault in RAM pages and detect if the
902 * guest MMU is turned off and flush the caches as needed.
903 */
904 if (vcpu->arch.has_run_once)
905 stage2_unmap_vm(vcpu->kvm);
906
907 vcpu_reset_hcr(vcpu);
908
909 /*
910 * Handle the "start in power-off" case.
911 */
912 if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
913 vcpu_power_off(vcpu);
914 else
915 vcpu->arch.power_off = false;
916
917 return 0;
918 }
919
920 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
921 struct kvm_device_attr *attr)
922 {
923 int ret = -ENXIO;
924
925 switch (attr->group) {
926 default:
927 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
928 break;
929 }
930
931 return ret;
932 }
933
934 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
935 struct kvm_device_attr *attr)
936 {
937 int ret = -ENXIO;
938
939 switch (attr->group) {
940 default:
941 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
942 break;
943 }
944
945 return ret;
946 }
947
948 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
949 struct kvm_device_attr *attr)
950 {
951 int ret = -ENXIO;
952
953 switch (attr->group) {
954 default:
955 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
956 break;
957 }
958
959 return ret;
960 }
961
962 long kvm_arch_vcpu_ioctl(struct file *filp,
963 unsigned int ioctl, unsigned long arg)
964 {
965 struct kvm_vcpu *vcpu = filp->private_data;
966 void __user *argp = (void __user *)arg;
967 struct kvm_device_attr attr;
968
969 switch (ioctl) {
970 case KVM_ARM_VCPU_INIT: {
971 struct kvm_vcpu_init init;
972
973 if (copy_from_user(&init, argp, sizeof(init)))
974 return -EFAULT;
975
976 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
977 }
978 case KVM_SET_ONE_REG:
979 case KVM_GET_ONE_REG: {
980 struct kvm_one_reg reg;
981
982 if (unlikely(!kvm_vcpu_initialized(vcpu)))
983 return -ENOEXEC;
984
985 if (copy_from_user(&reg, argp, sizeof(reg)))
986 return -EFAULT;
987 if (ioctl == KVM_SET_ONE_REG)
988 return kvm_arm_set_reg(vcpu, &reg);
989 else
990 return kvm_arm_get_reg(vcpu, &reg);
991 }
992 case KVM_GET_REG_LIST: {
993 struct kvm_reg_list __user *user_list = argp;
994 struct kvm_reg_list reg_list;
995 unsigned n;
996
997 if (unlikely(!kvm_vcpu_initialized(vcpu)))
998 return -ENOEXEC;
999
1000 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1001 return -EFAULT;
1002 n = reg_list.n;
1003 reg_list.n = kvm_arm_num_regs(vcpu);
1004 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1005 return -EFAULT;
1006 if (n < reg_list.n)
1007 return -E2BIG;
1008 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1009 }
1010 case KVM_SET_DEVICE_ATTR: {
1011 if (copy_from_user(&attr, argp, sizeof(attr)))
1012 return -EFAULT;
1013 return kvm_arm_vcpu_set_attr(vcpu, &attr);
1014 }
1015 case KVM_GET_DEVICE_ATTR: {
1016 if (copy_from_user(&attr, argp, sizeof(attr)))
1017 return -EFAULT;
1018 return kvm_arm_vcpu_get_attr(vcpu, &attr);
1019 }
1020 case KVM_HAS_DEVICE_ATTR: {
1021 if (copy_from_user(&attr, argp, sizeof(attr)))
1022 return -EFAULT;
1023 return kvm_arm_vcpu_has_attr(vcpu, &attr);
1024 }
1025 default:
1026 return -EINVAL;
1027 }
1028 }
1029
1030 /**
1031 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1032 * @kvm: kvm instance
1033 * @log: slot id and address to which we copy the log
1034 *
1035 * Steps 1-4 below provide general overview of dirty page logging. See
1036 * kvm_get_dirty_log_protect() function description for additional details.
1037 *
1038 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1039 * always flush the TLB (step 4) even if previous step failed and the dirty
1040 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1041 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1042 * writes will be marked dirty for next log read.
1043 *
1044 * 1. Take a snapshot of the bit and clear it if needed.
1045 * 2. Write protect the corresponding page.
1046 * 3. Copy the snapshot to the userspace.
1047 * 4. Flush TLB's if needed.
1048 */
1049 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1050 {
1051 bool is_dirty = false;
1052 int r;
1053
1054 mutex_lock(&kvm->slots_lock);
1055
1056 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
1057
1058 if (is_dirty)
1059 kvm_flush_remote_tlbs(kvm);
1060
1061 mutex_unlock(&kvm->slots_lock);
1062 return r;
1063 }
1064
1065 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1066 struct kvm_arm_device_addr *dev_addr)
1067 {
1068 unsigned long dev_id, type;
1069
1070 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1071 KVM_ARM_DEVICE_ID_SHIFT;
1072 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1073 KVM_ARM_DEVICE_TYPE_SHIFT;
1074
1075 switch (dev_id) {
1076 case KVM_ARM_DEVICE_VGIC_V2:
1077 if (!vgic_present)
1078 return -ENXIO;
1079 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1080 default:
1081 return -ENODEV;
1082 }
1083 }
1084
1085 long kvm_arch_vm_ioctl(struct file *filp,
1086 unsigned int ioctl, unsigned long arg)
1087 {
1088 struct kvm *kvm = filp->private_data;
1089 void __user *argp = (void __user *)arg;
1090
1091 switch (ioctl) {
1092 case KVM_CREATE_IRQCHIP: {
1093 int ret;
1094 if (!vgic_present)
1095 return -ENXIO;
1096 mutex_lock(&kvm->lock);
1097 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1098 mutex_unlock(&kvm->lock);
1099 return ret;
1100 }
1101 case KVM_ARM_SET_DEVICE_ADDR: {
1102 struct kvm_arm_device_addr dev_addr;
1103
1104 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1105 return -EFAULT;
1106 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1107 }
1108 case KVM_ARM_PREFERRED_TARGET: {
1109 int err;
1110 struct kvm_vcpu_init init;
1111
1112 err = kvm_vcpu_preferred_target(&init);
1113 if (err)
1114 return err;
1115
1116 if (copy_to_user(argp, &init, sizeof(init)))
1117 return -EFAULT;
1118
1119 return 0;
1120 }
1121 default:
1122 return -EINVAL;
1123 }
1124 }
1125
1126 static void cpu_init_hyp_mode(void *dummy)
1127 {
1128 phys_addr_t pgd_ptr;
1129 unsigned long hyp_stack_ptr;
1130 unsigned long stack_page;
1131 unsigned long vector_ptr;
1132
1133 /* Switch from the HYP stub to our own HYP init vector */
1134 __hyp_set_vectors(kvm_get_idmap_vector());
1135
1136 pgd_ptr = kvm_mmu_get_httbr();
1137 stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1138 hyp_stack_ptr = stack_page + PAGE_SIZE;
1139 vector_ptr = (unsigned long)kvm_get_hyp_vector();
1140
1141 __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1142 __cpu_init_stage2();
1143
1144 kvm_arm_init_debug();
1145 }
1146
1147 static void cpu_hyp_reset(void)
1148 {
1149 if (!is_kernel_in_hyp_mode())
1150 __hyp_reset_vectors();
1151 }
1152
1153 static void cpu_hyp_reinit(void)
1154 {
1155 cpu_hyp_reset();
1156
1157 if (is_kernel_in_hyp_mode()) {
1158 /*
1159 * __cpu_init_stage2() is safe to call even if the PM
1160 * event was cancelled before the CPU was reset.
1161 */
1162 __cpu_init_stage2();
1163 kvm_timer_init_vhe();
1164 } else {
1165 cpu_init_hyp_mode(NULL);
1166 }
1167
1168 if (vgic_present)
1169 kvm_vgic_init_cpu_hardware();
1170 }
1171
1172 static void _kvm_arch_hardware_enable(void *discard)
1173 {
1174 if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1175 cpu_hyp_reinit();
1176 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1177 }
1178 }
1179
1180 int kvm_arch_hardware_enable(void)
1181 {
1182 _kvm_arch_hardware_enable(NULL);
1183 return 0;
1184 }
1185
1186 static void _kvm_arch_hardware_disable(void *discard)
1187 {
1188 if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1189 cpu_hyp_reset();
1190 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1191 }
1192 }
1193
1194 void kvm_arch_hardware_disable(void)
1195 {
1196 _kvm_arch_hardware_disable(NULL);
1197 }
1198
1199 #ifdef CONFIG_CPU_PM
1200 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1201 unsigned long cmd,
1202 void *v)
1203 {
1204 /*
1205 * kvm_arm_hardware_enabled is left with its old value over
1206 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1207 * re-enable hyp.
1208 */
1209 switch (cmd) {
1210 case CPU_PM_ENTER:
1211 if (__this_cpu_read(kvm_arm_hardware_enabled))
1212 /*
1213 * don't update kvm_arm_hardware_enabled here
1214 * so that the hardware will be re-enabled
1215 * when we resume. See below.
1216 */
1217 cpu_hyp_reset();
1218
1219 return NOTIFY_OK;
1220 case CPU_PM_EXIT:
1221 if (__this_cpu_read(kvm_arm_hardware_enabled))
1222 /* The hardware was enabled before suspend. */
1223 cpu_hyp_reinit();
1224
1225 return NOTIFY_OK;
1226
1227 default:
1228 return NOTIFY_DONE;
1229 }
1230 }
1231
1232 static struct notifier_block hyp_init_cpu_pm_nb = {
1233 .notifier_call = hyp_init_cpu_pm_notifier,
1234 };
1235
1236 static void __init hyp_cpu_pm_init(void)
1237 {
1238 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1239 }
1240 static void __init hyp_cpu_pm_exit(void)
1241 {
1242 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1243 }
1244 #else
1245 static inline void hyp_cpu_pm_init(void)
1246 {
1247 }
1248 static inline void hyp_cpu_pm_exit(void)
1249 {
1250 }
1251 #endif
1252
1253 static void teardown_common_resources(void)
1254 {
1255 free_percpu(kvm_host_cpu_state);
1256 }
1257
1258 static int init_common_resources(void)
1259 {
1260 kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
1261 if (!kvm_host_cpu_state) {
1262 kvm_err("Cannot allocate host CPU state\n");
1263 return -ENOMEM;
1264 }
1265
1266 /* set size of VMID supported by CPU */
1267 kvm_vmid_bits = kvm_get_vmid_bits();
1268 kvm_info("%d-bit VMID\n", kvm_vmid_bits);
1269
1270 return 0;
1271 }
1272
1273 static int init_subsystems(void)
1274 {
1275 int err = 0;
1276
1277 /*
1278 * Enable hardware so that subsystem initialisation can access EL2.
1279 */
1280 on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1281
1282 /*
1283 * Register CPU lower-power notifier
1284 */
1285 hyp_cpu_pm_init();
1286
1287 /*
1288 * Init HYP view of VGIC
1289 */
1290 err = kvm_vgic_hyp_init();
1291 switch (err) {
1292 case 0:
1293 vgic_present = true;
1294 break;
1295 case -ENODEV:
1296 case -ENXIO:
1297 vgic_present = false;
1298 err = 0;
1299 break;
1300 default:
1301 goto out;
1302 }
1303
1304 /*
1305 * Init HYP architected timer support
1306 */
1307 err = kvm_timer_hyp_init();
1308 if (err)
1309 goto out;
1310
1311 kvm_perf_init();
1312 kvm_coproc_table_init();
1313
1314 out:
1315 on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1316
1317 return err;
1318 }
1319
1320 static void teardown_hyp_mode(void)
1321 {
1322 int cpu;
1323
1324 if (is_kernel_in_hyp_mode())
1325 return;
1326
1327 free_hyp_pgds();
1328 for_each_possible_cpu(cpu)
1329 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1330 hyp_cpu_pm_exit();
1331 }
1332
1333 static int init_vhe_mode(void)
1334 {
1335 kvm_info("VHE mode initialized successfully\n");
1336 return 0;
1337 }
1338
1339 /**
1340 * Inits Hyp-mode on all online CPUs
1341 */
1342 static int init_hyp_mode(void)
1343 {
1344 int cpu;
1345 int err = 0;
1346
1347 /*
1348 * Allocate Hyp PGD and setup Hyp identity mapping
1349 */
1350 err = kvm_mmu_init();
1351 if (err)
1352 goto out_err;
1353
1354 /*
1355 * Allocate stack pages for Hypervisor-mode
1356 */
1357 for_each_possible_cpu(cpu) {
1358 unsigned long stack_page;
1359
1360 stack_page = __get_free_page(GFP_KERNEL);
1361 if (!stack_page) {
1362 err = -ENOMEM;
1363 goto out_err;
1364 }
1365
1366 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1367 }
1368
1369 /*
1370 * Map the Hyp-code called directly from the host
1371 */
1372 err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1373 kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1374 if (err) {
1375 kvm_err("Cannot map world-switch code\n");
1376 goto out_err;
1377 }
1378
1379 err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1380 kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1381 if (err) {
1382 kvm_err("Cannot map rodata section\n");
1383 goto out_err;
1384 }
1385
1386 err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1387 kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1388 if (err) {
1389 kvm_err("Cannot map bss section\n");
1390 goto out_err;
1391 }
1392
1393 err = kvm_map_vectors();
1394 if (err) {
1395 kvm_err("Cannot map vectors\n");
1396 goto out_err;
1397 }
1398
1399 /*
1400 * Map the Hyp stack pages
1401 */
1402 for_each_possible_cpu(cpu) {
1403 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1404 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1405 PAGE_HYP);
1406
1407 if (err) {
1408 kvm_err("Cannot map hyp stack\n");
1409 goto out_err;
1410 }
1411 }
1412
1413 for_each_possible_cpu(cpu) {
1414 kvm_cpu_context_t *cpu_ctxt;
1415
1416 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
1417 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1418
1419 if (err) {
1420 kvm_err("Cannot map host CPU state: %d\n", err);
1421 goto out_err;
1422 }
1423 }
1424
1425 kvm_info("Hyp mode initialized successfully\n");
1426
1427 return 0;
1428
1429 out_err:
1430 teardown_hyp_mode();
1431 kvm_err("error initializing Hyp mode: %d\n", err);
1432 return err;
1433 }
1434
1435 static void check_kvm_target_cpu(void *ret)
1436 {
1437 *(int *)ret = kvm_target_cpu();
1438 }
1439
1440 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1441 {
1442 struct kvm_vcpu *vcpu;
1443 int i;
1444
1445 mpidr &= MPIDR_HWID_BITMASK;
1446 kvm_for_each_vcpu(i, vcpu, kvm) {
1447 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1448 return vcpu;
1449 }
1450 return NULL;
1451 }
1452
1453 /**
1454 * Initialize Hyp-mode and memory mappings on all CPUs.
1455 */
1456 int kvm_arch_init(void *opaque)
1457 {
1458 int err;
1459 int ret, cpu;
1460
1461 if (!is_hyp_mode_available()) {
1462 kvm_err("HYP mode not available\n");
1463 return -ENODEV;
1464 }
1465
1466 for_each_online_cpu(cpu) {
1467 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1468 if (ret < 0) {
1469 kvm_err("Error, CPU %d not supported!\n", cpu);
1470 return -ENODEV;
1471 }
1472 }
1473
1474 err = init_common_resources();
1475 if (err)
1476 return err;
1477
1478 if (is_kernel_in_hyp_mode())
1479 err = init_vhe_mode();
1480 else
1481 err = init_hyp_mode();
1482 if (err)
1483 goto out_err;
1484
1485 err = init_subsystems();
1486 if (err)
1487 goto out_hyp;
1488
1489 return 0;
1490
1491 out_hyp:
1492 teardown_hyp_mode();
1493 out_err:
1494 teardown_common_resources();
1495 return err;
1496 }
1497
1498 /* NOP: Compiling as a module not supported */
1499 void kvm_arch_exit(void)
1500 {
1501 kvm_perf_teardown();
1502 }
1503
1504 static int arm_init(void)
1505 {
1506 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1507 return rc;
1508 }
1509
1510 module_init(arm_init);