]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/bio.c
bio_copy_user_iov(): don't ignore ->iov_offset
[mirror_ubuntu-bionic-kernel.git] / block / bio.c
CommitLineData
1da177e4 1/*
0fe23479 2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
a27bb332 22#include <linux/uio.h>
852c788f 23#include <linux/iocontext.h>
1da177e4
LT
24#include <linux/slab.h>
25#include <linux/init.h>
26#include <linux/kernel.h>
630d9c47 27#include <linux/export.h>
1da177e4
LT
28#include <linux/mempool.h>
29#include <linux/workqueue.h>
852c788f 30#include <linux/cgroup.h>
1da177e4 31
55782138 32#include <trace/events/block.h>
9e234eea 33#include "blk.h"
0bfc2455 34
392ddc32
JA
35/*
36 * Test patch to inline a certain number of bi_io_vec's inside the bio
37 * itself, to shrink a bio data allocation from two mempool calls to one
38 */
39#define BIO_INLINE_VECS 4
40
1da177e4
LT
41/*
42 * if you change this list, also change bvec_alloc or things will
43 * break badly! cannot be bigger than what you can fit into an
44 * unsigned short
45 */
1da177e4 46#define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
ed996a52 47static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
1da177e4
LT
48 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
49};
50#undef BV
51
1da177e4
LT
52/*
53 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
54 * IO code that does not need private memory pools.
55 */
51d654e1 56struct bio_set *fs_bio_set;
3f86a82a 57EXPORT_SYMBOL(fs_bio_set);
1da177e4 58
bb799ca0
JA
59/*
60 * Our slab pool management
61 */
62struct bio_slab {
63 struct kmem_cache *slab;
64 unsigned int slab_ref;
65 unsigned int slab_size;
66 char name[8];
67};
68static DEFINE_MUTEX(bio_slab_lock);
69static struct bio_slab *bio_slabs;
70static unsigned int bio_slab_nr, bio_slab_max;
71
72static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
73{
74 unsigned int sz = sizeof(struct bio) + extra_size;
75 struct kmem_cache *slab = NULL;
389d7b26 76 struct bio_slab *bslab, *new_bio_slabs;
386bc35a 77 unsigned int new_bio_slab_max;
bb799ca0
JA
78 unsigned int i, entry = -1;
79
80 mutex_lock(&bio_slab_lock);
81
82 i = 0;
83 while (i < bio_slab_nr) {
f06f135d 84 bslab = &bio_slabs[i];
bb799ca0
JA
85
86 if (!bslab->slab && entry == -1)
87 entry = i;
88 else if (bslab->slab_size == sz) {
89 slab = bslab->slab;
90 bslab->slab_ref++;
91 break;
92 }
93 i++;
94 }
95
96 if (slab)
97 goto out_unlock;
98
99 if (bio_slab_nr == bio_slab_max && entry == -1) {
386bc35a 100 new_bio_slab_max = bio_slab_max << 1;
389d7b26 101 new_bio_slabs = krealloc(bio_slabs,
386bc35a 102 new_bio_slab_max * sizeof(struct bio_slab),
389d7b26
AK
103 GFP_KERNEL);
104 if (!new_bio_slabs)
bb799ca0 105 goto out_unlock;
386bc35a 106 bio_slab_max = new_bio_slab_max;
389d7b26 107 bio_slabs = new_bio_slabs;
bb799ca0
JA
108 }
109 if (entry == -1)
110 entry = bio_slab_nr++;
111
112 bslab = &bio_slabs[entry];
113
114 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
6a241483
MP
115 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
116 SLAB_HWCACHE_ALIGN, NULL);
bb799ca0
JA
117 if (!slab)
118 goto out_unlock;
119
bb799ca0
JA
120 bslab->slab = slab;
121 bslab->slab_ref = 1;
122 bslab->slab_size = sz;
123out_unlock:
124 mutex_unlock(&bio_slab_lock);
125 return slab;
126}
127
128static void bio_put_slab(struct bio_set *bs)
129{
130 struct bio_slab *bslab = NULL;
131 unsigned int i;
132
133 mutex_lock(&bio_slab_lock);
134
135 for (i = 0; i < bio_slab_nr; i++) {
136 if (bs->bio_slab == bio_slabs[i].slab) {
137 bslab = &bio_slabs[i];
138 break;
139 }
140 }
141
142 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
143 goto out;
144
145 WARN_ON(!bslab->slab_ref);
146
147 if (--bslab->slab_ref)
148 goto out;
149
150 kmem_cache_destroy(bslab->slab);
151 bslab->slab = NULL;
152
153out:
154 mutex_unlock(&bio_slab_lock);
155}
156
7ba1ba12
MP
157unsigned int bvec_nr_vecs(unsigned short idx)
158{
159 return bvec_slabs[idx].nr_vecs;
160}
161
9f060e22 162void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
bb799ca0 163{
ed996a52
CH
164 if (!idx)
165 return;
166 idx--;
167
168 BIO_BUG_ON(idx >= BVEC_POOL_NR);
bb799ca0 169
ed996a52 170 if (idx == BVEC_POOL_MAX) {
9f060e22 171 mempool_free(bv, pool);
ed996a52 172 } else {
bb799ca0
JA
173 struct biovec_slab *bvs = bvec_slabs + idx;
174
175 kmem_cache_free(bvs->slab, bv);
176 }
177}
178
9f060e22
KO
179struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
180 mempool_t *pool)
1da177e4
LT
181{
182 struct bio_vec *bvl;
1da177e4 183
7ff9345f
JA
184 /*
185 * see comment near bvec_array define!
186 */
187 switch (nr) {
188 case 1:
189 *idx = 0;
190 break;
191 case 2 ... 4:
192 *idx = 1;
193 break;
194 case 5 ... 16:
195 *idx = 2;
196 break;
197 case 17 ... 64:
198 *idx = 3;
199 break;
200 case 65 ... 128:
201 *idx = 4;
202 break;
203 case 129 ... BIO_MAX_PAGES:
204 *idx = 5;
205 break;
206 default:
207 return NULL;
208 }
209
210 /*
211 * idx now points to the pool we want to allocate from. only the
212 * 1-vec entry pool is mempool backed.
213 */
ed996a52 214 if (*idx == BVEC_POOL_MAX) {
7ff9345f 215fallback:
9f060e22 216 bvl = mempool_alloc(pool, gfp_mask);
7ff9345f
JA
217 } else {
218 struct biovec_slab *bvs = bvec_slabs + *idx;
d0164adc 219 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
7ff9345f 220
0a0d96b0 221 /*
7ff9345f
JA
222 * Make this allocation restricted and don't dump info on
223 * allocation failures, since we'll fallback to the mempool
224 * in case of failure.
0a0d96b0 225 */
7ff9345f 226 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
1da177e4 227
0a0d96b0 228 /*
d0164adc 229 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
7ff9345f 230 * is set, retry with the 1-entry mempool
0a0d96b0 231 */
7ff9345f 232 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
d0164adc 233 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
ed996a52 234 *idx = BVEC_POOL_MAX;
7ff9345f
JA
235 goto fallback;
236 }
237 }
238
ed996a52 239 (*idx)++;
1da177e4
LT
240 return bvl;
241}
242
9ae3b3f5 243void bio_uninit(struct bio *bio)
1da177e4 244{
4254bba1 245 bio_disassociate_task(bio);
4254bba1 246}
9ae3b3f5 247EXPORT_SYMBOL(bio_uninit);
7ba1ba12 248
4254bba1
KO
249static void bio_free(struct bio *bio)
250{
251 struct bio_set *bs = bio->bi_pool;
252 void *p;
253
9ae3b3f5 254 bio_uninit(bio);
4254bba1
KO
255
256 if (bs) {
ed996a52 257 bvec_free(bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
4254bba1
KO
258
259 /*
260 * If we have front padding, adjust the bio pointer before freeing
261 */
262 p = bio;
bb799ca0
JA
263 p -= bs->front_pad;
264
4254bba1
KO
265 mempool_free(p, bs->bio_pool);
266 } else {
267 /* Bio was allocated by bio_kmalloc() */
268 kfree(bio);
269 }
3676347a
PO
270}
271
9ae3b3f5
JA
272/*
273 * Users of this function have their own bio allocation. Subsequently,
274 * they must remember to pair any call to bio_init() with bio_uninit()
275 * when IO has completed, or when the bio is released.
276 */
3a83f467
ML
277void bio_init(struct bio *bio, struct bio_vec *table,
278 unsigned short max_vecs)
1da177e4 279{
2b94de55 280 memset(bio, 0, sizeof(*bio));
c4cf5261 281 atomic_set(&bio->__bi_remaining, 1);
dac56212 282 atomic_set(&bio->__bi_cnt, 1);
3a83f467
ML
283
284 bio->bi_io_vec = table;
285 bio->bi_max_vecs = max_vecs;
1da177e4 286}
a112a71d 287EXPORT_SYMBOL(bio_init);
1da177e4 288
f44b48c7
KO
289/**
290 * bio_reset - reinitialize a bio
291 * @bio: bio to reset
292 *
293 * Description:
294 * After calling bio_reset(), @bio will be in the same state as a freshly
295 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
296 * preserved are the ones that are initialized by bio_alloc_bioset(). See
297 * comment in struct bio.
298 */
299void bio_reset(struct bio *bio)
300{
301 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
302
9ae3b3f5 303 bio_uninit(bio);
f44b48c7
KO
304
305 memset(bio, 0, BIO_RESET_BYTES);
4246a0b6 306 bio->bi_flags = flags;
c4cf5261 307 atomic_set(&bio->__bi_remaining, 1);
f44b48c7
KO
308}
309EXPORT_SYMBOL(bio_reset);
310
38f8baae 311static struct bio *__bio_chain_endio(struct bio *bio)
196d38bc 312{
4246a0b6
CH
313 struct bio *parent = bio->bi_private;
314
4e4cbee9
CH
315 if (!parent->bi_status)
316 parent->bi_status = bio->bi_status;
196d38bc 317 bio_put(bio);
38f8baae
CH
318 return parent;
319}
320
321static void bio_chain_endio(struct bio *bio)
322{
323 bio_endio(__bio_chain_endio(bio));
196d38bc
KO
324}
325
326/**
327 * bio_chain - chain bio completions
1051a902
RD
328 * @bio: the target bio
329 * @parent: the @bio's parent bio
196d38bc
KO
330 *
331 * The caller won't have a bi_end_io called when @bio completes - instead,
332 * @parent's bi_end_io won't be called until both @parent and @bio have
333 * completed; the chained bio will also be freed when it completes.
334 *
335 * The caller must not set bi_private or bi_end_io in @bio.
336 */
337void bio_chain(struct bio *bio, struct bio *parent)
338{
339 BUG_ON(bio->bi_private || bio->bi_end_io);
340
341 bio->bi_private = parent;
342 bio->bi_end_io = bio_chain_endio;
c4cf5261 343 bio_inc_remaining(parent);
196d38bc
KO
344}
345EXPORT_SYMBOL(bio_chain);
346
df2cb6da
KO
347static void bio_alloc_rescue(struct work_struct *work)
348{
349 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
350 struct bio *bio;
351
352 while (1) {
353 spin_lock(&bs->rescue_lock);
354 bio = bio_list_pop(&bs->rescue_list);
355 spin_unlock(&bs->rescue_lock);
356
357 if (!bio)
358 break;
359
360 generic_make_request(bio);
361 }
362}
363
364static void punt_bios_to_rescuer(struct bio_set *bs)
365{
366 struct bio_list punt, nopunt;
367 struct bio *bio;
368
47e0fb46
N
369 if (WARN_ON_ONCE(!bs->rescue_workqueue))
370 return;
df2cb6da
KO
371 /*
372 * In order to guarantee forward progress we must punt only bios that
373 * were allocated from this bio_set; otherwise, if there was a bio on
374 * there for a stacking driver higher up in the stack, processing it
375 * could require allocating bios from this bio_set, and doing that from
376 * our own rescuer would be bad.
377 *
378 * Since bio lists are singly linked, pop them all instead of trying to
379 * remove from the middle of the list:
380 */
381
382 bio_list_init(&punt);
383 bio_list_init(&nopunt);
384
f5fe1b51 385 while ((bio = bio_list_pop(&current->bio_list[0])))
df2cb6da 386 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
f5fe1b51 387 current->bio_list[0] = nopunt;
df2cb6da 388
f5fe1b51
N
389 bio_list_init(&nopunt);
390 while ((bio = bio_list_pop(&current->bio_list[1])))
391 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
392 current->bio_list[1] = nopunt;
df2cb6da
KO
393
394 spin_lock(&bs->rescue_lock);
395 bio_list_merge(&bs->rescue_list, &punt);
396 spin_unlock(&bs->rescue_lock);
397
398 queue_work(bs->rescue_workqueue, &bs->rescue_work);
399}
400
1da177e4
LT
401/**
402 * bio_alloc_bioset - allocate a bio for I/O
403 * @gfp_mask: the GFP_ mask given to the slab allocator
404 * @nr_iovecs: number of iovecs to pre-allocate
db18efac 405 * @bs: the bio_set to allocate from.
1da177e4
LT
406 *
407 * Description:
3f86a82a
KO
408 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
409 * backed by the @bs's mempool.
410 *
d0164adc
MG
411 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
412 * always be able to allocate a bio. This is due to the mempool guarantees.
413 * To make this work, callers must never allocate more than 1 bio at a time
414 * from this pool. Callers that need to allocate more than 1 bio must always
415 * submit the previously allocated bio for IO before attempting to allocate
416 * a new one. Failure to do so can cause deadlocks under memory pressure.
3f86a82a 417 *
df2cb6da
KO
418 * Note that when running under generic_make_request() (i.e. any block
419 * driver), bios are not submitted until after you return - see the code in
420 * generic_make_request() that converts recursion into iteration, to prevent
421 * stack overflows.
422 *
423 * This would normally mean allocating multiple bios under
424 * generic_make_request() would be susceptible to deadlocks, but we have
425 * deadlock avoidance code that resubmits any blocked bios from a rescuer
426 * thread.
427 *
428 * However, we do not guarantee forward progress for allocations from other
429 * mempools. Doing multiple allocations from the same mempool under
430 * generic_make_request() should be avoided - instead, use bio_set's front_pad
431 * for per bio allocations.
432 *
3f86a82a
KO
433 * RETURNS:
434 * Pointer to new bio on success, NULL on failure.
435 */
7a88fa19
DC
436struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
437 struct bio_set *bs)
1da177e4 438{
df2cb6da 439 gfp_t saved_gfp = gfp_mask;
3f86a82a
KO
440 unsigned front_pad;
441 unsigned inline_vecs;
34053979 442 struct bio_vec *bvl = NULL;
451a9ebf
TH
443 struct bio *bio;
444 void *p;
445
3f86a82a
KO
446 if (!bs) {
447 if (nr_iovecs > UIO_MAXIOV)
448 return NULL;
449
450 p = kmalloc(sizeof(struct bio) +
451 nr_iovecs * sizeof(struct bio_vec),
452 gfp_mask);
453 front_pad = 0;
454 inline_vecs = nr_iovecs;
455 } else {
d8f429e1
JN
456 /* should not use nobvec bioset for nr_iovecs > 0 */
457 if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
458 return NULL;
df2cb6da
KO
459 /*
460 * generic_make_request() converts recursion to iteration; this
461 * means if we're running beneath it, any bios we allocate and
462 * submit will not be submitted (and thus freed) until after we
463 * return.
464 *
465 * This exposes us to a potential deadlock if we allocate
466 * multiple bios from the same bio_set() while running
467 * underneath generic_make_request(). If we were to allocate
468 * multiple bios (say a stacking block driver that was splitting
469 * bios), we would deadlock if we exhausted the mempool's
470 * reserve.
471 *
472 * We solve this, and guarantee forward progress, with a rescuer
473 * workqueue per bio_set. If we go to allocate and there are
474 * bios on current->bio_list, we first try the allocation
d0164adc
MG
475 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
476 * bios we would be blocking to the rescuer workqueue before
477 * we retry with the original gfp_flags.
df2cb6da
KO
478 */
479
f5fe1b51
N
480 if (current->bio_list &&
481 (!bio_list_empty(&current->bio_list[0]) ||
47e0fb46
N
482 !bio_list_empty(&current->bio_list[1])) &&
483 bs->rescue_workqueue)
d0164adc 484 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
df2cb6da 485
3f86a82a 486 p = mempool_alloc(bs->bio_pool, gfp_mask);
df2cb6da
KO
487 if (!p && gfp_mask != saved_gfp) {
488 punt_bios_to_rescuer(bs);
489 gfp_mask = saved_gfp;
490 p = mempool_alloc(bs->bio_pool, gfp_mask);
491 }
492
3f86a82a
KO
493 front_pad = bs->front_pad;
494 inline_vecs = BIO_INLINE_VECS;
495 }
496
451a9ebf
TH
497 if (unlikely(!p))
498 return NULL;
1da177e4 499
3f86a82a 500 bio = p + front_pad;
3a83f467 501 bio_init(bio, NULL, 0);
34053979 502
3f86a82a 503 if (nr_iovecs > inline_vecs) {
ed996a52
CH
504 unsigned long idx = 0;
505
9f060e22 506 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
df2cb6da
KO
507 if (!bvl && gfp_mask != saved_gfp) {
508 punt_bios_to_rescuer(bs);
509 gfp_mask = saved_gfp;
9f060e22 510 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
df2cb6da
KO
511 }
512
34053979
IM
513 if (unlikely(!bvl))
514 goto err_free;
a38352e0 515
ed996a52 516 bio->bi_flags |= idx << BVEC_POOL_OFFSET;
3f86a82a
KO
517 } else if (nr_iovecs) {
518 bvl = bio->bi_inline_vecs;
1da177e4 519 }
3f86a82a
KO
520
521 bio->bi_pool = bs;
34053979 522 bio->bi_max_vecs = nr_iovecs;
34053979 523 bio->bi_io_vec = bvl;
1da177e4 524 return bio;
34053979
IM
525
526err_free:
451a9ebf 527 mempool_free(p, bs->bio_pool);
34053979 528 return NULL;
1da177e4 529}
a112a71d 530EXPORT_SYMBOL(bio_alloc_bioset);
1da177e4 531
1da177e4
LT
532void zero_fill_bio(struct bio *bio)
533{
534 unsigned long flags;
7988613b
KO
535 struct bio_vec bv;
536 struct bvec_iter iter;
1da177e4 537
7988613b
KO
538 bio_for_each_segment(bv, bio, iter) {
539 char *data = bvec_kmap_irq(&bv, &flags);
540 memset(data, 0, bv.bv_len);
541 flush_dcache_page(bv.bv_page);
1da177e4
LT
542 bvec_kunmap_irq(data, &flags);
543 }
544}
545EXPORT_SYMBOL(zero_fill_bio);
546
547/**
548 * bio_put - release a reference to a bio
549 * @bio: bio to release reference to
550 *
551 * Description:
552 * Put a reference to a &struct bio, either one you have gotten with
9b10f6a9 553 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
1da177e4
LT
554 **/
555void bio_put(struct bio *bio)
556{
dac56212 557 if (!bio_flagged(bio, BIO_REFFED))
4254bba1 558 bio_free(bio);
dac56212
JA
559 else {
560 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
561
562 /*
563 * last put frees it
564 */
565 if (atomic_dec_and_test(&bio->__bi_cnt))
566 bio_free(bio);
567 }
1da177e4 568}
a112a71d 569EXPORT_SYMBOL(bio_put);
1da177e4 570
165125e1 571inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
1da177e4
LT
572{
573 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
574 blk_recount_segments(q, bio);
575
576 return bio->bi_phys_segments;
577}
a112a71d 578EXPORT_SYMBOL(bio_phys_segments);
1da177e4 579
59d276fe
KO
580/**
581 * __bio_clone_fast - clone a bio that shares the original bio's biovec
582 * @bio: destination bio
583 * @bio_src: bio to clone
584 *
585 * Clone a &bio. Caller will own the returned bio, but not
586 * the actual data it points to. Reference count of returned
587 * bio will be one.
588 *
589 * Caller must ensure that @bio_src is not freed before @bio.
590 */
591void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
592{
ed996a52 593 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
59d276fe
KO
594
595 /*
74d46992 596 * most users will be overriding ->bi_disk with a new target,
59d276fe
KO
597 * so we don't set nor calculate new physical/hw segment counts here
598 */
74d46992 599 bio->bi_disk = bio_src->bi_disk;
b7c44ed9 600 bio_set_flag(bio, BIO_CLONED);
1eff9d32 601 bio->bi_opf = bio_src->bi_opf;
cb6934f8 602 bio->bi_write_hint = bio_src->bi_write_hint;
59d276fe
KO
603 bio->bi_iter = bio_src->bi_iter;
604 bio->bi_io_vec = bio_src->bi_io_vec;
20bd723e
PV
605
606 bio_clone_blkcg_association(bio, bio_src);
59d276fe
KO
607}
608EXPORT_SYMBOL(__bio_clone_fast);
609
610/**
611 * bio_clone_fast - clone a bio that shares the original bio's biovec
612 * @bio: bio to clone
613 * @gfp_mask: allocation priority
614 * @bs: bio_set to allocate from
615 *
616 * Like __bio_clone_fast, only also allocates the returned bio
617 */
618struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
619{
620 struct bio *b;
621
622 b = bio_alloc_bioset(gfp_mask, 0, bs);
623 if (!b)
624 return NULL;
625
626 __bio_clone_fast(b, bio);
627
628 if (bio_integrity(bio)) {
629 int ret;
630
631 ret = bio_integrity_clone(b, bio, gfp_mask);
632
633 if (ret < 0) {
634 bio_put(b);
635 return NULL;
636 }
637 }
638
639 return b;
640}
641EXPORT_SYMBOL(bio_clone_fast);
642
f4595875
SL
643/**
644 * bio_clone_bioset - clone a bio
645 * @bio_src: bio to clone
646 * @gfp_mask: allocation priority
647 * @bs: bio_set to allocate from
648 *
649 * Clone bio. Caller will own the returned bio, but not the actual data it
650 * points to. Reference count of returned bio will be one.
651 */
652struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
653 struct bio_set *bs)
1da177e4 654{
bdb53207
KO
655 struct bvec_iter iter;
656 struct bio_vec bv;
657 struct bio *bio;
1da177e4 658
bdb53207
KO
659 /*
660 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
661 * bio_src->bi_io_vec to bio->bi_io_vec.
662 *
663 * We can't do that anymore, because:
664 *
665 * - The point of cloning the biovec is to produce a bio with a biovec
666 * the caller can modify: bi_idx and bi_bvec_done should be 0.
667 *
668 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if
669 * we tried to clone the whole thing bio_alloc_bioset() would fail.
670 * But the clone should succeed as long as the number of biovecs we
671 * actually need to allocate is fewer than BIO_MAX_PAGES.
672 *
673 * - Lastly, bi_vcnt should not be looked at or relied upon by code
674 * that does not own the bio - reason being drivers don't use it for
675 * iterating over the biovec anymore, so expecting it to be kept up
676 * to date (i.e. for clones that share the parent biovec) is just
677 * asking for trouble and would force extra work on
678 * __bio_clone_fast() anyways.
679 */
680
f4595875 681 bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
bdb53207 682 if (!bio)
7ba1ba12 683 return NULL;
74d46992 684 bio->bi_disk = bio_src->bi_disk;
1eff9d32 685 bio->bi_opf = bio_src->bi_opf;
cb6934f8 686 bio->bi_write_hint = bio_src->bi_write_hint;
bdb53207
KO
687 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector;
688 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size;
7ba1ba12 689
7afafc8a
AH
690 switch (bio_op(bio)) {
691 case REQ_OP_DISCARD:
692 case REQ_OP_SECURE_ERASE:
a6f0788e 693 case REQ_OP_WRITE_ZEROES:
7afafc8a
AH
694 break;
695 case REQ_OP_WRITE_SAME:
8423ae3d 696 bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
7afafc8a
AH
697 break;
698 default:
f4595875 699 bio_for_each_segment(bv, bio_src, iter)
7afafc8a
AH
700 bio->bi_io_vec[bio->bi_vcnt++] = bv;
701 break;
8423ae3d
KO
702 }
703
bdb53207
KO
704 if (bio_integrity(bio_src)) {
705 int ret;
7ba1ba12 706
bdb53207 707 ret = bio_integrity_clone(bio, bio_src, gfp_mask);
059ea331 708 if (ret < 0) {
bdb53207 709 bio_put(bio);
7ba1ba12 710 return NULL;
059ea331 711 }
3676347a 712 }
1da177e4 713
20bd723e
PV
714 bio_clone_blkcg_association(bio, bio_src);
715
bdb53207 716 return bio;
1da177e4 717}
bf800ef1 718EXPORT_SYMBOL(bio_clone_bioset);
1da177e4
LT
719
720/**
c66a14d0
KO
721 * bio_add_pc_page - attempt to add page to bio
722 * @q: the target queue
723 * @bio: destination bio
724 * @page: page to add
725 * @len: vec entry length
726 * @offset: vec entry offset
1da177e4 727 *
c66a14d0
KO
728 * Attempt to add a page to the bio_vec maplist. This can fail for a
729 * number of reasons, such as the bio being full or target block device
730 * limitations. The target block device must allow bio's up to PAGE_SIZE,
731 * so it is always possible to add a single page to an empty bio.
732 *
733 * This should only be used by REQ_PC bios.
1da177e4 734 */
c66a14d0
KO
735int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
736 *page, unsigned int len, unsigned int offset)
1da177e4
LT
737{
738 int retried_segments = 0;
739 struct bio_vec *bvec;
740
741 /*
742 * cloned bio must not modify vec list
743 */
744 if (unlikely(bio_flagged(bio, BIO_CLONED)))
745 return 0;
746
c66a14d0 747 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
1da177e4
LT
748 return 0;
749
80cfd548
JA
750 /*
751 * For filesystems with a blocksize smaller than the pagesize
752 * we will often be called with the same page as last time and
753 * a consecutive offset. Optimize this special case.
754 */
755 if (bio->bi_vcnt > 0) {
756 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
757
758 if (page == prev->bv_page &&
759 offset == prev->bv_offset + prev->bv_len) {
760 prev->bv_len += len;
fcbf6a08 761 bio->bi_iter.bi_size += len;
80cfd548
JA
762 goto done;
763 }
66cb45aa
JA
764
765 /*
766 * If the queue doesn't support SG gaps and adding this
767 * offset would create a gap, disallow it.
768 */
03100aad 769 if (bvec_gap_to_prev(q, prev, offset))
66cb45aa 770 return 0;
80cfd548
JA
771 }
772
773 if (bio->bi_vcnt >= bio->bi_max_vecs)
1da177e4
LT
774 return 0;
775
776 /*
fcbf6a08
ML
777 * setup the new entry, we might clear it again later if we
778 * cannot add the page
779 */
780 bvec = &bio->bi_io_vec[bio->bi_vcnt];
781 bvec->bv_page = page;
782 bvec->bv_len = len;
783 bvec->bv_offset = offset;
784 bio->bi_vcnt++;
785 bio->bi_phys_segments++;
786 bio->bi_iter.bi_size += len;
787
788 /*
789 * Perform a recount if the number of segments is greater
790 * than queue_max_segments(q).
1da177e4
LT
791 */
792
fcbf6a08 793 while (bio->bi_phys_segments > queue_max_segments(q)) {
1da177e4
LT
794
795 if (retried_segments)
fcbf6a08 796 goto failed;
1da177e4
LT
797
798 retried_segments = 1;
799 blk_recount_segments(q, bio);
800 }
801
1da177e4 802 /* If we may be able to merge these biovecs, force a recount */
fcbf6a08 803 if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
b7c44ed9 804 bio_clear_flag(bio, BIO_SEG_VALID);
1da177e4 805
80cfd548 806 done:
1da177e4 807 return len;
fcbf6a08
ML
808
809 failed:
810 bvec->bv_page = NULL;
811 bvec->bv_len = 0;
812 bvec->bv_offset = 0;
813 bio->bi_vcnt--;
814 bio->bi_iter.bi_size -= len;
815 blk_recount_segments(q, bio);
816 return 0;
1da177e4 817}
a112a71d 818EXPORT_SYMBOL(bio_add_pc_page);
6e68af66 819
1da177e4
LT
820/**
821 * bio_add_page - attempt to add page to bio
822 * @bio: destination bio
823 * @page: page to add
824 * @len: vec entry length
825 * @offset: vec entry offset
826 *
c66a14d0
KO
827 * Attempt to add a page to the bio_vec maplist. This will only fail
828 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
1da177e4 829 */
c66a14d0
KO
830int bio_add_page(struct bio *bio, struct page *page,
831 unsigned int len, unsigned int offset)
1da177e4 832{
c66a14d0
KO
833 struct bio_vec *bv;
834
835 /*
836 * cloned bio must not modify vec list
837 */
838 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
839 return 0;
762380ad 840
c66a14d0
KO
841 /*
842 * For filesystems with a blocksize smaller than the pagesize
843 * we will often be called with the same page as last time and
844 * a consecutive offset. Optimize this special case.
845 */
846 if (bio->bi_vcnt > 0) {
847 bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
58a4915a 848
c66a14d0
KO
849 if (page == bv->bv_page &&
850 offset == bv->bv_offset + bv->bv_len) {
851 bv->bv_len += len;
852 goto done;
853 }
854 }
855
856 if (bio->bi_vcnt >= bio->bi_max_vecs)
857 return 0;
858
859 bv = &bio->bi_io_vec[bio->bi_vcnt];
860 bv->bv_page = page;
861 bv->bv_len = len;
862 bv->bv_offset = offset;
863
864 bio->bi_vcnt++;
865done:
866 bio->bi_iter.bi_size += len;
867 return len;
1da177e4 868}
a112a71d 869EXPORT_SYMBOL(bio_add_page);
1da177e4 870
2cefe4db
KO
871/**
872 * bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
873 * @bio: bio to add pages to
874 * @iter: iov iterator describing the region to be mapped
875 *
876 * Pins as many pages from *iter and appends them to @bio's bvec array. The
877 * pages will have to be released using put_page() when done.
878 */
879int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
880{
881 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
882 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
883 struct page **pages = (struct page **)bv;
884 size_t offset, diff;
885 ssize_t size;
886
887 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
888 if (unlikely(size <= 0))
889 return size ? size : -EFAULT;
890 nr_pages = (size + offset + PAGE_SIZE - 1) / PAGE_SIZE;
891
892 /*
893 * Deep magic below: We need to walk the pinned pages backwards
894 * because we are abusing the space allocated for the bio_vecs
895 * for the page array. Because the bio_vecs are larger than the
896 * page pointers by definition this will always work. But it also
897 * means we can't use bio_add_page, so any changes to it's semantics
898 * need to be reflected here as well.
899 */
900 bio->bi_iter.bi_size += size;
901 bio->bi_vcnt += nr_pages;
902
903 diff = (nr_pages * PAGE_SIZE - offset) - size;
904 while (nr_pages--) {
905 bv[nr_pages].bv_page = pages[nr_pages];
906 bv[nr_pages].bv_len = PAGE_SIZE;
907 bv[nr_pages].bv_offset = 0;
908 }
909
910 bv[0].bv_offset += offset;
911 bv[0].bv_len -= offset;
912 if (diff)
913 bv[bio->bi_vcnt - 1].bv_len -= diff;
914
915 iov_iter_advance(iter, size);
916 return 0;
917}
918EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
919
9e882242
KO
920struct submit_bio_ret {
921 struct completion event;
922 int error;
923};
924
4246a0b6 925static void submit_bio_wait_endio(struct bio *bio)
9e882242
KO
926{
927 struct submit_bio_ret *ret = bio->bi_private;
928
4e4cbee9 929 ret->error = blk_status_to_errno(bio->bi_status);
9e882242
KO
930 complete(&ret->event);
931}
932
933/**
934 * submit_bio_wait - submit a bio, and wait until it completes
9e882242
KO
935 * @bio: The &struct bio which describes the I/O
936 *
937 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
938 * bio_endio() on failure.
3d289d68
JK
939 *
940 * WARNING: Unlike to how submit_bio() is usually used, this function does not
941 * result in bio reference to be consumed. The caller must drop the reference
942 * on his own.
9e882242 943 */
4e49ea4a 944int submit_bio_wait(struct bio *bio)
9e882242
KO
945{
946 struct submit_bio_ret ret;
947
9e882242
KO
948 init_completion(&ret.event);
949 bio->bi_private = &ret;
950 bio->bi_end_io = submit_bio_wait_endio;
1eff9d32 951 bio->bi_opf |= REQ_SYNC;
4e49ea4a 952 submit_bio(bio);
d57d6115 953 wait_for_completion_io(&ret.event);
9e882242
KO
954
955 return ret.error;
956}
957EXPORT_SYMBOL(submit_bio_wait);
958
054bdf64
KO
959/**
960 * bio_advance - increment/complete a bio by some number of bytes
961 * @bio: bio to advance
962 * @bytes: number of bytes to complete
963 *
964 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
965 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
966 * be updated on the last bvec as well.
967 *
968 * @bio will then represent the remaining, uncompleted portion of the io.
969 */
970void bio_advance(struct bio *bio, unsigned bytes)
971{
972 if (bio_integrity(bio))
973 bio_integrity_advance(bio, bytes);
974
4550dd6c 975 bio_advance_iter(bio, &bio->bi_iter, bytes);
054bdf64
KO
976}
977EXPORT_SYMBOL(bio_advance);
978
a0787606
KO
979/**
980 * bio_alloc_pages - allocates a single page for each bvec in a bio
981 * @bio: bio to allocate pages for
982 * @gfp_mask: flags for allocation
983 *
984 * Allocates pages up to @bio->bi_vcnt.
985 *
986 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
987 * freed.
988 */
989int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
990{
991 int i;
992 struct bio_vec *bv;
993
994 bio_for_each_segment_all(bv, bio, i) {
995 bv->bv_page = alloc_page(gfp_mask);
996 if (!bv->bv_page) {
997 while (--bv >= bio->bi_io_vec)
998 __free_page(bv->bv_page);
999 return -ENOMEM;
1000 }
1001 }
1002
1003 return 0;
1004}
1005EXPORT_SYMBOL(bio_alloc_pages);
1006
16ac3d63
KO
1007/**
1008 * bio_copy_data - copy contents of data buffers from one chain of bios to
1009 * another
1010 * @src: source bio list
1011 * @dst: destination bio list
1012 *
1013 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
1014 * @src and @dst as linked lists of bios.
1015 *
1016 * Stops when it reaches the end of either @src or @dst - that is, copies
1017 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1018 */
1019void bio_copy_data(struct bio *dst, struct bio *src)
1020{
1cb9dda4
KO
1021 struct bvec_iter src_iter, dst_iter;
1022 struct bio_vec src_bv, dst_bv;
16ac3d63 1023 void *src_p, *dst_p;
1cb9dda4 1024 unsigned bytes;
16ac3d63 1025
1cb9dda4
KO
1026 src_iter = src->bi_iter;
1027 dst_iter = dst->bi_iter;
16ac3d63
KO
1028
1029 while (1) {
1cb9dda4
KO
1030 if (!src_iter.bi_size) {
1031 src = src->bi_next;
1032 if (!src)
1033 break;
16ac3d63 1034
1cb9dda4 1035 src_iter = src->bi_iter;
16ac3d63
KO
1036 }
1037
1cb9dda4
KO
1038 if (!dst_iter.bi_size) {
1039 dst = dst->bi_next;
1040 if (!dst)
1041 break;
16ac3d63 1042
1cb9dda4 1043 dst_iter = dst->bi_iter;
16ac3d63
KO
1044 }
1045
1cb9dda4
KO
1046 src_bv = bio_iter_iovec(src, src_iter);
1047 dst_bv = bio_iter_iovec(dst, dst_iter);
1048
1049 bytes = min(src_bv.bv_len, dst_bv.bv_len);
16ac3d63 1050
1cb9dda4
KO
1051 src_p = kmap_atomic(src_bv.bv_page);
1052 dst_p = kmap_atomic(dst_bv.bv_page);
16ac3d63 1053
1cb9dda4
KO
1054 memcpy(dst_p + dst_bv.bv_offset,
1055 src_p + src_bv.bv_offset,
16ac3d63
KO
1056 bytes);
1057
1058 kunmap_atomic(dst_p);
1059 kunmap_atomic(src_p);
1060
1cb9dda4
KO
1061 bio_advance_iter(src, &src_iter, bytes);
1062 bio_advance_iter(dst, &dst_iter, bytes);
16ac3d63
KO
1063 }
1064}
1065EXPORT_SYMBOL(bio_copy_data);
1066
1da177e4 1067struct bio_map_data {
152e283f 1068 int is_our_pages;
26e49cfc
KO
1069 struct iov_iter iter;
1070 struct iovec iov[];
1da177e4
LT
1071};
1072
7410b3c6 1073static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
76029ff3 1074 gfp_t gfp_mask)
1da177e4 1075{
f3f63c1c
JA
1076 if (iov_count > UIO_MAXIOV)
1077 return NULL;
1da177e4 1078
c8db4448 1079 return kmalloc(sizeof(struct bio_map_data) +
26e49cfc 1080 sizeof(struct iovec) * iov_count, gfp_mask);
1da177e4
LT
1081}
1082
9124d3fe
DP
1083/**
1084 * bio_copy_from_iter - copy all pages from iov_iter to bio
1085 * @bio: The &struct bio which describes the I/O as destination
1086 * @iter: iov_iter as source
1087 *
1088 * Copy all pages from iov_iter to bio.
1089 * Returns 0 on success, or error on failure.
1090 */
1091static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter)
c5dec1c3 1092{
9124d3fe 1093 int i;
c5dec1c3 1094 struct bio_vec *bvec;
c5dec1c3 1095
d74c6d51 1096 bio_for_each_segment_all(bvec, bio, i) {
9124d3fe 1097 ssize_t ret;
c5dec1c3 1098
9124d3fe
DP
1099 ret = copy_page_from_iter(bvec->bv_page,
1100 bvec->bv_offset,
1101 bvec->bv_len,
1102 &iter);
1103
1104 if (!iov_iter_count(&iter))
1105 break;
1106
1107 if (ret < bvec->bv_len)
1108 return -EFAULT;
c5dec1c3
FT
1109 }
1110
9124d3fe
DP
1111 return 0;
1112}
1113
1114/**
1115 * bio_copy_to_iter - copy all pages from bio to iov_iter
1116 * @bio: The &struct bio which describes the I/O as source
1117 * @iter: iov_iter as destination
1118 *
1119 * Copy all pages from bio to iov_iter.
1120 * Returns 0 on success, or error on failure.
1121 */
1122static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1123{
1124 int i;
1125 struct bio_vec *bvec;
1126
1127 bio_for_each_segment_all(bvec, bio, i) {
1128 ssize_t ret;
1129
1130 ret = copy_page_to_iter(bvec->bv_page,
1131 bvec->bv_offset,
1132 bvec->bv_len,
1133 &iter);
1134
1135 if (!iov_iter_count(&iter))
1136 break;
1137
1138 if (ret < bvec->bv_len)
1139 return -EFAULT;
1140 }
1141
1142 return 0;
c5dec1c3
FT
1143}
1144
491221f8 1145void bio_free_pages(struct bio *bio)
1dfa0f68
CH
1146{
1147 struct bio_vec *bvec;
1148 int i;
1149
1150 bio_for_each_segment_all(bvec, bio, i)
1151 __free_page(bvec->bv_page);
1152}
491221f8 1153EXPORT_SYMBOL(bio_free_pages);
1dfa0f68 1154
1da177e4
LT
1155/**
1156 * bio_uncopy_user - finish previously mapped bio
1157 * @bio: bio being terminated
1158 *
ddad8dd0 1159 * Free pages allocated from bio_copy_user_iov() and write back data
1da177e4
LT
1160 * to user space in case of a read.
1161 */
1162int bio_uncopy_user(struct bio *bio)
1163{
1164 struct bio_map_data *bmd = bio->bi_private;
1dfa0f68 1165 int ret = 0;
1da177e4 1166
35dc2483
RD
1167 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1168 /*
1169 * if we're in a workqueue, the request is orphaned, so
2d99b55d
HR
1170 * don't copy into a random user address space, just free
1171 * and return -EINTR so user space doesn't expect any data.
35dc2483 1172 */
2d99b55d
HR
1173 if (!current->mm)
1174 ret = -EINTR;
1175 else if (bio_data_dir(bio) == READ)
9124d3fe 1176 ret = bio_copy_to_iter(bio, bmd->iter);
1dfa0f68
CH
1177 if (bmd->is_our_pages)
1178 bio_free_pages(bio);
35dc2483 1179 }
c8db4448 1180 kfree(bmd);
1da177e4
LT
1181 bio_put(bio);
1182 return ret;
1183}
1184
1185/**
c5dec1c3 1186 * bio_copy_user_iov - copy user data to bio
26e49cfc
KO
1187 * @q: destination block queue
1188 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1189 * @iter: iovec iterator
1190 * @gfp_mask: memory allocation flags
1da177e4
LT
1191 *
1192 * Prepares and returns a bio for indirect user io, bouncing data
1193 * to/from kernel pages as necessary. Must be paired with
1194 * call bio_uncopy_user() on io completion.
1195 */
152e283f
FT
1196struct bio *bio_copy_user_iov(struct request_queue *q,
1197 struct rq_map_data *map_data,
26e49cfc
KO
1198 const struct iov_iter *iter,
1199 gfp_t gfp_mask)
1da177e4 1200{
1da177e4 1201 struct bio_map_data *bmd;
1da177e4
LT
1202 struct page *page;
1203 struct bio *bio;
1204 int i, ret;
c5dec1c3 1205 int nr_pages = 0;
26e49cfc 1206 unsigned int len = iter->count;
bd5cecea 1207 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1da177e4 1208
26e49cfc 1209 for (i = 0; i < iter->nr_segs; i++) {
c5dec1c3
FT
1210 unsigned long uaddr;
1211 unsigned long end;
1212 unsigned long start;
1213
26e49cfc
KO
1214 uaddr = (unsigned long) iter->iov[i].iov_base;
1215 end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1)
1216 >> PAGE_SHIFT;
c5dec1c3
FT
1217 start = uaddr >> PAGE_SHIFT;
1218
cb4644ca
JA
1219 /*
1220 * Overflow, abort
1221 */
1222 if (end < start)
1223 return ERR_PTR(-EINVAL);
1224
c5dec1c3 1225 nr_pages += end - start;
c5dec1c3
FT
1226 }
1227
69838727
FT
1228 if (offset)
1229 nr_pages++;
1230
26e49cfc 1231 bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask);
1da177e4
LT
1232 if (!bmd)
1233 return ERR_PTR(-ENOMEM);
1234
26e49cfc
KO
1235 /*
1236 * We need to do a deep copy of the iov_iter including the iovecs.
1237 * The caller provided iov might point to an on-stack or otherwise
1238 * shortlived one.
1239 */
1240 bmd->is_our_pages = map_data ? 0 : 1;
1241 memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs);
1cfd0ddd
AV
1242 bmd->iter = *iter;
1243 bmd->iter.iov = bmd->iov;
26e49cfc 1244
1da177e4 1245 ret = -ENOMEM;
a9e9dc24 1246 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
1247 if (!bio)
1248 goto out_bmd;
1249
1da177e4 1250 ret = 0;
56c451f4
FT
1251
1252 if (map_data) {
e623ddb4 1253 nr_pages = 1 << map_data->page_order;
56c451f4
FT
1254 i = map_data->offset / PAGE_SIZE;
1255 }
1da177e4 1256 while (len) {
e623ddb4 1257 unsigned int bytes = PAGE_SIZE;
1da177e4 1258
56c451f4
FT
1259 bytes -= offset;
1260
1da177e4
LT
1261 if (bytes > len)
1262 bytes = len;
1263
152e283f 1264 if (map_data) {
e623ddb4 1265 if (i == map_data->nr_entries * nr_pages) {
152e283f
FT
1266 ret = -ENOMEM;
1267 break;
1268 }
e623ddb4
FT
1269
1270 page = map_data->pages[i / nr_pages];
1271 page += (i % nr_pages);
1272
1273 i++;
1274 } else {
152e283f 1275 page = alloc_page(q->bounce_gfp | gfp_mask);
e623ddb4
FT
1276 if (!page) {
1277 ret = -ENOMEM;
1278 break;
1279 }
1da177e4
LT
1280 }
1281
56c451f4 1282 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1da177e4 1283 break;
1da177e4
LT
1284
1285 len -= bytes;
56c451f4 1286 offset = 0;
1da177e4
LT
1287 }
1288
1289 if (ret)
1290 goto cleanup;
1291
1292 /*
1293 * success
1294 */
26e49cfc 1295 if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
ecb554a8 1296 (map_data && map_data->from_user)) {
9124d3fe 1297 ret = bio_copy_from_iter(bio, *iter);
c5dec1c3
FT
1298 if (ret)
1299 goto cleanup;
1da177e4
LT
1300 }
1301
26e49cfc 1302 bio->bi_private = bmd;
1da177e4
LT
1303 return bio;
1304cleanup:
152e283f 1305 if (!map_data)
1dfa0f68 1306 bio_free_pages(bio);
1da177e4
LT
1307 bio_put(bio);
1308out_bmd:
c8db4448 1309 kfree(bmd);
1da177e4
LT
1310 return ERR_PTR(ret);
1311}
1312
37f19e57
CH
1313/**
1314 * bio_map_user_iov - map user iovec into bio
1315 * @q: the struct request_queue for the bio
1316 * @iter: iovec iterator
1317 * @gfp_mask: memory allocation flags
1318 *
1319 * Map the user space address into a bio suitable for io to a block
1320 * device. Returns an error pointer in case of error.
1321 */
1322struct bio *bio_map_user_iov(struct request_queue *q,
1323 const struct iov_iter *iter,
1324 gfp_t gfp_mask)
1da177e4 1325{
26e49cfc 1326 int j;
f1970baf 1327 int nr_pages = 0;
1da177e4
LT
1328 struct page **pages;
1329 struct bio *bio;
f1970baf
JB
1330 int cur_page = 0;
1331 int ret, offset;
26e49cfc
KO
1332 struct iov_iter i;
1333 struct iovec iov;
2b04e8f6 1334 struct bio_vec *bvec;
1da177e4 1335
26e49cfc
KO
1336 iov_for_each(iov, i, *iter) {
1337 unsigned long uaddr = (unsigned long) iov.iov_base;
1338 unsigned long len = iov.iov_len;
f1970baf
JB
1339 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1340 unsigned long start = uaddr >> PAGE_SHIFT;
1341
cb4644ca
JA
1342 /*
1343 * Overflow, abort
1344 */
1345 if (end < start)
1346 return ERR_PTR(-EINVAL);
1347
f1970baf
JB
1348 nr_pages += end - start;
1349 /*
a441b0d0 1350 * buffer must be aligned to at least logical block size for now
f1970baf 1351 */
ad2d7225 1352 if (uaddr & queue_dma_alignment(q))
f1970baf
JB
1353 return ERR_PTR(-EINVAL);
1354 }
1355
1356 if (!nr_pages)
1da177e4
LT
1357 return ERR_PTR(-EINVAL);
1358
a9e9dc24 1359 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
1360 if (!bio)
1361 return ERR_PTR(-ENOMEM);
1362
1363 ret = -ENOMEM;
a3bce90e 1364 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1da177e4
LT
1365 if (!pages)
1366 goto out;
1367
26e49cfc
KO
1368 iov_for_each(iov, i, *iter) {
1369 unsigned long uaddr = (unsigned long) iov.iov_base;
1370 unsigned long len = iov.iov_len;
f1970baf
JB
1371 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1372 unsigned long start = uaddr >> PAGE_SHIFT;
1373 const int local_nr_pages = end - start;
1374 const int page_limit = cur_page + local_nr_pages;
cb4644ca 1375
f5dd33c4 1376 ret = get_user_pages_fast(uaddr, local_nr_pages,
26e49cfc
KO
1377 (iter->type & WRITE) != WRITE,
1378 &pages[cur_page]);
2b04e8f6
AV
1379 if (unlikely(ret < local_nr_pages)) {
1380 for (j = cur_page; j < page_limit; j++) {
1381 if (!pages[j])
1382 break;
1383 put_page(pages[j]);
1384 }
99172157 1385 ret = -EFAULT;
f1970baf 1386 goto out_unmap;
99172157 1387 }
f1970baf 1388
bd5cecea 1389 offset = offset_in_page(uaddr);
f1970baf
JB
1390 for (j = cur_page; j < page_limit; j++) {
1391 unsigned int bytes = PAGE_SIZE - offset;
95d78c28 1392 unsigned short prev_bi_vcnt = bio->bi_vcnt;
f1970baf
JB
1393
1394 if (len <= 0)
1395 break;
1396
1397 if (bytes > len)
1398 bytes = len;
1399
1400 /*
1401 * sorry...
1402 */
defd94b7
MC
1403 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1404 bytes)
f1970baf
JB
1405 break;
1406
95d78c28
VM
1407 /*
1408 * check if vector was merged with previous
1409 * drop page reference if needed
1410 */
1411 if (bio->bi_vcnt == prev_bi_vcnt)
1412 put_page(pages[j]);
1413
f1970baf
JB
1414 len -= bytes;
1415 offset = 0;
1416 }
1da177e4 1417
f1970baf 1418 cur_page = j;
1da177e4 1419 /*
f1970baf 1420 * release the pages we didn't map into the bio, if any
1da177e4 1421 */
f1970baf 1422 while (j < page_limit)
09cbfeaf 1423 put_page(pages[j++]);
1da177e4
LT
1424 }
1425
1da177e4
LT
1426 kfree(pages);
1427
b7c44ed9 1428 bio_set_flag(bio, BIO_USER_MAPPED);
37f19e57
CH
1429
1430 /*
5fad1b64 1431 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
37f19e57
CH
1432 * it would normally disappear when its bi_end_io is run.
1433 * however, we need it for the unmap, so grab an extra
1434 * reference to it
1435 */
1436 bio_get(bio);
1da177e4 1437 return bio;
f1970baf
JB
1438
1439 out_unmap:
2b04e8f6
AV
1440 bio_for_each_segment_all(bvec, bio, j) {
1441 put_page(bvec->bv_page);
f1970baf
JB
1442 }
1443 out:
1da177e4
LT
1444 kfree(pages);
1445 bio_put(bio);
1446 return ERR_PTR(ret);
1447}
1448
1da177e4
LT
1449static void __bio_unmap_user(struct bio *bio)
1450{
1451 struct bio_vec *bvec;
1452 int i;
1453
1454 /*
1455 * make sure we dirty pages we wrote to
1456 */
d74c6d51 1457 bio_for_each_segment_all(bvec, bio, i) {
1da177e4
LT
1458 if (bio_data_dir(bio) == READ)
1459 set_page_dirty_lock(bvec->bv_page);
1460
09cbfeaf 1461 put_page(bvec->bv_page);
1da177e4
LT
1462 }
1463
1464 bio_put(bio);
1465}
1466
1467/**
1468 * bio_unmap_user - unmap a bio
1469 * @bio: the bio being unmapped
1470 *
5fad1b64
BVA
1471 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1472 * process context.
1da177e4
LT
1473 *
1474 * bio_unmap_user() may sleep.
1475 */
1476void bio_unmap_user(struct bio *bio)
1477{
1478 __bio_unmap_user(bio);
1479 bio_put(bio);
1480}
1481
4246a0b6 1482static void bio_map_kern_endio(struct bio *bio)
b823825e 1483{
b823825e 1484 bio_put(bio);
b823825e
JA
1485}
1486
75c72b83
CH
1487/**
1488 * bio_map_kern - map kernel address into bio
1489 * @q: the struct request_queue for the bio
1490 * @data: pointer to buffer to map
1491 * @len: length in bytes
1492 * @gfp_mask: allocation flags for bio allocation
1493 *
1494 * Map the kernel address into a bio suitable for io to a block
1495 * device. Returns an error pointer in case of error.
1496 */
1497struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1498 gfp_t gfp_mask)
df46b9a4
MC
1499{
1500 unsigned long kaddr = (unsigned long)data;
1501 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1502 unsigned long start = kaddr >> PAGE_SHIFT;
1503 const int nr_pages = end - start;
1504 int offset, i;
1505 struct bio *bio;
1506
a9e9dc24 1507 bio = bio_kmalloc(gfp_mask, nr_pages);
df46b9a4
MC
1508 if (!bio)
1509 return ERR_PTR(-ENOMEM);
1510
1511 offset = offset_in_page(kaddr);
1512 for (i = 0; i < nr_pages; i++) {
1513 unsigned int bytes = PAGE_SIZE - offset;
1514
1515 if (len <= 0)
1516 break;
1517
1518 if (bytes > len)
1519 bytes = len;
1520
defd94b7 1521 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
75c72b83
CH
1522 offset) < bytes) {
1523 /* we don't support partial mappings */
1524 bio_put(bio);
1525 return ERR_PTR(-EINVAL);
1526 }
df46b9a4
MC
1527
1528 data += bytes;
1529 len -= bytes;
1530 offset = 0;
1531 }
1532
b823825e 1533 bio->bi_end_io = bio_map_kern_endio;
df46b9a4
MC
1534 return bio;
1535}
a112a71d 1536EXPORT_SYMBOL(bio_map_kern);
df46b9a4 1537
4246a0b6 1538static void bio_copy_kern_endio(struct bio *bio)
68154e90 1539{
1dfa0f68
CH
1540 bio_free_pages(bio);
1541 bio_put(bio);
1542}
1543
4246a0b6 1544static void bio_copy_kern_endio_read(struct bio *bio)
1dfa0f68 1545{
42d2683a 1546 char *p = bio->bi_private;
1dfa0f68 1547 struct bio_vec *bvec;
68154e90
FT
1548 int i;
1549
d74c6d51 1550 bio_for_each_segment_all(bvec, bio, i) {
1dfa0f68 1551 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
c8db4448 1552 p += bvec->bv_len;
68154e90
FT
1553 }
1554
4246a0b6 1555 bio_copy_kern_endio(bio);
68154e90
FT
1556}
1557
1558/**
1559 * bio_copy_kern - copy kernel address into bio
1560 * @q: the struct request_queue for the bio
1561 * @data: pointer to buffer to copy
1562 * @len: length in bytes
1563 * @gfp_mask: allocation flags for bio and page allocation
ffee0259 1564 * @reading: data direction is READ
68154e90
FT
1565 *
1566 * copy the kernel address into a bio suitable for io to a block
1567 * device. Returns an error pointer in case of error.
1568 */
1569struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1570 gfp_t gfp_mask, int reading)
1571{
42d2683a
CH
1572 unsigned long kaddr = (unsigned long)data;
1573 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1574 unsigned long start = kaddr >> PAGE_SHIFT;
42d2683a
CH
1575 struct bio *bio;
1576 void *p = data;
1dfa0f68 1577 int nr_pages = 0;
68154e90 1578
42d2683a
CH
1579 /*
1580 * Overflow, abort
1581 */
1582 if (end < start)
1583 return ERR_PTR(-EINVAL);
68154e90 1584
42d2683a
CH
1585 nr_pages = end - start;
1586 bio = bio_kmalloc(gfp_mask, nr_pages);
1587 if (!bio)
1588 return ERR_PTR(-ENOMEM);
68154e90 1589
42d2683a
CH
1590 while (len) {
1591 struct page *page;
1592 unsigned int bytes = PAGE_SIZE;
68154e90 1593
42d2683a
CH
1594 if (bytes > len)
1595 bytes = len;
1596
1597 page = alloc_page(q->bounce_gfp | gfp_mask);
1598 if (!page)
1599 goto cleanup;
1600
1601 if (!reading)
1602 memcpy(page_address(page), p, bytes);
1603
1604 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1605 break;
1606
1607 len -= bytes;
1608 p += bytes;
68154e90
FT
1609 }
1610
1dfa0f68
CH
1611 if (reading) {
1612 bio->bi_end_io = bio_copy_kern_endio_read;
1613 bio->bi_private = data;
1614 } else {
1615 bio->bi_end_io = bio_copy_kern_endio;
1dfa0f68 1616 }
76029ff3 1617
68154e90 1618 return bio;
42d2683a
CH
1619
1620cleanup:
1dfa0f68 1621 bio_free_pages(bio);
42d2683a
CH
1622 bio_put(bio);
1623 return ERR_PTR(-ENOMEM);
68154e90
FT
1624}
1625
1da177e4
LT
1626/*
1627 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1628 * for performing direct-IO in BIOs.
1629 *
1630 * The problem is that we cannot run set_page_dirty() from interrupt context
1631 * because the required locks are not interrupt-safe. So what we can do is to
1632 * mark the pages dirty _before_ performing IO. And in interrupt context,
1633 * check that the pages are still dirty. If so, fine. If not, redirty them
1634 * in process context.
1635 *
1636 * We special-case compound pages here: normally this means reads into hugetlb
1637 * pages. The logic in here doesn't really work right for compound pages
1638 * because the VM does not uniformly chase down the head page in all cases.
1639 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1640 * handle them at all. So we skip compound pages here at an early stage.
1641 *
1642 * Note that this code is very hard to test under normal circumstances because
1643 * direct-io pins the pages with get_user_pages(). This makes
1644 * is_page_cache_freeable return false, and the VM will not clean the pages.
0d5c3eba 1645 * But other code (eg, flusher threads) could clean the pages if they are mapped
1da177e4
LT
1646 * pagecache.
1647 *
1648 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1649 * deferred bio dirtying paths.
1650 */
1651
1652/*
1653 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1654 */
1655void bio_set_pages_dirty(struct bio *bio)
1656{
cb34e057 1657 struct bio_vec *bvec;
1da177e4
LT
1658 int i;
1659
cb34e057
KO
1660 bio_for_each_segment_all(bvec, bio, i) {
1661 struct page *page = bvec->bv_page;
1da177e4
LT
1662
1663 if (page && !PageCompound(page))
1664 set_page_dirty_lock(page);
1665 }
1666}
1667
86b6c7a7 1668static void bio_release_pages(struct bio *bio)
1da177e4 1669{
cb34e057 1670 struct bio_vec *bvec;
1da177e4
LT
1671 int i;
1672
cb34e057
KO
1673 bio_for_each_segment_all(bvec, bio, i) {
1674 struct page *page = bvec->bv_page;
1da177e4
LT
1675
1676 if (page)
1677 put_page(page);
1678 }
1679}
1680
1681/*
1682 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1683 * If they are, then fine. If, however, some pages are clean then they must
1684 * have been written out during the direct-IO read. So we take another ref on
1685 * the BIO and the offending pages and re-dirty the pages in process context.
1686 *
1687 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
ea1754a0
KS
1688 * here on. It will run one put_page() against each page and will run one
1689 * bio_put() against the BIO.
1da177e4
LT
1690 */
1691
65f27f38 1692static void bio_dirty_fn(struct work_struct *work);
1da177e4 1693
65f27f38 1694static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1695static DEFINE_SPINLOCK(bio_dirty_lock);
1696static struct bio *bio_dirty_list;
1697
1698/*
1699 * This runs in process context
1700 */
65f27f38 1701static void bio_dirty_fn(struct work_struct *work)
1da177e4
LT
1702{
1703 unsigned long flags;
1704 struct bio *bio;
1705
1706 spin_lock_irqsave(&bio_dirty_lock, flags);
1707 bio = bio_dirty_list;
1708 bio_dirty_list = NULL;
1709 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1710
1711 while (bio) {
1712 struct bio *next = bio->bi_private;
1713
1714 bio_set_pages_dirty(bio);
1715 bio_release_pages(bio);
1716 bio_put(bio);
1717 bio = next;
1718 }
1719}
1720
1721void bio_check_pages_dirty(struct bio *bio)
1722{
cb34e057 1723 struct bio_vec *bvec;
1da177e4
LT
1724 int nr_clean_pages = 0;
1725 int i;
1726
cb34e057
KO
1727 bio_for_each_segment_all(bvec, bio, i) {
1728 struct page *page = bvec->bv_page;
1da177e4
LT
1729
1730 if (PageDirty(page) || PageCompound(page)) {
09cbfeaf 1731 put_page(page);
cb34e057 1732 bvec->bv_page = NULL;
1da177e4
LT
1733 } else {
1734 nr_clean_pages++;
1735 }
1736 }
1737
1738 if (nr_clean_pages) {
1739 unsigned long flags;
1740
1741 spin_lock_irqsave(&bio_dirty_lock, flags);
1742 bio->bi_private = bio_dirty_list;
1743 bio_dirty_list = bio;
1744 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1745 schedule_work(&bio_dirty_work);
1746 } else {
1747 bio_put(bio);
1748 }
1749}
1750
d62e26b3
JA
1751void generic_start_io_acct(struct request_queue *q, int rw,
1752 unsigned long sectors, struct hd_struct *part)
394ffa50
GZ
1753{
1754 int cpu = part_stat_lock();
1755
d62e26b3 1756 part_round_stats(q, cpu, part);
394ffa50
GZ
1757 part_stat_inc(cpu, part, ios[rw]);
1758 part_stat_add(cpu, part, sectors[rw], sectors);
d62e26b3 1759 part_inc_in_flight(q, part, rw);
394ffa50
GZ
1760
1761 part_stat_unlock();
1762}
1763EXPORT_SYMBOL(generic_start_io_acct);
1764
d62e26b3
JA
1765void generic_end_io_acct(struct request_queue *q, int rw,
1766 struct hd_struct *part, unsigned long start_time)
394ffa50
GZ
1767{
1768 unsigned long duration = jiffies - start_time;
1769 int cpu = part_stat_lock();
1770
1771 part_stat_add(cpu, part, ticks[rw], duration);
d62e26b3
JA
1772 part_round_stats(q, cpu, part);
1773 part_dec_in_flight(q, part, rw);
394ffa50
GZ
1774
1775 part_stat_unlock();
1776}
1777EXPORT_SYMBOL(generic_end_io_acct);
1778
2d4dc890
IL
1779#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1780void bio_flush_dcache_pages(struct bio *bi)
1781{
7988613b
KO
1782 struct bio_vec bvec;
1783 struct bvec_iter iter;
2d4dc890 1784
7988613b
KO
1785 bio_for_each_segment(bvec, bi, iter)
1786 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
1787}
1788EXPORT_SYMBOL(bio_flush_dcache_pages);
1789#endif
1790
c4cf5261
JA
1791static inline bool bio_remaining_done(struct bio *bio)
1792{
1793 /*
1794 * If we're not chaining, then ->__bi_remaining is always 1 and
1795 * we always end io on the first invocation.
1796 */
1797 if (!bio_flagged(bio, BIO_CHAIN))
1798 return true;
1799
1800 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1801
326e1dbb 1802 if (atomic_dec_and_test(&bio->__bi_remaining)) {
b7c44ed9 1803 bio_clear_flag(bio, BIO_CHAIN);
c4cf5261 1804 return true;
326e1dbb 1805 }
c4cf5261
JA
1806
1807 return false;
1808}
1809
1da177e4
LT
1810/**
1811 * bio_endio - end I/O on a bio
1812 * @bio: bio
1da177e4
LT
1813 *
1814 * Description:
4246a0b6
CH
1815 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1816 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1817 * bio unless they own it and thus know that it has an end_io function.
fbbaf700
N
1818 *
1819 * bio_endio() can be called several times on a bio that has been chained
1820 * using bio_chain(). The ->bi_end_io() function will only be called the
1821 * last time. At this point the BLK_TA_COMPLETE tracing event will be
1822 * generated if BIO_TRACE_COMPLETION is set.
1da177e4 1823 **/
4246a0b6 1824void bio_endio(struct bio *bio)
1da177e4 1825{
ba8c6967 1826again:
2b885517 1827 if (!bio_remaining_done(bio))
ba8c6967 1828 return;
7c20f116
CH
1829 if (!bio_integrity_endio(bio))
1830 return;
1da177e4 1831
ba8c6967
CH
1832 /*
1833 * Need to have a real endio function for chained bios, otherwise
1834 * various corner cases will break (like stacking block devices that
1835 * save/restore bi_end_io) - however, we want to avoid unbounded
1836 * recursion and blowing the stack. Tail call optimization would
1837 * handle this, but compiling with frame pointers also disables
1838 * gcc's sibling call optimization.
1839 */
1840 if (bio->bi_end_io == bio_chain_endio) {
1841 bio = __bio_chain_endio(bio);
1842 goto again;
196d38bc 1843 }
ba8c6967 1844
74d46992
CH
1845 if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1846 trace_block_bio_complete(bio->bi_disk->queue, bio,
a462b950 1847 blk_status_to_errno(bio->bi_status));
fbbaf700
N
1848 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1849 }
1850
9e234eea 1851 blk_throtl_bio_endio(bio);
b222dd2f
SL
1852 /* release cgroup info */
1853 bio_uninit(bio);
ba8c6967
CH
1854 if (bio->bi_end_io)
1855 bio->bi_end_io(bio);
1da177e4 1856}
a112a71d 1857EXPORT_SYMBOL(bio_endio);
1da177e4 1858
20d0189b
KO
1859/**
1860 * bio_split - split a bio
1861 * @bio: bio to split
1862 * @sectors: number of sectors to split from the front of @bio
1863 * @gfp: gfp mask
1864 * @bs: bio set to allocate from
1865 *
1866 * Allocates and returns a new bio which represents @sectors from the start of
1867 * @bio, and updates @bio to represent the remaining sectors.
1868 *
f3f5da62
MP
1869 * Unless this is a discard request the newly allocated bio will point
1870 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1871 * @bio is not freed before the split.
20d0189b
KO
1872 */
1873struct bio *bio_split(struct bio *bio, int sectors,
1874 gfp_t gfp, struct bio_set *bs)
1875{
1876 struct bio *split = NULL;
1877
1878 BUG_ON(sectors <= 0);
1879 BUG_ON(sectors >= bio_sectors(bio));
1880
f9d03f96 1881 split = bio_clone_fast(bio, gfp, bs);
20d0189b
KO
1882 if (!split)
1883 return NULL;
1884
1885 split->bi_iter.bi_size = sectors << 9;
1886
1887 if (bio_integrity(split))
fbd08e76 1888 bio_integrity_trim(split);
20d0189b
KO
1889
1890 bio_advance(bio, split->bi_iter.bi_size);
1891
fbbaf700
N
1892 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1893 bio_set_flag(bio, BIO_TRACE_COMPLETION);
1894
20d0189b
KO
1895 return split;
1896}
1897EXPORT_SYMBOL(bio_split);
1898
6678d83f
KO
1899/**
1900 * bio_trim - trim a bio
1901 * @bio: bio to trim
1902 * @offset: number of sectors to trim from the front of @bio
1903 * @size: size we want to trim @bio to, in sectors
1904 */
1905void bio_trim(struct bio *bio, int offset, int size)
1906{
1907 /* 'bio' is a cloned bio which we need to trim to match
1908 * the given offset and size.
6678d83f 1909 */
6678d83f
KO
1910
1911 size <<= 9;
4f024f37 1912 if (offset == 0 && size == bio->bi_iter.bi_size)
6678d83f
KO
1913 return;
1914
b7c44ed9 1915 bio_clear_flag(bio, BIO_SEG_VALID);
6678d83f
KO
1916
1917 bio_advance(bio, offset << 9);
1918
4f024f37 1919 bio->bi_iter.bi_size = size;
376a78ab
DM
1920
1921 if (bio_integrity(bio))
fbd08e76 1922 bio_integrity_trim(bio);
376a78ab 1923
6678d83f
KO
1924}
1925EXPORT_SYMBOL_GPL(bio_trim);
1926
1da177e4
LT
1927/*
1928 * create memory pools for biovec's in a bio_set.
1929 * use the global biovec slabs created for general use.
1930 */
a6c39cb4 1931mempool_t *biovec_create_pool(int pool_entries)
1da177e4 1932{
ed996a52 1933 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1da177e4 1934
9f060e22 1935 return mempool_create_slab_pool(pool_entries, bp->slab);
1da177e4
LT
1936}
1937
1938void bioset_free(struct bio_set *bs)
1939{
df2cb6da
KO
1940 if (bs->rescue_workqueue)
1941 destroy_workqueue(bs->rescue_workqueue);
1942
1da177e4
LT
1943 if (bs->bio_pool)
1944 mempool_destroy(bs->bio_pool);
1945
9f060e22
KO
1946 if (bs->bvec_pool)
1947 mempool_destroy(bs->bvec_pool);
1948
7878cba9 1949 bioset_integrity_free(bs);
bb799ca0 1950 bio_put_slab(bs);
1da177e4
LT
1951
1952 kfree(bs);
1953}
a112a71d 1954EXPORT_SYMBOL(bioset_free);
1da177e4 1955
011067b0
N
1956/**
1957 * bioset_create - Create a bio_set
1958 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1959 * @front_pad: Number of bytes to allocate in front of the returned bio
47e0fb46
N
1960 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1961 * and %BIOSET_NEED_RESCUER
011067b0
N
1962 *
1963 * Description:
1964 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1965 * to ask for a number of bytes to be allocated in front of the bio.
1966 * Front pad allocation is useful for embedding the bio inside
1967 * another structure, to avoid allocating extra data to go with the bio.
1968 * Note that the bio must be embedded at the END of that structure always,
1969 * or things will break badly.
1970 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1971 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
47e0fb46
N
1972 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1973 * dispatch queued requests when the mempool runs out of space.
011067b0
N
1974 *
1975 */
1976struct bio_set *bioset_create(unsigned int pool_size,
1977 unsigned int front_pad,
1978 int flags)
1da177e4 1979{
392ddc32 1980 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1b434498 1981 struct bio_set *bs;
1da177e4 1982
1b434498 1983 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1da177e4
LT
1984 if (!bs)
1985 return NULL;
1986
bb799ca0 1987 bs->front_pad = front_pad;
1b434498 1988
df2cb6da
KO
1989 spin_lock_init(&bs->rescue_lock);
1990 bio_list_init(&bs->rescue_list);
1991 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1992
392ddc32 1993 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
bb799ca0
JA
1994 if (!bs->bio_slab) {
1995 kfree(bs);
1996 return NULL;
1997 }
1998
1999 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1da177e4
LT
2000 if (!bs->bio_pool)
2001 goto bad;
2002
011067b0 2003 if (flags & BIOSET_NEED_BVECS) {
d8f429e1
JN
2004 bs->bvec_pool = biovec_create_pool(pool_size);
2005 if (!bs->bvec_pool)
2006 goto bad;
2007 }
df2cb6da 2008
47e0fb46
N
2009 if (!(flags & BIOSET_NEED_RESCUER))
2010 return bs;
2011
df2cb6da
KO
2012 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
2013 if (!bs->rescue_workqueue)
2014 goto bad;
1da177e4 2015
df2cb6da 2016 return bs;
1da177e4
LT
2017bad:
2018 bioset_free(bs);
2019 return NULL;
2020}
a112a71d 2021EXPORT_SYMBOL(bioset_create);
1da177e4 2022
852c788f 2023#ifdef CONFIG_BLK_CGROUP
1d933cf0
TH
2024
2025/**
2026 * bio_associate_blkcg - associate a bio with the specified blkcg
2027 * @bio: target bio
2028 * @blkcg_css: css of the blkcg to associate
2029 *
2030 * Associate @bio with the blkcg specified by @blkcg_css. Block layer will
2031 * treat @bio as if it were issued by a task which belongs to the blkcg.
2032 *
2033 * This function takes an extra reference of @blkcg_css which will be put
2034 * when @bio is released. The caller must own @bio and is responsible for
2035 * synchronizing calls to this function.
2036 */
2037int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
2038{
2039 if (unlikely(bio->bi_css))
2040 return -EBUSY;
2041 css_get(blkcg_css);
2042 bio->bi_css = blkcg_css;
2043 return 0;
2044}
5aa2a96b 2045EXPORT_SYMBOL_GPL(bio_associate_blkcg);
1d933cf0 2046
852c788f
TH
2047/**
2048 * bio_associate_current - associate a bio with %current
2049 * @bio: target bio
2050 *
2051 * Associate @bio with %current if it hasn't been associated yet. Block
2052 * layer will treat @bio as if it were issued by %current no matter which
2053 * task actually issues it.
2054 *
2055 * This function takes an extra reference of @task's io_context and blkcg
2056 * which will be put when @bio is released. The caller must own @bio,
2057 * ensure %current->io_context exists, and is responsible for synchronizing
2058 * calls to this function.
2059 */
2060int bio_associate_current(struct bio *bio)
2061{
2062 struct io_context *ioc;
852c788f 2063
1d933cf0 2064 if (bio->bi_css)
852c788f
TH
2065 return -EBUSY;
2066
2067 ioc = current->io_context;
2068 if (!ioc)
2069 return -ENOENT;
2070
852c788f
TH
2071 get_io_context_active(ioc);
2072 bio->bi_ioc = ioc;
c165b3e3 2073 bio->bi_css = task_get_css(current, io_cgrp_id);
852c788f
TH
2074 return 0;
2075}
5aa2a96b 2076EXPORT_SYMBOL_GPL(bio_associate_current);
852c788f
TH
2077
2078/**
2079 * bio_disassociate_task - undo bio_associate_current()
2080 * @bio: target bio
2081 */
2082void bio_disassociate_task(struct bio *bio)
2083{
2084 if (bio->bi_ioc) {
2085 put_io_context(bio->bi_ioc);
2086 bio->bi_ioc = NULL;
2087 }
2088 if (bio->bi_css) {
2089 css_put(bio->bi_css);
2090 bio->bi_css = NULL;
2091 }
2092}
2093
20bd723e
PV
2094/**
2095 * bio_clone_blkcg_association - clone blkcg association from src to dst bio
2096 * @dst: destination bio
2097 * @src: source bio
2098 */
2099void bio_clone_blkcg_association(struct bio *dst, struct bio *src)
2100{
2101 if (src->bi_css)
2102 WARN_ON(bio_associate_blkcg(dst, src->bi_css));
2103}
8a8e6f84 2104EXPORT_SYMBOL_GPL(bio_clone_blkcg_association);
852c788f
TH
2105#endif /* CONFIG_BLK_CGROUP */
2106
1da177e4
LT
2107static void __init biovec_init_slabs(void)
2108{
2109 int i;
2110
ed996a52 2111 for (i = 0; i < BVEC_POOL_NR; i++) {
1da177e4
LT
2112 int size;
2113 struct biovec_slab *bvs = bvec_slabs + i;
2114
a7fcd37c
JA
2115 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2116 bvs->slab = NULL;
2117 continue;
2118 }
a7fcd37c 2119
1da177e4
LT
2120 size = bvs->nr_vecs * sizeof(struct bio_vec);
2121 bvs->slab = kmem_cache_create(bvs->name, size, 0,
20c2df83 2122 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4
LT
2123 }
2124}
2125
2126static int __init init_bio(void)
2127{
bb799ca0
JA
2128 bio_slab_max = 2;
2129 bio_slab_nr = 0;
2130 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2131 if (!bio_slabs)
2132 panic("bio: can't allocate bios\n");
1da177e4 2133
7878cba9 2134 bio_integrity_init();
1da177e4
LT
2135 biovec_init_slabs();
2136
011067b0 2137 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
1da177e4
LT
2138 if (!fs_bio_set)
2139 panic("bio: can't allocate bios\n");
2140
a91a2785
MP
2141 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2142 panic("bio: can't create integrity pool\n");
2143
1da177e4
LT
2144 return 0;
2145}
1da177e4 2146subsys_initcall(init_bio);