]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/block/nvme.c
NVMe: Call put_nvmeq() before calling nvme_submit_sync_cmd()
[mirror_ubuntu-bionic-kernel.git] / drivers / block / nvme.c
CommitLineData
b60503ba
MW
1/*
2 * NVM Express device driver
3 * Copyright (c) 2011, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17 */
18
19#include <linux/nvme.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
22#include <linux/errno.h>
23#include <linux/fs.h>
24#include <linux/genhd.h>
25#include <linux/init.h>
26#include <linux/interrupt.h>
27#include <linux/io.h>
28#include <linux/kdev_t.h>
29#include <linux/kernel.h>
30#include <linux/mm.h>
31#include <linux/module.h>
32#include <linux/moduleparam.h>
33#include <linux/pci.h>
34#include <linux/sched.h>
35#include <linux/slab.h>
36#include <linux/types.h>
37#include <linux/version.h>
38
39#define NVME_Q_DEPTH 1024
40#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
41#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
42#define NVME_MINORS 64
43
44static int nvme_major;
45module_param(nvme_major, int, 0);
46
47/*
48 * Represents an NVM Express device. Each nvme_dev is a PCI function.
49 */
50struct nvme_dev {
b60503ba
MW
51 struct nvme_queue **queues;
52 u32 __iomem *dbs;
53 struct pci_dev *pci_dev;
54 int instance;
55 int queue_count;
56 u32 ctrl_config;
57 struct msix_entry *entry;
58 struct nvme_bar __iomem *bar;
59 struct list_head namespaces;
51814232
MW
60 char serial[20];
61 char model[40];
62 char firmware_rev[8];
b60503ba
MW
63};
64
65/*
66 * An NVM Express namespace is equivalent to a SCSI LUN
67 */
68struct nvme_ns {
69 struct list_head list;
70
71 struct nvme_dev *dev;
72 struct request_queue *queue;
73 struct gendisk *disk;
74
75 int ns_id;
76 int lba_shift;
77};
78
79/*
80 * An NVM Express queue. Each device has at least two (one for admin
81 * commands and one for I/O commands).
82 */
83struct nvme_queue {
84 struct device *q_dmadev;
85 spinlock_t q_lock;
86 struct nvme_command *sq_cmds;
87 volatile struct nvme_completion *cqes;
88 dma_addr_t sq_dma_addr;
89 dma_addr_t cq_dma_addr;
90 wait_queue_head_t sq_full;
91 struct bio_list sq_cong;
92 u32 __iomem *q_db;
93 u16 q_depth;
94 u16 cq_vector;
95 u16 sq_head;
96 u16 sq_tail;
97 u16 cq_head;
82123460 98 u16 cq_phase;
b60503ba
MW
99 unsigned long cmdid_data[];
100};
101
102/*
103 * Check we didin't inadvertently grow the command struct
104 */
105static inline void _nvme_check_size(void)
106{
107 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
108 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
109 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
110 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
111 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
112 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
113 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
114 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
115 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
116}
117
118/**
119 * alloc_cmdid - Allocate a Command ID
120 * @param nvmeq The queue that will be used for this command
121 * @param ctx A pointer that will be passed to the handler
122 * @param handler The ID of the handler to call
123 *
124 * Allocate a Command ID for a queue. The data passed in will
125 * be passed to the completion handler. This is implemented by using
126 * the bottom two bits of the ctx pointer to store the handler ID.
127 * Passing in a pointer that's not 4-byte aligned will cause a BUG.
128 * We can change this if it becomes a problem.
129 */
130static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx, int handler)
131{
132 int depth = nvmeq->q_depth;
133 unsigned long data = (unsigned long)ctx | handler;
134 int cmdid;
135
136 BUG_ON((unsigned long)ctx & 3);
137
138 do {
139 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
140 if (cmdid >= depth)
141 return -EBUSY;
142 } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
143
144 nvmeq->cmdid_data[cmdid + BITS_TO_LONGS(depth)] = data;
145 return cmdid;
146}
147
148static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
149 int handler)
150{
151 int cmdid;
152 wait_event_killable(nvmeq->sq_full,
153 (cmdid = alloc_cmdid(nvmeq, ctx, handler)) >= 0);
154 return (cmdid < 0) ? -EINTR : cmdid;
155}
156
157/* If you need more than four handlers, you'll need to change how
3c0cf138
MW
158 * alloc_cmdid and nvme_process_cq work. Also, aborted commands take
159 * the sync_completion path (if they complete), so don't put anything
160 * else in slot zero.
b60503ba
MW
161 */
162enum {
163 sync_completion_id = 0,
164 bio_completion_id,
165};
166
167static unsigned long free_cmdid(struct nvme_queue *nvmeq, int cmdid)
168{
169 unsigned long data;
170
171 data = nvmeq->cmdid_data[cmdid + BITS_TO_LONGS(nvmeq->q_depth)];
172 clear_bit(cmdid, nvmeq->cmdid_data);
173 wake_up(&nvmeq->sq_full);
174 return data;
175}
176
3c0cf138
MW
177static void clear_cmdid_data(struct nvme_queue *nvmeq, int cmdid)
178{
179 nvmeq->cmdid_data[cmdid + BITS_TO_LONGS(nvmeq->q_depth)] = 0;
180}
181
b60503ba
MW
182static struct nvme_queue *get_nvmeq(struct nvme_ns *ns)
183{
1b23484b
MW
184 int qid, cpu = get_cpu();
185 if (cpu < ns->dev->queue_count)
186 qid = cpu + 1;
187 else
188 qid = (cpu % rounddown_pow_of_two(ns->dev->queue_count)) + 1;
189 return ns->dev->queues[qid];
b60503ba
MW
190}
191
192static void put_nvmeq(struct nvme_queue *nvmeq)
193{
1b23484b 194 put_cpu();
b60503ba
MW
195}
196
197/**
198 * nvme_submit_cmd: Copy a command into a queue and ring the doorbell
199 * @nvmeq: The queue to use
200 * @cmd: The command to send
201 *
202 * Safe to use from interrupt context
203 */
204static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
205{
206 unsigned long flags;
207 u16 tail;
208 /* XXX: Need to check tail isn't going to overrun head */
209 spin_lock_irqsave(&nvmeq->q_lock, flags);
210 tail = nvmeq->sq_tail;
211 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
212 writel(tail, nvmeq->q_db);
213 if (++tail == nvmeq->q_depth)
214 tail = 0;
215 nvmeq->sq_tail = tail;
216 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
217
218 return 0;
219}
220
221struct nvme_req_info {
222 struct bio *bio;
223 int nents;
224 struct scatterlist sg[0];
225};
226
227/* XXX: use a mempool */
228static struct nvme_req_info *alloc_info(unsigned nseg, gfp_t gfp)
229{
230 return kmalloc(sizeof(struct nvme_req_info) +
231 sizeof(struct scatterlist) * nseg, gfp);
232}
233
234static void free_info(struct nvme_req_info *info)
235{
236 kfree(info);
237}
238
239static void bio_completion(struct nvme_queue *nvmeq, void *ctx,
240 struct nvme_completion *cqe)
241{
242 struct nvme_req_info *info = ctx;
243 struct bio *bio = info->bio;
244 u16 status = le16_to_cpup(&cqe->status) >> 1;
245
246 dma_unmap_sg(nvmeq->q_dmadev, info->sg, info->nents,
247 bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
248 free_info(info);
249 bio_endio(bio, status ? -EIO : 0);
250}
251
ff22b54f
MW
252/* length is in bytes */
253static void nvme_setup_prps(struct nvme_common_command *cmd,
254 struct scatterlist *sg, int length)
255{
256 int dma_len = sg_dma_len(sg);
257 u64 dma_addr = sg_dma_address(sg);
258 int offset = offset_in_page(dma_addr);
259
260 cmd->prp1 = cpu_to_le64(dma_addr);
261 length -= (PAGE_SIZE - offset);
262 if (length <= 0)
263 return;
264
265 dma_len -= (PAGE_SIZE - offset);
266 if (dma_len) {
267 dma_addr += (PAGE_SIZE - offset);
268 } else {
269 sg = sg_next(sg);
270 dma_addr = sg_dma_address(sg);
271 dma_len = sg_dma_len(sg);
272 }
273
274 if (length <= PAGE_SIZE) {
275 cmd->prp2 = cpu_to_le64(dma_addr);
276 return;
277 }
278
279 /* XXX: support PRP lists */
280}
281
b60503ba
MW
282static int nvme_map_bio(struct device *dev, struct nvme_req_info *info,
283 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
284{
285 struct bio_vec *bvec;
286 struct scatterlist *sg = info->sg;
287 int i, nsegs;
288
289 sg_init_table(sg, psegs);
290 bio_for_each_segment(bvec, bio, i) {
291 sg_set_page(sg, bvec->bv_page, bvec->bv_len, bvec->bv_offset);
292 /* XXX: handle non-mergable here */
293 nsegs++;
294 }
295 info->nents = nsegs;
296
297 return dma_map_sg(dev, info->sg, info->nents, dma_dir);
298}
299
300static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
301 struct bio *bio)
302{
ff22b54f 303 struct nvme_command *cmnd;
b60503ba
MW
304 struct nvme_req_info *info;
305 enum dma_data_direction dma_dir;
306 int cmdid;
307 u16 control;
308 u32 dsmgmt;
309 unsigned long flags;
310 int psegs = bio_phys_segments(ns->queue, bio);
311
312 info = alloc_info(psegs, GFP_NOIO);
313 if (!info)
314 goto congestion;
315 info->bio = bio;
316
317 cmdid = alloc_cmdid(nvmeq, info, bio_completion_id);
318 if (unlikely(cmdid < 0))
319 goto free_info;
320
321 control = 0;
322 if (bio->bi_rw & REQ_FUA)
323 control |= NVME_RW_FUA;
324 if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
325 control |= NVME_RW_LR;
326
327 dsmgmt = 0;
328 if (bio->bi_rw & REQ_RAHEAD)
329 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
330
331 spin_lock_irqsave(&nvmeq->q_lock, flags);
ff22b54f 332 cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
b60503ba 333
b8deb62c 334 memset(cmnd, 0, sizeof(*cmnd));
b60503ba 335 if (bio_data_dir(bio)) {
ff22b54f 336 cmnd->rw.opcode = nvme_cmd_write;
b60503ba
MW
337 dma_dir = DMA_TO_DEVICE;
338 } else {
ff22b54f 339 cmnd->rw.opcode = nvme_cmd_read;
b60503ba
MW
340 dma_dir = DMA_FROM_DEVICE;
341 }
342
343 nvme_map_bio(nvmeq->q_dmadev, info, bio, dma_dir, psegs);
344
ff22b54f
MW
345 cmnd->rw.flags = 1;
346 cmnd->rw.command_id = cmdid;
347 cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
348 nvme_setup_prps(&cmnd->common, info->sg, bio->bi_size);
349 cmnd->rw.slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9));
350 cmnd->rw.length = cpu_to_le16((bio->bi_size >> ns->lba_shift) - 1);
351 cmnd->rw.control = cpu_to_le16(control);
352 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
b60503ba
MW
353
354 writel(nvmeq->sq_tail, nvmeq->q_db);
355 if (++nvmeq->sq_tail == nvmeq->q_depth)
356 nvmeq->sq_tail = 0;
357
358 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
359
360 return 0;
361
362 free_info:
363 free_info(info);
364 congestion:
365 return -EBUSY;
366}
367
368/*
369 * NB: return value of non-zero would mean that we were a stacking driver.
370 * make_request must always succeed.
371 */
372static int nvme_make_request(struct request_queue *q, struct bio *bio)
373{
374 struct nvme_ns *ns = q->queuedata;
375 struct nvme_queue *nvmeq = get_nvmeq(ns);
376
377 if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
378 blk_set_queue_congested(q, rw_is_sync(bio->bi_rw));
379 bio_list_add(&nvmeq->sq_cong, bio);
380 }
381 put_nvmeq(nvmeq);
382
383 return 0;
384}
385
386struct sync_cmd_info {
387 struct task_struct *task;
388 u32 result;
389 int status;
390};
391
392static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
393 struct nvme_completion *cqe)
394{
395 struct sync_cmd_info *cmdinfo = ctx;
3c0cf138
MW
396 if (!cmdinfo)
397 return; /* Command aborted */
b60503ba
MW
398 cmdinfo->result = le32_to_cpup(&cqe->result);
399 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
400 wake_up_process(cmdinfo->task);
401}
402
403typedef void (*completion_fn)(struct nvme_queue *, void *,
404 struct nvme_completion *);
405
406static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
407{
82123460 408 u16 head, phase;
b60503ba
MW
409
410 static const completion_fn completions[4] = {
411 [sync_completion_id] = sync_completion,
412 [bio_completion_id] = bio_completion,
413 };
414
415 head = nvmeq->cq_head;
82123460 416 phase = nvmeq->cq_phase;
b60503ba
MW
417
418 for (;;) {
419 unsigned long data;
420 void *ptr;
421 unsigned char handler;
422 struct nvme_completion cqe = nvmeq->cqes[head];
82123460 423 if ((le16_to_cpu(cqe.status) & 1) != phase)
b60503ba
MW
424 break;
425 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
426 if (++head == nvmeq->q_depth) {
427 head = 0;
82123460 428 phase = !phase;
b60503ba
MW
429 }
430
431 data = free_cmdid(nvmeq, cqe.command_id);
432 handler = data & 3;
433 ptr = (void *)(data & ~3UL);
434 completions[handler](nvmeq, ptr, &cqe);
435 }
436
437 /* If the controller ignores the cq head doorbell and continuously
438 * writes to the queue, it is theoretically possible to wrap around
439 * the queue twice and mistakenly return IRQ_NONE. Linux only
440 * requires that 0.1% of your interrupts are handled, so this isn't
441 * a big problem.
442 */
82123460 443 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
b60503ba
MW
444 return IRQ_NONE;
445
446 writel(head, nvmeq->q_db + 1);
447 nvmeq->cq_head = head;
82123460 448 nvmeq->cq_phase = phase;
b60503ba
MW
449
450 return IRQ_HANDLED;
451}
452
453static irqreturn_t nvme_irq(int irq, void *data)
454{
455 return nvme_process_cq(data);
456}
457
3c0cf138
MW
458static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
459{
460 spin_lock_irq(&nvmeq->q_lock);
461 clear_cmdid_data(nvmeq, cmdid);
462 spin_unlock_irq(&nvmeq->q_lock);
463}
464
b60503ba
MW
465/*
466 * Returns 0 on success. If the result is negative, it's a Linux error code;
467 * if the result is positive, it's an NVM Express status code
468 */
3c0cf138
MW
469static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
470 struct nvme_command *cmd, u32 *result)
b60503ba
MW
471{
472 int cmdid;
473 struct sync_cmd_info cmdinfo;
474
475 cmdinfo.task = current;
476 cmdinfo.status = -EINTR;
477
3c0cf138 478 cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion_id);
b60503ba
MW
479 if (cmdid < 0)
480 return cmdid;
481 cmd->common.command_id = cmdid;
482
3c0cf138
MW
483 set_current_state(TASK_KILLABLE);
484 nvme_submit_cmd(nvmeq, cmd);
b60503ba
MW
485 schedule();
486
3c0cf138
MW
487 if (cmdinfo.status == -EINTR) {
488 nvme_abort_command(nvmeq, cmdid);
489 return -EINTR;
490 }
491
b60503ba
MW
492 if (result)
493 *result = cmdinfo.result;
494
495 return cmdinfo.status;
496}
497
498static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
499 u32 *result)
500{
501 return nvme_submit_sync_cmd(dev->queues[0], cmd, result);
502}
503
504static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
505{
506 int status;
507 struct nvme_command c;
508
509 memset(&c, 0, sizeof(c));
510 c.delete_queue.opcode = opcode;
511 c.delete_queue.qid = cpu_to_le16(id);
512
513 status = nvme_submit_admin_cmd(dev, &c, NULL);
514 if (status)
515 return -EIO;
516 return 0;
517}
518
519static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
520 struct nvme_queue *nvmeq)
521{
522 int status;
523 struct nvme_command c;
524 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
525
526 memset(&c, 0, sizeof(c));
527 c.create_cq.opcode = nvme_admin_create_cq;
528 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
529 c.create_cq.cqid = cpu_to_le16(qid);
530 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
531 c.create_cq.cq_flags = cpu_to_le16(flags);
532 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
533
534 status = nvme_submit_admin_cmd(dev, &c, NULL);
535 if (status)
536 return -EIO;
537 return 0;
538}
539
540static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
541 struct nvme_queue *nvmeq)
542{
543 int status;
544 struct nvme_command c;
545 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
546
547 memset(&c, 0, sizeof(c));
548 c.create_sq.opcode = nvme_admin_create_sq;
549 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
550 c.create_sq.sqid = cpu_to_le16(qid);
551 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
552 c.create_sq.sq_flags = cpu_to_le16(flags);
553 c.create_sq.cqid = cpu_to_le16(qid);
554
555 status = nvme_submit_admin_cmd(dev, &c, NULL);
556 if (status)
557 return -EIO;
558 return 0;
559}
560
561static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
562{
563 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
564}
565
566static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
567{
568 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
569}
570
571static void nvme_free_queue(struct nvme_dev *dev, int qid)
572{
573 struct nvme_queue *nvmeq = dev->queues[qid];
574
575 free_irq(dev->entry[nvmeq->cq_vector].vector, nvmeq);
576
577 /* Don't tell the adapter to delete the admin queue */
578 if (qid) {
579 adapter_delete_sq(dev, qid);
580 adapter_delete_cq(dev, qid);
581 }
582
583 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
584 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
585 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
586 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
587 kfree(nvmeq);
588}
589
590static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
591 int depth, int vector)
592{
593 struct device *dmadev = &dev->pci_dev->dev;
594 unsigned extra = (depth + BITS_TO_LONGS(depth)) * sizeof(long);
595 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
596 if (!nvmeq)
597 return NULL;
598
599 nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
600 &nvmeq->cq_dma_addr, GFP_KERNEL);
601 if (!nvmeq->cqes)
602 goto free_nvmeq;
603 memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
604
605 nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
606 &nvmeq->sq_dma_addr, GFP_KERNEL);
607 if (!nvmeq->sq_cmds)
608 goto free_cqdma;
609
610 nvmeq->q_dmadev = dmadev;
611 spin_lock_init(&nvmeq->q_lock);
612 nvmeq->cq_head = 0;
82123460 613 nvmeq->cq_phase = 1;
b60503ba
MW
614 init_waitqueue_head(&nvmeq->sq_full);
615 bio_list_init(&nvmeq->sq_cong);
616 nvmeq->q_db = &dev->dbs[qid * 2];
617 nvmeq->q_depth = depth;
618 nvmeq->cq_vector = vector;
619
620 return nvmeq;
621
622 free_cqdma:
623 dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes,
624 nvmeq->cq_dma_addr);
625 free_nvmeq:
626 kfree(nvmeq);
627 return NULL;
628}
629
3001082c
MW
630static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
631 const char *name)
632{
633 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
634 IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
635}
636
b60503ba
MW
637static __devinit struct nvme_queue *nvme_create_queue(struct nvme_dev *dev,
638 int qid, int cq_size, int vector)
639{
640 int result;
641 struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
642
3f85d50b
MW
643 if (!nvmeq)
644 return NULL;
645
b60503ba
MW
646 result = adapter_alloc_cq(dev, qid, nvmeq);
647 if (result < 0)
648 goto free_nvmeq;
649
650 result = adapter_alloc_sq(dev, qid, nvmeq);
651 if (result < 0)
652 goto release_cq;
653
3001082c 654 result = queue_request_irq(dev, nvmeq, "nvme");
b60503ba
MW
655 if (result < 0)
656 goto release_sq;
657
658 return nvmeq;
659
660 release_sq:
661 adapter_delete_sq(dev, qid);
662 release_cq:
663 adapter_delete_cq(dev, qid);
664 free_nvmeq:
665 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
666 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
667 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
668 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
669 kfree(nvmeq);
670 return NULL;
671}
672
673static int __devinit nvme_configure_admin_queue(struct nvme_dev *dev)
674{
675 int result;
676 u32 aqa;
677 struct nvme_queue *nvmeq;
678
679 dev->dbs = ((void __iomem *)dev->bar) + 4096;
680
681 nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
3f85d50b
MW
682 if (!nvmeq)
683 return -ENOMEM;
b60503ba
MW
684
685 aqa = nvmeq->q_depth - 1;
686 aqa |= aqa << 16;
687
688 dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
689 dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
690 dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
691
5911f200 692 writel(0, &dev->bar->cc);
b60503ba
MW
693 writel(aqa, &dev->bar->aqa);
694 writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
695 writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
696 writel(dev->ctrl_config, &dev->bar->cc);
697
698 while (!(readl(&dev->bar->csts) & NVME_CSTS_RDY)) {
699 msleep(100);
700 if (fatal_signal_pending(current))
701 return -EINTR;
702 }
703
3001082c 704 result = queue_request_irq(dev, nvmeq, "nvme admin");
b60503ba
MW
705 dev->queues[0] = nvmeq;
706 return result;
707}
708
7fc3cdab
MW
709static int nvme_map_user_pages(struct nvme_dev *dev, int write,
710 unsigned long addr, unsigned length,
711 struct scatterlist **sgp)
b60503ba 712{
36c14ed9 713 int i, err, count, nents, offset;
7fc3cdab
MW
714 struct scatterlist *sg;
715 struct page **pages;
36c14ed9
MW
716
717 if (addr & 3)
718 return -EINVAL;
7fc3cdab
MW
719 if (!length)
720 return -EINVAL;
721
36c14ed9 722 offset = offset_in_page(addr);
7fc3cdab
MW
723 count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
724 pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
36c14ed9
MW
725
726 err = get_user_pages_fast(addr, count, 1, pages);
727 if (err < count) {
728 count = err;
729 err = -EFAULT;
730 goto put_pages;
731 }
7fc3cdab
MW
732
733 sg = kcalloc(count, sizeof(*sg), GFP_KERNEL);
36c14ed9 734 sg_init_table(sg, count);
ff22b54f 735 sg_set_page(&sg[0], pages[0], PAGE_SIZE - offset, offset);
7fc3cdab
MW
736 length -= (PAGE_SIZE - offset);
737 for (i = 1; i < count; i++) {
738 sg_set_page(&sg[i], pages[i], min_t(int, length, PAGE_SIZE), 0);
739 length -= PAGE_SIZE;
740 }
741
742 err = -ENOMEM;
743 nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
744 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
36c14ed9
MW
745 if (!nents)
746 goto put_pages;
b60503ba 747
7fc3cdab
MW
748 kfree(pages);
749 *sgp = sg;
750 return nents;
b60503ba 751
7fc3cdab
MW
752 put_pages:
753 for (i = 0; i < count; i++)
754 put_page(pages[i]);
755 kfree(pages);
756 return err;
757}
b60503ba 758
7fc3cdab
MW
759static void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
760 unsigned long addr, int length,
761 struct scatterlist *sg, int nents)
762{
763 int i, count;
b60503ba 764
7fc3cdab 765 count = DIV_ROUND_UP(offset_in_page(addr) + length, PAGE_SIZE);
36c14ed9 766 dma_unmap_sg(&dev->pci_dev->dev, sg, nents, DMA_FROM_DEVICE);
7fc3cdab 767
36c14ed9 768 for (i = 0; i < count; i++)
7fc3cdab
MW
769 put_page(sg_page(&sg[i]));
770}
b60503ba 771
7fc3cdab
MW
772static int nvme_submit_user_admin_command(struct nvme_dev *dev,
773 unsigned long addr, unsigned length,
774 struct nvme_command *cmd)
775{
776 int err, nents;
777 struct scatterlist *sg;
778
779 nents = nvme_map_user_pages(dev, 0, addr, length, &sg);
780 if (nents < 0)
781 return nents;
782 nvme_setup_prps(&cmd->common, sg, length);
783 err = nvme_submit_admin_cmd(dev, cmd, NULL);
784 nvme_unmap_user_pages(dev, 0, addr, length, sg, nents);
785 return err ? -EIO : 0;
b60503ba
MW
786}
787
bd38c555 788static int nvme_identify(struct nvme_ns *ns, unsigned long addr, int cns)
b60503ba 789{
b60503ba 790 struct nvme_command c;
b60503ba 791
bd38c555
MW
792 memset(&c, 0, sizeof(c));
793 c.identify.opcode = nvme_admin_identify;
794 c.identify.nsid = cns ? 0 : cpu_to_le32(ns->ns_id);
795 c.identify.cns = cpu_to_le32(cns);
796
797 return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c);
798}
799
800static int nvme_get_range_type(struct nvme_ns *ns, unsigned long addr)
801{
802 struct nvme_command c;
b60503ba
MW
803
804 memset(&c, 0, sizeof(c));
805 c.features.opcode = nvme_admin_get_features;
806 c.features.nsid = cpu_to_le32(ns->ns_id);
b60503ba
MW
807 c.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
808
bd38c555 809 return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c);
b60503ba
MW
810}
811
a53295b6
MW
812static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
813{
814 struct nvme_dev *dev = ns->dev;
815 struct nvme_queue *nvmeq;
816 struct nvme_user_io io;
817 struct nvme_command c;
818 unsigned length;
819 u32 result;
820 int nents, status;
821 struct scatterlist *sg;
822
823 if (copy_from_user(&io, uio, sizeof(io)))
824 return -EFAULT;
825 length = io.nblocks << io.block_shift;
826 nents = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length, &sg);
827 if (nents < 0)
828 return nents;
829
830 memset(&c, 0, sizeof(c));
831 c.rw.opcode = io.opcode;
832 c.rw.flags = io.flags;
833 c.rw.nsid = cpu_to_le32(io.nsid);
834 c.rw.slba = cpu_to_le64(io.slba);
835 c.rw.length = cpu_to_le16(io.nblocks - 1);
836 c.rw.control = cpu_to_le16(io.control);
837 c.rw.dsmgmt = cpu_to_le16(io.dsmgmt);
838 c.rw.reftag = cpu_to_le32(io.reftag); /* XXX: endian? */
839 c.rw.apptag = cpu_to_le16(io.apptag);
840 c.rw.appmask = cpu_to_le16(io.appmask);
841 /* XXX: metadata */
842 nvme_setup_prps(&c.common, sg, length);
843
844 nvmeq = get_nvmeq(ns);
b1ad37ef
MW
845 /* Since nvme_submit_sync_cmd sleeps, we can't keep preemption
846 * disabled. We may be preempted at any point, and be rescheduled
847 * to a different CPU. That will cause cacheline bouncing, but no
848 * additional races since q_lock already protects against other CPUs.
849 */
a53295b6 850 put_nvmeq(nvmeq);
b1ad37ef 851 status = nvme_submit_sync_cmd(nvmeq, &c, &result);
a53295b6
MW
852
853 nvme_unmap_user_pages(dev, io.opcode & 1, io.addr, length, sg, nents);
854 put_user(result, &uio->result);
855 return status;
856}
857
6ee44cdc
MW
858static int nvme_download_firmware(struct nvme_ns *ns,
859 struct nvme_dlfw __user *udlfw)
860{
861 struct nvme_dev *dev = ns->dev;
862 struct nvme_dlfw dlfw;
863 struct nvme_command c;
864 int nents, status;
865 struct scatterlist *sg;
866
867 if (copy_from_user(&dlfw, udlfw, sizeof(dlfw)))
868 return -EFAULT;
869 if (dlfw.length >= (1 << 30))
870 return -EINVAL;
871
872 nents = nvme_map_user_pages(dev, 1, dlfw.addr, dlfw.length * 4, &sg);
873 if (nents < 0)
874 return nents;
875
876 memset(&c, 0, sizeof(c));
877 c.dlfw.opcode = nvme_admin_download_fw;
878 c.dlfw.numd = cpu_to_le32(dlfw.length);
879 c.dlfw.offset = cpu_to_le32(dlfw.offset);
880 nvme_setup_prps(&c.common, sg, dlfw.length * 4);
881
882 status = nvme_submit_admin_cmd(dev, &c, NULL);
883 nvme_unmap_user_pages(dev, 0, dlfw.addr, dlfw.length * 4, sg, nents);
884 return status;
885}
886
887static int nvme_activate_firmware(struct nvme_ns *ns, unsigned long arg)
888{
889 struct nvme_dev *dev = ns->dev;
890 struct nvme_command c;
891
892 memset(&c, 0, sizeof(c));
893 c.common.opcode = nvme_admin_activate_fw;
894 c.common.rsvd10[0] = cpu_to_le32(arg);
895
896 return nvme_submit_admin_cmd(dev, &c, NULL);
897}
898
b60503ba
MW
899static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
900 unsigned long arg)
901{
902 struct nvme_ns *ns = bdev->bd_disk->private_data;
903
904 switch (cmd) {
905 case NVME_IOCTL_IDENTIFY_NS:
36c14ed9 906 return nvme_identify(ns, arg, 0);
b60503ba 907 case NVME_IOCTL_IDENTIFY_CTRL:
36c14ed9 908 return nvme_identify(ns, arg, 1);
b60503ba 909 case NVME_IOCTL_GET_RANGE_TYPE:
bd38c555 910 return nvme_get_range_type(ns, arg);
a53295b6
MW
911 case NVME_IOCTL_SUBMIT_IO:
912 return nvme_submit_io(ns, (void __user *)arg);
6ee44cdc
MW
913 case NVME_IOCTL_DOWNLOAD_FW:
914 return nvme_download_firmware(ns, (void __user *)arg);
915 case NVME_IOCTL_ACTIVATE_FW:
916 return nvme_activate_firmware(ns, arg);
b60503ba
MW
917 default:
918 return -ENOTTY;
919 }
920}
921
922static const struct block_device_operations nvme_fops = {
923 .owner = THIS_MODULE,
924 .ioctl = nvme_ioctl,
925};
926
927static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int index,
928 struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
929{
930 struct nvme_ns *ns;
931 struct gendisk *disk;
932 int lbaf;
933
934 if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
935 return NULL;
936
937 ns = kzalloc(sizeof(*ns), GFP_KERNEL);
938 if (!ns)
939 return NULL;
940 ns->queue = blk_alloc_queue(GFP_KERNEL);
941 if (!ns->queue)
942 goto out_free_ns;
943 ns->queue->queue_flags = QUEUE_FLAG_DEFAULT | QUEUE_FLAG_NOMERGES |
944 QUEUE_FLAG_NONROT | QUEUE_FLAG_DISCARD;
945 blk_queue_make_request(ns->queue, nvme_make_request);
946 ns->dev = dev;
947 ns->queue->queuedata = ns;
948
949 disk = alloc_disk(NVME_MINORS);
950 if (!disk)
951 goto out_free_queue;
952 ns->ns_id = index;
953 ns->disk = disk;
954 lbaf = id->flbas & 0xf;
955 ns->lba_shift = id->lbaf[lbaf].ds;
956
957 disk->major = nvme_major;
958 disk->minors = NVME_MINORS;
959 disk->first_minor = NVME_MINORS * index;
960 disk->fops = &nvme_fops;
961 disk->private_data = ns;
962 disk->queue = ns->queue;
388f037f 963 disk->driverfs_dev = &dev->pci_dev->dev;
b60503ba
MW
964 sprintf(disk->disk_name, "nvme%dn%d", dev->instance, index);
965 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
966
967 return ns;
968
969 out_free_queue:
970 blk_cleanup_queue(ns->queue);
971 out_free_ns:
972 kfree(ns);
973 return NULL;
974}
975
976static void nvme_ns_free(struct nvme_ns *ns)
977{
978 put_disk(ns->disk);
979 blk_cleanup_queue(ns->queue);
980 kfree(ns);
981}
982
b3b06812 983static int set_queue_count(struct nvme_dev *dev, int count)
b60503ba
MW
984{
985 int status;
986 u32 result;
987 struct nvme_command c;
b3b06812 988 u32 q_count = (count - 1) | ((count - 1) << 16);
b60503ba
MW
989
990 memset(&c, 0, sizeof(c));
991 c.features.opcode = nvme_admin_get_features;
992 c.features.fid = cpu_to_le32(NVME_FEAT_NUM_QUEUES);
993 c.features.dword11 = cpu_to_le32(q_count);
994
995 status = nvme_submit_admin_cmd(dev, &c, &result);
996 if (status)
997 return -EIO;
998 return min(result & 0xffff, result >> 16) + 1;
999}
1000
b60503ba
MW
1001static int __devinit nvme_setup_io_queues(struct nvme_dev *dev)
1002{
1b23484b 1003 int result, cpu, i, nr_queues;
b60503ba 1004
1b23484b
MW
1005 nr_queues = num_online_cpus();
1006 result = set_queue_count(dev, nr_queues);
1007 if (result < 0)
1008 return result;
1009 if (result < nr_queues)
1010 nr_queues = result;
b60503ba 1011
1b23484b
MW
1012 /* Deregister the admin queue's interrupt */
1013 free_irq(dev->entry[0].vector, dev->queues[0]);
1014
1015 for (i = 0; i < nr_queues; i++)
1016 dev->entry[i].entry = i;
1017 for (;;) {
1018 result = pci_enable_msix(dev->pci_dev, dev->entry, nr_queues);
1019 if (result == 0) {
1020 break;
1021 } else if (result > 0) {
1022 nr_queues = result;
1023 continue;
1024 } else {
1025 nr_queues = 1;
1026 break;
1027 }
1028 }
1029
1030 result = queue_request_irq(dev, dev->queues[0], "nvme admin");
1031 /* XXX: handle failure here */
1032
1033 cpu = cpumask_first(cpu_online_mask);
1034 for (i = 0; i < nr_queues; i++) {
1035 irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
1036 cpu = cpumask_next(cpu, cpu_online_mask);
1037 }
1038
1039 for (i = 0; i < nr_queues; i++) {
1040 dev->queues[i + 1] = nvme_create_queue(dev, i + 1,
1041 NVME_Q_DEPTH, i);
1042 if (!dev->queues[i + 1])
1043 return -ENOMEM;
1044 dev->queue_count++;
1045 }
b60503ba
MW
1046
1047 return 0;
1048}
1049
1050static void nvme_free_queues(struct nvme_dev *dev)
1051{
1052 int i;
1053
1054 for (i = dev->queue_count - 1; i >= 0; i--)
1055 nvme_free_queue(dev, i);
1056}
1057
1058static int __devinit nvme_dev_add(struct nvme_dev *dev)
1059{
1060 int res, nn, i;
1061 struct nvme_ns *ns, *next;
51814232 1062 struct nvme_id_ctrl *ctrl;
b60503ba
MW
1063 void *id;
1064 dma_addr_t dma_addr;
1065 struct nvme_command cid, crt;
1066
1067 res = nvme_setup_io_queues(dev);
1068 if (res)
1069 return res;
1070
1071 /* XXX: Switch to a SG list once prp2 works */
1072 id = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
1073 GFP_KERNEL);
1074
1075 memset(&cid, 0, sizeof(cid));
1076 cid.identify.opcode = nvme_admin_identify;
1077 cid.identify.nsid = 0;
1078 cid.identify.prp1 = cpu_to_le64(dma_addr);
1079 cid.identify.cns = cpu_to_le32(1);
1080
1081 res = nvme_submit_admin_cmd(dev, &cid, NULL);
1082 if (res) {
1083 res = -EIO;
1084 goto out_free;
1085 }
1086
51814232
MW
1087 ctrl = id;
1088 nn = le32_to_cpup(&ctrl->nn);
1089 memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
1090 memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
1091 memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
b60503ba
MW
1092
1093 cid.identify.cns = 0;
1094 memset(&crt, 0, sizeof(crt));
1095 crt.features.opcode = nvme_admin_get_features;
1096 crt.features.prp1 = cpu_to_le64(dma_addr + 4096);
1097 crt.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
1098
1099 for (i = 0; i < nn; i++) {
1100 cid.identify.nsid = cpu_to_le32(i);
1101 res = nvme_submit_admin_cmd(dev, &cid, NULL);
1102 if (res)
1103 continue;
1104
1105 if (((struct nvme_id_ns *)id)->ncap == 0)
1106 continue;
1107
1108 crt.features.nsid = cpu_to_le32(i);
1109 res = nvme_submit_admin_cmd(dev, &crt, NULL);
1110 if (res)
1111 continue;
1112
1113 ns = nvme_alloc_ns(dev, i, id, id + 4096);
1114 if (ns)
1115 list_add_tail(&ns->list, &dev->namespaces);
1116 }
1117 list_for_each_entry(ns, &dev->namespaces, list)
1118 add_disk(ns->disk);
1119
1120 dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1121 return 0;
1122
1123 out_free:
1124 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1125 list_del(&ns->list);
1126 nvme_ns_free(ns);
1127 }
1128
1129 dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1130 return res;
1131}
1132
1133static int nvme_dev_remove(struct nvme_dev *dev)
1134{
1135 struct nvme_ns *ns, *next;
1136
1137 /* TODO: wait all I/O finished or cancel them */
1138
1139 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1140 list_del(&ns->list);
1141 del_gendisk(ns->disk);
1142 nvme_ns_free(ns);
1143 }
1144
1145 nvme_free_queues(dev);
1146
1147 return 0;
1148}
1149
1150/* XXX: Use an ida or something to let remove / add work correctly */
1151static void nvme_set_instance(struct nvme_dev *dev)
1152{
1153 static int instance;
1154 dev->instance = instance++;
1155}
1156
1157static void nvme_release_instance(struct nvme_dev *dev)
1158{
1159}
1160
1161static int __devinit nvme_probe(struct pci_dev *pdev,
1162 const struct pci_device_id *id)
1163{
574e8b95 1164 int bars, result = -ENOMEM;
b60503ba
MW
1165 struct nvme_dev *dev;
1166
1167 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1168 if (!dev)
1169 return -ENOMEM;
1170 dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
1171 GFP_KERNEL);
1172 if (!dev->entry)
1173 goto free;
1b23484b
MW
1174 dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
1175 GFP_KERNEL);
b60503ba
MW
1176 if (!dev->queues)
1177 goto free;
1178
0ee5a7d7
SMM
1179 if (pci_enable_device_mem(pdev))
1180 goto free;
f64d3365 1181 pci_set_master(pdev);
574e8b95
MW
1182 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1183 if (pci_request_selected_regions(pdev, bars, "nvme"))
1184 goto disable;
0ee5a7d7 1185
b60503ba
MW
1186 INIT_LIST_HEAD(&dev->namespaces);
1187 dev->pci_dev = pdev;
1188 pci_set_drvdata(pdev, dev);
2930353f
MW
1189 dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1190 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
b60503ba 1191 nvme_set_instance(dev);
53c9577e 1192 dev->entry[0].vector = pdev->irq;
b60503ba
MW
1193
1194 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1195 if (!dev->bar) {
1196 result = -ENOMEM;
574e8b95 1197 goto disable_msix;
b60503ba
MW
1198 }
1199
1200 result = nvme_configure_admin_queue(dev);
1201 if (result)
1202 goto unmap;
1203 dev->queue_count++;
1204
1205 result = nvme_dev_add(dev);
1206 if (result)
1207 goto delete;
1208 return 0;
1209
1210 delete:
1211 nvme_free_queues(dev);
1212 unmap:
1213 iounmap(dev->bar);
574e8b95 1214 disable_msix:
b60503ba
MW
1215 pci_disable_msix(pdev);
1216 nvme_release_instance(dev);
574e8b95 1217 disable:
0ee5a7d7 1218 pci_disable_device(pdev);
574e8b95 1219 pci_release_regions(pdev);
b60503ba
MW
1220 free:
1221 kfree(dev->queues);
1222 kfree(dev->entry);
1223 kfree(dev);
1224 return result;
1225}
1226
1227static void __devexit nvme_remove(struct pci_dev *pdev)
1228{
1229 struct nvme_dev *dev = pci_get_drvdata(pdev);
1230 nvme_dev_remove(dev);
1231 pci_disable_msix(pdev);
1232 iounmap(dev->bar);
1233 nvme_release_instance(dev);
0ee5a7d7 1234 pci_disable_device(pdev);
574e8b95 1235 pci_release_regions(pdev);
b60503ba
MW
1236 kfree(dev->queues);
1237 kfree(dev->entry);
1238 kfree(dev);
1239}
1240
1241/* These functions are yet to be implemented */
1242#define nvme_error_detected NULL
1243#define nvme_dump_registers NULL
1244#define nvme_link_reset NULL
1245#define nvme_slot_reset NULL
1246#define nvme_error_resume NULL
1247#define nvme_suspend NULL
1248#define nvme_resume NULL
1249
1250static struct pci_error_handlers nvme_err_handler = {
1251 .error_detected = nvme_error_detected,
1252 .mmio_enabled = nvme_dump_registers,
1253 .link_reset = nvme_link_reset,
1254 .slot_reset = nvme_slot_reset,
1255 .resume = nvme_error_resume,
1256};
1257
1258/* Move to pci_ids.h later */
1259#define PCI_CLASS_STORAGE_EXPRESS 0x010802
1260
1261static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
1262 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
1263 { 0, }
1264};
1265MODULE_DEVICE_TABLE(pci, nvme_id_table);
1266
1267static struct pci_driver nvme_driver = {
1268 .name = "nvme",
1269 .id_table = nvme_id_table,
1270 .probe = nvme_probe,
1271 .remove = __devexit_p(nvme_remove),
1272 .suspend = nvme_suspend,
1273 .resume = nvme_resume,
1274 .err_handler = &nvme_err_handler,
1275};
1276
1277static int __init nvme_init(void)
1278{
1279 int result;
1280
1281 nvme_major = register_blkdev(nvme_major, "nvme");
1282 if (nvme_major <= 0)
1283 return -EBUSY;
1284
1285 result = pci_register_driver(&nvme_driver);
1286 if (!result)
1287 return 0;
1288
1289 unregister_blkdev(nvme_major, "nvme");
1290 return result;
1291}
1292
1293static void __exit nvme_exit(void)
1294{
1295 pci_unregister_driver(&nvme_driver);
1296 unregister_blkdev(nvme_major, "nvme");
1297}
1298
1299MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
1300MODULE_LICENSE("GPL");
db5d0c19 1301MODULE_VERSION("0.2");
b60503ba
MW
1302module_init(nvme_init);
1303module_exit(nvme_exit);