]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/block/nvme.c
NVMe: New driver
[mirror_ubuntu-bionic-kernel.git] / drivers / block / nvme.c
CommitLineData
b60503ba
MW
1/*
2 * NVM Express device driver
3 * Copyright (c) 2011, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17 */
18
19#include <linux/nvme.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
22#include <linux/errno.h>
23#include <linux/fs.h>
24#include <linux/genhd.h>
25#include <linux/init.h>
26#include <linux/interrupt.h>
27#include <linux/io.h>
28#include <linux/kdev_t.h>
29#include <linux/kernel.h>
30#include <linux/mm.h>
31#include <linux/module.h>
32#include <linux/moduleparam.h>
33#include <linux/pci.h>
34#include <linux/sched.h>
35#include <linux/slab.h>
36#include <linux/types.h>
37#include <linux/version.h>
38
39#define NVME_Q_DEPTH 1024
40#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
41#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
42#define NVME_MINORS 64
43
44static int nvme_major;
45module_param(nvme_major, int, 0);
46
47/*
48 * Represents an NVM Express device. Each nvme_dev is a PCI function.
49 */
50struct nvme_dev {
51 struct list_head node;
52 struct nvme_queue **queues;
53 u32 __iomem *dbs;
54 struct pci_dev *pci_dev;
55 int instance;
56 int queue_count;
57 u32 ctrl_config;
58 struct msix_entry *entry;
59 struct nvme_bar __iomem *bar;
60 struct list_head namespaces;
61};
62
63/*
64 * An NVM Express namespace is equivalent to a SCSI LUN
65 */
66struct nvme_ns {
67 struct list_head list;
68
69 struct nvme_dev *dev;
70 struct request_queue *queue;
71 struct gendisk *disk;
72
73 int ns_id;
74 int lba_shift;
75};
76
77/*
78 * An NVM Express queue. Each device has at least two (one for admin
79 * commands and one for I/O commands).
80 */
81struct nvme_queue {
82 struct device *q_dmadev;
83 spinlock_t q_lock;
84 struct nvme_command *sq_cmds;
85 volatile struct nvme_completion *cqes;
86 dma_addr_t sq_dma_addr;
87 dma_addr_t cq_dma_addr;
88 wait_queue_head_t sq_full;
89 struct bio_list sq_cong;
90 u32 __iomem *q_db;
91 u16 q_depth;
92 u16 cq_vector;
93 u16 sq_head;
94 u16 sq_tail;
95 u16 cq_head;
96 u16 cq_cycle;
97 unsigned long cmdid_data[];
98};
99
100/*
101 * Check we didin't inadvertently grow the command struct
102 */
103static inline void _nvme_check_size(void)
104{
105 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
106 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
107 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
108 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
109 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
110 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
111 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
112 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
113 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
114}
115
116/**
117 * alloc_cmdid - Allocate a Command ID
118 * @param nvmeq The queue that will be used for this command
119 * @param ctx A pointer that will be passed to the handler
120 * @param handler The ID of the handler to call
121 *
122 * Allocate a Command ID for a queue. The data passed in will
123 * be passed to the completion handler. This is implemented by using
124 * the bottom two bits of the ctx pointer to store the handler ID.
125 * Passing in a pointer that's not 4-byte aligned will cause a BUG.
126 * We can change this if it becomes a problem.
127 */
128static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx, int handler)
129{
130 int depth = nvmeq->q_depth;
131 unsigned long data = (unsigned long)ctx | handler;
132 int cmdid;
133
134 BUG_ON((unsigned long)ctx & 3);
135
136 do {
137 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
138 if (cmdid >= depth)
139 return -EBUSY;
140 } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
141
142 nvmeq->cmdid_data[cmdid + BITS_TO_LONGS(depth)] = data;
143 return cmdid;
144}
145
146static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
147 int handler)
148{
149 int cmdid;
150 wait_event_killable(nvmeq->sq_full,
151 (cmdid = alloc_cmdid(nvmeq, ctx, handler)) >= 0);
152 return (cmdid < 0) ? -EINTR : cmdid;
153}
154
155/* If you need more than four handlers, you'll need to change how
156 * alloc_cmdid and nvme_process_cq work
157 */
158enum {
159 sync_completion_id = 0,
160 bio_completion_id,
161};
162
163static unsigned long free_cmdid(struct nvme_queue *nvmeq, int cmdid)
164{
165 unsigned long data;
166
167 data = nvmeq->cmdid_data[cmdid + BITS_TO_LONGS(nvmeq->q_depth)];
168 clear_bit(cmdid, nvmeq->cmdid_data);
169 wake_up(&nvmeq->sq_full);
170 return data;
171}
172
173static struct nvme_queue *get_nvmeq(struct nvme_ns *ns)
174{
175 return ns->dev->queues[1];
176}
177
178static void put_nvmeq(struct nvme_queue *nvmeq)
179{
180}
181
182/**
183 * nvme_submit_cmd: Copy a command into a queue and ring the doorbell
184 * @nvmeq: The queue to use
185 * @cmd: The command to send
186 *
187 * Safe to use from interrupt context
188 */
189static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
190{
191 unsigned long flags;
192 u16 tail;
193 /* XXX: Need to check tail isn't going to overrun head */
194 spin_lock_irqsave(&nvmeq->q_lock, flags);
195 tail = nvmeq->sq_tail;
196 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
197 writel(tail, nvmeq->q_db);
198 if (++tail == nvmeq->q_depth)
199 tail = 0;
200 nvmeq->sq_tail = tail;
201 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
202
203 return 0;
204}
205
206struct nvme_req_info {
207 struct bio *bio;
208 int nents;
209 struct scatterlist sg[0];
210};
211
212/* XXX: use a mempool */
213static struct nvme_req_info *alloc_info(unsigned nseg, gfp_t gfp)
214{
215 return kmalloc(sizeof(struct nvme_req_info) +
216 sizeof(struct scatterlist) * nseg, gfp);
217}
218
219static void free_info(struct nvme_req_info *info)
220{
221 kfree(info);
222}
223
224static void bio_completion(struct nvme_queue *nvmeq, void *ctx,
225 struct nvme_completion *cqe)
226{
227 struct nvme_req_info *info = ctx;
228 struct bio *bio = info->bio;
229 u16 status = le16_to_cpup(&cqe->status) >> 1;
230
231 dma_unmap_sg(nvmeq->q_dmadev, info->sg, info->nents,
232 bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
233 free_info(info);
234 bio_endio(bio, status ? -EIO : 0);
235}
236
237static int nvme_map_bio(struct device *dev, struct nvme_req_info *info,
238 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
239{
240 struct bio_vec *bvec;
241 struct scatterlist *sg = info->sg;
242 int i, nsegs;
243
244 sg_init_table(sg, psegs);
245 bio_for_each_segment(bvec, bio, i) {
246 sg_set_page(sg, bvec->bv_page, bvec->bv_len, bvec->bv_offset);
247 /* XXX: handle non-mergable here */
248 nsegs++;
249 }
250 info->nents = nsegs;
251
252 return dma_map_sg(dev, info->sg, info->nents, dma_dir);
253}
254
255static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
256 struct bio *bio)
257{
258 struct nvme_rw_command *cmnd;
259 struct nvme_req_info *info;
260 enum dma_data_direction dma_dir;
261 int cmdid;
262 u16 control;
263 u32 dsmgmt;
264 unsigned long flags;
265 int psegs = bio_phys_segments(ns->queue, bio);
266
267 info = alloc_info(psegs, GFP_NOIO);
268 if (!info)
269 goto congestion;
270 info->bio = bio;
271
272 cmdid = alloc_cmdid(nvmeq, info, bio_completion_id);
273 if (unlikely(cmdid < 0))
274 goto free_info;
275
276 control = 0;
277 if (bio->bi_rw & REQ_FUA)
278 control |= NVME_RW_FUA;
279 if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
280 control |= NVME_RW_LR;
281
282 dsmgmt = 0;
283 if (bio->bi_rw & REQ_RAHEAD)
284 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
285
286 spin_lock_irqsave(&nvmeq->q_lock, flags);
287 cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail].rw;
288
289 if (bio_data_dir(bio)) {
290 cmnd->opcode = nvme_cmd_write;
291 dma_dir = DMA_TO_DEVICE;
292 } else {
293 cmnd->opcode = nvme_cmd_read;
294 dma_dir = DMA_FROM_DEVICE;
295 }
296
297 nvme_map_bio(nvmeq->q_dmadev, info, bio, dma_dir, psegs);
298
299 cmnd->flags = 1;
300 cmnd->command_id = cmdid;
301 cmnd->nsid = cpu_to_le32(ns->ns_id);
302 cmnd->prp1 = cpu_to_le64(sg_phys(info->sg));
303 /* XXX: Support more than one PRP */
304 cmnd->slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9));
305 cmnd->length = cpu_to_le16((bio->bi_size >> ns->lba_shift) - 1);
306 cmnd->control = cpu_to_le16(control);
307 cmnd->dsmgmt = cpu_to_le32(dsmgmt);
308
309 writel(nvmeq->sq_tail, nvmeq->q_db);
310 if (++nvmeq->sq_tail == nvmeq->q_depth)
311 nvmeq->sq_tail = 0;
312
313 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
314
315 return 0;
316
317 free_info:
318 free_info(info);
319 congestion:
320 return -EBUSY;
321}
322
323/*
324 * NB: return value of non-zero would mean that we were a stacking driver.
325 * make_request must always succeed.
326 */
327static int nvme_make_request(struct request_queue *q, struct bio *bio)
328{
329 struct nvme_ns *ns = q->queuedata;
330 struct nvme_queue *nvmeq = get_nvmeq(ns);
331
332 if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
333 blk_set_queue_congested(q, rw_is_sync(bio->bi_rw));
334 bio_list_add(&nvmeq->sq_cong, bio);
335 }
336 put_nvmeq(nvmeq);
337
338 return 0;
339}
340
341struct sync_cmd_info {
342 struct task_struct *task;
343 u32 result;
344 int status;
345};
346
347static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
348 struct nvme_completion *cqe)
349{
350 struct sync_cmd_info *cmdinfo = ctx;
351 cmdinfo->result = le32_to_cpup(&cqe->result);
352 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
353 wake_up_process(cmdinfo->task);
354}
355
356typedef void (*completion_fn)(struct nvme_queue *, void *,
357 struct nvme_completion *);
358
359static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
360{
361 u16 head, cycle;
362
363 static const completion_fn completions[4] = {
364 [sync_completion_id] = sync_completion,
365 [bio_completion_id] = bio_completion,
366 };
367
368 head = nvmeq->cq_head;
369 cycle = nvmeq->cq_cycle;
370
371 for (;;) {
372 unsigned long data;
373 void *ptr;
374 unsigned char handler;
375 struct nvme_completion cqe = nvmeq->cqes[head];
376 if ((le16_to_cpu(cqe.status) & 1) != cycle)
377 break;
378 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
379 if (++head == nvmeq->q_depth) {
380 head = 0;
381 cycle = !cycle;
382 }
383
384 data = free_cmdid(nvmeq, cqe.command_id);
385 handler = data & 3;
386 ptr = (void *)(data & ~3UL);
387 completions[handler](nvmeq, ptr, &cqe);
388 }
389
390 /* If the controller ignores the cq head doorbell and continuously
391 * writes to the queue, it is theoretically possible to wrap around
392 * the queue twice and mistakenly return IRQ_NONE. Linux only
393 * requires that 0.1% of your interrupts are handled, so this isn't
394 * a big problem.
395 */
396 if (head == nvmeq->cq_head && cycle == nvmeq->cq_cycle)
397 return IRQ_NONE;
398
399 writel(head, nvmeq->q_db + 1);
400 nvmeq->cq_head = head;
401 nvmeq->cq_cycle = cycle;
402
403 return IRQ_HANDLED;
404}
405
406static irqreturn_t nvme_irq(int irq, void *data)
407{
408 return nvme_process_cq(data);
409}
410
411/*
412 * Returns 0 on success. If the result is negative, it's a Linux error code;
413 * if the result is positive, it's an NVM Express status code
414 */
415static int nvme_submit_sync_cmd(struct nvme_queue *q, struct nvme_command *cmd,
416 u32 *result)
417{
418 int cmdid;
419 struct sync_cmd_info cmdinfo;
420
421 cmdinfo.task = current;
422 cmdinfo.status = -EINTR;
423
424 cmdid = alloc_cmdid_killable(q, &cmdinfo, sync_completion_id);
425 if (cmdid < 0)
426 return cmdid;
427 cmd->common.command_id = cmdid;
428
429 set_current_state(TASK_UNINTERRUPTIBLE);
430 nvme_submit_cmd(q, cmd);
431 schedule();
432
433 if (result)
434 *result = cmdinfo.result;
435
436 return cmdinfo.status;
437}
438
439static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
440 u32 *result)
441{
442 return nvme_submit_sync_cmd(dev->queues[0], cmd, result);
443}
444
445static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
446{
447 int status;
448 struct nvme_command c;
449
450 memset(&c, 0, sizeof(c));
451 c.delete_queue.opcode = opcode;
452 c.delete_queue.qid = cpu_to_le16(id);
453
454 status = nvme_submit_admin_cmd(dev, &c, NULL);
455 if (status)
456 return -EIO;
457 return 0;
458}
459
460static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
461 struct nvme_queue *nvmeq)
462{
463 int status;
464 struct nvme_command c;
465 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
466
467 memset(&c, 0, sizeof(c));
468 c.create_cq.opcode = nvme_admin_create_cq;
469 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
470 c.create_cq.cqid = cpu_to_le16(qid);
471 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
472 c.create_cq.cq_flags = cpu_to_le16(flags);
473 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
474
475 status = nvme_submit_admin_cmd(dev, &c, NULL);
476 if (status)
477 return -EIO;
478 return 0;
479}
480
481static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
482 struct nvme_queue *nvmeq)
483{
484 int status;
485 struct nvme_command c;
486 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
487
488 memset(&c, 0, sizeof(c));
489 c.create_sq.opcode = nvme_admin_create_sq;
490 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
491 c.create_sq.sqid = cpu_to_le16(qid);
492 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
493 c.create_sq.sq_flags = cpu_to_le16(flags);
494 c.create_sq.cqid = cpu_to_le16(qid);
495
496 status = nvme_submit_admin_cmd(dev, &c, NULL);
497 if (status)
498 return -EIO;
499 return 0;
500}
501
502static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
503{
504 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
505}
506
507static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
508{
509 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
510}
511
512static void nvme_free_queue(struct nvme_dev *dev, int qid)
513{
514 struct nvme_queue *nvmeq = dev->queues[qid];
515
516 free_irq(dev->entry[nvmeq->cq_vector].vector, nvmeq);
517
518 /* Don't tell the adapter to delete the admin queue */
519 if (qid) {
520 adapter_delete_sq(dev, qid);
521 adapter_delete_cq(dev, qid);
522 }
523
524 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
525 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
526 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
527 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
528 kfree(nvmeq);
529}
530
531static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
532 int depth, int vector)
533{
534 struct device *dmadev = &dev->pci_dev->dev;
535 unsigned extra = (depth + BITS_TO_LONGS(depth)) * sizeof(long);
536 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
537 if (!nvmeq)
538 return NULL;
539
540 nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
541 &nvmeq->cq_dma_addr, GFP_KERNEL);
542 if (!nvmeq->cqes)
543 goto free_nvmeq;
544 memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
545
546 nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
547 &nvmeq->sq_dma_addr, GFP_KERNEL);
548 if (!nvmeq->sq_cmds)
549 goto free_cqdma;
550
551 nvmeq->q_dmadev = dmadev;
552 spin_lock_init(&nvmeq->q_lock);
553 nvmeq->cq_head = 0;
554 nvmeq->cq_cycle = 1;
555 init_waitqueue_head(&nvmeq->sq_full);
556 bio_list_init(&nvmeq->sq_cong);
557 nvmeq->q_db = &dev->dbs[qid * 2];
558 nvmeq->q_depth = depth;
559 nvmeq->cq_vector = vector;
560
561 return nvmeq;
562
563 free_cqdma:
564 dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes,
565 nvmeq->cq_dma_addr);
566 free_nvmeq:
567 kfree(nvmeq);
568 return NULL;
569}
570
571static __devinit struct nvme_queue *nvme_create_queue(struct nvme_dev *dev,
572 int qid, int cq_size, int vector)
573{
574 int result;
575 struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
576
577 result = adapter_alloc_cq(dev, qid, nvmeq);
578 if (result < 0)
579 goto free_nvmeq;
580
581 result = adapter_alloc_sq(dev, qid, nvmeq);
582 if (result < 0)
583 goto release_cq;
584
585 result = request_irq(dev->entry[vector].vector, nvme_irq,
586 IRQF_DISABLED | IRQF_SHARED, "nvme", nvmeq);
587 if (result < 0)
588 goto release_sq;
589
590 return nvmeq;
591
592 release_sq:
593 adapter_delete_sq(dev, qid);
594 release_cq:
595 adapter_delete_cq(dev, qid);
596 free_nvmeq:
597 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
598 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
599 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
600 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
601 kfree(nvmeq);
602 return NULL;
603}
604
605static int __devinit nvme_configure_admin_queue(struct nvme_dev *dev)
606{
607 int result;
608 u32 aqa;
609 struct nvme_queue *nvmeq;
610
611 dev->dbs = ((void __iomem *)dev->bar) + 4096;
612
613 nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
614
615 aqa = nvmeq->q_depth - 1;
616 aqa |= aqa << 16;
617
618 dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
619 dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
620 dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
621
622 writel(aqa, &dev->bar->aqa);
623 writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
624 writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
625 writel(dev->ctrl_config, &dev->bar->cc);
626
627 while (!(readl(&dev->bar->csts) & NVME_CSTS_RDY)) {
628 msleep(100);
629 if (fatal_signal_pending(current))
630 return -EINTR;
631 }
632
633 result = request_irq(dev->entry[0].vector, nvme_irq,
634 IRQF_DISABLED | IRQF_SHARED, "nvme admin", nvmeq);
635 dev->queues[0] = nvmeq;
636 return result;
637}
638
639static int nvme_identify(struct nvme_ns *ns, void __user *addr, int cns)
640{
641 struct nvme_dev *dev = ns->dev;
642 int status;
643 struct nvme_command c;
644 void *page;
645 dma_addr_t dma_addr;
646
647 page = dma_alloc_coherent(&dev->pci_dev->dev, 4096, &dma_addr,
648 GFP_KERNEL);
649
650 memset(&c, 0, sizeof(c));
651 c.identify.opcode = nvme_admin_identify;
652 c.identify.nsid = cns ? 0 : cpu_to_le32(ns->ns_id);
653 c.identify.prp1 = cpu_to_le64(dma_addr);
654 c.identify.cns = cpu_to_le32(cns);
655
656 status = nvme_submit_admin_cmd(dev, &c, NULL);
657
658 if (status)
659 status = -EIO;
660 else if (copy_to_user(addr, page, 4096))
661 status = -EFAULT;
662
663 dma_free_coherent(&dev->pci_dev->dev, 4096, page, dma_addr);
664
665 return status;
666}
667
668static int nvme_get_range_type(struct nvme_ns *ns, void __user *addr)
669{
670 struct nvme_dev *dev = ns->dev;
671 int status;
672 struct nvme_command c;
673 void *page;
674 dma_addr_t dma_addr;
675
676 page = dma_alloc_coherent(&dev->pci_dev->dev, 4096, &dma_addr,
677 GFP_KERNEL);
678
679 memset(&c, 0, sizeof(c));
680 c.features.opcode = nvme_admin_get_features;
681 c.features.nsid = cpu_to_le32(ns->ns_id);
682 c.features.prp1 = cpu_to_le64(dma_addr);
683 c.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
684
685 status = nvme_submit_admin_cmd(dev, &c, NULL);
686
687 /* XXX: Assuming first range for now */
688 if (status)
689 status = -EIO;
690 else if (copy_to_user(addr, page, 64))
691 status = -EFAULT;
692
693 dma_free_coherent(&dev->pci_dev->dev, 4096, page, dma_addr);
694
695 return status;
696}
697
698static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
699 unsigned long arg)
700{
701 struct nvme_ns *ns = bdev->bd_disk->private_data;
702
703 switch (cmd) {
704 case NVME_IOCTL_IDENTIFY_NS:
705 return nvme_identify(ns, (void __user *)arg, 0);
706 case NVME_IOCTL_IDENTIFY_CTRL:
707 return nvme_identify(ns, (void __user *)arg, 1);
708 case NVME_IOCTL_GET_RANGE_TYPE:
709 return nvme_get_range_type(ns, (void __user *)arg);
710 default:
711 return -ENOTTY;
712 }
713}
714
715static const struct block_device_operations nvme_fops = {
716 .owner = THIS_MODULE,
717 .ioctl = nvme_ioctl,
718};
719
720static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int index,
721 struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
722{
723 struct nvme_ns *ns;
724 struct gendisk *disk;
725 int lbaf;
726
727 if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
728 return NULL;
729
730 ns = kzalloc(sizeof(*ns), GFP_KERNEL);
731 if (!ns)
732 return NULL;
733 ns->queue = blk_alloc_queue(GFP_KERNEL);
734 if (!ns->queue)
735 goto out_free_ns;
736 ns->queue->queue_flags = QUEUE_FLAG_DEFAULT | QUEUE_FLAG_NOMERGES |
737 QUEUE_FLAG_NONROT | QUEUE_FLAG_DISCARD;
738 blk_queue_make_request(ns->queue, nvme_make_request);
739 ns->dev = dev;
740 ns->queue->queuedata = ns;
741
742 disk = alloc_disk(NVME_MINORS);
743 if (!disk)
744 goto out_free_queue;
745 ns->ns_id = index;
746 ns->disk = disk;
747 lbaf = id->flbas & 0xf;
748 ns->lba_shift = id->lbaf[lbaf].ds;
749
750 disk->major = nvme_major;
751 disk->minors = NVME_MINORS;
752 disk->first_minor = NVME_MINORS * index;
753 disk->fops = &nvme_fops;
754 disk->private_data = ns;
755 disk->queue = ns->queue;
756 sprintf(disk->disk_name, "nvme%dn%d", dev->instance, index);
757 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
758
759 return ns;
760
761 out_free_queue:
762 blk_cleanup_queue(ns->queue);
763 out_free_ns:
764 kfree(ns);
765 return NULL;
766}
767
768static void nvme_ns_free(struct nvme_ns *ns)
769{
770 put_disk(ns->disk);
771 blk_cleanup_queue(ns->queue);
772 kfree(ns);
773}
774
775static int set_queue_count(struct nvme_dev *dev, int sq_count, int cq_count)
776{
777 int status;
778 u32 result;
779 struct nvme_command c;
780 u32 q_count = (sq_count - 1) | ((cq_count - 1) << 16);
781
782 memset(&c, 0, sizeof(c));
783 c.features.opcode = nvme_admin_get_features;
784 c.features.fid = cpu_to_le32(NVME_FEAT_NUM_QUEUES);
785 c.features.dword11 = cpu_to_le32(q_count);
786
787 status = nvme_submit_admin_cmd(dev, &c, &result);
788 if (status)
789 return -EIO;
790 return min(result & 0xffff, result >> 16) + 1;
791}
792
793/* XXX: Create per-CPU queues */
794static int __devinit nvme_setup_io_queues(struct nvme_dev *dev)
795{
796 int this_cpu;
797
798 set_queue_count(dev, 1, 1);
799
800 this_cpu = get_cpu();
801 dev->queues[1] = nvme_create_queue(dev, 1, NVME_Q_DEPTH, this_cpu);
802 put_cpu();
803 if (!dev->queues[1])
804 return -ENOMEM;
805 dev->queue_count++;
806
807 return 0;
808}
809
810static void nvme_free_queues(struct nvme_dev *dev)
811{
812 int i;
813
814 for (i = dev->queue_count - 1; i >= 0; i--)
815 nvme_free_queue(dev, i);
816}
817
818static int __devinit nvme_dev_add(struct nvme_dev *dev)
819{
820 int res, nn, i;
821 struct nvme_ns *ns, *next;
822 void *id;
823 dma_addr_t dma_addr;
824 struct nvme_command cid, crt;
825
826 res = nvme_setup_io_queues(dev);
827 if (res)
828 return res;
829
830 /* XXX: Switch to a SG list once prp2 works */
831 id = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
832 GFP_KERNEL);
833
834 memset(&cid, 0, sizeof(cid));
835 cid.identify.opcode = nvme_admin_identify;
836 cid.identify.nsid = 0;
837 cid.identify.prp1 = cpu_to_le64(dma_addr);
838 cid.identify.cns = cpu_to_le32(1);
839
840 res = nvme_submit_admin_cmd(dev, &cid, NULL);
841 if (res) {
842 res = -EIO;
843 goto out_free;
844 }
845
846 nn = le32_to_cpup(&((struct nvme_id_ctrl *)id)->nn);
847
848 cid.identify.cns = 0;
849 memset(&crt, 0, sizeof(crt));
850 crt.features.opcode = nvme_admin_get_features;
851 crt.features.prp1 = cpu_to_le64(dma_addr + 4096);
852 crt.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
853
854 for (i = 0; i < nn; i++) {
855 cid.identify.nsid = cpu_to_le32(i);
856 res = nvme_submit_admin_cmd(dev, &cid, NULL);
857 if (res)
858 continue;
859
860 if (((struct nvme_id_ns *)id)->ncap == 0)
861 continue;
862
863 crt.features.nsid = cpu_to_le32(i);
864 res = nvme_submit_admin_cmd(dev, &crt, NULL);
865 if (res)
866 continue;
867
868 ns = nvme_alloc_ns(dev, i, id, id + 4096);
869 if (ns)
870 list_add_tail(&ns->list, &dev->namespaces);
871 }
872 list_for_each_entry(ns, &dev->namespaces, list)
873 add_disk(ns->disk);
874
875 dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
876 return 0;
877
878 out_free:
879 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
880 list_del(&ns->list);
881 nvme_ns_free(ns);
882 }
883
884 dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
885 return res;
886}
887
888static int nvme_dev_remove(struct nvme_dev *dev)
889{
890 struct nvme_ns *ns, *next;
891
892 /* TODO: wait all I/O finished or cancel them */
893
894 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
895 list_del(&ns->list);
896 del_gendisk(ns->disk);
897 nvme_ns_free(ns);
898 }
899
900 nvme_free_queues(dev);
901
902 return 0;
903}
904
905/* XXX: Use an ida or something to let remove / add work correctly */
906static void nvme_set_instance(struct nvme_dev *dev)
907{
908 static int instance;
909 dev->instance = instance++;
910}
911
912static void nvme_release_instance(struct nvme_dev *dev)
913{
914}
915
916static int __devinit nvme_probe(struct pci_dev *pdev,
917 const struct pci_device_id *id)
918{
919 int result = -ENOMEM;
920 struct nvme_dev *dev;
921
922 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
923 if (!dev)
924 return -ENOMEM;
925 dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
926 GFP_KERNEL);
927 if (!dev->entry)
928 goto free;
929 dev->queues = kcalloc(2, sizeof(void *), GFP_KERNEL);
930 if (!dev->queues)
931 goto free;
932
933 INIT_LIST_HEAD(&dev->namespaces);
934 dev->pci_dev = pdev;
935 pci_set_drvdata(pdev, dev);
936 dma_set_mask(&dev->pci_dev->dev, DMA_BIT_MASK(64));
937 nvme_set_instance(dev);
938
939 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
940 if (!dev->bar) {
941 result = -ENOMEM;
942 goto disable;
943 }
944
945 result = nvme_configure_admin_queue(dev);
946 if (result)
947 goto unmap;
948 dev->queue_count++;
949
950 result = nvme_dev_add(dev);
951 if (result)
952 goto delete;
953 return 0;
954
955 delete:
956 nvme_free_queues(dev);
957 unmap:
958 iounmap(dev->bar);
959 disable:
960 pci_disable_msix(pdev);
961 nvme_release_instance(dev);
962 free:
963 kfree(dev->queues);
964 kfree(dev->entry);
965 kfree(dev);
966 return result;
967}
968
969static void __devexit nvme_remove(struct pci_dev *pdev)
970{
971 struct nvme_dev *dev = pci_get_drvdata(pdev);
972 nvme_dev_remove(dev);
973 pci_disable_msix(pdev);
974 iounmap(dev->bar);
975 nvme_release_instance(dev);
976 kfree(dev->queues);
977 kfree(dev->entry);
978 kfree(dev);
979}
980
981/* These functions are yet to be implemented */
982#define nvme_error_detected NULL
983#define nvme_dump_registers NULL
984#define nvme_link_reset NULL
985#define nvme_slot_reset NULL
986#define nvme_error_resume NULL
987#define nvme_suspend NULL
988#define nvme_resume NULL
989
990static struct pci_error_handlers nvme_err_handler = {
991 .error_detected = nvme_error_detected,
992 .mmio_enabled = nvme_dump_registers,
993 .link_reset = nvme_link_reset,
994 .slot_reset = nvme_slot_reset,
995 .resume = nvme_error_resume,
996};
997
998/* Move to pci_ids.h later */
999#define PCI_CLASS_STORAGE_EXPRESS 0x010802
1000
1001static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
1002 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
1003 { 0, }
1004};
1005MODULE_DEVICE_TABLE(pci, nvme_id_table);
1006
1007static struct pci_driver nvme_driver = {
1008 .name = "nvme",
1009 .id_table = nvme_id_table,
1010 .probe = nvme_probe,
1011 .remove = __devexit_p(nvme_remove),
1012 .suspend = nvme_suspend,
1013 .resume = nvme_resume,
1014 .err_handler = &nvme_err_handler,
1015};
1016
1017static int __init nvme_init(void)
1018{
1019 int result;
1020
1021 nvme_major = register_blkdev(nvme_major, "nvme");
1022 if (nvme_major <= 0)
1023 return -EBUSY;
1024
1025 result = pci_register_driver(&nvme_driver);
1026 if (!result)
1027 return 0;
1028
1029 unregister_blkdev(nvme_major, "nvme");
1030 return result;
1031}
1032
1033static void __exit nvme_exit(void)
1034{
1035 pci_unregister_driver(&nvme_driver);
1036 unregister_blkdev(nvme_major, "nvme");
1037}
1038
1039MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
1040MODULE_LICENSE("GPL");
1041MODULE_VERSION("0.1");
1042module_init(nvme_init);
1043module_exit(nvme_exit);