]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/memory-failure.c
thp, mm: split_huge_page(): caller need to lock page
[mirror_ubuntu-bionic-kernel.git] / mm / memory-failure.c
CommitLineData
6a46079c
AK
1/*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
4 *
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
8 *
9 * High level machine check handler. Handles pages reported by the
1c80b990 10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
6a46079c 11 * failure.
1c80b990
AK
12 *
13 * In addition there is a "soft offline" entry point that allows stop using
14 * not-yet-corrupted-by-suspicious pages without killing anything.
6a46079c
AK
15 *
16 * Handles page cache pages in various states. The tricky part
1c80b990
AK
17 * here is that we can access any page asynchronously in respect to
18 * other VM users, because memory failures could happen anytime and
19 * anywhere. This could violate some of their assumptions. This is why
20 * this code has to be extremely careful. Generally it tries to use
21 * normal locking rules, as in get the standard locks, even if that means
22 * the error handling takes potentially a long time.
e0de78df
AK
23 *
24 * It can be very tempting to add handling for obscure cases here.
25 * In general any code for handling new cases should only be added iff:
26 * - You know how to test it.
27 * - You have a test that can be added to mce-test
28 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
29 * - The case actually shows up as a frequent (top 10) page state in
30 * tools/vm/page-types when running a real workload.
1c80b990
AK
31 *
32 * There are several operations here with exponential complexity because
33 * of unsuitable VM data structures. For example the operation to map back
34 * from RMAP chains to processes has to walk the complete process list and
35 * has non linear complexity with the number. But since memory corruptions
36 * are rare we hope to get away with this. This avoids impacting the core
37 * VM.
6a46079c 38 */
6a46079c
AK
39#include <linux/kernel.h>
40#include <linux/mm.h>
41#include <linux/page-flags.h>
478c5ffc 42#include <linux/kernel-page-flags.h>
6a46079c 43#include <linux/sched.h>
01e00f88 44#include <linux/ksm.h>
6a46079c 45#include <linux/rmap.h>
b9e15baf 46#include <linux/export.h>
6a46079c
AK
47#include <linux/pagemap.h>
48#include <linux/swap.h>
49#include <linux/backing-dev.h>
facb6011
AK
50#include <linux/migrate.h>
51#include <linux/page-isolation.h>
52#include <linux/suspend.h>
5a0e3ad6 53#include <linux/slab.h>
bf998156 54#include <linux/swapops.h>
7af446a8 55#include <linux/hugetlb.h>
20d6c96b 56#include <linux/memory_hotplug.h>
5db8a73a 57#include <linux/mm_inline.h>
ea8f5fb8 58#include <linux/kfifo.h>
a5f65109 59#include <linux/ratelimit.h>
6a46079c 60#include "internal.h"
97f0b134 61#include "ras/ras_event.h"
6a46079c
AK
62
63int sysctl_memory_failure_early_kill __read_mostly = 0;
64
65int sysctl_memory_failure_recovery __read_mostly = 1;
66
293c07e3 67atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
6a46079c 68
27df5068
AK
69#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
70
1bfe5feb 71u32 hwpoison_filter_enable = 0;
7c116f2b
WF
72u32 hwpoison_filter_dev_major = ~0U;
73u32 hwpoison_filter_dev_minor = ~0U;
478c5ffc
WF
74u64 hwpoison_filter_flags_mask;
75u64 hwpoison_filter_flags_value;
1bfe5feb 76EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
7c116f2b
WF
77EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
78EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
478c5ffc
WF
79EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
80EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
7c116f2b
WF
81
82static int hwpoison_filter_dev(struct page *p)
83{
84 struct address_space *mapping;
85 dev_t dev;
86
87 if (hwpoison_filter_dev_major == ~0U &&
88 hwpoison_filter_dev_minor == ~0U)
89 return 0;
90
91 /*
1c80b990 92 * page_mapping() does not accept slab pages.
7c116f2b
WF
93 */
94 if (PageSlab(p))
95 return -EINVAL;
96
97 mapping = page_mapping(p);
98 if (mapping == NULL || mapping->host == NULL)
99 return -EINVAL;
100
101 dev = mapping->host->i_sb->s_dev;
102 if (hwpoison_filter_dev_major != ~0U &&
103 hwpoison_filter_dev_major != MAJOR(dev))
104 return -EINVAL;
105 if (hwpoison_filter_dev_minor != ~0U &&
106 hwpoison_filter_dev_minor != MINOR(dev))
107 return -EINVAL;
108
109 return 0;
110}
111
478c5ffc
WF
112static int hwpoison_filter_flags(struct page *p)
113{
114 if (!hwpoison_filter_flags_mask)
115 return 0;
116
117 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
118 hwpoison_filter_flags_value)
119 return 0;
120 else
121 return -EINVAL;
122}
123
4fd466eb
AK
124/*
125 * This allows stress tests to limit test scope to a collection of tasks
126 * by putting them under some memcg. This prevents killing unrelated/important
127 * processes such as /sbin/init. Note that the target task may share clean
128 * pages with init (eg. libc text), which is harmless. If the target task
129 * share _dirty_ pages with another task B, the test scheme must make sure B
130 * is also included in the memcg. At last, due to race conditions this filter
131 * can only guarantee that the page either belongs to the memcg tasks, or is
132 * a freed page.
133 */
94a59fb3 134#ifdef CONFIG_MEMCG
4fd466eb
AK
135u64 hwpoison_filter_memcg;
136EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
137static int hwpoison_filter_task(struct page *p)
138{
4fd466eb
AK
139 if (!hwpoison_filter_memcg)
140 return 0;
141
94a59fb3 142 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
4fd466eb
AK
143 return -EINVAL;
144
145 return 0;
146}
147#else
148static int hwpoison_filter_task(struct page *p) { return 0; }
149#endif
150
7c116f2b
WF
151int hwpoison_filter(struct page *p)
152{
1bfe5feb
HL
153 if (!hwpoison_filter_enable)
154 return 0;
155
7c116f2b
WF
156 if (hwpoison_filter_dev(p))
157 return -EINVAL;
158
478c5ffc
WF
159 if (hwpoison_filter_flags(p))
160 return -EINVAL;
161
4fd466eb
AK
162 if (hwpoison_filter_task(p))
163 return -EINVAL;
164
7c116f2b
WF
165 return 0;
166}
27df5068
AK
167#else
168int hwpoison_filter(struct page *p)
169{
170 return 0;
171}
172#endif
173
7c116f2b
WF
174EXPORT_SYMBOL_GPL(hwpoison_filter);
175
6a46079c 176/*
7329bbeb
TL
177 * Send all the processes who have the page mapped a signal.
178 * ``action optional'' if they are not immediately affected by the error
179 * ``action required'' if error happened in current execution context
6a46079c 180 */
7329bbeb
TL
181static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
182 unsigned long pfn, struct page *page, int flags)
6a46079c
AK
183{
184 struct siginfo si;
185 int ret;
186
187 printk(KERN_ERR
7329bbeb 188 "MCE %#lx: Killing %s:%d due to hardware memory corruption\n",
6a46079c
AK
189 pfn, t->comm, t->pid);
190 si.si_signo = SIGBUS;
191 si.si_errno = 0;
6a46079c
AK
192 si.si_addr = (void *)addr;
193#ifdef __ARCH_SI_TRAPNO
194 si.si_trapno = trapno;
195#endif
f9121153 196 si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
7329bbeb 197
a70ffcac 198 if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
7329bbeb 199 si.si_code = BUS_MCEERR_AR;
a70ffcac 200 ret = force_sig_info(SIGBUS, &si, current);
7329bbeb
TL
201 } else {
202 /*
203 * Don't use force here, it's convenient if the signal
204 * can be temporarily blocked.
205 * This could cause a loop when the user sets SIGBUS
206 * to SIG_IGN, but hopefully no one will do that?
207 */
208 si.si_code = BUS_MCEERR_AO;
209 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
210 }
6a46079c
AK
211 if (ret < 0)
212 printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
213 t->comm, t->pid, ret);
214 return ret;
215}
216
588f9ce6
AK
217/*
218 * When a unknown page type is encountered drain as many buffers as possible
219 * in the hope to turn the page into a LRU or free page, which we can handle.
220 */
facb6011 221void shake_page(struct page *p, int access)
588f9ce6
AK
222{
223 if (!PageSlab(p)) {
224 lru_add_drain_all();
225 if (PageLRU(p))
226 return;
c0554329 227 drain_all_pages(page_zone(p));
588f9ce6
AK
228 if (PageLRU(p) || is_free_buddy_page(p))
229 return;
230 }
facb6011 231
588f9ce6 232 /*
6b4f7799
JW
233 * Only call shrink_node_slabs here (which would also shrink
234 * other caches) if access is not potentially fatal.
588f9ce6 235 */
cb731d6c
VD
236 if (access)
237 drop_slab_node(page_to_nid(p));
588f9ce6
AK
238}
239EXPORT_SYMBOL_GPL(shake_page);
240
6a46079c
AK
241/*
242 * Kill all processes that have a poisoned page mapped and then isolate
243 * the page.
244 *
245 * General strategy:
246 * Find all processes having the page mapped and kill them.
247 * But we keep a page reference around so that the page is not
248 * actually freed yet.
249 * Then stash the page away
250 *
251 * There's no convenient way to get back to mapped processes
252 * from the VMAs. So do a brute-force search over all
253 * running processes.
254 *
255 * Remember that machine checks are not common (or rather
256 * if they are common you have other problems), so this shouldn't
257 * be a performance issue.
258 *
259 * Also there are some races possible while we get from the
260 * error detection to actually handle it.
261 */
262
263struct to_kill {
264 struct list_head nd;
265 struct task_struct *tsk;
266 unsigned long addr;
9033ae16 267 char addr_valid;
6a46079c
AK
268};
269
270/*
271 * Failure handling: if we can't find or can't kill a process there's
272 * not much we can do. We just print a message and ignore otherwise.
273 */
274
275/*
276 * Schedule a process for later kill.
277 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
278 * TBD would GFP_NOIO be enough?
279 */
280static void add_to_kill(struct task_struct *tsk, struct page *p,
281 struct vm_area_struct *vma,
282 struct list_head *to_kill,
283 struct to_kill **tkc)
284{
285 struct to_kill *tk;
286
287 if (*tkc) {
288 tk = *tkc;
289 *tkc = NULL;
290 } else {
291 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
292 if (!tk) {
293 printk(KERN_ERR
294 "MCE: Out of memory while machine check handling\n");
295 return;
296 }
297 }
298 tk->addr = page_address_in_vma(p, vma);
299 tk->addr_valid = 1;
300
301 /*
302 * In theory we don't have to kill when the page was
303 * munmaped. But it could be also a mremap. Since that's
304 * likely very rare kill anyways just out of paranoia, but use
305 * a SIGKILL because the error is not contained anymore.
306 */
307 if (tk->addr == -EFAULT) {
fb46e735 308 pr_info("MCE: Unable to find user space address %lx in %s\n",
6a46079c
AK
309 page_to_pfn(p), tsk->comm);
310 tk->addr_valid = 0;
311 }
312 get_task_struct(tsk);
313 tk->tsk = tsk;
314 list_add_tail(&tk->nd, to_kill);
315}
316
317/*
318 * Kill the processes that have been collected earlier.
319 *
320 * Only do anything when DOIT is set, otherwise just free the list
321 * (this is used for clean pages which do not need killing)
322 * Also when FAIL is set do a force kill because something went
323 * wrong earlier.
324 */
6751ed65 325static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
7329bbeb
TL
326 int fail, struct page *page, unsigned long pfn,
327 int flags)
6a46079c
AK
328{
329 struct to_kill *tk, *next;
330
331 list_for_each_entry_safe (tk, next, to_kill, nd) {
6751ed65 332 if (forcekill) {
6a46079c 333 /*
af901ca1 334 * In case something went wrong with munmapping
6a46079c
AK
335 * make sure the process doesn't catch the
336 * signal and then access the memory. Just kill it.
6a46079c
AK
337 */
338 if (fail || tk->addr_valid == 0) {
339 printk(KERN_ERR
340 "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
341 pfn, tk->tsk->comm, tk->tsk->pid);
342 force_sig(SIGKILL, tk->tsk);
343 }
344
345 /*
346 * In theory the process could have mapped
347 * something else on the address in-between. We could
348 * check for that, but we need to tell the
349 * process anyways.
350 */
7329bbeb
TL
351 else if (kill_proc(tk->tsk, tk->addr, trapno,
352 pfn, page, flags) < 0)
6a46079c
AK
353 printk(KERN_ERR
354 "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
355 pfn, tk->tsk->comm, tk->tsk->pid);
356 }
357 put_task_struct(tk->tsk);
358 kfree(tk);
359 }
360}
361
3ba08129
NH
362/*
363 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
364 * on behalf of the thread group. Return task_struct of the (first found)
365 * dedicated thread if found, and return NULL otherwise.
366 *
367 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
368 * have to call rcu_read_lock/unlock() in this function.
369 */
370static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
6a46079c 371{
3ba08129
NH
372 struct task_struct *t;
373
374 for_each_thread(tsk, t)
375 if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
376 return t;
377 return NULL;
378}
379
380/*
381 * Determine whether a given process is "early kill" process which expects
382 * to be signaled when some page under the process is hwpoisoned.
383 * Return task_struct of the dedicated thread (main thread unless explicitly
384 * specified) if the process is "early kill," and otherwise returns NULL.
385 */
386static struct task_struct *task_early_kill(struct task_struct *tsk,
387 int force_early)
388{
389 struct task_struct *t;
6a46079c 390 if (!tsk->mm)
3ba08129 391 return NULL;
74614de1 392 if (force_early)
3ba08129
NH
393 return tsk;
394 t = find_early_kill_thread(tsk);
395 if (t)
396 return t;
397 if (sysctl_memory_failure_early_kill)
398 return tsk;
399 return NULL;
6a46079c
AK
400}
401
402/*
403 * Collect processes when the error hit an anonymous page.
404 */
405static void collect_procs_anon(struct page *page, struct list_head *to_kill,
74614de1 406 struct to_kill **tkc, int force_early)
6a46079c
AK
407{
408 struct vm_area_struct *vma;
409 struct task_struct *tsk;
410 struct anon_vma *av;
bf181b9f 411 pgoff_t pgoff;
6a46079c 412
4fc3f1d6 413 av = page_lock_anon_vma_read(page);
6a46079c 414 if (av == NULL) /* Not actually mapped anymore */
9b679320
PZ
415 return;
416
a0f7a756 417 pgoff = page_to_pgoff(page);
9b679320 418 read_lock(&tasklist_lock);
6a46079c 419 for_each_process (tsk) {
5beb4930 420 struct anon_vma_chain *vmac;
3ba08129 421 struct task_struct *t = task_early_kill(tsk, force_early);
5beb4930 422
3ba08129 423 if (!t)
6a46079c 424 continue;
bf181b9f
ML
425 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
426 pgoff, pgoff) {
5beb4930 427 vma = vmac->vma;
6a46079c
AK
428 if (!page_mapped_in_vma(page, vma))
429 continue;
3ba08129
NH
430 if (vma->vm_mm == t->mm)
431 add_to_kill(t, page, vma, to_kill, tkc);
6a46079c
AK
432 }
433 }
6a46079c 434 read_unlock(&tasklist_lock);
4fc3f1d6 435 page_unlock_anon_vma_read(av);
6a46079c
AK
436}
437
438/*
439 * Collect processes when the error hit a file mapped page.
440 */
441static void collect_procs_file(struct page *page, struct list_head *to_kill,
74614de1 442 struct to_kill **tkc, int force_early)
6a46079c
AK
443{
444 struct vm_area_struct *vma;
445 struct task_struct *tsk;
6a46079c
AK
446 struct address_space *mapping = page->mapping;
447
d28eb9c8 448 i_mmap_lock_read(mapping);
9b679320 449 read_lock(&tasklist_lock);
6a46079c 450 for_each_process(tsk) {
a0f7a756 451 pgoff_t pgoff = page_to_pgoff(page);
3ba08129 452 struct task_struct *t = task_early_kill(tsk, force_early);
6a46079c 453
3ba08129 454 if (!t)
6a46079c 455 continue;
6b2dbba8 456 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
6a46079c
AK
457 pgoff) {
458 /*
459 * Send early kill signal to tasks where a vma covers
460 * the page but the corrupted page is not necessarily
461 * mapped it in its pte.
462 * Assume applications who requested early kill want
463 * to be informed of all such data corruptions.
464 */
3ba08129
NH
465 if (vma->vm_mm == t->mm)
466 add_to_kill(t, page, vma, to_kill, tkc);
6a46079c
AK
467 }
468 }
6a46079c 469 read_unlock(&tasklist_lock);
d28eb9c8 470 i_mmap_unlock_read(mapping);
6a46079c
AK
471}
472
473/*
474 * Collect the processes who have the corrupted page mapped to kill.
475 * This is done in two steps for locking reasons.
476 * First preallocate one tokill structure outside the spin locks,
477 * so that we can kill at least one process reasonably reliable.
478 */
74614de1
TL
479static void collect_procs(struct page *page, struct list_head *tokill,
480 int force_early)
6a46079c
AK
481{
482 struct to_kill *tk;
483
484 if (!page->mapping)
485 return;
486
487 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
488 if (!tk)
489 return;
490 if (PageAnon(page))
74614de1 491 collect_procs_anon(page, tokill, &tk, force_early);
6a46079c 492 else
74614de1 493 collect_procs_file(page, tokill, &tk, force_early);
6a46079c
AK
494 kfree(tk);
495}
496
6a46079c 497static const char *action_name[] = {
cc637b17
XX
498 [MF_IGNORED] = "Ignored",
499 [MF_FAILED] = "Failed",
500 [MF_DELAYED] = "Delayed",
501 [MF_RECOVERED] = "Recovered",
64d37a2b
NH
502};
503
504static const char * const action_page_types[] = {
cc637b17
XX
505 [MF_MSG_KERNEL] = "reserved kernel page",
506 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
507 [MF_MSG_SLAB] = "kernel slab page",
508 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
509 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned",
510 [MF_MSG_HUGE] = "huge page",
511 [MF_MSG_FREE_HUGE] = "free huge page",
512 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
513 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
514 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
515 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
516 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
517 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
518 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
519 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
520 [MF_MSG_CLEAN_LRU] = "clean LRU page",
521 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
522 [MF_MSG_BUDDY] = "free buddy page",
523 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)",
524 [MF_MSG_UNKNOWN] = "unknown page",
64d37a2b
NH
525};
526
dc2a1cbf
WF
527/*
528 * XXX: It is possible that a page is isolated from LRU cache,
529 * and then kept in swap cache or failed to remove from page cache.
530 * The page count will stop it from being freed by unpoison.
531 * Stress tests should be aware of this memory leak problem.
532 */
533static int delete_from_lru_cache(struct page *p)
534{
535 if (!isolate_lru_page(p)) {
536 /*
537 * Clear sensible page flags, so that the buddy system won't
538 * complain when the page is unpoison-and-freed.
539 */
540 ClearPageActive(p);
541 ClearPageUnevictable(p);
542 /*
543 * drop the page count elevated by isolate_lru_page()
544 */
545 page_cache_release(p);
546 return 0;
547 }
548 return -EIO;
549}
550
6a46079c
AK
551/*
552 * Error hit kernel page.
553 * Do nothing, try to be lucky and not touch this instead. For a few cases we
554 * could be more sophisticated.
555 */
556static int me_kernel(struct page *p, unsigned long pfn)
6a46079c 557{
cc637b17 558 return MF_IGNORED;
6a46079c
AK
559}
560
561/*
562 * Page in unknown state. Do nothing.
563 */
564static int me_unknown(struct page *p, unsigned long pfn)
565{
566 printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
cc637b17 567 return MF_FAILED;
6a46079c
AK
568}
569
6a46079c
AK
570/*
571 * Clean (or cleaned) page cache page.
572 */
573static int me_pagecache_clean(struct page *p, unsigned long pfn)
574{
575 int err;
cc637b17 576 int ret = MF_FAILED;
6a46079c
AK
577 struct address_space *mapping;
578
dc2a1cbf
WF
579 delete_from_lru_cache(p);
580
6a46079c
AK
581 /*
582 * For anonymous pages we're done the only reference left
583 * should be the one m_f() holds.
584 */
585 if (PageAnon(p))
cc637b17 586 return MF_RECOVERED;
6a46079c
AK
587
588 /*
589 * Now truncate the page in the page cache. This is really
590 * more like a "temporary hole punch"
591 * Don't do this for block devices when someone else
592 * has a reference, because it could be file system metadata
593 * and that's not safe to truncate.
594 */
595 mapping = page_mapping(p);
596 if (!mapping) {
597 /*
598 * Page has been teared down in the meanwhile
599 */
cc637b17 600 return MF_FAILED;
6a46079c
AK
601 }
602
603 /*
604 * Truncation is a bit tricky. Enable it per file system for now.
605 *
606 * Open: to take i_mutex or not for this? Right now we don't.
607 */
608 if (mapping->a_ops->error_remove_page) {
609 err = mapping->a_ops->error_remove_page(mapping, p);
610 if (err != 0) {
611 printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
612 pfn, err);
613 } else if (page_has_private(p) &&
614 !try_to_release_page(p, GFP_NOIO)) {
fb46e735 615 pr_info("MCE %#lx: failed to release buffers\n", pfn);
6a46079c 616 } else {
cc637b17 617 ret = MF_RECOVERED;
6a46079c
AK
618 }
619 } else {
620 /*
621 * If the file system doesn't support it just invalidate
622 * This fails on dirty or anything with private pages
623 */
624 if (invalidate_inode_page(p))
cc637b17 625 ret = MF_RECOVERED;
6a46079c
AK
626 else
627 printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
628 pfn);
629 }
630 return ret;
631}
632
633/*
549543df 634 * Dirty pagecache page
6a46079c
AK
635 * Issues: when the error hit a hole page the error is not properly
636 * propagated.
637 */
638static int me_pagecache_dirty(struct page *p, unsigned long pfn)
639{
640 struct address_space *mapping = page_mapping(p);
641
642 SetPageError(p);
643 /* TBD: print more information about the file. */
644 if (mapping) {
645 /*
646 * IO error will be reported by write(), fsync(), etc.
647 * who check the mapping.
648 * This way the application knows that something went
649 * wrong with its dirty file data.
650 *
651 * There's one open issue:
652 *
653 * The EIO will be only reported on the next IO
654 * operation and then cleared through the IO map.
655 * Normally Linux has two mechanisms to pass IO error
656 * first through the AS_EIO flag in the address space
657 * and then through the PageError flag in the page.
658 * Since we drop pages on memory failure handling the
659 * only mechanism open to use is through AS_AIO.
660 *
661 * This has the disadvantage that it gets cleared on
662 * the first operation that returns an error, while
663 * the PageError bit is more sticky and only cleared
664 * when the page is reread or dropped. If an
665 * application assumes it will always get error on
666 * fsync, but does other operations on the fd before
25985edc 667 * and the page is dropped between then the error
6a46079c
AK
668 * will not be properly reported.
669 *
670 * This can already happen even without hwpoisoned
671 * pages: first on metadata IO errors (which only
672 * report through AS_EIO) or when the page is dropped
673 * at the wrong time.
674 *
675 * So right now we assume that the application DTRT on
676 * the first EIO, but we're not worse than other parts
677 * of the kernel.
678 */
679 mapping_set_error(mapping, EIO);
680 }
681
682 return me_pagecache_clean(p, pfn);
683}
684
685/*
686 * Clean and dirty swap cache.
687 *
688 * Dirty swap cache page is tricky to handle. The page could live both in page
689 * cache and swap cache(ie. page is freshly swapped in). So it could be
690 * referenced concurrently by 2 types of PTEs:
691 * normal PTEs and swap PTEs. We try to handle them consistently by calling
692 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
693 * and then
694 * - clear dirty bit to prevent IO
695 * - remove from LRU
696 * - but keep in the swap cache, so that when we return to it on
697 * a later page fault, we know the application is accessing
698 * corrupted data and shall be killed (we installed simple
699 * interception code in do_swap_page to catch it).
700 *
701 * Clean swap cache pages can be directly isolated. A later page fault will
702 * bring in the known good data from disk.
703 */
704static int me_swapcache_dirty(struct page *p, unsigned long pfn)
705{
6a46079c
AK
706 ClearPageDirty(p);
707 /* Trigger EIO in shmem: */
708 ClearPageUptodate(p);
709
dc2a1cbf 710 if (!delete_from_lru_cache(p))
cc637b17 711 return MF_DELAYED;
dc2a1cbf 712 else
cc637b17 713 return MF_FAILED;
6a46079c
AK
714}
715
716static int me_swapcache_clean(struct page *p, unsigned long pfn)
717{
6a46079c 718 delete_from_swap_cache(p);
e43c3afb 719
dc2a1cbf 720 if (!delete_from_lru_cache(p))
cc637b17 721 return MF_RECOVERED;
dc2a1cbf 722 else
cc637b17 723 return MF_FAILED;
6a46079c
AK
724}
725
726/*
727 * Huge pages. Needs work.
728 * Issues:
93f70f90
NH
729 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
730 * To narrow down kill region to one page, we need to break up pmd.
6a46079c
AK
731 */
732static int me_huge_page(struct page *p, unsigned long pfn)
733{
6de2b1aa 734 int res = 0;
93f70f90 735 struct page *hpage = compound_head(p);
2491ffee
NH
736
737 if (!PageHuge(hpage))
738 return MF_DELAYED;
739
93f70f90
NH
740 /*
741 * We can safely recover from error on free or reserved (i.e.
742 * not in-use) hugepage by dequeuing it from freelist.
743 * To check whether a hugepage is in-use or not, we can't use
744 * page->lru because it can be used in other hugepage operations,
745 * such as __unmap_hugepage_range() and gather_surplus_pages().
746 * So instead we use page_mapping() and PageAnon().
747 * We assume that this function is called with page lock held,
748 * so there is no race between isolation and mapping/unmapping.
749 */
750 if (!(page_mapping(hpage) || PageAnon(hpage))) {
6de2b1aa
NH
751 res = dequeue_hwpoisoned_huge_page(hpage);
752 if (!res)
cc637b17 753 return MF_RECOVERED;
93f70f90 754 }
cc637b17 755 return MF_DELAYED;
6a46079c
AK
756}
757
758/*
759 * Various page states we can handle.
760 *
761 * A page state is defined by its current page->flags bits.
762 * The table matches them in order and calls the right handler.
763 *
764 * This is quite tricky because we can access page at any time
25985edc 765 * in its live cycle, so all accesses have to be extremely careful.
6a46079c
AK
766 *
767 * This is not complete. More states could be added.
768 * For any missing state don't attempt recovery.
769 */
770
771#define dirty (1UL << PG_dirty)
772#define sc (1UL << PG_swapcache)
773#define unevict (1UL << PG_unevictable)
774#define mlock (1UL << PG_mlocked)
775#define writeback (1UL << PG_writeback)
776#define lru (1UL << PG_lru)
777#define swapbacked (1UL << PG_swapbacked)
778#define head (1UL << PG_head)
6a46079c 779#define slab (1UL << PG_slab)
6a46079c
AK
780#define reserved (1UL << PG_reserved)
781
782static struct page_state {
783 unsigned long mask;
784 unsigned long res;
cc637b17 785 enum mf_action_page_type type;
6a46079c
AK
786 int (*action)(struct page *p, unsigned long pfn);
787} error_states[] = {
cc637b17 788 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
95d01fc6
WF
789 /*
790 * free pages are specially detected outside this table:
791 * PG_buddy pages only make a small fraction of all free pages.
792 */
6a46079c
AK
793
794 /*
795 * Could in theory check if slab page is free or if we can drop
796 * currently unused objects without touching them. But just
797 * treat it as standard kernel for now.
798 */
cc637b17 799 { slab, slab, MF_MSG_SLAB, me_kernel },
6a46079c 800
cc637b17 801 { head, head, MF_MSG_HUGE, me_huge_page },
6a46079c 802
cc637b17
XX
803 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
804 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
6a46079c 805
cc637b17
XX
806 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
807 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
6a46079c 808
cc637b17
XX
809 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
810 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
5f4b9fc5 811
cc637b17
XX
812 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
813 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
6a46079c
AK
814
815 /*
816 * Catchall entry: must be at end.
817 */
cc637b17 818 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
6a46079c
AK
819};
820
2326c467
AK
821#undef dirty
822#undef sc
823#undef unevict
824#undef mlock
825#undef writeback
826#undef lru
827#undef swapbacked
828#undef head
829#undef tail
830#undef compound
831#undef slab
832#undef reserved
833
ff604cf6
NH
834/*
835 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
836 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
837 */
cc3e2af4
XX
838static void action_result(unsigned long pfn, enum mf_action_page_type type,
839 enum mf_result result)
6a46079c 840{
97f0b134
XX
841 trace_memory_failure_event(pfn, type, result);
842
64d37a2b
NH
843 pr_err("MCE %#lx: recovery action for %s: %s\n",
844 pfn, action_page_types[type], action_name[result]);
6a46079c
AK
845}
846
847static int page_action(struct page_state *ps, struct page *p,
bd1ce5f9 848 unsigned long pfn)
6a46079c
AK
849{
850 int result;
7456b040 851 int count;
6a46079c
AK
852
853 result = ps->action(p, pfn);
7456b040 854
bd1ce5f9 855 count = page_count(p) - 1;
cc637b17 856 if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
138ce286
WF
857 count--;
858 if (count != 0) {
6a46079c 859 printk(KERN_ERR
64d37a2b
NH
860 "MCE %#lx: %s still referenced by %d users\n",
861 pfn, action_page_types[ps->type], count);
cc637b17 862 result = MF_FAILED;
138ce286 863 }
64d37a2b 864 action_result(pfn, ps->type, result);
6a46079c
AK
865
866 /* Could do more checks here if page looks ok */
867 /*
868 * Could adjust zone counters here to correct for the missing page.
869 */
870
cc637b17 871 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
6a46079c
AK
872}
873
ead07f6a
NH
874/**
875 * get_hwpoison_page() - Get refcount for memory error handling:
876 * @page: raw error page (hit by memory error)
877 *
878 * Return: return 0 if failed to grab the refcount, otherwise true (some
879 * non-zero value.)
880 */
881int get_hwpoison_page(struct page *page)
882{
883 struct page *head = compound_head(page);
884
885 if (PageHuge(head))
886 return get_page_unless_zero(head);
887
888 /*
889 * Thp tail page has special refcounting rule (refcount of tail pages
890 * is stored in ->_mapcount,) so we can't call get_page_unless_zero()
891 * directly for tail pages.
892 */
893 if (PageTransHuge(head)) {
98ed2b00
NH
894 /*
895 * Non anonymous thp exists only in allocation/free time. We
896 * can't handle such a case correctly, so let's give it up.
897 * This should be better than triggering BUG_ON when kernel
898 * tries to touch the "partially handled" page.
899 */
900 if (!PageAnon(head)) {
901 pr_err("MCE: %#lx: non anonymous thp\n",
902 page_to_pfn(page));
903 return 0;
904 }
905
ead07f6a
NH
906 if (get_page_unless_zero(head)) {
907 if (PageTail(page))
908 get_page(page);
909 return 1;
910 } else {
911 return 0;
912 }
913 }
914
915 return get_page_unless_zero(page);
916}
917EXPORT_SYMBOL_GPL(get_hwpoison_page);
918
94bf4ec8
WL
919/**
920 * put_hwpoison_page() - Put refcount for memory error handling:
921 * @page: raw error page (hit by memory error)
922 */
923void put_hwpoison_page(struct page *page)
924{
925 struct page *head = compound_head(page);
926
927 if (PageHuge(head)) {
928 put_page(head);
929 return;
930 }
931
932 if (PageTransHuge(head))
933 if (page != head)
934 put_page(head);
935
936 put_page(page);
937}
938EXPORT_SYMBOL_GPL(put_hwpoison_page);
939
6a46079c
AK
940/*
941 * Do all that is necessary to remove user space mappings. Unmap
942 * the pages and send SIGBUS to the processes if the data was dirty.
943 */
1668bfd5 944static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
54b9dd14 945 int trapno, int flags, struct page **hpagep)
6a46079c
AK
946{
947 enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
948 struct address_space *mapping;
949 LIST_HEAD(tokill);
950 int ret;
6751ed65 951 int kill = 1, forcekill;
54b9dd14 952 struct page *hpage = *hpagep;
6a46079c 953
93a9eb39
NH
954 /*
955 * Here we are interested only in user-mapped pages, so skip any
956 * other types of pages.
957 */
958 if (PageReserved(p) || PageSlab(p))
959 return SWAP_SUCCESS;
960 if (!(PageLRU(hpage) || PageHuge(p)))
1668bfd5 961 return SWAP_SUCCESS;
6a46079c 962
6a46079c
AK
963 /*
964 * This check implies we don't kill processes if their pages
965 * are in the swap cache early. Those are always late kills.
966 */
7af446a8 967 if (!page_mapped(hpage))
1668bfd5
WF
968 return SWAP_SUCCESS;
969
52089b14
NH
970 if (PageKsm(p)) {
971 pr_err("MCE %#lx: can't handle KSM pages.\n", pfn);
1668bfd5 972 return SWAP_FAIL;
52089b14 973 }
6a46079c
AK
974
975 if (PageSwapCache(p)) {
976 printk(KERN_ERR
977 "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
978 ttu |= TTU_IGNORE_HWPOISON;
979 }
980
981 /*
982 * Propagate the dirty bit from PTEs to struct page first, because we
983 * need this to decide if we should kill or just drop the page.
db0480b3
WF
984 * XXX: the dirty test could be racy: set_page_dirty() may not always
985 * be called inside page lock (it's recommended but not enforced).
6a46079c 986 */
7af446a8 987 mapping = page_mapping(hpage);
6751ed65 988 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
7af446a8
NH
989 mapping_cap_writeback_dirty(mapping)) {
990 if (page_mkclean(hpage)) {
991 SetPageDirty(hpage);
6a46079c
AK
992 } else {
993 kill = 0;
994 ttu |= TTU_IGNORE_HWPOISON;
995 printk(KERN_INFO
996 "MCE %#lx: corrupted page was clean: dropped without side effects\n",
997 pfn);
998 }
999 }
1000
1001 /*
1002 * First collect all the processes that have the page
1003 * mapped in dirty form. This has to be done before try_to_unmap,
1004 * because ttu takes the rmap data structures down.
1005 *
1006 * Error handling: We ignore errors here because
1007 * there's nothing that can be done.
1008 */
1009 if (kill)
415c64c1 1010 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
6a46079c 1011
415c64c1 1012 ret = try_to_unmap(hpage, ttu);
6a46079c
AK
1013 if (ret != SWAP_SUCCESS)
1014 printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
415c64c1 1015 pfn, page_mapcount(hpage));
a6d30ddd 1016
6a46079c
AK
1017 /*
1018 * Now that the dirty bit has been propagated to the
1019 * struct page and all unmaps done we can decide if
1020 * killing is needed or not. Only kill when the page
6751ed65
TL
1021 * was dirty or the process is not restartable,
1022 * otherwise the tokill list is merely
6a46079c
AK
1023 * freed. When there was a problem unmapping earlier
1024 * use a more force-full uncatchable kill to prevent
1025 * any accesses to the poisoned memory.
1026 */
415c64c1 1027 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
6751ed65 1028 kill_procs(&tokill, forcekill, trapno,
7329bbeb 1029 ret != SWAP_SUCCESS, p, pfn, flags);
1668bfd5
WF
1030
1031 return ret;
6a46079c
AK
1032}
1033
7013febc
NH
1034static void set_page_hwpoison_huge_page(struct page *hpage)
1035{
1036 int i;
f9121153 1037 int nr_pages = 1 << compound_order(hpage);
7013febc
NH
1038 for (i = 0; i < nr_pages; i++)
1039 SetPageHWPoison(hpage + i);
1040}
1041
1042static void clear_page_hwpoison_huge_page(struct page *hpage)
1043{
1044 int i;
f9121153 1045 int nr_pages = 1 << compound_order(hpage);
7013febc
NH
1046 for (i = 0; i < nr_pages; i++)
1047 ClearPageHWPoison(hpage + i);
1048}
1049
cd42f4a3
TL
1050/**
1051 * memory_failure - Handle memory failure of a page.
1052 * @pfn: Page Number of the corrupted page
1053 * @trapno: Trap number reported in the signal to user space.
1054 * @flags: fine tune action taken
1055 *
1056 * This function is called by the low level machine check code
1057 * of an architecture when it detects hardware memory corruption
1058 * of a page. It tries its best to recover, which includes
1059 * dropping pages, killing processes etc.
1060 *
1061 * The function is primarily of use for corruptions that
1062 * happen outside the current execution context (e.g. when
1063 * detected by a background scrubber)
1064 *
1065 * Must run in process context (e.g. a work queue) with interrupts
1066 * enabled and no spinlocks hold.
1067 */
1068int memory_failure(unsigned long pfn, int trapno, int flags)
6a46079c
AK
1069{
1070 struct page_state *ps;
1071 struct page *p;
7af446a8 1072 struct page *hpage;
415c64c1 1073 struct page *orig_head;
6a46079c 1074 int res;
c9fbdd5f 1075 unsigned int nr_pages;
524fca1e 1076 unsigned long page_flags;
6a46079c
AK
1077
1078 if (!sysctl_memory_failure_recovery)
1079 panic("Memory failure from trap %d on page %lx", trapno, pfn);
1080
1081 if (!pfn_valid(pfn)) {
a7560fc8
WF
1082 printk(KERN_ERR
1083 "MCE %#lx: memory outside kernel control\n",
1084 pfn);
1085 return -ENXIO;
6a46079c
AK
1086 }
1087
1088 p = pfn_to_page(pfn);
415c64c1 1089 orig_head = hpage = compound_head(p);
6a46079c 1090 if (TestSetPageHWPoison(p)) {
d95ea51e 1091 printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
6a46079c
AK
1092 return 0;
1093 }
1094
4db0e950
NH
1095 /*
1096 * Currently errors on hugetlbfs pages are measured in hugepage units,
1097 * so nr_pages should be 1 << compound_order. OTOH when errors are on
1098 * transparent hugepages, they are supposed to be split and error
1099 * measurement is done in normal page units. So nr_pages should be one
1100 * in this case.
1101 */
1102 if (PageHuge(p))
1103 nr_pages = 1 << compound_order(hpage);
1104 else /* normal page or thp */
1105 nr_pages = 1;
8e30456b 1106 num_poisoned_pages_add(nr_pages);
6a46079c
AK
1107
1108 /*
1109 * We need/can do nothing about count=0 pages.
1110 * 1) it's a free page, and therefore in safe hand:
1111 * prep_new_page() will be the gate keeper.
8c6c2ecb
NH
1112 * 2) it's a free hugepage, which is also safe:
1113 * an affected hugepage will be dequeued from hugepage freelist,
1114 * so there's no concern about reusing it ever after.
1115 * 3) it's part of a non-compound high order page.
6a46079c
AK
1116 * Implies some kernel user: cannot stop them from
1117 * R/W the page; let's pray that the page has been
1118 * used and will be freed some time later.
1119 * In fact it's dangerous to directly bump up page count from 0,
1120 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1121 */
ead07f6a 1122 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
8d22ba1b 1123 if (is_free_buddy_page(p)) {
cc637b17 1124 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
8d22ba1b 1125 return 0;
8c6c2ecb
NH
1126 } else if (PageHuge(hpage)) {
1127 /*
b985194c 1128 * Check "filter hit" and "race with other subpage."
8c6c2ecb 1129 */
7eaceacc 1130 lock_page(hpage);
b985194c
CY
1131 if (PageHWPoison(hpage)) {
1132 if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1133 || (p != hpage && TestSetPageHWPoison(hpage))) {
8e30456b 1134 num_poisoned_pages_sub(nr_pages);
b985194c
CY
1135 unlock_page(hpage);
1136 return 0;
1137 }
8c6c2ecb
NH
1138 }
1139 set_page_hwpoison_huge_page(hpage);
1140 res = dequeue_hwpoisoned_huge_page(hpage);
cc637b17
XX
1141 action_result(pfn, MF_MSG_FREE_HUGE,
1142 res ? MF_IGNORED : MF_DELAYED);
8c6c2ecb
NH
1143 unlock_page(hpage);
1144 return res;
8d22ba1b 1145 } else {
cc637b17 1146 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
8d22ba1b
WF
1147 return -EBUSY;
1148 }
6a46079c
AK
1149 }
1150
415c64c1 1151 if (!PageHuge(p) && PageTransHuge(hpage)) {
4d2fa965 1152 lock_page(hpage);
7f6bf39b 1153 if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) {
4d2fa965 1154 unlock_page(hpage);
7f6bf39b
WL
1155 if (!PageAnon(hpage))
1156 pr_err("MCE: %#lx: non anonymous thp\n", pfn);
1157 else
1158 pr_err("MCE: %#lx: thp split failed\n", pfn);
ead07f6a 1159 if (TestClearPageHWPoison(p))
8e30456b 1160 num_poisoned_pages_sub(nr_pages);
665d9da7 1161 put_hwpoison_page(p);
415c64c1
NH
1162 return -EBUSY;
1163 }
4d2fa965 1164 unlock_page(hpage);
415c64c1
NH
1165 VM_BUG_ON_PAGE(!page_count(p), p);
1166 hpage = compound_head(p);
1167 }
1168
e43c3afb
WF
1169 /*
1170 * We ignore non-LRU pages for good reasons.
1171 * - PG_locked is only well defined for LRU pages and a few others
48c935ad 1172 * - to avoid races with __SetPageLocked()
e43c3afb
WF
1173 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1174 * The check (unnecessarily) ignores LRU pages being isolated and
1175 * walked by the page reclaim code, however that's not a big loss.
1176 */
09789e5d 1177 if (!PageHuge(p)) {
415c64c1
NH
1178 if (!PageLRU(p))
1179 shake_page(p, 0);
1180 if (!PageLRU(p)) {
af241a08
JD
1181 /*
1182 * shake_page could have turned it free.
1183 */
1184 if (is_free_buddy_page(p)) {
2d421acd 1185 if (flags & MF_COUNT_INCREASED)
cc637b17 1186 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
2d421acd 1187 else
cc637b17
XX
1188 action_result(pfn, MF_MSG_BUDDY_2ND,
1189 MF_DELAYED);
af241a08
JD
1190 return 0;
1191 }
0474a60e 1192 }
e43c3afb 1193 }
e43c3afb 1194
7eaceacc 1195 lock_page(hpage);
847ce401 1196
f37d4298
AK
1197 /*
1198 * The page could have changed compound pages during the locking.
1199 * If this happens just bail out.
1200 */
415c64c1 1201 if (PageCompound(p) && compound_head(p) != orig_head) {
cc637b17 1202 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
f37d4298
AK
1203 res = -EBUSY;
1204 goto out;
1205 }
1206
524fca1e
NH
1207 /*
1208 * We use page flags to determine what action should be taken, but
1209 * the flags can be modified by the error containment action. One
1210 * example is an mlocked page, where PG_mlocked is cleared by
1211 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1212 * correctly, we save a copy of the page flags at this time.
1213 */
1214 page_flags = p->flags;
1215
847ce401
WF
1216 /*
1217 * unpoison always clear PG_hwpoison inside page lock
1218 */
1219 if (!PageHWPoison(p)) {
d95ea51e 1220 printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
8e30456b 1221 num_poisoned_pages_sub(nr_pages);
a09233f3 1222 unlock_page(hpage);
665d9da7 1223 put_hwpoison_page(hpage);
a09233f3 1224 return 0;
847ce401 1225 }
7c116f2b
WF
1226 if (hwpoison_filter(p)) {
1227 if (TestClearPageHWPoison(p))
8e30456b 1228 num_poisoned_pages_sub(nr_pages);
7af446a8 1229 unlock_page(hpage);
665d9da7 1230 put_hwpoison_page(hpage);
7c116f2b
WF
1231 return 0;
1232 }
847ce401 1233
0bc1f8b0
CY
1234 if (!PageHuge(p) && !PageTransTail(p) && !PageLRU(p))
1235 goto identify_page_state;
1236
7013febc
NH
1237 /*
1238 * For error on the tail page, we should set PG_hwpoison
1239 * on the head page to show that the hugepage is hwpoisoned
1240 */
a6d30ddd 1241 if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
cc637b17 1242 action_result(pfn, MF_MSG_POISONED_HUGE, MF_IGNORED);
7013febc 1243 unlock_page(hpage);
665d9da7 1244 put_hwpoison_page(hpage);
7013febc
NH
1245 return 0;
1246 }
1247 /*
1248 * Set PG_hwpoison on all pages in an error hugepage,
1249 * because containment is done in hugepage unit for now.
1250 * Since we have done TestSetPageHWPoison() for the head page with
1251 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1252 */
1253 if (PageHuge(p))
1254 set_page_hwpoison_huge_page(hpage);
1255
6edd6cc6
NH
1256 /*
1257 * It's very difficult to mess with pages currently under IO
1258 * and in many cases impossible, so we just avoid it here.
1259 */
6a46079c
AK
1260 wait_on_page_writeback(p);
1261
1262 /*
1263 * Now take care of user space mappings.
e64a782f 1264 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
54b9dd14
NH
1265 *
1266 * When the raw error page is thp tail page, hpage points to the raw
1267 * page after thp split.
6a46079c 1268 */
54b9dd14
NH
1269 if (hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)
1270 != SWAP_SUCCESS) {
cc637b17 1271 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1668bfd5
WF
1272 res = -EBUSY;
1273 goto out;
1274 }
6a46079c
AK
1275
1276 /*
1277 * Torn down by someone else?
1278 */
dc2a1cbf 1279 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
cc637b17 1280 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
d95ea51e 1281 res = -EBUSY;
6a46079c
AK
1282 goto out;
1283 }
1284
0bc1f8b0 1285identify_page_state:
6a46079c 1286 res = -EBUSY;
524fca1e
NH
1287 /*
1288 * The first check uses the current page flags which may not have any
1289 * relevant information. The second check with the saved page flagss is
1290 * carried out only if the first check can't determine the page status.
1291 */
1292 for (ps = error_states;; ps++)
1293 if ((p->flags & ps->mask) == ps->res)
6a46079c 1294 break;
841fcc58
WL
1295
1296 page_flags |= (p->flags & (1UL << PG_dirty));
1297
524fca1e
NH
1298 if (!ps->mask)
1299 for (ps = error_states;; ps++)
1300 if ((page_flags & ps->mask) == ps->res)
1301 break;
1302 res = page_action(ps, p, pfn);
6a46079c 1303out:
7af446a8 1304 unlock_page(hpage);
6a46079c
AK
1305 return res;
1306}
cd42f4a3 1307EXPORT_SYMBOL_GPL(memory_failure);
847ce401 1308
ea8f5fb8
HY
1309#define MEMORY_FAILURE_FIFO_ORDER 4
1310#define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1311
1312struct memory_failure_entry {
1313 unsigned long pfn;
1314 int trapno;
1315 int flags;
1316};
1317
1318struct memory_failure_cpu {
1319 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1320 MEMORY_FAILURE_FIFO_SIZE);
1321 spinlock_t lock;
1322 struct work_struct work;
1323};
1324
1325static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1326
1327/**
1328 * memory_failure_queue - Schedule handling memory failure of a page.
1329 * @pfn: Page Number of the corrupted page
1330 * @trapno: Trap number reported in the signal to user space.
1331 * @flags: Flags for memory failure handling
1332 *
1333 * This function is called by the low level hardware error handler
1334 * when it detects hardware memory corruption of a page. It schedules
1335 * the recovering of error page, including dropping pages, killing
1336 * processes etc.
1337 *
1338 * The function is primarily of use for corruptions that
1339 * happen outside the current execution context (e.g. when
1340 * detected by a background scrubber)
1341 *
1342 * Can run in IRQ context.
1343 */
1344void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1345{
1346 struct memory_failure_cpu *mf_cpu;
1347 unsigned long proc_flags;
1348 struct memory_failure_entry entry = {
1349 .pfn = pfn,
1350 .trapno = trapno,
1351 .flags = flags,
1352 };
1353
1354 mf_cpu = &get_cpu_var(memory_failure_cpu);
1355 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
498d319b 1356 if (kfifo_put(&mf_cpu->fifo, entry))
ea8f5fb8
HY
1357 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1358 else
8e33a52f 1359 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
ea8f5fb8
HY
1360 pfn);
1361 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1362 put_cpu_var(memory_failure_cpu);
1363}
1364EXPORT_SYMBOL_GPL(memory_failure_queue);
1365
1366static void memory_failure_work_func(struct work_struct *work)
1367{
1368 struct memory_failure_cpu *mf_cpu;
1369 struct memory_failure_entry entry = { 0, };
1370 unsigned long proc_flags;
1371 int gotten;
1372
7c8e0181 1373 mf_cpu = this_cpu_ptr(&memory_failure_cpu);
ea8f5fb8
HY
1374 for (;;) {
1375 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1376 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1377 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1378 if (!gotten)
1379 break;
cf870c70
NR
1380 if (entry.flags & MF_SOFT_OFFLINE)
1381 soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1382 else
1383 memory_failure(entry.pfn, entry.trapno, entry.flags);
ea8f5fb8
HY
1384 }
1385}
1386
1387static int __init memory_failure_init(void)
1388{
1389 struct memory_failure_cpu *mf_cpu;
1390 int cpu;
1391
1392 for_each_possible_cpu(cpu) {
1393 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1394 spin_lock_init(&mf_cpu->lock);
1395 INIT_KFIFO(mf_cpu->fifo);
1396 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1397 }
1398
1399 return 0;
1400}
1401core_initcall(memory_failure_init);
1402
a5f65109
NH
1403#define unpoison_pr_info(fmt, pfn, rs) \
1404({ \
1405 if (__ratelimit(rs)) \
1406 pr_info(fmt, pfn); \
1407})
1408
847ce401
WF
1409/**
1410 * unpoison_memory - Unpoison a previously poisoned page
1411 * @pfn: Page number of the to be unpoisoned page
1412 *
1413 * Software-unpoison a page that has been poisoned by
1414 * memory_failure() earlier.
1415 *
1416 * This is only done on the software-level, so it only works
1417 * for linux injected failures, not real hardware failures
1418 *
1419 * Returns 0 for success, otherwise -errno.
1420 */
1421int unpoison_memory(unsigned long pfn)
1422{
1423 struct page *page;
1424 struct page *p;
1425 int freeit = 0;
c9fbdd5f 1426 unsigned int nr_pages;
a5f65109
NH
1427 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1428 DEFAULT_RATELIMIT_BURST);
847ce401
WF
1429
1430 if (!pfn_valid(pfn))
1431 return -ENXIO;
1432
1433 p = pfn_to_page(pfn);
1434 page = compound_head(p);
1435
1436 if (!PageHWPoison(p)) {
a5f65109
NH
1437 unpoison_pr_info("MCE: Page was already unpoisoned %#lx\n",
1438 pfn, &unpoison_rs);
847ce401
WF
1439 return 0;
1440 }
1441
230ac719 1442 if (page_count(page) > 1) {
a5f65109
NH
1443 unpoison_pr_info("MCE: Someone grabs the hwpoison page %#lx\n",
1444 pfn, &unpoison_rs);
230ac719
NH
1445 return 0;
1446 }
1447
1448 if (page_mapped(page)) {
a5f65109
NH
1449 unpoison_pr_info("MCE: Someone maps the hwpoison page %#lx\n",
1450 pfn, &unpoison_rs);
230ac719
NH
1451 return 0;
1452 }
1453
1454 if (page_mapping(page)) {
a5f65109
NH
1455 unpoison_pr_info("MCE: the hwpoison page has non-NULL mapping %#lx\n",
1456 pfn, &unpoison_rs);
230ac719
NH
1457 return 0;
1458 }
1459
0cea3fdc
WL
1460 /*
1461 * unpoison_memory() can encounter thp only when the thp is being
1462 * worked by memory_failure() and the page lock is not held yet.
1463 * In such case, we yield to memory_failure() and make unpoison fail.
1464 */
e76d30e2 1465 if (!PageHuge(page) && PageTransHuge(page)) {
a5f65109
NH
1466 unpoison_pr_info("MCE: Memory failure is now running on %#lx\n",
1467 pfn, &unpoison_rs);
ead07f6a 1468 return 0;
0cea3fdc
WL
1469 }
1470
f9121153 1471 nr_pages = 1 << compound_order(page);
c9fbdd5f 1472
ead07f6a 1473 if (!get_hwpoison_page(p)) {
8c6c2ecb
NH
1474 /*
1475 * Since HWPoisoned hugepage should have non-zero refcount,
1476 * race between memory failure and unpoison seems to happen.
1477 * In such case unpoison fails and memory failure runs
1478 * to the end.
1479 */
1480 if (PageHuge(page)) {
a5f65109
NH
1481 unpoison_pr_info("MCE: Memory failure is now running on free hugepage %#lx\n",
1482 pfn, &unpoison_rs);
8c6c2ecb
NH
1483 return 0;
1484 }
847ce401 1485 if (TestClearPageHWPoison(p))
8e30456b 1486 num_poisoned_pages_dec();
a5f65109
NH
1487 unpoison_pr_info("MCE: Software-unpoisoned free page %#lx\n",
1488 pfn, &unpoison_rs);
847ce401
WF
1489 return 0;
1490 }
1491
7eaceacc 1492 lock_page(page);
847ce401
WF
1493 /*
1494 * This test is racy because PG_hwpoison is set outside of page lock.
1495 * That's acceptable because that won't trigger kernel panic. Instead,
1496 * the PG_hwpoison page will be caught and isolated on the entrance to
1497 * the free buddy page pool.
1498 */
c9fbdd5f 1499 if (TestClearPageHWPoison(page)) {
a5f65109
NH
1500 unpoison_pr_info("MCE: Software-unpoisoned page %#lx\n",
1501 pfn, &unpoison_rs);
8e30456b 1502 num_poisoned_pages_sub(nr_pages);
847ce401 1503 freeit = 1;
6a90181c
NH
1504 if (PageHuge(page))
1505 clear_page_hwpoison_huge_page(page);
847ce401
WF
1506 }
1507 unlock_page(page);
1508
665d9da7 1509 put_hwpoison_page(page);
3ba5eebc 1510 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
665d9da7 1511 put_hwpoison_page(page);
847ce401
WF
1512
1513 return 0;
1514}
1515EXPORT_SYMBOL(unpoison_memory);
facb6011
AK
1516
1517static struct page *new_page(struct page *p, unsigned long private, int **x)
1518{
12686d15 1519 int nid = page_to_nid(p);
d950b958
NH
1520 if (PageHuge(p))
1521 return alloc_huge_page_node(page_hstate(compound_head(p)),
1522 nid);
1523 else
96db800f 1524 return __alloc_pages_node(nid, GFP_HIGHUSER_MOVABLE, 0);
facb6011
AK
1525}
1526
1527/*
1528 * Safely get reference count of an arbitrary page.
1529 * Returns 0 for a free page, -EIO for a zero refcount page
1530 * that is not free, and 1 for any other page type.
1531 * For 1 the page is returned with increased page count, otherwise not.
1532 */
af8fae7c 1533static int __get_any_page(struct page *p, unsigned long pfn, int flags)
facb6011
AK
1534{
1535 int ret;
1536
1537 if (flags & MF_COUNT_INCREASED)
1538 return 1;
1539
d950b958
NH
1540 /*
1541 * When the target page is a free hugepage, just remove it
1542 * from free hugepage list.
1543 */
ead07f6a 1544 if (!get_hwpoison_page(p)) {
d950b958 1545 if (PageHuge(p)) {
71dd0b8a 1546 pr_info("%s: %#lx free huge page\n", __func__, pfn);
af8fae7c 1547 ret = 0;
d950b958 1548 } else if (is_free_buddy_page(p)) {
71dd0b8a 1549 pr_info("%s: %#lx free buddy page\n", __func__, pfn);
facb6011
AK
1550 ret = 0;
1551 } else {
71dd0b8a
BP
1552 pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1553 __func__, pfn, p->flags);
facb6011
AK
1554 ret = -EIO;
1555 }
1556 } else {
1557 /* Not a free page */
1558 ret = 1;
1559 }
facb6011
AK
1560 return ret;
1561}
1562
af8fae7c
NH
1563static int get_any_page(struct page *page, unsigned long pfn, int flags)
1564{
1565 int ret = __get_any_page(page, pfn, flags);
1566
1567 if (ret == 1 && !PageHuge(page) && !PageLRU(page)) {
1568 /*
1569 * Try to free it.
1570 */
665d9da7 1571 put_hwpoison_page(page);
af8fae7c
NH
1572 shake_page(page, 1);
1573
1574 /*
1575 * Did it turn free?
1576 */
1577 ret = __get_any_page(page, pfn, 0);
1578 if (!PageLRU(page)) {
4f32be67 1579 /* Drop page reference which is from __get_any_page() */
665d9da7 1580 put_hwpoison_page(page);
af8fae7c
NH
1581 pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1582 pfn, page->flags);
1583 return -EIO;
1584 }
1585 }
1586 return ret;
1587}
1588
d950b958
NH
1589static int soft_offline_huge_page(struct page *page, int flags)
1590{
1591 int ret;
1592 unsigned long pfn = page_to_pfn(page);
1593 struct page *hpage = compound_head(page);
b8ec1cee 1594 LIST_HEAD(pagelist);
d950b958 1595
af8fae7c
NH
1596 /*
1597 * This double-check of PageHWPoison is to avoid the race with
1598 * memory_failure(). See also comment in __soft_offline_page().
1599 */
1600 lock_page(hpage);
0ebff32c 1601 if (PageHWPoison(hpage)) {
af8fae7c 1602 unlock_page(hpage);
665d9da7 1603 put_hwpoison_page(hpage);
0ebff32c 1604 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
af8fae7c 1605 return -EBUSY;
0ebff32c 1606 }
af8fae7c 1607 unlock_page(hpage);
d950b958 1608
bcc54222 1609 ret = isolate_huge_page(hpage, &pagelist);
03613808
WL
1610 /*
1611 * get_any_page() and isolate_huge_page() takes a refcount each,
1612 * so need to drop one here.
1613 */
665d9da7 1614 put_hwpoison_page(hpage);
03613808 1615 if (!ret) {
bcc54222
NH
1616 pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1617 return -EBUSY;
1618 }
1619
68711a74 1620 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
b8ec1cee 1621 MIGRATE_SYNC, MR_MEMORY_FAILURE);
d950b958 1622 if (ret) {
dd73e85f
DN
1623 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1624 pfn, ret, page->flags);
b8ec1cee
NH
1625 /*
1626 * We know that soft_offline_huge_page() tries to migrate
1627 * only one hugepage pointed to by hpage, so we need not
1628 * run through the pagelist here.
1629 */
1630 putback_active_hugepage(hpage);
1631 if (ret > 0)
1632 ret = -EIO;
af8fae7c 1633 } else {
a49ecbcd
JW
1634 /* overcommit hugetlb page will be freed to buddy */
1635 if (PageHuge(page)) {
1636 set_page_hwpoison_huge_page(hpage);
1637 dequeue_hwpoisoned_huge_page(hpage);
8e30456b 1638 num_poisoned_pages_add(1 << compound_order(hpage));
a49ecbcd
JW
1639 } else {
1640 SetPageHWPoison(page);
8e30456b 1641 num_poisoned_pages_inc();
a49ecbcd 1642 }
d950b958 1643 }
d950b958
NH
1644 return ret;
1645}
1646
af8fae7c
NH
1647static int __soft_offline_page(struct page *page, int flags)
1648{
1649 int ret;
1650 unsigned long pfn = page_to_pfn(page);
facb6011 1651
facb6011 1652 /*
af8fae7c
NH
1653 * Check PageHWPoison again inside page lock because PageHWPoison
1654 * is set by memory_failure() outside page lock. Note that
1655 * memory_failure() also double-checks PageHWPoison inside page lock,
1656 * so there's no race between soft_offline_page() and memory_failure().
facb6011 1657 */
0ebff32c
XQ
1658 lock_page(page);
1659 wait_on_page_writeback(page);
af8fae7c
NH
1660 if (PageHWPoison(page)) {
1661 unlock_page(page);
665d9da7 1662 put_hwpoison_page(page);
af8fae7c
NH
1663 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1664 return -EBUSY;
1665 }
facb6011
AK
1666 /*
1667 * Try to invalidate first. This should work for
1668 * non dirty unmapped page cache pages.
1669 */
1670 ret = invalidate_inode_page(page);
1671 unlock_page(page);
facb6011 1672 /*
facb6011
AK
1673 * RED-PEN would be better to keep it isolated here, but we
1674 * would need to fix isolation locking first.
1675 */
facb6011 1676 if (ret == 1) {
665d9da7 1677 put_hwpoison_page(page);
fb46e735 1678 pr_info("soft_offline: %#lx: invalidated\n", pfn);
af8fae7c 1679 SetPageHWPoison(page);
8e30456b 1680 num_poisoned_pages_inc();
af8fae7c 1681 return 0;
facb6011
AK
1682 }
1683
1684 /*
1685 * Simple invalidation didn't work.
1686 * Try to migrate to a new page instead. migrate.c
1687 * handles a large number of cases for us.
1688 */
1689 ret = isolate_lru_page(page);
bd486285
KK
1690 /*
1691 * Drop page reference which is came from get_any_page()
1692 * successful isolate_lru_page() already took another one.
1693 */
665d9da7 1694 put_hwpoison_page(page);
facb6011
AK
1695 if (!ret) {
1696 LIST_HEAD(pagelist);
5db8a73a 1697 inc_zone_page_state(page, NR_ISOLATED_ANON +
9c620e2b 1698 page_is_file_cache(page));
facb6011 1699 list_add(&page->lru, &pagelist);
68711a74 1700 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
9c620e2b 1701 MIGRATE_SYNC, MR_MEMORY_FAILURE);
facb6011 1702 if (ret) {
59c82b70
JK
1703 if (!list_empty(&pagelist)) {
1704 list_del(&page->lru);
1705 dec_zone_page_state(page, NR_ISOLATED_ANON +
1706 page_is_file_cache(page));
1707 putback_lru_page(page);
1708 }
1709
fb46e735 1710 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
facb6011
AK
1711 pfn, ret, page->flags);
1712 if (ret > 0)
1713 ret = -EIO;
1714 }
1715 } else {
fb46e735 1716 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
dd73e85f 1717 pfn, ret, page_count(page), page->flags);
facb6011 1718 }
facb6011
AK
1719 return ret;
1720}
86e05773
WL
1721
1722/**
1723 * soft_offline_page - Soft offline a page.
1724 * @page: page to offline
1725 * @flags: flags. Same as memory_failure().
1726 *
1727 * Returns 0 on success, otherwise negated errno.
1728 *
1729 * Soft offline a page, by migration or invalidation,
1730 * without killing anything. This is for the case when
1731 * a page is not corrupted yet (so it's still valid to access),
1732 * but has had a number of corrected errors and is better taken
1733 * out.
1734 *
1735 * The actual policy on when to do that is maintained by
1736 * user space.
1737 *
1738 * This should never impact any application or cause data loss,
1739 * however it might take some time.
1740 *
1741 * This is not a 100% solution for all memory, but tries to be
1742 * ``good enough'' for the majority of memory.
1743 */
1744int soft_offline_page(struct page *page, int flags)
1745{
1746 int ret;
1747 unsigned long pfn = page_to_pfn(page);
668f9abb 1748 struct page *hpage = compound_head(page);
86e05773
WL
1749
1750 if (PageHWPoison(page)) {
1751 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1e0e635b 1752 if (flags & MF_COUNT_INCREASED)
665d9da7 1753 put_hwpoison_page(page);
86e05773
WL
1754 return -EBUSY;
1755 }
1756 if (!PageHuge(page) && PageTransHuge(hpage)) {
4d2fa965
KS
1757 lock_page(page);
1758 ret = split_huge_page(hpage);
1759 unlock_page(page);
1760 if (unlikely(ret)) {
86e05773
WL
1761 pr_info("soft offline: %#lx: failed to split THP\n",
1762 pfn);
7d1900c7 1763 if (flags & MF_COUNT_INCREASED)
665d9da7 1764 put_hwpoison_page(page);
86e05773
WL
1765 return -EBUSY;
1766 }
1767 }
1768
bfc8c901 1769 get_online_mems();
03b61ff3 1770
86e05773 1771 ret = get_any_page(page, pfn, flags);
bfc8c901 1772 put_online_mems();
03b61ff3 1773 if (ret > 0) { /* for in-use pages */
86e05773
WL
1774 if (PageHuge(page))
1775 ret = soft_offline_huge_page(page, flags);
1776 else
1777 ret = __soft_offline_page(page, flags);
03b61ff3 1778 } else if (ret == 0) { /* for free pages */
86e05773
WL
1779 if (PageHuge(page)) {
1780 set_page_hwpoison_huge_page(hpage);
602498f9 1781 if (!dequeue_hwpoisoned_huge_page(hpage))
8e30456b 1782 num_poisoned_pages_add(1 << compound_order(hpage));
86e05773 1783 } else {
602498f9 1784 if (!TestSetPageHWPoison(page))
8e30456b 1785 num_poisoned_pages_inc();
86e05773
WL
1786 }
1787 }
86e05773
WL
1788 return ret;
1789}