]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/powerpc/kvm/powerpc.c
KVM: PPC: Book3S: Add count cache flush parameters to kvmppc_get_cpu_char()
[mirror_ubuntu-bionic-kernel.git] / arch / powerpc / kvm / powerpc.c
1 /*
2 * This program is free software; you can redistribute it and/or modify
3 * it under the terms of the GNU General Public License, version 2, as
4 * published by the Free Software Foundation.
5 *
6 * This program is distributed in the hope that it will be useful,
7 * but WITHOUT ANY WARRANTY; without even the implied warranty of
8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
9 * GNU General Public License for more details.
10 *
11 * You should have received a copy of the GNU General Public License
12 * along with this program; if not, write to the Free Software
13 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
14 *
15 * Copyright IBM Corp. 2007
16 *
17 * Authors: Hollis Blanchard <hollisb@us.ibm.com>
18 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
19 */
20
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/vmalloc.h>
25 #include <linux/hrtimer.h>
26 #include <linux/sched/signal.h>
27 #include <linux/fs.h>
28 #include <linux/slab.h>
29 #include <linux/file.h>
30 #include <linux/module.h>
31 #include <linux/irqbypass.h>
32 #include <linux/kvm_irqfd.h>
33 #include <asm/cputable.h>
34 #include <linux/uaccess.h>
35 #include <asm/kvm_ppc.h>
36 #include <asm/tlbflush.h>
37 #include <asm/cputhreads.h>
38 #include <asm/irqflags.h>
39 #include <asm/iommu.h>
40 #include <asm/switch_to.h>
41 #include <asm/xive.h>
42 #ifdef CONFIG_PPC_PSERIES
43 #include <asm/hvcall.h>
44 #include <asm/plpar_wrappers.h>
45 #endif
46
47 #include "timing.h"
48 #include "irq.h"
49 #include "../mm/mmu_decl.h"
50
51 #define CREATE_TRACE_POINTS
52 #include "trace.h"
53
54 struct kvmppc_ops *kvmppc_hv_ops;
55 EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
56 struct kvmppc_ops *kvmppc_pr_ops;
57 EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
58
59
60 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
61 {
62 return !!(v->arch.pending_exceptions) || kvm_request_pending(v);
63 }
64
65 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
66 {
67 return false;
68 }
69
70 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
71 {
72 return 1;
73 }
74
75 /*
76 * Common checks before entering the guest world. Call with interrupts
77 * disabled.
78 *
79 * returns:
80 *
81 * == 1 if we're ready to go into guest state
82 * <= 0 if we need to go back to the host with return value
83 */
84 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
85 {
86 int r;
87
88 WARN_ON(irqs_disabled());
89 hard_irq_disable();
90
91 while (true) {
92 if (need_resched()) {
93 local_irq_enable();
94 cond_resched();
95 hard_irq_disable();
96 continue;
97 }
98
99 if (signal_pending(current)) {
100 kvmppc_account_exit(vcpu, SIGNAL_EXITS);
101 vcpu->run->exit_reason = KVM_EXIT_INTR;
102 r = -EINTR;
103 break;
104 }
105
106 vcpu->mode = IN_GUEST_MODE;
107
108 /*
109 * Reading vcpu->requests must happen after setting vcpu->mode,
110 * so we don't miss a request because the requester sees
111 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
112 * before next entering the guest (and thus doesn't IPI).
113 * This also orders the write to mode from any reads
114 * to the page tables done while the VCPU is running.
115 * Please see the comment in kvm_flush_remote_tlbs.
116 */
117 smp_mb();
118
119 if (kvm_request_pending(vcpu)) {
120 /* Make sure we process requests preemptable */
121 local_irq_enable();
122 trace_kvm_check_requests(vcpu);
123 r = kvmppc_core_check_requests(vcpu);
124 hard_irq_disable();
125 if (r > 0)
126 continue;
127 break;
128 }
129
130 if (kvmppc_core_prepare_to_enter(vcpu)) {
131 /* interrupts got enabled in between, so we
132 are back at square 1 */
133 continue;
134 }
135
136 guest_enter_irqoff();
137 return 1;
138 }
139
140 /* return to host */
141 local_irq_enable();
142 return r;
143 }
144 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
145
146 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
147 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
148 {
149 struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
150 int i;
151
152 shared->sprg0 = swab64(shared->sprg0);
153 shared->sprg1 = swab64(shared->sprg1);
154 shared->sprg2 = swab64(shared->sprg2);
155 shared->sprg3 = swab64(shared->sprg3);
156 shared->srr0 = swab64(shared->srr0);
157 shared->srr1 = swab64(shared->srr1);
158 shared->dar = swab64(shared->dar);
159 shared->msr = swab64(shared->msr);
160 shared->dsisr = swab32(shared->dsisr);
161 shared->int_pending = swab32(shared->int_pending);
162 for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
163 shared->sr[i] = swab32(shared->sr[i]);
164 }
165 #endif
166
167 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
168 {
169 int nr = kvmppc_get_gpr(vcpu, 11);
170 int r;
171 unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
172 unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
173 unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
174 unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
175 unsigned long r2 = 0;
176
177 if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
178 /* 32 bit mode */
179 param1 &= 0xffffffff;
180 param2 &= 0xffffffff;
181 param3 &= 0xffffffff;
182 param4 &= 0xffffffff;
183 }
184
185 switch (nr) {
186 case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
187 {
188 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
189 /* Book3S can be little endian, find it out here */
190 int shared_big_endian = true;
191 if (vcpu->arch.intr_msr & MSR_LE)
192 shared_big_endian = false;
193 if (shared_big_endian != vcpu->arch.shared_big_endian)
194 kvmppc_swab_shared(vcpu);
195 vcpu->arch.shared_big_endian = shared_big_endian;
196 #endif
197
198 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
199 /*
200 * Older versions of the Linux magic page code had
201 * a bug where they would map their trampoline code
202 * NX. If that's the case, remove !PR NX capability.
203 */
204 vcpu->arch.disable_kernel_nx = true;
205 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
206 }
207
208 vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
209 vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
210
211 #ifdef CONFIG_PPC_64K_PAGES
212 /*
213 * Make sure our 4k magic page is in the same window of a 64k
214 * page within the guest and within the host's page.
215 */
216 if ((vcpu->arch.magic_page_pa & 0xf000) !=
217 ((ulong)vcpu->arch.shared & 0xf000)) {
218 void *old_shared = vcpu->arch.shared;
219 ulong shared = (ulong)vcpu->arch.shared;
220 void *new_shared;
221
222 shared &= PAGE_MASK;
223 shared |= vcpu->arch.magic_page_pa & 0xf000;
224 new_shared = (void*)shared;
225 memcpy(new_shared, old_shared, 0x1000);
226 vcpu->arch.shared = new_shared;
227 }
228 #endif
229
230 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
231
232 r = EV_SUCCESS;
233 break;
234 }
235 case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
236 r = EV_SUCCESS;
237 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
238 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
239 #endif
240
241 /* Second return value is in r4 */
242 break;
243 case EV_HCALL_TOKEN(EV_IDLE):
244 r = EV_SUCCESS;
245 kvm_vcpu_block(vcpu);
246 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
247 break;
248 default:
249 r = EV_UNIMPLEMENTED;
250 break;
251 }
252
253 kvmppc_set_gpr(vcpu, 4, r2);
254
255 return r;
256 }
257 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
258
259 int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
260 {
261 int r = false;
262
263 /* We have to know what CPU to virtualize */
264 if (!vcpu->arch.pvr)
265 goto out;
266
267 /* PAPR only works with book3s_64 */
268 if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
269 goto out;
270
271 /* HV KVM can only do PAPR mode for now */
272 if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
273 goto out;
274
275 #ifdef CONFIG_KVM_BOOKE_HV
276 if (!cpu_has_feature(CPU_FTR_EMB_HV))
277 goto out;
278 #endif
279
280 r = true;
281
282 out:
283 vcpu->arch.sane = r;
284 return r ? 0 : -EINVAL;
285 }
286 EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
287
288 int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu)
289 {
290 enum emulation_result er;
291 int r;
292
293 er = kvmppc_emulate_loadstore(vcpu);
294 switch (er) {
295 case EMULATE_DONE:
296 /* Future optimization: only reload non-volatiles if they were
297 * actually modified. */
298 r = RESUME_GUEST_NV;
299 break;
300 case EMULATE_AGAIN:
301 r = RESUME_GUEST;
302 break;
303 case EMULATE_DO_MMIO:
304 run->exit_reason = KVM_EXIT_MMIO;
305 /* We must reload nonvolatiles because "update" load/store
306 * instructions modify register state. */
307 /* Future optimization: only reload non-volatiles if they were
308 * actually modified. */
309 r = RESUME_HOST_NV;
310 break;
311 case EMULATE_FAIL:
312 {
313 u32 last_inst;
314
315 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
316 /* XXX Deliver Program interrupt to guest. */
317 pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst);
318 r = RESUME_HOST;
319 break;
320 }
321 default:
322 WARN_ON(1);
323 r = RESUME_GUEST;
324 }
325
326 return r;
327 }
328 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
329
330 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
331 bool data)
332 {
333 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
334 struct kvmppc_pte pte;
335 int r;
336
337 vcpu->stat.st++;
338
339 r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
340 XLATE_WRITE, &pte);
341 if (r < 0)
342 return r;
343
344 *eaddr = pte.raddr;
345
346 if (!pte.may_write)
347 return -EPERM;
348
349 /* Magic page override */
350 if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
351 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
352 !(kvmppc_get_msr(vcpu) & MSR_PR)) {
353 void *magic = vcpu->arch.shared;
354 magic += pte.eaddr & 0xfff;
355 memcpy(magic, ptr, size);
356 return EMULATE_DONE;
357 }
358
359 if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
360 return EMULATE_DO_MMIO;
361
362 return EMULATE_DONE;
363 }
364 EXPORT_SYMBOL_GPL(kvmppc_st);
365
366 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
367 bool data)
368 {
369 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
370 struct kvmppc_pte pte;
371 int rc;
372
373 vcpu->stat.ld++;
374
375 rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
376 XLATE_READ, &pte);
377 if (rc)
378 return rc;
379
380 *eaddr = pte.raddr;
381
382 if (!pte.may_read)
383 return -EPERM;
384
385 if (!data && !pte.may_execute)
386 return -ENOEXEC;
387
388 /* Magic page override */
389 if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
390 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
391 !(kvmppc_get_msr(vcpu) & MSR_PR)) {
392 void *magic = vcpu->arch.shared;
393 magic += pte.eaddr & 0xfff;
394 memcpy(ptr, magic, size);
395 return EMULATE_DONE;
396 }
397
398 if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size))
399 return EMULATE_DO_MMIO;
400
401 return EMULATE_DONE;
402 }
403 EXPORT_SYMBOL_GPL(kvmppc_ld);
404
405 int kvm_arch_hardware_enable(void)
406 {
407 return 0;
408 }
409
410 int kvm_arch_hardware_setup(void)
411 {
412 return 0;
413 }
414
415 void kvm_arch_check_processor_compat(void *rtn)
416 {
417 *(int *)rtn = kvmppc_core_check_processor_compat();
418 }
419
420 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
421 {
422 struct kvmppc_ops *kvm_ops = NULL;
423 /*
424 * if we have both HV and PR enabled, default is HV
425 */
426 if (type == 0) {
427 if (kvmppc_hv_ops)
428 kvm_ops = kvmppc_hv_ops;
429 else
430 kvm_ops = kvmppc_pr_ops;
431 if (!kvm_ops)
432 goto err_out;
433 } else if (type == KVM_VM_PPC_HV) {
434 if (!kvmppc_hv_ops)
435 goto err_out;
436 kvm_ops = kvmppc_hv_ops;
437 } else if (type == KVM_VM_PPC_PR) {
438 if (!kvmppc_pr_ops)
439 goto err_out;
440 kvm_ops = kvmppc_pr_ops;
441 } else
442 goto err_out;
443
444 if (kvm_ops->owner && !try_module_get(kvm_ops->owner))
445 return -ENOENT;
446
447 kvm->arch.kvm_ops = kvm_ops;
448 return kvmppc_core_init_vm(kvm);
449 err_out:
450 return -EINVAL;
451 }
452
453 bool kvm_arch_has_vcpu_debugfs(void)
454 {
455 return false;
456 }
457
458 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
459 {
460 return 0;
461 }
462
463 void kvm_arch_destroy_vm(struct kvm *kvm)
464 {
465 unsigned int i;
466 struct kvm_vcpu *vcpu;
467
468 #ifdef CONFIG_KVM_XICS
469 /*
470 * We call kick_all_cpus_sync() to ensure that all
471 * CPUs have executed any pending IPIs before we
472 * continue and free VCPUs structures below.
473 */
474 if (is_kvmppc_hv_enabled(kvm))
475 kick_all_cpus_sync();
476 #endif
477
478 kvm_for_each_vcpu(i, vcpu, kvm)
479 kvm_arch_vcpu_free(vcpu);
480
481 mutex_lock(&kvm->lock);
482 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
483 kvm->vcpus[i] = NULL;
484
485 atomic_set(&kvm->online_vcpus, 0);
486
487 kvmppc_core_destroy_vm(kvm);
488
489 mutex_unlock(&kvm->lock);
490
491 /* drop the module reference */
492 module_put(kvm->arch.kvm_ops->owner);
493 }
494
495 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
496 {
497 int r;
498 /* Assume we're using HV mode when the HV module is loaded */
499 int hv_enabled = kvmppc_hv_ops ? 1 : 0;
500
501 if (kvm) {
502 /*
503 * Hooray - we know which VM type we're running on. Depend on
504 * that rather than the guess above.
505 */
506 hv_enabled = is_kvmppc_hv_enabled(kvm);
507 }
508
509 switch (ext) {
510 #ifdef CONFIG_BOOKE
511 case KVM_CAP_PPC_BOOKE_SREGS:
512 case KVM_CAP_PPC_BOOKE_WATCHDOG:
513 case KVM_CAP_PPC_EPR:
514 #else
515 case KVM_CAP_PPC_SEGSTATE:
516 case KVM_CAP_PPC_HIOR:
517 case KVM_CAP_PPC_PAPR:
518 #endif
519 case KVM_CAP_PPC_UNSET_IRQ:
520 case KVM_CAP_PPC_IRQ_LEVEL:
521 case KVM_CAP_ENABLE_CAP:
522 case KVM_CAP_ENABLE_CAP_VM:
523 case KVM_CAP_ONE_REG:
524 case KVM_CAP_IOEVENTFD:
525 case KVM_CAP_DEVICE_CTRL:
526 case KVM_CAP_IMMEDIATE_EXIT:
527 r = 1;
528 break;
529 case KVM_CAP_PPC_PAIRED_SINGLES:
530 case KVM_CAP_PPC_OSI:
531 case KVM_CAP_PPC_GET_PVINFO:
532 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
533 case KVM_CAP_SW_TLB:
534 #endif
535 /* We support this only for PR */
536 r = !hv_enabled;
537 break;
538 #ifdef CONFIG_KVM_MPIC
539 case KVM_CAP_IRQ_MPIC:
540 r = 1;
541 break;
542 #endif
543
544 #ifdef CONFIG_PPC_BOOK3S_64
545 case KVM_CAP_SPAPR_TCE:
546 case KVM_CAP_SPAPR_TCE_64:
547 /* fallthrough */
548 case KVM_CAP_SPAPR_TCE_VFIO:
549 case KVM_CAP_PPC_RTAS:
550 case KVM_CAP_PPC_FIXUP_HCALL:
551 case KVM_CAP_PPC_ENABLE_HCALL:
552 #ifdef CONFIG_KVM_XICS
553 case KVM_CAP_IRQ_XICS:
554 #endif
555 case KVM_CAP_PPC_GET_CPU_CHAR:
556 r = 1;
557 break;
558
559 case KVM_CAP_PPC_ALLOC_HTAB:
560 r = hv_enabled;
561 break;
562 #endif /* CONFIG_PPC_BOOK3S_64 */
563 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
564 case KVM_CAP_PPC_SMT:
565 r = 0;
566 if (kvm) {
567 if (kvm->arch.emul_smt_mode > 1)
568 r = kvm->arch.emul_smt_mode;
569 else
570 r = kvm->arch.smt_mode;
571 } else if (hv_enabled) {
572 if (cpu_has_feature(CPU_FTR_ARCH_300))
573 r = 1;
574 else
575 r = threads_per_subcore;
576 }
577 break;
578 case KVM_CAP_PPC_SMT_POSSIBLE:
579 r = 1;
580 if (hv_enabled) {
581 if (!cpu_has_feature(CPU_FTR_ARCH_300))
582 r = ((threads_per_subcore << 1) - 1);
583 else
584 /* P9 can emulate dbells, so allow any mode */
585 r = 8 | 4 | 2 | 1;
586 }
587 break;
588 case KVM_CAP_PPC_RMA:
589 r = 0;
590 break;
591 case KVM_CAP_PPC_HWRNG:
592 r = kvmppc_hwrng_present();
593 break;
594 case KVM_CAP_PPC_MMU_RADIX:
595 r = !!(hv_enabled && radix_enabled());
596 break;
597 case KVM_CAP_PPC_MMU_HASH_V3:
598 r = !!(hv_enabled && cpu_has_feature(CPU_FTR_ARCH_300));
599 break;
600 #endif
601 case KVM_CAP_SYNC_MMU:
602 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
603 r = hv_enabled;
604 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
605 r = 1;
606 #else
607 r = 0;
608 #endif
609 break;
610 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
611 case KVM_CAP_PPC_HTAB_FD:
612 r = hv_enabled;
613 break;
614 #endif
615 case KVM_CAP_NR_VCPUS:
616 /*
617 * Recommending a number of CPUs is somewhat arbitrary; we
618 * return the number of present CPUs for -HV (since a host
619 * will have secondary threads "offline"), and for other KVM
620 * implementations just count online CPUs.
621 */
622 if (hv_enabled)
623 r = num_present_cpus();
624 else
625 r = num_online_cpus();
626 break;
627 case KVM_CAP_NR_MEMSLOTS:
628 r = KVM_USER_MEM_SLOTS;
629 break;
630 case KVM_CAP_MAX_VCPUS:
631 r = KVM_MAX_VCPUS;
632 break;
633 #ifdef CONFIG_PPC_BOOK3S_64
634 case KVM_CAP_PPC_GET_SMMU_INFO:
635 r = 1;
636 break;
637 case KVM_CAP_SPAPR_MULTITCE:
638 r = 1;
639 break;
640 case KVM_CAP_SPAPR_RESIZE_HPT:
641 r = !!hv_enabled;
642 break;
643 #endif
644 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
645 case KVM_CAP_PPC_FWNMI:
646 r = hv_enabled;
647 break;
648 #endif
649 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
650 case KVM_CAP_PPC_HTM:
651 r = hv_enabled &&
652 (!!(cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM) ||
653 cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST));
654 break;
655 #endif
656 default:
657 r = 0;
658 break;
659 }
660 return r;
661
662 }
663
664 long kvm_arch_dev_ioctl(struct file *filp,
665 unsigned int ioctl, unsigned long arg)
666 {
667 return -EINVAL;
668 }
669
670 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
671 struct kvm_memory_slot *dont)
672 {
673 kvmppc_core_free_memslot(kvm, free, dont);
674 }
675
676 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
677 unsigned long npages)
678 {
679 return kvmppc_core_create_memslot(kvm, slot, npages);
680 }
681
682 int kvm_arch_prepare_memory_region(struct kvm *kvm,
683 struct kvm_memory_slot *memslot,
684 const struct kvm_userspace_memory_region *mem,
685 enum kvm_mr_change change)
686 {
687 return kvmppc_core_prepare_memory_region(kvm, memslot, mem);
688 }
689
690 void kvm_arch_commit_memory_region(struct kvm *kvm,
691 const struct kvm_userspace_memory_region *mem,
692 const struct kvm_memory_slot *old,
693 const struct kvm_memory_slot *new,
694 enum kvm_mr_change change)
695 {
696 kvmppc_core_commit_memory_region(kvm, mem, old, new);
697 }
698
699 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
700 struct kvm_memory_slot *slot)
701 {
702 kvmppc_core_flush_memslot(kvm, slot);
703 }
704
705 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
706 {
707 struct kvm_vcpu *vcpu;
708 vcpu = kvmppc_core_vcpu_create(kvm, id);
709 if (!IS_ERR(vcpu)) {
710 vcpu->arch.wqp = &vcpu->wq;
711 kvmppc_create_vcpu_debugfs(vcpu, id);
712 }
713 return vcpu;
714 }
715
716 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
717 {
718 }
719
720 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
721 {
722 /* Make sure we're not using the vcpu anymore */
723 hrtimer_cancel(&vcpu->arch.dec_timer);
724
725 kvmppc_remove_vcpu_debugfs(vcpu);
726
727 switch (vcpu->arch.irq_type) {
728 case KVMPPC_IRQ_MPIC:
729 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
730 break;
731 case KVMPPC_IRQ_XICS:
732 if (xive_enabled())
733 kvmppc_xive_cleanup_vcpu(vcpu);
734 else
735 kvmppc_xics_free_icp(vcpu);
736 break;
737 }
738
739 kvmppc_core_vcpu_free(vcpu);
740 }
741
742 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
743 {
744 kvm_arch_vcpu_free(vcpu);
745 }
746
747 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
748 {
749 return kvmppc_core_pending_dec(vcpu);
750 }
751
752 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
753 {
754 struct kvm_vcpu *vcpu;
755
756 vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
757 kvmppc_decrementer_func(vcpu);
758
759 return HRTIMER_NORESTART;
760 }
761
762 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
763 {
764 int ret;
765
766 hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
767 vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
768 vcpu->arch.dec_expires = get_tb();
769
770 #ifdef CONFIG_KVM_EXIT_TIMING
771 mutex_init(&vcpu->arch.exit_timing_lock);
772 #endif
773 ret = kvmppc_subarch_vcpu_init(vcpu);
774 return ret;
775 }
776
777 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
778 {
779 kvmppc_mmu_destroy(vcpu);
780 kvmppc_subarch_vcpu_uninit(vcpu);
781 }
782
783 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
784 {
785 #ifdef CONFIG_BOOKE
786 /*
787 * vrsave (formerly usprg0) isn't used by Linux, but may
788 * be used by the guest.
789 *
790 * On non-booke this is associated with Altivec and
791 * is handled by code in book3s.c.
792 */
793 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
794 #endif
795 kvmppc_core_vcpu_load(vcpu, cpu);
796 }
797
798 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
799 {
800 kvmppc_core_vcpu_put(vcpu);
801 #ifdef CONFIG_BOOKE
802 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
803 #endif
804 }
805
806 /*
807 * irq_bypass_add_producer and irq_bypass_del_producer are only
808 * useful if the architecture supports PCI passthrough.
809 * irq_bypass_stop and irq_bypass_start are not needed and so
810 * kvm_ops are not defined for them.
811 */
812 bool kvm_arch_has_irq_bypass(void)
813 {
814 return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
815 (kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
816 }
817
818 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
819 struct irq_bypass_producer *prod)
820 {
821 struct kvm_kernel_irqfd *irqfd =
822 container_of(cons, struct kvm_kernel_irqfd, consumer);
823 struct kvm *kvm = irqfd->kvm;
824
825 if (kvm->arch.kvm_ops->irq_bypass_add_producer)
826 return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);
827
828 return 0;
829 }
830
831 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
832 struct irq_bypass_producer *prod)
833 {
834 struct kvm_kernel_irqfd *irqfd =
835 container_of(cons, struct kvm_kernel_irqfd, consumer);
836 struct kvm *kvm = irqfd->kvm;
837
838 if (kvm->arch.kvm_ops->irq_bypass_del_producer)
839 kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
840 }
841
842 #ifdef CONFIG_VSX
843 static inline int kvmppc_get_vsr_dword_offset(int index)
844 {
845 int offset;
846
847 if ((index != 0) && (index != 1))
848 return -1;
849
850 #ifdef __BIG_ENDIAN
851 offset = index;
852 #else
853 offset = 1 - index;
854 #endif
855
856 return offset;
857 }
858
859 static inline int kvmppc_get_vsr_word_offset(int index)
860 {
861 int offset;
862
863 if ((index > 3) || (index < 0))
864 return -1;
865
866 #ifdef __BIG_ENDIAN
867 offset = index;
868 #else
869 offset = 3 - index;
870 #endif
871 return offset;
872 }
873
874 static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu,
875 u64 gpr)
876 {
877 union kvmppc_one_reg val;
878 int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
879 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
880
881 if (offset == -1)
882 return;
883
884 if (vcpu->arch.mmio_vsx_tx_sx_enabled) {
885 val.vval = VCPU_VSX_VR(vcpu, index);
886 val.vsxval[offset] = gpr;
887 VCPU_VSX_VR(vcpu, index) = val.vval;
888 } else {
889 VCPU_VSX_FPR(vcpu, index, offset) = gpr;
890 }
891 }
892
893 static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu,
894 u64 gpr)
895 {
896 union kvmppc_one_reg val;
897 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
898
899 if (vcpu->arch.mmio_vsx_tx_sx_enabled) {
900 val.vval = VCPU_VSX_VR(vcpu, index);
901 val.vsxval[0] = gpr;
902 val.vsxval[1] = gpr;
903 VCPU_VSX_VR(vcpu, index) = val.vval;
904 } else {
905 VCPU_VSX_FPR(vcpu, index, 0) = gpr;
906 VCPU_VSX_FPR(vcpu, index, 1) = gpr;
907 }
908 }
909
910 static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu,
911 u32 gpr32)
912 {
913 union kvmppc_one_reg val;
914 int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
915 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
916 int dword_offset, word_offset;
917
918 if (offset == -1)
919 return;
920
921 if (vcpu->arch.mmio_vsx_tx_sx_enabled) {
922 val.vval = VCPU_VSX_VR(vcpu, index);
923 val.vsx32val[offset] = gpr32;
924 VCPU_VSX_VR(vcpu, index) = val.vval;
925 } else {
926 dword_offset = offset / 2;
927 word_offset = offset % 2;
928 val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset);
929 val.vsx32val[word_offset] = gpr32;
930 VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0];
931 }
932 }
933 #endif /* CONFIG_VSX */
934
935 #ifdef CONFIG_ALTIVEC
936 static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu,
937 u64 gpr)
938 {
939 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
940 u32 hi, lo;
941 u32 di;
942
943 #ifdef __BIG_ENDIAN
944 hi = gpr >> 32;
945 lo = gpr & 0xffffffff;
946 #else
947 lo = gpr >> 32;
948 hi = gpr & 0xffffffff;
949 #endif
950
951 di = 2 - vcpu->arch.mmio_vmx_copy_nums; /* doubleword index */
952 if (di > 1)
953 return;
954
955 if (vcpu->arch.mmio_host_swabbed)
956 di = 1 - di;
957
958 VCPU_VSX_VR(vcpu, index).u[di * 2] = hi;
959 VCPU_VSX_VR(vcpu, index).u[di * 2 + 1] = lo;
960 }
961 #endif /* CONFIG_ALTIVEC */
962
963 #ifdef CONFIG_PPC_FPU
964 static inline u64 sp_to_dp(u32 fprs)
965 {
966 u64 fprd;
967
968 preempt_disable();
969 enable_kernel_fp();
970 asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m" (fprd) : "m" (fprs)
971 : "fr0");
972 preempt_enable();
973 return fprd;
974 }
975
976 static inline u32 dp_to_sp(u64 fprd)
977 {
978 u32 fprs;
979
980 preempt_disable();
981 enable_kernel_fp();
982 asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m" (fprs) : "m" (fprd)
983 : "fr0");
984 preempt_enable();
985 return fprs;
986 }
987
988 #else
989 #define sp_to_dp(x) (x)
990 #define dp_to_sp(x) (x)
991 #endif /* CONFIG_PPC_FPU */
992
993 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu,
994 struct kvm_run *run)
995 {
996 u64 uninitialized_var(gpr);
997
998 if (run->mmio.len > sizeof(gpr)) {
999 printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
1000 return;
1001 }
1002
1003 if (!vcpu->arch.mmio_host_swabbed) {
1004 switch (run->mmio.len) {
1005 case 8: gpr = *(u64 *)run->mmio.data; break;
1006 case 4: gpr = *(u32 *)run->mmio.data; break;
1007 case 2: gpr = *(u16 *)run->mmio.data; break;
1008 case 1: gpr = *(u8 *)run->mmio.data; break;
1009 }
1010 } else {
1011 switch (run->mmio.len) {
1012 case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
1013 case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
1014 case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
1015 case 1: gpr = *(u8 *)run->mmio.data; break;
1016 }
1017 }
1018
1019 /* conversion between single and double precision */
1020 if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4))
1021 gpr = sp_to_dp(gpr);
1022
1023 if (vcpu->arch.mmio_sign_extend) {
1024 switch (run->mmio.len) {
1025 #ifdef CONFIG_PPC64
1026 case 4:
1027 gpr = (s64)(s32)gpr;
1028 break;
1029 #endif
1030 case 2:
1031 gpr = (s64)(s16)gpr;
1032 break;
1033 case 1:
1034 gpr = (s64)(s8)gpr;
1035 break;
1036 }
1037 }
1038
1039 switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
1040 case KVM_MMIO_REG_GPR:
1041 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
1042 break;
1043 case KVM_MMIO_REG_FPR:
1044 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1045 break;
1046 #ifdef CONFIG_PPC_BOOK3S
1047 case KVM_MMIO_REG_QPR:
1048 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1049 break;
1050 case KVM_MMIO_REG_FQPR:
1051 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1052 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1053 break;
1054 #endif
1055 #ifdef CONFIG_VSX
1056 case KVM_MMIO_REG_VSX:
1057 if (vcpu->arch.mmio_vsx_copy_type == KVMPPC_VSX_COPY_DWORD)
1058 kvmppc_set_vsr_dword(vcpu, gpr);
1059 else if (vcpu->arch.mmio_vsx_copy_type == KVMPPC_VSX_COPY_WORD)
1060 kvmppc_set_vsr_word(vcpu, gpr);
1061 else if (vcpu->arch.mmio_vsx_copy_type ==
1062 KVMPPC_VSX_COPY_DWORD_LOAD_DUMP)
1063 kvmppc_set_vsr_dword_dump(vcpu, gpr);
1064 break;
1065 #endif
1066 #ifdef CONFIG_ALTIVEC
1067 case KVM_MMIO_REG_VMX:
1068 kvmppc_set_vmx_dword(vcpu, gpr);
1069 break;
1070 #endif
1071 default:
1072 BUG();
1073 }
1074 }
1075
1076 static int __kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1077 unsigned int rt, unsigned int bytes,
1078 int is_default_endian, int sign_extend)
1079 {
1080 int idx, ret;
1081 bool host_swabbed;
1082
1083 /* Pity C doesn't have a logical XOR operator */
1084 if (kvmppc_need_byteswap(vcpu)) {
1085 host_swabbed = is_default_endian;
1086 } else {
1087 host_swabbed = !is_default_endian;
1088 }
1089
1090 if (bytes > sizeof(run->mmio.data)) {
1091 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1092 run->mmio.len);
1093 }
1094
1095 run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1096 run->mmio.len = bytes;
1097 run->mmio.is_write = 0;
1098
1099 vcpu->arch.io_gpr = rt;
1100 vcpu->arch.mmio_host_swabbed = host_swabbed;
1101 vcpu->mmio_needed = 1;
1102 vcpu->mmio_is_write = 0;
1103 vcpu->arch.mmio_sign_extend = sign_extend;
1104
1105 idx = srcu_read_lock(&vcpu->kvm->srcu);
1106
1107 ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1108 bytes, &run->mmio.data);
1109
1110 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1111
1112 if (!ret) {
1113 kvmppc_complete_mmio_load(vcpu, run);
1114 vcpu->mmio_needed = 0;
1115 return EMULATE_DONE;
1116 }
1117
1118 return EMULATE_DO_MMIO;
1119 }
1120
1121 int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1122 unsigned int rt, unsigned int bytes,
1123 int is_default_endian)
1124 {
1125 return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 0);
1126 }
1127 EXPORT_SYMBOL_GPL(kvmppc_handle_load);
1128
1129 /* Same as above, but sign extends */
1130 int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu,
1131 unsigned int rt, unsigned int bytes,
1132 int is_default_endian)
1133 {
1134 return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 1);
1135 }
1136
1137 #ifdef CONFIG_VSX
1138 int kvmppc_handle_vsx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1139 unsigned int rt, unsigned int bytes,
1140 int is_default_endian, int mmio_sign_extend)
1141 {
1142 enum emulation_result emulated = EMULATE_DONE;
1143
1144 /* Currently, mmio_vsx_copy_nums only allowed to be less than 4 */
1145 if ( (vcpu->arch.mmio_vsx_copy_nums > 4) ||
1146 (vcpu->arch.mmio_vsx_copy_nums < 0) ) {
1147 return EMULATE_FAIL;
1148 }
1149
1150 while (vcpu->arch.mmio_vsx_copy_nums) {
1151 emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
1152 is_default_endian, mmio_sign_extend);
1153
1154 if (emulated != EMULATE_DONE)
1155 break;
1156
1157 vcpu->arch.paddr_accessed += run->mmio.len;
1158
1159 vcpu->arch.mmio_vsx_copy_nums--;
1160 vcpu->arch.mmio_vsx_offset++;
1161 }
1162 return emulated;
1163 }
1164 #endif /* CONFIG_VSX */
1165
1166 int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1167 u64 val, unsigned int bytes, int is_default_endian)
1168 {
1169 void *data = run->mmio.data;
1170 int idx, ret;
1171 bool host_swabbed;
1172
1173 /* Pity C doesn't have a logical XOR operator */
1174 if (kvmppc_need_byteswap(vcpu)) {
1175 host_swabbed = is_default_endian;
1176 } else {
1177 host_swabbed = !is_default_endian;
1178 }
1179
1180 if (bytes > sizeof(run->mmio.data)) {
1181 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1182 run->mmio.len);
1183 }
1184
1185 run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1186 run->mmio.len = bytes;
1187 run->mmio.is_write = 1;
1188 vcpu->mmio_needed = 1;
1189 vcpu->mmio_is_write = 1;
1190
1191 if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4))
1192 val = dp_to_sp(val);
1193
1194 /* Store the value at the lowest bytes in 'data'. */
1195 if (!host_swabbed) {
1196 switch (bytes) {
1197 case 8: *(u64 *)data = val; break;
1198 case 4: *(u32 *)data = val; break;
1199 case 2: *(u16 *)data = val; break;
1200 case 1: *(u8 *)data = val; break;
1201 }
1202 } else {
1203 switch (bytes) {
1204 case 8: *(u64 *)data = swab64(val); break;
1205 case 4: *(u32 *)data = swab32(val); break;
1206 case 2: *(u16 *)data = swab16(val); break;
1207 case 1: *(u8 *)data = val; break;
1208 }
1209 }
1210
1211 idx = srcu_read_lock(&vcpu->kvm->srcu);
1212
1213 ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1214 bytes, &run->mmio.data);
1215
1216 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1217
1218 if (!ret) {
1219 vcpu->mmio_needed = 0;
1220 return EMULATE_DONE;
1221 }
1222
1223 return EMULATE_DO_MMIO;
1224 }
1225 EXPORT_SYMBOL_GPL(kvmppc_handle_store);
1226
1227 #ifdef CONFIG_VSX
1228 static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
1229 {
1230 u32 dword_offset, word_offset;
1231 union kvmppc_one_reg reg;
1232 int vsx_offset = 0;
1233 int copy_type = vcpu->arch.mmio_vsx_copy_type;
1234 int result = 0;
1235
1236 switch (copy_type) {
1237 case KVMPPC_VSX_COPY_DWORD:
1238 vsx_offset =
1239 kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
1240
1241 if (vsx_offset == -1) {
1242 result = -1;
1243 break;
1244 }
1245
1246 if (!vcpu->arch.mmio_vsx_tx_sx_enabled) {
1247 *val = VCPU_VSX_FPR(vcpu, rs, vsx_offset);
1248 } else {
1249 reg.vval = VCPU_VSX_VR(vcpu, rs);
1250 *val = reg.vsxval[vsx_offset];
1251 }
1252 break;
1253
1254 case KVMPPC_VSX_COPY_WORD:
1255 vsx_offset =
1256 kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
1257
1258 if (vsx_offset == -1) {
1259 result = -1;
1260 break;
1261 }
1262
1263 if (!vcpu->arch.mmio_vsx_tx_sx_enabled) {
1264 dword_offset = vsx_offset / 2;
1265 word_offset = vsx_offset % 2;
1266 reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset);
1267 *val = reg.vsx32val[word_offset];
1268 } else {
1269 reg.vval = VCPU_VSX_VR(vcpu, rs);
1270 *val = reg.vsx32val[vsx_offset];
1271 }
1272 break;
1273
1274 default:
1275 result = -1;
1276 break;
1277 }
1278
1279 return result;
1280 }
1281
1282 int kvmppc_handle_vsx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1283 int rs, unsigned int bytes, int is_default_endian)
1284 {
1285 u64 val;
1286 enum emulation_result emulated = EMULATE_DONE;
1287
1288 vcpu->arch.io_gpr = rs;
1289
1290 /* Currently, mmio_vsx_copy_nums only allowed to be less than 4 */
1291 if ( (vcpu->arch.mmio_vsx_copy_nums > 4) ||
1292 (vcpu->arch.mmio_vsx_copy_nums < 0) ) {
1293 return EMULATE_FAIL;
1294 }
1295
1296 while (vcpu->arch.mmio_vsx_copy_nums) {
1297 if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1)
1298 return EMULATE_FAIL;
1299
1300 emulated = kvmppc_handle_store(run, vcpu,
1301 val, bytes, is_default_endian);
1302
1303 if (emulated != EMULATE_DONE)
1304 break;
1305
1306 vcpu->arch.paddr_accessed += run->mmio.len;
1307
1308 vcpu->arch.mmio_vsx_copy_nums--;
1309 vcpu->arch.mmio_vsx_offset++;
1310 }
1311
1312 return emulated;
1313 }
1314
1315 static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu,
1316 struct kvm_run *run)
1317 {
1318 enum emulation_result emulated = EMULATE_FAIL;
1319 int r;
1320
1321 vcpu->arch.paddr_accessed += run->mmio.len;
1322
1323 if (!vcpu->mmio_is_write) {
1324 emulated = kvmppc_handle_vsx_load(run, vcpu, vcpu->arch.io_gpr,
1325 run->mmio.len, 1, vcpu->arch.mmio_sign_extend);
1326 } else {
1327 emulated = kvmppc_handle_vsx_store(run, vcpu,
1328 vcpu->arch.io_gpr, run->mmio.len, 1);
1329 }
1330
1331 switch (emulated) {
1332 case EMULATE_DO_MMIO:
1333 run->exit_reason = KVM_EXIT_MMIO;
1334 r = RESUME_HOST;
1335 break;
1336 case EMULATE_FAIL:
1337 pr_info("KVM: MMIO emulation failed (VSX repeat)\n");
1338 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1339 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1340 r = RESUME_HOST;
1341 break;
1342 default:
1343 r = RESUME_GUEST;
1344 break;
1345 }
1346 return r;
1347 }
1348 #endif /* CONFIG_VSX */
1349
1350 #ifdef CONFIG_ALTIVEC
1351 /* handle quadword load access in two halves */
1352 int kvmppc_handle_load128_by2x64(struct kvm_run *run, struct kvm_vcpu *vcpu,
1353 unsigned int rt, int is_default_endian)
1354 {
1355 enum emulation_result emulated = EMULATE_DONE;
1356
1357 while (vcpu->arch.mmio_vmx_copy_nums) {
1358 emulated = __kvmppc_handle_load(run, vcpu, rt, 8,
1359 is_default_endian, 0);
1360
1361 if (emulated != EMULATE_DONE)
1362 break;
1363
1364 vcpu->arch.paddr_accessed += run->mmio.len;
1365 vcpu->arch.mmio_vmx_copy_nums--;
1366 }
1367
1368 return emulated;
1369 }
1370
1371 static inline int kvmppc_get_vmx_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
1372 {
1373 vector128 vrs = VCPU_VSX_VR(vcpu, rs);
1374 u32 di;
1375 u64 w0, w1;
1376
1377 di = 2 - vcpu->arch.mmio_vmx_copy_nums; /* doubleword index */
1378 if (di > 1)
1379 return -1;
1380
1381 if (vcpu->arch.mmio_host_swabbed)
1382 di = 1 - di;
1383
1384 w0 = vrs.u[di * 2];
1385 w1 = vrs.u[di * 2 + 1];
1386
1387 #ifdef __BIG_ENDIAN
1388 *val = (w0 << 32) | w1;
1389 #else
1390 *val = (w1 << 32) | w0;
1391 #endif
1392 return 0;
1393 }
1394
1395 /* handle quadword store in two halves */
1396 int kvmppc_handle_store128_by2x64(struct kvm_run *run, struct kvm_vcpu *vcpu,
1397 unsigned int rs, int is_default_endian)
1398 {
1399 u64 val = 0;
1400 enum emulation_result emulated = EMULATE_DONE;
1401
1402 vcpu->arch.io_gpr = rs;
1403
1404 while (vcpu->arch.mmio_vmx_copy_nums) {
1405 if (kvmppc_get_vmx_data(vcpu, rs, &val) == -1)
1406 return EMULATE_FAIL;
1407
1408 emulated = kvmppc_handle_store(run, vcpu, val, 8,
1409 is_default_endian);
1410 if (emulated != EMULATE_DONE)
1411 break;
1412
1413 vcpu->arch.paddr_accessed += run->mmio.len;
1414 vcpu->arch.mmio_vmx_copy_nums--;
1415 }
1416
1417 return emulated;
1418 }
1419
1420 static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu,
1421 struct kvm_run *run)
1422 {
1423 enum emulation_result emulated = EMULATE_FAIL;
1424 int r;
1425
1426 vcpu->arch.paddr_accessed += run->mmio.len;
1427
1428 if (!vcpu->mmio_is_write) {
1429 emulated = kvmppc_handle_load128_by2x64(run, vcpu,
1430 vcpu->arch.io_gpr, 1);
1431 } else {
1432 emulated = kvmppc_handle_store128_by2x64(run, vcpu,
1433 vcpu->arch.io_gpr, 1);
1434 }
1435
1436 switch (emulated) {
1437 case EMULATE_DO_MMIO:
1438 run->exit_reason = KVM_EXIT_MMIO;
1439 r = RESUME_HOST;
1440 break;
1441 case EMULATE_FAIL:
1442 pr_info("KVM: MMIO emulation failed (VMX repeat)\n");
1443 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1444 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1445 r = RESUME_HOST;
1446 break;
1447 default:
1448 r = RESUME_GUEST;
1449 break;
1450 }
1451 return r;
1452 }
1453 #endif /* CONFIG_ALTIVEC */
1454
1455 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1456 {
1457 int r = 0;
1458 union kvmppc_one_reg val;
1459 int size;
1460
1461 size = one_reg_size(reg->id);
1462 if (size > sizeof(val))
1463 return -EINVAL;
1464
1465 r = kvmppc_get_one_reg(vcpu, reg->id, &val);
1466 if (r == -EINVAL) {
1467 r = 0;
1468 switch (reg->id) {
1469 #ifdef CONFIG_ALTIVEC
1470 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1471 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1472 r = -ENXIO;
1473 break;
1474 }
1475 val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
1476 break;
1477 case KVM_REG_PPC_VSCR:
1478 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1479 r = -ENXIO;
1480 break;
1481 }
1482 val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
1483 break;
1484 case KVM_REG_PPC_VRSAVE:
1485 val = get_reg_val(reg->id, vcpu->arch.vrsave);
1486 break;
1487 #endif /* CONFIG_ALTIVEC */
1488 default:
1489 r = -EINVAL;
1490 break;
1491 }
1492 }
1493
1494 if (r)
1495 return r;
1496
1497 if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
1498 r = -EFAULT;
1499
1500 return r;
1501 }
1502
1503 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1504 {
1505 int r;
1506 union kvmppc_one_reg val;
1507 int size;
1508
1509 size = one_reg_size(reg->id);
1510 if (size > sizeof(val))
1511 return -EINVAL;
1512
1513 if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
1514 return -EFAULT;
1515
1516 r = kvmppc_set_one_reg(vcpu, reg->id, &val);
1517 if (r == -EINVAL) {
1518 r = 0;
1519 switch (reg->id) {
1520 #ifdef CONFIG_ALTIVEC
1521 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1522 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1523 r = -ENXIO;
1524 break;
1525 }
1526 vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
1527 break;
1528 case KVM_REG_PPC_VSCR:
1529 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1530 r = -ENXIO;
1531 break;
1532 }
1533 vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
1534 break;
1535 case KVM_REG_PPC_VRSAVE:
1536 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1537 r = -ENXIO;
1538 break;
1539 }
1540 vcpu->arch.vrsave = set_reg_val(reg->id, val);
1541 break;
1542 #endif /* CONFIG_ALTIVEC */
1543 default:
1544 r = -EINVAL;
1545 break;
1546 }
1547 }
1548
1549 return r;
1550 }
1551
1552 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
1553 {
1554 int r;
1555
1556 if (vcpu->mmio_needed) {
1557 vcpu->mmio_needed = 0;
1558 if (!vcpu->mmio_is_write)
1559 kvmppc_complete_mmio_load(vcpu, run);
1560 #ifdef CONFIG_VSX
1561 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1562 vcpu->arch.mmio_vsx_copy_nums--;
1563 vcpu->arch.mmio_vsx_offset++;
1564 }
1565
1566 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1567 r = kvmppc_emulate_mmio_vsx_loadstore(vcpu, run);
1568 if (r == RESUME_HOST) {
1569 vcpu->mmio_needed = 1;
1570 return r;
1571 }
1572 }
1573 #endif
1574 #ifdef CONFIG_ALTIVEC
1575 if (vcpu->arch.mmio_vmx_copy_nums > 0)
1576 vcpu->arch.mmio_vmx_copy_nums--;
1577
1578 if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1579 r = kvmppc_emulate_mmio_vmx_loadstore(vcpu, run);
1580 if (r == RESUME_HOST) {
1581 vcpu->mmio_needed = 1;
1582 return r;
1583 }
1584 }
1585 #endif
1586 } else if (vcpu->arch.osi_needed) {
1587 u64 *gprs = run->osi.gprs;
1588 int i;
1589
1590 for (i = 0; i < 32; i++)
1591 kvmppc_set_gpr(vcpu, i, gprs[i]);
1592 vcpu->arch.osi_needed = 0;
1593 } else if (vcpu->arch.hcall_needed) {
1594 int i;
1595
1596 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
1597 for (i = 0; i < 9; ++i)
1598 kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
1599 vcpu->arch.hcall_needed = 0;
1600 #ifdef CONFIG_BOOKE
1601 } else if (vcpu->arch.epr_needed) {
1602 kvmppc_set_epr(vcpu, run->epr.epr);
1603 vcpu->arch.epr_needed = 0;
1604 #endif
1605 }
1606
1607 kvm_sigset_activate(vcpu);
1608
1609 if (run->immediate_exit)
1610 r = -EINTR;
1611 else
1612 r = kvmppc_vcpu_run(run, vcpu);
1613
1614 kvm_sigset_deactivate(vcpu);
1615
1616 return r;
1617 }
1618
1619 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
1620 {
1621 if (irq->irq == KVM_INTERRUPT_UNSET) {
1622 kvmppc_core_dequeue_external(vcpu);
1623 return 0;
1624 }
1625
1626 kvmppc_core_queue_external(vcpu, irq);
1627
1628 kvm_vcpu_kick(vcpu);
1629
1630 return 0;
1631 }
1632
1633 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1634 struct kvm_enable_cap *cap)
1635 {
1636 int r;
1637
1638 if (cap->flags)
1639 return -EINVAL;
1640
1641 switch (cap->cap) {
1642 case KVM_CAP_PPC_OSI:
1643 r = 0;
1644 vcpu->arch.osi_enabled = true;
1645 break;
1646 case KVM_CAP_PPC_PAPR:
1647 r = 0;
1648 vcpu->arch.papr_enabled = true;
1649 break;
1650 case KVM_CAP_PPC_EPR:
1651 r = 0;
1652 if (cap->args[0])
1653 vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
1654 else
1655 vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1656 break;
1657 #ifdef CONFIG_BOOKE
1658 case KVM_CAP_PPC_BOOKE_WATCHDOG:
1659 r = 0;
1660 vcpu->arch.watchdog_enabled = true;
1661 break;
1662 #endif
1663 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1664 case KVM_CAP_SW_TLB: {
1665 struct kvm_config_tlb cfg;
1666 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
1667
1668 r = -EFAULT;
1669 if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
1670 break;
1671
1672 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
1673 break;
1674 }
1675 #endif
1676 #ifdef CONFIG_KVM_MPIC
1677 case KVM_CAP_IRQ_MPIC: {
1678 struct fd f;
1679 struct kvm_device *dev;
1680
1681 r = -EBADF;
1682 f = fdget(cap->args[0]);
1683 if (!f.file)
1684 break;
1685
1686 r = -EPERM;
1687 dev = kvm_device_from_filp(f.file);
1688 if (dev)
1689 r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
1690
1691 fdput(f);
1692 break;
1693 }
1694 #endif
1695 #ifdef CONFIG_KVM_XICS
1696 case KVM_CAP_IRQ_XICS: {
1697 struct fd f;
1698 struct kvm_device *dev;
1699
1700 r = -EBADF;
1701 f = fdget(cap->args[0]);
1702 if (!f.file)
1703 break;
1704
1705 r = -EPERM;
1706 dev = kvm_device_from_filp(f.file);
1707 if (dev) {
1708 if (xive_enabled())
1709 r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]);
1710 else
1711 r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
1712 }
1713
1714 fdput(f);
1715 break;
1716 }
1717 #endif /* CONFIG_KVM_XICS */
1718 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1719 case KVM_CAP_PPC_FWNMI:
1720 r = -EINVAL;
1721 if (!is_kvmppc_hv_enabled(vcpu->kvm))
1722 break;
1723 r = 0;
1724 vcpu->kvm->arch.fwnmi_enabled = true;
1725 break;
1726 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
1727 default:
1728 r = -EINVAL;
1729 break;
1730 }
1731
1732 if (!r)
1733 r = kvmppc_sanity_check(vcpu);
1734
1735 return r;
1736 }
1737
1738 bool kvm_arch_intc_initialized(struct kvm *kvm)
1739 {
1740 #ifdef CONFIG_KVM_MPIC
1741 if (kvm->arch.mpic)
1742 return true;
1743 #endif
1744 #ifdef CONFIG_KVM_XICS
1745 if (kvm->arch.xics || kvm->arch.xive)
1746 return true;
1747 #endif
1748 return false;
1749 }
1750
1751 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1752 struct kvm_mp_state *mp_state)
1753 {
1754 return -EINVAL;
1755 }
1756
1757 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1758 struct kvm_mp_state *mp_state)
1759 {
1760 return -EINVAL;
1761 }
1762
1763 long kvm_arch_vcpu_ioctl(struct file *filp,
1764 unsigned int ioctl, unsigned long arg)
1765 {
1766 struct kvm_vcpu *vcpu = filp->private_data;
1767 void __user *argp = (void __user *)arg;
1768 long r;
1769
1770 switch (ioctl) {
1771 case KVM_INTERRUPT: {
1772 struct kvm_interrupt irq;
1773 r = -EFAULT;
1774 if (copy_from_user(&irq, argp, sizeof(irq)))
1775 goto out;
1776 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1777 goto out;
1778 }
1779
1780 case KVM_ENABLE_CAP:
1781 {
1782 struct kvm_enable_cap cap;
1783 r = -EFAULT;
1784 if (copy_from_user(&cap, argp, sizeof(cap)))
1785 goto out;
1786 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
1787 break;
1788 }
1789
1790 case KVM_SET_ONE_REG:
1791 case KVM_GET_ONE_REG:
1792 {
1793 struct kvm_one_reg reg;
1794 r = -EFAULT;
1795 if (copy_from_user(&reg, argp, sizeof(reg)))
1796 goto out;
1797 if (ioctl == KVM_SET_ONE_REG)
1798 r = kvm_vcpu_ioctl_set_one_reg(vcpu, &reg);
1799 else
1800 r = kvm_vcpu_ioctl_get_one_reg(vcpu, &reg);
1801 break;
1802 }
1803
1804 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1805 case KVM_DIRTY_TLB: {
1806 struct kvm_dirty_tlb dirty;
1807 r = -EFAULT;
1808 if (copy_from_user(&dirty, argp, sizeof(dirty)))
1809 goto out;
1810 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
1811 break;
1812 }
1813 #endif
1814 default:
1815 r = -EINVAL;
1816 }
1817
1818 out:
1819 return r;
1820 }
1821
1822 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1823 {
1824 return VM_FAULT_SIGBUS;
1825 }
1826
1827 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
1828 {
1829 u32 inst_nop = 0x60000000;
1830 #ifdef CONFIG_KVM_BOOKE_HV
1831 u32 inst_sc1 = 0x44000022;
1832 pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
1833 pvinfo->hcall[1] = cpu_to_be32(inst_nop);
1834 pvinfo->hcall[2] = cpu_to_be32(inst_nop);
1835 pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1836 #else
1837 u32 inst_lis = 0x3c000000;
1838 u32 inst_ori = 0x60000000;
1839 u32 inst_sc = 0x44000002;
1840 u32 inst_imm_mask = 0xffff;
1841
1842 /*
1843 * The hypercall to get into KVM from within guest context is as
1844 * follows:
1845 *
1846 * lis r0, r0, KVM_SC_MAGIC_R0@h
1847 * ori r0, KVM_SC_MAGIC_R0@l
1848 * sc
1849 * nop
1850 */
1851 pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
1852 pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
1853 pvinfo->hcall[2] = cpu_to_be32(inst_sc);
1854 pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1855 #endif
1856
1857 pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
1858
1859 return 0;
1860 }
1861
1862 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
1863 bool line_status)
1864 {
1865 if (!irqchip_in_kernel(kvm))
1866 return -ENXIO;
1867
1868 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
1869 irq_event->irq, irq_event->level,
1870 line_status);
1871 return 0;
1872 }
1873
1874
1875 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1876 struct kvm_enable_cap *cap)
1877 {
1878 int r;
1879
1880 if (cap->flags)
1881 return -EINVAL;
1882
1883 switch (cap->cap) {
1884 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
1885 case KVM_CAP_PPC_ENABLE_HCALL: {
1886 unsigned long hcall = cap->args[0];
1887
1888 r = -EINVAL;
1889 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
1890 cap->args[1] > 1)
1891 break;
1892 if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
1893 break;
1894 if (cap->args[1])
1895 set_bit(hcall / 4, kvm->arch.enabled_hcalls);
1896 else
1897 clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
1898 r = 0;
1899 break;
1900 }
1901 case KVM_CAP_PPC_SMT: {
1902 unsigned long mode = cap->args[0];
1903 unsigned long flags = cap->args[1];
1904
1905 r = -EINVAL;
1906 if (kvm->arch.kvm_ops->set_smt_mode)
1907 r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags);
1908 break;
1909 }
1910 #endif
1911 default:
1912 r = -EINVAL;
1913 break;
1914 }
1915
1916 return r;
1917 }
1918
1919 #ifdef CONFIG_PPC_BOOK3S_64
1920 /*
1921 * These functions check whether the underlying hardware is safe
1922 * against attacks based on observing the effects of speculatively
1923 * executed instructions, and whether it supplies instructions for
1924 * use in workarounds. The information comes from firmware, either
1925 * via the device tree on powernv platforms or from an hcall on
1926 * pseries platforms.
1927 */
1928 #ifdef CONFIG_PPC_PSERIES
1929 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
1930 {
1931 struct h_cpu_char_result c;
1932 unsigned long rc;
1933
1934 if (!machine_is(pseries))
1935 return -ENOTTY;
1936
1937 rc = plpar_get_cpu_characteristics(&c);
1938 if (rc == H_SUCCESS) {
1939 cp->character = c.character;
1940 cp->behaviour = c.behaviour;
1941 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
1942 KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
1943 KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
1944 KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
1945 KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
1946 KVM_PPC_CPU_CHAR_BR_HINT_HONOURED |
1947 KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF |
1948 KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
1949 KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
1950 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
1951 KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
1952 KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
1953 KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
1954 }
1955 return 0;
1956 }
1957 #else
1958 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
1959 {
1960 return -ENOTTY;
1961 }
1962 #endif
1963
1964 static inline bool have_fw_feat(struct device_node *fw_features,
1965 const char *state, const char *name)
1966 {
1967 struct device_node *np;
1968 bool r = false;
1969
1970 np = of_get_child_by_name(fw_features, name);
1971 if (np) {
1972 r = of_property_read_bool(np, state);
1973 of_node_put(np);
1974 }
1975 return r;
1976 }
1977
1978 static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp)
1979 {
1980 struct device_node *np, *fw_features;
1981 int r;
1982
1983 memset(cp, 0, sizeof(*cp));
1984 r = pseries_get_cpu_char(cp);
1985 if (r != -ENOTTY)
1986 return r;
1987
1988 np = of_find_node_by_name(NULL, "ibm,opal");
1989 if (np) {
1990 fw_features = of_get_child_by_name(np, "fw-features");
1991 of_node_put(np);
1992 if (!fw_features)
1993 return 0;
1994 if (have_fw_feat(fw_features, "enabled",
1995 "inst-spec-barrier-ori31,31,0"))
1996 cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31;
1997 if (have_fw_feat(fw_features, "enabled",
1998 "fw-bcctrl-serialized"))
1999 cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED;
2000 if (have_fw_feat(fw_features, "enabled",
2001 "inst-l1d-flush-ori30,30,0"))
2002 cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30;
2003 if (have_fw_feat(fw_features, "enabled",
2004 "inst-l1d-flush-trig2"))
2005 cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2;
2006 if (have_fw_feat(fw_features, "enabled",
2007 "fw-l1d-thread-split"))
2008 cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV;
2009 if (have_fw_feat(fw_features, "enabled",
2010 "fw-count-cache-disabled"))
2011 cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
2012 if (have_fw_feat(fw_features, "enabled",
2013 "fw-count-cache-flush-bcctr2,0,0"))
2014 cp->character |= KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2015 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2016 KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2017 KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2018 KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2019 KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2020 KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
2021 KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2022
2023 if (have_fw_feat(fw_features, "enabled",
2024 "speculation-policy-favor-security"))
2025 cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY;
2026 if (!have_fw_feat(fw_features, "disabled",
2027 "needs-l1d-flush-msr-pr-0-to-1"))
2028 cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR;
2029 if (!have_fw_feat(fw_features, "disabled",
2030 "needs-spec-barrier-for-bound-checks"))
2031 cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
2032 if (have_fw_feat(fw_features, "enabled",
2033 "needs-count-cache-flush-on-context-switch"))
2034 cp->behaviour |= KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2035 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2036 KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2037 KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
2038 KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2039
2040 of_node_put(fw_features);
2041 }
2042
2043 return 0;
2044 }
2045 #endif
2046
2047 long kvm_arch_vm_ioctl(struct file *filp,
2048 unsigned int ioctl, unsigned long arg)
2049 {
2050 struct kvm *kvm __maybe_unused = filp->private_data;
2051 void __user *argp = (void __user *)arg;
2052 long r;
2053
2054 switch (ioctl) {
2055 case KVM_PPC_GET_PVINFO: {
2056 struct kvm_ppc_pvinfo pvinfo;
2057 memset(&pvinfo, 0, sizeof(pvinfo));
2058 r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
2059 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
2060 r = -EFAULT;
2061 goto out;
2062 }
2063
2064 break;
2065 }
2066 case KVM_ENABLE_CAP:
2067 {
2068 struct kvm_enable_cap cap;
2069 r = -EFAULT;
2070 if (copy_from_user(&cap, argp, sizeof(cap)))
2071 goto out;
2072 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
2073 break;
2074 }
2075 #ifdef CONFIG_SPAPR_TCE_IOMMU
2076 case KVM_CREATE_SPAPR_TCE_64: {
2077 struct kvm_create_spapr_tce_64 create_tce_64;
2078
2079 r = -EFAULT;
2080 if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
2081 goto out;
2082 if (create_tce_64.flags) {
2083 r = -EINVAL;
2084 goto out;
2085 }
2086 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2087 goto out;
2088 }
2089 case KVM_CREATE_SPAPR_TCE: {
2090 struct kvm_create_spapr_tce create_tce;
2091 struct kvm_create_spapr_tce_64 create_tce_64;
2092
2093 r = -EFAULT;
2094 if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
2095 goto out;
2096
2097 create_tce_64.liobn = create_tce.liobn;
2098 create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
2099 create_tce_64.offset = 0;
2100 create_tce_64.size = create_tce.window_size >>
2101 IOMMU_PAGE_SHIFT_4K;
2102 create_tce_64.flags = 0;
2103 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2104 goto out;
2105 }
2106 #endif
2107 #ifdef CONFIG_PPC_BOOK3S_64
2108 case KVM_PPC_GET_SMMU_INFO: {
2109 struct kvm_ppc_smmu_info info;
2110 struct kvm *kvm = filp->private_data;
2111
2112 memset(&info, 0, sizeof(info));
2113 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
2114 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2115 r = -EFAULT;
2116 break;
2117 }
2118 case KVM_PPC_RTAS_DEFINE_TOKEN: {
2119 struct kvm *kvm = filp->private_data;
2120
2121 r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
2122 break;
2123 }
2124 case KVM_PPC_CONFIGURE_V3_MMU: {
2125 struct kvm *kvm = filp->private_data;
2126 struct kvm_ppc_mmuv3_cfg cfg;
2127
2128 r = -EINVAL;
2129 if (!kvm->arch.kvm_ops->configure_mmu)
2130 goto out;
2131 r = -EFAULT;
2132 if (copy_from_user(&cfg, argp, sizeof(cfg)))
2133 goto out;
2134 r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
2135 break;
2136 }
2137 case KVM_PPC_GET_RMMU_INFO: {
2138 struct kvm *kvm = filp->private_data;
2139 struct kvm_ppc_rmmu_info info;
2140
2141 r = -EINVAL;
2142 if (!kvm->arch.kvm_ops->get_rmmu_info)
2143 goto out;
2144 r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
2145 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2146 r = -EFAULT;
2147 break;
2148 }
2149 case KVM_PPC_GET_CPU_CHAR: {
2150 struct kvm_ppc_cpu_char cpuchar;
2151
2152 r = kvmppc_get_cpu_char(&cpuchar);
2153 if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar)))
2154 r = -EFAULT;
2155 break;
2156 }
2157 default: {
2158 struct kvm *kvm = filp->private_data;
2159 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
2160 }
2161 #else /* CONFIG_PPC_BOOK3S_64 */
2162 default:
2163 r = -ENOTTY;
2164 #endif
2165 }
2166 out:
2167 return r;
2168 }
2169
2170 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)];
2171 static unsigned long nr_lpids;
2172
2173 long kvmppc_alloc_lpid(void)
2174 {
2175 long lpid;
2176
2177 do {
2178 lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS);
2179 if (lpid >= nr_lpids) {
2180 pr_err("%s: No LPIDs free\n", __func__);
2181 return -ENOMEM;
2182 }
2183 } while (test_and_set_bit(lpid, lpid_inuse));
2184
2185 return lpid;
2186 }
2187 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
2188
2189 void kvmppc_claim_lpid(long lpid)
2190 {
2191 set_bit(lpid, lpid_inuse);
2192 }
2193 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid);
2194
2195 void kvmppc_free_lpid(long lpid)
2196 {
2197 clear_bit(lpid, lpid_inuse);
2198 }
2199 EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
2200
2201 void kvmppc_init_lpid(unsigned long nr_lpids_param)
2202 {
2203 nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param);
2204 memset(lpid_inuse, 0, sizeof(lpid_inuse));
2205 }
2206 EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
2207
2208 int kvm_arch_init(void *opaque)
2209 {
2210 return 0;
2211 }
2212
2213 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);