]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/events/core.c
140d33288e78e8ef72138a3ec247520f66b158a2
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / events / core.c
1 /*
2 * Performance events x86 architecture code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kdebug.h>
23 #include <linux/sched/mm.h>
24 #include <linux/sched/clock.h>
25 #include <linux/uaccess.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/bitops.h>
29 #include <linux/device.h>
30
31 #include <asm/apic.h>
32 #include <asm/stacktrace.h>
33 #include <asm/nmi.h>
34 #include <asm/smp.h>
35 #include <asm/alternative.h>
36 #include <asm/mmu_context.h>
37 #include <asm/tlbflush.h>
38 #include <asm/timer.h>
39 #include <asm/desc.h>
40 #include <asm/ldt.h>
41 #include <asm/unwind.h>
42
43 #include "perf_event.h"
44
45 struct x86_pmu x86_pmu __read_mostly;
46
47 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
48 .enabled = 1,
49 };
50
51 struct static_key rdpmc_always_available = STATIC_KEY_INIT_FALSE;
52
53 u64 __read_mostly hw_cache_event_ids
54 [PERF_COUNT_HW_CACHE_MAX]
55 [PERF_COUNT_HW_CACHE_OP_MAX]
56 [PERF_COUNT_HW_CACHE_RESULT_MAX];
57 u64 __read_mostly hw_cache_extra_regs
58 [PERF_COUNT_HW_CACHE_MAX]
59 [PERF_COUNT_HW_CACHE_OP_MAX]
60 [PERF_COUNT_HW_CACHE_RESULT_MAX];
61
62 /*
63 * Propagate event elapsed time into the generic event.
64 * Can only be executed on the CPU where the event is active.
65 * Returns the delta events processed.
66 */
67 u64 x86_perf_event_update(struct perf_event *event)
68 {
69 struct hw_perf_event *hwc = &event->hw;
70 int shift = 64 - x86_pmu.cntval_bits;
71 u64 prev_raw_count, new_raw_count;
72 int idx = hwc->idx;
73 u64 delta;
74
75 if (idx == INTEL_PMC_IDX_FIXED_BTS)
76 return 0;
77
78 /*
79 * Careful: an NMI might modify the previous event value.
80 *
81 * Our tactic to handle this is to first atomically read and
82 * exchange a new raw count - then add that new-prev delta
83 * count to the generic event atomically:
84 */
85 again:
86 prev_raw_count = local64_read(&hwc->prev_count);
87 rdpmcl(hwc->event_base_rdpmc, new_raw_count);
88
89 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
90 new_raw_count) != prev_raw_count)
91 goto again;
92
93 /*
94 * Now we have the new raw value and have updated the prev
95 * timestamp already. We can now calculate the elapsed delta
96 * (event-)time and add that to the generic event.
97 *
98 * Careful, not all hw sign-extends above the physical width
99 * of the count.
100 */
101 delta = (new_raw_count << shift) - (prev_raw_count << shift);
102 delta >>= shift;
103
104 local64_add(delta, &event->count);
105 local64_sub(delta, &hwc->period_left);
106
107 return new_raw_count;
108 }
109
110 /*
111 * Find and validate any extra registers to set up.
112 */
113 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
114 {
115 struct hw_perf_event_extra *reg;
116 struct extra_reg *er;
117
118 reg = &event->hw.extra_reg;
119
120 if (!x86_pmu.extra_regs)
121 return 0;
122
123 for (er = x86_pmu.extra_regs; er->msr; er++) {
124 if (er->event != (config & er->config_mask))
125 continue;
126 if (event->attr.config1 & ~er->valid_mask)
127 return -EINVAL;
128 /* Check if the extra msrs can be safely accessed*/
129 if (!er->extra_msr_access)
130 return -ENXIO;
131
132 reg->idx = er->idx;
133 reg->config = event->attr.config1;
134 reg->reg = er->msr;
135 break;
136 }
137 return 0;
138 }
139
140 static atomic_t active_events;
141 static atomic_t pmc_refcount;
142 static DEFINE_MUTEX(pmc_reserve_mutex);
143
144 #ifdef CONFIG_X86_LOCAL_APIC
145
146 static bool reserve_pmc_hardware(void)
147 {
148 int i;
149
150 for (i = 0; i < x86_pmu.num_counters; i++) {
151 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
152 goto perfctr_fail;
153 }
154
155 for (i = 0; i < x86_pmu.num_counters; i++) {
156 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
157 goto eventsel_fail;
158 }
159
160 return true;
161
162 eventsel_fail:
163 for (i--; i >= 0; i--)
164 release_evntsel_nmi(x86_pmu_config_addr(i));
165
166 i = x86_pmu.num_counters;
167
168 perfctr_fail:
169 for (i--; i >= 0; i--)
170 release_perfctr_nmi(x86_pmu_event_addr(i));
171
172 return false;
173 }
174
175 static void release_pmc_hardware(void)
176 {
177 int i;
178
179 for (i = 0; i < x86_pmu.num_counters; i++) {
180 release_perfctr_nmi(x86_pmu_event_addr(i));
181 release_evntsel_nmi(x86_pmu_config_addr(i));
182 }
183 }
184
185 #else
186
187 static bool reserve_pmc_hardware(void) { return true; }
188 static void release_pmc_hardware(void) {}
189
190 #endif
191
192 static bool check_hw_exists(void)
193 {
194 u64 val, val_fail = -1, val_new= ~0;
195 int i, reg, reg_fail = -1, ret = 0;
196 int bios_fail = 0;
197 int reg_safe = -1;
198
199 /*
200 * Check to see if the BIOS enabled any of the counters, if so
201 * complain and bail.
202 */
203 for (i = 0; i < x86_pmu.num_counters; i++) {
204 reg = x86_pmu_config_addr(i);
205 ret = rdmsrl_safe(reg, &val);
206 if (ret)
207 goto msr_fail;
208 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
209 bios_fail = 1;
210 val_fail = val;
211 reg_fail = reg;
212 } else {
213 reg_safe = i;
214 }
215 }
216
217 if (x86_pmu.num_counters_fixed) {
218 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
219 ret = rdmsrl_safe(reg, &val);
220 if (ret)
221 goto msr_fail;
222 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
223 if (val & (0x03 << i*4)) {
224 bios_fail = 1;
225 val_fail = val;
226 reg_fail = reg;
227 }
228 }
229 }
230
231 /*
232 * If all the counters are enabled, the below test will always
233 * fail. The tools will also become useless in this scenario.
234 * Just fail and disable the hardware counters.
235 */
236
237 if (reg_safe == -1) {
238 reg = reg_safe;
239 goto msr_fail;
240 }
241
242 /*
243 * Read the current value, change it and read it back to see if it
244 * matches, this is needed to detect certain hardware emulators
245 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
246 */
247 reg = x86_pmu_event_addr(reg_safe);
248 if (rdmsrl_safe(reg, &val))
249 goto msr_fail;
250 val ^= 0xffffUL;
251 ret = wrmsrl_safe(reg, val);
252 ret |= rdmsrl_safe(reg, &val_new);
253 if (ret || val != val_new)
254 goto msr_fail;
255
256 /*
257 * We still allow the PMU driver to operate:
258 */
259 if (bios_fail) {
260 pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
261 pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
262 reg_fail, val_fail);
263 }
264
265 return true;
266
267 msr_fail:
268 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
269 pr_cont("PMU not available due to virtualization, using software events only.\n");
270 } else {
271 pr_cont("Broken PMU hardware detected, using software events only.\n");
272 pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
273 reg, val_new);
274 }
275
276 return false;
277 }
278
279 static void hw_perf_event_destroy(struct perf_event *event)
280 {
281 x86_release_hardware();
282 atomic_dec(&active_events);
283 }
284
285 void hw_perf_lbr_event_destroy(struct perf_event *event)
286 {
287 hw_perf_event_destroy(event);
288
289 /* undo the lbr/bts event accounting */
290 x86_del_exclusive(x86_lbr_exclusive_lbr);
291 }
292
293 static inline int x86_pmu_initialized(void)
294 {
295 return x86_pmu.handle_irq != NULL;
296 }
297
298 static inline int
299 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
300 {
301 struct perf_event_attr *attr = &event->attr;
302 unsigned int cache_type, cache_op, cache_result;
303 u64 config, val;
304
305 config = attr->config;
306
307 cache_type = (config >> 0) & 0xff;
308 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
309 return -EINVAL;
310
311 cache_op = (config >> 8) & 0xff;
312 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
313 return -EINVAL;
314
315 cache_result = (config >> 16) & 0xff;
316 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
317 return -EINVAL;
318
319 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
320
321 if (val == 0)
322 return -ENOENT;
323
324 if (val == -1)
325 return -EINVAL;
326
327 hwc->config |= val;
328 attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
329 return x86_pmu_extra_regs(val, event);
330 }
331
332 int x86_reserve_hardware(void)
333 {
334 int err = 0;
335
336 if (!atomic_inc_not_zero(&pmc_refcount)) {
337 mutex_lock(&pmc_reserve_mutex);
338 if (atomic_read(&pmc_refcount) == 0) {
339 if (!reserve_pmc_hardware())
340 err = -EBUSY;
341 else
342 reserve_ds_buffers();
343 }
344 if (!err)
345 atomic_inc(&pmc_refcount);
346 mutex_unlock(&pmc_reserve_mutex);
347 }
348
349 return err;
350 }
351
352 void x86_release_hardware(void)
353 {
354 if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
355 release_pmc_hardware();
356 release_ds_buffers();
357 mutex_unlock(&pmc_reserve_mutex);
358 }
359 }
360
361 /*
362 * Check if we can create event of a certain type (that no conflicting events
363 * are present).
364 */
365 int x86_add_exclusive(unsigned int what)
366 {
367 int i;
368
369 /*
370 * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
371 * LBR and BTS are still mutually exclusive.
372 */
373 if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
374 return 0;
375
376 if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
377 mutex_lock(&pmc_reserve_mutex);
378 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
379 if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
380 goto fail_unlock;
381 }
382 atomic_inc(&x86_pmu.lbr_exclusive[what]);
383 mutex_unlock(&pmc_reserve_mutex);
384 }
385
386 atomic_inc(&active_events);
387 return 0;
388
389 fail_unlock:
390 mutex_unlock(&pmc_reserve_mutex);
391 return -EBUSY;
392 }
393
394 void x86_del_exclusive(unsigned int what)
395 {
396 if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
397 return;
398
399 atomic_dec(&x86_pmu.lbr_exclusive[what]);
400 atomic_dec(&active_events);
401 }
402
403 int x86_setup_perfctr(struct perf_event *event)
404 {
405 struct perf_event_attr *attr = &event->attr;
406 struct hw_perf_event *hwc = &event->hw;
407 u64 config;
408
409 if (!is_sampling_event(event)) {
410 hwc->sample_period = x86_pmu.max_period;
411 hwc->last_period = hwc->sample_period;
412 local64_set(&hwc->period_left, hwc->sample_period);
413 }
414
415 if (attr->type == PERF_TYPE_RAW)
416 return x86_pmu_extra_regs(event->attr.config, event);
417
418 if (attr->type == PERF_TYPE_HW_CACHE)
419 return set_ext_hw_attr(hwc, event);
420
421 if (attr->config >= x86_pmu.max_events)
422 return -EINVAL;
423
424 /*
425 * The generic map:
426 */
427 config = x86_pmu.event_map(attr->config);
428
429 if (config == 0)
430 return -ENOENT;
431
432 if (config == -1LL)
433 return -EINVAL;
434
435 /*
436 * Branch tracing:
437 */
438 if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
439 !attr->freq && hwc->sample_period == 1) {
440 /* BTS is not supported by this architecture. */
441 if (!x86_pmu.bts_active)
442 return -EOPNOTSUPP;
443
444 /* BTS is currently only allowed for user-mode. */
445 if (!attr->exclude_kernel)
446 return -EOPNOTSUPP;
447
448 /* disallow bts if conflicting events are present */
449 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
450 return -EBUSY;
451
452 event->destroy = hw_perf_lbr_event_destroy;
453 }
454
455 hwc->config |= config;
456
457 return 0;
458 }
459
460 /*
461 * check that branch_sample_type is compatible with
462 * settings needed for precise_ip > 1 which implies
463 * using the LBR to capture ALL taken branches at the
464 * priv levels of the measurement
465 */
466 static inline int precise_br_compat(struct perf_event *event)
467 {
468 u64 m = event->attr.branch_sample_type;
469 u64 b = 0;
470
471 /* must capture all branches */
472 if (!(m & PERF_SAMPLE_BRANCH_ANY))
473 return 0;
474
475 m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
476
477 if (!event->attr.exclude_user)
478 b |= PERF_SAMPLE_BRANCH_USER;
479
480 if (!event->attr.exclude_kernel)
481 b |= PERF_SAMPLE_BRANCH_KERNEL;
482
483 /*
484 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
485 */
486
487 return m == b;
488 }
489
490 int x86_pmu_max_precise(void)
491 {
492 int precise = 0;
493
494 /* Support for constant skid */
495 if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
496 precise++;
497
498 /* Support for IP fixup */
499 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
500 precise++;
501
502 if (x86_pmu.pebs_prec_dist)
503 precise++;
504 }
505 return precise;
506 }
507
508 int x86_pmu_hw_config(struct perf_event *event)
509 {
510 if (event->attr.precise_ip) {
511 int precise = x86_pmu_max_precise();
512
513 if (event->attr.precise_ip > precise)
514 return -EOPNOTSUPP;
515
516 /* There's no sense in having PEBS for non sampling events: */
517 if (!is_sampling_event(event))
518 return -EINVAL;
519 }
520 /*
521 * check that PEBS LBR correction does not conflict with
522 * whatever the user is asking with attr->branch_sample_type
523 */
524 if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
525 u64 *br_type = &event->attr.branch_sample_type;
526
527 if (has_branch_stack(event)) {
528 if (!precise_br_compat(event))
529 return -EOPNOTSUPP;
530
531 /* branch_sample_type is compatible */
532
533 } else {
534 /*
535 * user did not specify branch_sample_type
536 *
537 * For PEBS fixups, we capture all
538 * the branches at the priv level of the
539 * event.
540 */
541 *br_type = PERF_SAMPLE_BRANCH_ANY;
542
543 if (!event->attr.exclude_user)
544 *br_type |= PERF_SAMPLE_BRANCH_USER;
545
546 if (!event->attr.exclude_kernel)
547 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
548 }
549 }
550
551 if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
552 event->attach_state |= PERF_ATTACH_TASK_DATA;
553
554 /*
555 * Generate PMC IRQs:
556 * (keep 'enabled' bit clear for now)
557 */
558 event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
559
560 /*
561 * Count user and OS events unless requested not to
562 */
563 if (!event->attr.exclude_user)
564 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
565 if (!event->attr.exclude_kernel)
566 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
567
568 if (event->attr.type == PERF_TYPE_RAW)
569 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
570
571 if (event->attr.sample_period && x86_pmu.limit_period) {
572 if (x86_pmu.limit_period(event, event->attr.sample_period) >
573 event->attr.sample_period)
574 return -EINVAL;
575 }
576
577 return x86_setup_perfctr(event);
578 }
579
580 /*
581 * Setup the hardware configuration for a given attr_type
582 */
583 static int __x86_pmu_event_init(struct perf_event *event)
584 {
585 int err;
586
587 if (!x86_pmu_initialized())
588 return -ENODEV;
589
590 err = x86_reserve_hardware();
591 if (err)
592 return err;
593
594 atomic_inc(&active_events);
595 event->destroy = hw_perf_event_destroy;
596
597 event->hw.idx = -1;
598 event->hw.last_cpu = -1;
599 event->hw.last_tag = ~0ULL;
600
601 /* mark unused */
602 event->hw.extra_reg.idx = EXTRA_REG_NONE;
603 event->hw.branch_reg.idx = EXTRA_REG_NONE;
604
605 return x86_pmu.hw_config(event);
606 }
607
608 void x86_pmu_disable_all(void)
609 {
610 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
611 int idx;
612
613 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
614 u64 val;
615
616 if (!test_bit(idx, cpuc->active_mask))
617 continue;
618 rdmsrl(x86_pmu_config_addr(idx), val);
619 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
620 continue;
621 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
622 wrmsrl(x86_pmu_config_addr(idx), val);
623 }
624 }
625
626 /*
627 * There may be PMI landing after enabled=0. The PMI hitting could be before or
628 * after disable_all.
629 *
630 * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
631 * It will not be re-enabled in the NMI handler again, because enabled=0. After
632 * handling the NMI, disable_all will be called, which will not change the
633 * state either. If PMI hits after disable_all, the PMU is already disabled
634 * before entering NMI handler. The NMI handler will not change the state
635 * either.
636 *
637 * So either situation is harmless.
638 */
639 static void x86_pmu_disable(struct pmu *pmu)
640 {
641 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
642
643 if (!x86_pmu_initialized())
644 return;
645
646 if (!cpuc->enabled)
647 return;
648
649 cpuc->n_added = 0;
650 cpuc->enabled = 0;
651 barrier();
652
653 x86_pmu.disable_all();
654 }
655
656 void x86_pmu_enable_all(int added)
657 {
658 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
659 int idx;
660
661 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
662 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
663
664 if (!test_bit(idx, cpuc->active_mask))
665 continue;
666
667 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
668 }
669 }
670
671 static struct pmu pmu;
672
673 static inline int is_x86_event(struct perf_event *event)
674 {
675 return event->pmu == &pmu;
676 }
677
678 /*
679 * Event scheduler state:
680 *
681 * Assign events iterating over all events and counters, beginning
682 * with events with least weights first. Keep the current iterator
683 * state in struct sched_state.
684 */
685 struct sched_state {
686 int weight;
687 int event; /* event index */
688 int counter; /* counter index */
689 int unassigned; /* number of events to be assigned left */
690 int nr_gp; /* number of GP counters used */
691 unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
692 };
693
694 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
695 #define SCHED_STATES_MAX 2
696
697 struct perf_sched {
698 int max_weight;
699 int max_events;
700 int max_gp;
701 int saved_states;
702 struct event_constraint **constraints;
703 struct sched_state state;
704 struct sched_state saved[SCHED_STATES_MAX];
705 };
706
707 /*
708 * Initialize interator that runs through all events and counters.
709 */
710 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
711 int num, int wmin, int wmax, int gpmax)
712 {
713 int idx;
714
715 memset(sched, 0, sizeof(*sched));
716 sched->max_events = num;
717 sched->max_weight = wmax;
718 sched->max_gp = gpmax;
719 sched->constraints = constraints;
720
721 for (idx = 0; idx < num; idx++) {
722 if (constraints[idx]->weight == wmin)
723 break;
724 }
725
726 sched->state.event = idx; /* start with min weight */
727 sched->state.weight = wmin;
728 sched->state.unassigned = num;
729 }
730
731 static void perf_sched_save_state(struct perf_sched *sched)
732 {
733 if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
734 return;
735
736 sched->saved[sched->saved_states] = sched->state;
737 sched->saved_states++;
738 }
739
740 static bool perf_sched_restore_state(struct perf_sched *sched)
741 {
742 if (!sched->saved_states)
743 return false;
744
745 sched->saved_states--;
746 sched->state = sched->saved[sched->saved_states];
747
748 /* continue with next counter: */
749 clear_bit(sched->state.counter++, sched->state.used);
750
751 return true;
752 }
753
754 /*
755 * Select a counter for the current event to schedule. Return true on
756 * success.
757 */
758 static bool __perf_sched_find_counter(struct perf_sched *sched)
759 {
760 struct event_constraint *c;
761 int idx;
762
763 if (!sched->state.unassigned)
764 return false;
765
766 if (sched->state.event >= sched->max_events)
767 return false;
768
769 c = sched->constraints[sched->state.event];
770 /* Prefer fixed purpose counters */
771 if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
772 idx = INTEL_PMC_IDX_FIXED;
773 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
774 if (!__test_and_set_bit(idx, sched->state.used))
775 goto done;
776 }
777 }
778
779 /* Grab the first unused counter starting with idx */
780 idx = sched->state.counter;
781 for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
782 if (!__test_and_set_bit(idx, sched->state.used)) {
783 if (sched->state.nr_gp++ >= sched->max_gp)
784 return false;
785
786 goto done;
787 }
788 }
789
790 return false;
791
792 done:
793 sched->state.counter = idx;
794
795 if (c->overlap)
796 perf_sched_save_state(sched);
797
798 return true;
799 }
800
801 static bool perf_sched_find_counter(struct perf_sched *sched)
802 {
803 while (!__perf_sched_find_counter(sched)) {
804 if (!perf_sched_restore_state(sched))
805 return false;
806 }
807
808 return true;
809 }
810
811 /*
812 * Go through all unassigned events and find the next one to schedule.
813 * Take events with the least weight first. Return true on success.
814 */
815 static bool perf_sched_next_event(struct perf_sched *sched)
816 {
817 struct event_constraint *c;
818
819 if (!sched->state.unassigned || !--sched->state.unassigned)
820 return false;
821
822 do {
823 /* next event */
824 sched->state.event++;
825 if (sched->state.event >= sched->max_events) {
826 /* next weight */
827 sched->state.event = 0;
828 sched->state.weight++;
829 if (sched->state.weight > sched->max_weight)
830 return false;
831 }
832 c = sched->constraints[sched->state.event];
833 } while (c->weight != sched->state.weight);
834
835 sched->state.counter = 0; /* start with first counter */
836
837 return true;
838 }
839
840 /*
841 * Assign a counter for each event.
842 */
843 int perf_assign_events(struct event_constraint **constraints, int n,
844 int wmin, int wmax, int gpmax, int *assign)
845 {
846 struct perf_sched sched;
847
848 perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
849
850 do {
851 if (!perf_sched_find_counter(&sched))
852 break; /* failed */
853 if (assign)
854 assign[sched.state.event] = sched.state.counter;
855 } while (perf_sched_next_event(&sched));
856
857 return sched.state.unassigned;
858 }
859 EXPORT_SYMBOL_GPL(perf_assign_events);
860
861 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
862 {
863 struct event_constraint *c;
864 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
865 struct perf_event *e;
866 int i, wmin, wmax, unsched = 0;
867 struct hw_perf_event *hwc;
868
869 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
870
871 if (x86_pmu.start_scheduling)
872 x86_pmu.start_scheduling(cpuc);
873
874 for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
875 cpuc->event_constraint[i] = NULL;
876 c = x86_pmu.get_event_constraints(cpuc, i, cpuc->event_list[i]);
877 cpuc->event_constraint[i] = c;
878
879 wmin = min(wmin, c->weight);
880 wmax = max(wmax, c->weight);
881 }
882
883 /*
884 * fastpath, try to reuse previous register
885 */
886 for (i = 0; i < n; i++) {
887 hwc = &cpuc->event_list[i]->hw;
888 c = cpuc->event_constraint[i];
889
890 /* never assigned */
891 if (hwc->idx == -1)
892 break;
893
894 /* constraint still honored */
895 if (!test_bit(hwc->idx, c->idxmsk))
896 break;
897
898 /* not already used */
899 if (test_bit(hwc->idx, used_mask))
900 break;
901
902 __set_bit(hwc->idx, used_mask);
903 if (assign)
904 assign[i] = hwc->idx;
905 }
906
907 /* slow path */
908 if (i != n) {
909 int gpmax = x86_pmu.num_counters;
910
911 /*
912 * Do not allow scheduling of more than half the available
913 * generic counters.
914 *
915 * This helps avoid counter starvation of sibling thread by
916 * ensuring at most half the counters cannot be in exclusive
917 * mode. There is no designated counters for the limits. Any
918 * N/2 counters can be used. This helps with events with
919 * specific counter constraints.
920 */
921 if (is_ht_workaround_enabled() && !cpuc->is_fake &&
922 READ_ONCE(cpuc->excl_cntrs->exclusive_present))
923 gpmax /= 2;
924
925 unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
926 wmax, gpmax, assign);
927 }
928
929 /*
930 * In case of success (unsched = 0), mark events as committed,
931 * so we do not put_constraint() in case new events are added
932 * and fail to be scheduled
933 *
934 * We invoke the lower level commit callback to lock the resource
935 *
936 * We do not need to do all of this in case we are called to
937 * validate an event group (assign == NULL)
938 */
939 if (!unsched && assign) {
940 for (i = 0; i < n; i++) {
941 e = cpuc->event_list[i];
942 e->hw.flags |= PERF_X86_EVENT_COMMITTED;
943 if (x86_pmu.commit_scheduling)
944 x86_pmu.commit_scheduling(cpuc, i, assign[i]);
945 }
946 } else {
947 for (i = 0; i < n; i++) {
948 e = cpuc->event_list[i];
949 /*
950 * do not put_constraint() on comitted events,
951 * because they are good to go
952 */
953 if ((e->hw.flags & PERF_X86_EVENT_COMMITTED))
954 continue;
955
956 /*
957 * release events that failed scheduling
958 */
959 if (x86_pmu.put_event_constraints)
960 x86_pmu.put_event_constraints(cpuc, e);
961 }
962 }
963
964 if (x86_pmu.stop_scheduling)
965 x86_pmu.stop_scheduling(cpuc);
966
967 return unsched ? -EINVAL : 0;
968 }
969
970 /*
971 * dogrp: true if must collect siblings events (group)
972 * returns total number of events and error code
973 */
974 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
975 {
976 struct perf_event *event;
977 int n, max_count;
978
979 max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
980
981 /* current number of events already accepted */
982 n = cpuc->n_events;
983
984 if (is_x86_event(leader)) {
985 if (n >= max_count)
986 return -EINVAL;
987 cpuc->event_list[n] = leader;
988 n++;
989 }
990 if (!dogrp)
991 return n;
992
993 list_for_each_entry(event, &leader->sibling_list, group_entry) {
994 if (!is_x86_event(event) ||
995 event->state <= PERF_EVENT_STATE_OFF)
996 continue;
997
998 if (n >= max_count)
999 return -EINVAL;
1000
1001 cpuc->event_list[n] = event;
1002 n++;
1003 }
1004 return n;
1005 }
1006
1007 static inline void x86_assign_hw_event(struct perf_event *event,
1008 struct cpu_hw_events *cpuc, int i)
1009 {
1010 struct hw_perf_event *hwc = &event->hw;
1011
1012 hwc->idx = cpuc->assign[i];
1013 hwc->last_cpu = smp_processor_id();
1014 hwc->last_tag = ++cpuc->tags[i];
1015
1016 if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
1017 hwc->config_base = 0;
1018 hwc->event_base = 0;
1019 } else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
1020 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1021 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
1022 hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
1023 } else {
1024 hwc->config_base = x86_pmu_config_addr(hwc->idx);
1025 hwc->event_base = x86_pmu_event_addr(hwc->idx);
1026 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1027 }
1028 }
1029
1030 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1031 struct cpu_hw_events *cpuc,
1032 int i)
1033 {
1034 return hwc->idx == cpuc->assign[i] &&
1035 hwc->last_cpu == smp_processor_id() &&
1036 hwc->last_tag == cpuc->tags[i];
1037 }
1038
1039 static void x86_pmu_start(struct perf_event *event, int flags);
1040
1041 static void x86_pmu_enable(struct pmu *pmu)
1042 {
1043 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1044 struct perf_event *event;
1045 struct hw_perf_event *hwc;
1046 int i, added = cpuc->n_added;
1047
1048 if (!x86_pmu_initialized())
1049 return;
1050
1051 if (cpuc->enabled)
1052 return;
1053
1054 if (cpuc->n_added) {
1055 int n_running = cpuc->n_events - cpuc->n_added;
1056 /*
1057 * apply assignment obtained either from
1058 * hw_perf_group_sched_in() or x86_pmu_enable()
1059 *
1060 * step1: save events moving to new counters
1061 */
1062 for (i = 0; i < n_running; i++) {
1063 event = cpuc->event_list[i];
1064 hwc = &event->hw;
1065
1066 /*
1067 * we can avoid reprogramming counter if:
1068 * - assigned same counter as last time
1069 * - running on same CPU as last time
1070 * - no other event has used the counter since
1071 */
1072 if (hwc->idx == -1 ||
1073 match_prev_assignment(hwc, cpuc, i))
1074 continue;
1075
1076 /*
1077 * Ensure we don't accidentally enable a stopped
1078 * counter simply because we rescheduled.
1079 */
1080 if (hwc->state & PERF_HES_STOPPED)
1081 hwc->state |= PERF_HES_ARCH;
1082
1083 x86_pmu_stop(event, PERF_EF_UPDATE);
1084 }
1085
1086 /*
1087 * step2: reprogram moved events into new counters
1088 */
1089 for (i = 0; i < cpuc->n_events; i++) {
1090 event = cpuc->event_list[i];
1091 hwc = &event->hw;
1092
1093 if (!match_prev_assignment(hwc, cpuc, i))
1094 x86_assign_hw_event(event, cpuc, i);
1095 else if (i < n_running)
1096 continue;
1097
1098 if (hwc->state & PERF_HES_ARCH)
1099 continue;
1100
1101 x86_pmu_start(event, PERF_EF_RELOAD);
1102 }
1103 cpuc->n_added = 0;
1104 perf_events_lapic_init();
1105 }
1106
1107 cpuc->enabled = 1;
1108 barrier();
1109
1110 x86_pmu.enable_all(added);
1111 }
1112
1113 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1114
1115 /*
1116 * Set the next IRQ period, based on the hwc->period_left value.
1117 * To be called with the event disabled in hw:
1118 */
1119 int x86_perf_event_set_period(struct perf_event *event)
1120 {
1121 struct hw_perf_event *hwc = &event->hw;
1122 s64 left = local64_read(&hwc->period_left);
1123 s64 period = hwc->sample_period;
1124 int ret = 0, idx = hwc->idx;
1125
1126 if (idx == INTEL_PMC_IDX_FIXED_BTS)
1127 return 0;
1128
1129 /*
1130 * If we are way outside a reasonable range then just skip forward:
1131 */
1132 if (unlikely(left <= -period)) {
1133 left = period;
1134 local64_set(&hwc->period_left, left);
1135 hwc->last_period = period;
1136 ret = 1;
1137 }
1138
1139 if (unlikely(left <= 0)) {
1140 left += period;
1141 local64_set(&hwc->period_left, left);
1142 hwc->last_period = period;
1143 ret = 1;
1144 }
1145 /*
1146 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1147 */
1148 if (unlikely(left < 2))
1149 left = 2;
1150
1151 if (left > x86_pmu.max_period)
1152 left = x86_pmu.max_period;
1153
1154 if (x86_pmu.limit_period)
1155 left = x86_pmu.limit_period(event, left);
1156
1157 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1158
1159 if (!(hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) ||
1160 local64_read(&hwc->prev_count) != (u64)-left) {
1161 /*
1162 * The hw event starts counting from this event offset,
1163 * mark it to be able to extra future deltas:
1164 */
1165 local64_set(&hwc->prev_count, (u64)-left);
1166
1167 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1168 }
1169
1170 /*
1171 * Due to erratum on certan cpu we need
1172 * a second write to be sure the register
1173 * is updated properly
1174 */
1175 if (x86_pmu.perfctr_second_write) {
1176 wrmsrl(hwc->event_base,
1177 (u64)(-left) & x86_pmu.cntval_mask);
1178 }
1179
1180 perf_event_update_userpage(event);
1181
1182 return ret;
1183 }
1184
1185 void x86_pmu_enable_event(struct perf_event *event)
1186 {
1187 if (__this_cpu_read(cpu_hw_events.enabled))
1188 __x86_pmu_enable_event(&event->hw,
1189 ARCH_PERFMON_EVENTSEL_ENABLE);
1190 }
1191
1192 /*
1193 * Add a single event to the PMU.
1194 *
1195 * The event is added to the group of enabled events
1196 * but only if it can be scehduled with existing events.
1197 */
1198 static int x86_pmu_add(struct perf_event *event, int flags)
1199 {
1200 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1201 struct hw_perf_event *hwc;
1202 int assign[X86_PMC_IDX_MAX];
1203 int n, n0, ret;
1204
1205 hwc = &event->hw;
1206
1207 n0 = cpuc->n_events;
1208 ret = n = collect_events(cpuc, event, false);
1209 if (ret < 0)
1210 goto out;
1211
1212 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1213 if (!(flags & PERF_EF_START))
1214 hwc->state |= PERF_HES_ARCH;
1215
1216 /*
1217 * If group events scheduling transaction was started,
1218 * skip the schedulability test here, it will be performed
1219 * at commit time (->commit_txn) as a whole.
1220 *
1221 * If commit fails, we'll call ->del() on all events
1222 * for which ->add() was called.
1223 */
1224 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1225 goto done_collect;
1226
1227 ret = x86_pmu.schedule_events(cpuc, n, assign);
1228 if (ret)
1229 goto out;
1230 /*
1231 * copy new assignment, now we know it is possible
1232 * will be used by hw_perf_enable()
1233 */
1234 memcpy(cpuc->assign, assign, n*sizeof(int));
1235
1236 done_collect:
1237 /*
1238 * Commit the collect_events() state. See x86_pmu_del() and
1239 * x86_pmu_*_txn().
1240 */
1241 cpuc->n_events = n;
1242 cpuc->n_added += n - n0;
1243 cpuc->n_txn += n - n0;
1244
1245 if (x86_pmu.add) {
1246 /*
1247 * This is before x86_pmu_enable() will call x86_pmu_start(),
1248 * so we enable LBRs before an event needs them etc..
1249 */
1250 x86_pmu.add(event);
1251 }
1252
1253 ret = 0;
1254 out:
1255 return ret;
1256 }
1257
1258 static void x86_pmu_start(struct perf_event *event, int flags)
1259 {
1260 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1261 int idx = event->hw.idx;
1262
1263 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1264 return;
1265
1266 if (WARN_ON_ONCE(idx == -1))
1267 return;
1268
1269 if (flags & PERF_EF_RELOAD) {
1270 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1271 x86_perf_event_set_period(event);
1272 }
1273
1274 event->hw.state = 0;
1275
1276 cpuc->events[idx] = event;
1277 __set_bit(idx, cpuc->active_mask);
1278 __set_bit(idx, cpuc->running);
1279 x86_pmu.enable(event);
1280 perf_event_update_userpage(event);
1281 }
1282
1283 void perf_event_print_debug(void)
1284 {
1285 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1286 u64 pebs, debugctl;
1287 struct cpu_hw_events *cpuc;
1288 unsigned long flags;
1289 int cpu, idx;
1290
1291 if (!x86_pmu.num_counters)
1292 return;
1293
1294 local_irq_save(flags);
1295
1296 cpu = smp_processor_id();
1297 cpuc = &per_cpu(cpu_hw_events, cpu);
1298
1299 if (x86_pmu.version >= 2) {
1300 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1301 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1302 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1303 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1304
1305 pr_info("\n");
1306 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1307 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1308 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1309 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
1310 if (x86_pmu.pebs_constraints) {
1311 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1312 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
1313 }
1314 if (x86_pmu.lbr_nr) {
1315 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1316 pr_info("CPU#%d: debugctl: %016llx\n", cpu, debugctl);
1317 }
1318 }
1319 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1320
1321 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1322 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1323 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1324
1325 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1326
1327 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1328 cpu, idx, pmc_ctrl);
1329 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1330 cpu, idx, pmc_count);
1331 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1332 cpu, idx, prev_left);
1333 }
1334 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1335 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1336
1337 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1338 cpu, idx, pmc_count);
1339 }
1340 local_irq_restore(flags);
1341 }
1342
1343 void x86_pmu_stop(struct perf_event *event, int flags)
1344 {
1345 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1346 struct hw_perf_event *hwc = &event->hw;
1347
1348 if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1349 x86_pmu.disable(event);
1350 cpuc->events[hwc->idx] = NULL;
1351 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1352 hwc->state |= PERF_HES_STOPPED;
1353 }
1354
1355 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1356 /*
1357 * Drain the remaining delta count out of a event
1358 * that we are disabling:
1359 */
1360 x86_perf_event_update(event);
1361 hwc->state |= PERF_HES_UPTODATE;
1362 }
1363 }
1364
1365 static void x86_pmu_del(struct perf_event *event, int flags)
1366 {
1367 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1368 int i;
1369
1370 /*
1371 * event is descheduled
1372 */
1373 event->hw.flags &= ~PERF_X86_EVENT_COMMITTED;
1374
1375 /*
1376 * If we're called during a txn, we only need to undo x86_pmu.add.
1377 * The events never got scheduled and ->cancel_txn will truncate
1378 * the event_list.
1379 *
1380 * XXX assumes any ->del() called during a TXN will only be on
1381 * an event added during that same TXN.
1382 */
1383 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1384 goto do_del;
1385
1386 /*
1387 * Not a TXN, therefore cleanup properly.
1388 */
1389 x86_pmu_stop(event, PERF_EF_UPDATE);
1390
1391 for (i = 0; i < cpuc->n_events; i++) {
1392 if (event == cpuc->event_list[i])
1393 break;
1394 }
1395
1396 if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1397 return;
1398
1399 /* If we have a newly added event; make sure to decrease n_added. */
1400 if (i >= cpuc->n_events - cpuc->n_added)
1401 --cpuc->n_added;
1402
1403 if (x86_pmu.put_event_constraints)
1404 x86_pmu.put_event_constraints(cpuc, event);
1405
1406 /* Delete the array entry. */
1407 while (++i < cpuc->n_events) {
1408 cpuc->event_list[i-1] = cpuc->event_list[i];
1409 cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1410 }
1411 --cpuc->n_events;
1412
1413 perf_event_update_userpage(event);
1414
1415 do_del:
1416 if (x86_pmu.del) {
1417 /*
1418 * This is after x86_pmu_stop(); so we disable LBRs after any
1419 * event can need them etc..
1420 */
1421 x86_pmu.del(event);
1422 }
1423 }
1424
1425 int x86_pmu_handle_irq(struct pt_regs *regs)
1426 {
1427 struct perf_sample_data data;
1428 struct cpu_hw_events *cpuc;
1429 struct perf_event *event;
1430 int idx, handled = 0;
1431 u64 val;
1432
1433 cpuc = this_cpu_ptr(&cpu_hw_events);
1434
1435 /*
1436 * Some chipsets need to unmask the LVTPC in a particular spot
1437 * inside the nmi handler. As a result, the unmasking was pushed
1438 * into all the nmi handlers.
1439 *
1440 * This generic handler doesn't seem to have any issues where the
1441 * unmasking occurs so it was left at the top.
1442 */
1443 apic_write(APIC_LVTPC, APIC_DM_NMI);
1444
1445 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1446 if (!test_bit(idx, cpuc->active_mask)) {
1447 /*
1448 * Though we deactivated the counter some cpus
1449 * might still deliver spurious interrupts still
1450 * in flight. Catch them:
1451 */
1452 if (__test_and_clear_bit(idx, cpuc->running))
1453 handled++;
1454 continue;
1455 }
1456
1457 event = cpuc->events[idx];
1458
1459 val = x86_perf_event_update(event);
1460 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1461 continue;
1462
1463 /*
1464 * event overflow
1465 */
1466 handled++;
1467 perf_sample_data_init(&data, 0, event->hw.last_period);
1468
1469 if (!x86_perf_event_set_period(event))
1470 continue;
1471
1472 if (perf_event_overflow(event, &data, regs))
1473 x86_pmu_stop(event, 0);
1474 }
1475
1476 if (handled)
1477 inc_irq_stat(apic_perf_irqs);
1478
1479 return handled;
1480 }
1481
1482 void perf_events_lapic_init(void)
1483 {
1484 if (!x86_pmu.apic || !x86_pmu_initialized())
1485 return;
1486
1487 /*
1488 * Always use NMI for PMU
1489 */
1490 apic_write(APIC_LVTPC, APIC_DM_NMI);
1491 }
1492
1493 static int
1494 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1495 {
1496 u64 start_clock;
1497 u64 finish_clock;
1498 int ret;
1499
1500 /*
1501 * All PMUs/events that share this PMI handler should make sure to
1502 * increment active_events for their events.
1503 */
1504 if (!atomic_read(&active_events))
1505 return NMI_DONE;
1506
1507 start_clock = sched_clock();
1508 ret = x86_pmu.handle_irq(regs);
1509 finish_clock = sched_clock();
1510
1511 perf_sample_event_took(finish_clock - start_clock);
1512
1513 return ret;
1514 }
1515 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1516
1517 struct event_constraint emptyconstraint;
1518 struct event_constraint unconstrained;
1519
1520 static int x86_pmu_prepare_cpu(unsigned int cpu)
1521 {
1522 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1523 int i;
1524
1525 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1526 cpuc->kfree_on_online[i] = NULL;
1527 if (x86_pmu.cpu_prepare)
1528 return x86_pmu.cpu_prepare(cpu);
1529 return 0;
1530 }
1531
1532 static int x86_pmu_dead_cpu(unsigned int cpu)
1533 {
1534 if (x86_pmu.cpu_dead)
1535 x86_pmu.cpu_dead(cpu);
1536 return 0;
1537 }
1538
1539 static int x86_pmu_online_cpu(unsigned int cpu)
1540 {
1541 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1542 int i;
1543
1544 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1545 kfree(cpuc->kfree_on_online[i]);
1546 cpuc->kfree_on_online[i] = NULL;
1547 }
1548 return 0;
1549 }
1550
1551 static int x86_pmu_starting_cpu(unsigned int cpu)
1552 {
1553 if (x86_pmu.cpu_starting)
1554 x86_pmu.cpu_starting(cpu);
1555 return 0;
1556 }
1557
1558 static int x86_pmu_dying_cpu(unsigned int cpu)
1559 {
1560 if (x86_pmu.cpu_dying)
1561 x86_pmu.cpu_dying(cpu);
1562 return 0;
1563 }
1564
1565 static void __init pmu_check_apic(void)
1566 {
1567 if (boot_cpu_has(X86_FEATURE_APIC))
1568 return;
1569
1570 x86_pmu.apic = 0;
1571 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1572 pr_info("no hardware sampling interrupt available.\n");
1573
1574 /*
1575 * If we have a PMU initialized but no APIC
1576 * interrupts, we cannot sample hardware
1577 * events (user-space has to fall back and
1578 * sample via a hrtimer based software event):
1579 */
1580 pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1581
1582 }
1583
1584 static struct attribute_group x86_pmu_format_group = {
1585 .name = "format",
1586 .attrs = NULL,
1587 };
1588
1589 /*
1590 * Remove all undefined events (x86_pmu.event_map(id) == 0)
1591 * out of events_attr attributes.
1592 */
1593 static void __init filter_events(struct attribute **attrs)
1594 {
1595 struct device_attribute *d;
1596 struct perf_pmu_events_attr *pmu_attr;
1597 int offset = 0;
1598 int i, j;
1599
1600 for (i = 0; attrs[i]; i++) {
1601 d = (struct device_attribute *)attrs[i];
1602 pmu_attr = container_of(d, struct perf_pmu_events_attr, attr);
1603 /* str trumps id */
1604 if (pmu_attr->event_str)
1605 continue;
1606 if (x86_pmu.event_map(i + offset))
1607 continue;
1608
1609 for (j = i; attrs[j]; j++)
1610 attrs[j] = attrs[j + 1];
1611
1612 /* Check the shifted attr. */
1613 i--;
1614
1615 /*
1616 * event_map() is index based, the attrs array is organized
1617 * by increasing event index. If we shift the events, then
1618 * we need to compensate for the event_map(), otherwise
1619 * we are looking up the wrong event in the map
1620 */
1621 offset++;
1622 }
1623 }
1624
1625 /* Merge two pointer arrays */
1626 __init struct attribute **merge_attr(struct attribute **a, struct attribute **b)
1627 {
1628 struct attribute **new;
1629 int j, i;
1630
1631 for (j = 0; a[j]; j++)
1632 ;
1633 for (i = 0; b[i]; i++)
1634 j++;
1635 j++;
1636
1637 new = kmalloc(sizeof(struct attribute *) * j, GFP_KERNEL);
1638 if (!new)
1639 return NULL;
1640
1641 j = 0;
1642 for (i = 0; a[i]; i++)
1643 new[j++] = a[i];
1644 for (i = 0; b[i]; i++)
1645 new[j++] = b[i];
1646 new[j] = NULL;
1647
1648 return new;
1649 }
1650
1651 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1652 {
1653 struct perf_pmu_events_attr *pmu_attr = \
1654 container_of(attr, struct perf_pmu_events_attr, attr);
1655 u64 config = x86_pmu.event_map(pmu_attr->id);
1656
1657 /* string trumps id */
1658 if (pmu_attr->event_str)
1659 return sprintf(page, "%s", pmu_attr->event_str);
1660
1661 return x86_pmu.events_sysfs_show(page, config);
1662 }
1663 EXPORT_SYMBOL_GPL(events_sysfs_show);
1664
1665 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1666 char *page)
1667 {
1668 struct perf_pmu_events_ht_attr *pmu_attr =
1669 container_of(attr, struct perf_pmu_events_ht_attr, attr);
1670
1671 /*
1672 * Report conditional events depending on Hyper-Threading.
1673 *
1674 * This is overly conservative as usually the HT special
1675 * handling is not needed if the other CPU thread is idle.
1676 *
1677 * Note this does not (and cannot) handle the case when thread
1678 * siblings are invisible, for example with virtualization
1679 * if they are owned by some other guest. The user tool
1680 * has to re-read when a thread sibling gets onlined later.
1681 */
1682 return sprintf(page, "%s",
1683 topology_max_smt_threads() > 1 ?
1684 pmu_attr->event_str_ht :
1685 pmu_attr->event_str_noht);
1686 }
1687
1688 EVENT_ATTR(cpu-cycles, CPU_CYCLES );
1689 EVENT_ATTR(instructions, INSTRUCTIONS );
1690 EVENT_ATTR(cache-references, CACHE_REFERENCES );
1691 EVENT_ATTR(cache-misses, CACHE_MISSES );
1692 EVENT_ATTR(branch-instructions, BRANCH_INSTRUCTIONS );
1693 EVENT_ATTR(branch-misses, BRANCH_MISSES );
1694 EVENT_ATTR(bus-cycles, BUS_CYCLES );
1695 EVENT_ATTR(stalled-cycles-frontend, STALLED_CYCLES_FRONTEND );
1696 EVENT_ATTR(stalled-cycles-backend, STALLED_CYCLES_BACKEND );
1697 EVENT_ATTR(ref-cycles, REF_CPU_CYCLES );
1698
1699 static struct attribute *empty_attrs;
1700
1701 static struct attribute *events_attr[] = {
1702 EVENT_PTR(CPU_CYCLES),
1703 EVENT_PTR(INSTRUCTIONS),
1704 EVENT_PTR(CACHE_REFERENCES),
1705 EVENT_PTR(CACHE_MISSES),
1706 EVENT_PTR(BRANCH_INSTRUCTIONS),
1707 EVENT_PTR(BRANCH_MISSES),
1708 EVENT_PTR(BUS_CYCLES),
1709 EVENT_PTR(STALLED_CYCLES_FRONTEND),
1710 EVENT_PTR(STALLED_CYCLES_BACKEND),
1711 EVENT_PTR(REF_CPU_CYCLES),
1712 NULL,
1713 };
1714
1715 static struct attribute_group x86_pmu_events_group = {
1716 .name = "events",
1717 .attrs = events_attr,
1718 };
1719
1720 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1721 {
1722 u64 umask = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1723 u64 cmask = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1724 bool edge = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1725 bool pc = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1726 bool any = (config & ARCH_PERFMON_EVENTSEL_ANY);
1727 bool inv = (config & ARCH_PERFMON_EVENTSEL_INV);
1728 ssize_t ret;
1729
1730 /*
1731 * We have whole page size to spend and just little data
1732 * to write, so we can safely use sprintf.
1733 */
1734 ret = sprintf(page, "event=0x%02llx", event);
1735
1736 if (umask)
1737 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1738
1739 if (edge)
1740 ret += sprintf(page + ret, ",edge");
1741
1742 if (pc)
1743 ret += sprintf(page + ret, ",pc");
1744
1745 if (any)
1746 ret += sprintf(page + ret, ",any");
1747
1748 if (inv)
1749 ret += sprintf(page + ret, ",inv");
1750
1751 if (cmask)
1752 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1753
1754 ret += sprintf(page + ret, "\n");
1755
1756 return ret;
1757 }
1758
1759 static struct attribute_group x86_pmu_attr_group;
1760 static struct attribute_group x86_pmu_caps_group;
1761
1762 static int __init init_hw_perf_events(void)
1763 {
1764 struct x86_pmu_quirk *quirk;
1765 int err;
1766
1767 pr_info("Performance Events: ");
1768
1769 switch (boot_cpu_data.x86_vendor) {
1770 case X86_VENDOR_INTEL:
1771 err = intel_pmu_init();
1772 break;
1773 case X86_VENDOR_AMD:
1774 err = amd_pmu_init();
1775 break;
1776 default:
1777 err = -ENOTSUPP;
1778 }
1779 if (err != 0) {
1780 pr_cont("no PMU driver, software events only.\n");
1781 return 0;
1782 }
1783
1784 pmu_check_apic();
1785
1786 /* sanity check that the hardware exists or is emulated */
1787 if (!check_hw_exists())
1788 return 0;
1789
1790 pr_cont("%s PMU driver.\n", x86_pmu.name);
1791
1792 x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1793
1794 for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1795 quirk->func();
1796
1797 if (!x86_pmu.intel_ctrl)
1798 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1799
1800 perf_events_lapic_init();
1801 register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1802
1803 unconstrained = (struct event_constraint)
1804 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1805 0, x86_pmu.num_counters, 0, 0);
1806
1807 x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1808
1809 if (x86_pmu.caps_attrs) {
1810 struct attribute **tmp;
1811
1812 tmp = merge_attr(x86_pmu_caps_group.attrs, x86_pmu.caps_attrs);
1813 if (!WARN_ON(!tmp))
1814 x86_pmu_caps_group.attrs = tmp;
1815 }
1816
1817 if (x86_pmu.event_attrs)
1818 x86_pmu_events_group.attrs = x86_pmu.event_attrs;
1819
1820 if (!x86_pmu.events_sysfs_show)
1821 x86_pmu_events_group.attrs = &empty_attrs;
1822 else
1823 filter_events(x86_pmu_events_group.attrs);
1824
1825 if (x86_pmu.cpu_events) {
1826 struct attribute **tmp;
1827
1828 tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events);
1829 if (!WARN_ON(!tmp))
1830 x86_pmu_events_group.attrs = tmp;
1831 }
1832
1833 if (x86_pmu.attrs) {
1834 struct attribute **tmp;
1835
1836 tmp = merge_attr(x86_pmu_attr_group.attrs, x86_pmu.attrs);
1837 if (!WARN_ON(!tmp))
1838 x86_pmu_attr_group.attrs = tmp;
1839 }
1840
1841 pr_info("... version: %d\n", x86_pmu.version);
1842 pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
1843 pr_info("... generic registers: %d\n", x86_pmu.num_counters);
1844 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
1845 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
1846 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed);
1847 pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl);
1848
1849 /*
1850 * Install callbacks. Core will call them for each online
1851 * cpu.
1852 */
1853 err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare",
1854 x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
1855 if (err)
1856 return err;
1857
1858 err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
1859 "perf/x86:starting", x86_pmu_starting_cpu,
1860 x86_pmu_dying_cpu);
1861 if (err)
1862 goto out;
1863
1864 err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online",
1865 x86_pmu_online_cpu, NULL);
1866 if (err)
1867 goto out1;
1868
1869 err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1870 if (err)
1871 goto out2;
1872
1873 return 0;
1874
1875 out2:
1876 cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
1877 out1:
1878 cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
1879 out:
1880 cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
1881 return err;
1882 }
1883 early_initcall(init_hw_perf_events);
1884
1885 static inline void x86_pmu_read(struct perf_event *event)
1886 {
1887 x86_perf_event_update(event);
1888 }
1889
1890 /*
1891 * Start group events scheduling transaction
1892 * Set the flag to make pmu::enable() not perform the
1893 * schedulability test, it will be performed at commit time
1894 *
1895 * We only support PERF_PMU_TXN_ADD transactions. Save the
1896 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1897 * transactions.
1898 */
1899 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1900 {
1901 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1902
1903 WARN_ON_ONCE(cpuc->txn_flags); /* txn already in flight */
1904
1905 cpuc->txn_flags = txn_flags;
1906 if (txn_flags & ~PERF_PMU_TXN_ADD)
1907 return;
1908
1909 perf_pmu_disable(pmu);
1910 __this_cpu_write(cpu_hw_events.n_txn, 0);
1911 }
1912
1913 /*
1914 * Stop group events scheduling transaction
1915 * Clear the flag and pmu::enable() will perform the
1916 * schedulability test.
1917 */
1918 static void x86_pmu_cancel_txn(struct pmu *pmu)
1919 {
1920 unsigned int txn_flags;
1921 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1922
1923 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1924
1925 txn_flags = cpuc->txn_flags;
1926 cpuc->txn_flags = 0;
1927 if (txn_flags & ~PERF_PMU_TXN_ADD)
1928 return;
1929
1930 /*
1931 * Truncate collected array by the number of events added in this
1932 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
1933 */
1934 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1935 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1936 perf_pmu_enable(pmu);
1937 }
1938
1939 /*
1940 * Commit group events scheduling transaction
1941 * Perform the group schedulability test as a whole
1942 * Return 0 if success
1943 *
1944 * Does not cancel the transaction on failure; expects the caller to do this.
1945 */
1946 static int x86_pmu_commit_txn(struct pmu *pmu)
1947 {
1948 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1949 int assign[X86_PMC_IDX_MAX];
1950 int n, ret;
1951
1952 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1953
1954 if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
1955 cpuc->txn_flags = 0;
1956 return 0;
1957 }
1958
1959 n = cpuc->n_events;
1960
1961 if (!x86_pmu_initialized())
1962 return -EAGAIN;
1963
1964 ret = x86_pmu.schedule_events(cpuc, n, assign);
1965 if (ret)
1966 return ret;
1967
1968 /*
1969 * copy new assignment, now we know it is possible
1970 * will be used by hw_perf_enable()
1971 */
1972 memcpy(cpuc->assign, assign, n*sizeof(int));
1973
1974 cpuc->txn_flags = 0;
1975 perf_pmu_enable(pmu);
1976 return 0;
1977 }
1978 /*
1979 * a fake_cpuc is used to validate event groups. Due to
1980 * the extra reg logic, we need to also allocate a fake
1981 * per_core and per_cpu structure. Otherwise, group events
1982 * using extra reg may conflict without the kernel being
1983 * able to catch this when the last event gets added to
1984 * the group.
1985 */
1986 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1987 {
1988 kfree(cpuc->shared_regs);
1989 kfree(cpuc);
1990 }
1991
1992 static struct cpu_hw_events *allocate_fake_cpuc(void)
1993 {
1994 struct cpu_hw_events *cpuc;
1995 int cpu = raw_smp_processor_id();
1996
1997 cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1998 if (!cpuc)
1999 return ERR_PTR(-ENOMEM);
2000
2001 /* only needed, if we have extra_regs */
2002 if (x86_pmu.extra_regs) {
2003 cpuc->shared_regs = allocate_shared_regs(cpu);
2004 if (!cpuc->shared_regs)
2005 goto error;
2006 }
2007 cpuc->is_fake = 1;
2008 return cpuc;
2009 error:
2010 free_fake_cpuc(cpuc);
2011 return ERR_PTR(-ENOMEM);
2012 }
2013
2014 /*
2015 * validate that we can schedule this event
2016 */
2017 static int validate_event(struct perf_event *event)
2018 {
2019 struct cpu_hw_events *fake_cpuc;
2020 struct event_constraint *c;
2021 int ret = 0;
2022
2023 fake_cpuc = allocate_fake_cpuc();
2024 if (IS_ERR(fake_cpuc))
2025 return PTR_ERR(fake_cpuc);
2026
2027 c = x86_pmu.get_event_constraints(fake_cpuc, -1, event);
2028
2029 if (!c || !c->weight)
2030 ret = -EINVAL;
2031
2032 if (x86_pmu.put_event_constraints)
2033 x86_pmu.put_event_constraints(fake_cpuc, event);
2034
2035 free_fake_cpuc(fake_cpuc);
2036
2037 return ret;
2038 }
2039
2040 /*
2041 * validate a single event group
2042 *
2043 * validation include:
2044 * - check events are compatible which each other
2045 * - events do not compete for the same counter
2046 * - number of events <= number of counters
2047 *
2048 * validation ensures the group can be loaded onto the
2049 * PMU if it was the only group available.
2050 */
2051 static int validate_group(struct perf_event *event)
2052 {
2053 struct perf_event *leader = event->group_leader;
2054 struct cpu_hw_events *fake_cpuc;
2055 int ret = -EINVAL, n;
2056
2057 fake_cpuc = allocate_fake_cpuc();
2058 if (IS_ERR(fake_cpuc))
2059 return PTR_ERR(fake_cpuc);
2060 /*
2061 * the event is not yet connected with its
2062 * siblings therefore we must first collect
2063 * existing siblings, then add the new event
2064 * before we can simulate the scheduling
2065 */
2066 n = collect_events(fake_cpuc, leader, true);
2067 if (n < 0)
2068 goto out;
2069
2070 fake_cpuc->n_events = n;
2071 n = collect_events(fake_cpuc, event, false);
2072 if (n < 0)
2073 goto out;
2074
2075 fake_cpuc->n_events = n;
2076
2077 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2078
2079 out:
2080 free_fake_cpuc(fake_cpuc);
2081 return ret;
2082 }
2083
2084 static int x86_pmu_event_init(struct perf_event *event)
2085 {
2086 struct pmu *tmp;
2087 int err;
2088
2089 switch (event->attr.type) {
2090 case PERF_TYPE_RAW:
2091 case PERF_TYPE_HARDWARE:
2092 case PERF_TYPE_HW_CACHE:
2093 break;
2094
2095 default:
2096 return -ENOENT;
2097 }
2098
2099 err = __x86_pmu_event_init(event);
2100 if (!err) {
2101 /*
2102 * we temporarily connect event to its pmu
2103 * such that validate_group() can classify
2104 * it as an x86 event using is_x86_event()
2105 */
2106 tmp = event->pmu;
2107 event->pmu = &pmu;
2108
2109 if (event->group_leader != event)
2110 err = validate_group(event);
2111 else
2112 err = validate_event(event);
2113
2114 event->pmu = tmp;
2115 }
2116 if (err) {
2117 if (event->destroy)
2118 event->destroy(event);
2119 }
2120
2121 if (READ_ONCE(x86_pmu.attr_rdpmc))
2122 event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
2123
2124 return err;
2125 }
2126
2127 static void refresh_pce(void *ignored)
2128 {
2129 load_mm_cr4(this_cpu_read(cpu_tlbstate.loaded_mm));
2130 }
2131
2132 static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
2133 {
2134 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2135 return;
2136
2137 /*
2138 * This function relies on not being called concurrently in two
2139 * tasks in the same mm. Otherwise one task could observe
2140 * perf_rdpmc_allowed > 1 and return all the way back to
2141 * userspace with CR4.PCE clear while another task is still
2142 * doing on_each_cpu_mask() to propagate CR4.PCE.
2143 *
2144 * For now, this can't happen because all callers hold mmap_sem
2145 * for write. If this changes, we'll need a different solution.
2146 */
2147 lockdep_assert_held_exclusive(&mm->mmap_sem);
2148
2149 if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1)
2150 on_each_cpu_mask(mm_cpumask(mm), refresh_pce, NULL, 1);
2151 }
2152
2153 static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
2154 {
2155
2156 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2157 return;
2158
2159 if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed))
2160 on_each_cpu_mask(mm_cpumask(mm), refresh_pce, NULL, 1);
2161 }
2162
2163 static int x86_pmu_event_idx(struct perf_event *event)
2164 {
2165 int idx = event->hw.idx;
2166
2167 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2168 return 0;
2169
2170 if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
2171 idx -= INTEL_PMC_IDX_FIXED;
2172 idx |= 1 << 30;
2173 }
2174
2175 return idx + 1;
2176 }
2177
2178 static ssize_t get_attr_rdpmc(struct device *cdev,
2179 struct device_attribute *attr,
2180 char *buf)
2181 {
2182 return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2183 }
2184
2185 static ssize_t set_attr_rdpmc(struct device *cdev,
2186 struct device_attribute *attr,
2187 const char *buf, size_t count)
2188 {
2189 unsigned long val;
2190 ssize_t ret;
2191
2192 ret = kstrtoul(buf, 0, &val);
2193 if (ret)
2194 return ret;
2195
2196 if (val > 2)
2197 return -EINVAL;
2198
2199 if (x86_pmu.attr_rdpmc_broken)
2200 return -ENOTSUPP;
2201
2202 if ((val == 2) != (x86_pmu.attr_rdpmc == 2)) {
2203 /*
2204 * Changing into or out of always available, aka
2205 * perf-event-bypassing mode. This path is extremely slow,
2206 * but only root can trigger it, so it's okay.
2207 */
2208 if (val == 2)
2209 static_key_slow_inc(&rdpmc_always_available);
2210 else
2211 static_key_slow_dec(&rdpmc_always_available);
2212 on_each_cpu(refresh_pce, NULL, 1);
2213 }
2214
2215 x86_pmu.attr_rdpmc = val;
2216
2217 return count;
2218 }
2219
2220 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2221
2222 static struct attribute *x86_pmu_attrs[] = {
2223 &dev_attr_rdpmc.attr,
2224 NULL,
2225 };
2226
2227 static struct attribute_group x86_pmu_attr_group = {
2228 .attrs = x86_pmu_attrs,
2229 };
2230
2231 static ssize_t max_precise_show(struct device *cdev,
2232 struct device_attribute *attr,
2233 char *buf)
2234 {
2235 return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise());
2236 }
2237
2238 static DEVICE_ATTR_RO(max_precise);
2239
2240 static struct attribute *x86_pmu_caps_attrs[] = {
2241 &dev_attr_max_precise.attr,
2242 NULL
2243 };
2244
2245 static struct attribute_group x86_pmu_caps_group = {
2246 .name = "caps",
2247 .attrs = x86_pmu_caps_attrs,
2248 };
2249
2250 static const struct attribute_group *x86_pmu_attr_groups[] = {
2251 &x86_pmu_attr_group,
2252 &x86_pmu_format_group,
2253 &x86_pmu_events_group,
2254 &x86_pmu_caps_group,
2255 NULL,
2256 };
2257
2258 static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
2259 {
2260 if (x86_pmu.sched_task)
2261 x86_pmu.sched_task(ctx, sched_in);
2262 }
2263
2264 void perf_check_microcode(void)
2265 {
2266 if (x86_pmu.check_microcode)
2267 x86_pmu.check_microcode();
2268 }
2269
2270 static struct pmu pmu = {
2271 .pmu_enable = x86_pmu_enable,
2272 .pmu_disable = x86_pmu_disable,
2273
2274 .attr_groups = x86_pmu_attr_groups,
2275
2276 .event_init = x86_pmu_event_init,
2277
2278 .event_mapped = x86_pmu_event_mapped,
2279 .event_unmapped = x86_pmu_event_unmapped,
2280
2281 .add = x86_pmu_add,
2282 .del = x86_pmu_del,
2283 .start = x86_pmu_start,
2284 .stop = x86_pmu_stop,
2285 .read = x86_pmu_read,
2286
2287 .start_txn = x86_pmu_start_txn,
2288 .cancel_txn = x86_pmu_cancel_txn,
2289 .commit_txn = x86_pmu_commit_txn,
2290
2291 .event_idx = x86_pmu_event_idx,
2292 .sched_task = x86_pmu_sched_task,
2293 .task_ctx_size = sizeof(struct x86_perf_task_context),
2294 };
2295
2296 void arch_perf_update_userpage(struct perf_event *event,
2297 struct perf_event_mmap_page *userpg, u64 now)
2298 {
2299 struct cyc2ns_data data;
2300 u64 offset;
2301
2302 userpg->cap_user_time = 0;
2303 userpg->cap_user_time_zero = 0;
2304 userpg->cap_user_rdpmc =
2305 !!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
2306 userpg->pmc_width = x86_pmu.cntval_bits;
2307
2308 if (!using_native_sched_clock() || !sched_clock_stable())
2309 return;
2310
2311 cyc2ns_read_begin(&data);
2312
2313 offset = data.cyc2ns_offset + __sched_clock_offset;
2314
2315 /*
2316 * Internal timekeeping for enabled/running/stopped times
2317 * is always in the local_clock domain.
2318 */
2319 userpg->cap_user_time = 1;
2320 userpg->time_mult = data.cyc2ns_mul;
2321 userpg->time_shift = data.cyc2ns_shift;
2322 userpg->time_offset = offset - now;
2323
2324 /*
2325 * cap_user_time_zero doesn't make sense when we're using a different
2326 * time base for the records.
2327 */
2328 if (!event->attr.use_clockid) {
2329 userpg->cap_user_time_zero = 1;
2330 userpg->time_zero = offset;
2331 }
2332
2333 cyc2ns_read_end();
2334 }
2335
2336 void
2337 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2338 {
2339 struct unwind_state state;
2340 unsigned long addr;
2341
2342 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2343 /* TODO: We don't support guest os callchain now */
2344 return;
2345 }
2346
2347 if (perf_callchain_store(entry, regs->ip))
2348 return;
2349
2350 for (unwind_start(&state, current, regs, NULL); !unwind_done(&state);
2351 unwind_next_frame(&state)) {
2352 addr = unwind_get_return_address(&state);
2353 if (!addr || perf_callchain_store(entry, addr))
2354 return;
2355 }
2356 }
2357
2358 static inline int
2359 valid_user_frame(const void __user *fp, unsigned long size)
2360 {
2361 return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2362 }
2363
2364 static unsigned long get_segment_base(unsigned int segment)
2365 {
2366 struct desc_struct *desc;
2367 unsigned int idx = segment >> 3;
2368
2369 if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2370 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2371 struct ldt_struct *ldt;
2372
2373 /* IRQs are off, so this synchronizes with smp_store_release */
2374 ldt = READ_ONCE(current->active_mm->context.ldt);
2375 if (!ldt || idx >= ldt->nr_entries)
2376 return 0;
2377
2378 desc = &ldt->entries[idx];
2379 #else
2380 return 0;
2381 #endif
2382 } else {
2383 if (idx >= GDT_ENTRIES)
2384 return 0;
2385
2386 desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2387 }
2388
2389 return get_desc_base(desc);
2390 }
2391
2392 #ifdef CONFIG_IA32_EMULATION
2393
2394 #include <asm/compat.h>
2395
2396 static inline int
2397 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2398 {
2399 /* 32-bit process in 64-bit kernel. */
2400 unsigned long ss_base, cs_base;
2401 struct stack_frame_ia32 frame;
2402 const void __user *fp;
2403
2404 if (!test_thread_flag(TIF_IA32))
2405 return 0;
2406
2407 cs_base = get_segment_base(regs->cs);
2408 ss_base = get_segment_base(regs->ss);
2409
2410 fp = compat_ptr(ss_base + regs->bp);
2411 pagefault_disable();
2412 while (entry->nr < entry->max_stack) {
2413 unsigned long bytes;
2414 frame.next_frame = 0;
2415 frame.return_address = 0;
2416
2417 if (!valid_user_frame(fp, sizeof(frame)))
2418 break;
2419
2420 bytes = __copy_from_user_nmi(&frame.next_frame, fp, 4);
2421 if (bytes != 0)
2422 break;
2423 bytes = __copy_from_user_nmi(&frame.return_address, fp+4, 4);
2424 if (bytes != 0)
2425 break;
2426
2427 perf_callchain_store(entry, cs_base + frame.return_address);
2428 fp = compat_ptr(ss_base + frame.next_frame);
2429 }
2430 pagefault_enable();
2431 return 1;
2432 }
2433 #else
2434 static inline int
2435 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2436 {
2437 return 0;
2438 }
2439 #endif
2440
2441 void
2442 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2443 {
2444 struct stack_frame frame;
2445 const unsigned long __user *fp;
2446
2447 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2448 /* TODO: We don't support guest os callchain now */
2449 return;
2450 }
2451
2452 /*
2453 * We don't know what to do with VM86 stacks.. ignore them for now.
2454 */
2455 if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2456 return;
2457
2458 fp = (unsigned long __user *)regs->bp;
2459
2460 perf_callchain_store(entry, regs->ip);
2461
2462 if (!current->mm)
2463 return;
2464
2465 if (perf_callchain_user32(regs, entry))
2466 return;
2467
2468 pagefault_disable();
2469 while (entry->nr < entry->max_stack) {
2470 unsigned long bytes;
2471
2472 frame.next_frame = NULL;
2473 frame.return_address = 0;
2474
2475 if (!valid_user_frame(fp, sizeof(frame)))
2476 break;
2477
2478 bytes = __copy_from_user_nmi(&frame.next_frame, fp, sizeof(*fp));
2479 if (bytes != 0)
2480 break;
2481 bytes = __copy_from_user_nmi(&frame.return_address, fp + 1, sizeof(*fp));
2482 if (bytes != 0)
2483 break;
2484
2485 perf_callchain_store(entry, frame.return_address);
2486 fp = (void __user *)frame.next_frame;
2487 }
2488 pagefault_enable();
2489 }
2490
2491 /*
2492 * Deal with code segment offsets for the various execution modes:
2493 *
2494 * VM86 - the good olde 16 bit days, where the linear address is
2495 * 20 bits and we use regs->ip + 0x10 * regs->cs.
2496 *
2497 * IA32 - Where we need to look at GDT/LDT segment descriptor tables
2498 * to figure out what the 32bit base address is.
2499 *
2500 * X32 - has TIF_X32 set, but is running in x86_64
2501 *
2502 * X86_64 - CS,DS,SS,ES are all zero based.
2503 */
2504 static unsigned long code_segment_base(struct pt_regs *regs)
2505 {
2506 /*
2507 * For IA32 we look at the GDT/LDT segment base to convert the
2508 * effective IP to a linear address.
2509 */
2510
2511 #ifdef CONFIG_X86_32
2512 /*
2513 * If we are in VM86 mode, add the segment offset to convert to a
2514 * linear address.
2515 */
2516 if (regs->flags & X86_VM_MASK)
2517 return 0x10 * regs->cs;
2518
2519 if (user_mode(regs) && regs->cs != __USER_CS)
2520 return get_segment_base(regs->cs);
2521 #else
2522 if (user_mode(regs) && !user_64bit_mode(regs) &&
2523 regs->cs != __USER32_CS)
2524 return get_segment_base(regs->cs);
2525 #endif
2526 return 0;
2527 }
2528
2529 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2530 {
2531 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2532 return perf_guest_cbs->get_guest_ip();
2533
2534 return regs->ip + code_segment_base(regs);
2535 }
2536
2537 unsigned long perf_misc_flags(struct pt_regs *regs)
2538 {
2539 int misc = 0;
2540
2541 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2542 if (perf_guest_cbs->is_user_mode())
2543 misc |= PERF_RECORD_MISC_GUEST_USER;
2544 else
2545 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2546 } else {
2547 if (user_mode(regs))
2548 misc |= PERF_RECORD_MISC_USER;
2549 else
2550 misc |= PERF_RECORD_MISC_KERNEL;
2551 }
2552
2553 if (regs->flags & PERF_EFLAGS_EXACT)
2554 misc |= PERF_RECORD_MISC_EXACT_IP;
2555
2556 return misc;
2557 }
2558
2559 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2560 {
2561 cap->version = x86_pmu.version;
2562 cap->num_counters_gp = x86_pmu.num_counters;
2563 cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2564 cap->bit_width_gp = x86_pmu.cntval_bits;
2565 cap->bit_width_fixed = x86_pmu.cntval_bits;
2566 cap->events_mask = (unsigned int)x86_pmu.events_maskl;
2567 cap->events_mask_len = x86_pmu.events_mask_len;
2568 }
2569 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);