]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/events/core.c
perf/x86: Fix possible Spectre-v1 indexing for hw_perf_event cache_*
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / events / core.c
1 /*
2 * Performance events x86 architecture code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kdebug.h>
23 #include <linux/sched/mm.h>
24 #include <linux/sched/clock.h>
25 #include <linux/uaccess.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/bitops.h>
29 #include <linux/device.h>
30
31 #include <asm/apic.h>
32 #include <asm/stacktrace.h>
33 #include <asm/nmi.h>
34 #include <asm/smp.h>
35 #include <asm/alternative.h>
36 #include <asm/mmu_context.h>
37 #include <asm/tlbflush.h>
38 #include <asm/timer.h>
39 #include <asm/desc.h>
40 #include <asm/ldt.h>
41 #include <asm/unwind.h>
42
43 #include "perf_event.h"
44
45 struct x86_pmu x86_pmu __read_mostly;
46
47 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
48 .enabled = 1,
49 };
50
51 struct static_key rdpmc_always_available = STATIC_KEY_INIT_FALSE;
52
53 u64 __read_mostly hw_cache_event_ids
54 [PERF_COUNT_HW_CACHE_MAX]
55 [PERF_COUNT_HW_CACHE_OP_MAX]
56 [PERF_COUNT_HW_CACHE_RESULT_MAX];
57 u64 __read_mostly hw_cache_extra_regs
58 [PERF_COUNT_HW_CACHE_MAX]
59 [PERF_COUNT_HW_CACHE_OP_MAX]
60 [PERF_COUNT_HW_CACHE_RESULT_MAX];
61
62 /*
63 * Propagate event elapsed time into the generic event.
64 * Can only be executed on the CPU where the event is active.
65 * Returns the delta events processed.
66 */
67 u64 x86_perf_event_update(struct perf_event *event)
68 {
69 struct hw_perf_event *hwc = &event->hw;
70 int shift = 64 - x86_pmu.cntval_bits;
71 u64 prev_raw_count, new_raw_count;
72 int idx = hwc->idx;
73 u64 delta;
74
75 if (idx == INTEL_PMC_IDX_FIXED_BTS)
76 return 0;
77
78 /*
79 * Careful: an NMI might modify the previous event value.
80 *
81 * Our tactic to handle this is to first atomically read and
82 * exchange a new raw count - then add that new-prev delta
83 * count to the generic event atomically:
84 */
85 again:
86 prev_raw_count = local64_read(&hwc->prev_count);
87 rdpmcl(hwc->event_base_rdpmc, new_raw_count);
88
89 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
90 new_raw_count) != prev_raw_count)
91 goto again;
92
93 /*
94 * Now we have the new raw value and have updated the prev
95 * timestamp already. We can now calculate the elapsed delta
96 * (event-)time and add that to the generic event.
97 *
98 * Careful, not all hw sign-extends above the physical width
99 * of the count.
100 */
101 delta = (new_raw_count << shift) - (prev_raw_count << shift);
102 delta >>= shift;
103
104 local64_add(delta, &event->count);
105 local64_sub(delta, &hwc->period_left);
106
107 return new_raw_count;
108 }
109
110 /*
111 * Find and validate any extra registers to set up.
112 */
113 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
114 {
115 struct hw_perf_event_extra *reg;
116 struct extra_reg *er;
117
118 reg = &event->hw.extra_reg;
119
120 if (!x86_pmu.extra_regs)
121 return 0;
122
123 for (er = x86_pmu.extra_regs; er->msr; er++) {
124 if (er->event != (config & er->config_mask))
125 continue;
126 if (event->attr.config1 & ~er->valid_mask)
127 return -EINVAL;
128 /* Check if the extra msrs can be safely accessed*/
129 if (!er->extra_msr_access)
130 return -ENXIO;
131
132 reg->idx = er->idx;
133 reg->config = event->attr.config1;
134 reg->reg = er->msr;
135 break;
136 }
137 return 0;
138 }
139
140 static atomic_t active_events;
141 static atomic_t pmc_refcount;
142 static DEFINE_MUTEX(pmc_reserve_mutex);
143
144 #ifdef CONFIG_X86_LOCAL_APIC
145
146 static bool reserve_pmc_hardware(void)
147 {
148 int i;
149
150 for (i = 0; i < x86_pmu.num_counters; i++) {
151 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
152 goto perfctr_fail;
153 }
154
155 for (i = 0; i < x86_pmu.num_counters; i++) {
156 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
157 goto eventsel_fail;
158 }
159
160 return true;
161
162 eventsel_fail:
163 for (i--; i >= 0; i--)
164 release_evntsel_nmi(x86_pmu_config_addr(i));
165
166 i = x86_pmu.num_counters;
167
168 perfctr_fail:
169 for (i--; i >= 0; i--)
170 release_perfctr_nmi(x86_pmu_event_addr(i));
171
172 return false;
173 }
174
175 static void release_pmc_hardware(void)
176 {
177 int i;
178
179 for (i = 0; i < x86_pmu.num_counters; i++) {
180 release_perfctr_nmi(x86_pmu_event_addr(i));
181 release_evntsel_nmi(x86_pmu_config_addr(i));
182 }
183 }
184
185 #else
186
187 static bool reserve_pmc_hardware(void) { return true; }
188 static void release_pmc_hardware(void) {}
189
190 #endif
191
192 static bool check_hw_exists(void)
193 {
194 u64 val, val_fail = -1, val_new= ~0;
195 int i, reg, reg_fail = -1, ret = 0;
196 int bios_fail = 0;
197 int reg_safe = -1;
198
199 /*
200 * Check to see if the BIOS enabled any of the counters, if so
201 * complain and bail.
202 */
203 for (i = 0; i < x86_pmu.num_counters; i++) {
204 reg = x86_pmu_config_addr(i);
205 ret = rdmsrl_safe(reg, &val);
206 if (ret)
207 goto msr_fail;
208 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
209 bios_fail = 1;
210 val_fail = val;
211 reg_fail = reg;
212 } else {
213 reg_safe = i;
214 }
215 }
216
217 if (x86_pmu.num_counters_fixed) {
218 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
219 ret = rdmsrl_safe(reg, &val);
220 if (ret)
221 goto msr_fail;
222 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
223 if (val & (0x03 << i*4)) {
224 bios_fail = 1;
225 val_fail = val;
226 reg_fail = reg;
227 }
228 }
229 }
230
231 /*
232 * If all the counters are enabled, the below test will always
233 * fail. The tools will also become useless in this scenario.
234 * Just fail and disable the hardware counters.
235 */
236
237 if (reg_safe == -1) {
238 reg = reg_safe;
239 goto msr_fail;
240 }
241
242 /*
243 * Read the current value, change it and read it back to see if it
244 * matches, this is needed to detect certain hardware emulators
245 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
246 */
247 reg = x86_pmu_event_addr(reg_safe);
248 if (rdmsrl_safe(reg, &val))
249 goto msr_fail;
250 val ^= 0xffffUL;
251 ret = wrmsrl_safe(reg, val);
252 ret |= rdmsrl_safe(reg, &val_new);
253 if (ret || val != val_new)
254 goto msr_fail;
255
256 /*
257 * We still allow the PMU driver to operate:
258 */
259 if (bios_fail) {
260 pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
261 pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
262 reg_fail, val_fail);
263 }
264
265 return true;
266
267 msr_fail:
268 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
269 pr_cont("PMU not available due to virtualization, using software events only.\n");
270 } else {
271 pr_cont("Broken PMU hardware detected, using software events only.\n");
272 pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
273 reg, val_new);
274 }
275
276 return false;
277 }
278
279 static void hw_perf_event_destroy(struct perf_event *event)
280 {
281 x86_release_hardware();
282 atomic_dec(&active_events);
283 }
284
285 void hw_perf_lbr_event_destroy(struct perf_event *event)
286 {
287 hw_perf_event_destroy(event);
288
289 /* undo the lbr/bts event accounting */
290 x86_del_exclusive(x86_lbr_exclusive_lbr);
291 }
292
293 static inline int x86_pmu_initialized(void)
294 {
295 return x86_pmu.handle_irq != NULL;
296 }
297
298 static inline int
299 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
300 {
301 struct perf_event_attr *attr = &event->attr;
302 unsigned int cache_type, cache_op, cache_result;
303 u64 config, val;
304
305 config = attr->config;
306
307 cache_type = (config >> 0) & 0xff;
308 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
309 return -EINVAL;
310 cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX);
311
312 cache_op = (config >> 8) & 0xff;
313 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
314 return -EINVAL;
315 cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX);
316
317 cache_result = (config >> 16) & 0xff;
318 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
319 return -EINVAL;
320 cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX);
321
322 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
323
324 if (val == 0)
325 return -ENOENT;
326
327 if (val == -1)
328 return -EINVAL;
329
330 hwc->config |= val;
331 attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
332 return x86_pmu_extra_regs(val, event);
333 }
334
335 int x86_reserve_hardware(void)
336 {
337 int err = 0;
338
339 if (!atomic_inc_not_zero(&pmc_refcount)) {
340 mutex_lock(&pmc_reserve_mutex);
341 if (atomic_read(&pmc_refcount) == 0) {
342 if (!reserve_pmc_hardware())
343 err = -EBUSY;
344 else
345 reserve_ds_buffers();
346 }
347 if (!err)
348 atomic_inc(&pmc_refcount);
349 mutex_unlock(&pmc_reserve_mutex);
350 }
351
352 return err;
353 }
354
355 void x86_release_hardware(void)
356 {
357 if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
358 release_pmc_hardware();
359 release_ds_buffers();
360 mutex_unlock(&pmc_reserve_mutex);
361 }
362 }
363
364 /*
365 * Check if we can create event of a certain type (that no conflicting events
366 * are present).
367 */
368 int x86_add_exclusive(unsigned int what)
369 {
370 int i;
371
372 /*
373 * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
374 * LBR and BTS are still mutually exclusive.
375 */
376 if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
377 return 0;
378
379 if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
380 mutex_lock(&pmc_reserve_mutex);
381 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
382 if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
383 goto fail_unlock;
384 }
385 atomic_inc(&x86_pmu.lbr_exclusive[what]);
386 mutex_unlock(&pmc_reserve_mutex);
387 }
388
389 atomic_inc(&active_events);
390 return 0;
391
392 fail_unlock:
393 mutex_unlock(&pmc_reserve_mutex);
394 return -EBUSY;
395 }
396
397 void x86_del_exclusive(unsigned int what)
398 {
399 if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
400 return;
401
402 atomic_dec(&x86_pmu.lbr_exclusive[what]);
403 atomic_dec(&active_events);
404 }
405
406 int x86_setup_perfctr(struct perf_event *event)
407 {
408 struct perf_event_attr *attr = &event->attr;
409 struct hw_perf_event *hwc = &event->hw;
410 u64 config;
411
412 if (!is_sampling_event(event)) {
413 hwc->sample_period = x86_pmu.max_period;
414 hwc->last_period = hwc->sample_period;
415 local64_set(&hwc->period_left, hwc->sample_period);
416 }
417
418 if (attr->type == PERF_TYPE_RAW)
419 return x86_pmu_extra_regs(event->attr.config, event);
420
421 if (attr->type == PERF_TYPE_HW_CACHE)
422 return set_ext_hw_attr(hwc, event);
423
424 if (attr->config >= x86_pmu.max_events)
425 return -EINVAL;
426
427 /*
428 * The generic map:
429 */
430 config = x86_pmu.event_map(attr->config);
431
432 if (config == 0)
433 return -ENOENT;
434
435 if (config == -1LL)
436 return -EINVAL;
437
438 /*
439 * Branch tracing:
440 */
441 if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
442 !attr->freq && hwc->sample_period == 1) {
443 /* BTS is not supported by this architecture. */
444 if (!x86_pmu.bts_active)
445 return -EOPNOTSUPP;
446
447 /* BTS is currently only allowed for user-mode. */
448 if (!attr->exclude_kernel)
449 return -EOPNOTSUPP;
450
451 /* disallow bts if conflicting events are present */
452 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
453 return -EBUSY;
454
455 event->destroy = hw_perf_lbr_event_destroy;
456 }
457
458 hwc->config |= config;
459
460 return 0;
461 }
462
463 /*
464 * check that branch_sample_type is compatible with
465 * settings needed for precise_ip > 1 which implies
466 * using the LBR to capture ALL taken branches at the
467 * priv levels of the measurement
468 */
469 static inline int precise_br_compat(struct perf_event *event)
470 {
471 u64 m = event->attr.branch_sample_type;
472 u64 b = 0;
473
474 /* must capture all branches */
475 if (!(m & PERF_SAMPLE_BRANCH_ANY))
476 return 0;
477
478 m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
479
480 if (!event->attr.exclude_user)
481 b |= PERF_SAMPLE_BRANCH_USER;
482
483 if (!event->attr.exclude_kernel)
484 b |= PERF_SAMPLE_BRANCH_KERNEL;
485
486 /*
487 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
488 */
489
490 return m == b;
491 }
492
493 int x86_pmu_max_precise(void)
494 {
495 int precise = 0;
496
497 /* Support for constant skid */
498 if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
499 precise++;
500
501 /* Support for IP fixup */
502 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
503 precise++;
504
505 if (x86_pmu.pebs_prec_dist)
506 precise++;
507 }
508 return precise;
509 }
510
511 int x86_pmu_hw_config(struct perf_event *event)
512 {
513 if (event->attr.precise_ip) {
514 int precise = x86_pmu_max_precise();
515
516 if (event->attr.precise_ip > precise)
517 return -EOPNOTSUPP;
518
519 /* There's no sense in having PEBS for non sampling events: */
520 if (!is_sampling_event(event))
521 return -EINVAL;
522 }
523 /*
524 * check that PEBS LBR correction does not conflict with
525 * whatever the user is asking with attr->branch_sample_type
526 */
527 if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
528 u64 *br_type = &event->attr.branch_sample_type;
529
530 if (has_branch_stack(event)) {
531 if (!precise_br_compat(event))
532 return -EOPNOTSUPP;
533
534 /* branch_sample_type is compatible */
535
536 } else {
537 /*
538 * user did not specify branch_sample_type
539 *
540 * For PEBS fixups, we capture all
541 * the branches at the priv level of the
542 * event.
543 */
544 *br_type = PERF_SAMPLE_BRANCH_ANY;
545
546 if (!event->attr.exclude_user)
547 *br_type |= PERF_SAMPLE_BRANCH_USER;
548
549 if (!event->attr.exclude_kernel)
550 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
551 }
552 }
553
554 if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
555 event->attach_state |= PERF_ATTACH_TASK_DATA;
556
557 /*
558 * Generate PMC IRQs:
559 * (keep 'enabled' bit clear for now)
560 */
561 event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
562
563 /*
564 * Count user and OS events unless requested not to
565 */
566 if (!event->attr.exclude_user)
567 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
568 if (!event->attr.exclude_kernel)
569 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
570
571 if (event->attr.type == PERF_TYPE_RAW)
572 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
573
574 if (event->attr.sample_period && x86_pmu.limit_period) {
575 if (x86_pmu.limit_period(event, event->attr.sample_period) >
576 event->attr.sample_period)
577 return -EINVAL;
578 }
579
580 return x86_setup_perfctr(event);
581 }
582
583 /*
584 * Setup the hardware configuration for a given attr_type
585 */
586 static int __x86_pmu_event_init(struct perf_event *event)
587 {
588 int err;
589
590 if (!x86_pmu_initialized())
591 return -ENODEV;
592
593 err = x86_reserve_hardware();
594 if (err)
595 return err;
596
597 atomic_inc(&active_events);
598 event->destroy = hw_perf_event_destroy;
599
600 event->hw.idx = -1;
601 event->hw.last_cpu = -1;
602 event->hw.last_tag = ~0ULL;
603
604 /* mark unused */
605 event->hw.extra_reg.idx = EXTRA_REG_NONE;
606 event->hw.branch_reg.idx = EXTRA_REG_NONE;
607
608 return x86_pmu.hw_config(event);
609 }
610
611 void x86_pmu_disable_all(void)
612 {
613 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
614 int idx;
615
616 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
617 u64 val;
618
619 if (!test_bit(idx, cpuc->active_mask))
620 continue;
621 rdmsrl(x86_pmu_config_addr(idx), val);
622 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
623 continue;
624 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
625 wrmsrl(x86_pmu_config_addr(idx), val);
626 }
627 }
628
629 /*
630 * There may be PMI landing after enabled=0. The PMI hitting could be before or
631 * after disable_all.
632 *
633 * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
634 * It will not be re-enabled in the NMI handler again, because enabled=0. After
635 * handling the NMI, disable_all will be called, which will not change the
636 * state either. If PMI hits after disable_all, the PMU is already disabled
637 * before entering NMI handler. The NMI handler will not change the state
638 * either.
639 *
640 * So either situation is harmless.
641 */
642 static void x86_pmu_disable(struct pmu *pmu)
643 {
644 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
645
646 if (!x86_pmu_initialized())
647 return;
648
649 if (!cpuc->enabled)
650 return;
651
652 cpuc->n_added = 0;
653 cpuc->enabled = 0;
654 barrier();
655
656 x86_pmu.disable_all();
657 }
658
659 void x86_pmu_enable_all(int added)
660 {
661 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
662 int idx;
663
664 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
665 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
666
667 if (!test_bit(idx, cpuc->active_mask))
668 continue;
669
670 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
671 }
672 }
673
674 static struct pmu pmu;
675
676 static inline int is_x86_event(struct perf_event *event)
677 {
678 return event->pmu == &pmu;
679 }
680
681 /*
682 * Event scheduler state:
683 *
684 * Assign events iterating over all events and counters, beginning
685 * with events with least weights first. Keep the current iterator
686 * state in struct sched_state.
687 */
688 struct sched_state {
689 int weight;
690 int event; /* event index */
691 int counter; /* counter index */
692 int unassigned; /* number of events to be assigned left */
693 int nr_gp; /* number of GP counters used */
694 unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
695 };
696
697 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
698 #define SCHED_STATES_MAX 2
699
700 struct perf_sched {
701 int max_weight;
702 int max_events;
703 int max_gp;
704 int saved_states;
705 struct event_constraint **constraints;
706 struct sched_state state;
707 struct sched_state saved[SCHED_STATES_MAX];
708 };
709
710 /*
711 * Initialize interator that runs through all events and counters.
712 */
713 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
714 int num, int wmin, int wmax, int gpmax)
715 {
716 int idx;
717
718 memset(sched, 0, sizeof(*sched));
719 sched->max_events = num;
720 sched->max_weight = wmax;
721 sched->max_gp = gpmax;
722 sched->constraints = constraints;
723
724 for (idx = 0; idx < num; idx++) {
725 if (constraints[idx]->weight == wmin)
726 break;
727 }
728
729 sched->state.event = idx; /* start with min weight */
730 sched->state.weight = wmin;
731 sched->state.unassigned = num;
732 }
733
734 static void perf_sched_save_state(struct perf_sched *sched)
735 {
736 if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
737 return;
738
739 sched->saved[sched->saved_states] = sched->state;
740 sched->saved_states++;
741 }
742
743 static bool perf_sched_restore_state(struct perf_sched *sched)
744 {
745 if (!sched->saved_states)
746 return false;
747
748 sched->saved_states--;
749 sched->state = sched->saved[sched->saved_states];
750
751 /* continue with next counter: */
752 clear_bit(sched->state.counter++, sched->state.used);
753
754 return true;
755 }
756
757 /*
758 * Select a counter for the current event to schedule. Return true on
759 * success.
760 */
761 static bool __perf_sched_find_counter(struct perf_sched *sched)
762 {
763 struct event_constraint *c;
764 int idx;
765
766 if (!sched->state.unassigned)
767 return false;
768
769 if (sched->state.event >= sched->max_events)
770 return false;
771
772 c = sched->constraints[sched->state.event];
773 /* Prefer fixed purpose counters */
774 if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
775 idx = INTEL_PMC_IDX_FIXED;
776 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
777 if (!__test_and_set_bit(idx, sched->state.used))
778 goto done;
779 }
780 }
781
782 /* Grab the first unused counter starting with idx */
783 idx = sched->state.counter;
784 for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
785 if (!__test_and_set_bit(idx, sched->state.used)) {
786 if (sched->state.nr_gp++ >= sched->max_gp)
787 return false;
788
789 goto done;
790 }
791 }
792
793 return false;
794
795 done:
796 sched->state.counter = idx;
797
798 if (c->overlap)
799 perf_sched_save_state(sched);
800
801 return true;
802 }
803
804 static bool perf_sched_find_counter(struct perf_sched *sched)
805 {
806 while (!__perf_sched_find_counter(sched)) {
807 if (!perf_sched_restore_state(sched))
808 return false;
809 }
810
811 return true;
812 }
813
814 /*
815 * Go through all unassigned events and find the next one to schedule.
816 * Take events with the least weight first. Return true on success.
817 */
818 static bool perf_sched_next_event(struct perf_sched *sched)
819 {
820 struct event_constraint *c;
821
822 if (!sched->state.unassigned || !--sched->state.unassigned)
823 return false;
824
825 do {
826 /* next event */
827 sched->state.event++;
828 if (sched->state.event >= sched->max_events) {
829 /* next weight */
830 sched->state.event = 0;
831 sched->state.weight++;
832 if (sched->state.weight > sched->max_weight)
833 return false;
834 }
835 c = sched->constraints[sched->state.event];
836 } while (c->weight != sched->state.weight);
837
838 sched->state.counter = 0; /* start with first counter */
839
840 return true;
841 }
842
843 /*
844 * Assign a counter for each event.
845 */
846 int perf_assign_events(struct event_constraint **constraints, int n,
847 int wmin, int wmax, int gpmax, int *assign)
848 {
849 struct perf_sched sched;
850
851 perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
852
853 do {
854 if (!perf_sched_find_counter(&sched))
855 break; /* failed */
856 if (assign)
857 assign[sched.state.event] = sched.state.counter;
858 } while (perf_sched_next_event(&sched));
859
860 return sched.state.unassigned;
861 }
862 EXPORT_SYMBOL_GPL(perf_assign_events);
863
864 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
865 {
866 struct event_constraint *c;
867 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
868 struct perf_event *e;
869 int i, wmin, wmax, unsched = 0;
870 struct hw_perf_event *hwc;
871
872 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
873
874 if (x86_pmu.start_scheduling)
875 x86_pmu.start_scheduling(cpuc);
876
877 for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
878 cpuc->event_constraint[i] = NULL;
879 c = x86_pmu.get_event_constraints(cpuc, i, cpuc->event_list[i]);
880 cpuc->event_constraint[i] = c;
881
882 wmin = min(wmin, c->weight);
883 wmax = max(wmax, c->weight);
884 }
885
886 /*
887 * fastpath, try to reuse previous register
888 */
889 for (i = 0; i < n; i++) {
890 hwc = &cpuc->event_list[i]->hw;
891 c = cpuc->event_constraint[i];
892
893 /* never assigned */
894 if (hwc->idx == -1)
895 break;
896
897 /* constraint still honored */
898 if (!test_bit(hwc->idx, c->idxmsk))
899 break;
900
901 /* not already used */
902 if (test_bit(hwc->idx, used_mask))
903 break;
904
905 __set_bit(hwc->idx, used_mask);
906 if (assign)
907 assign[i] = hwc->idx;
908 }
909
910 /* slow path */
911 if (i != n) {
912 int gpmax = x86_pmu.num_counters;
913
914 /*
915 * Do not allow scheduling of more than half the available
916 * generic counters.
917 *
918 * This helps avoid counter starvation of sibling thread by
919 * ensuring at most half the counters cannot be in exclusive
920 * mode. There is no designated counters for the limits. Any
921 * N/2 counters can be used. This helps with events with
922 * specific counter constraints.
923 */
924 if (is_ht_workaround_enabled() && !cpuc->is_fake &&
925 READ_ONCE(cpuc->excl_cntrs->exclusive_present))
926 gpmax /= 2;
927
928 unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
929 wmax, gpmax, assign);
930 }
931
932 /*
933 * In case of success (unsched = 0), mark events as committed,
934 * so we do not put_constraint() in case new events are added
935 * and fail to be scheduled
936 *
937 * We invoke the lower level commit callback to lock the resource
938 *
939 * We do not need to do all of this in case we are called to
940 * validate an event group (assign == NULL)
941 */
942 if (!unsched && assign) {
943 for (i = 0; i < n; i++) {
944 e = cpuc->event_list[i];
945 e->hw.flags |= PERF_X86_EVENT_COMMITTED;
946 if (x86_pmu.commit_scheduling)
947 x86_pmu.commit_scheduling(cpuc, i, assign[i]);
948 }
949 } else {
950 for (i = 0; i < n; i++) {
951 e = cpuc->event_list[i];
952 /*
953 * do not put_constraint() on comitted events,
954 * because they are good to go
955 */
956 if ((e->hw.flags & PERF_X86_EVENT_COMMITTED))
957 continue;
958
959 /*
960 * release events that failed scheduling
961 */
962 if (x86_pmu.put_event_constraints)
963 x86_pmu.put_event_constraints(cpuc, e);
964 }
965 }
966
967 if (x86_pmu.stop_scheduling)
968 x86_pmu.stop_scheduling(cpuc);
969
970 return unsched ? -EINVAL : 0;
971 }
972
973 /*
974 * dogrp: true if must collect siblings events (group)
975 * returns total number of events and error code
976 */
977 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
978 {
979 struct perf_event *event;
980 int n, max_count;
981
982 max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
983
984 /* current number of events already accepted */
985 n = cpuc->n_events;
986
987 if (is_x86_event(leader)) {
988 if (n >= max_count)
989 return -EINVAL;
990 cpuc->event_list[n] = leader;
991 n++;
992 }
993 if (!dogrp)
994 return n;
995
996 list_for_each_entry(event, &leader->sibling_list, group_entry) {
997 if (!is_x86_event(event) ||
998 event->state <= PERF_EVENT_STATE_OFF)
999 continue;
1000
1001 if (n >= max_count)
1002 return -EINVAL;
1003
1004 cpuc->event_list[n] = event;
1005 n++;
1006 }
1007 return n;
1008 }
1009
1010 static inline void x86_assign_hw_event(struct perf_event *event,
1011 struct cpu_hw_events *cpuc, int i)
1012 {
1013 struct hw_perf_event *hwc = &event->hw;
1014
1015 hwc->idx = cpuc->assign[i];
1016 hwc->last_cpu = smp_processor_id();
1017 hwc->last_tag = ++cpuc->tags[i];
1018
1019 if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
1020 hwc->config_base = 0;
1021 hwc->event_base = 0;
1022 } else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
1023 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1024 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
1025 hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
1026 } else {
1027 hwc->config_base = x86_pmu_config_addr(hwc->idx);
1028 hwc->event_base = x86_pmu_event_addr(hwc->idx);
1029 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1030 }
1031 }
1032
1033 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1034 struct cpu_hw_events *cpuc,
1035 int i)
1036 {
1037 return hwc->idx == cpuc->assign[i] &&
1038 hwc->last_cpu == smp_processor_id() &&
1039 hwc->last_tag == cpuc->tags[i];
1040 }
1041
1042 static void x86_pmu_start(struct perf_event *event, int flags);
1043
1044 static void x86_pmu_enable(struct pmu *pmu)
1045 {
1046 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1047 struct perf_event *event;
1048 struct hw_perf_event *hwc;
1049 int i, added = cpuc->n_added;
1050
1051 if (!x86_pmu_initialized())
1052 return;
1053
1054 if (cpuc->enabled)
1055 return;
1056
1057 if (cpuc->n_added) {
1058 int n_running = cpuc->n_events - cpuc->n_added;
1059 /*
1060 * apply assignment obtained either from
1061 * hw_perf_group_sched_in() or x86_pmu_enable()
1062 *
1063 * step1: save events moving to new counters
1064 */
1065 for (i = 0; i < n_running; i++) {
1066 event = cpuc->event_list[i];
1067 hwc = &event->hw;
1068
1069 /*
1070 * we can avoid reprogramming counter if:
1071 * - assigned same counter as last time
1072 * - running on same CPU as last time
1073 * - no other event has used the counter since
1074 */
1075 if (hwc->idx == -1 ||
1076 match_prev_assignment(hwc, cpuc, i))
1077 continue;
1078
1079 /*
1080 * Ensure we don't accidentally enable a stopped
1081 * counter simply because we rescheduled.
1082 */
1083 if (hwc->state & PERF_HES_STOPPED)
1084 hwc->state |= PERF_HES_ARCH;
1085
1086 x86_pmu_stop(event, PERF_EF_UPDATE);
1087 }
1088
1089 /*
1090 * step2: reprogram moved events into new counters
1091 */
1092 for (i = 0; i < cpuc->n_events; i++) {
1093 event = cpuc->event_list[i];
1094 hwc = &event->hw;
1095
1096 if (!match_prev_assignment(hwc, cpuc, i))
1097 x86_assign_hw_event(event, cpuc, i);
1098 else if (i < n_running)
1099 continue;
1100
1101 if (hwc->state & PERF_HES_ARCH)
1102 continue;
1103
1104 x86_pmu_start(event, PERF_EF_RELOAD);
1105 }
1106 cpuc->n_added = 0;
1107 perf_events_lapic_init();
1108 }
1109
1110 cpuc->enabled = 1;
1111 barrier();
1112
1113 x86_pmu.enable_all(added);
1114 }
1115
1116 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1117
1118 /*
1119 * Set the next IRQ period, based on the hwc->period_left value.
1120 * To be called with the event disabled in hw:
1121 */
1122 int x86_perf_event_set_period(struct perf_event *event)
1123 {
1124 struct hw_perf_event *hwc = &event->hw;
1125 s64 left = local64_read(&hwc->period_left);
1126 s64 period = hwc->sample_period;
1127 int ret = 0, idx = hwc->idx;
1128
1129 if (idx == INTEL_PMC_IDX_FIXED_BTS)
1130 return 0;
1131
1132 /*
1133 * If we are way outside a reasonable range then just skip forward:
1134 */
1135 if (unlikely(left <= -period)) {
1136 left = period;
1137 local64_set(&hwc->period_left, left);
1138 hwc->last_period = period;
1139 ret = 1;
1140 }
1141
1142 if (unlikely(left <= 0)) {
1143 left += period;
1144 local64_set(&hwc->period_left, left);
1145 hwc->last_period = period;
1146 ret = 1;
1147 }
1148 /*
1149 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1150 */
1151 if (unlikely(left < 2))
1152 left = 2;
1153
1154 if (left > x86_pmu.max_period)
1155 left = x86_pmu.max_period;
1156
1157 if (x86_pmu.limit_period)
1158 left = x86_pmu.limit_period(event, left);
1159
1160 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1161
1162 if (!(hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) ||
1163 local64_read(&hwc->prev_count) != (u64)-left) {
1164 /*
1165 * The hw event starts counting from this event offset,
1166 * mark it to be able to extra future deltas:
1167 */
1168 local64_set(&hwc->prev_count, (u64)-left);
1169
1170 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1171 }
1172
1173 /*
1174 * Due to erratum on certan cpu we need
1175 * a second write to be sure the register
1176 * is updated properly
1177 */
1178 if (x86_pmu.perfctr_second_write) {
1179 wrmsrl(hwc->event_base,
1180 (u64)(-left) & x86_pmu.cntval_mask);
1181 }
1182
1183 perf_event_update_userpage(event);
1184
1185 return ret;
1186 }
1187
1188 void x86_pmu_enable_event(struct perf_event *event)
1189 {
1190 if (__this_cpu_read(cpu_hw_events.enabled))
1191 __x86_pmu_enable_event(&event->hw,
1192 ARCH_PERFMON_EVENTSEL_ENABLE);
1193 }
1194
1195 /*
1196 * Add a single event to the PMU.
1197 *
1198 * The event is added to the group of enabled events
1199 * but only if it can be scehduled with existing events.
1200 */
1201 static int x86_pmu_add(struct perf_event *event, int flags)
1202 {
1203 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1204 struct hw_perf_event *hwc;
1205 int assign[X86_PMC_IDX_MAX];
1206 int n, n0, ret;
1207
1208 hwc = &event->hw;
1209
1210 n0 = cpuc->n_events;
1211 ret = n = collect_events(cpuc, event, false);
1212 if (ret < 0)
1213 goto out;
1214
1215 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1216 if (!(flags & PERF_EF_START))
1217 hwc->state |= PERF_HES_ARCH;
1218
1219 /*
1220 * If group events scheduling transaction was started,
1221 * skip the schedulability test here, it will be performed
1222 * at commit time (->commit_txn) as a whole.
1223 *
1224 * If commit fails, we'll call ->del() on all events
1225 * for which ->add() was called.
1226 */
1227 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1228 goto done_collect;
1229
1230 ret = x86_pmu.schedule_events(cpuc, n, assign);
1231 if (ret)
1232 goto out;
1233 /*
1234 * copy new assignment, now we know it is possible
1235 * will be used by hw_perf_enable()
1236 */
1237 memcpy(cpuc->assign, assign, n*sizeof(int));
1238
1239 done_collect:
1240 /*
1241 * Commit the collect_events() state. See x86_pmu_del() and
1242 * x86_pmu_*_txn().
1243 */
1244 cpuc->n_events = n;
1245 cpuc->n_added += n - n0;
1246 cpuc->n_txn += n - n0;
1247
1248 if (x86_pmu.add) {
1249 /*
1250 * This is before x86_pmu_enable() will call x86_pmu_start(),
1251 * so we enable LBRs before an event needs them etc..
1252 */
1253 x86_pmu.add(event);
1254 }
1255
1256 ret = 0;
1257 out:
1258 return ret;
1259 }
1260
1261 static void x86_pmu_start(struct perf_event *event, int flags)
1262 {
1263 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1264 int idx = event->hw.idx;
1265
1266 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1267 return;
1268
1269 if (WARN_ON_ONCE(idx == -1))
1270 return;
1271
1272 if (flags & PERF_EF_RELOAD) {
1273 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1274 x86_perf_event_set_period(event);
1275 }
1276
1277 event->hw.state = 0;
1278
1279 cpuc->events[idx] = event;
1280 __set_bit(idx, cpuc->active_mask);
1281 __set_bit(idx, cpuc->running);
1282 x86_pmu.enable(event);
1283 perf_event_update_userpage(event);
1284 }
1285
1286 void perf_event_print_debug(void)
1287 {
1288 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1289 u64 pebs, debugctl;
1290 struct cpu_hw_events *cpuc;
1291 unsigned long flags;
1292 int cpu, idx;
1293
1294 if (!x86_pmu.num_counters)
1295 return;
1296
1297 local_irq_save(flags);
1298
1299 cpu = smp_processor_id();
1300 cpuc = &per_cpu(cpu_hw_events, cpu);
1301
1302 if (x86_pmu.version >= 2) {
1303 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1304 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1305 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1306 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1307
1308 pr_info("\n");
1309 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1310 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1311 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1312 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
1313 if (x86_pmu.pebs_constraints) {
1314 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1315 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
1316 }
1317 if (x86_pmu.lbr_nr) {
1318 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1319 pr_info("CPU#%d: debugctl: %016llx\n", cpu, debugctl);
1320 }
1321 }
1322 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1323
1324 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1325 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1326 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1327
1328 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1329
1330 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1331 cpu, idx, pmc_ctrl);
1332 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1333 cpu, idx, pmc_count);
1334 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1335 cpu, idx, prev_left);
1336 }
1337 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1338 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1339
1340 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1341 cpu, idx, pmc_count);
1342 }
1343 local_irq_restore(flags);
1344 }
1345
1346 void x86_pmu_stop(struct perf_event *event, int flags)
1347 {
1348 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1349 struct hw_perf_event *hwc = &event->hw;
1350
1351 if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1352 x86_pmu.disable(event);
1353 cpuc->events[hwc->idx] = NULL;
1354 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1355 hwc->state |= PERF_HES_STOPPED;
1356 }
1357
1358 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1359 /*
1360 * Drain the remaining delta count out of a event
1361 * that we are disabling:
1362 */
1363 x86_perf_event_update(event);
1364 hwc->state |= PERF_HES_UPTODATE;
1365 }
1366 }
1367
1368 static void x86_pmu_del(struct perf_event *event, int flags)
1369 {
1370 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1371 int i;
1372
1373 /*
1374 * event is descheduled
1375 */
1376 event->hw.flags &= ~PERF_X86_EVENT_COMMITTED;
1377
1378 /*
1379 * If we're called during a txn, we only need to undo x86_pmu.add.
1380 * The events never got scheduled and ->cancel_txn will truncate
1381 * the event_list.
1382 *
1383 * XXX assumes any ->del() called during a TXN will only be on
1384 * an event added during that same TXN.
1385 */
1386 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1387 goto do_del;
1388
1389 /*
1390 * Not a TXN, therefore cleanup properly.
1391 */
1392 x86_pmu_stop(event, PERF_EF_UPDATE);
1393
1394 for (i = 0; i < cpuc->n_events; i++) {
1395 if (event == cpuc->event_list[i])
1396 break;
1397 }
1398
1399 if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1400 return;
1401
1402 /* If we have a newly added event; make sure to decrease n_added. */
1403 if (i >= cpuc->n_events - cpuc->n_added)
1404 --cpuc->n_added;
1405
1406 if (x86_pmu.put_event_constraints)
1407 x86_pmu.put_event_constraints(cpuc, event);
1408
1409 /* Delete the array entry. */
1410 while (++i < cpuc->n_events) {
1411 cpuc->event_list[i-1] = cpuc->event_list[i];
1412 cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1413 }
1414 --cpuc->n_events;
1415
1416 perf_event_update_userpage(event);
1417
1418 do_del:
1419 if (x86_pmu.del) {
1420 /*
1421 * This is after x86_pmu_stop(); so we disable LBRs after any
1422 * event can need them etc..
1423 */
1424 x86_pmu.del(event);
1425 }
1426 }
1427
1428 int x86_pmu_handle_irq(struct pt_regs *regs)
1429 {
1430 struct perf_sample_data data;
1431 struct cpu_hw_events *cpuc;
1432 struct perf_event *event;
1433 int idx, handled = 0;
1434 u64 val;
1435
1436 cpuc = this_cpu_ptr(&cpu_hw_events);
1437
1438 /*
1439 * Some chipsets need to unmask the LVTPC in a particular spot
1440 * inside the nmi handler. As a result, the unmasking was pushed
1441 * into all the nmi handlers.
1442 *
1443 * This generic handler doesn't seem to have any issues where the
1444 * unmasking occurs so it was left at the top.
1445 */
1446 apic_write(APIC_LVTPC, APIC_DM_NMI);
1447
1448 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1449 if (!test_bit(idx, cpuc->active_mask)) {
1450 /*
1451 * Though we deactivated the counter some cpus
1452 * might still deliver spurious interrupts still
1453 * in flight. Catch them:
1454 */
1455 if (__test_and_clear_bit(idx, cpuc->running))
1456 handled++;
1457 continue;
1458 }
1459
1460 event = cpuc->events[idx];
1461
1462 val = x86_perf_event_update(event);
1463 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1464 continue;
1465
1466 /*
1467 * event overflow
1468 */
1469 handled++;
1470 perf_sample_data_init(&data, 0, event->hw.last_period);
1471
1472 if (!x86_perf_event_set_period(event))
1473 continue;
1474
1475 if (perf_event_overflow(event, &data, regs))
1476 x86_pmu_stop(event, 0);
1477 }
1478
1479 if (handled)
1480 inc_irq_stat(apic_perf_irqs);
1481
1482 return handled;
1483 }
1484
1485 void perf_events_lapic_init(void)
1486 {
1487 if (!x86_pmu.apic || !x86_pmu_initialized())
1488 return;
1489
1490 /*
1491 * Always use NMI for PMU
1492 */
1493 apic_write(APIC_LVTPC, APIC_DM_NMI);
1494 }
1495
1496 static int
1497 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1498 {
1499 u64 start_clock;
1500 u64 finish_clock;
1501 int ret;
1502
1503 /*
1504 * All PMUs/events that share this PMI handler should make sure to
1505 * increment active_events for their events.
1506 */
1507 if (!atomic_read(&active_events))
1508 return NMI_DONE;
1509
1510 start_clock = sched_clock();
1511 ret = x86_pmu.handle_irq(regs);
1512 finish_clock = sched_clock();
1513
1514 perf_sample_event_took(finish_clock - start_clock);
1515
1516 return ret;
1517 }
1518 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1519
1520 struct event_constraint emptyconstraint;
1521 struct event_constraint unconstrained;
1522
1523 static int x86_pmu_prepare_cpu(unsigned int cpu)
1524 {
1525 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1526 int i;
1527
1528 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1529 cpuc->kfree_on_online[i] = NULL;
1530 if (x86_pmu.cpu_prepare)
1531 return x86_pmu.cpu_prepare(cpu);
1532 return 0;
1533 }
1534
1535 static int x86_pmu_dead_cpu(unsigned int cpu)
1536 {
1537 if (x86_pmu.cpu_dead)
1538 x86_pmu.cpu_dead(cpu);
1539 return 0;
1540 }
1541
1542 static int x86_pmu_online_cpu(unsigned int cpu)
1543 {
1544 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1545 int i;
1546
1547 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1548 kfree(cpuc->kfree_on_online[i]);
1549 cpuc->kfree_on_online[i] = NULL;
1550 }
1551 return 0;
1552 }
1553
1554 static int x86_pmu_starting_cpu(unsigned int cpu)
1555 {
1556 if (x86_pmu.cpu_starting)
1557 x86_pmu.cpu_starting(cpu);
1558 return 0;
1559 }
1560
1561 static int x86_pmu_dying_cpu(unsigned int cpu)
1562 {
1563 if (x86_pmu.cpu_dying)
1564 x86_pmu.cpu_dying(cpu);
1565 return 0;
1566 }
1567
1568 static void __init pmu_check_apic(void)
1569 {
1570 if (boot_cpu_has(X86_FEATURE_APIC))
1571 return;
1572
1573 x86_pmu.apic = 0;
1574 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1575 pr_info("no hardware sampling interrupt available.\n");
1576
1577 /*
1578 * If we have a PMU initialized but no APIC
1579 * interrupts, we cannot sample hardware
1580 * events (user-space has to fall back and
1581 * sample via a hrtimer based software event):
1582 */
1583 pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1584
1585 }
1586
1587 static struct attribute_group x86_pmu_format_group = {
1588 .name = "format",
1589 .attrs = NULL,
1590 };
1591
1592 /*
1593 * Remove all undefined events (x86_pmu.event_map(id) == 0)
1594 * out of events_attr attributes.
1595 */
1596 static void __init filter_events(struct attribute **attrs)
1597 {
1598 struct device_attribute *d;
1599 struct perf_pmu_events_attr *pmu_attr;
1600 int offset = 0;
1601 int i, j;
1602
1603 for (i = 0; attrs[i]; i++) {
1604 d = (struct device_attribute *)attrs[i];
1605 pmu_attr = container_of(d, struct perf_pmu_events_attr, attr);
1606 /* str trumps id */
1607 if (pmu_attr->event_str)
1608 continue;
1609 if (x86_pmu.event_map(i + offset))
1610 continue;
1611
1612 for (j = i; attrs[j]; j++)
1613 attrs[j] = attrs[j + 1];
1614
1615 /* Check the shifted attr. */
1616 i--;
1617
1618 /*
1619 * event_map() is index based, the attrs array is organized
1620 * by increasing event index. If we shift the events, then
1621 * we need to compensate for the event_map(), otherwise
1622 * we are looking up the wrong event in the map
1623 */
1624 offset++;
1625 }
1626 }
1627
1628 /* Merge two pointer arrays */
1629 __init struct attribute **merge_attr(struct attribute **a, struct attribute **b)
1630 {
1631 struct attribute **new;
1632 int j, i;
1633
1634 for (j = 0; a[j]; j++)
1635 ;
1636 for (i = 0; b[i]; i++)
1637 j++;
1638 j++;
1639
1640 new = kmalloc(sizeof(struct attribute *) * j, GFP_KERNEL);
1641 if (!new)
1642 return NULL;
1643
1644 j = 0;
1645 for (i = 0; a[i]; i++)
1646 new[j++] = a[i];
1647 for (i = 0; b[i]; i++)
1648 new[j++] = b[i];
1649 new[j] = NULL;
1650
1651 return new;
1652 }
1653
1654 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1655 {
1656 struct perf_pmu_events_attr *pmu_attr = \
1657 container_of(attr, struct perf_pmu_events_attr, attr);
1658 u64 config = x86_pmu.event_map(pmu_attr->id);
1659
1660 /* string trumps id */
1661 if (pmu_attr->event_str)
1662 return sprintf(page, "%s", pmu_attr->event_str);
1663
1664 return x86_pmu.events_sysfs_show(page, config);
1665 }
1666 EXPORT_SYMBOL_GPL(events_sysfs_show);
1667
1668 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1669 char *page)
1670 {
1671 struct perf_pmu_events_ht_attr *pmu_attr =
1672 container_of(attr, struct perf_pmu_events_ht_attr, attr);
1673
1674 /*
1675 * Report conditional events depending on Hyper-Threading.
1676 *
1677 * This is overly conservative as usually the HT special
1678 * handling is not needed if the other CPU thread is idle.
1679 *
1680 * Note this does not (and cannot) handle the case when thread
1681 * siblings are invisible, for example with virtualization
1682 * if they are owned by some other guest. The user tool
1683 * has to re-read when a thread sibling gets onlined later.
1684 */
1685 return sprintf(page, "%s",
1686 topology_max_smt_threads() > 1 ?
1687 pmu_attr->event_str_ht :
1688 pmu_attr->event_str_noht);
1689 }
1690
1691 EVENT_ATTR(cpu-cycles, CPU_CYCLES );
1692 EVENT_ATTR(instructions, INSTRUCTIONS );
1693 EVENT_ATTR(cache-references, CACHE_REFERENCES );
1694 EVENT_ATTR(cache-misses, CACHE_MISSES );
1695 EVENT_ATTR(branch-instructions, BRANCH_INSTRUCTIONS );
1696 EVENT_ATTR(branch-misses, BRANCH_MISSES );
1697 EVENT_ATTR(bus-cycles, BUS_CYCLES );
1698 EVENT_ATTR(stalled-cycles-frontend, STALLED_CYCLES_FRONTEND );
1699 EVENT_ATTR(stalled-cycles-backend, STALLED_CYCLES_BACKEND );
1700 EVENT_ATTR(ref-cycles, REF_CPU_CYCLES );
1701
1702 static struct attribute *empty_attrs;
1703
1704 static struct attribute *events_attr[] = {
1705 EVENT_PTR(CPU_CYCLES),
1706 EVENT_PTR(INSTRUCTIONS),
1707 EVENT_PTR(CACHE_REFERENCES),
1708 EVENT_PTR(CACHE_MISSES),
1709 EVENT_PTR(BRANCH_INSTRUCTIONS),
1710 EVENT_PTR(BRANCH_MISSES),
1711 EVENT_PTR(BUS_CYCLES),
1712 EVENT_PTR(STALLED_CYCLES_FRONTEND),
1713 EVENT_PTR(STALLED_CYCLES_BACKEND),
1714 EVENT_PTR(REF_CPU_CYCLES),
1715 NULL,
1716 };
1717
1718 static struct attribute_group x86_pmu_events_group = {
1719 .name = "events",
1720 .attrs = events_attr,
1721 };
1722
1723 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1724 {
1725 u64 umask = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1726 u64 cmask = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1727 bool edge = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1728 bool pc = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1729 bool any = (config & ARCH_PERFMON_EVENTSEL_ANY);
1730 bool inv = (config & ARCH_PERFMON_EVENTSEL_INV);
1731 ssize_t ret;
1732
1733 /*
1734 * We have whole page size to spend and just little data
1735 * to write, so we can safely use sprintf.
1736 */
1737 ret = sprintf(page, "event=0x%02llx", event);
1738
1739 if (umask)
1740 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1741
1742 if (edge)
1743 ret += sprintf(page + ret, ",edge");
1744
1745 if (pc)
1746 ret += sprintf(page + ret, ",pc");
1747
1748 if (any)
1749 ret += sprintf(page + ret, ",any");
1750
1751 if (inv)
1752 ret += sprintf(page + ret, ",inv");
1753
1754 if (cmask)
1755 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1756
1757 ret += sprintf(page + ret, "\n");
1758
1759 return ret;
1760 }
1761
1762 static struct attribute_group x86_pmu_attr_group;
1763 static struct attribute_group x86_pmu_caps_group;
1764
1765 static int __init init_hw_perf_events(void)
1766 {
1767 struct x86_pmu_quirk *quirk;
1768 int err;
1769
1770 pr_info("Performance Events: ");
1771
1772 switch (boot_cpu_data.x86_vendor) {
1773 case X86_VENDOR_INTEL:
1774 err = intel_pmu_init();
1775 break;
1776 case X86_VENDOR_AMD:
1777 err = amd_pmu_init();
1778 break;
1779 default:
1780 err = -ENOTSUPP;
1781 }
1782 if (err != 0) {
1783 pr_cont("no PMU driver, software events only.\n");
1784 return 0;
1785 }
1786
1787 pmu_check_apic();
1788
1789 /* sanity check that the hardware exists or is emulated */
1790 if (!check_hw_exists())
1791 return 0;
1792
1793 pr_cont("%s PMU driver.\n", x86_pmu.name);
1794
1795 x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1796
1797 for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1798 quirk->func();
1799
1800 if (!x86_pmu.intel_ctrl)
1801 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1802
1803 perf_events_lapic_init();
1804 register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1805
1806 unconstrained = (struct event_constraint)
1807 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1808 0, x86_pmu.num_counters, 0, 0);
1809
1810 x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1811
1812 if (x86_pmu.caps_attrs) {
1813 struct attribute **tmp;
1814
1815 tmp = merge_attr(x86_pmu_caps_group.attrs, x86_pmu.caps_attrs);
1816 if (!WARN_ON(!tmp))
1817 x86_pmu_caps_group.attrs = tmp;
1818 }
1819
1820 if (x86_pmu.event_attrs)
1821 x86_pmu_events_group.attrs = x86_pmu.event_attrs;
1822
1823 if (!x86_pmu.events_sysfs_show)
1824 x86_pmu_events_group.attrs = &empty_attrs;
1825 else
1826 filter_events(x86_pmu_events_group.attrs);
1827
1828 if (x86_pmu.cpu_events) {
1829 struct attribute **tmp;
1830
1831 tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events);
1832 if (!WARN_ON(!tmp))
1833 x86_pmu_events_group.attrs = tmp;
1834 }
1835
1836 if (x86_pmu.attrs) {
1837 struct attribute **tmp;
1838
1839 tmp = merge_attr(x86_pmu_attr_group.attrs, x86_pmu.attrs);
1840 if (!WARN_ON(!tmp))
1841 x86_pmu_attr_group.attrs = tmp;
1842 }
1843
1844 pr_info("... version: %d\n", x86_pmu.version);
1845 pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
1846 pr_info("... generic registers: %d\n", x86_pmu.num_counters);
1847 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
1848 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
1849 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed);
1850 pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl);
1851
1852 /*
1853 * Install callbacks. Core will call them for each online
1854 * cpu.
1855 */
1856 err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare",
1857 x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
1858 if (err)
1859 return err;
1860
1861 err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
1862 "perf/x86:starting", x86_pmu_starting_cpu,
1863 x86_pmu_dying_cpu);
1864 if (err)
1865 goto out;
1866
1867 err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online",
1868 x86_pmu_online_cpu, NULL);
1869 if (err)
1870 goto out1;
1871
1872 err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1873 if (err)
1874 goto out2;
1875
1876 return 0;
1877
1878 out2:
1879 cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
1880 out1:
1881 cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
1882 out:
1883 cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
1884 return err;
1885 }
1886 early_initcall(init_hw_perf_events);
1887
1888 static inline void x86_pmu_read(struct perf_event *event)
1889 {
1890 x86_perf_event_update(event);
1891 }
1892
1893 /*
1894 * Start group events scheduling transaction
1895 * Set the flag to make pmu::enable() not perform the
1896 * schedulability test, it will be performed at commit time
1897 *
1898 * We only support PERF_PMU_TXN_ADD transactions. Save the
1899 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1900 * transactions.
1901 */
1902 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1903 {
1904 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1905
1906 WARN_ON_ONCE(cpuc->txn_flags); /* txn already in flight */
1907
1908 cpuc->txn_flags = txn_flags;
1909 if (txn_flags & ~PERF_PMU_TXN_ADD)
1910 return;
1911
1912 perf_pmu_disable(pmu);
1913 __this_cpu_write(cpu_hw_events.n_txn, 0);
1914 }
1915
1916 /*
1917 * Stop group events scheduling transaction
1918 * Clear the flag and pmu::enable() will perform the
1919 * schedulability test.
1920 */
1921 static void x86_pmu_cancel_txn(struct pmu *pmu)
1922 {
1923 unsigned int txn_flags;
1924 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1925
1926 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1927
1928 txn_flags = cpuc->txn_flags;
1929 cpuc->txn_flags = 0;
1930 if (txn_flags & ~PERF_PMU_TXN_ADD)
1931 return;
1932
1933 /*
1934 * Truncate collected array by the number of events added in this
1935 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
1936 */
1937 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1938 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1939 perf_pmu_enable(pmu);
1940 }
1941
1942 /*
1943 * Commit group events scheduling transaction
1944 * Perform the group schedulability test as a whole
1945 * Return 0 if success
1946 *
1947 * Does not cancel the transaction on failure; expects the caller to do this.
1948 */
1949 static int x86_pmu_commit_txn(struct pmu *pmu)
1950 {
1951 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1952 int assign[X86_PMC_IDX_MAX];
1953 int n, ret;
1954
1955 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1956
1957 if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
1958 cpuc->txn_flags = 0;
1959 return 0;
1960 }
1961
1962 n = cpuc->n_events;
1963
1964 if (!x86_pmu_initialized())
1965 return -EAGAIN;
1966
1967 ret = x86_pmu.schedule_events(cpuc, n, assign);
1968 if (ret)
1969 return ret;
1970
1971 /*
1972 * copy new assignment, now we know it is possible
1973 * will be used by hw_perf_enable()
1974 */
1975 memcpy(cpuc->assign, assign, n*sizeof(int));
1976
1977 cpuc->txn_flags = 0;
1978 perf_pmu_enable(pmu);
1979 return 0;
1980 }
1981 /*
1982 * a fake_cpuc is used to validate event groups. Due to
1983 * the extra reg logic, we need to also allocate a fake
1984 * per_core and per_cpu structure. Otherwise, group events
1985 * using extra reg may conflict without the kernel being
1986 * able to catch this when the last event gets added to
1987 * the group.
1988 */
1989 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1990 {
1991 kfree(cpuc->shared_regs);
1992 kfree(cpuc);
1993 }
1994
1995 static struct cpu_hw_events *allocate_fake_cpuc(void)
1996 {
1997 struct cpu_hw_events *cpuc;
1998 int cpu = raw_smp_processor_id();
1999
2000 cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
2001 if (!cpuc)
2002 return ERR_PTR(-ENOMEM);
2003
2004 /* only needed, if we have extra_regs */
2005 if (x86_pmu.extra_regs) {
2006 cpuc->shared_regs = allocate_shared_regs(cpu);
2007 if (!cpuc->shared_regs)
2008 goto error;
2009 }
2010 cpuc->is_fake = 1;
2011 return cpuc;
2012 error:
2013 free_fake_cpuc(cpuc);
2014 return ERR_PTR(-ENOMEM);
2015 }
2016
2017 /*
2018 * validate that we can schedule this event
2019 */
2020 static int validate_event(struct perf_event *event)
2021 {
2022 struct cpu_hw_events *fake_cpuc;
2023 struct event_constraint *c;
2024 int ret = 0;
2025
2026 fake_cpuc = allocate_fake_cpuc();
2027 if (IS_ERR(fake_cpuc))
2028 return PTR_ERR(fake_cpuc);
2029
2030 c = x86_pmu.get_event_constraints(fake_cpuc, -1, event);
2031
2032 if (!c || !c->weight)
2033 ret = -EINVAL;
2034
2035 if (x86_pmu.put_event_constraints)
2036 x86_pmu.put_event_constraints(fake_cpuc, event);
2037
2038 free_fake_cpuc(fake_cpuc);
2039
2040 return ret;
2041 }
2042
2043 /*
2044 * validate a single event group
2045 *
2046 * validation include:
2047 * - check events are compatible which each other
2048 * - events do not compete for the same counter
2049 * - number of events <= number of counters
2050 *
2051 * validation ensures the group can be loaded onto the
2052 * PMU if it was the only group available.
2053 */
2054 static int validate_group(struct perf_event *event)
2055 {
2056 struct perf_event *leader = event->group_leader;
2057 struct cpu_hw_events *fake_cpuc;
2058 int ret = -EINVAL, n;
2059
2060 fake_cpuc = allocate_fake_cpuc();
2061 if (IS_ERR(fake_cpuc))
2062 return PTR_ERR(fake_cpuc);
2063 /*
2064 * the event is not yet connected with its
2065 * siblings therefore we must first collect
2066 * existing siblings, then add the new event
2067 * before we can simulate the scheduling
2068 */
2069 n = collect_events(fake_cpuc, leader, true);
2070 if (n < 0)
2071 goto out;
2072
2073 fake_cpuc->n_events = n;
2074 n = collect_events(fake_cpuc, event, false);
2075 if (n < 0)
2076 goto out;
2077
2078 fake_cpuc->n_events = n;
2079
2080 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2081
2082 out:
2083 free_fake_cpuc(fake_cpuc);
2084 return ret;
2085 }
2086
2087 static int x86_pmu_event_init(struct perf_event *event)
2088 {
2089 struct pmu *tmp;
2090 int err;
2091
2092 switch (event->attr.type) {
2093 case PERF_TYPE_RAW:
2094 case PERF_TYPE_HARDWARE:
2095 case PERF_TYPE_HW_CACHE:
2096 break;
2097
2098 default:
2099 return -ENOENT;
2100 }
2101
2102 err = __x86_pmu_event_init(event);
2103 if (!err) {
2104 /*
2105 * we temporarily connect event to its pmu
2106 * such that validate_group() can classify
2107 * it as an x86 event using is_x86_event()
2108 */
2109 tmp = event->pmu;
2110 event->pmu = &pmu;
2111
2112 if (event->group_leader != event)
2113 err = validate_group(event);
2114 else
2115 err = validate_event(event);
2116
2117 event->pmu = tmp;
2118 }
2119 if (err) {
2120 if (event->destroy)
2121 event->destroy(event);
2122 }
2123
2124 if (READ_ONCE(x86_pmu.attr_rdpmc))
2125 event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
2126
2127 return err;
2128 }
2129
2130 static void refresh_pce(void *ignored)
2131 {
2132 load_mm_cr4(this_cpu_read(cpu_tlbstate.loaded_mm));
2133 }
2134
2135 static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
2136 {
2137 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2138 return;
2139
2140 /*
2141 * This function relies on not being called concurrently in two
2142 * tasks in the same mm. Otherwise one task could observe
2143 * perf_rdpmc_allowed > 1 and return all the way back to
2144 * userspace with CR4.PCE clear while another task is still
2145 * doing on_each_cpu_mask() to propagate CR4.PCE.
2146 *
2147 * For now, this can't happen because all callers hold mmap_sem
2148 * for write. If this changes, we'll need a different solution.
2149 */
2150 lockdep_assert_held_exclusive(&mm->mmap_sem);
2151
2152 if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1)
2153 on_each_cpu_mask(mm_cpumask(mm), refresh_pce, NULL, 1);
2154 }
2155
2156 static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
2157 {
2158
2159 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2160 return;
2161
2162 if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed))
2163 on_each_cpu_mask(mm_cpumask(mm), refresh_pce, NULL, 1);
2164 }
2165
2166 static int x86_pmu_event_idx(struct perf_event *event)
2167 {
2168 int idx = event->hw.idx;
2169
2170 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2171 return 0;
2172
2173 if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
2174 idx -= INTEL_PMC_IDX_FIXED;
2175 idx |= 1 << 30;
2176 }
2177
2178 return idx + 1;
2179 }
2180
2181 static ssize_t get_attr_rdpmc(struct device *cdev,
2182 struct device_attribute *attr,
2183 char *buf)
2184 {
2185 return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2186 }
2187
2188 static ssize_t set_attr_rdpmc(struct device *cdev,
2189 struct device_attribute *attr,
2190 const char *buf, size_t count)
2191 {
2192 unsigned long val;
2193 ssize_t ret;
2194
2195 ret = kstrtoul(buf, 0, &val);
2196 if (ret)
2197 return ret;
2198
2199 if (val > 2)
2200 return -EINVAL;
2201
2202 if (x86_pmu.attr_rdpmc_broken)
2203 return -ENOTSUPP;
2204
2205 if ((val == 2) != (x86_pmu.attr_rdpmc == 2)) {
2206 /*
2207 * Changing into or out of always available, aka
2208 * perf-event-bypassing mode. This path is extremely slow,
2209 * but only root can trigger it, so it's okay.
2210 */
2211 if (val == 2)
2212 static_key_slow_inc(&rdpmc_always_available);
2213 else
2214 static_key_slow_dec(&rdpmc_always_available);
2215 on_each_cpu(refresh_pce, NULL, 1);
2216 }
2217
2218 x86_pmu.attr_rdpmc = val;
2219
2220 return count;
2221 }
2222
2223 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2224
2225 static struct attribute *x86_pmu_attrs[] = {
2226 &dev_attr_rdpmc.attr,
2227 NULL,
2228 };
2229
2230 static struct attribute_group x86_pmu_attr_group = {
2231 .attrs = x86_pmu_attrs,
2232 };
2233
2234 static ssize_t max_precise_show(struct device *cdev,
2235 struct device_attribute *attr,
2236 char *buf)
2237 {
2238 return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise());
2239 }
2240
2241 static DEVICE_ATTR_RO(max_precise);
2242
2243 static struct attribute *x86_pmu_caps_attrs[] = {
2244 &dev_attr_max_precise.attr,
2245 NULL
2246 };
2247
2248 static struct attribute_group x86_pmu_caps_group = {
2249 .name = "caps",
2250 .attrs = x86_pmu_caps_attrs,
2251 };
2252
2253 static const struct attribute_group *x86_pmu_attr_groups[] = {
2254 &x86_pmu_attr_group,
2255 &x86_pmu_format_group,
2256 &x86_pmu_events_group,
2257 &x86_pmu_caps_group,
2258 NULL,
2259 };
2260
2261 static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
2262 {
2263 if (x86_pmu.sched_task)
2264 x86_pmu.sched_task(ctx, sched_in);
2265 }
2266
2267 void perf_check_microcode(void)
2268 {
2269 if (x86_pmu.check_microcode)
2270 x86_pmu.check_microcode();
2271 }
2272
2273 static struct pmu pmu = {
2274 .pmu_enable = x86_pmu_enable,
2275 .pmu_disable = x86_pmu_disable,
2276
2277 .attr_groups = x86_pmu_attr_groups,
2278
2279 .event_init = x86_pmu_event_init,
2280
2281 .event_mapped = x86_pmu_event_mapped,
2282 .event_unmapped = x86_pmu_event_unmapped,
2283
2284 .add = x86_pmu_add,
2285 .del = x86_pmu_del,
2286 .start = x86_pmu_start,
2287 .stop = x86_pmu_stop,
2288 .read = x86_pmu_read,
2289
2290 .start_txn = x86_pmu_start_txn,
2291 .cancel_txn = x86_pmu_cancel_txn,
2292 .commit_txn = x86_pmu_commit_txn,
2293
2294 .event_idx = x86_pmu_event_idx,
2295 .sched_task = x86_pmu_sched_task,
2296 .task_ctx_size = sizeof(struct x86_perf_task_context),
2297 };
2298
2299 void arch_perf_update_userpage(struct perf_event *event,
2300 struct perf_event_mmap_page *userpg, u64 now)
2301 {
2302 struct cyc2ns_data data;
2303 u64 offset;
2304
2305 userpg->cap_user_time = 0;
2306 userpg->cap_user_time_zero = 0;
2307 userpg->cap_user_rdpmc =
2308 !!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
2309 userpg->pmc_width = x86_pmu.cntval_bits;
2310
2311 if (!using_native_sched_clock() || !sched_clock_stable())
2312 return;
2313
2314 cyc2ns_read_begin(&data);
2315
2316 offset = data.cyc2ns_offset + __sched_clock_offset;
2317
2318 /*
2319 * Internal timekeeping for enabled/running/stopped times
2320 * is always in the local_clock domain.
2321 */
2322 userpg->cap_user_time = 1;
2323 userpg->time_mult = data.cyc2ns_mul;
2324 userpg->time_shift = data.cyc2ns_shift;
2325 userpg->time_offset = offset - now;
2326
2327 /*
2328 * cap_user_time_zero doesn't make sense when we're using a different
2329 * time base for the records.
2330 */
2331 if (!event->attr.use_clockid) {
2332 userpg->cap_user_time_zero = 1;
2333 userpg->time_zero = offset;
2334 }
2335
2336 cyc2ns_read_end();
2337 }
2338
2339 void
2340 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2341 {
2342 struct unwind_state state;
2343 unsigned long addr;
2344
2345 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2346 /* TODO: We don't support guest os callchain now */
2347 return;
2348 }
2349
2350 if (perf_callchain_store(entry, regs->ip))
2351 return;
2352
2353 for (unwind_start(&state, current, regs, NULL); !unwind_done(&state);
2354 unwind_next_frame(&state)) {
2355 addr = unwind_get_return_address(&state);
2356 if (!addr || perf_callchain_store(entry, addr))
2357 return;
2358 }
2359 }
2360
2361 static inline int
2362 valid_user_frame(const void __user *fp, unsigned long size)
2363 {
2364 return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2365 }
2366
2367 static unsigned long get_segment_base(unsigned int segment)
2368 {
2369 struct desc_struct *desc;
2370 unsigned int idx = segment >> 3;
2371
2372 if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2373 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2374 struct ldt_struct *ldt;
2375
2376 /* IRQs are off, so this synchronizes with smp_store_release */
2377 ldt = READ_ONCE(current->active_mm->context.ldt);
2378 if (!ldt || idx >= ldt->nr_entries)
2379 return 0;
2380
2381 desc = &ldt->entries[idx];
2382 #else
2383 return 0;
2384 #endif
2385 } else {
2386 if (idx >= GDT_ENTRIES)
2387 return 0;
2388
2389 desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2390 }
2391
2392 return get_desc_base(desc);
2393 }
2394
2395 #ifdef CONFIG_IA32_EMULATION
2396
2397 #include <asm/compat.h>
2398
2399 static inline int
2400 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2401 {
2402 /* 32-bit process in 64-bit kernel. */
2403 unsigned long ss_base, cs_base;
2404 struct stack_frame_ia32 frame;
2405 const void __user *fp;
2406
2407 if (!test_thread_flag(TIF_IA32))
2408 return 0;
2409
2410 cs_base = get_segment_base(regs->cs);
2411 ss_base = get_segment_base(regs->ss);
2412
2413 fp = compat_ptr(ss_base + regs->bp);
2414 pagefault_disable();
2415 while (entry->nr < entry->max_stack) {
2416 unsigned long bytes;
2417 frame.next_frame = 0;
2418 frame.return_address = 0;
2419
2420 if (!valid_user_frame(fp, sizeof(frame)))
2421 break;
2422
2423 bytes = __copy_from_user_nmi(&frame.next_frame, fp, 4);
2424 if (bytes != 0)
2425 break;
2426 bytes = __copy_from_user_nmi(&frame.return_address, fp+4, 4);
2427 if (bytes != 0)
2428 break;
2429
2430 perf_callchain_store(entry, cs_base + frame.return_address);
2431 fp = compat_ptr(ss_base + frame.next_frame);
2432 }
2433 pagefault_enable();
2434 return 1;
2435 }
2436 #else
2437 static inline int
2438 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2439 {
2440 return 0;
2441 }
2442 #endif
2443
2444 void
2445 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2446 {
2447 struct stack_frame frame;
2448 const unsigned long __user *fp;
2449
2450 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2451 /* TODO: We don't support guest os callchain now */
2452 return;
2453 }
2454
2455 /*
2456 * We don't know what to do with VM86 stacks.. ignore them for now.
2457 */
2458 if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2459 return;
2460
2461 fp = (unsigned long __user *)regs->bp;
2462
2463 perf_callchain_store(entry, regs->ip);
2464
2465 if (!current->mm)
2466 return;
2467
2468 if (perf_callchain_user32(regs, entry))
2469 return;
2470
2471 pagefault_disable();
2472 while (entry->nr < entry->max_stack) {
2473 unsigned long bytes;
2474
2475 frame.next_frame = NULL;
2476 frame.return_address = 0;
2477
2478 if (!valid_user_frame(fp, sizeof(frame)))
2479 break;
2480
2481 bytes = __copy_from_user_nmi(&frame.next_frame, fp, sizeof(*fp));
2482 if (bytes != 0)
2483 break;
2484 bytes = __copy_from_user_nmi(&frame.return_address, fp + 1, sizeof(*fp));
2485 if (bytes != 0)
2486 break;
2487
2488 perf_callchain_store(entry, frame.return_address);
2489 fp = (void __user *)frame.next_frame;
2490 }
2491 pagefault_enable();
2492 }
2493
2494 /*
2495 * Deal with code segment offsets for the various execution modes:
2496 *
2497 * VM86 - the good olde 16 bit days, where the linear address is
2498 * 20 bits and we use regs->ip + 0x10 * regs->cs.
2499 *
2500 * IA32 - Where we need to look at GDT/LDT segment descriptor tables
2501 * to figure out what the 32bit base address is.
2502 *
2503 * X32 - has TIF_X32 set, but is running in x86_64
2504 *
2505 * X86_64 - CS,DS,SS,ES are all zero based.
2506 */
2507 static unsigned long code_segment_base(struct pt_regs *regs)
2508 {
2509 /*
2510 * For IA32 we look at the GDT/LDT segment base to convert the
2511 * effective IP to a linear address.
2512 */
2513
2514 #ifdef CONFIG_X86_32
2515 /*
2516 * If we are in VM86 mode, add the segment offset to convert to a
2517 * linear address.
2518 */
2519 if (regs->flags & X86_VM_MASK)
2520 return 0x10 * regs->cs;
2521
2522 if (user_mode(regs) && regs->cs != __USER_CS)
2523 return get_segment_base(regs->cs);
2524 #else
2525 if (user_mode(regs) && !user_64bit_mode(regs) &&
2526 regs->cs != __USER32_CS)
2527 return get_segment_base(regs->cs);
2528 #endif
2529 return 0;
2530 }
2531
2532 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2533 {
2534 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2535 return perf_guest_cbs->get_guest_ip();
2536
2537 return regs->ip + code_segment_base(regs);
2538 }
2539
2540 unsigned long perf_misc_flags(struct pt_regs *regs)
2541 {
2542 int misc = 0;
2543
2544 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2545 if (perf_guest_cbs->is_user_mode())
2546 misc |= PERF_RECORD_MISC_GUEST_USER;
2547 else
2548 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2549 } else {
2550 if (user_mode(regs))
2551 misc |= PERF_RECORD_MISC_USER;
2552 else
2553 misc |= PERF_RECORD_MISC_KERNEL;
2554 }
2555
2556 if (regs->flags & PERF_EFLAGS_EXACT)
2557 misc |= PERF_RECORD_MISC_EXACT_IP;
2558
2559 return misc;
2560 }
2561
2562 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2563 {
2564 cap->version = x86_pmu.version;
2565 cap->num_counters_gp = x86_pmu.num_counters;
2566 cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2567 cap->bit_width_gp = x86_pmu.cntval_bits;
2568 cap->bit_width_fixed = x86_pmu.cntval_bits;
2569 cap->events_mask = (unsigned int)x86_pmu.events_maskl;
2570 cap->events_mask_len = x86_pmu.events_mask_len;
2571 }
2572 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);