]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/include/asm/kvm_host.h
KVM: x86: Use gpa_t for cr2/gpa to fix TDP support on 32-bit KVM
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / include / asm / kvm_host.h
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This header defines architecture specific interfaces, x86 version
5 *
6 * This work is licensed under the terms of the GNU GPL, version 2. See
7 * the COPYING file in the top-level directory.
8 *
9 */
10
11 #ifndef _ASM_X86_KVM_HOST_H
12 #define _ASM_X86_KVM_HOST_H
13
14 #include <linux/types.h>
15 #include <linux/mm.h>
16 #include <linux/mmu_notifier.h>
17 #include <linux/tracepoint.h>
18 #include <linux/cpumask.h>
19 #include <linux/irq_work.h>
20 #include <linux/irq.h>
21
22 #include <linux/kvm.h>
23 #include <linux/kvm_para.h>
24 #include <linux/kvm_types.h>
25 #include <linux/perf_event.h>
26 #include <linux/pvclock_gtod.h>
27 #include <linux/clocksource.h>
28 #include <linux/irqbypass.h>
29 #include <linux/hyperv.h>
30
31 #include <asm/apic.h>
32 #include <asm/pvclock-abi.h>
33 #include <asm/desc.h>
34 #include <asm/mtrr.h>
35 #include <asm/msr-index.h>
36 #include <asm/asm.h>
37 #include <asm/kvm_page_track.h>
38
39 #define KVM_MAX_VCPUS 288
40 #define KVM_SOFT_MAX_VCPUS 240
41 #define KVM_MAX_VCPU_ID 1023
42 #define KVM_USER_MEM_SLOTS 509
43 /* memory slots that are not exposed to userspace */
44 #define KVM_PRIVATE_MEM_SLOTS 3
45 #define KVM_MEM_SLOTS_NUM (KVM_USER_MEM_SLOTS + KVM_PRIVATE_MEM_SLOTS)
46
47 #define KVM_HALT_POLL_NS_DEFAULT 200000
48
49 #define KVM_IRQCHIP_NUM_PINS KVM_IOAPIC_NUM_PINS
50
51 /* x86-specific vcpu->requests bit members */
52 #define KVM_REQ_MIGRATE_TIMER KVM_ARCH_REQ(0)
53 #define KVM_REQ_REPORT_TPR_ACCESS KVM_ARCH_REQ(1)
54 #define KVM_REQ_TRIPLE_FAULT KVM_ARCH_REQ(2)
55 #define KVM_REQ_MMU_SYNC KVM_ARCH_REQ(3)
56 #define KVM_REQ_CLOCK_UPDATE KVM_ARCH_REQ(4)
57 #define KVM_REQ_EVENT KVM_ARCH_REQ(6)
58 #define KVM_REQ_APF_HALT KVM_ARCH_REQ(7)
59 #define KVM_REQ_STEAL_UPDATE KVM_ARCH_REQ(8)
60 #define KVM_REQ_NMI KVM_ARCH_REQ(9)
61 #define KVM_REQ_PMU KVM_ARCH_REQ(10)
62 #define KVM_REQ_PMI KVM_ARCH_REQ(11)
63 #define KVM_REQ_SMI KVM_ARCH_REQ(12)
64 #define KVM_REQ_MASTERCLOCK_UPDATE KVM_ARCH_REQ(13)
65 #define KVM_REQ_MCLOCK_INPROGRESS \
66 KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
67 #define KVM_REQ_SCAN_IOAPIC \
68 KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
69 #define KVM_REQ_GLOBAL_CLOCK_UPDATE KVM_ARCH_REQ(16)
70 #define KVM_REQ_APIC_PAGE_RELOAD \
71 KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
72 #define KVM_REQ_HV_CRASH KVM_ARCH_REQ(18)
73 #define KVM_REQ_IOAPIC_EOI_EXIT KVM_ARCH_REQ(19)
74 #define KVM_REQ_HV_RESET KVM_ARCH_REQ(20)
75 #define KVM_REQ_HV_EXIT KVM_ARCH_REQ(21)
76 #define KVM_REQ_HV_STIMER KVM_ARCH_REQ(22)
77
78 #define CR0_RESERVED_BITS \
79 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
80 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
81 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
82
83 #define CR3_PCID_INVD BIT_64(63)
84 #define CR4_RESERVED_BITS \
85 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
86 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
87 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \
88 | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \
89 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \
90 | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP))
91
92 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
93
94
95
96 #define INVALID_PAGE (~(hpa_t)0)
97 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
98
99 #define UNMAPPED_GVA (~(gpa_t)0)
100
101 /* KVM Hugepage definitions for x86 */
102 #define KVM_NR_PAGE_SIZES 3
103 #define KVM_HPAGE_GFN_SHIFT(x) (((x) - 1) * 9)
104 #define KVM_HPAGE_SHIFT(x) (PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x))
105 #define KVM_HPAGE_SIZE(x) (1UL << KVM_HPAGE_SHIFT(x))
106 #define KVM_HPAGE_MASK(x) (~(KVM_HPAGE_SIZE(x) - 1))
107 #define KVM_PAGES_PER_HPAGE(x) (KVM_HPAGE_SIZE(x) / PAGE_SIZE)
108
109 static inline gfn_t gfn_to_index(gfn_t gfn, gfn_t base_gfn, int level)
110 {
111 /* KVM_HPAGE_GFN_SHIFT(PT_PAGE_TABLE_LEVEL) must be 0. */
112 return (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
113 (base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
114 }
115
116 #define KVM_PERMILLE_MMU_PAGES 20
117 #define KVM_MIN_ALLOC_MMU_PAGES 64UL
118 #define KVM_MMU_HASH_SHIFT 12
119 #define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT)
120 #define KVM_MIN_FREE_MMU_PAGES 5
121 #define KVM_REFILL_PAGES 25
122 #define KVM_MAX_CPUID_ENTRIES 80
123 #define KVM_NR_FIXED_MTRR_REGION 88
124 #define KVM_NR_VAR_MTRR 8
125
126 #define ASYNC_PF_PER_VCPU 64
127
128 enum kvm_reg {
129 VCPU_REGS_RAX = 0,
130 VCPU_REGS_RCX = 1,
131 VCPU_REGS_RDX = 2,
132 VCPU_REGS_RBX = 3,
133 VCPU_REGS_RSP = 4,
134 VCPU_REGS_RBP = 5,
135 VCPU_REGS_RSI = 6,
136 VCPU_REGS_RDI = 7,
137 #ifdef CONFIG_X86_64
138 VCPU_REGS_R8 = 8,
139 VCPU_REGS_R9 = 9,
140 VCPU_REGS_R10 = 10,
141 VCPU_REGS_R11 = 11,
142 VCPU_REGS_R12 = 12,
143 VCPU_REGS_R13 = 13,
144 VCPU_REGS_R14 = 14,
145 VCPU_REGS_R15 = 15,
146 #endif
147 VCPU_REGS_RIP,
148 NR_VCPU_REGS
149 };
150
151 enum kvm_reg_ex {
152 VCPU_EXREG_PDPTR = NR_VCPU_REGS,
153 VCPU_EXREG_CR3,
154 VCPU_EXREG_RFLAGS,
155 VCPU_EXREG_SEGMENTS,
156 };
157
158 enum {
159 VCPU_SREG_ES,
160 VCPU_SREG_CS,
161 VCPU_SREG_SS,
162 VCPU_SREG_DS,
163 VCPU_SREG_FS,
164 VCPU_SREG_GS,
165 VCPU_SREG_TR,
166 VCPU_SREG_LDTR,
167 };
168
169 #include <asm/kvm_emulate.h>
170
171 #define KVM_NR_MEM_OBJS 40
172
173 #define KVM_NR_DB_REGS 4
174
175 #define DR6_BD (1 << 13)
176 #define DR6_BS (1 << 14)
177 #define DR6_BT (1 << 15)
178 #define DR6_RTM (1 << 16)
179 #define DR6_FIXED_1 0xfffe0ff0
180 #define DR6_INIT 0xffff0ff0
181 #define DR6_VOLATILE 0x0001e00f
182
183 #define DR7_BP_EN_MASK 0x000000ff
184 #define DR7_GE (1 << 9)
185 #define DR7_GD (1 << 13)
186 #define DR7_FIXED_1 0x00000400
187 #define DR7_VOLATILE 0xffff2bff
188
189 #define PFERR_PRESENT_BIT 0
190 #define PFERR_WRITE_BIT 1
191 #define PFERR_USER_BIT 2
192 #define PFERR_RSVD_BIT 3
193 #define PFERR_FETCH_BIT 4
194 #define PFERR_PK_BIT 5
195 #define PFERR_GUEST_FINAL_BIT 32
196 #define PFERR_GUEST_PAGE_BIT 33
197
198 #define PFERR_PRESENT_MASK (1U << PFERR_PRESENT_BIT)
199 #define PFERR_WRITE_MASK (1U << PFERR_WRITE_BIT)
200 #define PFERR_USER_MASK (1U << PFERR_USER_BIT)
201 #define PFERR_RSVD_MASK (1U << PFERR_RSVD_BIT)
202 #define PFERR_FETCH_MASK (1U << PFERR_FETCH_BIT)
203 #define PFERR_PK_MASK (1U << PFERR_PK_BIT)
204 #define PFERR_GUEST_FINAL_MASK (1ULL << PFERR_GUEST_FINAL_BIT)
205 #define PFERR_GUEST_PAGE_MASK (1ULL << PFERR_GUEST_PAGE_BIT)
206
207 #define PFERR_NESTED_GUEST_PAGE (PFERR_GUEST_PAGE_MASK | \
208 PFERR_WRITE_MASK | \
209 PFERR_PRESENT_MASK)
210
211 /*
212 * The mask used to denote special SPTEs, which can be either MMIO SPTEs or
213 * Access Tracking SPTEs. We use bit 62 instead of bit 63 to avoid conflicting
214 * with the SVE bit in EPT PTEs.
215 */
216 #define SPTE_SPECIAL_MASK (1ULL << 62)
217
218 /* apic attention bits */
219 #define KVM_APIC_CHECK_VAPIC 0
220 /*
221 * The following bit is set with PV-EOI, unset on EOI.
222 * We detect PV-EOI changes by guest by comparing
223 * this bit with PV-EOI in guest memory.
224 * See the implementation in apic_update_pv_eoi.
225 */
226 #define KVM_APIC_PV_EOI_PENDING 1
227
228 struct kvm_kernel_irq_routing_entry;
229
230 /*
231 * We don't want allocation failures within the mmu code, so we preallocate
232 * enough memory for a single page fault in a cache.
233 */
234 struct kvm_mmu_memory_cache {
235 int nobjs;
236 void *objects[KVM_NR_MEM_OBJS];
237 };
238
239 /*
240 * the pages used as guest page table on soft mmu are tracked by
241 * kvm_memory_slot.arch.gfn_track which is 16 bits, so the role bits used
242 * by indirect shadow page can not be more than 15 bits.
243 *
244 * Currently, we used 14 bits that are @level, @cr4_pae, @quadrant, @access,
245 * @nxe, @cr0_wp, @smep_andnot_wp and @smap_andnot_wp.
246 */
247 union kvm_mmu_page_role {
248 unsigned word;
249 struct {
250 unsigned level:4;
251 unsigned cr4_pae:1;
252 unsigned quadrant:2;
253 unsigned direct:1;
254 unsigned access:3;
255 unsigned invalid:1;
256 unsigned nxe:1;
257 unsigned cr0_wp:1;
258 unsigned smep_andnot_wp:1;
259 unsigned smap_andnot_wp:1;
260 unsigned ad_disabled:1;
261 unsigned :7;
262
263 /*
264 * This is left at the top of the word so that
265 * kvm_memslots_for_spte_role can extract it with a
266 * simple shift. While there is room, give it a whole
267 * byte so it is also faster to load it from memory.
268 */
269 unsigned smm:8;
270 };
271 };
272
273 struct kvm_rmap_head {
274 unsigned long val;
275 };
276
277 struct kvm_mmu_page {
278 struct list_head link;
279 struct hlist_node hash_link;
280 struct list_head lpage_disallowed_link;
281
282 bool lpage_disallowed; /* Can't be replaced by an equiv large page */
283
284 /*
285 * The following two entries are used to key the shadow page in the
286 * hash table.
287 */
288 gfn_t gfn;
289 union kvm_mmu_page_role role;
290
291 u64 *spt;
292 /* hold the gfn of each spte inside spt */
293 gfn_t *gfns;
294 bool unsync;
295 int root_count; /* Currently serving as active root */
296 unsigned int unsync_children;
297 struct kvm_rmap_head parent_ptes; /* rmap pointers to parent sptes */
298
299 /* The page is obsolete if mmu_valid_gen != kvm->arch.mmu_valid_gen. */
300 unsigned long mmu_valid_gen;
301
302 DECLARE_BITMAP(unsync_child_bitmap, 512);
303
304 #ifdef CONFIG_X86_32
305 /*
306 * Used out of the mmu-lock to avoid reading spte values while an
307 * update is in progress; see the comments in __get_spte_lockless().
308 */
309 int clear_spte_count;
310 #endif
311
312 /* Number of writes since the last time traversal visited this page. */
313 atomic_t write_flooding_count;
314 };
315
316 struct kvm_pio_request {
317 unsigned long count;
318 int in;
319 int port;
320 int size;
321 };
322
323 #define PT64_ROOT_MAX_LEVEL 5
324
325 struct rsvd_bits_validate {
326 u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL];
327 u64 bad_mt_xwr;
328 };
329
330 /*
331 * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit,
332 * and 2-level 32-bit). The kvm_mmu structure abstracts the details of the
333 * current mmu mode.
334 */
335 struct kvm_mmu {
336 void (*set_cr3)(struct kvm_vcpu *vcpu, unsigned long root);
337 unsigned long (*get_cr3)(struct kvm_vcpu *vcpu);
338 u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index);
339 int (*page_fault)(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u32 err,
340 bool prefault);
341 void (*inject_page_fault)(struct kvm_vcpu *vcpu,
342 struct x86_exception *fault);
343 gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, gpa_t gva_or_gpa,
344 u32 access, struct x86_exception *exception);
345 gpa_t (*translate_gpa)(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
346 struct x86_exception *exception);
347 int (*sync_page)(struct kvm_vcpu *vcpu,
348 struct kvm_mmu_page *sp);
349 void (*invlpg)(struct kvm_vcpu *vcpu, gva_t gva);
350 void (*update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
351 u64 *spte, const void *pte);
352 hpa_t root_hpa;
353 union kvm_mmu_page_role base_role;
354 u8 root_level;
355 u8 shadow_root_level;
356 u8 ept_ad;
357 bool direct_map;
358
359 /*
360 * Bitmap; bit set = permission fault
361 * Byte index: page fault error code [4:1]
362 * Bit index: pte permissions in ACC_* format
363 */
364 u8 permissions[16];
365
366 /*
367 * The pkru_mask indicates if protection key checks are needed. It
368 * consists of 16 domains indexed by page fault error code bits [4:1],
369 * with PFEC.RSVD replaced by ACC_USER_MASK from the page tables.
370 * Each domain has 2 bits which are ANDed with AD and WD from PKRU.
371 */
372 u32 pkru_mask;
373
374 u64 *pae_root;
375 u64 *lm_root;
376
377 /*
378 * check zero bits on shadow page table entries, these
379 * bits include not only hardware reserved bits but also
380 * the bits spte never used.
381 */
382 struct rsvd_bits_validate shadow_zero_check;
383
384 struct rsvd_bits_validate guest_rsvd_check;
385
386 /* Can have large pages at levels 2..last_nonleaf_level-1. */
387 u8 last_nonleaf_level;
388
389 bool nx;
390
391 u64 pdptrs[4]; /* pae */
392 };
393
394 enum pmc_type {
395 KVM_PMC_GP = 0,
396 KVM_PMC_FIXED,
397 };
398
399 struct kvm_pmc {
400 enum pmc_type type;
401 u8 idx;
402 u64 counter;
403 u64 eventsel;
404 struct perf_event *perf_event;
405 struct kvm_vcpu *vcpu;
406 };
407
408 struct kvm_pmu {
409 unsigned nr_arch_gp_counters;
410 unsigned nr_arch_fixed_counters;
411 unsigned available_event_types;
412 u64 fixed_ctr_ctrl;
413 u64 global_ctrl;
414 u64 global_status;
415 u64 global_ovf_ctrl;
416 u64 counter_bitmask[2];
417 u64 global_ctrl_mask;
418 u64 reserved_bits;
419 u8 version;
420 struct kvm_pmc gp_counters[INTEL_PMC_MAX_GENERIC];
421 struct kvm_pmc fixed_counters[INTEL_PMC_MAX_FIXED];
422 struct irq_work irq_work;
423 u64 reprogram_pmi;
424 };
425
426 struct kvm_pmu_ops;
427
428 enum {
429 KVM_DEBUGREG_BP_ENABLED = 1,
430 KVM_DEBUGREG_WONT_EXIT = 2,
431 KVM_DEBUGREG_RELOAD = 4,
432 };
433
434 struct kvm_mtrr_range {
435 u64 base;
436 u64 mask;
437 struct list_head node;
438 };
439
440 struct kvm_mtrr {
441 struct kvm_mtrr_range var_ranges[KVM_NR_VAR_MTRR];
442 mtrr_type fixed_ranges[KVM_NR_FIXED_MTRR_REGION];
443 u64 deftype;
444
445 struct list_head head;
446 };
447
448 /* Hyper-V SynIC timer */
449 struct kvm_vcpu_hv_stimer {
450 struct hrtimer timer;
451 int index;
452 u64 config;
453 u64 count;
454 u64 exp_time;
455 struct hv_message msg;
456 bool msg_pending;
457 };
458
459 /* Hyper-V synthetic interrupt controller (SynIC)*/
460 struct kvm_vcpu_hv_synic {
461 u64 version;
462 u64 control;
463 u64 msg_page;
464 u64 evt_page;
465 atomic64_t sint[HV_SYNIC_SINT_COUNT];
466 atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT];
467 DECLARE_BITMAP(auto_eoi_bitmap, 256);
468 DECLARE_BITMAP(vec_bitmap, 256);
469 bool active;
470 bool dont_zero_synic_pages;
471 };
472
473 /* Hyper-V per vcpu emulation context */
474 struct kvm_vcpu_hv {
475 u32 vp_index;
476 u64 hv_vapic;
477 s64 runtime_offset;
478 struct kvm_vcpu_hv_synic synic;
479 struct kvm_hyperv_exit exit;
480 struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT];
481 DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
482 };
483
484 struct kvm_vcpu_arch {
485 /*
486 * rip and regs accesses must go through
487 * kvm_{register,rip}_{read,write} functions.
488 */
489 unsigned long regs[NR_VCPU_REGS];
490 u32 regs_avail;
491 u32 regs_dirty;
492
493 unsigned long cr0;
494 unsigned long cr0_guest_owned_bits;
495 unsigned long cr2;
496 unsigned long cr3;
497 unsigned long cr4;
498 unsigned long cr4_guest_owned_bits;
499 unsigned long cr8;
500 u32 pkru;
501 u32 hflags;
502 u64 efer;
503 u64 apic_base;
504 struct kvm_lapic *apic; /* kernel irqchip context */
505 bool apicv_active;
506 DECLARE_BITMAP(ioapic_handled_vectors, 256);
507 unsigned long apic_attention;
508 int32_t apic_arb_prio;
509 int mp_state;
510 u64 ia32_misc_enable_msr;
511 u64 smbase;
512 bool tpr_access_reporting;
513 u64 ia32_xss;
514 u64 microcode_version;
515 u64 arch_capabilities;
516
517 /*
518 * Paging state of the vcpu
519 *
520 * If the vcpu runs in guest mode with two level paging this still saves
521 * the paging mode of the l1 guest. This context is always used to
522 * handle faults.
523 */
524 struct kvm_mmu mmu;
525
526 /*
527 * Paging state of an L2 guest (used for nested npt)
528 *
529 * This context will save all necessary information to walk page tables
530 * of the an L2 guest. This context is only initialized for page table
531 * walking and not for faulting since we never handle l2 page faults on
532 * the host.
533 */
534 struct kvm_mmu nested_mmu;
535
536 /*
537 * Pointer to the mmu context currently used for
538 * gva_to_gpa translations.
539 */
540 struct kvm_mmu *walk_mmu;
541
542 struct kvm_mmu_memory_cache mmu_pte_list_desc_cache;
543 struct kvm_mmu_memory_cache mmu_page_cache;
544 struct kvm_mmu_memory_cache mmu_page_header_cache;
545
546 /*
547 * QEMU userspace and the guest each have their own FPU state.
548 * In vcpu_run, we switch between the user and guest FPU contexts.
549 * While running a VCPU, the VCPU thread will have the guest FPU
550 * context.
551 *
552 * Note that while the PKRU state lives inside the fpu registers,
553 * it is switched out separately at VMENTER and VMEXIT time. The
554 * "guest_fpu" state here contains the guest FPU context, with the
555 * host PRKU bits.
556 */
557 struct fpu user_fpu;
558 struct fpu guest_fpu;
559
560 u64 xcr0;
561 u64 guest_supported_xcr0;
562 u32 guest_xstate_size;
563
564 struct kvm_pio_request pio;
565 void *pio_data;
566
567 u8 event_exit_inst_len;
568
569 struct kvm_queued_exception {
570 bool pending;
571 bool injected;
572 bool has_error_code;
573 u8 nr;
574 u32 error_code;
575 u8 nested_apf;
576 } exception;
577
578 struct kvm_queued_interrupt {
579 bool pending;
580 bool soft;
581 u8 nr;
582 } interrupt;
583
584 int halt_request; /* real mode on Intel only */
585
586 int cpuid_nent;
587 struct kvm_cpuid_entry2 cpuid_entries[KVM_MAX_CPUID_ENTRIES];
588
589 int maxphyaddr;
590
591 /* emulate context */
592
593 struct x86_emulate_ctxt emulate_ctxt;
594 bool emulate_regs_need_sync_to_vcpu;
595 bool emulate_regs_need_sync_from_vcpu;
596 int (*complete_userspace_io)(struct kvm_vcpu *vcpu);
597
598 gpa_t time;
599 struct pvclock_vcpu_time_info hv_clock;
600 unsigned int hw_tsc_khz;
601 struct gfn_to_hva_cache pv_time;
602 bool pv_time_enabled;
603 /* set guest stopped flag in pvclock flags field */
604 bool pvclock_set_guest_stopped_request;
605
606 struct {
607 u64 msr_val;
608 u64 last_steal;
609 struct gfn_to_hva_cache stime;
610 struct kvm_steal_time steal;
611 } st;
612
613 u64 tsc_offset;
614 u64 last_guest_tsc;
615 u64 last_host_tsc;
616 u64 tsc_offset_adjustment;
617 u64 this_tsc_nsec;
618 u64 this_tsc_write;
619 u64 this_tsc_generation;
620 bool tsc_catchup;
621 bool tsc_always_catchup;
622 s8 virtual_tsc_shift;
623 u32 virtual_tsc_mult;
624 u32 virtual_tsc_khz;
625 s64 ia32_tsc_adjust_msr;
626 u64 tsc_scaling_ratio;
627
628 atomic_t nmi_queued; /* unprocessed asynchronous NMIs */
629 unsigned nmi_pending; /* NMI queued after currently running handler */
630 bool nmi_injected; /* Trying to inject an NMI this entry */
631 bool smi_pending; /* SMI queued after currently running handler */
632
633 struct kvm_mtrr mtrr_state;
634 u64 pat;
635
636 unsigned switch_db_regs;
637 unsigned long db[KVM_NR_DB_REGS];
638 unsigned long dr6;
639 unsigned long dr7;
640 unsigned long eff_db[KVM_NR_DB_REGS];
641 unsigned long guest_debug_dr7;
642 u64 msr_platform_info;
643 u64 msr_misc_features_enables;
644
645 u64 mcg_cap;
646 u64 mcg_status;
647 u64 mcg_ctl;
648 u64 mcg_ext_ctl;
649 u64 *mce_banks;
650
651 /* Cache MMIO info */
652 u64 mmio_gva;
653 unsigned access;
654 gfn_t mmio_gfn;
655 u64 mmio_gen;
656
657 struct kvm_pmu pmu;
658
659 /* used for guest single stepping over the given code position */
660 unsigned long singlestep_rip;
661
662 struct kvm_vcpu_hv hyperv;
663
664 cpumask_var_t wbinvd_dirty_mask;
665
666 unsigned long last_retry_eip;
667 unsigned long last_retry_addr;
668
669 struct {
670 bool halted;
671 gfn_t gfns[roundup_pow_of_two(ASYNC_PF_PER_VCPU)];
672 struct gfn_to_hva_cache data;
673 u64 msr_val;
674 u32 id;
675 bool send_user_only;
676 u32 host_apf_reason;
677 unsigned long nested_apf_token;
678 bool delivery_as_pf_vmexit;
679 } apf;
680
681 /* OSVW MSRs (AMD only) */
682 struct {
683 u64 length;
684 u64 status;
685 } osvw;
686
687 struct {
688 u64 msr_val;
689 struct gfn_to_hva_cache data;
690 } pv_eoi;
691
692 /*
693 * Indicate whether the access faults on its page table in guest
694 * which is set when fix page fault and used to detect unhandeable
695 * instruction.
696 */
697 bool write_fault_to_shadow_pgtable;
698
699 /* set at EPT violation at this point */
700 unsigned long exit_qualification;
701
702 /* pv related host specific info */
703 struct {
704 bool pv_unhalted;
705 } pv;
706
707 int pending_ioapic_eoi;
708 int pending_external_vector;
709
710 /* GPA available */
711 bool gpa_available;
712 gpa_t gpa_val;
713
714 /* be preempted when it's in kernel-mode(cpl=0) */
715 bool preempted_in_kernel;
716
717 /* Flush the L1 Data cache for L1TF mitigation on VMENTER */
718 bool l1tf_flush_l1d;
719 };
720
721 struct kvm_lpage_info {
722 int disallow_lpage;
723 };
724
725 struct kvm_arch_memory_slot {
726 struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES];
727 struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1];
728 unsigned short *gfn_track[KVM_PAGE_TRACK_MAX];
729 };
730
731 /*
732 * We use as the mode the number of bits allocated in the LDR for the
733 * logical processor ID. It happens that these are all powers of two.
734 * This makes it is very easy to detect cases where the APICs are
735 * configured for multiple modes; in that case, we cannot use the map and
736 * hence cannot use kvm_irq_delivery_to_apic_fast either.
737 */
738 #define KVM_APIC_MODE_XAPIC_CLUSTER 4
739 #define KVM_APIC_MODE_XAPIC_FLAT 8
740 #define KVM_APIC_MODE_X2APIC 16
741
742 struct kvm_apic_map {
743 struct rcu_head rcu;
744 u8 mode;
745 u32 max_apic_id;
746 union {
747 struct kvm_lapic *xapic_flat_map[8];
748 struct kvm_lapic *xapic_cluster_map[16][4];
749 };
750 struct kvm_lapic *phys_map[];
751 };
752
753 /* Hyper-V emulation context */
754 struct kvm_hv {
755 struct mutex hv_lock;
756 u64 hv_guest_os_id;
757 u64 hv_hypercall;
758 u64 hv_tsc_page;
759
760 /* Hyper-v based guest crash (NT kernel bugcheck) parameters */
761 u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS];
762 u64 hv_crash_ctl;
763
764 HV_REFERENCE_TSC_PAGE tsc_ref;
765 };
766
767 enum kvm_irqchip_mode {
768 KVM_IRQCHIP_NONE,
769 KVM_IRQCHIP_KERNEL, /* created with KVM_CREATE_IRQCHIP */
770 KVM_IRQCHIP_SPLIT, /* created with KVM_CAP_SPLIT_IRQCHIP */
771 };
772
773 struct kvm_arch {
774 unsigned long n_used_mmu_pages;
775 unsigned long n_requested_mmu_pages;
776 unsigned long n_max_mmu_pages;
777 unsigned int indirect_shadow_pages;
778 unsigned long mmu_valid_gen;
779 struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES];
780 /*
781 * Hash table of struct kvm_mmu_page.
782 */
783 struct list_head active_mmu_pages;
784 struct list_head zapped_obsolete_pages;
785 struct list_head lpage_disallowed_mmu_pages;
786 struct kvm_page_track_notifier_node mmu_sp_tracker;
787 struct kvm_page_track_notifier_head track_notifier_head;
788
789 struct list_head assigned_dev_head;
790 struct iommu_domain *iommu_domain;
791 bool iommu_noncoherent;
792 #define __KVM_HAVE_ARCH_NONCOHERENT_DMA
793 atomic_t noncoherent_dma_count;
794 #define __KVM_HAVE_ARCH_ASSIGNED_DEVICE
795 atomic_t assigned_device_count;
796 struct kvm_pic *vpic;
797 struct kvm_ioapic *vioapic;
798 struct kvm_pit *vpit;
799 atomic_t vapics_in_nmi_mode;
800 struct mutex apic_map_lock;
801 struct kvm_apic_map *apic_map;
802
803 unsigned int tss_addr;
804 bool apic_access_page_done;
805
806 gpa_t wall_clock;
807
808 bool ept_identity_pagetable_done;
809 gpa_t ept_identity_map_addr;
810
811 unsigned long irq_sources_bitmap;
812 s64 kvmclock_offset;
813 raw_spinlock_t tsc_write_lock;
814 u64 last_tsc_nsec;
815 u64 last_tsc_write;
816 u32 last_tsc_khz;
817 u64 cur_tsc_nsec;
818 u64 cur_tsc_write;
819 u64 cur_tsc_offset;
820 u64 cur_tsc_generation;
821 int nr_vcpus_matched_tsc;
822
823 spinlock_t pvclock_gtod_sync_lock;
824 bool use_master_clock;
825 u64 master_kernel_ns;
826 u64 master_cycle_now;
827 struct delayed_work kvmclock_update_work;
828 struct delayed_work kvmclock_sync_work;
829
830 struct kvm_xen_hvm_config xen_hvm_config;
831
832 /* reads protected by irq_srcu, writes by irq_lock */
833 struct hlist_head mask_notifier_list;
834
835 struct kvm_hv hyperv;
836
837 #ifdef CONFIG_KVM_MMU_AUDIT
838 int audit_point;
839 #endif
840
841 bool backwards_tsc_observed;
842 bool boot_vcpu_runs_old_kvmclock;
843 u32 bsp_vcpu_id;
844
845 u64 disabled_quirks;
846
847 enum kvm_irqchip_mode irqchip_mode;
848 u8 nr_reserved_ioapic_pins;
849
850 bool disabled_lapic_found;
851
852 /* Struct members for AVIC */
853 u32 avic_vm_id;
854 u32 ldr_mode;
855 struct page *avic_logical_id_table_page;
856 struct page *avic_physical_id_table_page;
857 struct hlist_node hnode;
858
859 bool x2apic_format;
860 bool x2apic_broadcast_quirk_disabled;
861
862 struct task_struct *nx_lpage_recovery_thread;
863 };
864
865 struct kvm_vm_stat {
866 ulong mmu_shadow_zapped;
867 ulong mmu_pte_write;
868 ulong mmu_pte_updated;
869 ulong mmu_pde_zapped;
870 ulong mmu_flooded;
871 ulong mmu_recycled;
872 ulong mmu_cache_miss;
873 ulong mmu_unsync;
874 ulong remote_tlb_flush;
875 ulong lpages;
876 ulong nx_lpage_splits;
877 ulong max_mmu_page_hash_collisions;
878 };
879
880 struct kvm_vcpu_stat {
881 u64 pf_fixed;
882 u64 pf_guest;
883 u64 tlb_flush;
884 u64 invlpg;
885
886 u64 exits;
887 u64 io_exits;
888 u64 mmio_exits;
889 u64 signal_exits;
890 u64 irq_window_exits;
891 u64 nmi_window_exits;
892 u64 l1d_flush;
893 u64 halt_exits;
894 u64 halt_successful_poll;
895 u64 halt_attempted_poll;
896 u64 halt_poll_invalid;
897 u64 halt_wakeup;
898 u64 request_irq_exits;
899 u64 irq_exits;
900 u64 host_state_reload;
901 u64 efer_reload;
902 u64 fpu_reload;
903 u64 insn_emulation;
904 u64 insn_emulation_fail;
905 u64 hypercalls;
906 u64 irq_injections;
907 u64 nmi_injections;
908 u64 req_event;
909 };
910
911 struct x86_instruction_info;
912
913 struct msr_data {
914 bool host_initiated;
915 u32 index;
916 u64 data;
917 };
918
919 struct kvm_lapic_irq {
920 u32 vector;
921 u16 delivery_mode;
922 u16 dest_mode;
923 bool level;
924 u16 trig_mode;
925 u32 shorthand;
926 u32 dest_id;
927 bool msi_redir_hint;
928 };
929
930 struct kvm_x86_ops {
931 int (*cpu_has_kvm_support)(void); /* __init */
932 int (*disabled_by_bios)(void); /* __init */
933 int (*hardware_enable)(void);
934 void (*hardware_disable)(void);
935 void (*check_processor_compatibility)(void *rtn);
936 int (*hardware_setup)(void); /* __init */
937 void (*hardware_unsetup)(void); /* __exit */
938 bool (*cpu_has_accelerated_tpr)(void);
939 bool (*has_emulated_msr)(int index);
940 void (*cpuid_update)(struct kvm_vcpu *vcpu);
941
942 int (*vm_init)(struct kvm *kvm);
943 void (*vm_destroy)(struct kvm *kvm);
944
945 /* Create, but do not attach this VCPU */
946 struct kvm_vcpu *(*vcpu_create)(struct kvm *kvm, unsigned id);
947 void (*vcpu_free)(struct kvm_vcpu *vcpu);
948 void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event);
949
950 void (*prepare_guest_switch)(struct kvm_vcpu *vcpu);
951 void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu);
952 void (*vcpu_put)(struct kvm_vcpu *vcpu);
953
954 void (*update_bp_intercept)(struct kvm_vcpu *vcpu);
955 int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
956 int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
957 u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg);
958 void (*get_segment)(struct kvm_vcpu *vcpu,
959 struct kvm_segment *var, int seg);
960 int (*get_cpl)(struct kvm_vcpu *vcpu);
961 void (*set_segment)(struct kvm_vcpu *vcpu,
962 struct kvm_segment *var, int seg);
963 void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l);
964 void (*decache_cr0_guest_bits)(struct kvm_vcpu *vcpu);
965 void (*decache_cr3)(struct kvm_vcpu *vcpu);
966 void (*decache_cr4_guest_bits)(struct kvm_vcpu *vcpu);
967 void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
968 void (*set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3);
969 int (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
970 void (*set_efer)(struct kvm_vcpu *vcpu, u64 efer);
971 void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
972 void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
973 void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
974 void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
975 u64 (*get_dr6)(struct kvm_vcpu *vcpu);
976 void (*set_dr6)(struct kvm_vcpu *vcpu, unsigned long value);
977 void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu);
978 void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value);
979 void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg);
980 unsigned long (*get_rflags)(struct kvm_vcpu *vcpu);
981 void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags);
982
983 void (*tlb_flush)(struct kvm_vcpu *vcpu, bool invalidate_gpa);
984
985 void (*run)(struct kvm_vcpu *vcpu);
986 int (*handle_exit)(struct kvm_vcpu *vcpu);
987 void (*skip_emulated_instruction)(struct kvm_vcpu *vcpu);
988 void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask);
989 u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu);
990 void (*patch_hypercall)(struct kvm_vcpu *vcpu,
991 unsigned char *hypercall_addr);
992 void (*set_irq)(struct kvm_vcpu *vcpu);
993 void (*set_nmi)(struct kvm_vcpu *vcpu);
994 void (*queue_exception)(struct kvm_vcpu *vcpu);
995 void (*cancel_injection)(struct kvm_vcpu *vcpu);
996 int (*interrupt_allowed)(struct kvm_vcpu *vcpu);
997 int (*nmi_allowed)(struct kvm_vcpu *vcpu);
998 bool (*get_nmi_mask)(struct kvm_vcpu *vcpu);
999 void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked);
1000 void (*enable_nmi_window)(struct kvm_vcpu *vcpu);
1001 void (*enable_irq_window)(struct kvm_vcpu *vcpu);
1002 void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr);
1003 bool (*get_enable_apicv)(struct kvm_vcpu *vcpu);
1004 void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu);
1005 void (*hwapic_irr_update)(struct kvm_vcpu *vcpu, int max_irr);
1006 void (*hwapic_isr_update)(struct kvm_vcpu *vcpu, int isr);
1007 void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap);
1008 void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu);
1009 void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu, hpa_t hpa);
1010 void (*deliver_posted_interrupt)(struct kvm_vcpu *vcpu, int vector);
1011 int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu);
1012 int (*set_tss_addr)(struct kvm *kvm, unsigned int addr);
1013 int (*get_tdp_level)(struct kvm_vcpu *vcpu);
1014 u64 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio);
1015 int (*get_lpage_level)(void);
1016 bool (*rdtscp_supported)(void);
1017 bool (*invpcid_supported)(void);
1018
1019 void (*set_tdp_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3);
1020
1021 void (*set_supported_cpuid)(u32 func, struct kvm_cpuid_entry2 *entry);
1022
1023 bool (*has_wbinvd_exit)(void);
1024
1025 u64 (*read_l1_tsc_offset)(struct kvm_vcpu *vcpu);
1026 /* Returns actual tsc_offset set in active VMCS */
1027 u64 (*write_l1_tsc_offset)(struct kvm_vcpu *vcpu, u64 offset);
1028
1029 void (*get_exit_info)(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2);
1030
1031 int (*check_intercept)(struct kvm_vcpu *vcpu,
1032 struct x86_instruction_info *info,
1033 enum x86_intercept_stage stage);
1034 void (*handle_external_intr)(struct kvm_vcpu *vcpu);
1035 bool (*mpx_supported)(void);
1036 bool (*xsaves_supported)(void);
1037
1038 int (*check_nested_events)(struct kvm_vcpu *vcpu, bool external_intr);
1039
1040 void (*sched_in)(struct kvm_vcpu *kvm, int cpu);
1041
1042 /*
1043 * Arch-specific dirty logging hooks. These hooks are only supposed to
1044 * be valid if the specific arch has hardware-accelerated dirty logging
1045 * mechanism. Currently only for PML on VMX.
1046 *
1047 * - slot_enable_log_dirty:
1048 * called when enabling log dirty mode for the slot.
1049 * - slot_disable_log_dirty:
1050 * called when disabling log dirty mode for the slot.
1051 * also called when slot is created with log dirty disabled.
1052 * - flush_log_dirty:
1053 * called before reporting dirty_bitmap to userspace.
1054 * - enable_log_dirty_pt_masked:
1055 * called when reenabling log dirty for the GFNs in the mask after
1056 * corresponding bits are cleared in slot->dirty_bitmap.
1057 */
1058 void (*slot_enable_log_dirty)(struct kvm *kvm,
1059 struct kvm_memory_slot *slot);
1060 void (*slot_disable_log_dirty)(struct kvm *kvm,
1061 struct kvm_memory_slot *slot);
1062 void (*flush_log_dirty)(struct kvm *kvm);
1063 void (*enable_log_dirty_pt_masked)(struct kvm *kvm,
1064 struct kvm_memory_slot *slot,
1065 gfn_t offset, unsigned long mask);
1066 int (*write_log_dirty)(struct kvm_vcpu *vcpu);
1067
1068 /* pmu operations of sub-arch */
1069 const struct kvm_pmu_ops *pmu_ops;
1070
1071 /*
1072 * Architecture specific hooks for vCPU blocking due to
1073 * HLT instruction.
1074 * Returns for .pre_block():
1075 * - 0 means continue to block the vCPU.
1076 * - 1 means we cannot block the vCPU since some event
1077 * happens during this period, such as, 'ON' bit in
1078 * posted-interrupts descriptor is set.
1079 */
1080 int (*pre_block)(struct kvm_vcpu *vcpu);
1081 void (*post_block)(struct kvm_vcpu *vcpu);
1082
1083 void (*vcpu_blocking)(struct kvm_vcpu *vcpu);
1084 void (*vcpu_unblocking)(struct kvm_vcpu *vcpu);
1085
1086 int (*update_pi_irte)(struct kvm *kvm, unsigned int host_irq,
1087 uint32_t guest_irq, bool set);
1088 void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu);
1089 bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu);
1090
1091 int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc);
1092 void (*cancel_hv_timer)(struct kvm_vcpu *vcpu);
1093
1094 void (*setup_mce)(struct kvm_vcpu *vcpu);
1095
1096 int (*smi_allowed)(struct kvm_vcpu *vcpu);
1097 int (*pre_enter_smm)(struct kvm_vcpu *vcpu, char *smstate);
1098 int (*pre_leave_smm)(struct kvm_vcpu *vcpu, u64 smbase);
1099 int (*enable_smi_window)(struct kvm_vcpu *vcpu);
1100
1101 int (*get_msr_feature)(struct kvm_msr_entry *entry);
1102 };
1103
1104 struct kvm_arch_async_pf {
1105 u32 token;
1106 gfn_t gfn;
1107 unsigned long cr3;
1108 bool direct_map;
1109 };
1110
1111 extern struct kvm_x86_ops *kvm_x86_ops;
1112
1113 int kvm_mmu_module_init(void);
1114 void kvm_mmu_module_exit(void);
1115
1116 void kvm_mmu_destroy(struct kvm_vcpu *vcpu);
1117 int kvm_mmu_create(struct kvm_vcpu *vcpu);
1118 void kvm_mmu_setup(struct kvm_vcpu *vcpu);
1119 void kvm_mmu_init_vm(struct kvm *kvm);
1120 void kvm_mmu_uninit_vm(struct kvm *kvm);
1121 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
1122 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
1123 u64 acc_track_mask, u64 me_mask);
1124
1125 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu);
1126 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
1127 struct kvm_memory_slot *memslot);
1128 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
1129 const struct kvm_memory_slot *memslot);
1130 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
1131 struct kvm_memory_slot *memslot);
1132 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
1133 struct kvm_memory_slot *memslot);
1134 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
1135 struct kvm_memory_slot *memslot);
1136 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1137 struct kvm_memory_slot *slot,
1138 gfn_t gfn_offset, unsigned long mask);
1139 void kvm_mmu_zap_all(struct kvm *kvm);
1140 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen);
1141 unsigned long kvm_mmu_calculate_mmu_pages(struct kvm *kvm);
1142 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages);
1143
1144 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3);
1145 bool pdptrs_changed(struct kvm_vcpu *vcpu);
1146
1147 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1148 const void *val, int bytes);
1149
1150 struct kvm_irq_mask_notifier {
1151 void (*func)(struct kvm_irq_mask_notifier *kimn, bool masked);
1152 int irq;
1153 struct hlist_node link;
1154 };
1155
1156 void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq,
1157 struct kvm_irq_mask_notifier *kimn);
1158 void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq,
1159 struct kvm_irq_mask_notifier *kimn);
1160 void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin,
1161 bool mask);
1162
1163 extern bool tdp_enabled;
1164
1165 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu);
1166
1167 /* control of guest tsc rate supported? */
1168 extern bool kvm_has_tsc_control;
1169 /* maximum supported tsc_khz for guests */
1170 extern u32 kvm_max_guest_tsc_khz;
1171 /* number of bits of the fractional part of the TSC scaling ratio */
1172 extern u8 kvm_tsc_scaling_ratio_frac_bits;
1173 /* maximum allowed value of TSC scaling ratio */
1174 extern u64 kvm_max_tsc_scaling_ratio;
1175 /* 1ull << kvm_tsc_scaling_ratio_frac_bits */
1176 extern u64 kvm_default_tsc_scaling_ratio;
1177
1178 extern u64 kvm_mce_cap_supported;
1179
1180 enum emulation_result {
1181 EMULATE_DONE, /* no further processing */
1182 EMULATE_USER_EXIT, /* kvm_run ready for userspace exit */
1183 EMULATE_FAIL, /* can't emulate this instruction */
1184 };
1185
1186 #define EMULTYPE_NO_DECODE (1 << 0)
1187 #define EMULTYPE_TRAP_UD (1 << 1)
1188 #define EMULTYPE_SKIP (1 << 2)
1189 #define EMULTYPE_RETRY (1 << 3)
1190 #define EMULTYPE_NO_REEXECUTE (1 << 4)
1191 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
1192 int emulation_type, void *insn, int insn_len);
1193
1194 static inline int emulate_instruction(struct kvm_vcpu *vcpu,
1195 int emulation_type)
1196 {
1197 return x86_emulate_instruction(vcpu, 0,
1198 emulation_type | EMULTYPE_NO_REEXECUTE, NULL, 0);
1199 }
1200
1201 static inline int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
1202 void *insn, int insn_len)
1203 {
1204 return x86_emulate_instruction(vcpu, 0, EMULTYPE_NO_REEXECUTE,
1205 insn, insn_len);
1206 }
1207
1208 void kvm_enable_efer_bits(u64);
1209 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer);
1210 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr);
1211 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr);
1212
1213 struct x86_emulate_ctxt;
1214
1215 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port);
1216 int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, unsigned short port);
1217 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu);
1218 int kvm_emulate_halt(struct kvm_vcpu *vcpu);
1219 int kvm_vcpu_halt(struct kvm_vcpu *vcpu);
1220 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu);
1221
1222 void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
1223 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg);
1224 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector);
1225
1226 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
1227 int reason, bool has_error_code, u32 error_code);
1228
1229 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
1230 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
1231 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1232 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8);
1233 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val);
1234 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val);
1235 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu);
1236 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw);
1237 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l);
1238 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr);
1239
1240 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
1241 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
1242
1243 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu);
1244 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
1245 bool kvm_rdpmc(struct kvm_vcpu *vcpu);
1246
1247 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr);
1248 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
1249 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr);
1250 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
1251 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault);
1252 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
1253 gfn_t gfn, void *data, int offset, int len,
1254 u32 access);
1255 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl);
1256 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr);
1257
1258 static inline int __kvm_irq_line_state(unsigned long *irq_state,
1259 int irq_source_id, int level)
1260 {
1261 /* Logical OR for level trig interrupt */
1262 if (level)
1263 __set_bit(irq_source_id, irq_state);
1264 else
1265 __clear_bit(irq_source_id, irq_state);
1266
1267 return !!(*irq_state);
1268 }
1269
1270 int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level);
1271 void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id);
1272
1273 void kvm_inject_nmi(struct kvm_vcpu *vcpu);
1274
1275 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn);
1276 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva);
1277 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu);
1278 int kvm_mmu_load(struct kvm_vcpu *vcpu);
1279 void kvm_mmu_unload(struct kvm_vcpu *vcpu);
1280 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu);
1281 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
1282 struct x86_exception *exception);
1283 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
1284 struct x86_exception *exception);
1285 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
1286 struct x86_exception *exception);
1287 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
1288 struct x86_exception *exception);
1289 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
1290 struct x86_exception *exception);
1291
1292 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu);
1293
1294 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu);
1295
1296 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
1297 void *insn, int insn_len);
1298 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva);
1299 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu);
1300
1301 void kvm_enable_tdp(void);
1302 void kvm_disable_tdp(void);
1303
1304 static inline gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
1305 struct x86_exception *exception)
1306 {
1307 return gpa;
1308 }
1309
1310 static inline struct kvm_mmu_page *page_header(hpa_t shadow_page)
1311 {
1312 struct page *page = pfn_to_page(shadow_page >> PAGE_SHIFT);
1313
1314 return (struct kvm_mmu_page *)page_private(page);
1315 }
1316
1317 static inline u16 kvm_read_ldt(void)
1318 {
1319 u16 ldt;
1320 asm("sldt %0" : "=g"(ldt));
1321 return ldt;
1322 }
1323
1324 static inline void kvm_load_ldt(u16 sel)
1325 {
1326 asm("lldt %0" : : "rm"(sel));
1327 }
1328
1329 #ifdef CONFIG_X86_64
1330 static inline unsigned long read_msr(unsigned long msr)
1331 {
1332 u64 value;
1333
1334 rdmsrl(msr, value);
1335 return value;
1336 }
1337 #endif
1338
1339 static inline u32 get_rdx_init_val(void)
1340 {
1341 return 0x600; /* P6 family */
1342 }
1343
1344 static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code)
1345 {
1346 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
1347 }
1348
1349 #define TSS_IOPB_BASE_OFFSET 0x66
1350 #define TSS_BASE_SIZE 0x68
1351 #define TSS_IOPB_SIZE (65536 / 8)
1352 #define TSS_REDIRECTION_SIZE (256 / 8)
1353 #define RMODE_TSS_SIZE \
1354 (TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1)
1355
1356 enum {
1357 TASK_SWITCH_CALL = 0,
1358 TASK_SWITCH_IRET = 1,
1359 TASK_SWITCH_JMP = 2,
1360 TASK_SWITCH_GATE = 3,
1361 };
1362
1363 #define HF_GIF_MASK (1 << 0)
1364 #define HF_HIF_MASK (1 << 1)
1365 #define HF_VINTR_MASK (1 << 2)
1366 #define HF_NMI_MASK (1 << 3)
1367 #define HF_IRET_MASK (1 << 4)
1368 #define HF_GUEST_MASK (1 << 5) /* VCPU is in guest-mode */
1369 #define HF_SMM_MASK (1 << 6)
1370 #define HF_SMM_INSIDE_NMI_MASK (1 << 7)
1371
1372 #define __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
1373 #define KVM_ADDRESS_SPACE_NUM 2
1374
1375 #define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0)
1376 #define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm)
1377
1378 asmlinkage void __noreturn kvm_spurious_fault(void);
1379
1380 /*
1381 * Hardware virtualization extension instructions may fault if a
1382 * reboot turns off virtualization while processes are running.
1383 * Usually after catching the fault we just panic; during reboot
1384 * instead the instruction is ignored.
1385 */
1386 #define ____kvm_handle_fault_on_reboot(insn, cleanup_insn) \
1387 "666: \n\t" \
1388 insn "\n\t" \
1389 "jmp 668f \n\t" \
1390 "667: \n\t" \
1391 "call kvm_spurious_fault \n\t" \
1392 "668: \n\t" \
1393 ".pushsection .fixup, \"ax\" \n\t" \
1394 "700: \n\t" \
1395 cleanup_insn "\n\t" \
1396 "cmpb $0, kvm_rebooting\n\t" \
1397 "je 667b \n\t" \
1398 "jmp 668b \n\t" \
1399 ".popsection \n\t" \
1400 _ASM_EXTABLE(666b, 700b)
1401
1402 #define __kvm_handle_fault_on_reboot(insn) \
1403 ____kvm_handle_fault_on_reboot(insn, "")
1404
1405 #define KVM_ARCH_WANT_MMU_NOTIFIER
1406 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva);
1407 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end);
1408 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end);
1409 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva);
1410 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte);
1411 int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v);
1412 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu);
1413 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu);
1414 int kvm_cpu_get_interrupt(struct kvm_vcpu *v);
1415 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event);
1416 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu);
1417
1418 u64 kvm_get_arch_capabilities(void);
1419 void kvm_define_shared_msr(unsigned index, u32 msr);
1420 int kvm_set_shared_msr(unsigned index, u64 val, u64 mask);
1421
1422 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc);
1423 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc);
1424
1425 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu);
1426 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip);
1427
1428 void kvm_make_mclock_inprogress_request(struct kvm *kvm);
1429 void kvm_make_scan_ioapic_request(struct kvm *kvm);
1430
1431 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
1432 struct kvm_async_pf *work);
1433 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
1434 struct kvm_async_pf *work);
1435 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
1436 struct kvm_async_pf *work);
1437 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu);
1438 extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1439
1440 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu);
1441 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err);
1442
1443 int kvm_is_in_guest(void);
1444
1445 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size);
1446 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size);
1447 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu);
1448 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu);
1449
1450 bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq,
1451 struct kvm_vcpu **dest_vcpu);
1452
1453 void kvm_set_msi_irq(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
1454 struct kvm_lapic_irq *irq);
1455
1456 static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
1457 {
1458 if (kvm_x86_ops->vcpu_blocking)
1459 kvm_x86_ops->vcpu_blocking(vcpu);
1460 }
1461
1462 static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
1463 {
1464 if (kvm_x86_ops->vcpu_unblocking)
1465 kvm_x86_ops->vcpu_unblocking(vcpu);
1466 }
1467
1468 static inline void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu) {}
1469
1470 static inline int kvm_cpu_get_apicid(int mps_cpu)
1471 {
1472 #ifdef CONFIG_X86_LOCAL_APIC
1473 return default_cpu_present_to_apicid(mps_cpu);
1474 #else
1475 WARN_ON_ONCE(1);
1476 return BAD_APICID;
1477 #endif
1478 }
1479
1480 #define put_smstate(type, buf, offset, val) \
1481 *(type *)((buf) + (offset) - 0x7e00) = val
1482
1483 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
1484 unsigned long start, unsigned long end);
1485
1486 #endif /* _ASM_X86_KVM_HOST_H */