]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kernel/cpu/common.c
x86/speculation: Consolidate CPU whitelists
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kernel / cpu / common.c
1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/export.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/ctype.h>
9 #include <linux/delay.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/clock.h>
12 #include <linux/sched/task.h>
13 #include <linux/init.h>
14 #include <linux/kprobes.h>
15 #include <linux/kgdb.h>
16 #include <linux/smp.h>
17 #include <linux/io.h>
18 #include <linux/syscore_ops.h>
19
20 #include <asm/stackprotector.h>
21 #include <asm/perf_event.h>
22 #include <asm/mmu_context.h>
23 #include <asm/archrandom.h>
24 #include <asm/hypervisor.h>
25 #include <asm/processor.h>
26 #include <asm/tlbflush.h>
27 #include <asm/debugreg.h>
28 #include <asm/sections.h>
29 #include <asm/vsyscall.h>
30 #include <linux/topology.h>
31 #include <linux/cpumask.h>
32 #include <asm/pgtable.h>
33 #include <linux/atomic.h>
34 #include <asm/proto.h>
35 #include <asm/setup.h>
36 #include <asm/apic.h>
37 #include <asm/desc.h>
38 #include <asm/fpu/internal.h>
39 #include <asm/mtrr.h>
40 #include <asm/hwcap2.h>
41 #include <linux/numa.h>
42 #include <asm/asm.h>
43 #include <asm/bugs.h>
44 #include <asm/cpu.h>
45 #include <asm/mce.h>
46 #include <asm/msr.h>
47 #include <asm/pat.h>
48 #include <asm/microcode.h>
49 #include <asm/microcode_intel.h>
50 #include <asm/intel-family.h>
51 #include <asm/cpu_device_id.h>
52
53 #ifdef CONFIG_X86_LOCAL_APIC
54 #include <asm/uv/uv.h>
55 #endif
56
57 #include "cpu.h"
58
59 u32 elf_hwcap2 __read_mostly;
60
61 /* all of these masks are initialized in setup_cpu_local_masks() */
62 cpumask_var_t cpu_initialized_mask;
63 cpumask_var_t cpu_callout_mask;
64 cpumask_var_t cpu_callin_mask;
65
66 /* representing cpus for which sibling maps can be computed */
67 cpumask_var_t cpu_sibling_setup_mask;
68
69 /* Number of siblings per CPU package */
70 int smp_num_siblings = 1;
71 EXPORT_SYMBOL(smp_num_siblings);
72
73 /* Last level cache ID of each logical CPU */
74 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
75
76 /* correctly size the local cpu masks */
77 void __init setup_cpu_local_masks(void)
78 {
79 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
80 alloc_bootmem_cpumask_var(&cpu_callin_mask);
81 alloc_bootmem_cpumask_var(&cpu_callout_mask);
82 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
83 }
84
85 static void default_init(struct cpuinfo_x86 *c)
86 {
87 #ifdef CONFIG_X86_64
88 cpu_detect_cache_sizes(c);
89 #else
90 /* Not much we can do here... */
91 /* Check if at least it has cpuid */
92 if (c->cpuid_level == -1) {
93 /* No cpuid. It must be an ancient CPU */
94 if (c->x86 == 4)
95 strcpy(c->x86_model_id, "486");
96 else if (c->x86 == 3)
97 strcpy(c->x86_model_id, "386");
98 }
99 #endif
100 }
101
102 static const struct cpu_dev default_cpu = {
103 .c_init = default_init,
104 .c_vendor = "Unknown",
105 .c_x86_vendor = X86_VENDOR_UNKNOWN,
106 };
107
108 static const struct cpu_dev *this_cpu = &default_cpu;
109
110 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
111 #ifdef CONFIG_X86_64
112 /*
113 * We need valid kernel segments for data and code in long mode too
114 * IRET will check the segment types kkeil 2000/10/28
115 * Also sysret mandates a special GDT layout
116 *
117 * TLS descriptors are currently at a different place compared to i386.
118 * Hopefully nobody expects them at a fixed place (Wine?)
119 */
120 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
121 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
122 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
123 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
124 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
125 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
126 #else
127 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
128 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
129 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
130 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
131 /*
132 * Segments used for calling PnP BIOS have byte granularity.
133 * They code segments and data segments have fixed 64k limits,
134 * the transfer segment sizes are set at run time.
135 */
136 /* 32-bit code */
137 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
138 /* 16-bit code */
139 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
140 /* 16-bit data */
141 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
142 /* 16-bit data */
143 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
144 /* 16-bit data */
145 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
146 /*
147 * The APM segments have byte granularity and their bases
148 * are set at run time. All have 64k limits.
149 */
150 /* 32-bit code */
151 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
152 /* 16-bit code */
153 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
154 /* data */
155 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
156
157 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
158 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
159 GDT_STACK_CANARY_INIT
160 #endif
161 } };
162 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
163
164 static int __init x86_mpx_setup(char *s)
165 {
166 /* require an exact match without trailing characters */
167 if (strlen(s))
168 return 0;
169
170 /* do not emit a message if the feature is not present */
171 if (!boot_cpu_has(X86_FEATURE_MPX))
172 return 1;
173
174 setup_clear_cpu_cap(X86_FEATURE_MPX);
175 pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
176 return 1;
177 }
178 __setup("nompx", x86_mpx_setup);
179
180 #ifdef CONFIG_X86_64
181 static int __init x86_nopcid_setup(char *s)
182 {
183 /* nopcid doesn't accept parameters */
184 if (s)
185 return -EINVAL;
186
187 /* do not emit a message if the feature is not present */
188 if (!boot_cpu_has(X86_FEATURE_PCID))
189 return 0;
190
191 setup_clear_cpu_cap(X86_FEATURE_PCID);
192 pr_info("nopcid: PCID feature disabled\n");
193 return 0;
194 }
195 early_param("nopcid", x86_nopcid_setup);
196 #endif
197
198 static int __init x86_noinvpcid_setup(char *s)
199 {
200 /* noinvpcid doesn't accept parameters */
201 if (s)
202 return -EINVAL;
203
204 /* do not emit a message if the feature is not present */
205 if (!boot_cpu_has(X86_FEATURE_INVPCID))
206 return 0;
207
208 setup_clear_cpu_cap(X86_FEATURE_INVPCID);
209 pr_info("noinvpcid: INVPCID feature disabled\n");
210 return 0;
211 }
212 early_param("noinvpcid", x86_noinvpcid_setup);
213
214 #ifdef CONFIG_X86_32
215 static int cachesize_override = -1;
216 static int disable_x86_serial_nr = 1;
217
218 static int __init cachesize_setup(char *str)
219 {
220 get_option(&str, &cachesize_override);
221 return 1;
222 }
223 __setup("cachesize=", cachesize_setup);
224
225 static int __init x86_sep_setup(char *s)
226 {
227 setup_clear_cpu_cap(X86_FEATURE_SEP);
228 return 1;
229 }
230 __setup("nosep", x86_sep_setup);
231
232 /* Standard macro to see if a specific flag is changeable */
233 static inline int flag_is_changeable_p(u32 flag)
234 {
235 u32 f1, f2;
236
237 /*
238 * Cyrix and IDT cpus allow disabling of CPUID
239 * so the code below may return different results
240 * when it is executed before and after enabling
241 * the CPUID. Add "volatile" to not allow gcc to
242 * optimize the subsequent calls to this function.
243 */
244 asm volatile ("pushfl \n\t"
245 "pushfl \n\t"
246 "popl %0 \n\t"
247 "movl %0, %1 \n\t"
248 "xorl %2, %0 \n\t"
249 "pushl %0 \n\t"
250 "popfl \n\t"
251 "pushfl \n\t"
252 "popl %0 \n\t"
253 "popfl \n\t"
254
255 : "=&r" (f1), "=&r" (f2)
256 : "ir" (flag));
257
258 return ((f1^f2) & flag) != 0;
259 }
260
261 /* Probe for the CPUID instruction */
262 int have_cpuid_p(void)
263 {
264 return flag_is_changeable_p(X86_EFLAGS_ID);
265 }
266
267 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
268 {
269 unsigned long lo, hi;
270
271 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
272 return;
273
274 /* Disable processor serial number: */
275
276 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
277 lo |= 0x200000;
278 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
279
280 pr_notice("CPU serial number disabled.\n");
281 clear_cpu_cap(c, X86_FEATURE_PN);
282
283 /* Disabling the serial number may affect the cpuid level */
284 c->cpuid_level = cpuid_eax(0);
285 }
286
287 static int __init x86_serial_nr_setup(char *s)
288 {
289 disable_x86_serial_nr = 0;
290 return 1;
291 }
292 __setup("serialnumber", x86_serial_nr_setup);
293 #else
294 static inline int flag_is_changeable_p(u32 flag)
295 {
296 return 1;
297 }
298 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
299 {
300 }
301 #endif
302
303 static __init int setup_disable_smep(char *arg)
304 {
305 setup_clear_cpu_cap(X86_FEATURE_SMEP);
306 /* Check for things that depend on SMEP being enabled: */
307 check_mpx_erratum(&boot_cpu_data);
308 return 1;
309 }
310 __setup("nosmep", setup_disable_smep);
311
312 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
313 {
314 if (cpu_has(c, X86_FEATURE_SMEP))
315 cr4_set_bits(X86_CR4_SMEP);
316 }
317
318 static __init int setup_disable_smap(char *arg)
319 {
320 setup_clear_cpu_cap(X86_FEATURE_SMAP);
321 return 1;
322 }
323 __setup("nosmap", setup_disable_smap);
324
325 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
326 {
327 unsigned long eflags = native_save_fl();
328
329 /* This should have been cleared long ago */
330 BUG_ON(eflags & X86_EFLAGS_AC);
331
332 if (cpu_has(c, X86_FEATURE_SMAP)) {
333 #ifdef CONFIG_X86_SMAP
334 cr4_set_bits(X86_CR4_SMAP);
335 #else
336 cr4_clear_bits(X86_CR4_SMAP);
337 #endif
338 }
339 }
340
341 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
342 {
343 /* Check the boot processor, plus build option for UMIP. */
344 if (!cpu_feature_enabled(X86_FEATURE_UMIP))
345 goto out;
346
347 /* Check the current processor's cpuid bits. */
348 if (!cpu_has(c, X86_FEATURE_UMIP))
349 goto out;
350
351 cr4_set_bits(X86_CR4_UMIP);
352
353 pr_info("x86/cpu: Activated the Intel User Mode Instruction Prevention (UMIP) CPU feature\n");
354
355 return;
356
357 out:
358 /*
359 * Make sure UMIP is disabled in case it was enabled in a
360 * previous boot (e.g., via kexec).
361 */
362 cr4_clear_bits(X86_CR4_UMIP);
363 }
364
365 /*
366 * Protection Keys are not available in 32-bit mode.
367 */
368 static bool pku_disabled;
369
370 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
371 {
372 /* check the boot processor, plus compile options for PKU: */
373 if (!cpu_feature_enabled(X86_FEATURE_PKU))
374 return;
375 /* checks the actual processor's cpuid bits: */
376 if (!cpu_has(c, X86_FEATURE_PKU))
377 return;
378 if (pku_disabled)
379 return;
380
381 cr4_set_bits(X86_CR4_PKE);
382 /*
383 * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
384 * cpuid bit to be set. We need to ensure that we
385 * update that bit in this CPU's "cpu_info".
386 */
387 get_cpu_cap(c);
388 }
389
390 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
391 static __init int setup_disable_pku(char *arg)
392 {
393 /*
394 * Do not clear the X86_FEATURE_PKU bit. All of the
395 * runtime checks are against OSPKE so clearing the
396 * bit does nothing.
397 *
398 * This way, we will see "pku" in cpuinfo, but not
399 * "ospke", which is exactly what we want. It shows
400 * that the CPU has PKU, but the OS has not enabled it.
401 * This happens to be exactly how a system would look
402 * if we disabled the config option.
403 */
404 pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
405 pku_disabled = true;
406 return 1;
407 }
408 __setup("nopku", setup_disable_pku);
409 #endif /* CONFIG_X86_64 */
410
411 /*
412 * Some CPU features depend on higher CPUID levels, which may not always
413 * be available due to CPUID level capping or broken virtualization
414 * software. Add those features to this table to auto-disable them.
415 */
416 struct cpuid_dependent_feature {
417 u32 feature;
418 u32 level;
419 };
420
421 static const struct cpuid_dependent_feature
422 cpuid_dependent_features[] = {
423 { X86_FEATURE_MWAIT, 0x00000005 },
424 { X86_FEATURE_DCA, 0x00000009 },
425 { X86_FEATURE_XSAVE, 0x0000000d },
426 { 0, 0 }
427 };
428
429 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
430 {
431 const struct cpuid_dependent_feature *df;
432
433 for (df = cpuid_dependent_features; df->feature; df++) {
434
435 if (!cpu_has(c, df->feature))
436 continue;
437 /*
438 * Note: cpuid_level is set to -1 if unavailable, but
439 * extended_extended_level is set to 0 if unavailable
440 * and the legitimate extended levels are all negative
441 * when signed; hence the weird messing around with
442 * signs here...
443 */
444 if (!((s32)df->level < 0 ?
445 (u32)df->level > (u32)c->extended_cpuid_level :
446 (s32)df->level > (s32)c->cpuid_level))
447 continue;
448
449 clear_cpu_cap(c, df->feature);
450 if (!warn)
451 continue;
452
453 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
454 x86_cap_flag(df->feature), df->level);
455 }
456 }
457
458 /*
459 * Naming convention should be: <Name> [(<Codename>)]
460 * This table only is used unless init_<vendor>() below doesn't set it;
461 * in particular, if CPUID levels 0x80000002..4 are supported, this
462 * isn't used
463 */
464
465 /* Look up CPU names by table lookup. */
466 static const char *table_lookup_model(struct cpuinfo_x86 *c)
467 {
468 #ifdef CONFIG_X86_32
469 const struct legacy_cpu_model_info *info;
470
471 if (c->x86_model >= 16)
472 return NULL; /* Range check */
473
474 if (!this_cpu)
475 return NULL;
476
477 info = this_cpu->legacy_models;
478
479 while (info->family) {
480 if (info->family == c->x86)
481 return info->model_names[c->x86_model];
482 info++;
483 }
484 #endif
485 return NULL; /* Not found */
486 }
487
488 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS];
489 __u32 cpu_caps_set[NCAPINTS + NBUGINTS];
490
491 void load_percpu_segment(int cpu)
492 {
493 #ifdef CONFIG_X86_32
494 loadsegment(fs, __KERNEL_PERCPU);
495 #else
496 __loadsegment_simple(gs, 0);
497 wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
498 #endif
499 load_stack_canary_segment();
500 }
501
502 #ifdef CONFIG_X86_32
503 /* The 32-bit entry code needs to find cpu_entry_area. */
504 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
505 #endif
506
507 #ifdef CONFIG_X86_64
508 /*
509 * Special IST stacks which the CPU switches to when it calls
510 * an IST-marked descriptor entry. Up to 7 stacks (hardware
511 * limit), all of them are 4K, except the debug stack which
512 * is 8K.
513 */
514 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
515 [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
516 [DEBUG_STACK - 1] = DEBUG_STKSZ
517 };
518 #endif
519
520 /* Load the original GDT from the per-cpu structure */
521 void load_direct_gdt(int cpu)
522 {
523 struct desc_ptr gdt_descr;
524
525 gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
526 gdt_descr.size = GDT_SIZE - 1;
527 load_gdt(&gdt_descr);
528 }
529 EXPORT_SYMBOL_GPL(load_direct_gdt);
530
531 /* Load a fixmap remapping of the per-cpu GDT */
532 void load_fixmap_gdt(int cpu)
533 {
534 struct desc_ptr gdt_descr;
535
536 gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
537 gdt_descr.size = GDT_SIZE - 1;
538 load_gdt(&gdt_descr);
539 }
540 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
541
542 /*
543 * Current gdt points %fs at the "master" per-cpu area: after this,
544 * it's on the real one.
545 */
546 void switch_to_new_gdt(int cpu)
547 {
548 /* Load the original GDT */
549 load_direct_gdt(cpu);
550 /* Reload the per-cpu base */
551 load_percpu_segment(cpu);
552 }
553
554 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
555
556 static void get_model_name(struct cpuinfo_x86 *c)
557 {
558 unsigned int *v;
559 char *p, *q, *s;
560
561 if (c->extended_cpuid_level < 0x80000004)
562 return;
563
564 v = (unsigned int *)c->x86_model_id;
565 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
566 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
567 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
568 c->x86_model_id[48] = 0;
569
570 /* Trim whitespace */
571 p = q = s = &c->x86_model_id[0];
572
573 while (*p == ' ')
574 p++;
575
576 while (*p) {
577 /* Note the last non-whitespace index */
578 if (!isspace(*p))
579 s = q;
580
581 *q++ = *p++;
582 }
583
584 *(s + 1) = '\0';
585 }
586
587 void detect_num_cpu_cores(struct cpuinfo_x86 *c)
588 {
589 unsigned int eax, ebx, ecx, edx;
590
591 c->x86_max_cores = 1;
592 if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
593 return;
594
595 cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
596 if (eax & 0x1f)
597 c->x86_max_cores = (eax >> 26) + 1;
598 }
599
600 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
601 {
602 unsigned int n, dummy, ebx, ecx, edx, l2size;
603
604 n = c->extended_cpuid_level;
605
606 if (n >= 0x80000005) {
607 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
608 c->x86_cache_size = (ecx>>24) + (edx>>24);
609 #ifdef CONFIG_X86_64
610 /* On K8 L1 TLB is inclusive, so don't count it */
611 c->x86_tlbsize = 0;
612 #endif
613 }
614
615 if (n < 0x80000006) /* Some chips just has a large L1. */
616 return;
617
618 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
619 l2size = ecx >> 16;
620
621 #ifdef CONFIG_X86_64
622 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
623 #else
624 /* do processor-specific cache resizing */
625 if (this_cpu->legacy_cache_size)
626 l2size = this_cpu->legacy_cache_size(c, l2size);
627
628 /* Allow user to override all this if necessary. */
629 if (cachesize_override != -1)
630 l2size = cachesize_override;
631
632 if (l2size == 0)
633 return; /* Again, no L2 cache is possible */
634 #endif
635
636 c->x86_cache_size = l2size;
637 }
638
639 u16 __read_mostly tlb_lli_4k[NR_INFO];
640 u16 __read_mostly tlb_lli_2m[NR_INFO];
641 u16 __read_mostly tlb_lli_4m[NR_INFO];
642 u16 __read_mostly tlb_lld_4k[NR_INFO];
643 u16 __read_mostly tlb_lld_2m[NR_INFO];
644 u16 __read_mostly tlb_lld_4m[NR_INFO];
645 u16 __read_mostly tlb_lld_1g[NR_INFO];
646
647 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
648 {
649 if (this_cpu->c_detect_tlb)
650 this_cpu->c_detect_tlb(c);
651
652 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
653 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
654 tlb_lli_4m[ENTRIES]);
655
656 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
657 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
658 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
659 }
660
661 int detect_ht_early(struct cpuinfo_x86 *c)
662 {
663 #ifdef CONFIG_SMP
664 u32 eax, ebx, ecx, edx;
665
666 if (!cpu_has(c, X86_FEATURE_HT))
667 return -1;
668
669 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
670 return -1;
671
672 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
673 return -1;
674
675 cpuid(1, &eax, &ebx, &ecx, &edx);
676
677 smp_num_siblings = (ebx & 0xff0000) >> 16;
678 if (smp_num_siblings == 1)
679 pr_info_once("CPU0: Hyper-Threading is disabled\n");
680 #endif
681 return 0;
682 }
683
684 void detect_ht(struct cpuinfo_x86 *c)
685 {
686 #ifdef CONFIG_SMP
687 int index_msb, core_bits;
688
689 if (detect_ht_early(c) < 0)
690 return;
691
692 index_msb = get_count_order(smp_num_siblings);
693 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
694
695 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
696
697 index_msb = get_count_order(smp_num_siblings);
698
699 core_bits = get_count_order(c->x86_max_cores);
700
701 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
702 ((1 << core_bits) - 1);
703 #endif
704 }
705
706 static void get_cpu_vendor(struct cpuinfo_x86 *c)
707 {
708 char *v = c->x86_vendor_id;
709 int i;
710
711 for (i = 0; i < X86_VENDOR_NUM; i++) {
712 if (!cpu_devs[i])
713 break;
714
715 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
716 (cpu_devs[i]->c_ident[1] &&
717 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
718
719 this_cpu = cpu_devs[i];
720 c->x86_vendor = this_cpu->c_x86_vendor;
721 return;
722 }
723 }
724
725 pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
726 "CPU: Your system may be unstable.\n", v);
727
728 c->x86_vendor = X86_VENDOR_UNKNOWN;
729 this_cpu = &default_cpu;
730 }
731
732 void cpu_detect(struct cpuinfo_x86 *c)
733 {
734 /* Get vendor name */
735 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
736 (unsigned int *)&c->x86_vendor_id[0],
737 (unsigned int *)&c->x86_vendor_id[8],
738 (unsigned int *)&c->x86_vendor_id[4]);
739
740 c->x86 = 4;
741 /* Intel-defined flags: level 0x00000001 */
742 if (c->cpuid_level >= 0x00000001) {
743 u32 junk, tfms, cap0, misc;
744
745 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
746 c->x86 = x86_family(tfms);
747 c->x86_model = x86_model(tfms);
748 c->x86_stepping = x86_stepping(tfms);
749
750 if (cap0 & (1<<19)) {
751 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
752 c->x86_cache_alignment = c->x86_clflush_size;
753 }
754 }
755 }
756
757 static void apply_forced_caps(struct cpuinfo_x86 *c)
758 {
759 int i;
760
761 for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
762 c->x86_capability[i] &= ~cpu_caps_cleared[i];
763 c->x86_capability[i] |= cpu_caps_set[i];
764 }
765 }
766
767 static void init_speculation_control(struct cpuinfo_x86 *c)
768 {
769 /*
770 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
771 * and they also have a different bit for STIBP support. Also,
772 * a hypervisor might have set the individual AMD bits even on
773 * Intel CPUs, for finer-grained selection of what's available.
774 */
775 if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
776 set_cpu_cap(c, X86_FEATURE_IBRS);
777 set_cpu_cap(c, X86_FEATURE_IBPB);
778 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
779 }
780
781 if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
782 set_cpu_cap(c, X86_FEATURE_STIBP);
783
784 if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
785 cpu_has(c, X86_FEATURE_VIRT_SSBD))
786 set_cpu_cap(c, X86_FEATURE_SSBD);
787
788 if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
789 set_cpu_cap(c, X86_FEATURE_IBRS);
790 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
791 }
792
793 if (cpu_has(c, X86_FEATURE_AMD_IBPB))
794 set_cpu_cap(c, X86_FEATURE_IBPB);
795
796 if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
797 set_cpu_cap(c, X86_FEATURE_STIBP);
798 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
799 }
800
801 if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
802 set_cpu_cap(c, X86_FEATURE_SSBD);
803 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
804 clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
805 }
806 }
807
808 void get_cpu_cap(struct cpuinfo_x86 *c)
809 {
810 u32 eax, ebx, ecx, edx;
811
812 /* Intel-defined flags: level 0x00000001 */
813 if (c->cpuid_level >= 0x00000001) {
814 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
815
816 c->x86_capability[CPUID_1_ECX] = ecx;
817 c->x86_capability[CPUID_1_EDX] = edx;
818 }
819
820 /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
821 if (c->cpuid_level >= 0x00000006)
822 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
823
824 /* Additional Intel-defined flags: level 0x00000007 */
825 if (c->cpuid_level >= 0x00000007) {
826 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
827 c->x86_capability[CPUID_7_0_EBX] = ebx;
828 c->x86_capability[CPUID_7_ECX] = ecx;
829 c->x86_capability[CPUID_7_EDX] = edx;
830 }
831
832 /* Extended state features: level 0x0000000d */
833 if (c->cpuid_level >= 0x0000000d) {
834 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
835
836 c->x86_capability[CPUID_D_1_EAX] = eax;
837 }
838
839 /* Additional Intel-defined flags: level 0x0000000F */
840 if (c->cpuid_level >= 0x0000000F) {
841
842 /* QoS sub-leaf, EAX=0Fh, ECX=0 */
843 cpuid_count(0x0000000F, 0, &eax, &ebx, &ecx, &edx);
844 c->x86_capability[CPUID_F_0_EDX] = edx;
845
846 if (cpu_has(c, X86_FEATURE_CQM_LLC)) {
847 /* will be overridden if occupancy monitoring exists */
848 c->x86_cache_max_rmid = ebx;
849
850 /* QoS sub-leaf, EAX=0Fh, ECX=1 */
851 cpuid_count(0x0000000F, 1, &eax, &ebx, &ecx, &edx);
852 c->x86_capability[CPUID_F_1_EDX] = edx;
853
854 if ((cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC)) ||
855 ((cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL)) ||
856 (cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)))) {
857 c->x86_cache_max_rmid = ecx;
858 c->x86_cache_occ_scale = ebx;
859 }
860 } else {
861 c->x86_cache_max_rmid = -1;
862 c->x86_cache_occ_scale = -1;
863 }
864 }
865
866 /* AMD-defined flags: level 0x80000001 */
867 eax = cpuid_eax(0x80000000);
868 c->extended_cpuid_level = eax;
869
870 if ((eax & 0xffff0000) == 0x80000000) {
871 if (eax >= 0x80000001) {
872 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
873
874 c->x86_capability[CPUID_8000_0001_ECX] = ecx;
875 c->x86_capability[CPUID_8000_0001_EDX] = edx;
876 }
877 }
878
879 if (c->extended_cpuid_level >= 0x80000007) {
880 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
881
882 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
883 c->x86_power = edx;
884 }
885
886 if (c->extended_cpuid_level >= 0x80000008) {
887 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
888
889 c->x86_virt_bits = (eax >> 8) & 0xff;
890 c->x86_phys_bits = eax & 0xff;
891 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
892 }
893 #ifdef CONFIG_X86_32
894 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
895 c->x86_phys_bits = 36;
896 #endif
897
898 if (c->extended_cpuid_level >= 0x8000000a)
899 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
900
901 init_scattered_cpuid_features(c);
902 init_speculation_control(c);
903
904 /*
905 * Clear/Set all flags overridden by options, after probe.
906 * This needs to happen each time we re-probe, which may happen
907 * several times during CPU initialization.
908 */
909 apply_forced_caps(c);
910 }
911
912 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
913 {
914 #ifdef CONFIG_X86_32
915 int i;
916
917 /*
918 * First of all, decide if this is a 486 or higher
919 * It's a 486 if we can modify the AC flag
920 */
921 if (flag_is_changeable_p(X86_EFLAGS_AC))
922 c->x86 = 4;
923 else
924 c->x86 = 3;
925
926 for (i = 0; i < X86_VENDOR_NUM; i++)
927 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
928 c->x86_vendor_id[0] = 0;
929 cpu_devs[i]->c_identify(c);
930 if (c->x86_vendor_id[0]) {
931 get_cpu_vendor(c);
932 break;
933 }
934 }
935 #endif
936 }
937
938 #define NO_SPECULATION BIT(0)
939 #define NO_MELTDOWN BIT(1)
940 #define NO_SSB BIT(2)
941 #define NO_L1TF BIT(3)
942
943 #define VULNWL(_vendor, _family, _model, _whitelist) \
944 { X86_VENDOR_##_vendor, _family, _model, X86_FEATURE_ANY, _whitelist }
945
946 #define VULNWL_INTEL(model, whitelist) \
947 VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
948
949 #define VULNWL_AMD(family, whitelist) \
950 VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
951
952 static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
953 VULNWL(ANY, 4, X86_MODEL_ANY, NO_SPECULATION),
954 VULNWL(CENTAUR, 5, X86_MODEL_ANY, NO_SPECULATION),
955 VULNWL(INTEL, 5, X86_MODEL_ANY, NO_SPECULATION),
956 VULNWL(NSC, 5, X86_MODEL_ANY, NO_SPECULATION),
957
958 VULNWL_INTEL(ATOM_SALTWELL, NO_SPECULATION),
959 VULNWL_INTEL(ATOM_SALTWELL_TABLET, NO_SPECULATION),
960 VULNWL_INTEL(ATOM_SALTWELL_MID, NO_SPECULATION),
961 VULNWL_INTEL(ATOM_BONNELL, NO_SPECULATION),
962 VULNWL_INTEL(ATOM_BONNELL_MID, NO_SPECULATION),
963
964 VULNWL_INTEL(ATOM_SILVERMONT, NO_SSB | NO_L1TF),
965 VULNWL_INTEL(ATOM_SILVERMONT_X, NO_SSB | NO_L1TF),
966 VULNWL_INTEL(ATOM_SILVERMONT_MID, NO_SSB | NO_L1TF),
967 VULNWL_INTEL(ATOM_AIRMONT, NO_SSB | NO_L1TF),
968 VULNWL_INTEL(XEON_PHI_KNL, NO_SSB | NO_L1TF),
969 VULNWL_INTEL(XEON_PHI_KNM, NO_SSB | NO_L1TF),
970
971 VULNWL_INTEL(CORE_YONAH, NO_SSB),
972
973 VULNWL_INTEL(ATOM_AIRMONT_MID, NO_L1TF),
974 VULNWL_INTEL(ATOM_GOLDMONT, NO_L1TF),
975 VULNWL_INTEL(ATOM_GOLDMONT_X, NO_L1TF),
976 VULNWL_INTEL(ATOM_GOLDMONT_PLUS, NO_L1TF),
977
978 VULNWL_AMD(0x0f, NO_MELTDOWN | NO_SSB | NO_L1TF),
979 VULNWL_AMD(0x10, NO_MELTDOWN | NO_SSB | NO_L1TF),
980 VULNWL_AMD(0x11, NO_MELTDOWN | NO_SSB | NO_L1TF),
981 VULNWL_AMD(0x12, NO_MELTDOWN | NO_SSB | NO_L1TF),
982
983 /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
984 VULNWL_AMD(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF),
985 {}
986 };
987
988 static bool __init cpu_matches(unsigned long which)
989 {
990 const struct x86_cpu_id *m = x86_match_cpu(cpu_vuln_whitelist);
991
992 return m && !!(m->driver_data & which);
993 }
994
995 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
996 {
997 u64 ia32_cap = 0;
998
999 if (cpu_matches(NO_SPECULATION))
1000 return;
1001
1002 setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1003 setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1004
1005 if (cpu_has(c, X86_FEATURE_ARCH_CAPABILITIES))
1006 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1007
1008 if (!cpu_matches(NO_SSB) && !(ia32_cap & ARCH_CAP_SSB_NO) &&
1009 !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1010 setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1011
1012 if (ia32_cap & ARCH_CAP_IBRS_ALL)
1013 setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1014
1015 if (cpu_matches(NO_MELTDOWN))
1016 return;
1017
1018 /* Rogue Data Cache Load? No! */
1019 if (ia32_cap & ARCH_CAP_RDCL_NO)
1020 return;
1021
1022 setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1023
1024 if (cpu_matches(NO_L1TF))
1025 return;
1026
1027 setup_force_cpu_bug(X86_BUG_L1TF);
1028 }
1029
1030 /*
1031 * Do minimum CPU detection early.
1032 * Fields really needed: vendor, cpuid_level, family, model, mask,
1033 * cache alignment.
1034 * The others are not touched to avoid unwanted side effects.
1035 *
1036 * WARNING: this function is only called on the boot CPU. Don't add code
1037 * here that is supposed to run on all CPUs.
1038 */
1039 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1040 {
1041 #ifdef CONFIG_X86_64
1042 c->x86_clflush_size = 64;
1043 c->x86_phys_bits = 36;
1044 c->x86_virt_bits = 48;
1045 #else
1046 c->x86_clflush_size = 32;
1047 c->x86_phys_bits = 32;
1048 c->x86_virt_bits = 32;
1049 #endif
1050 c->x86_cache_alignment = c->x86_clflush_size;
1051
1052 memset(&c->x86_capability, 0, sizeof c->x86_capability);
1053 c->extended_cpuid_level = 0;
1054
1055 /* cyrix could have cpuid enabled via c_identify()*/
1056 if (have_cpuid_p()) {
1057 cpu_detect(c);
1058 get_cpu_vendor(c);
1059 get_cpu_cap(c);
1060 c->x86_cache_bits = c->x86_phys_bits;
1061 setup_force_cpu_cap(X86_FEATURE_CPUID);
1062
1063 if (this_cpu->c_early_init)
1064 this_cpu->c_early_init(c);
1065
1066 c->cpu_index = 0;
1067 filter_cpuid_features(c, false);
1068
1069 if (this_cpu->c_bsp_init)
1070 this_cpu->c_bsp_init(c);
1071 } else {
1072 identify_cpu_without_cpuid(c);
1073 setup_clear_cpu_cap(X86_FEATURE_CPUID);
1074 }
1075
1076 setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1077
1078 cpu_set_bug_bits(c);
1079
1080 fpu__init_system(c);
1081
1082 #ifdef CONFIG_X86_32
1083 /*
1084 * Regardless of whether PCID is enumerated, the SDM says
1085 * that it can't be enabled in 32-bit mode.
1086 */
1087 setup_clear_cpu_cap(X86_FEATURE_PCID);
1088 #endif
1089 }
1090
1091 void __init early_cpu_init(void)
1092 {
1093 const struct cpu_dev *const *cdev;
1094 int count = 0;
1095
1096 #ifdef CONFIG_PROCESSOR_SELECT
1097 pr_info("KERNEL supported cpus:\n");
1098 #endif
1099
1100 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1101 const struct cpu_dev *cpudev = *cdev;
1102
1103 if (count >= X86_VENDOR_NUM)
1104 break;
1105 cpu_devs[count] = cpudev;
1106 count++;
1107
1108 #ifdef CONFIG_PROCESSOR_SELECT
1109 {
1110 unsigned int j;
1111
1112 for (j = 0; j < 2; j++) {
1113 if (!cpudev->c_ident[j])
1114 continue;
1115 pr_info(" %s %s\n", cpudev->c_vendor,
1116 cpudev->c_ident[j]);
1117 }
1118 }
1119 #endif
1120 }
1121 early_identify_cpu(&boot_cpu_data);
1122 }
1123
1124 /*
1125 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1126 * unfortunately, that's not true in practice because of early VIA
1127 * chips and (more importantly) broken virtualizers that are not easy
1128 * to detect. In the latter case it doesn't even *fail* reliably, so
1129 * probing for it doesn't even work. Disable it completely on 32-bit
1130 * unless we can find a reliable way to detect all the broken cases.
1131 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1132 */
1133 static void detect_nopl(struct cpuinfo_x86 *c)
1134 {
1135 #ifdef CONFIG_X86_32
1136 clear_cpu_cap(c, X86_FEATURE_NOPL);
1137 #else
1138 set_cpu_cap(c, X86_FEATURE_NOPL);
1139 #endif
1140 }
1141
1142 static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
1143 {
1144 #ifdef CONFIG_X86_64
1145 /*
1146 * Empirically, writing zero to a segment selector on AMD does
1147 * not clear the base, whereas writing zero to a segment
1148 * selector on Intel does clear the base. Intel's behavior
1149 * allows slightly faster context switches in the common case
1150 * where GS is unused by the prev and next threads.
1151 *
1152 * Since neither vendor documents this anywhere that I can see,
1153 * detect it directly instead of hardcoding the choice by
1154 * vendor.
1155 *
1156 * I've designated AMD's behavior as the "bug" because it's
1157 * counterintuitive and less friendly.
1158 */
1159
1160 unsigned long old_base, tmp;
1161 rdmsrl(MSR_FS_BASE, old_base);
1162 wrmsrl(MSR_FS_BASE, 1);
1163 loadsegment(fs, 0);
1164 rdmsrl(MSR_FS_BASE, tmp);
1165 if (tmp != 0)
1166 set_cpu_bug(c, X86_BUG_NULL_SEG);
1167 wrmsrl(MSR_FS_BASE, old_base);
1168 #endif
1169 }
1170
1171 static void generic_identify(struct cpuinfo_x86 *c)
1172 {
1173 c->extended_cpuid_level = 0;
1174
1175 if (!have_cpuid_p())
1176 identify_cpu_without_cpuid(c);
1177
1178 /* cyrix could have cpuid enabled via c_identify()*/
1179 if (!have_cpuid_p())
1180 return;
1181
1182 cpu_detect(c);
1183
1184 get_cpu_vendor(c);
1185
1186 get_cpu_cap(c);
1187
1188 c->x86_cache_bits = c->x86_phys_bits;
1189
1190 if (c->cpuid_level >= 0x00000001) {
1191 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1192 #ifdef CONFIG_X86_32
1193 # ifdef CONFIG_SMP
1194 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1195 # else
1196 c->apicid = c->initial_apicid;
1197 # endif
1198 #endif
1199 c->phys_proc_id = c->initial_apicid;
1200 }
1201
1202 get_model_name(c); /* Default name */
1203
1204 detect_nopl(c);
1205
1206 detect_null_seg_behavior(c);
1207
1208 /*
1209 * ESPFIX is a strange bug. All real CPUs have it. Paravirt
1210 * systems that run Linux at CPL > 0 may or may not have the
1211 * issue, but, even if they have the issue, there's absolutely
1212 * nothing we can do about it because we can't use the real IRET
1213 * instruction.
1214 *
1215 * NB: For the time being, only 32-bit kernels support
1216 * X86_BUG_ESPFIX as such. 64-bit kernels directly choose
1217 * whether to apply espfix using paravirt hooks. If any
1218 * non-paravirt system ever shows up that does *not* have the
1219 * ESPFIX issue, we can change this.
1220 */
1221 #ifdef CONFIG_X86_32
1222 # ifdef CONFIG_PARAVIRT
1223 do {
1224 extern void native_iret(void);
1225 if (pv_cpu_ops.iret == native_iret)
1226 set_cpu_bug(c, X86_BUG_ESPFIX);
1227 } while (0);
1228 # else
1229 set_cpu_bug(c, X86_BUG_ESPFIX);
1230 # endif
1231 #endif
1232 }
1233
1234 static void x86_init_cache_qos(struct cpuinfo_x86 *c)
1235 {
1236 /*
1237 * The heavy lifting of max_rmid and cache_occ_scale are handled
1238 * in get_cpu_cap(). Here we just set the max_rmid for the boot_cpu
1239 * in case CQM bits really aren't there in this CPU.
1240 */
1241 if (c != &boot_cpu_data) {
1242 boot_cpu_data.x86_cache_max_rmid =
1243 min(boot_cpu_data.x86_cache_max_rmid,
1244 c->x86_cache_max_rmid);
1245 }
1246 }
1247
1248 /*
1249 * Validate that ACPI/mptables have the same information about the
1250 * effective APIC id and update the package map.
1251 */
1252 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1253 {
1254 #ifdef CONFIG_SMP
1255 unsigned int apicid, cpu = smp_processor_id();
1256
1257 apicid = apic->cpu_present_to_apicid(cpu);
1258
1259 if (apicid != c->apicid) {
1260 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1261 cpu, apicid, c->initial_apicid);
1262 }
1263 BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1264 #else
1265 c->logical_proc_id = 0;
1266 #endif
1267 }
1268
1269 /*
1270 * This does the hard work of actually picking apart the CPU stuff...
1271 */
1272 static void identify_cpu(struct cpuinfo_x86 *c)
1273 {
1274 int i;
1275
1276 c->loops_per_jiffy = loops_per_jiffy;
1277 c->x86_cache_size = 0;
1278 c->x86_vendor = X86_VENDOR_UNKNOWN;
1279 c->x86_model = c->x86_stepping = 0; /* So far unknown... */
1280 c->x86_vendor_id[0] = '\0'; /* Unset */
1281 c->x86_model_id[0] = '\0'; /* Unset */
1282 c->x86_max_cores = 1;
1283 c->x86_coreid_bits = 0;
1284 c->cu_id = 0xff;
1285 #ifdef CONFIG_X86_64
1286 c->x86_clflush_size = 64;
1287 c->x86_phys_bits = 36;
1288 c->x86_virt_bits = 48;
1289 #else
1290 c->cpuid_level = -1; /* CPUID not detected */
1291 c->x86_clflush_size = 32;
1292 c->x86_phys_bits = 32;
1293 c->x86_virt_bits = 32;
1294 #endif
1295 c->x86_cache_alignment = c->x86_clflush_size;
1296 memset(&c->x86_capability, 0, sizeof c->x86_capability);
1297
1298 generic_identify(c);
1299
1300 if (this_cpu->c_identify)
1301 this_cpu->c_identify(c);
1302
1303 /* Clear/Set all flags overridden by options, after probe */
1304 apply_forced_caps(c);
1305
1306 #ifdef CONFIG_X86_64
1307 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1308 #endif
1309
1310 /*
1311 * Vendor-specific initialization. In this section we
1312 * canonicalize the feature flags, meaning if there are
1313 * features a certain CPU supports which CPUID doesn't
1314 * tell us, CPUID claiming incorrect flags, or other bugs,
1315 * we handle them here.
1316 *
1317 * At the end of this section, c->x86_capability better
1318 * indicate the features this CPU genuinely supports!
1319 */
1320 if (this_cpu->c_init)
1321 this_cpu->c_init(c);
1322
1323 /* Disable the PN if appropriate */
1324 squash_the_stupid_serial_number(c);
1325
1326 /* Set up SMEP/SMAP/UMIP */
1327 setup_smep(c);
1328 setup_smap(c);
1329 setup_umip(c);
1330
1331 /*
1332 * The vendor-specific functions might have changed features.
1333 * Now we do "generic changes."
1334 */
1335
1336 /* Filter out anything that depends on CPUID levels we don't have */
1337 filter_cpuid_features(c, true);
1338
1339 /* If the model name is still unset, do table lookup. */
1340 if (!c->x86_model_id[0]) {
1341 const char *p;
1342 p = table_lookup_model(c);
1343 if (p)
1344 strcpy(c->x86_model_id, p);
1345 else
1346 /* Last resort... */
1347 sprintf(c->x86_model_id, "%02x/%02x",
1348 c->x86, c->x86_model);
1349 }
1350
1351 #ifdef CONFIG_X86_64
1352 detect_ht(c);
1353 #endif
1354
1355 x86_init_rdrand(c);
1356 x86_init_cache_qos(c);
1357 setup_pku(c);
1358
1359 /*
1360 * Clear/Set all flags overridden by options, need do it
1361 * before following smp all cpus cap AND.
1362 */
1363 apply_forced_caps(c);
1364
1365 /*
1366 * On SMP, boot_cpu_data holds the common feature set between
1367 * all CPUs; so make sure that we indicate which features are
1368 * common between the CPUs. The first time this routine gets
1369 * executed, c == &boot_cpu_data.
1370 */
1371 if (c != &boot_cpu_data) {
1372 /* AND the already accumulated flags with these */
1373 for (i = 0; i < NCAPINTS; i++)
1374 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1375
1376 /* OR, i.e. replicate the bug flags */
1377 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1378 c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1379 }
1380
1381 /* Init Machine Check Exception if available. */
1382 mcheck_cpu_init(c);
1383
1384 select_idle_routine(c);
1385
1386 #ifdef CONFIG_NUMA
1387 numa_add_cpu(smp_processor_id());
1388 #endif
1389 }
1390
1391 /*
1392 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1393 * on 32-bit kernels:
1394 */
1395 #ifdef CONFIG_X86_32
1396 void enable_sep_cpu(void)
1397 {
1398 struct tss_struct *tss;
1399 int cpu;
1400
1401 if (!boot_cpu_has(X86_FEATURE_SEP))
1402 return;
1403
1404 cpu = get_cpu();
1405 tss = &per_cpu(cpu_tss_rw, cpu);
1406
1407 /*
1408 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1409 * see the big comment in struct x86_hw_tss's definition.
1410 */
1411
1412 tss->x86_tss.ss1 = __KERNEL_CS;
1413 wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1414 wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1415 wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1416
1417 put_cpu();
1418 }
1419 #endif
1420
1421 void __init identify_boot_cpu(void)
1422 {
1423 identify_cpu(&boot_cpu_data);
1424 #ifdef CONFIG_X86_32
1425 sysenter_setup();
1426 enable_sep_cpu();
1427 #endif
1428 cpu_detect_tlb(&boot_cpu_data);
1429 }
1430
1431 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1432 {
1433 BUG_ON(c == &boot_cpu_data);
1434 identify_cpu(c);
1435 #ifdef CONFIG_X86_32
1436 enable_sep_cpu();
1437 #endif
1438 mtrr_ap_init();
1439 validate_apic_and_package_id(c);
1440 x86_spec_ctrl_setup_ap();
1441 }
1442
1443 static __init int setup_noclflush(char *arg)
1444 {
1445 setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1446 setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1447 return 1;
1448 }
1449 __setup("noclflush", setup_noclflush);
1450
1451 void print_cpu_info(struct cpuinfo_x86 *c)
1452 {
1453 const char *vendor = NULL;
1454
1455 if (c->x86_vendor < X86_VENDOR_NUM) {
1456 vendor = this_cpu->c_vendor;
1457 } else {
1458 if (c->cpuid_level >= 0)
1459 vendor = c->x86_vendor_id;
1460 }
1461
1462 if (vendor && !strstr(c->x86_model_id, vendor))
1463 pr_cont("%s ", vendor);
1464
1465 if (c->x86_model_id[0])
1466 pr_cont("%s", c->x86_model_id);
1467 else
1468 pr_cont("%d86", c->x86);
1469
1470 pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1471
1472 if (c->x86_stepping || c->cpuid_level >= 0)
1473 pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1474 else
1475 pr_cont(")\n");
1476 }
1477
1478 /*
1479 * clearcpuid= was already parsed in fpu__init_parse_early_param.
1480 * But we need to keep a dummy __setup around otherwise it would
1481 * show up as an environment variable for init.
1482 */
1483 static __init int setup_clearcpuid(char *arg)
1484 {
1485 return 1;
1486 }
1487 __setup("clearcpuid=", setup_clearcpuid);
1488
1489 #ifdef CONFIG_X86_64
1490 DEFINE_PER_CPU_FIRST(union irq_stack_union,
1491 irq_stack_union) __aligned(PAGE_SIZE) __visible;
1492
1493 /*
1494 * The following percpu variables are hot. Align current_task to
1495 * cacheline size such that they fall in the same cacheline.
1496 */
1497 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1498 &init_task;
1499 EXPORT_PER_CPU_SYMBOL(current_task);
1500
1501 DEFINE_PER_CPU(char *, irq_stack_ptr) =
1502 init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE;
1503
1504 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1505
1506 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1507 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1508
1509 /* May not be marked __init: used by software suspend */
1510 void syscall_init(void)
1511 {
1512 extern char _entry_trampoline[];
1513 extern char entry_SYSCALL_64_trampoline[];
1514
1515 int cpu = smp_processor_id();
1516 unsigned long SYSCALL64_entry_trampoline =
1517 (unsigned long)get_cpu_entry_area(cpu)->entry_trampoline +
1518 (entry_SYSCALL_64_trampoline - _entry_trampoline);
1519
1520 wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1521 if (static_cpu_has(X86_FEATURE_PTI))
1522 wrmsrl(MSR_LSTAR, SYSCALL64_entry_trampoline);
1523 else
1524 wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1525
1526 #ifdef CONFIG_IA32_EMULATION
1527 wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1528 /*
1529 * This only works on Intel CPUs.
1530 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1531 * This does not cause SYSENTER to jump to the wrong location, because
1532 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1533 */
1534 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1535 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1));
1536 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1537 #else
1538 wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1539 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1540 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1541 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1542 #endif
1543
1544 /* Flags to clear on syscall */
1545 wrmsrl(MSR_SYSCALL_MASK,
1546 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1547 X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1548 }
1549
1550 /*
1551 * Copies of the original ist values from the tss are only accessed during
1552 * debugging, no special alignment required.
1553 */
1554 DEFINE_PER_CPU(struct orig_ist, orig_ist);
1555
1556 static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1557 DEFINE_PER_CPU(int, debug_stack_usage);
1558
1559 int is_debug_stack(unsigned long addr)
1560 {
1561 return __this_cpu_read(debug_stack_usage) ||
1562 (addr <= __this_cpu_read(debug_stack_addr) &&
1563 addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ));
1564 }
1565 NOKPROBE_SYMBOL(is_debug_stack);
1566
1567 DEFINE_PER_CPU(u32, debug_idt_ctr);
1568
1569 void debug_stack_set_zero(void)
1570 {
1571 this_cpu_inc(debug_idt_ctr);
1572 load_current_idt();
1573 }
1574 NOKPROBE_SYMBOL(debug_stack_set_zero);
1575
1576 void debug_stack_reset(void)
1577 {
1578 if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1579 return;
1580 if (this_cpu_dec_return(debug_idt_ctr) == 0)
1581 load_current_idt();
1582 }
1583 NOKPROBE_SYMBOL(debug_stack_reset);
1584
1585 #else /* CONFIG_X86_64 */
1586
1587 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1588 EXPORT_PER_CPU_SYMBOL(current_task);
1589 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1590 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1591
1592 /*
1593 * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1594 * the top of the kernel stack. Use an extra percpu variable to track the
1595 * top of the kernel stack directly.
1596 */
1597 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1598 (unsigned long)&init_thread_union + THREAD_SIZE;
1599 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1600
1601 #ifdef CONFIG_CC_STACKPROTECTOR
1602 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1603 #endif
1604
1605 #endif /* CONFIG_X86_64 */
1606
1607 /*
1608 * Clear all 6 debug registers:
1609 */
1610 static void clear_all_debug_regs(void)
1611 {
1612 int i;
1613
1614 for (i = 0; i < 8; i++) {
1615 /* Ignore db4, db5 */
1616 if ((i == 4) || (i == 5))
1617 continue;
1618
1619 set_debugreg(0, i);
1620 }
1621 }
1622
1623 #ifdef CONFIG_KGDB
1624 /*
1625 * Restore debug regs if using kgdbwait and you have a kernel debugger
1626 * connection established.
1627 */
1628 static void dbg_restore_debug_regs(void)
1629 {
1630 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1631 arch_kgdb_ops.correct_hw_break();
1632 }
1633 #else /* ! CONFIG_KGDB */
1634 #define dbg_restore_debug_regs()
1635 #endif /* ! CONFIG_KGDB */
1636
1637 static void wait_for_master_cpu(int cpu)
1638 {
1639 #ifdef CONFIG_SMP
1640 /*
1641 * wait for ACK from master CPU before continuing
1642 * with AP initialization
1643 */
1644 WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1645 while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1646 cpu_relax();
1647 #endif
1648 }
1649
1650 /*
1651 * cpu_init() initializes state that is per-CPU. Some data is already
1652 * initialized (naturally) in the bootstrap process, such as the GDT
1653 * and IDT. We reload them nevertheless, this function acts as a
1654 * 'CPU state barrier', nothing should get across.
1655 * A lot of state is already set up in PDA init for 64 bit
1656 */
1657 #ifdef CONFIG_X86_64
1658
1659 void cpu_init(void)
1660 {
1661 struct orig_ist *oist;
1662 struct task_struct *me;
1663 struct tss_struct *t;
1664 unsigned long v;
1665 int cpu = raw_smp_processor_id();
1666 int i;
1667
1668 wait_for_master_cpu(cpu);
1669
1670 /*
1671 * Initialize the CR4 shadow before doing anything that could
1672 * try to read it.
1673 */
1674 cr4_init_shadow();
1675
1676 if (cpu)
1677 load_ucode_ap();
1678
1679 t = &per_cpu(cpu_tss_rw, cpu);
1680 oist = &per_cpu(orig_ist, cpu);
1681
1682 #ifdef CONFIG_NUMA
1683 if (this_cpu_read(numa_node) == 0 &&
1684 early_cpu_to_node(cpu) != NUMA_NO_NODE)
1685 set_numa_node(early_cpu_to_node(cpu));
1686 #endif
1687
1688 me = current;
1689
1690 pr_debug("Initializing CPU#%d\n", cpu);
1691
1692 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1693
1694 /*
1695 * Initialize the per-CPU GDT with the boot GDT,
1696 * and set up the GDT descriptor:
1697 */
1698
1699 switch_to_new_gdt(cpu);
1700 loadsegment(fs, 0);
1701
1702 load_current_idt();
1703
1704 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1705 syscall_init();
1706
1707 wrmsrl(MSR_FS_BASE, 0);
1708 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1709 barrier();
1710
1711 x86_configure_nx();
1712 x2apic_setup();
1713
1714 /*
1715 * set up and load the per-CPU TSS
1716 */
1717 if (!oist->ist[0]) {
1718 char *estacks = get_cpu_entry_area(cpu)->exception_stacks;
1719
1720 for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1721 estacks += exception_stack_sizes[v];
1722 oist->ist[v] = t->x86_tss.ist[v] =
1723 (unsigned long)estacks;
1724 if (v == DEBUG_STACK-1)
1725 per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1726 }
1727 }
1728
1729 t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
1730
1731 /*
1732 * <= is required because the CPU will access up to
1733 * 8 bits beyond the end of the IO permission bitmap.
1734 */
1735 for (i = 0; i <= IO_BITMAP_LONGS; i++)
1736 t->io_bitmap[i] = ~0UL;
1737
1738 mmgrab(&init_mm);
1739 me->active_mm = &init_mm;
1740 BUG_ON(me->mm);
1741 initialize_tlbstate_and_flush();
1742 enter_lazy_tlb(&init_mm, me);
1743
1744 /*
1745 * Initialize the TSS. sp0 points to the entry trampoline stack
1746 * regardless of what task is running.
1747 */
1748 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1749 load_TR_desc();
1750 load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
1751
1752 load_mm_ldt(&init_mm);
1753
1754 clear_all_debug_regs();
1755 dbg_restore_debug_regs();
1756
1757 fpu__init_cpu();
1758
1759 if (is_uv_system())
1760 uv_cpu_init();
1761
1762 load_fixmap_gdt(cpu);
1763 }
1764
1765 #else
1766
1767 void cpu_init(void)
1768 {
1769 int cpu = smp_processor_id();
1770 struct task_struct *curr = current;
1771 struct tss_struct *t = &per_cpu(cpu_tss_rw, cpu);
1772
1773 wait_for_master_cpu(cpu);
1774
1775 /*
1776 * Initialize the CR4 shadow before doing anything that could
1777 * try to read it.
1778 */
1779 cr4_init_shadow();
1780
1781 show_ucode_info_early();
1782
1783 pr_info("Initializing CPU#%d\n", cpu);
1784
1785 if (cpu_feature_enabled(X86_FEATURE_VME) ||
1786 boot_cpu_has(X86_FEATURE_TSC) ||
1787 boot_cpu_has(X86_FEATURE_DE))
1788 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1789
1790 load_current_idt();
1791 switch_to_new_gdt(cpu);
1792
1793 /*
1794 * Set up and load the per-CPU TSS and LDT
1795 */
1796 mmgrab(&init_mm);
1797 curr->active_mm = &init_mm;
1798 BUG_ON(curr->mm);
1799 initialize_tlbstate_and_flush();
1800 enter_lazy_tlb(&init_mm, curr);
1801
1802 /*
1803 * Initialize the TSS. sp0 points to the entry trampoline stack
1804 * regardless of what task is running.
1805 */
1806 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1807 load_TR_desc();
1808 load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
1809
1810 load_mm_ldt(&init_mm);
1811
1812 t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
1813
1814 #ifdef CONFIG_DOUBLEFAULT
1815 /* Set up doublefault TSS pointer in the GDT */
1816 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1817 #endif
1818
1819 clear_all_debug_regs();
1820 dbg_restore_debug_regs();
1821
1822 fpu__init_cpu();
1823
1824 load_fixmap_gdt(cpu);
1825 }
1826 #endif
1827
1828 static void bsp_resume(void)
1829 {
1830 if (this_cpu->c_bsp_resume)
1831 this_cpu->c_bsp_resume(&boot_cpu_data);
1832 }
1833
1834 static struct syscore_ops cpu_syscore_ops = {
1835 .resume = bsp_resume,
1836 };
1837
1838 static int __init init_cpu_syscore(void)
1839 {
1840 register_syscore_ops(&cpu_syscore_ops);
1841 return 0;
1842 }
1843 core_initcall(init_cpu_syscore);
1844
1845 /*
1846 * The microcode loader calls this upon late microcode load to recheck features,
1847 * only when microcode has been updated. Caller holds microcode_mutex and CPU
1848 * hotplug lock.
1849 */
1850 void microcode_check(void)
1851 {
1852 struct cpuinfo_x86 info;
1853
1854 perf_check_microcode();
1855
1856 /* Reload CPUID max function as it might've changed. */
1857 info.cpuid_level = cpuid_eax(0);
1858
1859 /*
1860 * Copy all capability leafs to pick up the synthetic ones so that
1861 * memcmp() below doesn't fail on that. The ones coming from CPUID will
1862 * get overwritten in get_cpu_cap().
1863 */
1864 memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability));
1865
1866 get_cpu_cap(&info);
1867
1868 if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)))
1869 return;
1870
1871 pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
1872 pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
1873 }