]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kernel/cpu/common.c
x86/bugs: Expose /sys/../spec_store_bypass
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kernel / cpu / common.c
1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/export.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/ctype.h>
9 #include <linux/delay.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/clock.h>
12 #include <linux/sched/task.h>
13 #include <linux/init.h>
14 #include <linux/kprobes.h>
15 #include <linux/kgdb.h>
16 #include <linux/smp.h>
17 #include <linux/io.h>
18 #include <linux/syscore_ops.h>
19
20 #include <asm/stackprotector.h>
21 #include <asm/perf_event.h>
22 #include <asm/mmu_context.h>
23 #include <asm/archrandom.h>
24 #include <asm/hypervisor.h>
25 #include <asm/processor.h>
26 #include <asm/tlbflush.h>
27 #include <asm/debugreg.h>
28 #include <asm/sections.h>
29 #include <asm/vsyscall.h>
30 #include <linux/topology.h>
31 #include <linux/cpumask.h>
32 #include <asm/pgtable.h>
33 #include <linux/atomic.h>
34 #include <asm/proto.h>
35 #include <asm/setup.h>
36 #include <asm/apic.h>
37 #include <asm/desc.h>
38 #include <asm/fpu/internal.h>
39 #include <asm/mtrr.h>
40 #include <asm/hwcap2.h>
41 #include <linux/numa.h>
42 #include <asm/asm.h>
43 #include <asm/bugs.h>
44 #include <asm/cpu.h>
45 #include <asm/mce.h>
46 #include <asm/msr.h>
47 #include <asm/pat.h>
48 #include <asm/microcode.h>
49 #include <asm/microcode_intel.h>
50 #include <asm/intel-family.h>
51 #include <asm/cpu_device_id.h>
52
53 #ifdef CONFIG_X86_LOCAL_APIC
54 #include <asm/uv/uv.h>
55 #endif
56
57 #include "cpu.h"
58
59 u32 elf_hwcap2 __read_mostly;
60
61 /* all of these masks are initialized in setup_cpu_local_masks() */
62 cpumask_var_t cpu_initialized_mask;
63 cpumask_var_t cpu_callout_mask;
64 cpumask_var_t cpu_callin_mask;
65
66 /* representing cpus for which sibling maps can be computed */
67 cpumask_var_t cpu_sibling_setup_mask;
68
69 /* correctly size the local cpu masks */
70 void __init setup_cpu_local_masks(void)
71 {
72 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
73 alloc_bootmem_cpumask_var(&cpu_callin_mask);
74 alloc_bootmem_cpumask_var(&cpu_callout_mask);
75 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
76 }
77
78 static void default_init(struct cpuinfo_x86 *c)
79 {
80 #ifdef CONFIG_X86_64
81 cpu_detect_cache_sizes(c);
82 #else
83 /* Not much we can do here... */
84 /* Check if at least it has cpuid */
85 if (c->cpuid_level == -1) {
86 /* No cpuid. It must be an ancient CPU */
87 if (c->x86 == 4)
88 strcpy(c->x86_model_id, "486");
89 else if (c->x86 == 3)
90 strcpy(c->x86_model_id, "386");
91 }
92 #endif
93 }
94
95 static const struct cpu_dev default_cpu = {
96 .c_init = default_init,
97 .c_vendor = "Unknown",
98 .c_x86_vendor = X86_VENDOR_UNKNOWN,
99 };
100
101 static const struct cpu_dev *this_cpu = &default_cpu;
102
103 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
104 #ifdef CONFIG_X86_64
105 /*
106 * We need valid kernel segments for data and code in long mode too
107 * IRET will check the segment types kkeil 2000/10/28
108 * Also sysret mandates a special GDT layout
109 *
110 * TLS descriptors are currently at a different place compared to i386.
111 * Hopefully nobody expects them at a fixed place (Wine?)
112 */
113 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
114 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
115 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
116 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
117 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
118 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
119 #else
120 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
121 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
122 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
123 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
124 /*
125 * Segments used for calling PnP BIOS have byte granularity.
126 * They code segments and data segments have fixed 64k limits,
127 * the transfer segment sizes are set at run time.
128 */
129 /* 32-bit code */
130 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
131 /* 16-bit code */
132 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
133 /* 16-bit data */
134 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
135 /* 16-bit data */
136 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
137 /* 16-bit data */
138 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
139 /*
140 * The APM segments have byte granularity and their bases
141 * are set at run time. All have 64k limits.
142 */
143 /* 32-bit code */
144 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
145 /* 16-bit code */
146 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
147 /* data */
148 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
149
150 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
151 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
152 GDT_STACK_CANARY_INIT
153 #endif
154 } };
155 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
156
157 static int __init x86_mpx_setup(char *s)
158 {
159 /* require an exact match without trailing characters */
160 if (strlen(s))
161 return 0;
162
163 /* do not emit a message if the feature is not present */
164 if (!boot_cpu_has(X86_FEATURE_MPX))
165 return 1;
166
167 setup_clear_cpu_cap(X86_FEATURE_MPX);
168 pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
169 return 1;
170 }
171 __setup("nompx", x86_mpx_setup);
172
173 #ifdef CONFIG_X86_64
174 static int __init x86_nopcid_setup(char *s)
175 {
176 /* nopcid doesn't accept parameters */
177 if (s)
178 return -EINVAL;
179
180 /* do not emit a message if the feature is not present */
181 if (!boot_cpu_has(X86_FEATURE_PCID))
182 return 0;
183
184 setup_clear_cpu_cap(X86_FEATURE_PCID);
185 pr_info("nopcid: PCID feature disabled\n");
186 return 0;
187 }
188 early_param("nopcid", x86_nopcid_setup);
189 #endif
190
191 static int __init x86_noinvpcid_setup(char *s)
192 {
193 /* noinvpcid doesn't accept parameters */
194 if (s)
195 return -EINVAL;
196
197 /* do not emit a message if the feature is not present */
198 if (!boot_cpu_has(X86_FEATURE_INVPCID))
199 return 0;
200
201 setup_clear_cpu_cap(X86_FEATURE_INVPCID);
202 pr_info("noinvpcid: INVPCID feature disabled\n");
203 return 0;
204 }
205 early_param("noinvpcid", x86_noinvpcid_setup);
206
207 #ifdef CONFIG_X86_32
208 static int cachesize_override = -1;
209 static int disable_x86_serial_nr = 1;
210
211 static int __init cachesize_setup(char *str)
212 {
213 get_option(&str, &cachesize_override);
214 return 1;
215 }
216 __setup("cachesize=", cachesize_setup);
217
218 static int __init x86_sep_setup(char *s)
219 {
220 setup_clear_cpu_cap(X86_FEATURE_SEP);
221 return 1;
222 }
223 __setup("nosep", x86_sep_setup);
224
225 /* Standard macro to see if a specific flag is changeable */
226 static inline int flag_is_changeable_p(u32 flag)
227 {
228 u32 f1, f2;
229
230 /*
231 * Cyrix and IDT cpus allow disabling of CPUID
232 * so the code below may return different results
233 * when it is executed before and after enabling
234 * the CPUID. Add "volatile" to not allow gcc to
235 * optimize the subsequent calls to this function.
236 */
237 asm volatile ("pushfl \n\t"
238 "pushfl \n\t"
239 "popl %0 \n\t"
240 "movl %0, %1 \n\t"
241 "xorl %2, %0 \n\t"
242 "pushl %0 \n\t"
243 "popfl \n\t"
244 "pushfl \n\t"
245 "popl %0 \n\t"
246 "popfl \n\t"
247
248 : "=&r" (f1), "=&r" (f2)
249 : "ir" (flag));
250
251 return ((f1^f2) & flag) != 0;
252 }
253
254 /* Probe for the CPUID instruction */
255 int have_cpuid_p(void)
256 {
257 return flag_is_changeable_p(X86_EFLAGS_ID);
258 }
259
260 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
261 {
262 unsigned long lo, hi;
263
264 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
265 return;
266
267 /* Disable processor serial number: */
268
269 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
270 lo |= 0x200000;
271 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
272
273 pr_notice("CPU serial number disabled.\n");
274 clear_cpu_cap(c, X86_FEATURE_PN);
275
276 /* Disabling the serial number may affect the cpuid level */
277 c->cpuid_level = cpuid_eax(0);
278 }
279
280 static int __init x86_serial_nr_setup(char *s)
281 {
282 disable_x86_serial_nr = 0;
283 return 1;
284 }
285 __setup("serialnumber", x86_serial_nr_setup);
286 #else
287 static inline int flag_is_changeable_p(u32 flag)
288 {
289 return 1;
290 }
291 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
292 {
293 }
294 #endif
295
296 static __init int setup_disable_smep(char *arg)
297 {
298 setup_clear_cpu_cap(X86_FEATURE_SMEP);
299 /* Check for things that depend on SMEP being enabled: */
300 check_mpx_erratum(&boot_cpu_data);
301 return 1;
302 }
303 __setup("nosmep", setup_disable_smep);
304
305 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
306 {
307 if (cpu_has(c, X86_FEATURE_SMEP))
308 cr4_set_bits(X86_CR4_SMEP);
309 }
310
311 static __init int setup_disable_smap(char *arg)
312 {
313 setup_clear_cpu_cap(X86_FEATURE_SMAP);
314 return 1;
315 }
316 __setup("nosmap", setup_disable_smap);
317
318 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
319 {
320 unsigned long eflags = native_save_fl();
321
322 /* This should have been cleared long ago */
323 BUG_ON(eflags & X86_EFLAGS_AC);
324
325 if (cpu_has(c, X86_FEATURE_SMAP)) {
326 #ifdef CONFIG_X86_SMAP
327 cr4_set_bits(X86_CR4_SMAP);
328 #else
329 cr4_clear_bits(X86_CR4_SMAP);
330 #endif
331 }
332 }
333
334 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
335 {
336 /* Check the boot processor, plus build option for UMIP. */
337 if (!cpu_feature_enabled(X86_FEATURE_UMIP))
338 goto out;
339
340 /* Check the current processor's cpuid bits. */
341 if (!cpu_has(c, X86_FEATURE_UMIP))
342 goto out;
343
344 cr4_set_bits(X86_CR4_UMIP);
345
346 pr_info("x86/cpu: Activated the Intel User Mode Instruction Prevention (UMIP) CPU feature\n");
347
348 return;
349
350 out:
351 /*
352 * Make sure UMIP is disabled in case it was enabled in a
353 * previous boot (e.g., via kexec).
354 */
355 cr4_clear_bits(X86_CR4_UMIP);
356 }
357
358 /*
359 * Protection Keys are not available in 32-bit mode.
360 */
361 static bool pku_disabled;
362
363 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
364 {
365 /* check the boot processor, plus compile options for PKU: */
366 if (!cpu_feature_enabled(X86_FEATURE_PKU))
367 return;
368 /* checks the actual processor's cpuid bits: */
369 if (!cpu_has(c, X86_FEATURE_PKU))
370 return;
371 if (pku_disabled)
372 return;
373
374 cr4_set_bits(X86_CR4_PKE);
375 /*
376 * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
377 * cpuid bit to be set. We need to ensure that we
378 * update that bit in this CPU's "cpu_info".
379 */
380 get_cpu_cap(c);
381 }
382
383 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
384 static __init int setup_disable_pku(char *arg)
385 {
386 /*
387 * Do not clear the X86_FEATURE_PKU bit. All of the
388 * runtime checks are against OSPKE so clearing the
389 * bit does nothing.
390 *
391 * This way, we will see "pku" in cpuinfo, but not
392 * "ospke", which is exactly what we want. It shows
393 * that the CPU has PKU, but the OS has not enabled it.
394 * This happens to be exactly how a system would look
395 * if we disabled the config option.
396 */
397 pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
398 pku_disabled = true;
399 return 1;
400 }
401 __setup("nopku", setup_disable_pku);
402 #endif /* CONFIG_X86_64 */
403
404 /*
405 * Some CPU features depend on higher CPUID levels, which may not always
406 * be available due to CPUID level capping or broken virtualization
407 * software. Add those features to this table to auto-disable them.
408 */
409 struct cpuid_dependent_feature {
410 u32 feature;
411 u32 level;
412 };
413
414 static const struct cpuid_dependent_feature
415 cpuid_dependent_features[] = {
416 { X86_FEATURE_MWAIT, 0x00000005 },
417 { X86_FEATURE_DCA, 0x00000009 },
418 { X86_FEATURE_XSAVE, 0x0000000d },
419 { 0, 0 }
420 };
421
422 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
423 {
424 const struct cpuid_dependent_feature *df;
425
426 for (df = cpuid_dependent_features; df->feature; df++) {
427
428 if (!cpu_has(c, df->feature))
429 continue;
430 /*
431 * Note: cpuid_level is set to -1 if unavailable, but
432 * extended_extended_level is set to 0 if unavailable
433 * and the legitimate extended levels are all negative
434 * when signed; hence the weird messing around with
435 * signs here...
436 */
437 if (!((s32)df->level < 0 ?
438 (u32)df->level > (u32)c->extended_cpuid_level :
439 (s32)df->level > (s32)c->cpuid_level))
440 continue;
441
442 clear_cpu_cap(c, df->feature);
443 if (!warn)
444 continue;
445
446 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
447 x86_cap_flag(df->feature), df->level);
448 }
449 }
450
451 /*
452 * Naming convention should be: <Name> [(<Codename>)]
453 * This table only is used unless init_<vendor>() below doesn't set it;
454 * in particular, if CPUID levels 0x80000002..4 are supported, this
455 * isn't used
456 */
457
458 /* Look up CPU names by table lookup. */
459 static const char *table_lookup_model(struct cpuinfo_x86 *c)
460 {
461 #ifdef CONFIG_X86_32
462 const struct legacy_cpu_model_info *info;
463
464 if (c->x86_model >= 16)
465 return NULL; /* Range check */
466
467 if (!this_cpu)
468 return NULL;
469
470 info = this_cpu->legacy_models;
471
472 while (info->family) {
473 if (info->family == c->x86)
474 return info->model_names[c->x86_model];
475 info++;
476 }
477 #endif
478 return NULL; /* Not found */
479 }
480
481 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS];
482 __u32 cpu_caps_set[NCAPINTS + NBUGINTS];
483
484 void load_percpu_segment(int cpu)
485 {
486 #ifdef CONFIG_X86_32
487 loadsegment(fs, __KERNEL_PERCPU);
488 #else
489 __loadsegment_simple(gs, 0);
490 wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
491 #endif
492 load_stack_canary_segment();
493 }
494
495 #ifdef CONFIG_X86_32
496 /* The 32-bit entry code needs to find cpu_entry_area. */
497 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
498 #endif
499
500 #ifdef CONFIG_X86_64
501 /*
502 * Special IST stacks which the CPU switches to when it calls
503 * an IST-marked descriptor entry. Up to 7 stacks (hardware
504 * limit), all of them are 4K, except the debug stack which
505 * is 8K.
506 */
507 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
508 [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
509 [DEBUG_STACK - 1] = DEBUG_STKSZ
510 };
511 #endif
512
513 /* Load the original GDT from the per-cpu structure */
514 void load_direct_gdt(int cpu)
515 {
516 struct desc_ptr gdt_descr;
517
518 gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
519 gdt_descr.size = GDT_SIZE - 1;
520 load_gdt(&gdt_descr);
521 }
522 EXPORT_SYMBOL_GPL(load_direct_gdt);
523
524 /* Load a fixmap remapping of the per-cpu GDT */
525 void load_fixmap_gdt(int cpu)
526 {
527 struct desc_ptr gdt_descr;
528
529 gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
530 gdt_descr.size = GDT_SIZE - 1;
531 load_gdt(&gdt_descr);
532 }
533 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
534
535 /*
536 * Current gdt points %fs at the "master" per-cpu area: after this,
537 * it's on the real one.
538 */
539 void switch_to_new_gdt(int cpu)
540 {
541 /* Load the original GDT */
542 load_direct_gdt(cpu);
543 /* Reload the per-cpu base */
544 load_percpu_segment(cpu);
545 }
546
547 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
548
549 static void get_model_name(struct cpuinfo_x86 *c)
550 {
551 unsigned int *v;
552 char *p, *q, *s;
553
554 if (c->extended_cpuid_level < 0x80000004)
555 return;
556
557 v = (unsigned int *)c->x86_model_id;
558 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
559 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
560 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
561 c->x86_model_id[48] = 0;
562
563 /* Trim whitespace */
564 p = q = s = &c->x86_model_id[0];
565
566 while (*p == ' ')
567 p++;
568
569 while (*p) {
570 /* Note the last non-whitespace index */
571 if (!isspace(*p))
572 s = q;
573
574 *q++ = *p++;
575 }
576
577 *(s + 1) = '\0';
578 }
579
580 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
581 {
582 unsigned int n, dummy, ebx, ecx, edx, l2size;
583
584 n = c->extended_cpuid_level;
585
586 if (n >= 0x80000005) {
587 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
588 c->x86_cache_size = (ecx>>24) + (edx>>24);
589 #ifdef CONFIG_X86_64
590 /* On K8 L1 TLB is inclusive, so don't count it */
591 c->x86_tlbsize = 0;
592 #endif
593 }
594
595 if (n < 0x80000006) /* Some chips just has a large L1. */
596 return;
597
598 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
599 l2size = ecx >> 16;
600
601 #ifdef CONFIG_X86_64
602 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
603 #else
604 /* do processor-specific cache resizing */
605 if (this_cpu->legacy_cache_size)
606 l2size = this_cpu->legacy_cache_size(c, l2size);
607
608 /* Allow user to override all this if necessary. */
609 if (cachesize_override != -1)
610 l2size = cachesize_override;
611
612 if (l2size == 0)
613 return; /* Again, no L2 cache is possible */
614 #endif
615
616 c->x86_cache_size = l2size;
617 }
618
619 u16 __read_mostly tlb_lli_4k[NR_INFO];
620 u16 __read_mostly tlb_lli_2m[NR_INFO];
621 u16 __read_mostly tlb_lli_4m[NR_INFO];
622 u16 __read_mostly tlb_lld_4k[NR_INFO];
623 u16 __read_mostly tlb_lld_2m[NR_INFO];
624 u16 __read_mostly tlb_lld_4m[NR_INFO];
625 u16 __read_mostly tlb_lld_1g[NR_INFO];
626
627 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
628 {
629 if (this_cpu->c_detect_tlb)
630 this_cpu->c_detect_tlb(c);
631
632 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
633 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
634 tlb_lli_4m[ENTRIES]);
635
636 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
637 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
638 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
639 }
640
641 void detect_ht(struct cpuinfo_x86 *c)
642 {
643 #ifdef CONFIG_SMP
644 u32 eax, ebx, ecx, edx;
645 int index_msb, core_bits;
646 static bool printed;
647
648 if (!cpu_has(c, X86_FEATURE_HT))
649 return;
650
651 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
652 goto out;
653
654 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
655 return;
656
657 cpuid(1, &eax, &ebx, &ecx, &edx);
658
659 smp_num_siblings = (ebx & 0xff0000) >> 16;
660
661 if (smp_num_siblings == 1) {
662 pr_info_once("CPU0: Hyper-Threading is disabled\n");
663 goto out;
664 }
665
666 if (smp_num_siblings <= 1)
667 goto out;
668
669 index_msb = get_count_order(smp_num_siblings);
670 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
671
672 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
673
674 index_msb = get_count_order(smp_num_siblings);
675
676 core_bits = get_count_order(c->x86_max_cores);
677
678 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
679 ((1 << core_bits) - 1);
680
681 out:
682 if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
683 pr_info("CPU: Physical Processor ID: %d\n",
684 c->phys_proc_id);
685 pr_info("CPU: Processor Core ID: %d\n",
686 c->cpu_core_id);
687 printed = 1;
688 }
689 #endif
690 }
691
692 static void get_cpu_vendor(struct cpuinfo_x86 *c)
693 {
694 char *v = c->x86_vendor_id;
695 int i;
696
697 for (i = 0; i < X86_VENDOR_NUM; i++) {
698 if (!cpu_devs[i])
699 break;
700
701 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
702 (cpu_devs[i]->c_ident[1] &&
703 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
704
705 this_cpu = cpu_devs[i];
706 c->x86_vendor = this_cpu->c_x86_vendor;
707 return;
708 }
709 }
710
711 pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
712 "CPU: Your system may be unstable.\n", v);
713
714 c->x86_vendor = X86_VENDOR_UNKNOWN;
715 this_cpu = &default_cpu;
716 }
717
718 void cpu_detect(struct cpuinfo_x86 *c)
719 {
720 /* Get vendor name */
721 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
722 (unsigned int *)&c->x86_vendor_id[0],
723 (unsigned int *)&c->x86_vendor_id[8],
724 (unsigned int *)&c->x86_vendor_id[4]);
725
726 c->x86 = 4;
727 /* Intel-defined flags: level 0x00000001 */
728 if (c->cpuid_level >= 0x00000001) {
729 u32 junk, tfms, cap0, misc;
730
731 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
732 c->x86 = x86_family(tfms);
733 c->x86_model = x86_model(tfms);
734 c->x86_stepping = x86_stepping(tfms);
735
736 if (cap0 & (1<<19)) {
737 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
738 c->x86_cache_alignment = c->x86_clflush_size;
739 }
740 }
741 }
742
743 static void apply_forced_caps(struct cpuinfo_x86 *c)
744 {
745 int i;
746
747 for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
748 c->x86_capability[i] &= ~cpu_caps_cleared[i];
749 c->x86_capability[i] |= cpu_caps_set[i];
750 }
751 }
752
753 static void init_speculation_control(struct cpuinfo_x86 *c)
754 {
755 /*
756 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
757 * and they also have a different bit for STIBP support. Also,
758 * a hypervisor might have set the individual AMD bits even on
759 * Intel CPUs, for finer-grained selection of what's available.
760 *
761 * We use the AMD bits in 0x8000_0008 EBX as the generic hardware
762 * features, which are visible in /proc/cpuinfo and used by the
763 * kernel. So set those accordingly from the Intel bits.
764 */
765 if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
766 set_cpu_cap(c, X86_FEATURE_IBRS);
767 set_cpu_cap(c, X86_FEATURE_IBPB);
768 }
769 if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
770 set_cpu_cap(c, X86_FEATURE_STIBP);
771 }
772
773 void get_cpu_cap(struct cpuinfo_x86 *c)
774 {
775 u32 eax, ebx, ecx, edx;
776
777 /* Intel-defined flags: level 0x00000001 */
778 if (c->cpuid_level >= 0x00000001) {
779 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
780
781 c->x86_capability[CPUID_1_ECX] = ecx;
782 c->x86_capability[CPUID_1_EDX] = edx;
783 }
784
785 /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
786 if (c->cpuid_level >= 0x00000006)
787 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
788
789 /* Additional Intel-defined flags: level 0x00000007 */
790 if (c->cpuid_level >= 0x00000007) {
791 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
792 c->x86_capability[CPUID_7_0_EBX] = ebx;
793 c->x86_capability[CPUID_7_ECX] = ecx;
794 c->x86_capability[CPUID_7_EDX] = edx;
795 }
796
797 /* Extended state features: level 0x0000000d */
798 if (c->cpuid_level >= 0x0000000d) {
799 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
800
801 c->x86_capability[CPUID_D_1_EAX] = eax;
802 }
803
804 /* Additional Intel-defined flags: level 0x0000000F */
805 if (c->cpuid_level >= 0x0000000F) {
806
807 /* QoS sub-leaf, EAX=0Fh, ECX=0 */
808 cpuid_count(0x0000000F, 0, &eax, &ebx, &ecx, &edx);
809 c->x86_capability[CPUID_F_0_EDX] = edx;
810
811 if (cpu_has(c, X86_FEATURE_CQM_LLC)) {
812 /* will be overridden if occupancy monitoring exists */
813 c->x86_cache_max_rmid = ebx;
814
815 /* QoS sub-leaf, EAX=0Fh, ECX=1 */
816 cpuid_count(0x0000000F, 1, &eax, &ebx, &ecx, &edx);
817 c->x86_capability[CPUID_F_1_EDX] = edx;
818
819 if ((cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC)) ||
820 ((cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL)) ||
821 (cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)))) {
822 c->x86_cache_max_rmid = ecx;
823 c->x86_cache_occ_scale = ebx;
824 }
825 } else {
826 c->x86_cache_max_rmid = -1;
827 c->x86_cache_occ_scale = -1;
828 }
829 }
830
831 /* AMD-defined flags: level 0x80000001 */
832 eax = cpuid_eax(0x80000000);
833 c->extended_cpuid_level = eax;
834
835 if ((eax & 0xffff0000) == 0x80000000) {
836 if (eax >= 0x80000001) {
837 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
838
839 c->x86_capability[CPUID_8000_0001_ECX] = ecx;
840 c->x86_capability[CPUID_8000_0001_EDX] = edx;
841 }
842 }
843
844 if (c->extended_cpuid_level >= 0x80000007) {
845 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
846
847 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
848 c->x86_power = edx;
849 }
850
851 if (c->extended_cpuid_level >= 0x80000008) {
852 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
853
854 c->x86_virt_bits = (eax >> 8) & 0xff;
855 c->x86_phys_bits = eax & 0xff;
856 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
857 }
858 #ifdef CONFIG_X86_32
859 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
860 c->x86_phys_bits = 36;
861 #endif
862
863 if (c->extended_cpuid_level >= 0x8000000a)
864 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
865
866 init_scattered_cpuid_features(c);
867 init_speculation_control(c);
868
869 /*
870 * Clear/Set all flags overridden by options, after probe.
871 * This needs to happen each time we re-probe, which may happen
872 * several times during CPU initialization.
873 */
874 apply_forced_caps(c);
875 }
876
877 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
878 {
879 #ifdef CONFIG_X86_32
880 int i;
881
882 /*
883 * First of all, decide if this is a 486 or higher
884 * It's a 486 if we can modify the AC flag
885 */
886 if (flag_is_changeable_p(X86_EFLAGS_AC))
887 c->x86 = 4;
888 else
889 c->x86 = 3;
890
891 for (i = 0; i < X86_VENDOR_NUM; i++)
892 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
893 c->x86_vendor_id[0] = 0;
894 cpu_devs[i]->c_identify(c);
895 if (c->x86_vendor_id[0]) {
896 get_cpu_vendor(c);
897 break;
898 }
899 }
900 #endif
901 }
902
903 static const __initconst struct x86_cpu_id cpu_no_speculation[] = {
904 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_CEDARVIEW, X86_FEATURE_ANY },
905 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_CLOVERVIEW, X86_FEATURE_ANY },
906 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_LINCROFT, X86_FEATURE_ANY },
907 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_PENWELL, X86_FEATURE_ANY },
908 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_PINEVIEW, X86_FEATURE_ANY },
909 { X86_VENDOR_CENTAUR, 5 },
910 { X86_VENDOR_INTEL, 5 },
911 { X86_VENDOR_NSC, 5 },
912 { X86_VENDOR_ANY, 4 },
913 {}
914 };
915
916 static const __initconst struct x86_cpu_id cpu_no_meltdown[] = {
917 { X86_VENDOR_AMD },
918 {}
919 };
920
921 static const __initconst struct x86_cpu_id cpu_no_spec_store_bypass[] = {
922 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_PINEVIEW },
923 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_LINCROFT },
924 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_PENWELL },
925 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_CLOVERVIEW },
926 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_CEDARVIEW },
927 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_SILVERMONT1 },
928 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_AIRMONT },
929 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_SILVERMONT2 },
930 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_MERRIFIELD },
931 { X86_VENDOR_INTEL, 6, INTEL_FAM6_CORE_YONAH },
932 { X86_VENDOR_INTEL, 6, INTEL_FAM6_XEON_PHI_KNL },
933 { X86_VENDOR_INTEL, 6, INTEL_FAM6_XEON_PHI_KNM },
934 { X86_VENDOR_CENTAUR, 5, },
935 { X86_VENDOR_INTEL, 5, },
936 { X86_VENDOR_NSC, 5, },
937 { X86_VENDOR_ANY, 4, },
938 {}
939 };
940
941 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
942 {
943 u64 ia32_cap = 0;
944
945 if (!x86_match_cpu(cpu_no_spec_store_bypass))
946 setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
947
948 if (x86_match_cpu(cpu_no_speculation))
949 return;
950
951 setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
952 setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
953
954 if (x86_match_cpu(cpu_no_meltdown))
955 return;
956
957 if (cpu_has(c, X86_FEATURE_ARCH_CAPABILITIES))
958 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
959
960 /* Rogue Data Cache Load? No! */
961 if (ia32_cap & ARCH_CAP_RDCL_NO)
962 return;
963
964 setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
965 }
966
967 /*
968 * Do minimum CPU detection early.
969 * Fields really needed: vendor, cpuid_level, family, model, mask,
970 * cache alignment.
971 * The others are not touched to avoid unwanted side effects.
972 *
973 * WARNING: this function is only called on the boot CPU. Don't add code
974 * here that is supposed to run on all CPUs.
975 */
976 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
977 {
978 #ifdef CONFIG_X86_64
979 c->x86_clflush_size = 64;
980 c->x86_phys_bits = 36;
981 c->x86_virt_bits = 48;
982 #else
983 c->x86_clflush_size = 32;
984 c->x86_phys_bits = 32;
985 c->x86_virt_bits = 32;
986 #endif
987 c->x86_cache_alignment = c->x86_clflush_size;
988
989 memset(&c->x86_capability, 0, sizeof c->x86_capability);
990 c->extended_cpuid_level = 0;
991
992 /* cyrix could have cpuid enabled via c_identify()*/
993 if (have_cpuid_p()) {
994 cpu_detect(c);
995 get_cpu_vendor(c);
996 get_cpu_cap(c);
997 setup_force_cpu_cap(X86_FEATURE_CPUID);
998
999 if (this_cpu->c_early_init)
1000 this_cpu->c_early_init(c);
1001
1002 c->cpu_index = 0;
1003 filter_cpuid_features(c, false);
1004
1005 if (this_cpu->c_bsp_init)
1006 this_cpu->c_bsp_init(c);
1007 } else {
1008 identify_cpu_without_cpuid(c);
1009 setup_clear_cpu_cap(X86_FEATURE_CPUID);
1010 }
1011
1012 setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1013
1014 cpu_set_bug_bits(c);
1015
1016 fpu__init_system(c);
1017
1018 #ifdef CONFIG_X86_32
1019 /*
1020 * Regardless of whether PCID is enumerated, the SDM says
1021 * that it can't be enabled in 32-bit mode.
1022 */
1023 setup_clear_cpu_cap(X86_FEATURE_PCID);
1024 #endif
1025 }
1026
1027 void __init early_cpu_init(void)
1028 {
1029 const struct cpu_dev *const *cdev;
1030 int count = 0;
1031
1032 #ifdef CONFIG_PROCESSOR_SELECT
1033 pr_info("KERNEL supported cpus:\n");
1034 #endif
1035
1036 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1037 const struct cpu_dev *cpudev = *cdev;
1038
1039 if (count >= X86_VENDOR_NUM)
1040 break;
1041 cpu_devs[count] = cpudev;
1042 count++;
1043
1044 #ifdef CONFIG_PROCESSOR_SELECT
1045 {
1046 unsigned int j;
1047
1048 for (j = 0; j < 2; j++) {
1049 if (!cpudev->c_ident[j])
1050 continue;
1051 pr_info(" %s %s\n", cpudev->c_vendor,
1052 cpudev->c_ident[j]);
1053 }
1054 }
1055 #endif
1056 }
1057 early_identify_cpu(&boot_cpu_data);
1058 }
1059
1060 /*
1061 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1062 * unfortunately, that's not true in practice because of early VIA
1063 * chips and (more importantly) broken virtualizers that are not easy
1064 * to detect. In the latter case it doesn't even *fail* reliably, so
1065 * probing for it doesn't even work. Disable it completely on 32-bit
1066 * unless we can find a reliable way to detect all the broken cases.
1067 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1068 */
1069 static void detect_nopl(struct cpuinfo_x86 *c)
1070 {
1071 #ifdef CONFIG_X86_32
1072 clear_cpu_cap(c, X86_FEATURE_NOPL);
1073 #else
1074 set_cpu_cap(c, X86_FEATURE_NOPL);
1075 #endif
1076 }
1077
1078 static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
1079 {
1080 #ifdef CONFIG_X86_64
1081 /*
1082 * Empirically, writing zero to a segment selector on AMD does
1083 * not clear the base, whereas writing zero to a segment
1084 * selector on Intel does clear the base. Intel's behavior
1085 * allows slightly faster context switches in the common case
1086 * where GS is unused by the prev and next threads.
1087 *
1088 * Since neither vendor documents this anywhere that I can see,
1089 * detect it directly instead of hardcoding the choice by
1090 * vendor.
1091 *
1092 * I've designated AMD's behavior as the "bug" because it's
1093 * counterintuitive and less friendly.
1094 */
1095
1096 unsigned long old_base, tmp;
1097 rdmsrl(MSR_FS_BASE, old_base);
1098 wrmsrl(MSR_FS_BASE, 1);
1099 loadsegment(fs, 0);
1100 rdmsrl(MSR_FS_BASE, tmp);
1101 if (tmp != 0)
1102 set_cpu_bug(c, X86_BUG_NULL_SEG);
1103 wrmsrl(MSR_FS_BASE, old_base);
1104 #endif
1105 }
1106
1107 static void generic_identify(struct cpuinfo_x86 *c)
1108 {
1109 c->extended_cpuid_level = 0;
1110
1111 if (!have_cpuid_p())
1112 identify_cpu_without_cpuid(c);
1113
1114 /* cyrix could have cpuid enabled via c_identify()*/
1115 if (!have_cpuid_p())
1116 return;
1117
1118 cpu_detect(c);
1119
1120 get_cpu_vendor(c);
1121
1122 get_cpu_cap(c);
1123
1124 if (c->cpuid_level >= 0x00000001) {
1125 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1126 #ifdef CONFIG_X86_32
1127 # ifdef CONFIG_SMP
1128 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1129 # else
1130 c->apicid = c->initial_apicid;
1131 # endif
1132 #endif
1133 c->phys_proc_id = c->initial_apicid;
1134 }
1135
1136 get_model_name(c); /* Default name */
1137
1138 detect_nopl(c);
1139
1140 detect_null_seg_behavior(c);
1141
1142 /*
1143 * ESPFIX is a strange bug. All real CPUs have it. Paravirt
1144 * systems that run Linux at CPL > 0 may or may not have the
1145 * issue, but, even if they have the issue, there's absolutely
1146 * nothing we can do about it because we can't use the real IRET
1147 * instruction.
1148 *
1149 * NB: For the time being, only 32-bit kernels support
1150 * X86_BUG_ESPFIX as such. 64-bit kernels directly choose
1151 * whether to apply espfix using paravirt hooks. If any
1152 * non-paravirt system ever shows up that does *not* have the
1153 * ESPFIX issue, we can change this.
1154 */
1155 #ifdef CONFIG_X86_32
1156 # ifdef CONFIG_PARAVIRT
1157 do {
1158 extern void native_iret(void);
1159 if (pv_cpu_ops.iret == native_iret)
1160 set_cpu_bug(c, X86_BUG_ESPFIX);
1161 } while (0);
1162 # else
1163 set_cpu_bug(c, X86_BUG_ESPFIX);
1164 # endif
1165 #endif
1166 }
1167
1168 static void x86_init_cache_qos(struct cpuinfo_x86 *c)
1169 {
1170 /*
1171 * The heavy lifting of max_rmid and cache_occ_scale are handled
1172 * in get_cpu_cap(). Here we just set the max_rmid for the boot_cpu
1173 * in case CQM bits really aren't there in this CPU.
1174 */
1175 if (c != &boot_cpu_data) {
1176 boot_cpu_data.x86_cache_max_rmid =
1177 min(boot_cpu_data.x86_cache_max_rmid,
1178 c->x86_cache_max_rmid);
1179 }
1180 }
1181
1182 /*
1183 * Validate that ACPI/mptables have the same information about the
1184 * effective APIC id and update the package map.
1185 */
1186 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1187 {
1188 #ifdef CONFIG_SMP
1189 unsigned int apicid, cpu = smp_processor_id();
1190
1191 apicid = apic->cpu_present_to_apicid(cpu);
1192
1193 if (apicid != c->apicid) {
1194 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1195 cpu, apicid, c->initial_apicid);
1196 }
1197 BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1198 #else
1199 c->logical_proc_id = 0;
1200 #endif
1201 }
1202
1203 /*
1204 * This does the hard work of actually picking apart the CPU stuff...
1205 */
1206 static void identify_cpu(struct cpuinfo_x86 *c)
1207 {
1208 int i;
1209
1210 c->loops_per_jiffy = loops_per_jiffy;
1211 c->x86_cache_size = 0;
1212 c->x86_vendor = X86_VENDOR_UNKNOWN;
1213 c->x86_model = c->x86_stepping = 0; /* So far unknown... */
1214 c->x86_vendor_id[0] = '\0'; /* Unset */
1215 c->x86_model_id[0] = '\0'; /* Unset */
1216 c->x86_max_cores = 1;
1217 c->x86_coreid_bits = 0;
1218 c->cu_id = 0xff;
1219 #ifdef CONFIG_X86_64
1220 c->x86_clflush_size = 64;
1221 c->x86_phys_bits = 36;
1222 c->x86_virt_bits = 48;
1223 #else
1224 c->cpuid_level = -1; /* CPUID not detected */
1225 c->x86_clflush_size = 32;
1226 c->x86_phys_bits = 32;
1227 c->x86_virt_bits = 32;
1228 #endif
1229 c->x86_cache_alignment = c->x86_clflush_size;
1230 memset(&c->x86_capability, 0, sizeof c->x86_capability);
1231
1232 generic_identify(c);
1233
1234 if (this_cpu->c_identify)
1235 this_cpu->c_identify(c);
1236
1237 /* Clear/Set all flags overridden by options, after probe */
1238 apply_forced_caps(c);
1239
1240 #ifdef CONFIG_X86_64
1241 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1242 #endif
1243
1244 /*
1245 * Vendor-specific initialization. In this section we
1246 * canonicalize the feature flags, meaning if there are
1247 * features a certain CPU supports which CPUID doesn't
1248 * tell us, CPUID claiming incorrect flags, or other bugs,
1249 * we handle them here.
1250 *
1251 * At the end of this section, c->x86_capability better
1252 * indicate the features this CPU genuinely supports!
1253 */
1254 if (this_cpu->c_init)
1255 this_cpu->c_init(c);
1256
1257 /* Disable the PN if appropriate */
1258 squash_the_stupid_serial_number(c);
1259
1260 /* Set up SMEP/SMAP/UMIP */
1261 setup_smep(c);
1262 setup_smap(c);
1263 setup_umip(c);
1264
1265 /*
1266 * The vendor-specific functions might have changed features.
1267 * Now we do "generic changes."
1268 */
1269
1270 /* Filter out anything that depends on CPUID levels we don't have */
1271 filter_cpuid_features(c, true);
1272
1273 /* If the model name is still unset, do table lookup. */
1274 if (!c->x86_model_id[0]) {
1275 const char *p;
1276 p = table_lookup_model(c);
1277 if (p)
1278 strcpy(c->x86_model_id, p);
1279 else
1280 /* Last resort... */
1281 sprintf(c->x86_model_id, "%02x/%02x",
1282 c->x86, c->x86_model);
1283 }
1284
1285 #ifdef CONFIG_X86_64
1286 detect_ht(c);
1287 #endif
1288
1289 x86_init_rdrand(c);
1290 x86_init_cache_qos(c);
1291 setup_pku(c);
1292
1293 /*
1294 * Clear/Set all flags overridden by options, need do it
1295 * before following smp all cpus cap AND.
1296 */
1297 apply_forced_caps(c);
1298
1299 /*
1300 * On SMP, boot_cpu_data holds the common feature set between
1301 * all CPUs; so make sure that we indicate which features are
1302 * common between the CPUs. The first time this routine gets
1303 * executed, c == &boot_cpu_data.
1304 */
1305 if (c != &boot_cpu_data) {
1306 /* AND the already accumulated flags with these */
1307 for (i = 0; i < NCAPINTS; i++)
1308 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1309
1310 /* OR, i.e. replicate the bug flags */
1311 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1312 c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1313 }
1314
1315 /* Init Machine Check Exception if available. */
1316 mcheck_cpu_init(c);
1317
1318 select_idle_routine(c);
1319
1320 #ifdef CONFIG_NUMA
1321 numa_add_cpu(smp_processor_id());
1322 #endif
1323 }
1324
1325 /*
1326 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1327 * on 32-bit kernels:
1328 */
1329 #ifdef CONFIG_X86_32
1330 void enable_sep_cpu(void)
1331 {
1332 struct tss_struct *tss;
1333 int cpu;
1334
1335 if (!boot_cpu_has(X86_FEATURE_SEP))
1336 return;
1337
1338 cpu = get_cpu();
1339 tss = &per_cpu(cpu_tss_rw, cpu);
1340
1341 /*
1342 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1343 * see the big comment in struct x86_hw_tss's definition.
1344 */
1345
1346 tss->x86_tss.ss1 = __KERNEL_CS;
1347 wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1348 wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1349 wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1350
1351 put_cpu();
1352 }
1353 #endif
1354
1355 void __init identify_boot_cpu(void)
1356 {
1357 identify_cpu(&boot_cpu_data);
1358 #ifdef CONFIG_X86_32
1359 sysenter_setup();
1360 enable_sep_cpu();
1361 #endif
1362 cpu_detect_tlb(&boot_cpu_data);
1363 }
1364
1365 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1366 {
1367 BUG_ON(c == &boot_cpu_data);
1368 identify_cpu(c);
1369 #ifdef CONFIG_X86_32
1370 enable_sep_cpu();
1371 #endif
1372 mtrr_ap_init();
1373 validate_apic_and_package_id(c);
1374 }
1375
1376 static __init int setup_noclflush(char *arg)
1377 {
1378 setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1379 setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1380 return 1;
1381 }
1382 __setup("noclflush", setup_noclflush);
1383
1384 void print_cpu_info(struct cpuinfo_x86 *c)
1385 {
1386 const char *vendor = NULL;
1387
1388 if (c->x86_vendor < X86_VENDOR_NUM) {
1389 vendor = this_cpu->c_vendor;
1390 } else {
1391 if (c->cpuid_level >= 0)
1392 vendor = c->x86_vendor_id;
1393 }
1394
1395 if (vendor && !strstr(c->x86_model_id, vendor))
1396 pr_cont("%s ", vendor);
1397
1398 if (c->x86_model_id[0])
1399 pr_cont("%s", c->x86_model_id);
1400 else
1401 pr_cont("%d86", c->x86);
1402
1403 pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1404
1405 if (c->x86_stepping || c->cpuid_level >= 0)
1406 pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1407 else
1408 pr_cont(")\n");
1409 }
1410
1411 /*
1412 * clearcpuid= was already parsed in fpu__init_parse_early_param.
1413 * But we need to keep a dummy __setup around otherwise it would
1414 * show up as an environment variable for init.
1415 */
1416 static __init int setup_clearcpuid(char *arg)
1417 {
1418 return 1;
1419 }
1420 __setup("clearcpuid=", setup_clearcpuid);
1421
1422 #ifdef CONFIG_X86_64
1423 DEFINE_PER_CPU_FIRST(union irq_stack_union,
1424 irq_stack_union) __aligned(PAGE_SIZE) __visible;
1425
1426 /*
1427 * The following percpu variables are hot. Align current_task to
1428 * cacheline size such that they fall in the same cacheline.
1429 */
1430 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1431 &init_task;
1432 EXPORT_PER_CPU_SYMBOL(current_task);
1433
1434 DEFINE_PER_CPU(char *, irq_stack_ptr) =
1435 init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE;
1436
1437 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1438
1439 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1440 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1441
1442 /* May not be marked __init: used by software suspend */
1443 void syscall_init(void)
1444 {
1445 extern char _entry_trampoline[];
1446 extern char entry_SYSCALL_64_trampoline[];
1447
1448 int cpu = smp_processor_id();
1449 unsigned long SYSCALL64_entry_trampoline =
1450 (unsigned long)get_cpu_entry_area(cpu)->entry_trampoline +
1451 (entry_SYSCALL_64_trampoline - _entry_trampoline);
1452
1453 wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1454 if (static_cpu_has(X86_FEATURE_PTI))
1455 wrmsrl(MSR_LSTAR, SYSCALL64_entry_trampoline);
1456 else
1457 wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1458
1459 #ifdef CONFIG_IA32_EMULATION
1460 wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1461 /*
1462 * This only works on Intel CPUs.
1463 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1464 * This does not cause SYSENTER to jump to the wrong location, because
1465 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1466 */
1467 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1468 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1));
1469 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1470 #else
1471 wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1472 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1473 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1474 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1475 #endif
1476
1477 /* Flags to clear on syscall */
1478 wrmsrl(MSR_SYSCALL_MASK,
1479 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1480 X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1481 }
1482
1483 /*
1484 * Copies of the original ist values from the tss are only accessed during
1485 * debugging, no special alignment required.
1486 */
1487 DEFINE_PER_CPU(struct orig_ist, orig_ist);
1488
1489 static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1490 DEFINE_PER_CPU(int, debug_stack_usage);
1491
1492 int is_debug_stack(unsigned long addr)
1493 {
1494 return __this_cpu_read(debug_stack_usage) ||
1495 (addr <= __this_cpu_read(debug_stack_addr) &&
1496 addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ));
1497 }
1498 NOKPROBE_SYMBOL(is_debug_stack);
1499
1500 DEFINE_PER_CPU(u32, debug_idt_ctr);
1501
1502 void debug_stack_set_zero(void)
1503 {
1504 this_cpu_inc(debug_idt_ctr);
1505 load_current_idt();
1506 }
1507 NOKPROBE_SYMBOL(debug_stack_set_zero);
1508
1509 void debug_stack_reset(void)
1510 {
1511 if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1512 return;
1513 if (this_cpu_dec_return(debug_idt_ctr) == 0)
1514 load_current_idt();
1515 }
1516 NOKPROBE_SYMBOL(debug_stack_reset);
1517
1518 #else /* CONFIG_X86_64 */
1519
1520 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1521 EXPORT_PER_CPU_SYMBOL(current_task);
1522 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1523 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1524
1525 /*
1526 * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1527 * the top of the kernel stack. Use an extra percpu variable to track the
1528 * top of the kernel stack directly.
1529 */
1530 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1531 (unsigned long)&init_thread_union + THREAD_SIZE;
1532 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1533
1534 #ifdef CONFIG_CC_STACKPROTECTOR
1535 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1536 #endif
1537
1538 #endif /* CONFIG_X86_64 */
1539
1540 /*
1541 * Clear all 6 debug registers:
1542 */
1543 static void clear_all_debug_regs(void)
1544 {
1545 int i;
1546
1547 for (i = 0; i < 8; i++) {
1548 /* Ignore db4, db5 */
1549 if ((i == 4) || (i == 5))
1550 continue;
1551
1552 set_debugreg(0, i);
1553 }
1554 }
1555
1556 #ifdef CONFIG_KGDB
1557 /*
1558 * Restore debug regs if using kgdbwait and you have a kernel debugger
1559 * connection established.
1560 */
1561 static void dbg_restore_debug_regs(void)
1562 {
1563 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1564 arch_kgdb_ops.correct_hw_break();
1565 }
1566 #else /* ! CONFIG_KGDB */
1567 #define dbg_restore_debug_regs()
1568 #endif /* ! CONFIG_KGDB */
1569
1570 static void wait_for_master_cpu(int cpu)
1571 {
1572 #ifdef CONFIG_SMP
1573 /*
1574 * wait for ACK from master CPU before continuing
1575 * with AP initialization
1576 */
1577 WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1578 while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1579 cpu_relax();
1580 #endif
1581 }
1582
1583 /*
1584 * cpu_init() initializes state that is per-CPU. Some data is already
1585 * initialized (naturally) in the bootstrap process, such as the GDT
1586 * and IDT. We reload them nevertheless, this function acts as a
1587 * 'CPU state barrier', nothing should get across.
1588 * A lot of state is already set up in PDA init for 64 bit
1589 */
1590 #ifdef CONFIG_X86_64
1591
1592 void cpu_init(void)
1593 {
1594 struct orig_ist *oist;
1595 struct task_struct *me;
1596 struct tss_struct *t;
1597 unsigned long v;
1598 int cpu = raw_smp_processor_id();
1599 int i;
1600
1601 wait_for_master_cpu(cpu);
1602
1603 /*
1604 * Initialize the CR4 shadow before doing anything that could
1605 * try to read it.
1606 */
1607 cr4_init_shadow();
1608
1609 if (cpu)
1610 load_ucode_ap();
1611
1612 t = &per_cpu(cpu_tss_rw, cpu);
1613 oist = &per_cpu(orig_ist, cpu);
1614
1615 #ifdef CONFIG_NUMA
1616 if (this_cpu_read(numa_node) == 0 &&
1617 early_cpu_to_node(cpu) != NUMA_NO_NODE)
1618 set_numa_node(early_cpu_to_node(cpu));
1619 #endif
1620
1621 me = current;
1622
1623 pr_debug("Initializing CPU#%d\n", cpu);
1624
1625 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1626
1627 /*
1628 * Initialize the per-CPU GDT with the boot GDT,
1629 * and set up the GDT descriptor:
1630 */
1631
1632 switch_to_new_gdt(cpu);
1633 loadsegment(fs, 0);
1634
1635 load_current_idt();
1636
1637 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1638 syscall_init();
1639
1640 wrmsrl(MSR_FS_BASE, 0);
1641 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1642 barrier();
1643
1644 x86_configure_nx();
1645 x2apic_setup();
1646
1647 /*
1648 * set up and load the per-CPU TSS
1649 */
1650 if (!oist->ist[0]) {
1651 char *estacks = get_cpu_entry_area(cpu)->exception_stacks;
1652
1653 for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1654 estacks += exception_stack_sizes[v];
1655 oist->ist[v] = t->x86_tss.ist[v] =
1656 (unsigned long)estacks;
1657 if (v == DEBUG_STACK-1)
1658 per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1659 }
1660 }
1661
1662 t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
1663
1664 /*
1665 * <= is required because the CPU will access up to
1666 * 8 bits beyond the end of the IO permission bitmap.
1667 */
1668 for (i = 0; i <= IO_BITMAP_LONGS; i++)
1669 t->io_bitmap[i] = ~0UL;
1670
1671 mmgrab(&init_mm);
1672 me->active_mm = &init_mm;
1673 BUG_ON(me->mm);
1674 initialize_tlbstate_and_flush();
1675 enter_lazy_tlb(&init_mm, me);
1676
1677 /*
1678 * Initialize the TSS. sp0 points to the entry trampoline stack
1679 * regardless of what task is running.
1680 */
1681 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1682 load_TR_desc();
1683 load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
1684
1685 load_mm_ldt(&init_mm);
1686
1687 clear_all_debug_regs();
1688 dbg_restore_debug_regs();
1689
1690 fpu__init_cpu();
1691
1692 if (is_uv_system())
1693 uv_cpu_init();
1694
1695 load_fixmap_gdt(cpu);
1696 }
1697
1698 #else
1699
1700 void cpu_init(void)
1701 {
1702 int cpu = smp_processor_id();
1703 struct task_struct *curr = current;
1704 struct tss_struct *t = &per_cpu(cpu_tss_rw, cpu);
1705
1706 wait_for_master_cpu(cpu);
1707
1708 /*
1709 * Initialize the CR4 shadow before doing anything that could
1710 * try to read it.
1711 */
1712 cr4_init_shadow();
1713
1714 show_ucode_info_early();
1715
1716 pr_info("Initializing CPU#%d\n", cpu);
1717
1718 if (cpu_feature_enabled(X86_FEATURE_VME) ||
1719 boot_cpu_has(X86_FEATURE_TSC) ||
1720 boot_cpu_has(X86_FEATURE_DE))
1721 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1722
1723 load_current_idt();
1724 switch_to_new_gdt(cpu);
1725
1726 /*
1727 * Set up and load the per-CPU TSS and LDT
1728 */
1729 mmgrab(&init_mm);
1730 curr->active_mm = &init_mm;
1731 BUG_ON(curr->mm);
1732 initialize_tlbstate_and_flush();
1733 enter_lazy_tlb(&init_mm, curr);
1734
1735 /*
1736 * Initialize the TSS. Don't bother initializing sp0, as the initial
1737 * task never enters user mode.
1738 */
1739 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1740 load_TR_desc();
1741
1742 load_mm_ldt(&init_mm);
1743
1744 t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
1745
1746 #ifdef CONFIG_DOUBLEFAULT
1747 /* Set up doublefault TSS pointer in the GDT */
1748 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1749 #endif
1750
1751 clear_all_debug_regs();
1752 dbg_restore_debug_regs();
1753
1754 fpu__init_cpu();
1755
1756 load_fixmap_gdt(cpu);
1757 }
1758 #endif
1759
1760 static void bsp_resume(void)
1761 {
1762 if (this_cpu->c_bsp_resume)
1763 this_cpu->c_bsp_resume(&boot_cpu_data);
1764 }
1765
1766 static struct syscore_ops cpu_syscore_ops = {
1767 .resume = bsp_resume,
1768 };
1769
1770 static int __init init_cpu_syscore(void)
1771 {
1772 register_syscore_ops(&cpu_syscore_ops);
1773 return 0;
1774 }
1775 core_initcall(init_cpu_syscore);
1776
1777 /*
1778 * The microcode loader calls this upon late microcode load to recheck features,
1779 * only when microcode has been updated. Caller holds microcode_mutex and CPU
1780 * hotplug lock.
1781 */
1782 void microcode_check(void)
1783 {
1784 struct cpuinfo_x86 info;
1785
1786 perf_check_microcode();
1787
1788 /* Reload CPUID max function as it might've changed. */
1789 info.cpuid_level = cpuid_eax(0);
1790
1791 /*
1792 * Copy all capability leafs to pick up the synthetic ones so that
1793 * memcmp() below doesn't fail on that. The ones coming from CPUID will
1794 * get overwritten in get_cpu_cap().
1795 */
1796 memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability));
1797
1798 get_cpu_cap(&info);
1799
1800 if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)))
1801 return;
1802
1803 pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
1804 pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
1805 }