]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kernel/cpu/common.c
Merge branch 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kernel / cpu / common.c
1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/export.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/ctype.h>
9 #include <linux/delay.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/clock.h>
12 #include <linux/sched/task.h>
13 #include <linux/init.h>
14 #include <linux/kprobes.h>
15 #include <linux/kgdb.h>
16 #include <linux/smp.h>
17 #include <linux/io.h>
18 #include <linux/syscore_ops.h>
19
20 #include <asm/stackprotector.h>
21 #include <asm/perf_event.h>
22 #include <asm/mmu_context.h>
23 #include <asm/archrandom.h>
24 #include <asm/hypervisor.h>
25 #include <asm/processor.h>
26 #include <asm/tlbflush.h>
27 #include <asm/debugreg.h>
28 #include <asm/sections.h>
29 #include <asm/vsyscall.h>
30 #include <linux/topology.h>
31 #include <linux/cpumask.h>
32 #include <asm/pgtable.h>
33 #include <linux/atomic.h>
34 #include <asm/proto.h>
35 #include <asm/setup.h>
36 #include <asm/apic.h>
37 #include <asm/desc.h>
38 #include <asm/fpu/internal.h>
39 #include <asm/mtrr.h>
40 #include <asm/hwcap2.h>
41 #include <linux/numa.h>
42 #include <asm/asm.h>
43 #include <asm/bugs.h>
44 #include <asm/cpu.h>
45 #include <asm/mce.h>
46 #include <asm/msr.h>
47 #include <asm/pat.h>
48 #include <asm/microcode.h>
49 #include <asm/microcode_intel.h>
50
51 #ifdef CONFIG_X86_LOCAL_APIC
52 #include <asm/uv/uv.h>
53 #endif
54
55 #include "cpu.h"
56
57 u32 elf_hwcap2 __read_mostly;
58
59 /* all of these masks are initialized in setup_cpu_local_masks() */
60 cpumask_var_t cpu_initialized_mask;
61 cpumask_var_t cpu_callout_mask;
62 cpumask_var_t cpu_callin_mask;
63
64 /* representing cpus for which sibling maps can be computed */
65 cpumask_var_t cpu_sibling_setup_mask;
66
67 /* correctly size the local cpu masks */
68 void __init setup_cpu_local_masks(void)
69 {
70 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
71 alloc_bootmem_cpumask_var(&cpu_callin_mask);
72 alloc_bootmem_cpumask_var(&cpu_callout_mask);
73 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
74 }
75
76 static void default_init(struct cpuinfo_x86 *c)
77 {
78 #ifdef CONFIG_X86_64
79 cpu_detect_cache_sizes(c);
80 #else
81 /* Not much we can do here... */
82 /* Check if at least it has cpuid */
83 if (c->cpuid_level == -1) {
84 /* No cpuid. It must be an ancient CPU */
85 if (c->x86 == 4)
86 strcpy(c->x86_model_id, "486");
87 else if (c->x86 == 3)
88 strcpy(c->x86_model_id, "386");
89 }
90 #endif
91 }
92
93 static const struct cpu_dev default_cpu = {
94 .c_init = default_init,
95 .c_vendor = "Unknown",
96 .c_x86_vendor = X86_VENDOR_UNKNOWN,
97 };
98
99 static const struct cpu_dev *this_cpu = &default_cpu;
100
101 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
102 #ifdef CONFIG_X86_64
103 /*
104 * We need valid kernel segments for data and code in long mode too
105 * IRET will check the segment types kkeil 2000/10/28
106 * Also sysret mandates a special GDT layout
107 *
108 * TLS descriptors are currently at a different place compared to i386.
109 * Hopefully nobody expects them at a fixed place (Wine?)
110 */
111 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
112 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
113 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
114 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
115 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
116 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
117 #else
118 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
119 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
120 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
121 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
122 /*
123 * Segments used for calling PnP BIOS have byte granularity.
124 * They code segments and data segments have fixed 64k limits,
125 * the transfer segment sizes are set at run time.
126 */
127 /* 32-bit code */
128 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
129 /* 16-bit code */
130 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
131 /* 16-bit data */
132 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
133 /* 16-bit data */
134 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
135 /* 16-bit data */
136 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
137 /*
138 * The APM segments have byte granularity and their bases
139 * are set at run time. All have 64k limits.
140 */
141 /* 32-bit code */
142 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
143 /* 16-bit code */
144 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
145 /* data */
146 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
147
148 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
149 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
150 GDT_STACK_CANARY_INIT
151 #endif
152 } };
153 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
154
155 static int __init x86_mpx_setup(char *s)
156 {
157 /* require an exact match without trailing characters */
158 if (strlen(s))
159 return 0;
160
161 /* do not emit a message if the feature is not present */
162 if (!boot_cpu_has(X86_FEATURE_MPX))
163 return 1;
164
165 setup_clear_cpu_cap(X86_FEATURE_MPX);
166 pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
167 return 1;
168 }
169 __setup("nompx", x86_mpx_setup);
170
171 #ifdef CONFIG_X86_64
172 static int __init x86_nopcid_setup(char *s)
173 {
174 /* nopcid doesn't accept parameters */
175 if (s)
176 return -EINVAL;
177
178 /* do not emit a message if the feature is not present */
179 if (!boot_cpu_has(X86_FEATURE_PCID))
180 return 0;
181
182 setup_clear_cpu_cap(X86_FEATURE_PCID);
183 pr_info("nopcid: PCID feature disabled\n");
184 return 0;
185 }
186 early_param("nopcid", x86_nopcid_setup);
187 #endif
188
189 static int __init x86_noinvpcid_setup(char *s)
190 {
191 /* noinvpcid doesn't accept parameters */
192 if (s)
193 return -EINVAL;
194
195 /* do not emit a message if the feature is not present */
196 if (!boot_cpu_has(X86_FEATURE_INVPCID))
197 return 0;
198
199 setup_clear_cpu_cap(X86_FEATURE_INVPCID);
200 pr_info("noinvpcid: INVPCID feature disabled\n");
201 return 0;
202 }
203 early_param("noinvpcid", x86_noinvpcid_setup);
204
205 #ifdef CONFIG_X86_32
206 static int cachesize_override = -1;
207 static int disable_x86_serial_nr = 1;
208
209 static int __init cachesize_setup(char *str)
210 {
211 get_option(&str, &cachesize_override);
212 return 1;
213 }
214 __setup("cachesize=", cachesize_setup);
215
216 static int __init x86_sep_setup(char *s)
217 {
218 setup_clear_cpu_cap(X86_FEATURE_SEP);
219 return 1;
220 }
221 __setup("nosep", x86_sep_setup);
222
223 /* Standard macro to see if a specific flag is changeable */
224 static inline int flag_is_changeable_p(u32 flag)
225 {
226 u32 f1, f2;
227
228 /*
229 * Cyrix and IDT cpus allow disabling of CPUID
230 * so the code below may return different results
231 * when it is executed before and after enabling
232 * the CPUID. Add "volatile" to not allow gcc to
233 * optimize the subsequent calls to this function.
234 */
235 asm volatile ("pushfl \n\t"
236 "pushfl \n\t"
237 "popl %0 \n\t"
238 "movl %0, %1 \n\t"
239 "xorl %2, %0 \n\t"
240 "pushl %0 \n\t"
241 "popfl \n\t"
242 "pushfl \n\t"
243 "popl %0 \n\t"
244 "popfl \n\t"
245
246 : "=&r" (f1), "=&r" (f2)
247 : "ir" (flag));
248
249 return ((f1^f2) & flag) != 0;
250 }
251
252 /* Probe for the CPUID instruction */
253 int have_cpuid_p(void)
254 {
255 return flag_is_changeable_p(X86_EFLAGS_ID);
256 }
257
258 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
259 {
260 unsigned long lo, hi;
261
262 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
263 return;
264
265 /* Disable processor serial number: */
266
267 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
268 lo |= 0x200000;
269 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
270
271 pr_notice("CPU serial number disabled.\n");
272 clear_cpu_cap(c, X86_FEATURE_PN);
273
274 /* Disabling the serial number may affect the cpuid level */
275 c->cpuid_level = cpuid_eax(0);
276 }
277
278 static int __init x86_serial_nr_setup(char *s)
279 {
280 disable_x86_serial_nr = 0;
281 return 1;
282 }
283 __setup("serialnumber", x86_serial_nr_setup);
284 #else
285 static inline int flag_is_changeable_p(u32 flag)
286 {
287 return 1;
288 }
289 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
290 {
291 }
292 #endif
293
294 static __init int setup_disable_smep(char *arg)
295 {
296 setup_clear_cpu_cap(X86_FEATURE_SMEP);
297 /* Check for things that depend on SMEP being enabled: */
298 check_mpx_erratum(&boot_cpu_data);
299 return 1;
300 }
301 __setup("nosmep", setup_disable_smep);
302
303 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
304 {
305 if (cpu_has(c, X86_FEATURE_SMEP))
306 cr4_set_bits(X86_CR4_SMEP);
307 }
308
309 static __init int setup_disable_smap(char *arg)
310 {
311 setup_clear_cpu_cap(X86_FEATURE_SMAP);
312 return 1;
313 }
314 __setup("nosmap", setup_disable_smap);
315
316 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
317 {
318 unsigned long eflags = native_save_fl();
319
320 /* This should have been cleared long ago */
321 BUG_ON(eflags & X86_EFLAGS_AC);
322
323 if (cpu_has(c, X86_FEATURE_SMAP)) {
324 #ifdef CONFIG_X86_SMAP
325 cr4_set_bits(X86_CR4_SMAP);
326 #else
327 cr4_clear_bits(X86_CR4_SMAP);
328 #endif
329 }
330 }
331
332 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
333 {
334 /* Check the boot processor, plus build option for UMIP. */
335 if (!cpu_feature_enabled(X86_FEATURE_UMIP))
336 goto out;
337
338 /* Check the current processor's cpuid bits. */
339 if (!cpu_has(c, X86_FEATURE_UMIP))
340 goto out;
341
342 cr4_set_bits(X86_CR4_UMIP);
343
344 pr_info("x86/cpu: Activated the Intel User Mode Instruction Prevention (UMIP) CPU feature\n");
345
346 return;
347
348 out:
349 /*
350 * Make sure UMIP is disabled in case it was enabled in a
351 * previous boot (e.g., via kexec).
352 */
353 cr4_clear_bits(X86_CR4_UMIP);
354 }
355
356 /*
357 * Protection Keys are not available in 32-bit mode.
358 */
359 static bool pku_disabled;
360
361 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
362 {
363 /* check the boot processor, plus compile options for PKU: */
364 if (!cpu_feature_enabled(X86_FEATURE_PKU))
365 return;
366 /* checks the actual processor's cpuid bits: */
367 if (!cpu_has(c, X86_FEATURE_PKU))
368 return;
369 if (pku_disabled)
370 return;
371
372 cr4_set_bits(X86_CR4_PKE);
373 /*
374 * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
375 * cpuid bit to be set. We need to ensure that we
376 * update that bit in this CPU's "cpu_info".
377 */
378 get_cpu_cap(c);
379 }
380
381 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
382 static __init int setup_disable_pku(char *arg)
383 {
384 /*
385 * Do not clear the X86_FEATURE_PKU bit. All of the
386 * runtime checks are against OSPKE so clearing the
387 * bit does nothing.
388 *
389 * This way, we will see "pku" in cpuinfo, but not
390 * "ospke", which is exactly what we want. It shows
391 * that the CPU has PKU, but the OS has not enabled it.
392 * This happens to be exactly how a system would look
393 * if we disabled the config option.
394 */
395 pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
396 pku_disabled = true;
397 return 1;
398 }
399 __setup("nopku", setup_disable_pku);
400 #endif /* CONFIG_X86_64 */
401
402 /*
403 * Some CPU features depend on higher CPUID levels, which may not always
404 * be available due to CPUID level capping or broken virtualization
405 * software. Add those features to this table to auto-disable them.
406 */
407 struct cpuid_dependent_feature {
408 u32 feature;
409 u32 level;
410 };
411
412 static const struct cpuid_dependent_feature
413 cpuid_dependent_features[] = {
414 { X86_FEATURE_MWAIT, 0x00000005 },
415 { X86_FEATURE_DCA, 0x00000009 },
416 { X86_FEATURE_XSAVE, 0x0000000d },
417 { 0, 0 }
418 };
419
420 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
421 {
422 const struct cpuid_dependent_feature *df;
423
424 for (df = cpuid_dependent_features; df->feature; df++) {
425
426 if (!cpu_has(c, df->feature))
427 continue;
428 /*
429 * Note: cpuid_level is set to -1 if unavailable, but
430 * extended_extended_level is set to 0 if unavailable
431 * and the legitimate extended levels are all negative
432 * when signed; hence the weird messing around with
433 * signs here...
434 */
435 if (!((s32)df->level < 0 ?
436 (u32)df->level > (u32)c->extended_cpuid_level :
437 (s32)df->level > (s32)c->cpuid_level))
438 continue;
439
440 clear_cpu_cap(c, df->feature);
441 if (!warn)
442 continue;
443
444 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
445 x86_cap_flag(df->feature), df->level);
446 }
447 }
448
449 /*
450 * Naming convention should be: <Name> [(<Codename>)]
451 * This table only is used unless init_<vendor>() below doesn't set it;
452 * in particular, if CPUID levels 0x80000002..4 are supported, this
453 * isn't used
454 */
455
456 /* Look up CPU names by table lookup. */
457 static const char *table_lookup_model(struct cpuinfo_x86 *c)
458 {
459 #ifdef CONFIG_X86_32
460 const struct legacy_cpu_model_info *info;
461
462 if (c->x86_model >= 16)
463 return NULL; /* Range check */
464
465 if (!this_cpu)
466 return NULL;
467
468 info = this_cpu->legacy_models;
469
470 while (info->family) {
471 if (info->family == c->x86)
472 return info->model_names[c->x86_model];
473 info++;
474 }
475 #endif
476 return NULL; /* Not found */
477 }
478
479 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS];
480 __u32 cpu_caps_set[NCAPINTS + NBUGINTS];
481
482 void load_percpu_segment(int cpu)
483 {
484 #ifdef CONFIG_X86_32
485 loadsegment(fs, __KERNEL_PERCPU);
486 #else
487 __loadsegment_simple(gs, 0);
488 wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
489 #endif
490 load_stack_canary_segment();
491 }
492
493 #ifdef CONFIG_X86_32
494 /* The 32-bit entry code needs to find cpu_entry_area. */
495 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
496 #endif
497
498 #ifdef CONFIG_X86_64
499 /*
500 * Special IST stacks which the CPU switches to when it calls
501 * an IST-marked descriptor entry. Up to 7 stacks (hardware
502 * limit), all of them are 4K, except the debug stack which
503 * is 8K.
504 */
505 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
506 [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
507 [DEBUG_STACK - 1] = DEBUG_STKSZ
508 };
509 #endif
510
511 /* Load the original GDT from the per-cpu structure */
512 void load_direct_gdt(int cpu)
513 {
514 struct desc_ptr gdt_descr;
515
516 gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
517 gdt_descr.size = GDT_SIZE - 1;
518 load_gdt(&gdt_descr);
519 }
520 EXPORT_SYMBOL_GPL(load_direct_gdt);
521
522 /* Load a fixmap remapping of the per-cpu GDT */
523 void load_fixmap_gdt(int cpu)
524 {
525 struct desc_ptr gdt_descr;
526
527 gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
528 gdt_descr.size = GDT_SIZE - 1;
529 load_gdt(&gdt_descr);
530 }
531 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
532
533 /*
534 * Current gdt points %fs at the "master" per-cpu area: after this,
535 * it's on the real one.
536 */
537 void switch_to_new_gdt(int cpu)
538 {
539 /* Load the original GDT */
540 load_direct_gdt(cpu);
541 /* Reload the per-cpu base */
542 load_percpu_segment(cpu);
543 }
544
545 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
546
547 static void get_model_name(struct cpuinfo_x86 *c)
548 {
549 unsigned int *v;
550 char *p, *q, *s;
551
552 if (c->extended_cpuid_level < 0x80000004)
553 return;
554
555 v = (unsigned int *)c->x86_model_id;
556 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
557 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
558 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
559 c->x86_model_id[48] = 0;
560
561 /* Trim whitespace */
562 p = q = s = &c->x86_model_id[0];
563
564 while (*p == ' ')
565 p++;
566
567 while (*p) {
568 /* Note the last non-whitespace index */
569 if (!isspace(*p))
570 s = q;
571
572 *q++ = *p++;
573 }
574
575 *(s + 1) = '\0';
576 }
577
578 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
579 {
580 unsigned int n, dummy, ebx, ecx, edx, l2size;
581
582 n = c->extended_cpuid_level;
583
584 if (n >= 0x80000005) {
585 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
586 c->x86_cache_size = (ecx>>24) + (edx>>24);
587 #ifdef CONFIG_X86_64
588 /* On K8 L1 TLB is inclusive, so don't count it */
589 c->x86_tlbsize = 0;
590 #endif
591 }
592
593 if (n < 0x80000006) /* Some chips just has a large L1. */
594 return;
595
596 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
597 l2size = ecx >> 16;
598
599 #ifdef CONFIG_X86_64
600 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
601 #else
602 /* do processor-specific cache resizing */
603 if (this_cpu->legacy_cache_size)
604 l2size = this_cpu->legacy_cache_size(c, l2size);
605
606 /* Allow user to override all this if necessary. */
607 if (cachesize_override != -1)
608 l2size = cachesize_override;
609
610 if (l2size == 0)
611 return; /* Again, no L2 cache is possible */
612 #endif
613
614 c->x86_cache_size = l2size;
615 }
616
617 u16 __read_mostly tlb_lli_4k[NR_INFO];
618 u16 __read_mostly tlb_lli_2m[NR_INFO];
619 u16 __read_mostly tlb_lli_4m[NR_INFO];
620 u16 __read_mostly tlb_lld_4k[NR_INFO];
621 u16 __read_mostly tlb_lld_2m[NR_INFO];
622 u16 __read_mostly tlb_lld_4m[NR_INFO];
623 u16 __read_mostly tlb_lld_1g[NR_INFO];
624
625 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
626 {
627 if (this_cpu->c_detect_tlb)
628 this_cpu->c_detect_tlb(c);
629
630 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
631 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
632 tlb_lli_4m[ENTRIES]);
633
634 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
635 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
636 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
637 }
638
639 void detect_ht(struct cpuinfo_x86 *c)
640 {
641 #ifdef CONFIG_SMP
642 u32 eax, ebx, ecx, edx;
643 int index_msb, core_bits;
644 static bool printed;
645
646 if (!cpu_has(c, X86_FEATURE_HT))
647 return;
648
649 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
650 goto out;
651
652 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
653 return;
654
655 cpuid(1, &eax, &ebx, &ecx, &edx);
656
657 smp_num_siblings = (ebx & 0xff0000) >> 16;
658
659 if (smp_num_siblings == 1) {
660 pr_info_once("CPU0: Hyper-Threading is disabled\n");
661 goto out;
662 }
663
664 if (smp_num_siblings <= 1)
665 goto out;
666
667 index_msb = get_count_order(smp_num_siblings);
668 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
669
670 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
671
672 index_msb = get_count_order(smp_num_siblings);
673
674 core_bits = get_count_order(c->x86_max_cores);
675
676 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
677 ((1 << core_bits) - 1);
678
679 out:
680 if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
681 pr_info("CPU: Physical Processor ID: %d\n",
682 c->phys_proc_id);
683 pr_info("CPU: Processor Core ID: %d\n",
684 c->cpu_core_id);
685 printed = 1;
686 }
687 #endif
688 }
689
690 static void get_cpu_vendor(struct cpuinfo_x86 *c)
691 {
692 char *v = c->x86_vendor_id;
693 int i;
694
695 for (i = 0; i < X86_VENDOR_NUM; i++) {
696 if (!cpu_devs[i])
697 break;
698
699 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
700 (cpu_devs[i]->c_ident[1] &&
701 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
702
703 this_cpu = cpu_devs[i];
704 c->x86_vendor = this_cpu->c_x86_vendor;
705 return;
706 }
707 }
708
709 pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
710 "CPU: Your system may be unstable.\n", v);
711
712 c->x86_vendor = X86_VENDOR_UNKNOWN;
713 this_cpu = &default_cpu;
714 }
715
716 void cpu_detect(struct cpuinfo_x86 *c)
717 {
718 /* Get vendor name */
719 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
720 (unsigned int *)&c->x86_vendor_id[0],
721 (unsigned int *)&c->x86_vendor_id[8],
722 (unsigned int *)&c->x86_vendor_id[4]);
723
724 c->x86 = 4;
725 /* Intel-defined flags: level 0x00000001 */
726 if (c->cpuid_level >= 0x00000001) {
727 u32 junk, tfms, cap0, misc;
728
729 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
730 c->x86 = x86_family(tfms);
731 c->x86_model = x86_model(tfms);
732 c->x86_mask = x86_stepping(tfms);
733
734 if (cap0 & (1<<19)) {
735 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
736 c->x86_cache_alignment = c->x86_clflush_size;
737 }
738 }
739 }
740
741 static void apply_forced_caps(struct cpuinfo_x86 *c)
742 {
743 int i;
744
745 for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
746 c->x86_capability[i] &= ~cpu_caps_cleared[i];
747 c->x86_capability[i] |= cpu_caps_set[i];
748 }
749 }
750
751 void get_cpu_cap(struct cpuinfo_x86 *c)
752 {
753 u32 eax, ebx, ecx, edx;
754
755 /* Intel-defined flags: level 0x00000001 */
756 if (c->cpuid_level >= 0x00000001) {
757 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
758
759 c->x86_capability[CPUID_1_ECX] = ecx;
760 c->x86_capability[CPUID_1_EDX] = edx;
761 }
762
763 /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
764 if (c->cpuid_level >= 0x00000006)
765 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
766
767 /* Additional Intel-defined flags: level 0x00000007 */
768 if (c->cpuid_level >= 0x00000007) {
769 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
770 c->x86_capability[CPUID_7_0_EBX] = ebx;
771 c->x86_capability[CPUID_7_ECX] = ecx;
772 }
773
774 /* Extended state features: level 0x0000000d */
775 if (c->cpuid_level >= 0x0000000d) {
776 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
777
778 c->x86_capability[CPUID_D_1_EAX] = eax;
779 }
780
781 /* Additional Intel-defined flags: level 0x0000000F */
782 if (c->cpuid_level >= 0x0000000F) {
783
784 /* QoS sub-leaf, EAX=0Fh, ECX=0 */
785 cpuid_count(0x0000000F, 0, &eax, &ebx, &ecx, &edx);
786 c->x86_capability[CPUID_F_0_EDX] = edx;
787
788 if (cpu_has(c, X86_FEATURE_CQM_LLC)) {
789 /* will be overridden if occupancy monitoring exists */
790 c->x86_cache_max_rmid = ebx;
791
792 /* QoS sub-leaf, EAX=0Fh, ECX=1 */
793 cpuid_count(0x0000000F, 1, &eax, &ebx, &ecx, &edx);
794 c->x86_capability[CPUID_F_1_EDX] = edx;
795
796 if ((cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC)) ||
797 ((cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL)) ||
798 (cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)))) {
799 c->x86_cache_max_rmid = ecx;
800 c->x86_cache_occ_scale = ebx;
801 }
802 } else {
803 c->x86_cache_max_rmid = -1;
804 c->x86_cache_occ_scale = -1;
805 }
806 }
807
808 /* AMD-defined flags: level 0x80000001 */
809 eax = cpuid_eax(0x80000000);
810 c->extended_cpuid_level = eax;
811
812 if ((eax & 0xffff0000) == 0x80000000) {
813 if (eax >= 0x80000001) {
814 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
815
816 c->x86_capability[CPUID_8000_0001_ECX] = ecx;
817 c->x86_capability[CPUID_8000_0001_EDX] = edx;
818 }
819 }
820
821 if (c->extended_cpuid_level >= 0x80000007) {
822 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
823
824 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
825 c->x86_power = edx;
826 }
827
828 if (c->extended_cpuid_level >= 0x80000008) {
829 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
830
831 c->x86_virt_bits = (eax >> 8) & 0xff;
832 c->x86_phys_bits = eax & 0xff;
833 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
834 }
835 #ifdef CONFIG_X86_32
836 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
837 c->x86_phys_bits = 36;
838 #endif
839
840 if (c->extended_cpuid_level >= 0x8000000a)
841 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
842
843 init_scattered_cpuid_features(c);
844
845 /*
846 * Clear/Set all flags overridden by options, after probe.
847 * This needs to happen each time we re-probe, which may happen
848 * several times during CPU initialization.
849 */
850 apply_forced_caps(c);
851 }
852
853 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
854 {
855 #ifdef CONFIG_X86_32
856 int i;
857
858 /*
859 * First of all, decide if this is a 486 or higher
860 * It's a 486 if we can modify the AC flag
861 */
862 if (flag_is_changeable_p(X86_EFLAGS_AC))
863 c->x86 = 4;
864 else
865 c->x86 = 3;
866
867 for (i = 0; i < X86_VENDOR_NUM; i++)
868 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
869 c->x86_vendor_id[0] = 0;
870 cpu_devs[i]->c_identify(c);
871 if (c->x86_vendor_id[0]) {
872 get_cpu_vendor(c);
873 break;
874 }
875 }
876 #endif
877 }
878
879 /*
880 * Do minimum CPU detection early.
881 * Fields really needed: vendor, cpuid_level, family, model, mask,
882 * cache alignment.
883 * The others are not touched to avoid unwanted side effects.
884 *
885 * WARNING: this function is only called on the boot CPU. Don't add code
886 * here that is supposed to run on all CPUs.
887 */
888 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
889 {
890 #ifdef CONFIG_X86_64
891 c->x86_clflush_size = 64;
892 c->x86_phys_bits = 36;
893 c->x86_virt_bits = 48;
894 #else
895 c->x86_clflush_size = 32;
896 c->x86_phys_bits = 32;
897 c->x86_virt_bits = 32;
898 #endif
899 c->x86_cache_alignment = c->x86_clflush_size;
900
901 memset(&c->x86_capability, 0, sizeof c->x86_capability);
902 c->extended_cpuid_level = 0;
903
904 /* cyrix could have cpuid enabled via c_identify()*/
905 if (have_cpuid_p()) {
906 cpu_detect(c);
907 get_cpu_vendor(c);
908 get_cpu_cap(c);
909 setup_force_cpu_cap(X86_FEATURE_CPUID);
910
911 if (this_cpu->c_early_init)
912 this_cpu->c_early_init(c);
913
914 c->cpu_index = 0;
915 filter_cpuid_features(c, false);
916
917 if (this_cpu->c_bsp_init)
918 this_cpu->c_bsp_init(c);
919 } else {
920 identify_cpu_without_cpuid(c);
921 setup_clear_cpu_cap(X86_FEATURE_CPUID);
922 }
923
924 setup_force_cpu_cap(X86_FEATURE_ALWAYS);
925
926 if (c->x86_vendor != X86_VENDOR_AMD)
927 setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
928
929 setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
930 setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
931
932 fpu__init_system(c);
933
934 #ifdef CONFIG_X86_32
935 /*
936 * Regardless of whether PCID is enumerated, the SDM says
937 * that it can't be enabled in 32-bit mode.
938 */
939 setup_clear_cpu_cap(X86_FEATURE_PCID);
940 #endif
941 }
942
943 void __init early_cpu_init(void)
944 {
945 const struct cpu_dev *const *cdev;
946 int count = 0;
947
948 #ifdef CONFIG_PROCESSOR_SELECT
949 pr_info("KERNEL supported cpus:\n");
950 #endif
951
952 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
953 const struct cpu_dev *cpudev = *cdev;
954
955 if (count >= X86_VENDOR_NUM)
956 break;
957 cpu_devs[count] = cpudev;
958 count++;
959
960 #ifdef CONFIG_PROCESSOR_SELECT
961 {
962 unsigned int j;
963
964 for (j = 0; j < 2; j++) {
965 if (!cpudev->c_ident[j])
966 continue;
967 pr_info(" %s %s\n", cpudev->c_vendor,
968 cpudev->c_ident[j]);
969 }
970 }
971 #endif
972 }
973 early_identify_cpu(&boot_cpu_data);
974 }
975
976 /*
977 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
978 * unfortunately, that's not true in practice because of early VIA
979 * chips and (more importantly) broken virtualizers that are not easy
980 * to detect. In the latter case it doesn't even *fail* reliably, so
981 * probing for it doesn't even work. Disable it completely on 32-bit
982 * unless we can find a reliable way to detect all the broken cases.
983 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
984 */
985 static void detect_nopl(struct cpuinfo_x86 *c)
986 {
987 #ifdef CONFIG_X86_32
988 clear_cpu_cap(c, X86_FEATURE_NOPL);
989 #else
990 set_cpu_cap(c, X86_FEATURE_NOPL);
991 #endif
992 }
993
994 static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
995 {
996 #ifdef CONFIG_X86_64
997 /*
998 * Empirically, writing zero to a segment selector on AMD does
999 * not clear the base, whereas writing zero to a segment
1000 * selector on Intel does clear the base. Intel's behavior
1001 * allows slightly faster context switches in the common case
1002 * where GS is unused by the prev and next threads.
1003 *
1004 * Since neither vendor documents this anywhere that I can see,
1005 * detect it directly instead of hardcoding the choice by
1006 * vendor.
1007 *
1008 * I've designated AMD's behavior as the "bug" because it's
1009 * counterintuitive and less friendly.
1010 */
1011
1012 unsigned long old_base, tmp;
1013 rdmsrl(MSR_FS_BASE, old_base);
1014 wrmsrl(MSR_FS_BASE, 1);
1015 loadsegment(fs, 0);
1016 rdmsrl(MSR_FS_BASE, tmp);
1017 if (tmp != 0)
1018 set_cpu_bug(c, X86_BUG_NULL_SEG);
1019 wrmsrl(MSR_FS_BASE, old_base);
1020 #endif
1021 }
1022
1023 static void generic_identify(struct cpuinfo_x86 *c)
1024 {
1025 c->extended_cpuid_level = 0;
1026
1027 if (!have_cpuid_p())
1028 identify_cpu_without_cpuid(c);
1029
1030 /* cyrix could have cpuid enabled via c_identify()*/
1031 if (!have_cpuid_p())
1032 return;
1033
1034 cpu_detect(c);
1035
1036 get_cpu_vendor(c);
1037
1038 get_cpu_cap(c);
1039
1040 if (c->cpuid_level >= 0x00000001) {
1041 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1042 #ifdef CONFIG_X86_32
1043 # ifdef CONFIG_SMP
1044 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1045 # else
1046 c->apicid = c->initial_apicid;
1047 # endif
1048 #endif
1049 c->phys_proc_id = c->initial_apicid;
1050 }
1051
1052 get_model_name(c); /* Default name */
1053
1054 detect_nopl(c);
1055
1056 detect_null_seg_behavior(c);
1057
1058 /*
1059 * ESPFIX is a strange bug. All real CPUs have it. Paravirt
1060 * systems that run Linux at CPL > 0 may or may not have the
1061 * issue, but, even if they have the issue, there's absolutely
1062 * nothing we can do about it because we can't use the real IRET
1063 * instruction.
1064 *
1065 * NB: For the time being, only 32-bit kernels support
1066 * X86_BUG_ESPFIX as such. 64-bit kernels directly choose
1067 * whether to apply espfix using paravirt hooks. If any
1068 * non-paravirt system ever shows up that does *not* have the
1069 * ESPFIX issue, we can change this.
1070 */
1071 #ifdef CONFIG_X86_32
1072 # ifdef CONFIG_PARAVIRT
1073 do {
1074 extern void native_iret(void);
1075 if (pv_cpu_ops.iret == native_iret)
1076 set_cpu_bug(c, X86_BUG_ESPFIX);
1077 } while (0);
1078 # else
1079 set_cpu_bug(c, X86_BUG_ESPFIX);
1080 # endif
1081 #endif
1082 }
1083
1084 static void x86_init_cache_qos(struct cpuinfo_x86 *c)
1085 {
1086 /*
1087 * The heavy lifting of max_rmid and cache_occ_scale are handled
1088 * in get_cpu_cap(). Here we just set the max_rmid for the boot_cpu
1089 * in case CQM bits really aren't there in this CPU.
1090 */
1091 if (c != &boot_cpu_data) {
1092 boot_cpu_data.x86_cache_max_rmid =
1093 min(boot_cpu_data.x86_cache_max_rmid,
1094 c->x86_cache_max_rmid);
1095 }
1096 }
1097
1098 /*
1099 * Validate that ACPI/mptables have the same information about the
1100 * effective APIC id and update the package map.
1101 */
1102 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1103 {
1104 #ifdef CONFIG_SMP
1105 unsigned int apicid, cpu = smp_processor_id();
1106
1107 apicid = apic->cpu_present_to_apicid(cpu);
1108
1109 if (apicid != c->apicid) {
1110 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1111 cpu, apicid, c->initial_apicid);
1112 }
1113 BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1114 #else
1115 c->logical_proc_id = 0;
1116 #endif
1117 }
1118
1119 /*
1120 * This does the hard work of actually picking apart the CPU stuff...
1121 */
1122 static void identify_cpu(struct cpuinfo_x86 *c)
1123 {
1124 int i;
1125
1126 c->loops_per_jiffy = loops_per_jiffy;
1127 c->x86_cache_size = -1;
1128 c->x86_vendor = X86_VENDOR_UNKNOWN;
1129 c->x86_model = c->x86_mask = 0; /* So far unknown... */
1130 c->x86_vendor_id[0] = '\0'; /* Unset */
1131 c->x86_model_id[0] = '\0'; /* Unset */
1132 c->x86_max_cores = 1;
1133 c->x86_coreid_bits = 0;
1134 c->cu_id = 0xff;
1135 #ifdef CONFIG_X86_64
1136 c->x86_clflush_size = 64;
1137 c->x86_phys_bits = 36;
1138 c->x86_virt_bits = 48;
1139 #else
1140 c->cpuid_level = -1; /* CPUID not detected */
1141 c->x86_clflush_size = 32;
1142 c->x86_phys_bits = 32;
1143 c->x86_virt_bits = 32;
1144 #endif
1145 c->x86_cache_alignment = c->x86_clflush_size;
1146 memset(&c->x86_capability, 0, sizeof c->x86_capability);
1147
1148 generic_identify(c);
1149
1150 if (this_cpu->c_identify)
1151 this_cpu->c_identify(c);
1152
1153 /* Clear/Set all flags overridden by options, after probe */
1154 apply_forced_caps(c);
1155
1156 #ifdef CONFIG_X86_64
1157 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1158 #endif
1159
1160 /*
1161 * Vendor-specific initialization. In this section we
1162 * canonicalize the feature flags, meaning if there are
1163 * features a certain CPU supports which CPUID doesn't
1164 * tell us, CPUID claiming incorrect flags, or other bugs,
1165 * we handle them here.
1166 *
1167 * At the end of this section, c->x86_capability better
1168 * indicate the features this CPU genuinely supports!
1169 */
1170 if (this_cpu->c_init)
1171 this_cpu->c_init(c);
1172
1173 /* Disable the PN if appropriate */
1174 squash_the_stupid_serial_number(c);
1175
1176 /* Set up SMEP/SMAP/UMIP */
1177 setup_smep(c);
1178 setup_smap(c);
1179 setup_umip(c);
1180
1181 /*
1182 * The vendor-specific functions might have changed features.
1183 * Now we do "generic changes."
1184 */
1185
1186 /* Filter out anything that depends on CPUID levels we don't have */
1187 filter_cpuid_features(c, true);
1188
1189 /* If the model name is still unset, do table lookup. */
1190 if (!c->x86_model_id[0]) {
1191 const char *p;
1192 p = table_lookup_model(c);
1193 if (p)
1194 strcpy(c->x86_model_id, p);
1195 else
1196 /* Last resort... */
1197 sprintf(c->x86_model_id, "%02x/%02x",
1198 c->x86, c->x86_model);
1199 }
1200
1201 #ifdef CONFIG_X86_64
1202 detect_ht(c);
1203 #endif
1204
1205 x86_init_rdrand(c);
1206 x86_init_cache_qos(c);
1207 setup_pku(c);
1208
1209 /*
1210 * Clear/Set all flags overridden by options, need do it
1211 * before following smp all cpus cap AND.
1212 */
1213 apply_forced_caps(c);
1214
1215 /*
1216 * On SMP, boot_cpu_data holds the common feature set between
1217 * all CPUs; so make sure that we indicate which features are
1218 * common between the CPUs. The first time this routine gets
1219 * executed, c == &boot_cpu_data.
1220 */
1221 if (c != &boot_cpu_data) {
1222 /* AND the already accumulated flags with these */
1223 for (i = 0; i < NCAPINTS; i++)
1224 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1225
1226 /* OR, i.e. replicate the bug flags */
1227 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1228 c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1229 }
1230
1231 /* Init Machine Check Exception if available. */
1232 mcheck_cpu_init(c);
1233
1234 select_idle_routine(c);
1235
1236 #ifdef CONFIG_NUMA
1237 numa_add_cpu(smp_processor_id());
1238 #endif
1239 }
1240
1241 /*
1242 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1243 * on 32-bit kernels:
1244 */
1245 #ifdef CONFIG_X86_32
1246 void enable_sep_cpu(void)
1247 {
1248 struct tss_struct *tss;
1249 int cpu;
1250
1251 if (!boot_cpu_has(X86_FEATURE_SEP))
1252 return;
1253
1254 cpu = get_cpu();
1255 tss = &per_cpu(cpu_tss_rw, cpu);
1256
1257 /*
1258 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1259 * see the big comment in struct x86_hw_tss's definition.
1260 */
1261
1262 tss->x86_tss.ss1 = __KERNEL_CS;
1263 wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1264 wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1265 wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1266
1267 put_cpu();
1268 }
1269 #endif
1270
1271 void __init identify_boot_cpu(void)
1272 {
1273 identify_cpu(&boot_cpu_data);
1274 #ifdef CONFIG_X86_32
1275 sysenter_setup();
1276 enable_sep_cpu();
1277 #endif
1278 cpu_detect_tlb(&boot_cpu_data);
1279 }
1280
1281 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1282 {
1283 BUG_ON(c == &boot_cpu_data);
1284 identify_cpu(c);
1285 #ifdef CONFIG_X86_32
1286 enable_sep_cpu();
1287 #endif
1288 mtrr_ap_init();
1289 validate_apic_and_package_id(c);
1290 }
1291
1292 static __init int setup_noclflush(char *arg)
1293 {
1294 setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1295 setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1296 return 1;
1297 }
1298 __setup("noclflush", setup_noclflush);
1299
1300 void print_cpu_info(struct cpuinfo_x86 *c)
1301 {
1302 const char *vendor = NULL;
1303
1304 if (c->x86_vendor < X86_VENDOR_NUM) {
1305 vendor = this_cpu->c_vendor;
1306 } else {
1307 if (c->cpuid_level >= 0)
1308 vendor = c->x86_vendor_id;
1309 }
1310
1311 if (vendor && !strstr(c->x86_model_id, vendor))
1312 pr_cont("%s ", vendor);
1313
1314 if (c->x86_model_id[0])
1315 pr_cont("%s", c->x86_model_id);
1316 else
1317 pr_cont("%d86", c->x86);
1318
1319 pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1320
1321 if (c->x86_mask || c->cpuid_level >= 0)
1322 pr_cont(", stepping: 0x%x)\n", c->x86_mask);
1323 else
1324 pr_cont(")\n");
1325 }
1326
1327 /*
1328 * clearcpuid= was already parsed in fpu__init_parse_early_param.
1329 * But we need to keep a dummy __setup around otherwise it would
1330 * show up as an environment variable for init.
1331 */
1332 static __init int setup_clearcpuid(char *arg)
1333 {
1334 return 1;
1335 }
1336 __setup("clearcpuid=", setup_clearcpuid);
1337
1338 #ifdef CONFIG_X86_64
1339 DEFINE_PER_CPU_FIRST(union irq_stack_union,
1340 irq_stack_union) __aligned(PAGE_SIZE) __visible;
1341
1342 /*
1343 * The following percpu variables are hot. Align current_task to
1344 * cacheline size such that they fall in the same cacheline.
1345 */
1346 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1347 &init_task;
1348 EXPORT_PER_CPU_SYMBOL(current_task);
1349
1350 DEFINE_PER_CPU(char *, irq_stack_ptr) =
1351 init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE;
1352
1353 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1354
1355 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1356 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1357
1358 /* May not be marked __init: used by software suspend */
1359 void syscall_init(void)
1360 {
1361 extern char _entry_trampoline[];
1362 extern char entry_SYSCALL_64_trampoline[];
1363
1364 int cpu = smp_processor_id();
1365 unsigned long SYSCALL64_entry_trampoline =
1366 (unsigned long)get_cpu_entry_area(cpu)->entry_trampoline +
1367 (entry_SYSCALL_64_trampoline - _entry_trampoline);
1368
1369 wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1370 if (static_cpu_has(X86_FEATURE_PTI))
1371 wrmsrl(MSR_LSTAR, SYSCALL64_entry_trampoline);
1372 else
1373 wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1374
1375 #ifdef CONFIG_IA32_EMULATION
1376 wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1377 /*
1378 * This only works on Intel CPUs.
1379 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1380 * This does not cause SYSENTER to jump to the wrong location, because
1381 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1382 */
1383 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1384 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1));
1385 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1386 #else
1387 wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1388 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1389 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1390 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1391 #endif
1392
1393 /* Flags to clear on syscall */
1394 wrmsrl(MSR_SYSCALL_MASK,
1395 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1396 X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1397 }
1398
1399 /*
1400 * Copies of the original ist values from the tss are only accessed during
1401 * debugging, no special alignment required.
1402 */
1403 DEFINE_PER_CPU(struct orig_ist, orig_ist);
1404
1405 static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1406 DEFINE_PER_CPU(int, debug_stack_usage);
1407
1408 int is_debug_stack(unsigned long addr)
1409 {
1410 return __this_cpu_read(debug_stack_usage) ||
1411 (addr <= __this_cpu_read(debug_stack_addr) &&
1412 addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ));
1413 }
1414 NOKPROBE_SYMBOL(is_debug_stack);
1415
1416 DEFINE_PER_CPU(u32, debug_idt_ctr);
1417
1418 void debug_stack_set_zero(void)
1419 {
1420 this_cpu_inc(debug_idt_ctr);
1421 load_current_idt();
1422 }
1423 NOKPROBE_SYMBOL(debug_stack_set_zero);
1424
1425 void debug_stack_reset(void)
1426 {
1427 if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1428 return;
1429 if (this_cpu_dec_return(debug_idt_ctr) == 0)
1430 load_current_idt();
1431 }
1432 NOKPROBE_SYMBOL(debug_stack_reset);
1433
1434 #else /* CONFIG_X86_64 */
1435
1436 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1437 EXPORT_PER_CPU_SYMBOL(current_task);
1438 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1439 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1440
1441 /*
1442 * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1443 * the top of the kernel stack. Use an extra percpu variable to track the
1444 * top of the kernel stack directly.
1445 */
1446 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1447 (unsigned long)&init_thread_union + THREAD_SIZE;
1448 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1449
1450 #ifdef CONFIG_CC_STACKPROTECTOR
1451 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1452 #endif
1453
1454 #endif /* CONFIG_X86_64 */
1455
1456 /*
1457 * Clear all 6 debug registers:
1458 */
1459 static void clear_all_debug_regs(void)
1460 {
1461 int i;
1462
1463 for (i = 0; i < 8; i++) {
1464 /* Ignore db4, db5 */
1465 if ((i == 4) || (i == 5))
1466 continue;
1467
1468 set_debugreg(0, i);
1469 }
1470 }
1471
1472 #ifdef CONFIG_KGDB
1473 /*
1474 * Restore debug regs if using kgdbwait and you have a kernel debugger
1475 * connection established.
1476 */
1477 static void dbg_restore_debug_regs(void)
1478 {
1479 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1480 arch_kgdb_ops.correct_hw_break();
1481 }
1482 #else /* ! CONFIG_KGDB */
1483 #define dbg_restore_debug_regs()
1484 #endif /* ! CONFIG_KGDB */
1485
1486 static void wait_for_master_cpu(int cpu)
1487 {
1488 #ifdef CONFIG_SMP
1489 /*
1490 * wait for ACK from master CPU before continuing
1491 * with AP initialization
1492 */
1493 WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1494 while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1495 cpu_relax();
1496 #endif
1497 }
1498
1499 /*
1500 * cpu_init() initializes state that is per-CPU. Some data is already
1501 * initialized (naturally) in the bootstrap process, such as the GDT
1502 * and IDT. We reload them nevertheless, this function acts as a
1503 * 'CPU state barrier', nothing should get across.
1504 * A lot of state is already set up in PDA init for 64 bit
1505 */
1506 #ifdef CONFIG_X86_64
1507
1508 void cpu_init(void)
1509 {
1510 struct orig_ist *oist;
1511 struct task_struct *me;
1512 struct tss_struct *t;
1513 unsigned long v;
1514 int cpu = raw_smp_processor_id();
1515 int i;
1516
1517 wait_for_master_cpu(cpu);
1518
1519 /*
1520 * Initialize the CR4 shadow before doing anything that could
1521 * try to read it.
1522 */
1523 cr4_init_shadow();
1524
1525 if (cpu)
1526 load_ucode_ap();
1527
1528 t = &per_cpu(cpu_tss_rw, cpu);
1529 oist = &per_cpu(orig_ist, cpu);
1530
1531 #ifdef CONFIG_NUMA
1532 if (this_cpu_read(numa_node) == 0 &&
1533 early_cpu_to_node(cpu) != NUMA_NO_NODE)
1534 set_numa_node(early_cpu_to_node(cpu));
1535 #endif
1536
1537 me = current;
1538
1539 pr_debug("Initializing CPU#%d\n", cpu);
1540
1541 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1542
1543 /*
1544 * Initialize the per-CPU GDT with the boot GDT,
1545 * and set up the GDT descriptor:
1546 */
1547
1548 switch_to_new_gdt(cpu);
1549 loadsegment(fs, 0);
1550
1551 load_current_idt();
1552
1553 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1554 syscall_init();
1555
1556 wrmsrl(MSR_FS_BASE, 0);
1557 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1558 barrier();
1559
1560 x86_configure_nx();
1561 x2apic_setup();
1562
1563 /*
1564 * set up and load the per-CPU TSS
1565 */
1566 if (!oist->ist[0]) {
1567 char *estacks = get_cpu_entry_area(cpu)->exception_stacks;
1568
1569 for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1570 estacks += exception_stack_sizes[v];
1571 oist->ist[v] = t->x86_tss.ist[v] =
1572 (unsigned long)estacks;
1573 if (v == DEBUG_STACK-1)
1574 per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1575 }
1576 }
1577
1578 t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
1579
1580 /*
1581 * <= is required because the CPU will access up to
1582 * 8 bits beyond the end of the IO permission bitmap.
1583 */
1584 for (i = 0; i <= IO_BITMAP_LONGS; i++)
1585 t->io_bitmap[i] = ~0UL;
1586
1587 mmgrab(&init_mm);
1588 me->active_mm = &init_mm;
1589 BUG_ON(me->mm);
1590 initialize_tlbstate_and_flush();
1591 enter_lazy_tlb(&init_mm, me);
1592
1593 /*
1594 * Initialize the TSS. sp0 points to the entry trampoline stack
1595 * regardless of what task is running.
1596 */
1597 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1598 load_TR_desc();
1599 load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
1600
1601 load_mm_ldt(&init_mm);
1602
1603 clear_all_debug_regs();
1604 dbg_restore_debug_regs();
1605
1606 fpu__init_cpu();
1607
1608 if (is_uv_system())
1609 uv_cpu_init();
1610
1611 load_fixmap_gdt(cpu);
1612 }
1613
1614 #else
1615
1616 void cpu_init(void)
1617 {
1618 int cpu = smp_processor_id();
1619 struct task_struct *curr = current;
1620 struct tss_struct *t = &per_cpu(cpu_tss_rw, cpu);
1621
1622 wait_for_master_cpu(cpu);
1623
1624 /*
1625 * Initialize the CR4 shadow before doing anything that could
1626 * try to read it.
1627 */
1628 cr4_init_shadow();
1629
1630 show_ucode_info_early();
1631
1632 pr_info("Initializing CPU#%d\n", cpu);
1633
1634 if (cpu_feature_enabled(X86_FEATURE_VME) ||
1635 boot_cpu_has(X86_FEATURE_TSC) ||
1636 boot_cpu_has(X86_FEATURE_DE))
1637 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1638
1639 load_current_idt();
1640 switch_to_new_gdt(cpu);
1641
1642 /*
1643 * Set up and load the per-CPU TSS and LDT
1644 */
1645 mmgrab(&init_mm);
1646 curr->active_mm = &init_mm;
1647 BUG_ON(curr->mm);
1648 initialize_tlbstate_and_flush();
1649 enter_lazy_tlb(&init_mm, curr);
1650
1651 /*
1652 * Initialize the TSS. Don't bother initializing sp0, as the initial
1653 * task never enters user mode.
1654 */
1655 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1656 load_TR_desc();
1657
1658 load_mm_ldt(&init_mm);
1659
1660 t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
1661
1662 #ifdef CONFIG_DOUBLEFAULT
1663 /* Set up doublefault TSS pointer in the GDT */
1664 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1665 #endif
1666
1667 clear_all_debug_regs();
1668 dbg_restore_debug_regs();
1669
1670 fpu__init_cpu();
1671
1672 load_fixmap_gdt(cpu);
1673 }
1674 #endif
1675
1676 static void bsp_resume(void)
1677 {
1678 if (this_cpu->c_bsp_resume)
1679 this_cpu->c_bsp_resume(&boot_cpu_data);
1680 }
1681
1682 static struct syscore_ops cpu_syscore_ops = {
1683 .resume = bsp_resume,
1684 };
1685
1686 static int __init init_cpu_syscore(void)
1687 {
1688 register_syscore_ops(&cpu_syscore_ops);
1689 return 0;
1690 }
1691 core_initcall(init_cpu_syscore);