]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kernel/irq.c
x86, trace: Add irq vector tracepoints
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kernel / irq.c
1 /*
2 * Common interrupt code for 32 and 64 bit
3 */
4 #include <linux/cpu.h>
5 #include <linux/interrupt.h>
6 #include <linux/kernel_stat.h>
7 #include <linux/of.h>
8 #include <linux/seq_file.h>
9 #include <linux/smp.h>
10 #include <linux/ftrace.h>
11 #include <linux/delay.h>
12 #include <linux/export.h>
13
14 #include <asm/apic.h>
15 #include <asm/io_apic.h>
16 #include <asm/irq.h>
17 #include <asm/idle.h>
18 #include <asm/mce.h>
19 #include <asm/hw_irq.h>
20 #include <asm/trace/irq_vectors.h>
21
22 atomic_t irq_err_count;
23
24 /* Function pointer for generic interrupt vector handling */
25 void (*x86_platform_ipi_callback)(void) = NULL;
26
27 /*
28 * 'what should we do if we get a hw irq event on an illegal vector'.
29 * each architecture has to answer this themselves.
30 */
31 void ack_bad_irq(unsigned int irq)
32 {
33 if (printk_ratelimit())
34 pr_err("unexpected IRQ trap at vector %02x\n", irq);
35
36 /*
37 * Currently unexpected vectors happen only on SMP and APIC.
38 * We _must_ ack these because every local APIC has only N
39 * irq slots per priority level, and a 'hanging, unacked' IRQ
40 * holds up an irq slot - in excessive cases (when multiple
41 * unexpected vectors occur) that might lock up the APIC
42 * completely.
43 * But only ack when the APIC is enabled -AK
44 */
45 ack_APIC_irq();
46 }
47
48 #define irq_stats(x) (&per_cpu(irq_stat, x))
49 /*
50 * /proc/interrupts printing for arch specific interrupts
51 */
52 int arch_show_interrupts(struct seq_file *p, int prec)
53 {
54 int j;
55
56 seq_printf(p, "%*s: ", prec, "NMI");
57 for_each_online_cpu(j)
58 seq_printf(p, "%10u ", irq_stats(j)->__nmi_count);
59 seq_printf(p, " Non-maskable interrupts\n");
60 #ifdef CONFIG_X86_LOCAL_APIC
61 seq_printf(p, "%*s: ", prec, "LOC");
62 for_each_online_cpu(j)
63 seq_printf(p, "%10u ", irq_stats(j)->apic_timer_irqs);
64 seq_printf(p, " Local timer interrupts\n");
65
66 seq_printf(p, "%*s: ", prec, "SPU");
67 for_each_online_cpu(j)
68 seq_printf(p, "%10u ", irq_stats(j)->irq_spurious_count);
69 seq_printf(p, " Spurious interrupts\n");
70 seq_printf(p, "%*s: ", prec, "PMI");
71 for_each_online_cpu(j)
72 seq_printf(p, "%10u ", irq_stats(j)->apic_perf_irqs);
73 seq_printf(p, " Performance monitoring interrupts\n");
74 seq_printf(p, "%*s: ", prec, "IWI");
75 for_each_online_cpu(j)
76 seq_printf(p, "%10u ", irq_stats(j)->apic_irq_work_irqs);
77 seq_printf(p, " IRQ work interrupts\n");
78 seq_printf(p, "%*s: ", prec, "RTR");
79 for_each_online_cpu(j)
80 seq_printf(p, "%10u ", irq_stats(j)->icr_read_retry_count);
81 seq_printf(p, " APIC ICR read retries\n");
82 #endif
83 if (x86_platform_ipi_callback) {
84 seq_printf(p, "%*s: ", prec, "PLT");
85 for_each_online_cpu(j)
86 seq_printf(p, "%10u ", irq_stats(j)->x86_platform_ipis);
87 seq_printf(p, " Platform interrupts\n");
88 }
89 #ifdef CONFIG_SMP
90 seq_printf(p, "%*s: ", prec, "RES");
91 for_each_online_cpu(j)
92 seq_printf(p, "%10u ", irq_stats(j)->irq_resched_count);
93 seq_printf(p, " Rescheduling interrupts\n");
94 seq_printf(p, "%*s: ", prec, "CAL");
95 for_each_online_cpu(j)
96 seq_printf(p, "%10u ", irq_stats(j)->irq_call_count -
97 irq_stats(j)->irq_tlb_count);
98 seq_printf(p, " Function call interrupts\n");
99 seq_printf(p, "%*s: ", prec, "TLB");
100 for_each_online_cpu(j)
101 seq_printf(p, "%10u ", irq_stats(j)->irq_tlb_count);
102 seq_printf(p, " TLB shootdowns\n");
103 #endif
104 #ifdef CONFIG_X86_THERMAL_VECTOR
105 seq_printf(p, "%*s: ", prec, "TRM");
106 for_each_online_cpu(j)
107 seq_printf(p, "%10u ", irq_stats(j)->irq_thermal_count);
108 seq_printf(p, " Thermal event interrupts\n");
109 #endif
110 #ifdef CONFIG_X86_MCE_THRESHOLD
111 seq_printf(p, "%*s: ", prec, "THR");
112 for_each_online_cpu(j)
113 seq_printf(p, "%10u ", irq_stats(j)->irq_threshold_count);
114 seq_printf(p, " Threshold APIC interrupts\n");
115 #endif
116 #ifdef CONFIG_X86_MCE
117 seq_printf(p, "%*s: ", prec, "MCE");
118 for_each_online_cpu(j)
119 seq_printf(p, "%10u ", per_cpu(mce_exception_count, j));
120 seq_printf(p, " Machine check exceptions\n");
121 seq_printf(p, "%*s: ", prec, "MCP");
122 for_each_online_cpu(j)
123 seq_printf(p, "%10u ", per_cpu(mce_poll_count, j));
124 seq_printf(p, " Machine check polls\n");
125 #endif
126 seq_printf(p, "%*s: %10u\n", prec, "ERR", atomic_read(&irq_err_count));
127 #if defined(CONFIG_X86_IO_APIC)
128 seq_printf(p, "%*s: %10u\n", prec, "MIS", atomic_read(&irq_mis_count));
129 #endif
130 return 0;
131 }
132
133 /*
134 * /proc/stat helpers
135 */
136 u64 arch_irq_stat_cpu(unsigned int cpu)
137 {
138 u64 sum = irq_stats(cpu)->__nmi_count;
139
140 #ifdef CONFIG_X86_LOCAL_APIC
141 sum += irq_stats(cpu)->apic_timer_irqs;
142 sum += irq_stats(cpu)->irq_spurious_count;
143 sum += irq_stats(cpu)->apic_perf_irqs;
144 sum += irq_stats(cpu)->apic_irq_work_irqs;
145 sum += irq_stats(cpu)->icr_read_retry_count;
146 #endif
147 if (x86_platform_ipi_callback)
148 sum += irq_stats(cpu)->x86_platform_ipis;
149 #ifdef CONFIG_SMP
150 sum += irq_stats(cpu)->irq_resched_count;
151 sum += irq_stats(cpu)->irq_call_count;
152 #endif
153 #ifdef CONFIG_X86_THERMAL_VECTOR
154 sum += irq_stats(cpu)->irq_thermal_count;
155 #endif
156 #ifdef CONFIG_X86_MCE_THRESHOLD
157 sum += irq_stats(cpu)->irq_threshold_count;
158 #endif
159 #ifdef CONFIG_X86_MCE
160 sum += per_cpu(mce_exception_count, cpu);
161 sum += per_cpu(mce_poll_count, cpu);
162 #endif
163 return sum;
164 }
165
166 u64 arch_irq_stat(void)
167 {
168 u64 sum = atomic_read(&irq_err_count);
169 return sum;
170 }
171
172
173 /*
174 * do_IRQ handles all normal device IRQ's (the special
175 * SMP cross-CPU interrupts have their own specific
176 * handlers).
177 */
178 unsigned int __irq_entry do_IRQ(struct pt_regs *regs)
179 {
180 struct pt_regs *old_regs = set_irq_regs(regs);
181
182 /* high bit used in ret_from_ code */
183 unsigned vector = ~regs->orig_ax;
184 unsigned irq;
185
186 irq_enter();
187 exit_idle();
188
189 irq = __this_cpu_read(vector_irq[vector]);
190
191 if (!handle_irq(irq, regs)) {
192 ack_APIC_irq();
193
194 if (printk_ratelimit())
195 pr_emerg("%s: %d.%d No irq handler for vector (irq %d)\n",
196 __func__, smp_processor_id(), vector, irq);
197 }
198
199 irq_exit();
200
201 set_irq_regs(old_regs);
202 return 1;
203 }
204
205 /*
206 * Handler for X86_PLATFORM_IPI_VECTOR.
207 */
208 void __smp_x86_platform_ipi(void)
209 {
210 inc_irq_stat(x86_platform_ipis);
211
212 if (x86_platform_ipi_callback)
213 x86_platform_ipi_callback();
214 }
215
216 void smp_x86_platform_ipi(struct pt_regs *regs)
217 {
218 struct pt_regs *old_regs = set_irq_regs(regs);
219
220 entering_ack_irq();
221 __smp_x86_platform_ipi();
222 exiting_irq();
223 set_irq_regs(old_regs);
224 }
225
226 #ifdef CONFIG_HAVE_KVM
227 /*
228 * Handler for POSTED_INTERRUPT_VECTOR.
229 */
230 void smp_kvm_posted_intr_ipi(struct pt_regs *regs)
231 {
232 struct pt_regs *old_regs = set_irq_regs(regs);
233
234 ack_APIC_irq();
235
236 irq_enter();
237
238 exit_idle();
239
240 inc_irq_stat(kvm_posted_intr_ipis);
241
242 irq_exit();
243
244 set_irq_regs(old_regs);
245 }
246 #endif
247
248 void smp_trace_x86_platform_ipi(struct pt_regs *regs)
249 {
250 struct pt_regs *old_regs = set_irq_regs(regs);
251
252 entering_ack_irq();
253 trace_x86_platform_ipi_entry(X86_PLATFORM_IPI_VECTOR);
254 __smp_x86_platform_ipi();
255 trace_x86_platform_ipi_exit(X86_PLATFORM_IPI_VECTOR);
256 exiting_irq();
257 set_irq_regs(old_regs);
258 }
259
260 EXPORT_SYMBOL_GPL(vector_used_by_percpu_irq);
261
262 #ifdef CONFIG_HOTPLUG_CPU
263 /* A cpu has been removed from cpu_online_mask. Reset irq affinities. */
264 void fixup_irqs(void)
265 {
266 unsigned int irq, vector;
267 static int warned;
268 struct irq_desc *desc;
269 struct irq_data *data;
270 struct irq_chip *chip;
271
272 for_each_irq_desc(irq, desc) {
273 int break_affinity = 0;
274 int set_affinity = 1;
275 const struct cpumask *affinity;
276
277 if (!desc)
278 continue;
279 if (irq == 2)
280 continue;
281
282 /* interrupt's are disabled at this point */
283 raw_spin_lock(&desc->lock);
284
285 data = irq_desc_get_irq_data(desc);
286 affinity = data->affinity;
287 if (!irq_has_action(irq) || irqd_is_per_cpu(data) ||
288 cpumask_subset(affinity, cpu_online_mask)) {
289 raw_spin_unlock(&desc->lock);
290 continue;
291 }
292
293 /*
294 * Complete the irq move. This cpu is going down and for
295 * non intr-remapping case, we can't wait till this interrupt
296 * arrives at this cpu before completing the irq move.
297 */
298 irq_force_complete_move(irq);
299
300 if (cpumask_any_and(affinity, cpu_online_mask) >= nr_cpu_ids) {
301 break_affinity = 1;
302 affinity = cpu_online_mask;
303 }
304
305 chip = irq_data_get_irq_chip(data);
306 if (!irqd_can_move_in_process_context(data) && chip->irq_mask)
307 chip->irq_mask(data);
308
309 if (chip->irq_set_affinity)
310 chip->irq_set_affinity(data, affinity, true);
311 else if (!(warned++))
312 set_affinity = 0;
313
314 /*
315 * We unmask if the irq was not marked masked by the
316 * core code. That respects the lazy irq disable
317 * behaviour.
318 */
319 if (!irqd_can_move_in_process_context(data) &&
320 !irqd_irq_masked(data) && chip->irq_unmask)
321 chip->irq_unmask(data);
322
323 raw_spin_unlock(&desc->lock);
324
325 if (break_affinity && set_affinity)
326 pr_notice("Broke affinity for irq %i\n", irq);
327 else if (!set_affinity)
328 pr_notice("Cannot set affinity for irq %i\n", irq);
329 }
330
331 /*
332 * We can remove mdelay() and then send spuriuous interrupts to
333 * new cpu targets for all the irqs that were handled previously by
334 * this cpu. While it works, I have seen spurious interrupt messages
335 * (nothing wrong but still...).
336 *
337 * So for now, retain mdelay(1) and check the IRR and then send those
338 * interrupts to new targets as this cpu is already offlined...
339 */
340 mdelay(1);
341
342 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
343 unsigned int irr;
344
345 if (__this_cpu_read(vector_irq[vector]) < 0)
346 continue;
347
348 irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
349 if (irr & (1 << (vector % 32))) {
350 irq = __this_cpu_read(vector_irq[vector]);
351
352 desc = irq_to_desc(irq);
353 data = irq_desc_get_irq_data(desc);
354 chip = irq_data_get_irq_chip(data);
355 raw_spin_lock(&desc->lock);
356 if (chip->irq_retrigger)
357 chip->irq_retrigger(data);
358 raw_spin_unlock(&desc->lock);
359 }
360 __this_cpu_write(vector_irq[vector], -1);
361 }
362 }
363 #endif