]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kvm/emulate.c
70045779c72503757899bed6890d9903fc97d699
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kvm / emulate.c
1 /******************************************************************************
2 * emulate.c
3 *
4 * Generic x86 (32-bit and 64-bit) instruction decoder and emulator.
5 *
6 * Copyright (c) 2005 Keir Fraser
7 *
8 * Linux coding style, mod r/m decoder, segment base fixes, real-mode
9 * privileged instructions:
10 *
11 * Copyright (C) 2006 Qumranet
12 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
13 *
14 * Avi Kivity <avi@qumranet.com>
15 * Yaniv Kamay <yaniv@qumranet.com>
16 *
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
19 *
20 * From: xen-unstable 10676:af9809f51f81a3c43f276f00c81a52ef558afda4
21 */
22
23 #include <linux/kvm_host.h>
24 #include "kvm_cache_regs.h"
25 #include <linux/module.h>
26 #include <asm/kvm_emulate.h>
27 #include <linux/stringify.h>
28
29 #include "x86.h"
30 #include "tss.h"
31
32 /*
33 * Operand types
34 */
35 #define OpNone 0ull
36 #define OpImplicit 1ull /* No generic decode */
37 #define OpReg 2ull /* Register */
38 #define OpMem 3ull /* Memory */
39 #define OpAcc 4ull /* Accumulator: AL/AX/EAX/RAX */
40 #define OpDI 5ull /* ES:DI/EDI/RDI */
41 #define OpMem64 6ull /* Memory, 64-bit */
42 #define OpImmUByte 7ull /* Zero-extended 8-bit immediate */
43 #define OpDX 8ull /* DX register */
44 #define OpCL 9ull /* CL register (for shifts) */
45 #define OpImmByte 10ull /* 8-bit sign extended immediate */
46 #define OpOne 11ull /* Implied 1 */
47 #define OpImm 12ull /* Sign extended up to 32-bit immediate */
48 #define OpMem16 13ull /* Memory operand (16-bit). */
49 #define OpMem32 14ull /* Memory operand (32-bit). */
50 #define OpImmU 15ull /* Immediate operand, zero extended */
51 #define OpSI 16ull /* SI/ESI/RSI */
52 #define OpImmFAddr 17ull /* Immediate far address */
53 #define OpMemFAddr 18ull /* Far address in memory */
54 #define OpImmU16 19ull /* Immediate operand, 16 bits, zero extended */
55 #define OpES 20ull /* ES */
56 #define OpCS 21ull /* CS */
57 #define OpSS 22ull /* SS */
58 #define OpDS 23ull /* DS */
59 #define OpFS 24ull /* FS */
60 #define OpGS 25ull /* GS */
61 #define OpMem8 26ull /* 8-bit zero extended memory operand */
62 #define OpImm64 27ull /* Sign extended 16/32/64-bit immediate */
63 #define OpXLat 28ull /* memory at BX/EBX/RBX + zero-extended AL */
64 #define OpAccLo 29ull /* Low part of extended acc (AX/AX/EAX/RAX) */
65 #define OpAccHi 30ull /* High part of extended acc (-/DX/EDX/RDX) */
66
67 #define OpBits 5 /* Width of operand field */
68 #define OpMask ((1ull << OpBits) - 1)
69
70 /*
71 * Opcode effective-address decode tables.
72 * Note that we only emulate instructions that have at least one memory
73 * operand (excluding implicit stack references). We assume that stack
74 * references and instruction fetches will never occur in special memory
75 * areas that require emulation. So, for example, 'mov <imm>,<reg>' need
76 * not be handled.
77 */
78
79 /* Operand sizes: 8-bit operands or specified/overridden size. */
80 #define ByteOp (1<<0) /* 8-bit operands. */
81 /* Destination operand type. */
82 #define DstShift 1
83 #define ImplicitOps (OpImplicit << DstShift)
84 #define DstReg (OpReg << DstShift)
85 #define DstMem (OpMem << DstShift)
86 #define DstAcc (OpAcc << DstShift)
87 #define DstDI (OpDI << DstShift)
88 #define DstMem64 (OpMem64 << DstShift)
89 #define DstMem16 (OpMem16 << DstShift)
90 #define DstImmUByte (OpImmUByte << DstShift)
91 #define DstDX (OpDX << DstShift)
92 #define DstAccLo (OpAccLo << DstShift)
93 #define DstMask (OpMask << DstShift)
94 /* Source operand type. */
95 #define SrcShift 6
96 #define SrcNone (OpNone << SrcShift)
97 #define SrcReg (OpReg << SrcShift)
98 #define SrcMem (OpMem << SrcShift)
99 #define SrcMem16 (OpMem16 << SrcShift)
100 #define SrcMem32 (OpMem32 << SrcShift)
101 #define SrcImm (OpImm << SrcShift)
102 #define SrcImmByte (OpImmByte << SrcShift)
103 #define SrcOne (OpOne << SrcShift)
104 #define SrcImmUByte (OpImmUByte << SrcShift)
105 #define SrcImmU (OpImmU << SrcShift)
106 #define SrcSI (OpSI << SrcShift)
107 #define SrcXLat (OpXLat << SrcShift)
108 #define SrcImmFAddr (OpImmFAddr << SrcShift)
109 #define SrcMemFAddr (OpMemFAddr << SrcShift)
110 #define SrcAcc (OpAcc << SrcShift)
111 #define SrcImmU16 (OpImmU16 << SrcShift)
112 #define SrcImm64 (OpImm64 << SrcShift)
113 #define SrcDX (OpDX << SrcShift)
114 #define SrcMem8 (OpMem8 << SrcShift)
115 #define SrcAccHi (OpAccHi << SrcShift)
116 #define SrcMask (OpMask << SrcShift)
117 #define BitOp (1<<11)
118 #define MemAbs (1<<12) /* Memory operand is absolute displacement */
119 #define String (1<<13) /* String instruction (rep capable) */
120 #define Stack (1<<14) /* Stack instruction (push/pop) */
121 #define GroupMask (7<<15) /* Opcode uses one of the group mechanisms */
122 #define Group (1<<15) /* Bits 3:5 of modrm byte extend opcode */
123 #define GroupDual (2<<15) /* Alternate decoding of mod == 3 */
124 #define Prefix (3<<15) /* Instruction varies with 66/f2/f3 prefix */
125 #define RMExt (4<<15) /* Opcode extension in ModRM r/m if mod == 3 */
126 #define Escape (5<<15) /* Escape to coprocessor instruction */
127 #define InstrDual (6<<15) /* Alternate instruction decoding of mod == 3 */
128 #define ModeDual (7<<15) /* Different instruction for 32/64 bit */
129 #define Sse (1<<18) /* SSE Vector instruction */
130 /* Generic ModRM decode. */
131 #define ModRM (1<<19)
132 /* Destination is only written; never read. */
133 #define Mov (1<<20)
134 /* Misc flags */
135 #define Prot (1<<21) /* instruction generates #UD if not in prot-mode */
136 #define EmulateOnUD (1<<22) /* Emulate if unsupported by the host */
137 #define NoAccess (1<<23) /* Don't access memory (lea/invlpg/verr etc) */
138 #define Op3264 (1<<24) /* Operand is 64b in long mode, 32b otherwise */
139 #define Undefined (1<<25) /* No Such Instruction */
140 #define Lock (1<<26) /* lock prefix is allowed for the instruction */
141 #define Priv (1<<27) /* instruction generates #GP if current CPL != 0 */
142 #define No64 (1<<28)
143 #define PageTable (1 << 29) /* instruction used to write page table */
144 #define NotImpl (1 << 30) /* instruction is not implemented */
145 /* Source 2 operand type */
146 #define Src2Shift (31)
147 #define Src2None (OpNone << Src2Shift)
148 #define Src2Mem (OpMem << Src2Shift)
149 #define Src2CL (OpCL << Src2Shift)
150 #define Src2ImmByte (OpImmByte << Src2Shift)
151 #define Src2One (OpOne << Src2Shift)
152 #define Src2Imm (OpImm << Src2Shift)
153 #define Src2ES (OpES << Src2Shift)
154 #define Src2CS (OpCS << Src2Shift)
155 #define Src2SS (OpSS << Src2Shift)
156 #define Src2DS (OpDS << Src2Shift)
157 #define Src2FS (OpFS << Src2Shift)
158 #define Src2GS (OpGS << Src2Shift)
159 #define Src2Mask (OpMask << Src2Shift)
160 #define Mmx ((u64)1 << 40) /* MMX Vector instruction */
161 #define Aligned ((u64)1 << 41) /* Explicitly aligned (e.g. MOVDQA) */
162 #define Unaligned ((u64)1 << 42) /* Explicitly unaligned (e.g. MOVDQU) */
163 #define Avx ((u64)1 << 43) /* Advanced Vector Extensions */
164 #define Fastop ((u64)1 << 44) /* Use opcode::u.fastop */
165 #define NoWrite ((u64)1 << 45) /* No writeback */
166 #define SrcWrite ((u64)1 << 46) /* Write back src operand */
167 #define NoMod ((u64)1 << 47) /* Mod field is ignored */
168 #define Intercept ((u64)1 << 48) /* Has valid intercept field */
169 #define CheckPerm ((u64)1 << 49) /* Has valid check_perm field */
170 #define PrivUD ((u64)1 << 51) /* #UD instead of #GP on CPL > 0 */
171 #define NearBranch ((u64)1 << 52) /* Near branches */
172 #define No16 ((u64)1 << 53) /* No 16 bit operand */
173 #define IncSP ((u64)1 << 54) /* SP is incremented before ModRM calc */
174
175 #define DstXacc (DstAccLo | SrcAccHi | SrcWrite)
176
177 #define X2(x...) x, x
178 #define X3(x...) X2(x), x
179 #define X4(x...) X2(x), X2(x)
180 #define X5(x...) X4(x), x
181 #define X6(x...) X4(x), X2(x)
182 #define X7(x...) X4(x), X3(x)
183 #define X8(x...) X4(x), X4(x)
184 #define X16(x...) X8(x), X8(x)
185
186 #define NR_FASTOP (ilog2(sizeof(ulong)) + 1)
187 #define FASTOP_SIZE 8
188
189 /*
190 * fastop functions have a special calling convention:
191 *
192 * dst: rax (in/out)
193 * src: rdx (in/out)
194 * src2: rcx (in)
195 * flags: rflags (in/out)
196 * ex: rsi (in:fastop pointer, out:zero if exception)
197 *
198 * Moreover, they are all exactly FASTOP_SIZE bytes long, so functions for
199 * different operand sizes can be reached by calculation, rather than a jump
200 * table (which would be bigger than the code).
201 *
202 * fastop functions are declared as taking a never-defined fastop parameter,
203 * so they can't be called from C directly.
204 */
205
206 struct fastop;
207
208 struct opcode {
209 u64 flags : 56;
210 u64 intercept : 8;
211 union {
212 int (*execute)(struct x86_emulate_ctxt *ctxt);
213 const struct opcode *group;
214 const struct group_dual *gdual;
215 const struct gprefix *gprefix;
216 const struct escape *esc;
217 const struct instr_dual *idual;
218 const struct mode_dual *mdual;
219 void (*fastop)(struct fastop *fake);
220 } u;
221 int (*check_perm)(struct x86_emulate_ctxt *ctxt);
222 };
223
224 struct group_dual {
225 struct opcode mod012[8];
226 struct opcode mod3[8];
227 };
228
229 struct gprefix {
230 struct opcode pfx_no;
231 struct opcode pfx_66;
232 struct opcode pfx_f2;
233 struct opcode pfx_f3;
234 };
235
236 struct escape {
237 struct opcode op[8];
238 struct opcode high[64];
239 };
240
241 struct instr_dual {
242 struct opcode mod012;
243 struct opcode mod3;
244 };
245
246 struct mode_dual {
247 struct opcode mode32;
248 struct opcode mode64;
249 };
250
251 /* EFLAGS bit definitions. */
252 #define EFLG_ID (1<<21)
253 #define EFLG_VIP (1<<20)
254 #define EFLG_VIF (1<<19)
255 #define EFLG_AC (1<<18)
256 #define EFLG_VM (1<<17)
257 #define EFLG_RF (1<<16)
258 #define EFLG_IOPL (3<<12)
259 #define EFLG_NT (1<<14)
260 #define EFLG_OF (1<<11)
261 #define EFLG_DF (1<<10)
262 #define EFLG_IF (1<<9)
263 #define EFLG_TF (1<<8)
264 #define EFLG_SF (1<<7)
265 #define EFLG_ZF (1<<6)
266 #define EFLG_AF (1<<4)
267 #define EFLG_PF (1<<2)
268 #define EFLG_CF (1<<0)
269
270 #define EFLG_RESERVED_ZEROS_MASK 0xffc0802a
271 #define EFLG_RESERVED_ONE_MASK 2
272
273 enum x86_transfer_type {
274 X86_TRANSFER_NONE,
275 X86_TRANSFER_CALL_JMP,
276 X86_TRANSFER_RET,
277 X86_TRANSFER_TASK_SWITCH,
278 };
279
280 static ulong reg_read(struct x86_emulate_ctxt *ctxt, unsigned nr)
281 {
282 if (!(ctxt->regs_valid & (1 << nr))) {
283 ctxt->regs_valid |= 1 << nr;
284 ctxt->_regs[nr] = ctxt->ops->read_gpr(ctxt, nr);
285 }
286 return ctxt->_regs[nr];
287 }
288
289 static ulong *reg_write(struct x86_emulate_ctxt *ctxt, unsigned nr)
290 {
291 ctxt->regs_valid |= 1 << nr;
292 ctxt->regs_dirty |= 1 << nr;
293 return &ctxt->_regs[nr];
294 }
295
296 static ulong *reg_rmw(struct x86_emulate_ctxt *ctxt, unsigned nr)
297 {
298 reg_read(ctxt, nr);
299 return reg_write(ctxt, nr);
300 }
301
302 static void writeback_registers(struct x86_emulate_ctxt *ctxt)
303 {
304 unsigned reg;
305
306 for_each_set_bit(reg, (ulong *)&ctxt->regs_dirty, 16)
307 ctxt->ops->write_gpr(ctxt, reg, ctxt->_regs[reg]);
308 }
309
310 static void invalidate_registers(struct x86_emulate_ctxt *ctxt)
311 {
312 ctxt->regs_dirty = 0;
313 ctxt->regs_valid = 0;
314 }
315
316 /*
317 * These EFLAGS bits are restored from saved value during emulation, and
318 * any changes are written back to the saved value after emulation.
319 */
320 #define EFLAGS_MASK (EFLG_OF|EFLG_SF|EFLG_ZF|EFLG_AF|EFLG_PF|EFLG_CF)
321
322 #ifdef CONFIG_X86_64
323 #define ON64(x) x
324 #else
325 #define ON64(x)
326 #endif
327
328 static int fastop(struct x86_emulate_ctxt *ctxt, void (*fop)(struct fastop *));
329
330 #define FOP_ALIGN ".align " __stringify(FASTOP_SIZE) " \n\t"
331 #define FOP_RET "ret \n\t"
332
333 #define FOP_START(op) \
334 extern void em_##op(struct fastop *fake); \
335 asm(".pushsection .text, \"ax\" \n\t" \
336 ".global em_" #op " \n\t" \
337 FOP_ALIGN \
338 "em_" #op ": \n\t"
339
340 #define FOP_END \
341 ".popsection")
342
343 #define FOPNOP() FOP_ALIGN FOP_RET
344
345 #define FOP1E(op, dst) \
346 FOP_ALIGN "10: " #op " %" #dst " \n\t" FOP_RET
347
348 #define FOP1EEX(op, dst) \
349 FOP1E(op, dst) _ASM_EXTABLE(10b, kvm_fastop_exception)
350
351 #define FASTOP1(op) \
352 FOP_START(op) \
353 FOP1E(op##b, al) \
354 FOP1E(op##w, ax) \
355 FOP1E(op##l, eax) \
356 ON64(FOP1E(op##q, rax)) \
357 FOP_END
358
359 /* 1-operand, using src2 (for MUL/DIV r/m) */
360 #define FASTOP1SRC2(op, name) \
361 FOP_START(name) \
362 FOP1E(op, cl) \
363 FOP1E(op, cx) \
364 FOP1E(op, ecx) \
365 ON64(FOP1E(op, rcx)) \
366 FOP_END
367
368 /* 1-operand, using src2 (for MUL/DIV r/m), with exceptions */
369 #define FASTOP1SRC2EX(op, name) \
370 FOP_START(name) \
371 FOP1EEX(op, cl) \
372 FOP1EEX(op, cx) \
373 FOP1EEX(op, ecx) \
374 ON64(FOP1EEX(op, rcx)) \
375 FOP_END
376
377 #define FOP2E(op, dst, src) \
378 FOP_ALIGN #op " %" #src ", %" #dst " \n\t" FOP_RET
379
380 #define FASTOP2(op) \
381 FOP_START(op) \
382 FOP2E(op##b, al, dl) \
383 FOP2E(op##w, ax, dx) \
384 FOP2E(op##l, eax, edx) \
385 ON64(FOP2E(op##q, rax, rdx)) \
386 FOP_END
387
388 /* 2 operand, word only */
389 #define FASTOP2W(op) \
390 FOP_START(op) \
391 FOPNOP() \
392 FOP2E(op##w, ax, dx) \
393 FOP2E(op##l, eax, edx) \
394 ON64(FOP2E(op##q, rax, rdx)) \
395 FOP_END
396
397 /* 2 operand, src is CL */
398 #define FASTOP2CL(op) \
399 FOP_START(op) \
400 FOP2E(op##b, al, cl) \
401 FOP2E(op##w, ax, cl) \
402 FOP2E(op##l, eax, cl) \
403 ON64(FOP2E(op##q, rax, cl)) \
404 FOP_END
405
406 /* 2 operand, src and dest are reversed */
407 #define FASTOP2R(op, name) \
408 FOP_START(name) \
409 FOP2E(op##b, dl, al) \
410 FOP2E(op##w, dx, ax) \
411 FOP2E(op##l, edx, eax) \
412 ON64(FOP2E(op##q, rdx, rax)) \
413 FOP_END
414
415 #define FOP3E(op, dst, src, src2) \
416 FOP_ALIGN #op " %" #src2 ", %" #src ", %" #dst " \n\t" FOP_RET
417
418 /* 3-operand, word-only, src2=cl */
419 #define FASTOP3WCL(op) \
420 FOP_START(op) \
421 FOPNOP() \
422 FOP3E(op##w, ax, dx, cl) \
423 FOP3E(op##l, eax, edx, cl) \
424 ON64(FOP3E(op##q, rax, rdx, cl)) \
425 FOP_END
426
427 /* Special case for SETcc - 1 instruction per cc */
428 #define FOP_SETCC(op) ".align 4; " #op " %al; ret \n\t"
429
430 asm(".global kvm_fastop_exception \n"
431 "kvm_fastop_exception: xor %esi, %esi; ret");
432
433 FOP_START(setcc)
434 FOP_SETCC(seto)
435 FOP_SETCC(setno)
436 FOP_SETCC(setc)
437 FOP_SETCC(setnc)
438 FOP_SETCC(setz)
439 FOP_SETCC(setnz)
440 FOP_SETCC(setbe)
441 FOP_SETCC(setnbe)
442 FOP_SETCC(sets)
443 FOP_SETCC(setns)
444 FOP_SETCC(setp)
445 FOP_SETCC(setnp)
446 FOP_SETCC(setl)
447 FOP_SETCC(setnl)
448 FOP_SETCC(setle)
449 FOP_SETCC(setnle)
450 FOP_END;
451
452 FOP_START(salc) "pushf; sbb %al, %al; popf \n\t" FOP_RET
453 FOP_END;
454
455 static int emulator_check_intercept(struct x86_emulate_ctxt *ctxt,
456 enum x86_intercept intercept,
457 enum x86_intercept_stage stage)
458 {
459 struct x86_instruction_info info = {
460 .intercept = intercept,
461 .rep_prefix = ctxt->rep_prefix,
462 .modrm_mod = ctxt->modrm_mod,
463 .modrm_reg = ctxt->modrm_reg,
464 .modrm_rm = ctxt->modrm_rm,
465 .src_val = ctxt->src.val64,
466 .dst_val = ctxt->dst.val64,
467 .src_bytes = ctxt->src.bytes,
468 .dst_bytes = ctxt->dst.bytes,
469 .ad_bytes = ctxt->ad_bytes,
470 .next_rip = ctxt->eip,
471 };
472
473 return ctxt->ops->intercept(ctxt, &info, stage);
474 }
475
476 static void assign_masked(ulong *dest, ulong src, ulong mask)
477 {
478 *dest = (*dest & ~mask) | (src & mask);
479 }
480
481 static void assign_register(unsigned long *reg, u64 val, int bytes)
482 {
483 /* The 4-byte case *is* correct: in 64-bit mode we zero-extend. */
484 switch (bytes) {
485 case 1:
486 *(u8 *)reg = (u8)val;
487 break;
488 case 2:
489 *(u16 *)reg = (u16)val;
490 break;
491 case 4:
492 *reg = (u32)val;
493 break; /* 64b: zero-extend */
494 case 8:
495 *reg = val;
496 break;
497 }
498 }
499
500 static inline unsigned long ad_mask(struct x86_emulate_ctxt *ctxt)
501 {
502 return (1UL << (ctxt->ad_bytes << 3)) - 1;
503 }
504
505 static ulong stack_mask(struct x86_emulate_ctxt *ctxt)
506 {
507 u16 sel;
508 struct desc_struct ss;
509
510 if (ctxt->mode == X86EMUL_MODE_PROT64)
511 return ~0UL;
512 ctxt->ops->get_segment(ctxt, &sel, &ss, NULL, VCPU_SREG_SS);
513 return ~0U >> ((ss.d ^ 1) * 16); /* d=0: 0xffff; d=1: 0xffffffff */
514 }
515
516 static int stack_size(struct x86_emulate_ctxt *ctxt)
517 {
518 return (__fls(stack_mask(ctxt)) + 1) >> 3;
519 }
520
521 /* Access/update address held in a register, based on addressing mode. */
522 static inline unsigned long
523 address_mask(struct x86_emulate_ctxt *ctxt, unsigned long reg)
524 {
525 if (ctxt->ad_bytes == sizeof(unsigned long))
526 return reg;
527 else
528 return reg & ad_mask(ctxt);
529 }
530
531 static inline unsigned long
532 register_address(struct x86_emulate_ctxt *ctxt, int reg)
533 {
534 return address_mask(ctxt, reg_read(ctxt, reg));
535 }
536
537 static void masked_increment(ulong *reg, ulong mask, int inc)
538 {
539 assign_masked(reg, *reg + inc, mask);
540 }
541
542 static inline void
543 register_address_increment(struct x86_emulate_ctxt *ctxt, int reg, int inc)
544 {
545 ulong mask;
546
547 if (ctxt->ad_bytes == sizeof(unsigned long))
548 mask = ~0UL;
549 else
550 mask = ad_mask(ctxt);
551 masked_increment(reg_rmw(ctxt, reg), mask, inc);
552 }
553
554 static void rsp_increment(struct x86_emulate_ctxt *ctxt, int inc)
555 {
556 masked_increment(reg_rmw(ctxt, VCPU_REGS_RSP), stack_mask(ctxt), inc);
557 }
558
559 static u32 desc_limit_scaled(struct desc_struct *desc)
560 {
561 u32 limit = get_desc_limit(desc);
562
563 return desc->g ? (limit << 12) | 0xfff : limit;
564 }
565
566 static unsigned long seg_base(struct x86_emulate_ctxt *ctxt, int seg)
567 {
568 if (ctxt->mode == X86EMUL_MODE_PROT64 && seg < VCPU_SREG_FS)
569 return 0;
570
571 return ctxt->ops->get_cached_segment_base(ctxt, seg);
572 }
573
574 static int emulate_exception(struct x86_emulate_ctxt *ctxt, int vec,
575 u32 error, bool valid)
576 {
577 WARN_ON(vec > 0x1f);
578 ctxt->exception.vector = vec;
579 ctxt->exception.error_code = error;
580 ctxt->exception.error_code_valid = valid;
581 return X86EMUL_PROPAGATE_FAULT;
582 }
583
584 static int emulate_db(struct x86_emulate_ctxt *ctxt)
585 {
586 return emulate_exception(ctxt, DB_VECTOR, 0, false);
587 }
588
589 static int emulate_gp(struct x86_emulate_ctxt *ctxt, int err)
590 {
591 return emulate_exception(ctxt, GP_VECTOR, err, true);
592 }
593
594 static int emulate_ss(struct x86_emulate_ctxt *ctxt, int err)
595 {
596 return emulate_exception(ctxt, SS_VECTOR, err, true);
597 }
598
599 static int emulate_ud(struct x86_emulate_ctxt *ctxt)
600 {
601 return emulate_exception(ctxt, UD_VECTOR, 0, false);
602 }
603
604 static int emulate_ts(struct x86_emulate_ctxt *ctxt, int err)
605 {
606 return emulate_exception(ctxt, TS_VECTOR, err, true);
607 }
608
609 static int emulate_de(struct x86_emulate_ctxt *ctxt)
610 {
611 return emulate_exception(ctxt, DE_VECTOR, 0, false);
612 }
613
614 static int emulate_nm(struct x86_emulate_ctxt *ctxt)
615 {
616 return emulate_exception(ctxt, NM_VECTOR, 0, false);
617 }
618
619 static u16 get_segment_selector(struct x86_emulate_ctxt *ctxt, unsigned seg)
620 {
621 u16 selector;
622 struct desc_struct desc;
623
624 ctxt->ops->get_segment(ctxt, &selector, &desc, NULL, seg);
625 return selector;
626 }
627
628 static void set_segment_selector(struct x86_emulate_ctxt *ctxt, u16 selector,
629 unsigned seg)
630 {
631 u16 dummy;
632 u32 base3;
633 struct desc_struct desc;
634
635 ctxt->ops->get_segment(ctxt, &dummy, &desc, &base3, seg);
636 ctxt->ops->set_segment(ctxt, selector, &desc, base3, seg);
637 }
638
639 /*
640 * x86 defines three classes of vector instructions: explicitly
641 * aligned, explicitly unaligned, and the rest, which change behaviour
642 * depending on whether they're AVX encoded or not.
643 *
644 * Also included is CMPXCHG16B which is not a vector instruction, yet it is
645 * subject to the same check.
646 */
647 static bool insn_aligned(struct x86_emulate_ctxt *ctxt, unsigned size)
648 {
649 if (likely(size < 16))
650 return false;
651
652 if (ctxt->d & Aligned)
653 return true;
654 else if (ctxt->d & Unaligned)
655 return false;
656 else if (ctxt->d & Avx)
657 return false;
658 else
659 return true;
660 }
661
662 static __always_inline int __linearize(struct x86_emulate_ctxt *ctxt,
663 struct segmented_address addr,
664 unsigned *max_size, unsigned size,
665 bool write, bool fetch,
666 enum x86emul_mode mode, ulong *linear)
667 {
668 struct desc_struct desc;
669 bool usable;
670 ulong la;
671 u32 lim;
672 u16 sel;
673
674 la = seg_base(ctxt, addr.seg) + addr.ea;
675 *max_size = 0;
676 switch (mode) {
677 case X86EMUL_MODE_PROT64:
678 if (is_noncanonical_address(la))
679 goto bad;
680
681 *max_size = min_t(u64, ~0u, (1ull << 48) - la);
682 if (size > *max_size)
683 goto bad;
684 break;
685 default:
686 usable = ctxt->ops->get_segment(ctxt, &sel, &desc, NULL,
687 addr.seg);
688 if (!usable)
689 goto bad;
690 /* code segment in protected mode or read-only data segment */
691 if ((((ctxt->mode != X86EMUL_MODE_REAL) && (desc.type & 8))
692 || !(desc.type & 2)) && write)
693 goto bad;
694 /* unreadable code segment */
695 if (!fetch && (desc.type & 8) && !(desc.type & 2))
696 goto bad;
697 lim = desc_limit_scaled(&desc);
698 if (!(desc.type & 8) && (desc.type & 4)) {
699 /* expand-down segment */
700 if (addr.ea <= lim)
701 goto bad;
702 lim = desc.d ? 0xffffffff : 0xffff;
703 }
704 if (addr.ea > lim)
705 goto bad;
706 if (lim == 0xffffffff)
707 *max_size = ~0u;
708 else {
709 *max_size = (u64)lim + 1 - addr.ea;
710 if (size > *max_size)
711 goto bad;
712 }
713 la &= (u32)-1;
714 break;
715 }
716 if (insn_aligned(ctxt, size) && ((la & (size - 1)) != 0))
717 return emulate_gp(ctxt, 0);
718 *linear = la;
719 return X86EMUL_CONTINUE;
720 bad:
721 if (addr.seg == VCPU_SREG_SS)
722 return emulate_ss(ctxt, 0);
723 else
724 return emulate_gp(ctxt, 0);
725 }
726
727 static int linearize(struct x86_emulate_ctxt *ctxt,
728 struct segmented_address addr,
729 unsigned size, bool write,
730 ulong *linear)
731 {
732 unsigned max_size;
733 return __linearize(ctxt, addr, &max_size, size, write, false,
734 ctxt->mode, linear);
735 }
736
737 static inline int assign_eip(struct x86_emulate_ctxt *ctxt, ulong dst,
738 enum x86emul_mode mode)
739 {
740 ulong linear;
741 int rc;
742 unsigned max_size;
743 struct segmented_address addr = { .seg = VCPU_SREG_CS,
744 .ea = dst };
745
746 if (ctxt->op_bytes != sizeof(unsigned long))
747 addr.ea = dst & ((1UL << (ctxt->op_bytes << 3)) - 1);
748 rc = __linearize(ctxt, addr, &max_size, 1, false, true, mode, &linear);
749 if (rc == X86EMUL_CONTINUE)
750 ctxt->_eip = addr.ea;
751 return rc;
752 }
753
754 static inline int assign_eip_near(struct x86_emulate_ctxt *ctxt, ulong dst)
755 {
756 return assign_eip(ctxt, dst, ctxt->mode);
757 }
758
759 static int assign_eip_far(struct x86_emulate_ctxt *ctxt, ulong dst,
760 const struct desc_struct *cs_desc)
761 {
762 enum x86emul_mode mode = ctxt->mode;
763 int rc;
764
765 #ifdef CONFIG_X86_64
766 if (ctxt->mode >= X86EMUL_MODE_PROT16) {
767 if (cs_desc->l) {
768 u64 efer = 0;
769
770 ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
771 if (efer & EFER_LMA)
772 mode = X86EMUL_MODE_PROT64;
773 } else
774 mode = X86EMUL_MODE_PROT32; /* temporary value */
775 }
776 #endif
777 if (mode == X86EMUL_MODE_PROT16 || mode == X86EMUL_MODE_PROT32)
778 mode = cs_desc->d ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
779 rc = assign_eip(ctxt, dst, mode);
780 if (rc == X86EMUL_CONTINUE)
781 ctxt->mode = mode;
782 return rc;
783 }
784
785 static inline int jmp_rel(struct x86_emulate_ctxt *ctxt, int rel)
786 {
787 return assign_eip_near(ctxt, ctxt->_eip + rel);
788 }
789
790 static int segmented_read_std(struct x86_emulate_ctxt *ctxt,
791 struct segmented_address addr,
792 void *data,
793 unsigned size)
794 {
795 int rc;
796 ulong linear;
797
798 rc = linearize(ctxt, addr, size, false, &linear);
799 if (rc != X86EMUL_CONTINUE)
800 return rc;
801 return ctxt->ops->read_std(ctxt, linear, data, size, &ctxt->exception);
802 }
803
804 /*
805 * Prefetch the remaining bytes of the instruction without crossing page
806 * boundary if they are not in fetch_cache yet.
807 */
808 static int __do_insn_fetch_bytes(struct x86_emulate_ctxt *ctxt, int op_size)
809 {
810 int rc;
811 unsigned size, max_size;
812 unsigned long linear;
813 int cur_size = ctxt->fetch.end - ctxt->fetch.data;
814 struct segmented_address addr = { .seg = VCPU_SREG_CS,
815 .ea = ctxt->eip + cur_size };
816
817 /*
818 * We do not know exactly how many bytes will be needed, and
819 * __linearize is expensive, so fetch as much as possible. We
820 * just have to avoid going beyond the 15 byte limit, the end
821 * of the segment, or the end of the page.
822 *
823 * __linearize is called with size 0 so that it does not do any
824 * boundary check itself. Instead, we use max_size to check
825 * against op_size.
826 */
827 rc = __linearize(ctxt, addr, &max_size, 0, false, true, ctxt->mode,
828 &linear);
829 if (unlikely(rc != X86EMUL_CONTINUE))
830 return rc;
831
832 size = min_t(unsigned, 15UL ^ cur_size, max_size);
833 size = min_t(unsigned, size, PAGE_SIZE - offset_in_page(linear));
834
835 /*
836 * One instruction can only straddle two pages,
837 * and one has been loaded at the beginning of
838 * x86_decode_insn. So, if not enough bytes
839 * still, we must have hit the 15-byte boundary.
840 */
841 if (unlikely(size < op_size))
842 return emulate_gp(ctxt, 0);
843
844 rc = ctxt->ops->fetch(ctxt, linear, ctxt->fetch.end,
845 size, &ctxt->exception);
846 if (unlikely(rc != X86EMUL_CONTINUE))
847 return rc;
848 ctxt->fetch.end += size;
849 return X86EMUL_CONTINUE;
850 }
851
852 static __always_inline int do_insn_fetch_bytes(struct x86_emulate_ctxt *ctxt,
853 unsigned size)
854 {
855 unsigned done_size = ctxt->fetch.end - ctxt->fetch.ptr;
856
857 if (unlikely(done_size < size))
858 return __do_insn_fetch_bytes(ctxt, size - done_size);
859 else
860 return X86EMUL_CONTINUE;
861 }
862
863 /* Fetch next part of the instruction being emulated. */
864 #define insn_fetch(_type, _ctxt) \
865 ({ _type _x; \
866 \
867 rc = do_insn_fetch_bytes(_ctxt, sizeof(_type)); \
868 if (rc != X86EMUL_CONTINUE) \
869 goto done; \
870 ctxt->_eip += sizeof(_type); \
871 _x = *(_type __aligned(1) *) ctxt->fetch.ptr; \
872 ctxt->fetch.ptr += sizeof(_type); \
873 _x; \
874 })
875
876 #define insn_fetch_arr(_arr, _size, _ctxt) \
877 ({ \
878 rc = do_insn_fetch_bytes(_ctxt, _size); \
879 if (rc != X86EMUL_CONTINUE) \
880 goto done; \
881 ctxt->_eip += (_size); \
882 memcpy(_arr, ctxt->fetch.ptr, _size); \
883 ctxt->fetch.ptr += (_size); \
884 })
885
886 /*
887 * Given the 'reg' portion of a ModRM byte, and a register block, return a
888 * pointer into the block that addresses the relevant register.
889 * @highbyte_regs specifies whether to decode AH,CH,DH,BH.
890 */
891 static void *decode_register(struct x86_emulate_ctxt *ctxt, u8 modrm_reg,
892 int byteop)
893 {
894 void *p;
895 int highbyte_regs = (ctxt->rex_prefix == 0) && byteop;
896
897 if (highbyte_regs && modrm_reg >= 4 && modrm_reg < 8)
898 p = (unsigned char *)reg_rmw(ctxt, modrm_reg & 3) + 1;
899 else
900 p = reg_rmw(ctxt, modrm_reg);
901 return p;
902 }
903
904 static int read_descriptor(struct x86_emulate_ctxt *ctxt,
905 struct segmented_address addr,
906 u16 *size, unsigned long *address, int op_bytes)
907 {
908 int rc;
909
910 if (op_bytes == 2)
911 op_bytes = 3;
912 *address = 0;
913 rc = segmented_read_std(ctxt, addr, size, 2);
914 if (rc != X86EMUL_CONTINUE)
915 return rc;
916 addr.ea += 2;
917 rc = segmented_read_std(ctxt, addr, address, op_bytes);
918 return rc;
919 }
920
921 FASTOP2(add);
922 FASTOP2(or);
923 FASTOP2(adc);
924 FASTOP2(sbb);
925 FASTOP2(and);
926 FASTOP2(sub);
927 FASTOP2(xor);
928 FASTOP2(cmp);
929 FASTOP2(test);
930
931 FASTOP1SRC2(mul, mul_ex);
932 FASTOP1SRC2(imul, imul_ex);
933 FASTOP1SRC2EX(div, div_ex);
934 FASTOP1SRC2EX(idiv, idiv_ex);
935
936 FASTOP3WCL(shld);
937 FASTOP3WCL(shrd);
938
939 FASTOP2W(imul);
940
941 FASTOP1(not);
942 FASTOP1(neg);
943 FASTOP1(inc);
944 FASTOP1(dec);
945
946 FASTOP2CL(rol);
947 FASTOP2CL(ror);
948 FASTOP2CL(rcl);
949 FASTOP2CL(rcr);
950 FASTOP2CL(shl);
951 FASTOP2CL(shr);
952 FASTOP2CL(sar);
953
954 FASTOP2W(bsf);
955 FASTOP2W(bsr);
956 FASTOP2W(bt);
957 FASTOP2W(bts);
958 FASTOP2W(btr);
959 FASTOP2W(btc);
960
961 FASTOP2(xadd);
962
963 FASTOP2R(cmp, cmp_r);
964
965 static int em_bsf_c(struct x86_emulate_ctxt *ctxt)
966 {
967 /* If src is zero, do not writeback, but update flags */
968 if (ctxt->src.val == 0)
969 ctxt->dst.type = OP_NONE;
970 return fastop(ctxt, em_bsf);
971 }
972
973 static int em_bsr_c(struct x86_emulate_ctxt *ctxt)
974 {
975 /* If src is zero, do not writeback, but update flags */
976 if (ctxt->src.val == 0)
977 ctxt->dst.type = OP_NONE;
978 return fastop(ctxt, em_bsr);
979 }
980
981 static u8 test_cc(unsigned int condition, unsigned long flags)
982 {
983 u8 rc;
984 void (*fop)(void) = (void *)em_setcc + 4 * (condition & 0xf);
985
986 flags = (flags & EFLAGS_MASK) | X86_EFLAGS_IF;
987 asm("push %[flags]; popf; call *%[fastop]"
988 : "=a"(rc) : [fastop]"r"(fop), [flags]"r"(flags));
989 return rc;
990 }
991
992 static void fetch_register_operand(struct operand *op)
993 {
994 switch (op->bytes) {
995 case 1:
996 op->val = *(u8 *)op->addr.reg;
997 break;
998 case 2:
999 op->val = *(u16 *)op->addr.reg;
1000 break;
1001 case 4:
1002 op->val = *(u32 *)op->addr.reg;
1003 break;
1004 case 8:
1005 op->val = *(u64 *)op->addr.reg;
1006 break;
1007 }
1008 }
1009
1010 static void read_sse_reg(struct x86_emulate_ctxt *ctxt, sse128_t *data, int reg)
1011 {
1012 ctxt->ops->get_fpu(ctxt);
1013 switch (reg) {
1014 case 0: asm("movdqa %%xmm0, %0" : "=m"(*data)); break;
1015 case 1: asm("movdqa %%xmm1, %0" : "=m"(*data)); break;
1016 case 2: asm("movdqa %%xmm2, %0" : "=m"(*data)); break;
1017 case 3: asm("movdqa %%xmm3, %0" : "=m"(*data)); break;
1018 case 4: asm("movdqa %%xmm4, %0" : "=m"(*data)); break;
1019 case 5: asm("movdqa %%xmm5, %0" : "=m"(*data)); break;
1020 case 6: asm("movdqa %%xmm6, %0" : "=m"(*data)); break;
1021 case 7: asm("movdqa %%xmm7, %0" : "=m"(*data)); break;
1022 #ifdef CONFIG_X86_64
1023 case 8: asm("movdqa %%xmm8, %0" : "=m"(*data)); break;
1024 case 9: asm("movdqa %%xmm9, %0" : "=m"(*data)); break;
1025 case 10: asm("movdqa %%xmm10, %0" : "=m"(*data)); break;
1026 case 11: asm("movdqa %%xmm11, %0" : "=m"(*data)); break;
1027 case 12: asm("movdqa %%xmm12, %0" : "=m"(*data)); break;
1028 case 13: asm("movdqa %%xmm13, %0" : "=m"(*data)); break;
1029 case 14: asm("movdqa %%xmm14, %0" : "=m"(*data)); break;
1030 case 15: asm("movdqa %%xmm15, %0" : "=m"(*data)); break;
1031 #endif
1032 default: BUG();
1033 }
1034 ctxt->ops->put_fpu(ctxt);
1035 }
1036
1037 static void write_sse_reg(struct x86_emulate_ctxt *ctxt, sse128_t *data,
1038 int reg)
1039 {
1040 ctxt->ops->get_fpu(ctxt);
1041 switch (reg) {
1042 case 0: asm("movdqa %0, %%xmm0" : : "m"(*data)); break;
1043 case 1: asm("movdqa %0, %%xmm1" : : "m"(*data)); break;
1044 case 2: asm("movdqa %0, %%xmm2" : : "m"(*data)); break;
1045 case 3: asm("movdqa %0, %%xmm3" : : "m"(*data)); break;
1046 case 4: asm("movdqa %0, %%xmm4" : : "m"(*data)); break;
1047 case 5: asm("movdqa %0, %%xmm5" : : "m"(*data)); break;
1048 case 6: asm("movdqa %0, %%xmm6" : : "m"(*data)); break;
1049 case 7: asm("movdqa %0, %%xmm7" : : "m"(*data)); break;
1050 #ifdef CONFIG_X86_64
1051 case 8: asm("movdqa %0, %%xmm8" : : "m"(*data)); break;
1052 case 9: asm("movdqa %0, %%xmm9" : : "m"(*data)); break;
1053 case 10: asm("movdqa %0, %%xmm10" : : "m"(*data)); break;
1054 case 11: asm("movdqa %0, %%xmm11" : : "m"(*data)); break;
1055 case 12: asm("movdqa %0, %%xmm12" : : "m"(*data)); break;
1056 case 13: asm("movdqa %0, %%xmm13" : : "m"(*data)); break;
1057 case 14: asm("movdqa %0, %%xmm14" : : "m"(*data)); break;
1058 case 15: asm("movdqa %0, %%xmm15" : : "m"(*data)); break;
1059 #endif
1060 default: BUG();
1061 }
1062 ctxt->ops->put_fpu(ctxt);
1063 }
1064
1065 static void read_mmx_reg(struct x86_emulate_ctxt *ctxt, u64 *data, int reg)
1066 {
1067 ctxt->ops->get_fpu(ctxt);
1068 switch (reg) {
1069 case 0: asm("movq %%mm0, %0" : "=m"(*data)); break;
1070 case 1: asm("movq %%mm1, %0" : "=m"(*data)); break;
1071 case 2: asm("movq %%mm2, %0" : "=m"(*data)); break;
1072 case 3: asm("movq %%mm3, %0" : "=m"(*data)); break;
1073 case 4: asm("movq %%mm4, %0" : "=m"(*data)); break;
1074 case 5: asm("movq %%mm5, %0" : "=m"(*data)); break;
1075 case 6: asm("movq %%mm6, %0" : "=m"(*data)); break;
1076 case 7: asm("movq %%mm7, %0" : "=m"(*data)); break;
1077 default: BUG();
1078 }
1079 ctxt->ops->put_fpu(ctxt);
1080 }
1081
1082 static void write_mmx_reg(struct x86_emulate_ctxt *ctxt, u64 *data, int reg)
1083 {
1084 ctxt->ops->get_fpu(ctxt);
1085 switch (reg) {
1086 case 0: asm("movq %0, %%mm0" : : "m"(*data)); break;
1087 case 1: asm("movq %0, %%mm1" : : "m"(*data)); break;
1088 case 2: asm("movq %0, %%mm2" : : "m"(*data)); break;
1089 case 3: asm("movq %0, %%mm3" : : "m"(*data)); break;
1090 case 4: asm("movq %0, %%mm4" : : "m"(*data)); break;
1091 case 5: asm("movq %0, %%mm5" : : "m"(*data)); break;
1092 case 6: asm("movq %0, %%mm6" : : "m"(*data)); break;
1093 case 7: asm("movq %0, %%mm7" : : "m"(*data)); break;
1094 default: BUG();
1095 }
1096 ctxt->ops->put_fpu(ctxt);
1097 }
1098
1099 static int em_fninit(struct x86_emulate_ctxt *ctxt)
1100 {
1101 if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM))
1102 return emulate_nm(ctxt);
1103
1104 ctxt->ops->get_fpu(ctxt);
1105 asm volatile("fninit");
1106 ctxt->ops->put_fpu(ctxt);
1107 return X86EMUL_CONTINUE;
1108 }
1109
1110 static int em_fnstcw(struct x86_emulate_ctxt *ctxt)
1111 {
1112 u16 fcw;
1113
1114 if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM))
1115 return emulate_nm(ctxt);
1116
1117 ctxt->ops->get_fpu(ctxt);
1118 asm volatile("fnstcw %0": "+m"(fcw));
1119 ctxt->ops->put_fpu(ctxt);
1120
1121 ctxt->dst.val = fcw;
1122
1123 return X86EMUL_CONTINUE;
1124 }
1125
1126 static int em_fnstsw(struct x86_emulate_ctxt *ctxt)
1127 {
1128 u16 fsw;
1129
1130 if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM))
1131 return emulate_nm(ctxt);
1132
1133 ctxt->ops->get_fpu(ctxt);
1134 asm volatile("fnstsw %0": "+m"(fsw));
1135 ctxt->ops->put_fpu(ctxt);
1136
1137 ctxt->dst.val = fsw;
1138
1139 return X86EMUL_CONTINUE;
1140 }
1141
1142 static void decode_register_operand(struct x86_emulate_ctxt *ctxt,
1143 struct operand *op)
1144 {
1145 unsigned reg = ctxt->modrm_reg;
1146
1147 if (!(ctxt->d & ModRM))
1148 reg = (ctxt->b & 7) | ((ctxt->rex_prefix & 1) << 3);
1149
1150 if (ctxt->d & Sse) {
1151 op->type = OP_XMM;
1152 op->bytes = 16;
1153 op->addr.xmm = reg;
1154 read_sse_reg(ctxt, &op->vec_val, reg);
1155 return;
1156 }
1157 if (ctxt->d & Mmx) {
1158 reg &= 7;
1159 op->type = OP_MM;
1160 op->bytes = 8;
1161 op->addr.mm = reg;
1162 return;
1163 }
1164
1165 op->type = OP_REG;
1166 op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
1167 op->addr.reg = decode_register(ctxt, reg, ctxt->d & ByteOp);
1168
1169 fetch_register_operand(op);
1170 op->orig_val = op->val;
1171 }
1172
1173 static void adjust_modrm_seg(struct x86_emulate_ctxt *ctxt, int base_reg)
1174 {
1175 if (base_reg == VCPU_REGS_RSP || base_reg == VCPU_REGS_RBP)
1176 ctxt->modrm_seg = VCPU_SREG_SS;
1177 }
1178
1179 static int decode_modrm(struct x86_emulate_ctxt *ctxt,
1180 struct operand *op)
1181 {
1182 u8 sib;
1183 int index_reg, base_reg, scale;
1184 int rc = X86EMUL_CONTINUE;
1185 ulong modrm_ea = 0;
1186
1187 ctxt->modrm_reg = ((ctxt->rex_prefix << 1) & 8); /* REX.R */
1188 index_reg = (ctxt->rex_prefix << 2) & 8; /* REX.X */
1189 base_reg = (ctxt->rex_prefix << 3) & 8; /* REX.B */
1190
1191 ctxt->modrm_mod = (ctxt->modrm & 0xc0) >> 6;
1192 ctxt->modrm_reg |= (ctxt->modrm & 0x38) >> 3;
1193 ctxt->modrm_rm = base_reg | (ctxt->modrm & 0x07);
1194 ctxt->modrm_seg = VCPU_SREG_DS;
1195
1196 if (ctxt->modrm_mod == 3 || (ctxt->d & NoMod)) {
1197 op->type = OP_REG;
1198 op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
1199 op->addr.reg = decode_register(ctxt, ctxt->modrm_rm,
1200 ctxt->d & ByteOp);
1201 if (ctxt->d & Sse) {
1202 op->type = OP_XMM;
1203 op->bytes = 16;
1204 op->addr.xmm = ctxt->modrm_rm;
1205 read_sse_reg(ctxt, &op->vec_val, ctxt->modrm_rm);
1206 return rc;
1207 }
1208 if (ctxt->d & Mmx) {
1209 op->type = OP_MM;
1210 op->bytes = 8;
1211 op->addr.mm = ctxt->modrm_rm & 7;
1212 return rc;
1213 }
1214 fetch_register_operand(op);
1215 return rc;
1216 }
1217
1218 op->type = OP_MEM;
1219
1220 if (ctxt->ad_bytes == 2) {
1221 unsigned bx = reg_read(ctxt, VCPU_REGS_RBX);
1222 unsigned bp = reg_read(ctxt, VCPU_REGS_RBP);
1223 unsigned si = reg_read(ctxt, VCPU_REGS_RSI);
1224 unsigned di = reg_read(ctxt, VCPU_REGS_RDI);
1225
1226 /* 16-bit ModR/M decode. */
1227 switch (ctxt->modrm_mod) {
1228 case 0:
1229 if (ctxt->modrm_rm == 6)
1230 modrm_ea += insn_fetch(u16, ctxt);
1231 break;
1232 case 1:
1233 modrm_ea += insn_fetch(s8, ctxt);
1234 break;
1235 case 2:
1236 modrm_ea += insn_fetch(u16, ctxt);
1237 break;
1238 }
1239 switch (ctxt->modrm_rm) {
1240 case 0:
1241 modrm_ea += bx + si;
1242 break;
1243 case 1:
1244 modrm_ea += bx + di;
1245 break;
1246 case 2:
1247 modrm_ea += bp + si;
1248 break;
1249 case 3:
1250 modrm_ea += bp + di;
1251 break;
1252 case 4:
1253 modrm_ea += si;
1254 break;
1255 case 5:
1256 modrm_ea += di;
1257 break;
1258 case 6:
1259 if (ctxt->modrm_mod != 0)
1260 modrm_ea += bp;
1261 break;
1262 case 7:
1263 modrm_ea += bx;
1264 break;
1265 }
1266 if (ctxt->modrm_rm == 2 || ctxt->modrm_rm == 3 ||
1267 (ctxt->modrm_rm == 6 && ctxt->modrm_mod != 0))
1268 ctxt->modrm_seg = VCPU_SREG_SS;
1269 modrm_ea = (u16)modrm_ea;
1270 } else {
1271 /* 32/64-bit ModR/M decode. */
1272 if ((ctxt->modrm_rm & 7) == 4) {
1273 sib = insn_fetch(u8, ctxt);
1274 index_reg |= (sib >> 3) & 7;
1275 base_reg |= sib & 7;
1276 scale = sib >> 6;
1277
1278 if ((base_reg & 7) == 5 && ctxt->modrm_mod == 0)
1279 modrm_ea += insn_fetch(s32, ctxt);
1280 else {
1281 modrm_ea += reg_read(ctxt, base_reg);
1282 adjust_modrm_seg(ctxt, base_reg);
1283 /* Increment ESP on POP [ESP] */
1284 if ((ctxt->d & IncSP) &&
1285 base_reg == VCPU_REGS_RSP)
1286 modrm_ea += ctxt->op_bytes;
1287 }
1288 if (index_reg != 4)
1289 modrm_ea += reg_read(ctxt, index_reg) << scale;
1290 } else if ((ctxt->modrm_rm & 7) == 5 && ctxt->modrm_mod == 0) {
1291 modrm_ea += insn_fetch(s32, ctxt);
1292 if (ctxt->mode == X86EMUL_MODE_PROT64)
1293 ctxt->rip_relative = 1;
1294 } else {
1295 base_reg = ctxt->modrm_rm;
1296 modrm_ea += reg_read(ctxt, base_reg);
1297 adjust_modrm_seg(ctxt, base_reg);
1298 }
1299 switch (ctxt->modrm_mod) {
1300 case 1:
1301 modrm_ea += insn_fetch(s8, ctxt);
1302 break;
1303 case 2:
1304 modrm_ea += insn_fetch(s32, ctxt);
1305 break;
1306 }
1307 }
1308 op->addr.mem.ea = modrm_ea;
1309 if (ctxt->ad_bytes != 8)
1310 ctxt->memop.addr.mem.ea = (u32)ctxt->memop.addr.mem.ea;
1311
1312 done:
1313 return rc;
1314 }
1315
1316 static int decode_abs(struct x86_emulate_ctxt *ctxt,
1317 struct operand *op)
1318 {
1319 int rc = X86EMUL_CONTINUE;
1320
1321 op->type = OP_MEM;
1322 switch (ctxt->ad_bytes) {
1323 case 2:
1324 op->addr.mem.ea = insn_fetch(u16, ctxt);
1325 break;
1326 case 4:
1327 op->addr.mem.ea = insn_fetch(u32, ctxt);
1328 break;
1329 case 8:
1330 op->addr.mem.ea = insn_fetch(u64, ctxt);
1331 break;
1332 }
1333 done:
1334 return rc;
1335 }
1336
1337 static void fetch_bit_operand(struct x86_emulate_ctxt *ctxt)
1338 {
1339 long sv = 0, mask;
1340
1341 if (ctxt->dst.type == OP_MEM && ctxt->src.type == OP_REG) {
1342 mask = ~((long)ctxt->dst.bytes * 8 - 1);
1343
1344 if (ctxt->src.bytes == 2)
1345 sv = (s16)ctxt->src.val & (s16)mask;
1346 else if (ctxt->src.bytes == 4)
1347 sv = (s32)ctxt->src.val & (s32)mask;
1348 else
1349 sv = (s64)ctxt->src.val & (s64)mask;
1350
1351 ctxt->dst.addr.mem.ea = address_mask(ctxt,
1352 ctxt->dst.addr.mem.ea + (sv >> 3));
1353 }
1354
1355 /* only subword offset */
1356 ctxt->src.val &= (ctxt->dst.bytes << 3) - 1;
1357 }
1358
1359 static int read_emulated(struct x86_emulate_ctxt *ctxt,
1360 unsigned long addr, void *dest, unsigned size)
1361 {
1362 int rc;
1363 struct read_cache *mc = &ctxt->mem_read;
1364
1365 if (mc->pos < mc->end)
1366 goto read_cached;
1367
1368 WARN_ON((mc->end + size) >= sizeof(mc->data));
1369
1370 rc = ctxt->ops->read_emulated(ctxt, addr, mc->data + mc->end, size,
1371 &ctxt->exception);
1372 if (rc != X86EMUL_CONTINUE)
1373 return rc;
1374
1375 mc->end += size;
1376
1377 read_cached:
1378 memcpy(dest, mc->data + mc->pos, size);
1379 mc->pos += size;
1380 return X86EMUL_CONTINUE;
1381 }
1382
1383 static int segmented_read(struct x86_emulate_ctxt *ctxt,
1384 struct segmented_address addr,
1385 void *data,
1386 unsigned size)
1387 {
1388 int rc;
1389 ulong linear;
1390
1391 rc = linearize(ctxt, addr, size, false, &linear);
1392 if (rc != X86EMUL_CONTINUE)
1393 return rc;
1394 return read_emulated(ctxt, linear, data, size);
1395 }
1396
1397 static int segmented_write(struct x86_emulate_ctxt *ctxt,
1398 struct segmented_address addr,
1399 const void *data,
1400 unsigned size)
1401 {
1402 int rc;
1403 ulong linear;
1404
1405 rc = linearize(ctxt, addr, size, true, &linear);
1406 if (rc != X86EMUL_CONTINUE)
1407 return rc;
1408 return ctxt->ops->write_emulated(ctxt, linear, data, size,
1409 &ctxt->exception);
1410 }
1411
1412 static int segmented_cmpxchg(struct x86_emulate_ctxt *ctxt,
1413 struct segmented_address addr,
1414 const void *orig_data, const void *data,
1415 unsigned size)
1416 {
1417 int rc;
1418 ulong linear;
1419
1420 rc = linearize(ctxt, addr, size, true, &linear);
1421 if (rc != X86EMUL_CONTINUE)
1422 return rc;
1423 return ctxt->ops->cmpxchg_emulated(ctxt, linear, orig_data, data,
1424 size, &ctxt->exception);
1425 }
1426
1427 static int pio_in_emulated(struct x86_emulate_ctxt *ctxt,
1428 unsigned int size, unsigned short port,
1429 void *dest)
1430 {
1431 struct read_cache *rc = &ctxt->io_read;
1432
1433 if (rc->pos == rc->end) { /* refill pio read ahead */
1434 unsigned int in_page, n;
1435 unsigned int count = ctxt->rep_prefix ?
1436 address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) : 1;
1437 in_page = (ctxt->eflags & EFLG_DF) ?
1438 offset_in_page(reg_read(ctxt, VCPU_REGS_RDI)) :
1439 PAGE_SIZE - offset_in_page(reg_read(ctxt, VCPU_REGS_RDI));
1440 n = min3(in_page, (unsigned int)sizeof(rc->data) / size, count);
1441 if (n == 0)
1442 n = 1;
1443 rc->pos = rc->end = 0;
1444 if (!ctxt->ops->pio_in_emulated(ctxt, size, port, rc->data, n))
1445 return 0;
1446 rc->end = n * size;
1447 }
1448
1449 if (ctxt->rep_prefix && (ctxt->d & String) &&
1450 !(ctxt->eflags & EFLG_DF)) {
1451 ctxt->dst.data = rc->data + rc->pos;
1452 ctxt->dst.type = OP_MEM_STR;
1453 ctxt->dst.count = (rc->end - rc->pos) / size;
1454 rc->pos = rc->end;
1455 } else {
1456 memcpy(dest, rc->data + rc->pos, size);
1457 rc->pos += size;
1458 }
1459 return 1;
1460 }
1461
1462 static int read_interrupt_descriptor(struct x86_emulate_ctxt *ctxt,
1463 u16 index, struct desc_struct *desc)
1464 {
1465 struct desc_ptr dt;
1466 ulong addr;
1467
1468 ctxt->ops->get_idt(ctxt, &dt);
1469
1470 if (dt.size < index * 8 + 7)
1471 return emulate_gp(ctxt, index << 3 | 0x2);
1472
1473 addr = dt.address + index * 8;
1474 return ctxt->ops->read_std(ctxt, addr, desc, sizeof *desc,
1475 &ctxt->exception);
1476 }
1477
1478 static void get_descriptor_table_ptr(struct x86_emulate_ctxt *ctxt,
1479 u16 selector, struct desc_ptr *dt)
1480 {
1481 const struct x86_emulate_ops *ops = ctxt->ops;
1482 u32 base3 = 0;
1483
1484 if (selector & 1 << 2) {
1485 struct desc_struct desc;
1486 u16 sel;
1487
1488 memset (dt, 0, sizeof *dt);
1489 if (!ops->get_segment(ctxt, &sel, &desc, &base3,
1490 VCPU_SREG_LDTR))
1491 return;
1492
1493 dt->size = desc_limit_scaled(&desc); /* what if limit > 65535? */
1494 dt->address = get_desc_base(&desc) | ((u64)base3 << 32);
1495 } else
1496 ops->get_gdt(ctxt, dt);
1497 }
1498
1499 static int get_descriptor_ptr(struct x86_emulate_ctxt *ctxt,
1500 u16 selector, ulong *desc_addr_p)
1501 {
1502 struct desc_ptr dt;
1503 u16 index = selector >> 3;
1504 ulong addr;
1505
1506 get_descriptor_table_ptr(ctxt, selector, &dt);
1507
1508 if (dt.size < index * 8 + 7)
1509 return emulate_gp(ctxt, selector & 0xfffc);
1510
1511 addr = dt.address + index * 8;
1512
1513 #ifdef CONFIG_X86_64
1514 if (addr >> 32 != 0) {
1515 u64 efer = 0;
1516
1517 ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
1518 if (!(efer & EFER_LMA))
1519 addr &= (u32)-1;
1520 }
1521 #endif
1522
1523 *desc_addr_p = addr;
1524 return X86EMUL_CONTINUE;
1525 }
1526
1527 /* allowed just for 8 bytes segments */
1528 static int read_segment_descriptor(struct x86_emulate_ctxt *ctxt,
1529 u16 selector, struct desc_struct *desc,
1530 ulong *desc_addr_p)
1531 {
1532 int rc;
1533
1534 rc = get_descriptor_ptr(ctxt, selector, desc_addr_p);
1535 if (rc != X86EMUL_CONTINUE)
1536 return rc;
1537
1538 return ctxt->ops->read_std(ctxt, *desc_addr_p, desc, sizeof(*desc),
1539 &ctxt->exception);
1540 }
1541
1542 /* allowed just for 8 bytes segments */
1543 static int write_segment_descriptor(struct x86_emulate_ctxt *ctxt,
1544 u16 selector, struct desc_struct *desc)
1545 {
1546 int rc;
1547 ulong addr;
1548
1549 rc = get_descriptor_ptr(ctxt, selector, &addr);
1550 if (rc != X86EMUL_CONTINUE)
1551 return rc;
1552
1553 return ctxt->ops->write_std(ctxt, addr, desc, sizeof *desc,
1554 &ctxt->exception);
1555 }
1556
1557 /* Does not support long mode */
1558 static int __load_segment_descriptor(struct x86_emulate_ctxt *ctxt,
1559 u16 selector, int seg, u8 cpl,
1560 enum x86_transfer_type transfer,
1561 struct desc_struct *desc)
1562 {
1563 struct desc_struct seg_desc, old_desc;
1564 u8 dpl, rpl;
1565 unsigned err_vec = GP_VECTOR;
1566 u32 err_code = 0;
1567 bool null_selector = !(selector & ~0x3); /* 0000-0003 are null */
1568 ulong desc_addr;
1569 int ret;
1570 u16 dummy;
1571 u32 base3 = 0;
1572
1573 memset(&seg_desc, 0, sizeof seg_desc);
1574
1575 if (ctxt->mode == X86EMUL_MODE_REAL) {
1576 /* set real mode segment descriptor (keep limit etc. for
1577 * unreal mode) */
1578 ctxt->ops->get_segment(ctxt, &dummy, &seg_desc, NULL, seg);
1579 set_desc_base(&seg_desc, selector << 4);
1580 goto load;
1581 } else if (seg <= VCPU_SREG_GS && ctxt->mode == X86EMUL_MODE_VM86) {
1582 /* VM86 needs a clean new segment descriptor */
1583 set_desc_base(&seg_desc, selector << 4);
1584 set_desc_limit(&seg_desc, 0xffff);
1585 seg_desc.type = 3;
1586 seg_desc.p = 1;
1587 seg_desc.s = 1;
1588 seg_desc.dpl = 3;
1589 goto load;
1590 }
1591
1592 rpl = selector & 3;
1593
1594 /* NULL selector is not valid for TR, CS and SS (except for long mode) */
1595 if ((seg == VCPU_SREG_CS
1596 || (seg == VCPU_SREG_SS
1597 && (ctxt->mode != X86EMUL_MODE_PROT64 || rpl != cpl))
1598 || seg == VCPU_SREG_TR)
1599 && null_selector)
1600 goto exception;
1601
1602 /* TR should be in GDT only */
1603 if (seg == VCPU_SREG_TR && (selector & (1 << 2)))
1604 goto exception;
1605
1606 if (null_selector) /* for NULL selector skip all following checks */
1607 goto load;
1608
1609 ret = read_segment_descriptor(ctxt, selector, &seg_desc, &desc_addr);
1610 if (ret != X86EMUL_CONTINUE)
1611 return ret;
1612
1613 err_code = selector & 0xfffc;
1614 err_vec = (transfer == X86_TRANSFER_TASK_SWITCH) ? TS_VECTOR :
1615 GP_VECTOR;
1616
1617 /* can't load system descriptor into segment selector */
1618 if (seg <= VCPU_SREG_GS && !seg_desc.s) {
1619 if (transfer == X86_TRANSFER_CALL_JMP)
1620 return X86EMUL_UNHANDLEABLE;
1621 goto exception;
1622 }
1623
1624 if (!seg_desc.p) {
1625 err_vec = (seg == VCPU_SREG_SS) ? SS_VECTOR : NP_VECTOR;
1626 goto exception;
1627 }
1628
1629 dpl = seg_desc.dpl;
1630
1631 switch (seg) {
1632 case VCPU_SREG_SS:
1633 /*
1634 * segment is not a writable data segment or segment
1635 * selector's RPL != CPL or segment selector's RPL != CPL
1636 */
1637 if (rpl != cpl || (seg_desc.type & 0xa) != 0x2 || dpl != cpl)
1638 goto exception;
1639 break;
1640 case VCPU_SREG_CS:
1641 if (!(seg_desc.type & 8))
1642 goto exception;
1643
1644 if (seg_desc.type & 4) {
1645 /* conforming */
1646 if (dpl > cpl)
1647 goto exception;
1648 } else {
1649 /* nonconforming */
1650 if (rpl > cpl || dpl != cpl)
1651 goto exception;
1652 }
1653 /* in long-mode d/b must be clear if l is set */
1654 if (seg_desc.d && seg_desc.l) {
1655 u64 efer = 0;
1656
1657 ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
1658 if (efer & EFER_LMA)
1659 goto exception;
1660 }
1661
1662 /* CS(RPL) <- CPL */
1663 selector = (selector & 0xfffc) | cpl;
1664 break;
1665 case VCPU_SREG_TR:
1666 if (seg_desc.s || (seg_desc.type != 1 && seg_desc.type != 9))
1667 goto exception;
1668 old_desc = seg_desc;
1669 seg_desc.type |= 2; /* busy */
1670 ret = ctxt->ops->cmpxchg_emulated(ctxt, desc_addr, &old_desc, &seg_desc,
1671 sizeof(seg_desc), &ctxt->exception);
1672 if (ret != X86EMUL_CONTINUE)
1673 return ret;
1674 break;
1675 case VCPU_SREG_LDTR:
1676 if (seg_desc.s || seg_desc.type != 2)
1677 goto exception;
1678 break;
1679 default: /* DS, ES, FS, or GS */
1680 /*
1681 * segment is not a data or readable code segment or
1682 * ((segment is a data or nonconforming code segment)
1683 * and (both RPL and CPL > DPL))
1684 */
1685 if ((seg_desc.type & 0xa) == 0x8 ||
1686 (((seg_desc.type & 0xc) != 0xc) &&
1687 (rpl > dpl && cpl > dpl)))
1688 goto exception;
1689 break;
1690 }
1691
1692 if (seg_desc.s) {
1693 /* mark segment as accessed */
1694 if (!(seg_desc.type & 1)) {
1695 seg_desc.type |= 1;
1696 ret = write_segment_descriptor(ctxt, selector,
1697 &seg_desc);
1698 if (ret != X86EMUL_CONTINUE)
1699 return ret;
1700 }
1701 } else if (ctxt->mode == X86EMUL_MODE_PROT64) {
1702 ret = ctxt->ops->read_std(ctxt, desc_addr+8, &base3,
1703 sizeof(base3), &ctxt->exception);
1704 if (ret != X86EMUL_CONTINUE)
1705 return ret;
1706 if (is_noncanonical_address(get_desc_base(&seg_desc) |
1707 ((u64)base3 << 32)))
1708 return emulate_gp(ctxt, 0);
1709 }
1710 load:
1711 ctxt->ops->set_segment(ctxt, selector, &seg_desc, base3, seg);
1712 if (desc)
1713 *desc = seg_desc;
1714 return X86EMUL_CONTINUE;
1715 exception:
1716 return emulate_exception(ctxt, err_vec, err_code, true);
1717 }
1718
1719 static int load_segment_descriptor(struct x86_emulate_ctxt *ctxt,
1720 u16 selector, int seg)
1721 {
1722 u8 cpl = ctxt->ops->cpl(ctxt);
1723 return __load_segment_descriptor(ctxt, selector, seg, cpl,
1724 X86_TRANSFER_NONE, NULL);
1725 }
1726
1727 static void write_register_operand(struct operand *op)
1728 {
1729 return assign_register(op->addr.reg, op->val, op->bytes);
1730 }
1731
1732 static int writeback(struct x86_emulate_ctxt *ctxt, struct operand *op)
1733 {
1734 switch (op->type) {
1735 case OP_REG:
1736 write_register_operand(op);
1737 break;
1738 case OP_MEM:
1739 if (ctxt->lock_prefix)
1740 return segmented_cmpxchg(ctxt,
1741 op->addr.mem,
1742 &op->orig_val,
1743 &op->val,
1744 op->bytes);
1745 else
1746 return segmented_write(ctxt,
1747 op->addr.mem,
1748 &op->val,
1749 op->bytes);
1750 break;
1751 case OP_MEM_STR:
1752 return segmented_write(ctxt,
1753 op->addr.mem,
1754 op->data,
1755 op->bytes * op->count);
1756 break;
1757 case OP_XMM:
1758 write_sse_reg(ctxt, &op->vec_val, op->addr.xmm);
1759 break;
1760 case OP_MM:
1761 write_mmx_reg(ctxt, &op->mm_val, op->addr.mm);
1762 break;
1763 case OP_NONE:
1764 /* no writeback */
1765 break;
1766 default:
1767 break;
1768 }
1769 return X86EMUL_CONTINUE;
1770 }
1771
1772 static int push(struct x86_emulate_ctxt *ctxt, void *data, int bytes)
1773 {
1774 struct segmented_address addr;
1775
1776 rsp_increment(ctxt, -bytes);
1777 addr.ea = reg_read(ctxt, VCPU_REGS_RSP) & stack_mask(ctxt);
1778 addr.seg = VCPU_SREG_SS;
1779
1780 return segmented_write(ctxt, addr, data, bytes);
1781 }
1782
1783 static int em_push(struct x86_emulate_ctxt *ctxt)
1784 {
1785 /* Disable writeback. */
1786 ctxt->dst.type = OP_NONE;
1787 return push(ctxt, &ctxt->src.val, ctxt->op_bytes);
1788 }
1789
1790 static int emulate_pop(struct x86_emulate_ctxt *ctxt,
1791 void *dest, int len)
1792 {
1793 int rc;
1794 struct segmented_address addr;
1795
1796 addr.ea = reg_read(ctxt, VCPU_REGS_RSP) & stack_mask(ctxt);
1797 addr.seg = VCPU_SREG_SS;
1798 rc = segmented_read(ctxt, addr, dest, len);
1799 if (rc != X86EMUL_CONTINUE)
1800 return rc;
1801
1802 rsp_increment(ctxt, len);
1803 return rc;
1804 }
1805
1806 static int em_pop(struct x86_emulate_ctxt *ctxt)
1807 {
1808 return emulate_pop(ctxt, &ctxt->dst.val, ctxt->op_bytes);
1809 }
1810
1811 static int emulate_popf(struct x86_emulate_ctxt *ctxt,
1812 void *dest, int len)
1813 {
1814 int rc;
1815 unsigned long val, change_mask;
1816 int iopl = (ctxt->eflags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
1817 int cpl = ctxt->ops->cpl(ctxt);
1818
1819 rc = emulate_pop(ctxt, &val, len);
1820 if (rc != X86EMUL_CONTINUE)
1821 return rc;
1822
1823 change_mask = EFLG_CF | EFLG_PF | EFLG_AF | EFLG_ZF | EFLG_SF | EFLG_OF
1824 | EFLG_TF | EFLG_DF | EFLG_NT | EFLG_AC | EFLG_ID;
1825
1826 switch(ctxt->mode) {
1827 case X86EMUL_MODE_PROT64:
1828 case X86EMUL_MODE_PROT32:
1829 case X86EMUL_MODE_PROT16:
1830 if (cpl == 0)
1831 change_mask |= EFLG_IOPL;
1832 if (cpl <= iopl)
1833 change_mask |= EFLG_IF;
1834 break;
1835 case X86EMUL_MODE_VM86:
1836 if (iopl < 3)
1837 return emulate_gp(ctxt, 0);
1838 change_mask |= EFLG_IF;
1839 break;
1840 default: /* real mode */
1841 change_mask |= (EFLG_IOPL | EFLG_IF);
1842 break;
1843 }
1844
1845 *(unsigned long *)dest =
1846 (ctxt->eflags & ~change_mask) | (val & change_mask);
1847
1848 return rc;
1849 }
1850
1851 static int em_popf(struct x86_emulate_ctxt *ctxt)
1852 {
1853 ctxt->dst.type = OP_REG;
1854 ctxt->dst.addr.reg = &ctxt->eflags;
1855 ctxt->dst.bytes = ctxt->op_bytes;
1856 return emulate_popf(ctxt, &ctxt->dst.val, ctxt->op_bytes);
1857 }
1858
1859 static int em_enter(struct x86_emulate_ctxt *ctxt)
1860 {
1861 int rc;
1862 unsigned frame_size = ctxt->src.val;
1863 unsigned nesting_level = ctxt->src2.val & 31;
1864 ulong rbp;
1865
1866 if (nesting_level)
1867 return X86EMUL_UNHANDLEABLE;
1868
1869 rbp = reg_read(ctxt, VCPU_REGS_RBP);
1870 rc = push(ctxt, &rbp, stack_size(ctxt));
1871 if (rc != X86EMUL_CONTINUE)
1872 return rc;
1873 assign_masked(reg_rmw(ctxt, VCPU_REGS_RBP), reg_read(ctxt, VCPU_REGS_RSP),
1874 stack_mask(ctxt));
1875 assign_masked(reg_rmw(ctxt, VCPU_REGS_RSP),
1876 reg_read(ctxt, VCPU_REGS_RSP) - frame_size,
1877 stack_mask(ctxt));
1878 return X86EMUL_CONTINUE;
1879 }
1880
1881 static int em_leave(struct x86_emulate_ctxt *ctxt)
1882 {
1883 assign_masked(reg_rmw(ctxt, VCPU_REGS_RSP), reg_read(ctxt, VCPU_REGS_RBP),
1884 stack_mask(ctxt));
1885 return emulate_pop(ctxt, reg_rmw(ctxt, VCPU_REGS_RBP), ctxt->op_bytes);
1886 }
1887
1888 static int em_push_sreg(struct x86_emulate_ctxt *ctxt)
1889 {
1890 int seg = ctxt->src2.val;
1891
1892 ctxt->src.val = get_segment_selector(ctxt, seg);
1893 if (ctxt->op_bytes == 4) {
1894 rsp_increment(ctxt, -2);
1895 ctxt->op_bytes = 2;
1896 }
1897
1898 return em_push(ctxt);
1899 }
1900
1901 static int em_pop_sreg(struct x86_emulate_ctxt *ctxt)
1902 {
1903 int seg = ctxt->src2.val;
1904 unsigned long selector;
1905 int rc;
1906
1907 rc = emulate_pop(ctxt, &selector, 2);
1908 if (rc != X86EMUL_CONTINUE)
1909 return rc;
1910
1911 if (ctxt->modrm_reg == VCPU_SREG_SS)
1912 ctxt->interruptibility = KVM_X86_SHADOW_INT_MOV_SS;
1913 if (ctxt->op_bytes > 2)
1914 rsp_increment(ctxt, ctxt->op_bytes - 2);
1915
1916 rc = load_segment_descriptor(ctxt, (u16)selector, seg);
1917 return rc;
1918 }
1919
1920 static int em_pusha(struct x86_emulate_ctxt *ctxt)
1921 {
1922 unsigned long old_esp = reg_read(ctxt, VCPU_REGS_RSP);
1923 int rc = X86EMUL_CONTINUE;
1924 int reg = VCPU_REGS_RAX;
1925
1926 while (reg <= VCPU_REGS_RDI) {
1927 (reg == VCPU_REGS_RSP) ?
1928 (ctxt->src.val = old_esp) : (ctxt->src.val = reg_read(ctxt, reg));
1929
1930 rc = em_push(ctxt);
1931 if (rc != X86EMUL_CONTINUE)
1932 return rc;
1933
1934 ++reg;
1935 }
1936
1937 return rc;
1938 }
1939
1940 static int em_pushf(struct x86_emulate_ctxt *ctxt)
1941 {
1942 ctxt->src.val = (unsigned long)ctxt->eflags & ~EFLG_VM;
1943 return em_push(ctxt);
1944 }
1945
1946 static int em_popa(struct x86_emulate_ctxt *ctxt)
1947 {
1948 int rc = X86EMUL_CONTINUE;
1949 int reg = VCPU_REGS_RDI;
1950 u32 val;
1951
1952 while (reg >= VCPU_REGS_RAX) {
1953 if (reg == VCPU_REGS_RSP) {
1954 rsp_increment(ctxt, ctxt->op_bytes);
1955 --reg;
1956 }
1957
1958 rc = emulate_pop(ctxt, &val, ctxt->op_bytes);
1959 if (rc != X86EMUL_CONTINUE)
1960 break;
1961 assign_register(reg_rmw(ctxt, reg), val, ctxt->op_bytes);
1962 --reg;
1963 }
1964 return rc;
1965 }
1966
1967 static int __emulate_int_real(struct x86_emulate_ctxt *ctxt, int irq)
1968 {
1969 const struct x86_emulate_ops *ops = ctxt->ops;
1970 int rc;
1971 struct desc_ptr dt;
1972 gva_t cs_addr;
1973 gva_t eip_addr;
1974 u16 cs, eip;
1975
1976 /* TODO: Add limit checks */
1977 ctxt->src.val = ctxt->eflags;
1978 rc = em_push(ctxt);
1979 if (rc != X86EMUL_CONTINUE)
1980 return rc;
1981
1982 ctxt->eflags &= ~(EFLG_IF | EFLG_TF | EFLG_AC);
1983
1984 ctxt->src.val = get_segment_selector(ctxt, VCPU_SREG_CS);
1985 rc = em_push(ctxt);
1986 if (rc != X86EMUL_CONTINUE)
1987 return rc;
1988
1989 ctxt->src.val = ctxt->_eip;
1990 rc = em_push(ctxt);
1991 if (rc != X86EMUL_CONTINUE)
1992 return rc;
1993
1994 ops->get_idt(ctxt, &dt);
1995
1996 eip_addr = dt.address + (irq << 2);
1997 cs_addr = dt.address + (irq << 2) + 2;
1998
1999 rc = ops->read_std(ctxt, cs_addr, &cs, 2, &ctxt->exception);
2000 if (rc != X86EMUL_CONTINUE)
2001 return rc;
2002
2003 rc = ops->read_std(ctxt, eip_addr, &eip, 2, &ctxt->exception);
2004 if (rc != X86EMUL_CONTINUE)
2005 return rc;
2006
2007 rc = load_segment_descriptor(ctxt, cs, VCPU_SREG_CS);
2008 if (rc != X86EMUL_CONTINUE)
2009 return rc;
2010
2011 ctxt->_eip = eip;
2012
2013 return rc;
2014 }
2015
2016 int emulate_int_real(struct x86_emulate_ctxt *ctxt, int irq)
2017 {
2018 int rc;
2019
2020 invalidate_registers(ctxt);
2021 rc = __emulate_int_real(ctxt, irq);
2022 if (rc == X86EMUL_CONTINUE)
2023 writeback_registers(ctxt);
2024 return rc;
2025 }
2026
2027 static int emulate_int(struct x86_emulate_ctxt *ctxt, int irq)
2028 {
2029 switch(ctxt->mode) {
2030 case X86EMUL_MODE_REAL:
2031 return __emulate_int_real(ctxt, irq);
2032 case X86EMUL_MODE_VM86:
2033 case X86EMUL_MODE_PROT16:
2034 case X86EMUL_MODE_PROT32:
2035 case X86EMUL_MODE_PROT64:
2036 default:
2037 /* Protected mode interrupts unimplemented yet */
2038 return X86EMUL_UNHANDLEABLE;
2039 }
2040 }
2041
2042 static int emulate_iret_real(struct x86_emulate_ctxt *ctxt)
2043 {
2044 int rc = X86EMUL_CONTINUE;
2045 unsigned long temp_eip = 0;
2046 unsigned long temp_eflags = 0;
2047 unsigned long cs = 0;
2048 unsigned long mask = EFLG_CF | EFLG_PF | EFLG_AF | EFLG_ZF | EFLG_SF | EFLG_TF |
2049 EFLG_IF | EFLG_DF | EFLG_OF | EFLG_IOPL | EFLG_NT | EFLG_RF |
2050 EFLG_AC | EFLG_ID | (1 << 1); /* Last one is the reserved bit */
2051 unsigned long vm86_mask = EFLG_VM | EFLG_VIF | EFLG_VIP;
2052
2053 /* TODO: Add stack limit check */
2054
2055 rc = emulate_pop(ctxt, &temp_eip, ctxt->op_bytes);
2056
2057 if (rc != X86EMUL_CONTINUE)
2058 return rc;
2059
2060 if (temp_eip & ~0xffff)
2061 return emulate_gp(ctxt, 0);
2062
2063 rc = emulate_pop(ctxt, &cs, ctxt->op_bytes);
2064
2065 if (rc != X86EMUL_CONTINUE)
2066 return rc;
2067
2068 rc = emulate_pop(ctxt, &temp_eflags, ctxt->op_bytes);
2069
2070 if (rc != X86EMUL_CONTINUE)
2071 return rc;
2072
2073 rc = load_segment_descriptor(ctxt, (u16)cs, VCPU_SREG_CS);
2074
2075 if (rc != X86EMUL_CONTINUE)
2076 return rc;
2077
2078 ctxt->_eip = temp_eip;
2079
2080
2081 if (ctxt->op_bytes == 4)
2082 ctxt->eflags = ((temp_eflags & mask) | (ctxt->eflags & vm86_mask));
2083 else if (ctxt->op_bytes == 2) {
2084 ctxt->eflags &= ~0xffff;
2085 ctxt->eflags |= temp_eflags;
2086 }
2087
2088 ctxt->eflags &= ~EFLG_RESERVED_ZEROS_MASK; /* Clear reserved zeros */
2089 ctxt->eflags |= EFLG_RESERVED_ONE_MASK;
2090 ctxt->ops->set_nmi_mask(ctxt, false);
2091
2092 return rc;
2093 }
2094
2095 static int em_iret(struct x86_emulate_ctxt *ctxt)
2096 {
2097 switch(ctxt->mode) {
2098 case X86EMUL_MODE_REAL:
2099 return emulate_iret_real(ctxt);
2100 case X86EMUL_MODE_VM86:
2101 case X86EMUL_MODE_PROT16:
2102 case X86EMUL_MODE_PROT32:
2103 case X86EMUL_MODE_PROT64:
2104 default:
2105 /* iret from protected mode unimplemented yet */
2106 return X86EMUL_UNHANDLEABLE;
2107 }
2108 }
2109
2110 static int em_jmp_far(struct x86_emulate_ctxt *ctxt)
2111 {
2112 int rc;
2113 unsigned short sel, old_sel;
2114 struct desc_struct old_desc, new_desc;
2115 const struct x86_emulate_ops *ops = ctxt->ops;
2116 u8 cpl = ctxt->ops->cpl(ctxt);
2117
2118 /* Assignment of RIP may only fail in 64-bit mode */
2119 if (ctxt->mode == X86EMUL_MODE_PROT64)
2120 ops->get_segment(ctxt, &old_sel, &old_desc, NULL,
2121 VCPU_SREG_CS);
2122
2123 memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2);
2124
2125 rc = __load_segment_descriptor(ctxt, sel, VCPU_SREG_CS, cpl,
2126 X86_TRANSFER_CALL_JMP,
2127 &new_desc);
2128 if (rc != X86EMUL_CONTINUE)
2129 return rc;
2130
2131 rc = assign_eip_far(ctxt, ctxt->src.val, &new_desc);
2132 if (rc != X86EMUL_CONTINUE) {
2133 WARN_ON(ctxt->mode != X86EMUL_MODE_PROT64);
2134 /* assigning eip failed; restore the old cs */
2135 ops->set_segment(ctxt, old_sel, &old_desc, 0, VCPU_SREG_CS);
2136 return rc;
2137 }
2138 return rc;
2139 }
2140
2141 static int em_jmp_abs(struct x86_emulate_ctxt *ctxt)
2142 {
2143 return assign_eip_near(ctxt, ctxt->src.val);
2144 }
2145
2146 static int em_call_near_abs(struct x86_emulate_ctxt *ctxt)
2147 {
2148 int rc;
2149 long int old_eip;
2150
2151 old_eip = ctxt->_eip;
2152 rc = assign_eip_near(ctxt, ctxt->src.val);
2153 if (rc != X86EMUL_CONTINUE)
2154 return rc;
2155 ctxt->src.val = old_eip;
2156 rc = em_push(ctxt);
2157 return rc;
2158 }
2159
2160 static int em_cmpxchg8b(struct x86_emulate_ctxt *ctxt)
2161 {
2162 u64 old = ctxt->dst.orig_val64;
2163
2164 if (ctxt->dst.bytes == 16)
2165 return X86EMUL_UNHANDLEABLE;
2166
2167 if (((u32) (old >> 0) != (u32) reg_read(ctxt, VCPU_REGS_RAX)) ||
2168 ((u32) (old >> 32) != (u32) reg_read(ctxt, VCPU_REGS_RDX))) {
2169 *reg_write(ctxt, VCPU_REGS_RAX) = (u32) (old >> 0);
2170 *reg_write(ctxt, VCPU_REGS_RDX) = (u32) (old >> 32);
2171 ctxt->eflags &= ~EFLG_ZF;
2172 } else {
2173 ctxt->dst.val64 = ((u64)reg_read(ctxt, VCPU_REGS_RCX) << 32) |
2174 (u32) reg_read(ctxt, VCPU_REGS_RBX);
2175
2176 ctxt->eflags |= EFLG_ZF;
2177 }
2178 return X86EMUL_CONTINUE;
2179 }
2180
2181 static int em_ret(struct x86_emulate_ctxt *ctxt)
2182 {
2183 int rc;
2184 unsigned long eip;
2185
2186 rc = emulate_pop(ctxt, &eip, ctxt->op_bytes);
2187 if (rc != X86EMUL_CONTINUE)
2188 return rc;
2189
2190 return assign_eip_near(ctxt, eip);
2191 }
2192
2193 static int em_ret_far(struct x86_emulate_ctxt *ctxt)
2194 {
2195 int rc;
2196 unsigned long eip, cs;
2197 u16 old_cs;
2198 int cpl = ctxt->ops->cpl(ctxt);
2199 struct desc_struct old_desc, new_desc;
2200 const struct x86_emulate_ops *ops = ctxt->ops;
2201
2202 if (ctxt->mode == X86EMUL_MODE_PROT64)
2203 ops->get_segment(ctxt, &old_cs, &old_desc, NULL,
2204 VCPU_SREG_CS);
2205
2206 rc = emulate_pop(ctxt, &eip, ctxt->op_bytes);
2207 if (rc != X86EMUL_CONTINUE)
2208 return rc;
2209 rc = emulate_pop(ctxt, &cs, ctxt->op_bytes);
2210 if (rc != X86EMUL_CONTINUE)
2211 return rc;
2212 /* Outer-privilege level return is not implemented */
2213 if (ctxt->mode >= X86EMUL_MODE_PROT16 && (cs & 3) > cpl)
2214 return X86EMUL_UNHANDLEABLE;
2215 rc = __load_segment_descriptor(ctxt, (u16)cs, VCPU_SREG_CS, cpl,
2216 X86_TRANSFER_RET,
2217 &new_desc);
2218 if (rc != X86EMUL_CONTINUE)
2219 return rc;
2220 rc = assign_eip_far(ctxt, eip, &new_desc);
2221 if (rc != X86EMUL_CONTINUE) {
2222 WARN_ON(ctxt->mode != X86EMUL_MODE_PROT64);
2223 ops->set_segment(ctxt, old_cs, &old_desc, 0, VCPU_SREG_CS);
2224 }
2225 return rc;
2226 }
2227
2228 static int em_ret_far_imm(struct x86_emulate_ctxt *ctxt)
2229 {
2230 int rc;
2231
2232 rc = em_ret_far(ctxt);
2233 if (rc != X86EMUL_CONTINUE)
2234 return rc;
2235 rsp_increment(ctxt, ctxt->src.val);
2236 return X86EMUL_CONTINUE;
2237 }
2238
2239 static int em_cmpxchg(struct x86_emulate_ctxt *ctxt)
2240 {
2241 /* Save real source value, then compare EAX against destination. */
2242 ctxt->dst.orig_val = ctxt->dst.val;
2243 ctxt->dst.val = reg_read(ctxt, VCPU_REGS_RAX);
2244 ctxt->src.orig_val = ctxt->src.val;
2245 ctxt->src.val = ctxt->dst.orig_val;
2246 fastop(ctxt, em_cmp);
2247
2248 if (ctxt->eflags & EFLG_ZF) {
2249 /* Success: write back to memory; no update of EAX */
2250 ctxt->src.type = OP_NONE;
2251 ctxt->dst.val = ctxt->src.orig_val;
2252 } else {
2253 /* Failure: write the value we saw to EAX. */
2254 ctxt->src.type = OP_REG;
2255 ctxt->src.addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX);
2256 ctxt->src.val = ctxt->dst.orig_val;
2257 /* Create write-cycle to dest by writing the same value */
2258 ctxt->dst.val = ctxt->dst.orig_val;
2259 }
2260 return X86EMUL_CONTINUE;
2261 }
2262
2263 static int em_lseg(struct x86_emulate_ctxt *ctxt)
2264 {
2265 int seg = ctxt->src2.val;
2266 unsigned short sel;
2267 int rc;
2268
2269 memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2);
2270
2271 rc = load_segment_descriptor(ctxt, sel, seg);
2272 if (rc != X86EMUL_CONTINUE)
2273 return rc;
2274
2275 ctxt->dst.val = ctxt->src.val;
2276 return rc;
2277 }
2278
2279 static void
2280 setup_syscalls_segments(struct x86_emulate_ctxt *ctxt,
2281 struct desc_struct *cs, struct desc_struct *ss)
2282 {
2283 cs->l = 0; /* will be adjusted later */
2284 set_desc_base(cs, 0); /* flat segment */
2285 cs->g = 1; /* 4kb granularity */
2286 set_desc_limit(cs, 0xfffff); /* 4GB limit */
2287 cs->type = 0x0b; /* Read, Execute, Accessed */
2288 cs->s = 1;
2289 cs->dpl = 0; /* will be adjusted later */
2290 cs->p = 1;
2291 cs->d = 1;
2292 cs->avl = 0;
2293
2294 set_desc_base(ss, 0); /* flat segment */
2295 set_desc_limit(ss, 0xfffff); /* 4GB limit */
2296 ss->g = 1; /* 4kb granularity */
2297 ss->s = 1;
2298 ss->type = 0x03; /* Read/Write, Accessed */
2299 ss->d = 1; /* 32bit stack segment */
2300 ss->dpl = 0;
2301 ss->p = 1;
2302 ss->l = 0;
2303 ss->avl = 0;
2304 }
2305
2306 static bool vendor_intel(struct x86_emulate_ctxt *ctxt)
2307 {
2308 u32 eax, ebx, ecx, edx;
2309
2310 eax = ecx = 0;
2311 ctxt->ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx);
2312 return ebx == X86EMUL_CPUID_VENDOR_GenuineIntel_ebx
2313 && ecx == X86EMUL_CPUID_VENDOR_GenuineIntel_ecx
2314 && edx == X86EMUL_CPUID_VENDOR_GenuineIntel_edx;
2315 }
2316
2317 static bool em_syscall_is_enabled(struct x86_emulate_ctxt *ctxt)
2318 {
2319 const struct x86_emulate_ops *ops = ctxt->ops;
2320 u32 eax, ebx, ecx, edx;
2321
2322 /*
2323 * syscall should always be enabled in longmode - so only become
2324 * vendor specific (cpuid) if other modes are active...
2325 */
2326 if (ctxt->mode == X86EMUL_MODE_PROT64)
2327 return true;
2328
2329 eax = 0x00000000;
2330 ecx = 0x00000000;
2331 ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx);
2332 /*
2333 * Intel ("GenuineIntel")
2334 * remark: Intel CPUs only support "syscall" in 64bit
2335 * longmode. Also an 64bit guest with a
2336 * 32bit compat-app running will #UD !! While this
2337 * behaviour can be fixed (by emulating) into AMD
2338 * response - CPUs of AMD can't behave like Intel.
2339 */
2340 if (ebx == X86EMUL_CPUID_VENDOR_GenuineIntel_ebx &&
2341 ecx == X86EMUL_CPUID_VENDOR_GenuineIntel_ecx &&
2342 edx == X86EMUL_CPUID_VENDOR_GenuineIntel_edx)
2343 return false;
2344
2345 /* AMD ("AuthenticAMD") */
2346 if (ebx == X86EMUL_CPUID_VENDOR_AuthenticAMD_ebx &&
2347 ecx == X86EMUL_CPUID_VENDOR_AuthenticAMD_ecx &&
2348 edx == X86EMUL_CPUID_VENDOR_AuthenticAMD_edx)
2349 return true;
2350
2351 /* AMD ("AMDisbetter!") */
2352 if (ebx == X86EMUL_CPUID_VENDOR_AMDisbetterI_ebx &&
2353 ecx == X86EMUL_CPUID_VENDOR_AMDisbetterI_ecx &&
2354 edx == X86EMUL_CPUID_VENDOR_AMDisbetterI_edx)
2355 return true;
2356
2357 /* default: (not Intel, not AMD), apply Intel's stricter rules... */
2358 return false;
2359 }
2360
2361 static int em_syscall(struct x86_emulate_ctxt *ctxt)
2362 {
2363 const struct x86_emulate_ops *ops = ctxt->ops;
2364 struct desc_struct cs, ss;
2365 u64 msr_data;
2366 u16 cs_sel, ss_sel;
2367 u64 efer = 0;
2368
2369 /* syscall is not available in real mode */
2370 if (ctxt->mode == X86EMUL_MODE_REAL ||
2371 ctxt->mode == X86EMUL_MODE_VM86)
2372 return emulate_ud(ctxt);
2373
2374 if (!(em_syscall_is_enabled(ctxt)))
2375 return emulate_ud(ctxt);
2376
2377 ops->get_msr(ctxt, MSR_EFER, &efer);
2378 setup_syscalls_segments(ctxt, &cs, &ss);
2379
2380 if (!(efer & EFER_SCE))
2381 return emulate_ud(ctxt);
2382
2383 ops->get_msr(ctxt, MSR_STAR, &msr_data);
2384 msr_data >>= 32;
2385 cs_sel = (u16)(msr_data & 0xfffc);
2386 ss_sel = (u16)(msr_data + 8);
2387
2388 if (efer & EFER_LMA) {
2389 cs.d = 0;
2390 cs.l = 1;
2391 }
2392 ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS);
2393 ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS);
2394
2395 *reg_write(ctxt, VCPU_REGS_RCX) = ctxt->_eip;
2396 if (efer & EFER_LMA) {
2397 #ifdef CONFIG_X86_64
2398 *reg_write(ctxt, VCPU_REGS_R11) = ctxt->eflags;
2399
2400 ops->get_msr(ctxt,
2401 ctxt->mode == X86EMUL_MODE_PROT64 ?
2402 MSR_LSTAR : MSR_CSTAR, &msr_data);
2403 ctxt->_eip = msr_data;
2404
2405 ops->get_msr(ctxt, MSR_SYSCALL_MASK, &msr_data);
2406 ctxt->eflags &= ~msr_data;
2407 ctxt->eflags |= EFLG_RESERVED_ONE_MASK;
2408 #endif
2409 } else {
2410 /* legacy mode */
2411 ops->get_msr(ctxt, MSR_STAR, &msr_data);
2412 ctxt->_eip = (u32)msr_data;
2413
2414 ctxt->eflags &= ~(EFLG_VM | EFLG_IF);
2415 }
2416
2417 return X86EMUL_CONTINUE;
2418 }
2419
2420 static int em_sysenter(struct x86_emulate_ctxt *ctxt)
2421 {
2422 const struct x86_emulate_ops *ops = ctxt->ops;
2423 struct desc_struct cs, ss;
2424 u64 msr_data;
2425 u16 cs_sel, ss_sel;
2426 u64 efer = 0;
2427
2428 ops->get_msr(ctxt, MSR_EFER, &efer);
2429 /* inject #GP if in real mode */
2430 if (ctxt->mode == X86EMUL_MODE_REAL)
2431 return emulate_gp(ctxt, 0);
2432
2433 /*
2434 * Not recognized on AMD in compat mode (but is recognized in legacy
2435 * mode).
2436 */
2437 if ((ctxt->mode != X86EMUL_MODE_PROT64) && (efer & EFER_LMA)
2438 && !vendor_intel(ctxt))
2439 return emulate_ud(ctxt);
2440
2441 /* sysenter/sysexit have not been tested in 64bit mode. */
2442 if (ctxt->mode == X86EMUL_MODE_PROT64)
2443 return X86EMUL_UNHANDLEABLE;
2444
2445 setup_syscalls_segments(ctxt, &cs, &ss);
2446
2447 ops->get_msr(ctxt, MSR_IA32_SYSENTER_CS, &msr_data);
2448 if ((msr_data & 0xfffc) == 0x0)
2449 return emulate_gp(ctxt, 0);
2450
2451 ctxt->eflags &= ~(EFLG_VM | EFLG_IF);
2452 cs_sel = (u16)msr_data & ~SELECTOR_RPL_MASK;
2453 ss_sel = cs_sel + 8;
2454 if (efer & EFER_LMA) {
2455 cs.d = 0;
2456 cs.l = 1;
2457 }
2458
2459 ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS);
2460 ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS);
2461
2462 ops->get_msr(ctxt, MSR_IA32_SYSENTER_EIP, &msr_data);
2463 ctxt->_eip = (efer & EFER_LMA) ? msr_data : (u32)msr_data;
2464
2465 ops->get_msr(ctxt, MSR_IA32_SYSENTER_ESP, &msr_data);
2466 *reg_write(ctxt, VCPU_REGS_RSP) = (efer & EFER_LMA) ? msr_data :
2467 (u32)msr_data;
2468
2469 return X86EMUL_CONTINUE;
2470 }
2471
2472 static int em_sysexit(struct x86_emulate_ctxt *ctxt)
2473 {
2474 const struct x86_emulate_ops *ops = ctxt->ops;
2475 struct desc_struct cs, ss;
2476 u64 msr_data, rcx, rdx;
2477 int usermode;
2478 u16 cs_sel = 0, ss_sel = 0;
2479
2480 /* inject #GP if in real mode or Virtual 8086 mode */
2481 if (ctxt->mode == X86EMUL_MODE_REAL ||
2482 ctxt->mode == X86EMUL_MODE_VM86)
2483 return emulate_gp(ctxt, 0);
2484
2485 setup_syscalls_segments(ctxt, &cs, &ss);
2486
2487 if ((ctxt->rex_prefix & 0x8) != 0x0)
2488 usermode = X86EMUL_MODE_PROT64;
2489 else
2490 usermode = X86EMUL_MODE_PROT32;
2491
2492 rcx = reg_read(ctxt, VCPU_REGS_RCX);
2493 rdx = reg_read(ctxt, VCPU_REGS_RDX);
2494
2495 cs.dpl = 3;
2496 ss.dpl = 3;
2497 ops->get_msr(ctxt, MSR_IA32_SYSENTER_CS, &msr_data);
2498 switch (usermode) {
2499 case X86EMUL_MODE_PROT32:
2500 cs_sel = (u16)(msr_data + 16);
2501 if ((msr_data & 0xfffc) == 0x0)
2502 return emulate_gp(ctxt, 0);
2503 ss_sel = (u16)(msr_data + 24);
2504 rcx = (u32)rcx;
2505 rdx = (u32)rdx;
2506 break;
2507 case X86EMUL_MODE_PROT64:
2508 cs_sel = (u16)(msr_data + 32);
2509 if (msr_data == 0x0)
2510 return emulate_gp(ctxt, 0);
2511 ss_sel = cs_sel + 8;
2512 cs.d = 0;
2513 cs.l = 1;
2514 if (is_noncanonical_address(rcx) ||
2515 is_noncanonical_address(rdx))
2516 return emulate_gp(ctxt, 0);
2517 break;
2518 }
2519 cs_sel |= SELECTOR_RPL_MASK;
2520 ss_sel |= SELECTOR_RPL_MASK;
2521
2522 ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS);
2523 ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS);
2524
2525 ctxt->_eip = rdx;
2526 *reg_write(ctxt, VCPU_REGS_RSP) = rcx;
2527
2528 return X86EMUL_CONTINUE;
2529 }
2530
2531 static bool emulator_bad_iopl(struct x86_emulate_ctxt *ctxt)
2532 {
2533 int iopl;
2534 if (ctxt->mode == X86EMUL_MODE_REAL)
2535 return false;
2536 if (ctxt->mode == X86EMUL_MODE_VM86)
2537 return true;
2538 iopl = (ctxt->eflags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
2539 return ctxt->ops->cpl(ctxt) > iopl;
2540 }
2541
2542 static bool emulator_io_port_access_allowed(struct x86_emulate_ctxt *ctxt,
2543 u16 port, u16 len)
2544 {
2545 const struct x86_emulate_ops *ops = ctxt->ops;
2546 struct desc_struct tr_seg;
2547 u32 base3;
2548 int r;
2549 u16 tr, io_bitmap_ptr, perm, bit_idx = port & 0x7;
2550 unsigned mask = (1 << len) - 1;
2551 unsigned long base;
2552
2553 ops->get_segment(ctxt, &tr, &tr_seg, &base3, VCPU_SREG_TR);
2554 if (!tr_seg.p)
2555 return false;
2556 if (desc_limit_scaled(&tr_seg) < 103)
2557 return false;
2558 base = get_desc_base(&tr_seg);
2559 #ifdef CONFIG_X86_64
2560 base |= ((u64)base3) << 32;
2561 #endif
2562 r = ops->read_std(ctxt, base + 102, &io_bitmap_ptr, 2, NULL);
2563 if (r != X86EMUL_CONTINUE)
2564 return false;
2565 if (io_bitmap_ptr + port/8 > desc_limit_scaled(&tr_seg))
2566 return false;
2567 r = ops->read_std(ctxt, base + io_bitmap_ptr + port/8, &perm, 2, NULL);
2568 if (r != X86EMUL_CONTINUE)
2569 return false;
2570 if ((perm >> bit_idx) & mask)
2571 return false;
2572 return true;
2573 }
2574
2575 static bool emulator_io_permited(struct x86_emulate_ctxt *ctxt,
2576 u16 port, u16 len)
2577 {
2578 if (ctxt->perm_ok)
2579 return true;
2580
2581 if (emulator_bad_iopl(ctxt))
2582 if (!emulator_io_port_access_allowed(ctxt, port, len))
2583 return false;
2584
2585 ctxt->perm_ok = true;
2586
2587 return true;
2588 }
2589
2590 static void save_state_to_tss16(struct x86_emulate_ctxt *ctxt,
2591 struct tss_segment_16 *tss)
2592 {
2593 tss->ip = ctxt->_eip;
2594 tss->flag = ctxt->eflags;
2595 tss->ax = reg_read(ctxt, VCPU_REGS_RAX);
2596 tss->cx = reg_read(ctxt, VCPU_REGS_RCX);
2597 tss->dx = reg_read(ctxt, VCPU_REGS_RDX);
2598 tss->bx = reg_read(ctxt, VCPU_REGS_RBX);
2599 tss->sp = reg_read(ctxt, VCPU_REGS_RSP);
2600 tss->bp = reg_read(ctxt, VCPU_REGS_RBP);
2601 tss->si = reg_read(ctxt, VCPU_REGS_RSI);
2602 tss->di = reg_read(ctxt, VCPU_REGS_RDI);
2603
2604 tss->es = get_segment_selector(ctxt, VCPU_SREG_ES);
2605 tss->cs = get_segment_selector(ctxt, VCPU_SREG_CS);
2606 tss->ss = get_segment_selector(ctxt, VCPU_SREG_SS);
2607 tss->ds = get_segment_selector(ctxt, VCPU_SREG_DS);
2608 tss->ldt = get_segment_selector(ctxt, VCPU_SREG_LDTR);
2609 }
2610
2611 static int load_state_from_tss16(struct x86_emulate_ctxt *ctxt,
2612 struct tss_segment_16 *tss)
2613 {
2614 int ret;
2615 u8 cpl;
2616
2617 ctxt->_eip = tss->ip;
2618 ctxt->eflags = tss->flag | 2;
2619 *reg_write(ctxt, VCPU_REGS_RAX) = tss->ax;
2620 *reg_write(ctxt, VCPU_REGS_RCX) = tss->cx;
2621 *reg_write(ctxt, VCPU_REGS_RDX) = tss->dx;
2622 *reg_write(ctxt, VCPU_REGS_RBX) = tss->bx;
2623 *reg_write(ctxt, VCPU_REGS_RSP) = tss->sp;
2624 *reg_write(ctxt, VCPU_REGS_RBP) = tss->bp;
2625 *reg_write(ctxt, VCPU_REGS_RSI) = tss->si;
2626 *reg_write(ctxt, VCPU_REGS_RDI) = tss->di;
2627
2628 /*
2629 * SDM says that segment selectors are loaded before segment
2630 * descriptors
2631 */
2632 set_segment_selector(ctxt, tss->ldt, VCPU_SREG_LDTR);
2633 set_segment_selector(ctxt, tss->es, VCPU_SREG_ES);
2634 set_segment_selector(ctxt, tss->cs, VCPU_SREG_CS);
2635 set_segment_selector(ctxt, tss->ss, VCPU_SREG_SS);
2636 set_segment_selector(ctxt, tss->ds, VCPU_SREG_DS);
2637
2638 cpl = tss->cs & 3;
2639
2640 /*
2641 * Now load segment descriptors. If fault happens at this stage
2642 * it is handled in a context of new task
2643 */
2644 ret = __load_segment_descriptor(ctxt, tss->ldt, VCPU_SREG_LDTR, cpl,
2645 X86_TRANSFER_TASK_SWITCH, NULL);
2646 if (ret != X86EMUL_CONTINUE)
2647 return ret;
2648 ret = __load_segment_descriptor(ctxt, tss->es, VCPU_SREG_ES, cpl,
2649 X86_TRANSFER_TASK_SWITCH, NULL);
2650 if (ret != X86EMUL_CONTINUE)
2651 return ret;
2652 ret = __load_segment_descriptor(ctxt, tss->cs, VCPU_SREG_CS, cpl,
2653 X86_TRANSFER_TASK_SWITCH, NULL);
2654 if (ret != X86EMUL_CONTINUE)
2655 return ret;
2656 ret = __load_segment_descriptor(ctxt, tss->ss, VCPU_SREG_SS, cpl,
2657 X86_TRANSFER_TASK_SWITCH, NULL);
2658 if (ret != X86EMUL_CONTINUE)
2659 return ret;
2660 ret = __load_segment_descriptor(ctxt, tss->ds, VCPU_SREG_DS, cpl,
2661 X86_TRANSFER_TASK_SWITCH, NULL);
2662 if (ret != X86EMUL_CONTINUE)
2663 return ret;
2664
2665 return X86EMUL_CONTINUE;
2666 }
2667
2668 static int task_switch_16(struct x86_emulate_ctxt *ctxt,
2669 u16 tss_selector, u16 old_tss_sel,
2670 ulong old_tss_base, struct desc_struct *new_desc)
2671 {
2672 const struct x86_emulate_ops *ops = ctxt->ops;
2673 struct tss_segment_16 tss_seg;
2674 int ret;
2675 u32 new_tss_base = get_desc_base(new_desc);
2676
2677 ret = ops->read_std(ctxt, old_tss_base, &tss_seg, sizeof tss_seg,
2678 &ctxt->exception);
2679 if (ret != X86EMUL_CONTINUE)
2680 return ret;
2681
2682 save_state_to_tss16(ctxt, &tss_seg);
2683
2684 ret = ops->write_std(ctxt, old_tss_base, &tss_seg, sizeof tss_seg,
2685 &ctxt->exception);
2686 if (ret != X86EMUL_CONTINUE)
2687 return ret;
2688
2689 ret = ops->read_std(ctxt, new_tss_base, &tss_seg, sizeof tss_seg,
2690 &ctxt->exception);
2691 if (ret != X86EMUL_CONTINUE)
2692 return ret;
2693
2694 if (old_tss_sel != 0xffff) {
2695 tss_seg.prev_task_link = old_tss_sel;
2696
2697 ret = ops->write_std(ctxt, new_tss_base,
2698 &tss_seg.prev_task_link,
2699 sizeof tss_seg.prev_task_link,
2700 &ctxt->exception);
2701 if (ret != X86EMUL_CONTINUE)
2702 return ret;
2703 }
2704
2705 return load_state_from_tss16(ctxt, &tss_seg);
2706 }
2707
2708 static void save_state_to_tss32(struct x86_emulate_ctxt *ctxt,
2709 struct tss_segment_32 *tss)
2710 {
2711 /* CR3 and ldt selector are not saved intentionally */
2712 tss->eip = ctxt->_eip;
2713 tss->eflags = ctxt->eflags;
2714 tss->eax = reg_read(ctxt, VCPU_REGS_RAX);
2715 tss->ecx = reg_read(ctxt, VCPU_REGS_RCX);
2716 tss->edx = reg_read(ctxt, VCPU_REGS_RDX);
2717 tss->ebx = reg_read(ctxt, VCPU_REGS_RBX);
2718 tss->esp = reg_read(ctxt, VCPU_REGS_RSP);
2719 tss->ebp = reg_read(ctxt, VCPU_REGS_RBP);
2720 tss->esi = reg_read(ctxt, VCPU_REGS_RSI);
2721 tss->edi = reg_read(ctxt, VCPU_REGS_RDI);
2722
2723 tss->es = get_segment_selector(ctxt, VCPU_SREG_ES);
2724 tss->cs = get_segment_selector(ctxt, VCPU_SREG_CS);
2725 tss->ss = get_segment_selector(ctxt, VCPU_SREG_SS);
2726 tss->ds = get_segment_selector(ctxt, VCPU_SREG_DS);
2727 tss->fs = get_segment_selector(ctxt, VCPU_SREG_FS);
2728 tss->gs = get_segment_selector(ctxt, VCPU_SREG_GS);
2729 }
2730
2731 static int load_state_from_tss32(struct x86_emulate_ctxt *ctxt,
2732 struct tss_segment_32 *tss)
2733 {
2734 int ret;
2735 u8 cpl;
2736
2737 if (ctxt->ops->set_cr(ctxt, 3, tss->cr3))
2738 return emulate_gp(ctxt, 0);
2739 ctxt->_eip = tss->eip;
2740 ctxt->eflags = tss->eflags | 2;
2741
2742 /* General purpose registers */
2743 *reg_write(ctxt, VCPU_REGS_RAX) = tss->eax;
2744 *reg_write(ctxt, VCPU_REGS_RCX) = tss->ecx;
2745 *reg_write(ctxt, VCPU_REGS_RDX) = tss->edx;
2746 *reg_write(ctxt, VCPU_REGS_RBX) = tss->ebx;
2747 *reg_write(ctxt, VCPU_REGS_RSP) = tss->esp;
2748 *reg_write(ctxt, VCPU_REGS_RBP) = tss->ebp;
2749 *reg_write(ctxt, VCPU_REGS_RSI) = tss->esi;
2750 *reg_write(ctxt, VCPU_REGS_RDI) = tss->edi;
2751
2752 /*
2753 * SDM says that segment selectors are loaded before segment
2754 * descriptors. This is important because CPL checks will
2755 * use CS.RPL.
2756 */
2757 set_segment_selector(ctxt, tss->ldt_selector, VCPU_SREG_LDTR);
2758 set_segment_selector(ctxt, tss->es, VCPU_SREG_ES);
2759 set_segment_selector(ctxt, tss->cs, VCPU_SREG_CS);
2760 set_segment_selector(ctxt, tss->ss, VCPU_SREG_SS);
2761 set_segment_selector(ctxt, tss->ds, VCPU_SREG_DS);
2762 set_segment_selector(ctxt, tss->fs, VCPU_SREG_FS);
2763 set_segment_selector(ctxt, tss->gs, VCPU_SREG_GS);
2764
2765 /*
2766 * If we're switching between Protected Mode and VM86, we need to make
2767 * sure to update the mode before loading the segment descriptors so
2768 * that the selectors are interpreted correctly.
2769 */
2770 if (ctxt->eflags & X86_EFLAGS_VM) {
2771 ctxt->mode = X86EMUL_MODE_VM86;
2772 cpl = 3;
2773 } else {
2774 ctxt->mode = X86EMUL_MODE_PROT32;
2775 cpl = tss->cs & 3;
2776 }
2777
2778 /*
2779 * Now load segment descriptors. If fault happenes at this stage
2780 * it is handled in a context of new task
2781 */
2782 ret = __load_segment_descriptor(ctxt, tss->ldt_selector, VCPU_SREG_LDTR,
2783 cpl, X86_TRANSFER_TASK_SWITCH, NULL);
2784 if (ret != X86EMUL_CONTINUE)
2785 return ret;
2786 ret = __load_segment_descriptor(ctxt, tss->es, VCPU_SREG_ES, cpl,
2787 X86_TRANSFER_TASK_SWITCH, NULL);
2788 if (ret != X86EMUL_CONTINUE)
2789 return ret;
2790 ret = __load_segment_descriptor(ctxt, tss->cs, VCPU_SREG_CS, cpl,
2791 X86_TRANSFER_TASK_SWITCH, NULL);
2792 if (ret != X86EMUL_CONTINUE)
2793 return ret;
2794 ret = __load_segment_descriptor(ctxt, tss->ss, VCPU_SREG_SS, cpl,
2795 X86_TRANSFER_TASK_SWITCH, NULL);
2796 if (ret != X86EMUL_CONTINUE)
2797 return ret;
2798 ret = __load_segment_descriptor(ctxt, tss->ds, VCPU_SREG_DS, cpl,
2799 X86_TRANSFER_TASK_SWITCH, NULL);
2800 if (ret != X86EMUL_CONTINUE)
2801 return ret;
2802 ret = __load_segment_descriptor(ctxt, tss->fs, VCPU_SREG_FS, cpl,
2803 X86_TRANSFER_TASK_SWITCH, NULL);
2804 if (ret != X86EMUL_CONTINUE)
2805 return ret;
2806 ret = __load_segment_descriptor(ctxt, tss->gs, VCPU_SREG_GS, cpl,
2807 X86_TRANSFER_TASK_SWITCH, NULL);
2808 if (ret != X86EMUL_CONTINUE)
2809 return ret;
2810
2811 return X86EMUL_CONTINUE;
2812 }
2813
2814 static int task_switch_32(struct x86_emulate_ctxt *ctxt,
2815 u16 tss_selector, u16 old_tss_sel,
2816 ulong old_tss_base, struct desc_struct *new_desc)
2817 {
2818 const struct x86_emulate_ops *ops = ctxt->ops;
2819 struct tss_segment_32 tss_seg;
2820 int ret;
2821 u32 new_tss_base = get_desc_base(new_desc);
2822 u32 eip_offset = offsetof(struct tss_segment_32, eip);
2823 u32 ldt_sel_offset = offsetof(struct tss_segment_32, ldt_selector);
2824
2825 ret = ops->read_std(ctxt, old_tss_base, &tss_seg, sizeof tss_seg,
2826 &ctxt->exception);
2827 if (ret != X86EMUL_CONTINUE)
2828 return ret;
2829
2830 save_state_to_tss32(ctxt, &tss_seg);
2831
2832 /* Only GP registers and segment selectors are saved */
2833 ret = ops->write_std(ctxt, old_tss_base + eip_offset, &tss_seg.eip,
2834 ldt_sel_offset - eip_offset, &ctxt->exception);
2835 if (ret != X86EMUL_CONTINUE)
2836 return ret;
2837
2838 ret = ops->read_std(ctxt, new_tss_base, &tss_seg, sizeof tss_seg,
2839 &ctxt->exception);
2840 if (ret != X86EMUL_CONTINUE)
2841 return ret;
2842
2843 if (old_tss_sel != 0xffff) {
2844 tss_seg.prev_task_link = old_tss_sel;
2845
2846 ret = ops->write_std(ctxt, new_tss_base,
2847 &tss_seg.prev_task_link,
2848 sizeof tss_seg.prev_task_link,
2849 &ctxt->exception);
2850 if (ret != X86EMUL_CONTINUE)
2851 return ret;
2852 }
2853
2854 return load_state_from_tss32(ctxt, &tss_seg);
2855 }
2856
2857 static int emulator_do_task_switch(struct x86_emulate_ctxt *ctxt,
2858 u16 tss_selector, int idt_index, int reason,
2859 bool has_error_code, u32 error_code)
2860 {
2861 const struct x86_emulate_ops *ops = ctxt->ops;
2862 struct desc_struct curr_tss_desc, next_tss_desc;
2863 int ret;
2864 u16 old_tss_sel = get_segment_selector(ctxt, VCPU_SREG_TR);
2865 ulong old_tss_base =
2866 ops->get_cached_segment_base(ctxt, VCPU_SREG_TR);
2867 u32 desc_limit;
2868 ulong desc_addr;
2869
2870 /* FIXME: old_tss_base == ~0 ? */
2871
2872 ret = read_segment_descriptor(ctxt, tss_selector, &next_tss_desc, &desc_addr);
2873 if (ret != X86EMUL_CONTINUE)
2874 return ret;
2875 ret = read_segment_descriptor(ctxt, old_tss_sel, &curr_tss_desc, &desc_addr);
2876 if (ret != X86EMUL_CONTINUE)
2877 return ret;
2878
2879 /* FIXME: check that next_tss_desc is tss */
2880
2881 /*
2882 * Check privileges. The three cases are task switch caused by...
2883 *
2884 * 1. jmp/call/int to task gate: Check against DPL of the task gate
2885 * 2. Exception/IRQ/iret: No check is performed
2886 * 3. jmp/call to TSS/task-gate: No check is performed since the
2887 * hardware checks it before exiting.
2888 */
2889 if (reason == TASK_SWITCH_GATE) {
2890 if (idt_index != -1) {
2891 /* Software interrupts */
2892 struct desc_struct task_gate_desc;
2893 int dpl;
2894
2895 ret = read_interrupt_descriptor(ctxt, idt_index,
2896 &task_gate_desc);
2897 if (ret != X86EMUL_CONTINUE)
2898 return ret;
2899
2900 dpl = task_gate_desc.dpl;
2901 if ((tss_selector & 3) > dpl || ops->cpl(ctxt) > dpl)
2902 return emulate_gp(ctxt, (idt_index << 3) | 0x2);
2903 }
2904 }
2905
2906 desc_limit = desc_limit_scaled(&next_tss_desc);
2907 if (!next_tss_desc.p ||
2908 ((desc_limit < 0x67 && (next_tss_desc.type & 8)) ||
2909 desc_limit < 0x2b)) {
2910 return emulate_ts(ctxt, tss_selector & 0xfffc);
2911 }
2912
2913 if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
2914 curr_tss_desc.type &= ~(1 << 1); /* clear busy flag */
2915 write_segment_descriptor(ctxt, old_tss_sel, &curr_tss_desc);
2916 }
2917
2918 if (reason == TASK_SWITCH_IRET)
2919 ctxt->eflags = ctxt->eflags & ~X86_EFLAGS_NT;
2920
2921 /* set back link to prev task only if NT bit is set in eflags
2922 note that old_tss_sel is not used after this point */
2923 if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
2924 old_tss_sel = 0xffff;
2925
2926 if (next_tss_desc.type & 8)
2927 ret = task_switch_32(ctxt, tss_selector, old_tss_sel,
2928 old_tss_base, &next_tss_desc);
2929 else
2930 ret = task_switch_16(ctxt, tss_selector, old_tss_sel,
2931 old_tss_base, &next_tss_desc);
2932 if (ret != X86EMUL_CONTINUE)
2933 return ret;
2934
2935 if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE)
2936 ctxt->eflags = ctxt->eflags | X86_EFLAGS_NT;
2937
2938 if (reason != TASK_SWITCH_IRET) {
2939 next_tss_desc.type |= (1 << 1); /* set busy flag */
2940 write_segment_descriptor(ctxt, tss_selector, &next_tss_desc);
2941 }
2942
2943 ops->set_cr(ctxt, 0, ops->get_cr(ctxt, 0) | X86_CR0_TS);
2944 ops->set_segment(ctxt, tss_selector, &next_tss_desc, 0, VCPU_SREG_TR);
2945
2946 if (has_error_code) {
2947 ctxt->op_bytes = ctxt->ad_bytes = (next_tss_desc.type & 8) ? 4 : 2;
2948 ctxt->lock_prefix = 0;
2949 ctxt->src.val = (unsigned long) error_code;
2950 ret = em_push(ctxt);
2951 }
2952
2953 return ret;
2954 }
2955
2956 int emulator_task_switch(struct x86_emulate_ctxt *ctxt,
2957 u16 tss_selector, int idt_index, int reason,
2958 bool has_error_code, u32 error_code)
2959 {
2960 int rc;
2961
2962 invalidate_registers(ctxt);
2963 ctxt->_eip = ctxt->eip;
2964 ctxt->dst.type = OP_NONE;
2965
2966 rc = emulator_do_task_switch(ctxt, tss_selector, idt_index, reason,
2967 has_error_code, error_code);
2968
2969 if (rc == X86EMUL_CONTINUE) {
2970 ctxt->eip = ctxt->_eip;
2971 writeback_registers(ctxt);
2972 }
2973
2974 return (rc == X86EMUL_UNHANDLEABLE) ? EMULATION_FAILED : EMULATION_OK;
2975 }
2976
2977 static void string_addr_inc(struct x86_emulate_ctxt *ctxt, int reg,
2978 struct operand *op)
2979 {
2980 int df = (ctxt->eflags & EFLG_DF) ? -op->count : op->count;
2981
2982 register_address_increment(ctxt, reg, df * op->bytes);
2983 op->addr.mem.ea = register_address(ctxt, reg);
2984 }
2985
2986 static int em_das(struct x86_emulate_ctxt *ctxt)
2987 {
2988 u8 al, old_al;
2989 bool af, cf, old_cf;
2990
2991 cf = ctxt->eflags & X86_EFLAGS_CF;
2992 al = ctxt->dst.val;
2993
2994 old_al = al;
2995 old_cf = cf;
2996 cf = false;
2997 af = ctxt->eflags & X86_EFLAGS_AF;
2998 if ((al & 0x0f) > 9 || af) {
2999 al -= 6;
3000 cf = old_cf | (al >= 250);
3001 af = true;
3002 } else {
3003 af = false;
3004 }
3005 if (old_al > 0x99 || old_cf) {
3006 al -= 0x60;
3007 cf = true;
3008 }
3009
3010 ctxt->dst.val = al;
3011 /* Set PF, ZF, SF */
3012 ctxt->src.type = OP_IMM;
3013 ctxt->src.val = 0;
3014 ctxt->src.bytes = 1;
3015 fastop(ctxt, em_or);
3016 ctxt->eflags &= ~(X86_EFLAGS_AF | X86_EFLAGS_CF);
3017 if (cf)
3018 ctxt->eflags |= X86_EFLAGS_CF;
3019 if (af)
3020 ctxt->eflags |= X86_EFLAGS_AF;
3021 return X86EMUL_CONTINUE;
3022 }
3023
3024 static int em_aam(struct x86_emulate_ctxt *ctxt)
3025 {
3026 u8 al, ah;
3027
3028 if (ctxt->src.val == 0)
3029 return emulate_de(ctxt);
3030
3031 al = ctxt->dst.val & 0xff;
3032 ah = al / ctxt->src.val;
3033 al %= ctxt->src.val;
3034
3035 ctxt->dst.val = (ctxt->dst.val & 0xffff0000) | al | (ah << 8);
3036
3037 /* Set PF, ZF, SF */
3038 ctxt->src.type = OP_IMM;
3039 ctxt->src.val = 0;
3040 ctxt->src.bytes = 1;
3041 fastop(ctxt, em_or);
3042
3043 return X86EMUL_CONTINUE;
3044 }
3045
3046 static int em_aad(struct x86_emulate_ctxt *ctxt)
3047 {
3048 u8 al = ctxt->dst.val & 0xff;
3049 u8 ah = (ctxt->dst.val >> 8) & 0xff;
3050
3051 al = (al + (ah * ctxt->src.val)) & 0xff;
3052
3053 ctxt->dst.val = (ctxt->dst.val & 0xffff0000) | al;
3054
3055 /* Set PF, ZF, SF */
3056 ctxt->src.type = OP_IMM;
3057 ctxt->src.val = 0;
3058 ctxt->src.bytes = 1;
3059 fastop(ctxt, em_or);
3060
3061 return X86EMUL_CONTINUE;
3062 }
3063
3064 static int em_call(struct x86_emulate_ctxt *ctxt)
3065 {
3066 int rc;
3067 long rel = ctxt->src.val;
3068
3069 ctxt->src.val = (unsigned long)ctxt->_eip;
3070 rc = jmp_rel(ctxt, rel);
3071 if (rc != X86EMUL_CONTINUE)
3072 return rc;
3073 return em_push(ctxt);
3074 }
3075
3076 static int em_call_far(struct x86_emulate_ctxt *ctxt)
3077 {
3078 u16 sel, old_cs;
3079 ulong old_eip;
3080 int rc;
3081 struct desc_struct old_desc, new_desc;
3082 const struct x86_emulate_ops *ops = ctxt->ops;
3083 int cpl = ctxt->ops->cpl(ctxt);
3084 enum x86emul_mode prev_mode = ctxt->mode;
3085
3086 old_eip = ctxt->_eip;
3087 ops->get_segment(ctxt, &old_cs, &old_desc, NULL, VCPU_SREG_CS);
3088
3089 memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2);
3090 rc = __load_segment_descriptor(ctxt, sel, VCPU_SREG_CS, cpl,
3091 X86_TRANSFER_CALL_JMP, &new_desc);
3092 if (rc != X86EMUL_CONTINUE)
3093 return rc;
3094
3095 rc = assign_eip_far(ctxt, ctxt->src.val, &new_desc);
3096 if (rc != X86EMUL_CONTINUE)
3097 goto fail;
3098
3099 ctxt->src.val = old_cs;
3100 rc = em_push(ctxt);
3101 if (rc != X86EMUL_CONTINUE)
3102 goto fail;
3103
3104 ctxt->src.val = old_eip;
3105 rc = em_push(ctxt);
3106 /* If we failed, we tainted the memory, but the very least we should
3107 restore cs */
3108 if (rc != X86EMUL_CONTINUE) {
3109 pr_warn_once("faulting far call emulation tainted memory\n");
3110 goto fail;
3111 }
3112 return rc;
3113 fail:
3114 ops->set_segment(ctxt, old_cs, &old_desc, 0, VCPU_SREG_CS);
3115 ctxt->mode = prev_mode;
3116 return rc;
3117
3118 }
3119
3120 static int em_ret_near_imm(struct x86_emulate_ctxt *ctxt)
3121 {
3122 int rc;
3123 unsigned long eip;
3124
3125 rc = emulate_pop(ctxt, &eip, ctxt->op_bytes);
3126 if (rc != X86EMUL_CONTINUE)
3127 return rc;
3128 rc = assign_eip_near(ctxt, eip);
3129 if (rc != X86EMUL_CONTINUE)
3130 return rc;
3131 rsp_increment(ctxt, ctxt->src.val);
3132 return X86EMUL_CONTINUE;
3133 }
3134
3135 static int em_xchg(struct x86_emulate_ctxt *ctxt)
3136 {
3137 /* Write back the register source. */
3138 ctxt->src.val = ctxt->dst.val;
3139 write_register_operand(&ctxt->src);
3140
3141 /* Write back the memory destination with implicit LOCK prefix. */
3142 ctxt->dst.val = ctxt->src.orig_val;
3143 ctxt->lock_prefix = 1;
3144 return X86EMUL_CONTINUE;
3145 }
3146
3147 static int em_imul_3op(struct x86_emulate_ctxt *ctxt)
3148 {
3149 ctxt->dst.val = ctxt->src2.val;
3150 return fastop(ctxt, em_imul);
3151 }
3152
3153 static int em_cwd(struct x86_emulate_ctxt *ctxt)
3154 {
3155 ctxt->dst.type = OP_REG;
3156 ctxt->dst.bytes = ctxt->src.bytes;
3157 ctxt->dst.addr.reg = reg_rmw(ctxt, VCPU_REGS_RDX);
3158 ctxt->dst.val = ~((ctxt->src.val >> (ctxt->src.bytes * 8 - 1)) - 1);
3159
3160 return X86EMUL_CONTINUE;
3161 }
3162
3163 static int em_rdtsc(struct x86_emulate_ctxt *ctxt)
3164 {
3165 u64 tsc = 0;
3166
3167 ctxt->ops->get_msr(ctxt, MSR_IA32_TSC, &tsc);
3168 *reg_write(ctxt, VCPU_REGS_RAX) = (u32)tsc;
3169 *reg_write(ctxt, VCPU_REGS_RDX) = tsc >> 32;
3170 return X86EMUL_CONTINUE;
3171 }
3172
3173 static int em_rdpmc(struct x86_emulate_ctxt *ctxt)
3174 {
3175 u64 pmc;
3176
3177 if (ctxt->ops->read_pmc(ctxt, reg_read(ctxt, VCPU_REGS_RCX), &pmc))
3178 return emulate_gp(ctxt, 0);
3179 *reg_write(ctxt, VCPU_REGS_RAX) = (u32)pmc;
3180 *reg_write(ctxt, VCPU_REGS_RDX) = pmc >> 32;
3181 return X86EMUL_CONTINUE;
3182 }
3183
3184 static int em_mov(struct x86_emulate_ctxt *ctxt)
3185 {
3186 memcpy(ctxt->dst.valptr, ctxt->src.valptr, sizeof(ctxt->src.valptr));
3187 return X86EMUL_CONTINUE;
3188 }
3189
3190 #define FFL(x) bit(X86_FEATURE_##x)
3191
3192 static int em_movbe(struct x86_emulate_ctxt *ctxt)
3193 {
3194 u32 ebx, ecx, edx, eax = 1;
3195 u16 tmp;
3196
3197 /*
3198 * Check MOVBE is set in the guest-visible CPUID leaf.
3199 */
3200 ctxt->ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx);
3201 if (!(ecx & FFL(MOVBE)))
3202 return emulate_ud(ctxt);
3203
3204 switch (ctxt->op_bytes) {
3205 case 2:
3206 /*
3207 * From MOVBE definition: "...When the operand size is 16 bits,
3208 * the upper word of the destination register remains unchanged
3209 * ..."
3210 *
3211 * Both casting ->valptr and ->val to u16 breaks strict aliasing
3212 * rules so we have to do the operation almost per hand.
3213 */
3214 tmp = (u16)ctxt->src.val;
3215 ctxt->dst.val &= ~0xffffUL;
3216 ctxt->dst.val |= (unsigned long)swab16(tmp);
3217 break;
3218 case 4:
3219 ctxt->dst.val = swab32((u32)ctxt->src.val);
3220 break;
3221 case 8:
3222 ctxt->dst.val = swab64(ctxt->src.val);
3223 break;
3224 default:
3225 BUG();
3226 }
3227 return X86EMUL_CONTINUE;
3228 }
3229
3230 static int em_cr_write(struct x86_emulate_ctxt *ctxt)
3231 {
3232 if (ctxt->ops->set_cr(ctxt, ctxt->modrm_reg, ctxt->src.val))
3233 return emulate_gp(ctxt, 0);
3234
3235 /* Disable writeback. */
3236 ctxt->dst.type = OP_NONE;
3237 return X86EMUL_CONTINUE;
3238 }
3239
3240 static int em_dr_write(struct x86_emulate_ctxt *ctxt)
3241 {
3242 unsigned long val;
3243
3244 if (ctxt->mode == X86EMUL_MODE_PROT64)
3245 val = ctxt->src.val & ~0ULL;
3246 else
3247 val = ctxt->src.val & ~0U;
3248
3249 /* #UD condition is already handled. */
3250 if (ctxt->ops->set_dr(ctxt, ctxt->modrm_reg, val) < 0)
3251 return emulate_gp(ctxt, 0);
3252
3253 /* Disable writeback. */
3254 ctxt->dst.type = OP_NONE;
3255 return X86EMUL_CONTINUE;
3256 }
3257
3258 static int em_wrmsr(struct x86_emulate_ctxt *ctxt)
3259 {
3260 u64 msr_data;
3261
3262 msr_data = (u32)reg_read(ctxt, VCPU_REGS_RAX)
3263 | ((u64)reg_read(ctxt, VCPU_REGS_RDX) << 32);
3264 if (ctxt->ops->set_msr(ctxt, reg_read(ctxt, VCPU_REGS_RCX), msr_data))
3265 return emulate_gp(ctxt, 0);
3266
3267 return X86EMUL_CONTINUE;
3268 }
3269
3270 static int em_rdmsr(struct x86_emulate_ctxt *ctxt)
3271 {
3272 u64 msr_data;
3273
3274 if (ctxt->ops->get_msr(ctxt, reg_read(ctxt, VCPU_REGS_RCX), &msr_data))
3275 return emulate_gp(ctxt, 0);
3276
3277 *reg_write(ctxt, VCPU_REGS_RAX) = (u32)msr_data;
3278 *reg_write(ctxt, VCPU_REGS_RDX) = msr_data >> 32;
3279 return X86EMUL_CONTINUE;
3280 }
3281
3282 static int em_mov_rm_sreg(struct x86_emulate_ctxt *ctxt)
3283 {
3284 if (ctxt->modrm_reg > VCPU_SREG_GS)
3285 return emulate_ud(ctxt);
3286
3287 ctxt->dst.val = get_segment_selector(ctxt, ctxt->modrm_reg);
3288 if (ctxt->dst.bytes == 4 && ctxt->dst.type == OP_MEM)
3289 ctxt->dst.bytes = 2;
3290 return X86EMUL_CONTINUE;
3291 }
3292
3293 static int em_mov_sreg_rm(struct x86_emulate_ctxt *ctxt)
3294 {
3295 u16 sel = ctxt->src.val;
3296
3297 if (ctxt->modrm_reg == VCPU_SREG_CS || ctxt->modrm_reg > VCPU_SREG_GS)
3298 return emulate_ud(ctxt);
3299
3300 if (ctxt->modrm_reg == VCPU_SREG_SS)
3301 ctxt->interruptibility = KVM_X86_SHADOW_INT_MOV_SS;
3302
3303 /* Disable writeback. */
3304 ctxt->dst.type = OP_NONE;
3305 return load_segment_descriptor(ctxt, sel, ctxt->modrm_reg);
3306 }
3307
3308 static int em_lldt(struct x86_emulate_ctxt *ctxt)
3309 {
3310 u16 sel = ctxt->src.val;
3311
3312 /* Disable writeback. */
3313 ctxt->dst.type = OP_NONE;
3314 return load_segment_descriptor(ctxt, sel, VCPU_SREG_LDTR);
3315 }
3316
3317 static int em_ltr(struct x86_emulate_ctxt *ctxt)
3318 {
3319 u16 sel = ctxt->src.val;
3320
3321 /* Disable writeback. */
3322 ctxt->dst.type = OP_NONE;
3323 return load_segment_descriptor(ctxt, sel, VCPU_SREG_TR);
3324 }
3325
3326 static int em_invlpg(struct x86_emulate_ctxt *ctxt)
3327 {
3328 int rc;
3329 ulong linear;
3330
3331 rc = linearize(ctxt, ctxt->src.addr.mem, 1, false, &linear);
3332 if (rc == X86EMUL_CONTINUE)
3333 ctxt->ops->invlpg(ctxt, linear);
3334 /* Disable writeback. */
3335 ctxt->dst.type = OP_NONE;
3336 return X86EMUL_CONTINUE;
3337 }
3338
3339 static int em_clts(struct x86_emulate_ctxt *ctxt)
3340 {
3341 ulong cr0;
3342
3343 cr0 = ctxt->ops->get_cr(ctxt, 0);
3344 cr0 &= ~X86_CR0_TS;
3345 ctxt->ops->set_cr(ctxt, 0, cr0);
3346 return X86EMUL_CONTINUE;
3347 }
3348
3349 static int em_hypercall(struct x86_emulate_ctxt *ctxt)
3350 {
3351 int rc = ctxt->ops->fix_hypercall(ctxt);
3352
3353 if (rc != X86EMUL_CONTINUE)
3354 return rc;
3355
3356 /* Let the processor re-execute the fixed hypercall */
3357 ctxt->_eip = ctxt->eip;
3358 /* Disable writeback. */
3359 ctxt->dst.type = OP_NONE;
3360 return X86EMUL_CONTINUE;
3361 }
3362
3363 static int emulate_store_desc_ptr(struct x86_emulate_ctxt *ctxt,
3364 void (*get)(struct x86_emulate_ctxt *ctxt,
3365 struct desc_ptr *ptr))
3366 {
3367 struct desc_ptr desc_ptr;
3368
3369 if (ctxt->mode == X86EMUL_MODE_PROT64)
3370 ctxt->op_bytes = 8;
3371 get(ctxt, &desc_ptr);
3372 if (ctxt->op_bytes == 2) {
3373 ctxt->op_bytes = 4;
3374 desc_ptr.address &= 0x00ffffff;
3375 }
3376 /* Disable writeback. */
3377 ctxt->dst.type = OP_NONE;
3378 return segmented_write(ctxt, ctxt->dst.addr.mem,
3379 &desc_ptr, 2 + ctxt->op_bytes);
3380 }
3381
3382 static int em_sgdt(struct x86_emulate_ctxt *ctxt)
3383 {
3384 return emulate_store_desc_ptr(ctxt, ctxt->ops->get_gdt);
3385 }
3386
3387 static int em_sidt(struct x86_emulate_ctxt *ctxt)
3388 {
3389 return emulate_store_desc_ptr(ctxt, ctxt->ops->get_idt);
3390 }
3391
3392 static int em_lgdt_lidt(struct x86_emulate_ctxt *ctxt, bool lgdt)
3393 {
3394 struct desc_ptr desc_ptr;
3395 int rc;
3396
3397 if (ctxt->mode == X86EMUL_MODE_PROT64)
3398 ctxt->op_bytes = 8;
3399 rc = read_descriptor(ctxt, ctxt->src.addr.mem,
3400 &desc_ptr.size, &desc_ptr.address,
3401 ctxt->op_bytes);
3402 if (rc != X86EMUL_CONTINUE)
3403 return rc;
3404 if (ctxt->mode == X86EMUL_MODE_PROT64 &&
3405 is_noncanonical_address(desc_ptr.address))
3406 return emulate_gp(ctxt, 0);
3407 if (lgdt)
3408 ctxt->ops->set_gdt(ctxt, &desc_ptr);
3409 else
3410 ctxt->ops->set_idt(ctxt, &desc_ptr);
3411 /* Disable writeback. */
3412 ctxt->dst.type = OP_NONE;
3413 return X86EMUL_CONTINUE;
3414 }
3415
3416 static int em_lgdt(struct x86_emulate_ctxt *ctxt)
3417 {
3418 return em_lgdt_lidt(ctxt, true);
3419 }
3420
3421 static int em_lidt(struct x86_emulate_ctxt *ctxt)
3422 {
3423 return em_lgdt_lidt(ctxt, false);
3424 }
3425
3426 static int em_smsw(struct x86_emulate_ctxt *ctxt)
3427 {
3428 if (ctxt->dst.type == OP_MEM)
3429 ctxt->dst.bytes = 2;
3430 ctxt->dst.val = ctxt->ops->get_cr(ctxt, 0);
3431 return X86EMUL_CONTINUE;
3432 }
3433
3434 static int em_lmsw(struct x86_emulate_ctxt *ctxt)
3435 {
3436 ctxt->ops->set_cr(ctxt, 0, (ctxt->ops->get_cr(ctxt, 0) & ~0x0eul)
3437 | (ctxt->src.val & 0x0f));
3438 ctxt->dst.type = OP_NONE;
3439 return X86EMUL_CONTINUE;
3440 }
3441
3442 static int em_loop(struct x86_emulate_ctxt *ctxt)
3443 {
3444 int rc = X86EMUL_CONTINUE;
3445
3446 register_address_increment(ctxt, VCPU_REGS_RCX, -1);
3447 if ((address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) != 0) &&
3448 (ctxt->b == 0xe2 || test_cc(ctxt->b ^ 0x5, ctxt->eflags)))
3449 rc = jmp_rel(ctxt, ctxt->src.val);
3450
3451 return rc;
3452 }
3453
3454 static int em_jcxz(struct x86_emulate_ctxt *ctxt)
3455 {
3456 int rc = X86EMUL_CONTINUE;
3457
3458 if (address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) == 0)
3459 rc = jmp_rel(ctxt, ctxt->src.val);
3460
3461 return rc;
3462 }
3463
3464 static int em_in(struct x86_emulate_ctxt *ctxt)
3465 {
3466 if (!pio_in_emulated(ctxt, ctxt->dst.bytes, ctxt->src.val,
3467 &ctxt->dst.val))
3468 return X86EMUL_IO_NEEDED;
3469
3470 return X86EMUL_CONTINUE;
3471 }
3472
3473 static int em_out(struct x86_emulate_ctxt *ctxt)
3474 {
3475 ctxt->ops->pio_out_emulated(ctxt, ctxt->src.bytes, ctxt->dst.val,
3476 &ctxt->src.val, 1);
3477 /* Disable writeback. */
3478 ctxt->dst.type = OP_NONE;
3479 return X86EMUL_CONTINUE;
3480 }
3481
3482 static int em_cli(struct x86_emulate_ctxt *ctxt)
3483 {
3484 if (emulator_bad_iopl(ctxt))
3485 return emulate_gp(ctxt, 0);
3486
3487 ctxt->eflags &= ~X86_EFLAGS_IF;
3488 return X86EMUL_CONTINUE;
3489 }
3490
3491 static int em_sti(struct x86_emulate_ctxt *ctxt)
3492 {
3493 if (emulator_bad_iopl(ctxt))
3494 return emulate_gp(ctxt, 0);
3495
3496 ctxt->interruptibility = KVM_X86_SHADOW_INT_STI;
3497 ctxt->eflags |= X86_EFLAGS_IF;
3498 return X86EMUL_CONTINUE;
3499 }
3500
3501 static int em_cpuid(struct x86_emulate_ctxt *ctxt)
3502 {
3503 u32 eax, ebx, ecx, edx;
3504
3505 eax = reg_read(ctxt, VCPU_REGS_RAX);
3506 ecx = reg_read(ctxt, VCPU_REGS_RCX);
3507 ctxt->ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx);
3508 *reg_write(ctxt, VCPU_REGS_RAX) = eax;
3509 *reg_write(ctxt, VCPU_REGS_RBX) = ebx;
3510 *reg_write(ctxt, VCPU_REGS_RCX) = ecx;
3511 *reg_write(ctxt, VCPU_REGS_RDX) = edx;
3512 return X86EMUL_CONTINUE;
3513 }
3514
3515 static int em_sahf(struct x86_emulate_ctxt *ctxt)
3516 {
3517 u32 flags;
3518
3519 flags = EFLG_CF | EFLG_PF | EFLG_AF | EFLG_ZF | EFLG_SF;
3520 flags &= *reg_rmw(ctxt, VCPU_REGS_RAX) >> 8;
3521
3522 ctxt->eflags &= ~0xffUL;
3523 ctxt->eflags |= flags | X86_EFLAGS_FIXED;
3524 return X86EMUL_CONTINUE;
3525 }
3526
3527 static int em_lahf(struct x86_emulate_ctxt *ctxt)
3528 {
3529 *reg_rmw(ctxt, VCPU_REGS_RAX) &= ~0xff00UL;
3530 *reg_rmw(ctxt, VCPU_REGS_RAX) |= (ctxt->eflags & 0xff) << 8;
3531 return X86EMUL_CONTINUE;
3532 }
3533
3534 static int em_bswap(struct x86_emulate_ctxt *ctxt)
3535 {
3536 switch (ctxt->op_bytes) {
3537 #ifdef CONFIG_X86_64
3538 case 8:
3539 asm("bswap %0" : "+r"(ctxt->dst.val));
3540 break;
3541 #endif
3542 default:
3543 asm("bswap %0" : "+r"(*(u32 *)&ctxt->dst.val));
3544 break;
3545 }
3546 return X86EMUL_CONTINUE;
3547 }
3548
3549 static int em_clflush(struct x86_emulate_ctxt *ctxt)
3550 {
3551 /* emulating clflush regardless of cpuid */
3552 return X86EMUL_CONTINUE;
3553 }
3554
3555 static int em_movsxd(struct x86_emulate_ctxt *ctxt)
3556 {
3557 ctxt->dst.val = (s32) ctxt->src.val;
3558 return X86EMUL_CONTINUE;
3559 }
3560
3561 static bool valid_cr(int nr)
3562 {
3563 switch (nr) {
3564 case 0:
3565 case 2 ... 4:
3566 case 8:
3567 return true;
3568 default:
3569 return false;
3570 }
3571 }
3572
3573 static int check_cr_read(struct x86_emulate_ctxt *ctxt)
3574 {
3575 if (!valid_cr(ctxt->modrm_reg))
3576 return emulate_ud(ctxt);
3577
3578 return X86EMUL_CONTINUE;
3579 }
3580
3581 static int check_cr_write(struct x86_emulate_ctxt *ctxt)
3582 {
3583 u64 new_val = ctxt->src.val64;
3584 int cr = ctxt->modrm_reg;
3585 u64 efer = 0;
3586
3587 static u64 cr_reserved_bits[] = {
3588 0xffffffff00000000ULL,
3589 0, 0, 0, /* CR3 checked later */
3590 CR4_RESERVED_BITS,
3591 0, 0, 0,
3592 CR8_RESERVED_BITS,
3593 };
3594
3595 if (!valid_cr(cr))
3596 return emulate_ud(ctxt);
3597
3598 if (new_val & cr_reserved_bits[cr])
3599 return emulate_gp(ctxt, 0);
3600
3601 switch (cr) {
3602 case 0: {
3603 u64 cr4;
3604 if (((new_val & X86_CR0_PG) && !(new_val & X86_CR0_PE)) ||
3605 ((new_val & X86_CR0_NW) && !(new_val & X86_CR0_CD)))
3606 return emulate_gp(ctxt, 0);
3607
3608 cr4 = ctxt->ops->get_cr(ctxt, 4);
3609 ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
3610
3611 if ((new_val & X86_CR0_PG) && (efer & EFER_LME) &&
3612 !(cr4 & X86_CR4_PAE))
3613 return emulate_gp(ctxt, 0);
3614
3615 break;
3616 }
3617 case 3: {
3618 u64 rsvd = 0;
3619
3620 ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
3621 if (efer & EFER_LMA)
3622 rsvd = CR3_L_MODE_RESERVED_BITS & ~CR3_PCID_INVD;
3623
3624 if (new_val & rsvd)
3625 return emulate_gp(ctxt, 0);
3626
3627 break;
3628 }
3629 case 4: {
3630 ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
3631
3632 if ((efer & EFER_LMA) && !(new_val & X86_CR4_PAE))
3633 return emulate_gp(ctxt, 0);
3634
3635 break;
3636 }
3637 }
3638
3639 return X86EMUL_CONTINUE;
3640 }
3641
3642 static int check_dr7_gd(struct x86_emulate_ctxt *ctxt)
3643 {
3644 unsigned long dr7;
3645
3646 ctxt->ops->get_dr(ctxt, 7, &dr7);
3647
3648 /* Check if DR7.Global_Enable is set */
3649 return dr7 & (1 << 13);
3650 }
3651
3652 static int check_dr_read(struct x86_emulate_ctxt *ctxt)
3653 {
3654 int dr = ctxt->modrm_reg;
3655 u64 cr4;
3656
3657 if (dr > 7)
3658 return emulate_ud(ctxt);
3659
3660 cr4 = ctxt->ops->get_cr(ctxt, 4);
3661 if ((cr4 & X86_CR4_DE) && (dr == 4 || dr == 5))
3662 return emulate_ud(ctxt);
3663
3664 if (check_dr7_gd(ctxt)) {
3665 ulong dr6;
3666
3667 ctxt->ops->get_dr(ctxt, 6, &dr6);
3668 dr6 &= ~15;
3669 dr6 |= DR6_BD | DR6_RTM;
3670 ctxt->ops->set_dr(ctxt, 6, dr6);
3671 return emulate_db(ctxt);
3672 }
3673
3674 return X86EMUL_CONTINUE;
3675 }
3676
3677 static int check_dr_write(struct x86_emulate_ctxt *ctxt)
3678 {
3679 u64 new_val = ctxt->src.val64;
3680 int dr = ctxt->modrm_reg;
3681
3682 if ((dr == 6 || dr == 7) && (new_val & 0xffffffff00000000ULL))
3683 return emulate_gp(ctxt, 0);
3684
3685 return check_dr_read(ctxt);
3686 }
3687
3688 static int check_svme(struct x86_emulate_ctxt *ctxt)
3689 {
3690 u64 efer;
3691
3692 ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
3693
3694 if (!(efer & EFER_SVME))
3695 return emulate_ud(ctxt);
3696
3697 return X86EMUL_CONTINUE;
3698 }
3699
3700 static int check_svme_pa(struct x86_emulate_ctxt *ctxt)
3701 {
3702 u64 rax = reg_read(ctxt, VCPU_REGS_RAX);
3703
3704 /* Valid physical address? */
3705 if (rax & 0xffff000000000000ULL)
3706 return emulate_gp(ctxt, 0);
3707
3708 return check_svme(ctxt);
3709 }
3710
3711 static int check_rdtsc(struct x86_emulate_ctxt *ctxt)
3712 {
3713 u64 cr4 = ctxt->ops->get_cr(ctxt, 4);
3714
3715 if (cr4 & X86_CR4_TSD && ctxt->ops->cpl(ctxt))
3716 return emulate_ud(ctxt);
3717
3718 return X86EMUL_CONTINUE;
3719 }
3720
3721 static int check_rdpmc(struct x86_emulate_ctxt *ctxt)
3722 {
3723 u64 cr4 = ctxt->ops->get_cr(ctxt, 4);
3724 u64 rcx = reg_read(ctxt, VCPU_REGS_RCX);
3725
3726 if ((!(cr4 & X86_CR4_PCE) && ctxt->ops->cpl(ctxt)) ||
3727 ctxt->ops->check_pmc(ctxt, rcx))
3728 return emulate_gp(ctxt, 0);
3729
3730 return X86EMUL_CONTINUE;
3731 }
3732
3733 static int check_perm_in(struct x86_emulate_ctxt *ctxt)
3734 {
3735 ctxt->dst.bytes = min(ctxt->dst.bytes, 4u);
3736 if (!emulator_io_permited(ctxt, ctxt->src.val, ctxt->dst.bytes))
3737 return emulate_gp(ctxt, 0);
3738
3739 return X86EMUL_CONTINUE;
3740 }
3741
3742 static int check_perm_out(struct x86_emulate_ctxt *ctxt)
3743 {
3744 ctxt->src.bytes = min(ctxt->src.bytes, 4u);
3745 if (!emulator_io_permited(ctxt, ctxt->dst.val, ctxt->src.bytes))
3746 return emulate_gp(ctxt, 0);
3747
3748 return X86EMUL_CONTINUE;
3749 }
3750
3751 #define D(_y) { .flags = (_y) }
3752 #define DI(_y, _i) { .flags = (_y)|Intercept, .intercept = x86_intercept_##_i }
3753 #define DIP(_y, _i, _p) { .flags = (_y)|Intercept|CheckPerm, \
3754 .intercept = x86_intercept_##_i, .check_perm = (_p) }
3755 #define N D(NotImpl)
3756 #define EXT(_f, _e) { .flags = ((_f) | RMExt), .u.group = (_e) }
3757 #define G(_f, _g) { .flags = ((_f) | Group | ModRM), .u.group = (_g) }
3758 #define GD(_f, _g) { .flags = ((_f) | GroupDual | ModRM), .u.gdual = (_g) }
3759 #define ID(_f, _i) { .flags = ((_f) | InstrDual | ModRM), .u.idual = (_i) }
3760 #define MD(_f, _m) { .flags = ((_f) | ModeDual), .u.mdual = (_m) }
3761 #define E(_f, _e) { .flags = ((_f) | Escape | ModRM), .u.esc = (_e) }
3762 #define I(_f, _e) { .flags = (_f), .u.execute = (_e) }
3763 #define F(_f, _e) { .flags = (_f) | Fastop, .u.fastop = (_e) }
3764 #define II(_f, _e, _i) \
3765 { .flags = (_f)|Intercept, .u.execute = (_e), .intercept = x86_intercept_##_i }
3766 #define IIP(_f, _e, _i, _p) \
3767 { .flags = (_f)|Intercept|CheckPerm, .u.execute = (_e), \
3768 .intercept = x86_intercept_##_i, .check_perm = (_p) }
3769 #define GP(_f, _g) { .flags = ((_f) | Prefix), .u.gprefix = (_g) }
3770
3771 #define D2bv(_f) D((_f) | ByteOp), D(_f)
3772 #define D2bvIP(_f, _i, _p) DIP((_f) | ByteOp, _i, _p), DIP(_f, _i, _p)
3773 #define I2bv(_f, _e) I((_f) | ByteOp, _e), I(_f, _e)
3774 #define F2bv(_f, _e) F((_f) | ByteOp, _e), F(_f, _e)
3775 #define I2bvIP(_f, _e, _i, _p) \
3776 IIP((_f) | ByteOp, _e, _i, _p), IIP(_f, _e, _i, _p)
3777
3778 #define F6ALU(_f, _e) F2bv((_f) | DstMem | SrcReg | ModRM, _e), \
3779 F2bv(((_f) | DstReg | SrcMem | ModRM) & ~Lock, _e), \
3780 F2bv(((_f) & ~Lock) | DstAcc | SrcImm, _e)
3781
3782 static const struct opcode group7_rm0[] = {
3783 N,
3784 I(SrcNone | Priv | EmulateOnUD, em_hypercall),
3785 N, N, N, N, N, N,
3786 };
3787
3788 static const struct opcode group7_rm1[] = {
3789 DI(SrcNone | Priv, monitor),
3790 DI(SrcNone | Priv, mwait),
3791 N, N, N, N, N, N,
3792 };
3793
3794 static const struct opcode group7_rm3[] = {
3795 DIP(SrcNone | Prot | Priv, vmrun, check_svme_pa),
3796 II(SrcNone | Prot | EmulateOnUD, em_hypercall, vmmcall),
3797 DIP(SrcNone | Prot | Priv, vmload, check_svme_pa),
3798 DIP(SrcNone | Prot | Priv, vmsave, check_svme_pa),
3799 DIP(SrcNone | Prot | Priv, stgi, check_svme),
3800 DIP(SrcNone | Prot | Priv, clgi, check_svme),
3801 DIP(SrcNone | Prot | Priv, skinit, check_svme),
3802 DIP(SrcNone | Prot | Priv, invlpga, check_svme),
3803 };
3804
3805 static const struct opcode group7_rm7[] = {
3806 N,
3807 DIP(SrcNone, rdtscp, check_rdtsc),
3808 N, N, N, N, N, N,
3809 };
3810
3811 static const struct opcode group1[] = {
3812 F(Lock, em_add),
3813 F(Lock | PageTable, em_or),
3814 F(Lock, em_adc),
3815 F(Lock, em_sbb),
3816 F(Lock | PageTable, em_and),
3817 F(Lock, em_sub),
3818 F(Lock, em_xor),
3819 F(NoWrite, em_cmp),
3820 };
3821
3822 static const struct opcode group1A[] = {
3823 I(DstMem | SrcNone | Mov | Stack | IncSP, em_pop), N, N, N, N, N, N, N,
3824 };
3825
3826 static const struct opcode group2[] = {
3827 F(DstMem | ModRM, em_rol),
3828 F(DstMem | ModRM, em_ror),
3829 F(DstMem | ModRM, em_rcl),
3830 F(DstMem | ModRM, em_rcr),
3831 F(DstMem | ModRM, em_shl),
3832 F(DstMem | ModRM, em_shr),
3833 F(DstMem | ModRM, em_shl),
3834 F(DstMem | ModRM, em_sar),
3835 };
3836
3837 static const struct opcode group3[] = {
3838 F(DstMem | SrcImm | NoWrite, em_test),
3839 F(DstMem | SrcImm | NoWrite, em_test),
3840 F(DstMem | SrcNone | Lock, em_not),
3841 F(DstMem | SrcNone | Lock, em_neg),
3842 F(DstXacc | Src2Mem, em_mul_ex),
3843 F(DstXacc | Src2Mem, em_imul_ex),
3844 F(DstXacc | Src2Mem, em_div_ex),
3845 F(DstXacc | Src2Mem, em_idiv_ex),
3846 };
3847
3848 static const struct opcode group4[] = {
3849 F(ByteOp | DstMem | SrcNone | Lock, em_inc),
3850 F(ByteOp | DstMem | SrcNone | Lock, em_dec),
3851 N, N, N, N, N, N,
3852 };
3853
3854 static const struct opcode group5[] = {
3855 F(DstMem | SrcNone | Lock, em_inc),
3856 F(DstMem | SrcNone | Lock, em_dec),
3857 I(SrcMem | NearBranch, em_call_near_abs),
3858 I(SrcMemFAddr | ImplicitOps | Stack, em_call_far),
3859 I(SrcMem | NearBranch, em_jmp_abs),
3860 I(SrcMemFAddr | ImplicitOps, em_jmp_far),
3861 I(SrcMem | Stack, em_push), D(Undefined),
3862 };
3863
3864 static const struct opcode group6[] = {
3865 DI(Prot | DstMem, sldt),
3866 DI(Prot | DstMem, str),
3867 II(Prot | Priv | SrcMem16, em_lldt, lldt),
3868 II(Prot | Priv | SrcMem16, em_ltr, ltr),
3869 N, N, N, N,
3870 };
3871
3872 static const struct group_dual group7 = { {
3873 II(Mov | DstMem, em_sgdt, sgdt),
3874 II(Mov | DstMem, em_sidt, sidt),
3875 II(SrcMem | Priv, em_lgdt, lgdt),
3876 II(SrcMem | Priv, em_lidt, lidt),
3877 II(SrcNone | DstMem | Mov, em_smsw, smsw), N,
3878 II(SrcMem16 | Mov | Priv, em_lmsw, lmsw),
3879 II(SrcMem | ByteOp | Priv | NoAccess, em_invlpg, invlpg),
3880 }, {
3881 EXT(0, group7_rm0),
3882 EXT(0, group7_rm1),
3883 N, EXT(0, group7_rm3),
3884 II(SrcNone | DstMem | Mov, em_smsw, smsw), N,
3885 II(SrcMem16 | Mov | Priv, em_lmsw, lmsw),
3886 EXT(0, group7_rm7),
3887 } };
3888
3889 static const struct opcode group8[] = {
3890 N, N, N, N,
3891 F(DstMem | SrcImmByte | NoWrite, em_bt),
3892 F(DstMem | SrcImmByte | Lock | PageTable, em_bts),
3893 F(DstMem | SrcImmByte | Lock, em_btr),
3894 F(DstMem | SrcImmByte | Lock | PageTable, em_btc),
3895 };
3896
3897 static const struct group_dual group9 = { {
3898 N, I(DstMem64 | Lock | PageTable, em_cmpxchg8b), N, N, N, N, N, N,
3899 }, {
3900 N, N, N, N, N, N, N, N,
3901 } };
3902
3903 static const struct opcode group11[] = {
3904 I(DstMem | SrcImm | Mov | PageTable, em_mov),
3905 X7(D(Undefined)),
3906 };
3907
3908 static const struct gprefix pfx_0f_ae_7 = {
3909 I(SrcMem | ByteOp, em_clflush), N, N, N,
3910 };
3911
3912 static const struct group_dual group15 = { {
3913 N, N, N, N, N, N, N, GP(0, &pfx_0f_ae_7),
3914 }, {
3915 N, N, N, N, N, N, N, N,
3916 } };
3917
3918 static const struct gprefix pfx_0f_6f_0f_7f = {
3919 I(Mmx, em_mov), I(Sse | Aligned, em_mov), N, I(Sse | Unaligned, em_mov),
3920 };
3921
3922 static const struct instr_dual instr_dual_0f_2b = {
3923 I(0, em_mov), N
3924 };
3925
3926 static const struct gprefix pfx_0f_2b = {
3927 ID(0, &instr_dual_0f_2b), ID(0, &instr_dual_0f_2b), N, N,
3928 };
3929
3930 static const struct gprefix pfx_0f_28_0f_29 = {
3931 I(Aligned, em_mov), I(Aligned, em_mov), N, N,
3932 };
3933
3934 static const struct gprefix pfx_0f_e7 = {
3935 N, I(Sse, em_mov), N, N,
3936 };
3937
3938 static const struct escape escape_d9 = { {
3939 N, N, N, N, N, N, N, I(DstMem16 | Mov, em_fnstcw),
3940 }, {
3941 /* 0xC0 - 0xC7 */
3942 N, N, N, N, N, N, N, N,
3943 /* 0xC8 - 0xCF */
3944 N, N, N, N, N, N, N, N,
3945 /* 0xD0 - 0xC7 */
3946 N, N, N, N, N, N, N, N,
3947 /* 0xD8 - 0xDF */
3948 N, N, N, N, N, N, N, N,
3949 /* 0xE0 - 0xE7 */
3950 N, N, N, N, N, N, N, N,
3951 /* 0xE8 - 0xEF */
3952 N, N, N, N, N, N, N, N,
3953 /* 0xF0 - 0xF7 */
3954 N, N, N, N, N, N, N, N,
3955 /* 0xF8 - 0xFF */
3956 N, N, N, N, N, N, N, N,
3957 } };
3958
3959 static const struct escape escape_db = { {
3960 N, N, N, N, N, N, N, N,
3961 }, {
3962 /* 0xC0 - 0xC7 */
3963 N, N, N, N, N, N, N, N,
3964 /* 0xC8 - 0xCF */
3965 N, N, N, N, N, N, N, N,
3966 /* 0xD0 - 0xC7 */
3967 N, N, N, N, N, N, N, N,
3968 /* 0xD8 - 0xDF */
3969 N, N, N, N, N, N, N, N,
3970 /* 0xE0 - 0xE7 */
3971 N, N, N, I(ImplicitOps, em_fninit), N, N, N, N,
3972 /* 0xE8 - 0xEF */
3973 N, N, N, N, N, N, N, N,
3974 /* 0xF0 - 0xF7 */
3975 N, N, N, N, N, N, N, N,
3976 /* 0xF8 - 0xFF */
3977 N, N, N, N, N, N, N, N,
3978 } };
3979
3980 static const struct escape escape_dd = { {
3981 N, N, N, N, N, N, N, I(DstMem16 | Mov, em_fnstsw),
3982 }, {
3983 /* 0xC0 - 0xC7 */
3984 N, N, N, N, N, N, N, N,
3985 /* 0xC8 - 0xCF */
3986 N, N, N, N, N, N, N, N,
3987 /* 0xD0 - 0xC7 */
3988 N, N, N, N, N, N, N, N,
3989 /* 0xD8 - 0xDF */
3990 N, N, N, N, N, N, N, N,
3991 /* 0xE0 - 0xE7 */
3992 N, N, N, N, N, N, N, N,
3993 /* 0xE8 - 0xEF */
3994 N, N, N, N, N, N, N, N,
3995 /* 0xF0 - 0xF7 */
3996 N, N, N, N, N, N, N, N,
3997 /* 0xF8 - 0xFF */
3998 N, N, N, N, N, N, N, N,
3999 } };
4000
4001 static const struct instr_dual instr_dual_0f_c3 = {
4002 I(DstMem | SrcReg | ModRM | No16 | Mov, em_mov), N
4003 };
4004
4005 static const struct mode_dual mode_dual_63 = {
4006 N, I(DstReg | SrcMem32 | ModRM | Mov, em_movsxd)
4007 };
4008
4009 static const struct opcode opcode_table[256] = {
4010 /* 0x00 - 0x07 */
4011 F6ALU(Lock, em_add),
4012 I(ImplicitOps | Stack | No64 | Src2ES, em_push_sreg),
4013 I(ImplicitOps | Stack | No64 | Src2ES, em_pop_sreg),
4014 /* 0x08 - 0x0F */
4015 F6ALU(Lock | PageTable, em_or),
4016 I(ImplicitOps | Stack | No64 | Src2CS, em_push_sreg),
4017 N,
4018 /* 0x10 - 0x17 */
4019 F6ALU(Lock, em_adc),
4020 I(ImplicitOps | Stack | No64 | Src2SS, em_push_sreg),
4021 I(ImplicitOps | Stack | No64 | Src2SS, em_pop_sreg),
4022 /* 0x18 - 0x1F */
4023 F6ALU(Lock, em_sbb),
4024 I(ImplicitOps | Stack | No64 | Src2DS, em_push_sreg),
4025 I(ImplicitOps | Stack | No64 | Src2DS, em_pop_sreg),
4026 /* 0x20 - 0x27 */
4027 F6ALU(Lock | PageTable, em_and), N, N,
4028 /* 0x28 - 0x2F */
4029 F6ALU(Lock, em_sub), N, I(ByteOp | DstAcc | No64, em_das),
4030 /* 0x30 - 0x37 */
4031 F6ALU(Lock, em_xor), N, N,
4032 /* 0x38 - 0x3F */
4033 F6ALU(NoWrite, em_cmp), N, N,
4034 /* 0x40 - 0x4F */
4035 X8(F(DstReg, em_inc)), X8(F(DstReg, em_dec)),
4036 /* 0x50 - 0x57 */
4037 X8(I(SrcReg | Stack, em_push)),
4038 /* 0x58 - 0x5F */
4039 X8(I(DstReg | Stack, em_pop)),
4040 /* 0x60 - 0x67 */
4041 I(ImplicitOps | Stack | No64, em_pusha),
4042 I(ImplicitOps | Stack | No64, em_popa),
4043 N, MD(ModRM, &mode_dual_63),
4044 N, N, N, N,
4045 /* 0x68 - 0x6F */
4046 I(SrcImm | Mov | Stack, em_push),
4047 I(DstReg | SrcMem | ModRM | Src2Imm, em_imul_3op),
4048 I(SrcImmByte | Mov | Stack, em_push),
4049 I(DstReg | SrcMem | ModRM | Src2ImmByte, em_imul_3op),
4050 I2bvIP(DstDI | SrcDX | Mov | String | Unaligned, em_in, ins, check_perm_in), /* insb, insw/insd */
4051 I2bvIP(SrcSI | DstDX | String, em_out, outs, check_perm_out), /* outsb, outsw/outsd */
4052 /* 0x70 - 0x7F */
4053 X16(D(SrcImmByte | NearBranch)),
4054 /* 0x80 - 0x87 */
4055 G(ByteOp | DstMem | SrcImm, group1),
4056 G(DstMem | SrcImm, group1),
4057 G(ByteOp | DstMem | SrcImm | No64, group1),
4058 G(DstMem | SrcImmByte, group1),
4059 F2bv(DstMem | SrcReg | ModRM | NoWrite, em_test),
4060 I2bv(DstMem | SrcReg | ModRM | Lock | PageTable, em_xchg),
4061 /* 0x88 - 0x8F */
4062 I2bv(DstMem | SrcReg | ModRM | Mov | PageTable, em_mov),
4063 I2bv(DstReg | SrcMem | ModRM | Mov, em_mov),
4064 I(DstMem | SrcNone | ModRM | Mov | PageTable, em_mov_rm_sreg),
4065 D(ModRM | SrcMem | NoAccess | DstReg),
4066 I(ImplicitOps | SrcMem16 | ModRM, em_mov_sreg_rm),
4067 G(0, group1A),
4068 /* 0x90 - 0x97 */
4069 DI(SrcAcc | DstReg, pause), X7(D(SrcAcc | DstReg)),
4070 /* 0x98 - 0x9F */
4071 D(DstAcc | SrcNone), I(ImplicitOps | SrcAcc, em_cwd),
4072 I(SrcImmFAddr | No64, em_call_far), N,
4073 II(ImplicitOps | Stack, em_pushf, pushf),
4074 II(ImplicitOps | Stack, em_popf, popf),
4075 I(ImplicitOps, em_sahf), I(ImplicitOps, em_lahf),
4076 /* 0xA0 - 0xA7 */
4077 I2bv(DstAcc | SrcMem | Mov | MemAbs, em_mov),
4078 I2bv(DstMem | SrcAcc | Mov | MemAbs | PageTable, em_mov),
4079 I2bv(SrcSI | DstDI | Mov | String, em_mov),
4080 F2bv(SrcSI | DstDI | String | NoWrite, em_cmp_r),
4081 /* 0xA8 - 0xAF */
4082 F2bv(DstAcc | SrcImm | NoWrite, em_test),
4083 I2bv(SrcAcc | DstDI | Mov | String, em_mov),
4084 I2bv(SrcSI | DstAcc | Mov | String, em_mov),
4085 F2bv(SrcAcc | DstDI | String | NoWrite, em_cmp_r),
4086 /* 0xB0 - 0xB7 */
4087 X8(I(ByteOp | DstReg | SrcImm | Mov, em_mov)),
4088 /* 0xB8 - 0xBF */
4089 X8(I(DstReg | SrcImm64 | Mov, em_mov)),
4090 /* 0xC0 - 0xC7 */
4091 G(ByteOp | Src2ImmByte, group2), G(Src2ImmByte, group2),
4092 I(ImplicitOps | NearBranch | SrcImmU16, em_ret_near_imm),
4093 I(ImplicitOps | NearBranch, em_ret),
4094 I(DstReg | SrcMemFAddr | ModRM | No64 | Src2ES, em_lseg),
4095 I(DstReg | SrcMemFAddr | ModRM | No64 | Src2DS, em_lseg),
4096 G(ByteOp, group11), G(0, group11),
4097 /* 0xC8 - 0xCF */
4098 I(Stack | SrcImmU16 | Src2ImmByte, em_enter), I(Stack, em_leave),
4099 I(ImplicitOps | SrcImmU16, em_ret_far_imm),
4100 I(ImplicitOps, em_ret_far),
4101 D(ImplicitOps), DI(SrcImmByte, intn),
4102 D(ImplicitOps | No64), II(ImplicitOps, em_iret, iret),
4103 /* 0xD0 - 0xD7 */
4104 G(Src2One | ByteOp, group2), G(Src2One, group2),
4105 G(Src2CL | ByteOp, group2), G(Src2CL, group2),
4106 I(DstAcc | SrcImmUByte | No64, em_aam),
4107 I(DstAcc | SrcImmUByte | No64, em_aad),
4108 F(DstAcc | ByteOp | No64, em_salc),
4109 I(DstAcc | SrcXLat | ByteOp, em_mov),
4110 /* 0xD8 - 0xDF */
4111 N, E(0, &escape_d9), N, E(0, &escape_db), N, E(0, &escape_dd), N, N,
4112 /* 0xE0 - 0xE7 */
4113 X3(I(SrcImmByte | NearBranch, em_loop)),
4114 I(SrcImmByte | NearBranch, em_jcxz),
4115 I2bvIP(SrcImmUByte | DstAcc, em_in, in, check_perm_in),
4116 I2bvIP(SrcAcc | DstImmUByte, em_out, out, check_perm_out),
4117 /* 0xE8 - 0xEF */
4118 I(SrcImm | NearBranch, em_call), D(SrcImm | ImplicitOps | NearBranch),
4119 I(SrcImmFAddr | No64, em_jmp_far),
4120 D(SrcImmByte | ImplicitOps | NearBranch),
4121 I2bvIP(SrcDX | DstAcc, em_in, in, check_perm_in),
4122 I2bvIP(SrcAcc | DstDX, em_out, out, check_perm_out),
4123 /* 0xF0 - 0xF7 */
4124 N, DI(ImplicitOps, icebp), N, N,
4125 DI(ImplicitOps | Priv, hlt), D(ImplicitOps),
4126 G(ByteOp, group3), G(0, group3),
4127 /* 0xF8 - 0xFF */
4128 D(ImplicitOps), D(ImplicitOps),
4129 I(ImplicitOps, em_cli), I(ImplicitOps, em_sti),
4130 D(ImplicitOps), D(ImplicitOps), G(0, group4), G(0, group5),
4131 };
4132
4133 static const struct opcode twobyte_table[256] = {
4134 /* 0x00 - 0x0F */
4135 G(0, group6), GD(0, &group7), N, N,
4136 N, I(ImplicitOps | EmulateOnUD, em_syscall),
4137 II(ImplicitOps | Priv, em_clts, clts), N,
4138 DI(ImplicitOps | Priv, invd), DI(ImplicitOps | Priv, wbinvd), N, N,
4139 N, D(ImplicitOps | ModRM | SrcMem | NoAccess), N, N,
4140 /* 0x10 - 0x1F */
4141 N, N, N, N, N, N, N, N,
4142 D(ImplicitOps | ModRM | SrcMem | NoAccess),
4143 N, N, N, N, N, N, D(ImplicitOps | ModRM | SrcMem | NoAccess),
4144 /* 0x20 - 0x2F */
4145 DIP(ModRM | DstMem | Priv | Op3264 | NoMod, cr_read, check_cr_read),
4146 DIP(ModRM | DstMem | Priv | Op3264 | NoMod, dr_read, check_dr_read),
4147 IIP(ModRM | SrcMem | Priv | Op3264 | NoMod, em_cr_write, cr_write,
4148 check_cr_write),
4149 IIP(ModRM | SrcMem | Priv | Op3264 | NoMod, em_dr_write, dr_write,
4150 check_dr_write),
4151 N, N, N, N,
4152 GP(ModRM | DstReg | SrcMem | Mov | Sse, &pfx_0f_28_0f_29),
4153 GP(ModRM | DstMem | SrcReg | Mov | Sse, &pfx_0f_28_0f_29),
4154 N, GP(ModRM | DstMem | SrcReg | Mov | Sse, &pfx_0f_2b),
4155 N, N, N, N,
4156 /* 0x30 - 0x3F */
4157 II(ImplicitOps | Priv, em_wrmsr, wrmsr),
4158 IIP(ImplicitOps, em_rdtsc, rdtsc, check_rdtsc),
4159 II(ImplicitOps | Priv, em_rdmsr, rdmsr),
4160 IIP(ImplicitOps, em_rdpmc, rdpmc, check_rdpmc),
4161 I(ImplicitOps | EmulateOnUD, em_sysenter),
4162 I(ImplicitOps | Priv | EmulateOnUD, em_sysexit),
4163 N, N,
4164 N, N, N, N, N, N, N, N,
4165 /* 0x40 - 0x4F */
4166 X16(D(DstReg | SrcMem | ModRM)),
4167 /* 0x50 - 0x5F */
4168 N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N,
4169 /* 0x60 - 0x6F */
4170 N, N, N, N,
4171 N, N, N, N,
4172 N, N, N, N,
4173 N, N, N, GP(SrcMem | DstReg | ModRM | Mov, &pfx_0f_6f_0f_7f),
4174 /* 0x70 - 0x7F */
4175 N, N, N, N,
4176 N, N, N, N,
4177 N, N, N, N,
4178 N, N, N, GP(SrcReg | DstMem | ModRM | Mov, &pfx_0f_6f_0f_7f),
4179 /* 0x80 - 0x8F */
4180 X16(D(SrcImm | NearBranch)),
4181 /* 0x90 - 0x9F */
4182 X16(D(ByteOp | DstMem | SrcNone | ModRM| Mov)),
4183 /* 0xA0 - 0xA7 */
4184 I(Stack | Src2FS, em_push_sreg), I(Stack | Src2FS, em_pop_sreg),
4185 II(ImplicitOps, em_cpuid, cpuid),
4186 F(DstMem | SrcReg | ModRM | BitOp | NoWrite, em_bt),
4187 F(DstMem | SrcReg | Src2ImmByte | ModRM, em_shld),
4188 F(DstMem | SrcReg | Src2CL | ModRM, em_shld), N, N,
4189 /* 0xA8 - 0xAF */
4190 I(Stack | Src2GS, em_push_sreg), I(Stack | Src2GS, em_pop_sreg),
4191 DI(ImplicitOps, rsm),
4192 F(DstMem | SrcReg | ModRM | BitOp | Lock | PageTable, em_bts),
4193 F(DstMem | SrcReg | Src2ImmByte | ModRM, em_shrd),
4194 F(DstMem | SrcReg | Src2CL | ModRM, em_shrd),
4195 GD(0, &group15), F(DstReg | SrcMem | ModRM, em_imul),
4196 /* 0xB0 - 0xB7 */
4197 I2bv(DstMem | SrcReg | ModRM | Lock | PageTable | SrcWrite, em_cmpxchg),
4198 I(DstReg | SrcMemFAddr | ModRM | Src2SS, em_lseg),
4199 F(DstMem | SrcReg | ModRM | BitOp | Lock, em_btr),
4200 I(DstReg | SrcMemFAddr | ModRM | Src2FS, em_lseg),
4201 I(DstReg | SrcMemFAddr | ModRM | Src2GS, em_lseg),
4202 D(DstReg | SrcMem8 | ModRM | Mov), D(DstReg | SrcMem16 | ModRM | Mov),
4203 /* 0xB8 - 0xBF */
4204 N, N,
4205 G(BitOp, group8),
4206 F(DstMem | SrcReg | ModRM | BitOp | Lock | PageTable, em_btc),
4207 I(DstReg | SrcMem | ModRM, em_bsf_c),
4208 I(DstReg | SrcMem | ModRM, em_bsr_c),
4209 D(DstReg | SrcMem8 | ModRM | Mov), D(DstReg | SrcMem16 | ModRM | Mov),
4210 /* 0xC0 - 0xC7 */
4211 F2bv(DstMem | SrcReg | ModRM | SrcWrite | Lock, em_xadd),
4212 N, ID(0, &instr_dual_0f_c3),
4213 N, N, N, GD(0, &group9),
4214 /* 0xC8 - 0xCF */
4215 X8(I(DstReg, em_bswap)),
4216 /* 0xD0 - 0xDF */
4217 N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N,
4218 /* 0xE0 - 0xEF */
4219 N, N, N, N, N, N, N, GP(SrcReg | DstMem | ModRM | Mov, &pfx_0f_e7),
4220 N, N, N, N, N, N, N, N,
4221 /* 0xF0 - 0xFF */
4222 N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N
4223 };
4224
4225 static const struct instr_dual instr_dual_0f_38_f0 = {
4226 I(DstReg | SrcMem | Mov, em_movbe), N
4227 };
4228
4229 static const struct instr_dual instr_dual_0f_38_f1 = {
4230 I(DstMem | SrcReg | Mov, em_movbe), N
4231 };
4232
4233 static const struct gprefix three_byte_0f_38_f0 = {
4234 ID(0, &instr_dual_0f_38_f0), N, N, N
4235 };
4236
4237 static const struct gprefix three_byte_0f_38_f1 = {
4238 ID(0, &instr_dual_0f_38_f1), N, N, N
4239 };
4240
4241 /*
4242 * Insns below are selected by the prefix which indexed by the third opcode
4243 * byte.
4244 */
4245 static const struct opcode opcode_map_0f_38[256] = {
4246 /* 0x00 - 0x7f */
4247 X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), X16(N),
4248 /* 0x80 - 0xef */
4249 X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), X16(N),
4250 /* 0xf0 - 0xf1 */
4251 GP(EmulateOnUD | ModRM, &three_byte_0f_38_f0),
4252 GP(EmulateOnUD | ModRM, &three_byte_0f_38_f1),
4253 /* 0xf2 - 0xff */
4254 N, N, X4(N), X8(N)
4255 };
4256
4257 #undef D
4258 #undef N
4259 #undef G
4260 #undef GD
4261 #undef I
4262 #undef GP
4263 #undef EXT
4264 #undef MD
4265 #undef ID
4266
4267 #undef D2bv
4268 #undef D2bvIP
4269 #undef I2bv
4270 #undef I2bvIP
4271 #undef I6ALU
4272
4273 static unsigned imm_size(struct x86_emulate_ctxt *ctxt)
4274 {
4275 unsigned size;
4276
4277 size = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
4278 if (size == 8)
4279 size = 4;
4280 return size;
4281 }
4282
4283 static int decode_imm(struct x86_emulate_ctxt *ctxt, struct operand *op,
4284 unsigned size, bool sign_extension)
4285 {
4286 int rc = X86EMUL_CONTINUE;
4287
4288 op->type = OP_IMM;
4289 op->bytes = size;
4290 op->addr.mem.ea = ctxt->_eip;
4291 /* NB. Immediates are sign-extended as necessary. */
4292 switch (op->bytes) {
4293 case 1:
4294 op->val = insn_fetch(s8, ctxt);
4295 break;
4296 case 2:
4297 op->val = insn_fetch(s16, ctxt);
4298 break;
4299 case 4:
4300 op->val = insn_fetch(s32, ctxt);
4301 break;
4302 case 8:
4303 op->val = insn_fetch(s64, ctxt);
4304 break;
4305 }
4306 if (!sign_extension) {
4307 switch (op->bytes) {
4308 case 1:
4309 op->val &= 0xff;
4310 break;
4311 case 2:
4312 op->val &= 0xffff;
4313 break;
4314 case 4:
4315 op->val &= 0xffffffff;
4316 break;
4317 }
4318 }
4319 done:
4320 return rc;
4321 }
4322
4323 static int decode_operand(struct x86_emulate_ctxt *ctxt, struct operand *op,
4324 unsigned d)
4325 {
4326 int rc = X86EMUL_CONTINUE;
4327
4328 switch (d) {
4329 case OpReg:
4330 decode_register_operand(ctxt, op);
4331 break;
4332 case OpImmUByte:
4333 rc = decode_imm(ctxt, op, 1, false);
4334 break;
4335 case OpMem:
4336 ctxt->memop.bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
4337 mem_common:
4338 *op = ctxt->memop;
4339 ctxt->memopp = op;
4340 if (ctxt->d & BitOp)
4341 fetch_bit_operand(ctxt);
4342 op->orig_val = op->val;
4343 break;
4344 case OpMem64:
4345 ctxt->memop.bytes = (ctxt->op_bytes == 8) ? 16 : 8;
4346 goto mem_common;
4347 case OpAcc:
4348 op->type = OP_REG;
4349 op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
4350 op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX);
4351 fetch_register_operand(op);
4352 op->orig_val = op->val;
4353 break;
4354 case OpAccLo:
4355 op->type = OP_REG;
4356 op->bytes = (ctxt->d & ByteOp) ? 2 : ctxt->op_bytes;
4357 op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX);
4358 fetch_register_operand(op);
4359 op->orig_val = op->val;
4360 break;
4361 case OpAccHi:
4362 if (ctxt->d & ByteOp) {
4363 op->type = OP_NONE;
4364 break;
4365 }
4366 op->type = OP_REG;
4367 op->bytes = ctxt->op_bytes;
4368 op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RDX);
4369 fetch_register_operand(op);
4370 op->orig_val = op->val;
4371 break;
4372 case OpDI:
4373 op->type = OP_MEM;
4374 op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
4375 op->addr.mem.ea =
4376 register_address(ctxt, VCPU_REGS_RDI);
4377 op->addr.mem.seg = VCPU_SREG_ES;
4378 op->val = 0;
4379 op->count = 1;
4380 break;
4381 case OpDX:
4382 op->type = OP_REG;
4383 op->bytes = 2;
4384 op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RDX);
4385 fetch_register_operand(op);
4386 break;
4387 case OpCL:
4388 op->type = OP_IMM;
4389 op->bytes = 1;
4390 op->val = reg_read(ctxt, VCPU_REGS_RCX) & 0xff;
4391 break;
4392 case OpImmByte:
4393 rc = decode_imm(ctxt, op, 1, true);
4394 break;
4395 case OpOne:
4396 op->type = OP_IMM;
4397 op->bytes = 1;
4398 op->val = 1;
4399 break;
4400 case OpImm:
4401 rc = decode_imm(ctxt, op, imm_size(ctxt), true);
4402 break;
4403 case OpImm64:
4404 rc = decode_imm(ctxt, op, ctxt->op_bytes, true);
4405 break;
4406 case OpMem8:
4407 ctxt->memop.bytes = 1;
4408 if (ctxt->memop.type == OP_REG) {
4409 ctxt->memop.addr.reg = decode_register(ctxt,
4410 ctxt->modrm_rm, true);
4411 fetch_register_operand(&ctxt->memop);
4412 }
4413 goto mem_common;
4414 case OpMem16:
4415 ctxt->memop.bytes = 2;
4416 goto mem_common;
4417 case OpMem32:
4418 ctxt->memop.bytes = 4;
4419 goto mem_common;
4420 case OpImmU16:
4421 rc = decode_imm(ctxt, op, 2, false);
4422 break;
4423 case OpImmU:
4424 rc = decode_imm(ctxt, op, imm_size(ctxt), false);
4425 break;
4426 case OpSI:
4427 op->type = OP_MEM;
4428 op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
4429 op->addr.mem.ea =
4430 register_address(ctxt, VCPU_REGS_RSI);
4431 op->addr.mem.seg = ctxt->seg_override;
4432 op->val = 0;
4433 op->count = 1;
4434 break;
4435 case OpXLat:
4436 op->type = OP_MEM;
4437 op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
4438 op->addr.mem.ea =
4439 address_mask(ctxt,
4440 reg_read(ctxt, VCPU_REGS_RBX) +
4441 (reg_read(ctxt, VCPU_REGS_RAX) & 0xff));
4442 op->addr.mem.seg = ctxt->seg_override;
4443 op->val = 0;
4444 break;
4445 case OpImmFAddr:
4446 op->type = OP_IMM;
4447 op->addr.mem.ea = ctxt->_eip;
4448 op->bytes = ctxt->op_bytes + 2;
4449 insn_fetch_arr(op->valptr, op->bytes, ctxt);
4450 break;
4451 case OpMemFAddr:
4452 ctxt->memop.bytes = ctxt->op_bytes + 2;
4453 goto mem_common;
4454 case OpES:
4455 op->type = OP_IMM;
4456 op->val = VCPU_SREG_ES;
4457 break;
4458 case OpCS:
4459 op->type = OP_IMM;
4460 op->val = VCPU_SREG_CS;
4461 break;
4462 case OpSS:
4463 op->type = OP_IMM;
4464 op->val = VCPU_SREG_SS;
4465 break;
4466 case OpDS:
4467 op->type = OP_IMM;
4468 op->val = VCPU_SREG_DS;
4469 break;
4470 case OpFS:
4471 op->type = OP_IMM;
4472 op->val = VCPU_SREG_FS;
4473 break;
4474 case OpGS:
4475 op->type = OP_IMM;
4476 op->val = VCPU_SREG_GS;
4477 break;
4478 case OpImplicit:
4479 /* Special instructions do their own operand decoding. */
4480 default:
4481 op->type = OP_NONE; /* Disable writeback. */
4482 break;
4483 }
4484
4485 done:
4486 return rc;
4487 }
4488
4489 int x86_decode_insn(struct x86_emulate_ctxt *ctxt, void *insn, int insn_len)
4490 {
4491 int rc = X86EMUL_CONTINUE;
4492 int mode = ctxt->mode;
4493 int def_op_bytes, def_ad_bytes, goffset, simd_prefix;
4494 bool op_prefix = false;
4495 bool has_seg_override = false;
4496 struct opcode opcode;
4497
4498 ctxt->memop.type = OP_NONE;
4499 ctxt->memopp = NULL;
4500 ctxt->_eip = ctxt->eip;
4501 ctxt->fetch.ptr = ctxt->fetch.data;
4502 ctxt->fetch.end = ctxt->fetch.data + insn_len;
4503 ctxt->opcode_len = 1;
4504 if (insn_len > 0)
4505 memcpy(ctxt->fetch.data, insn, insn_len);
4506 else {
4507 rc = __do_insn_fetch_bytes(ctxt, 1);
4508 if (rc != X86EMUL_CONTINUE)
4509 return rc;
4510 }
4511
4512 switch (mode) {
4513 case X86EMUL_MODE_REAL:
4514 case X86EMUL_MODE_VM86:
4515 case X86EMUL_MODE_PROT16:
4516 def_op_bytes = def_ad_bytes = 2;
4517 break;
4518 case X86EMUL_MODE_PROT32:
4519 def_op_bytes = def_ad_bytes = 4;
4520 break;
4521 #ifdef CONFIG_X86_64
4522 case X86EMUL_MODE_PROT64:
4523 def_op_bytes = 4;
4524 def_ad_bytes = 8;
4525 break;
4526 #endif
4527 default:
4528 return EMULATION_FAILED;
4529 }
4530
4531 ctxt->op_bytes = def_op_bytes;
4532 ctxt->ad_bytes = def_ad_bytes;
4533
4534 /* Legacy prefixes. */
4535 for (;;) {
4536 switch (ctxt->b = insn_fetch(u8, ctxt)) {
4537 case 0x66: /* operand-size override */
4538 op_prefix = true;
4539 /* switch between 2/4 bytes */
4540 ctxt->op_bytes = def_op_bytes ^ 6;
4541 break;
4542 case 0x67: /* address-size override */
4543 if (mode == X86EMUL_MODE_PROT64)
4544 /* switch between 4/8 bytes */
4545 ctxt->ad_bytes = def_ad_bytes ^ 12;
4546 else
4547 /* switch between 2/4 bytes */
4548 ctxt->ad_bytes = def_ad_bytes ^ 6;
4549 break;
4550 case 0x26: /* ES override */
4551 case 0x2e: /* CS override */
4552 case 0x36: /* SS override */
4553 case 0x3e: /* DS override */
4554 has_seg_override = true;
4555 ctxt->seg_override = (ctxt->b >> 3) & 3;
4556 break;
4557 case 0x64: /* FS override */
4558 case 0x65: /* GS override */
4559 has_seg_override = true;
4560 ctxt->seg_override = ctxt->b & 7;
4561 break;
4562 case 0x40 ... 0x4f: /* REX */
4563 if (mode != X86EMUL_MODE_PROT64)
4564 goto done_prefixes;
4565 ctxt->rex_prefix = ctxt->b;
4566 continue;
4567 case 0xf0: /* LOCK */
4568 ctxt->lock_prefix = 1;
4569 break;
4570 case 0xf2: /* REPNE/REPNZ */
4571 case 0xf3: /* REP/REPE/REPZ */
4572 ctxt->rep_prefix = ctxt->b;
4573 break;
4574 default:
4575 goto done_prefixes;
4576 }
4577
4578 /* Any legacy prefix after a REX prefix nullifies its effect. */
4579
4580 ctxt->rex_prefix = 0;
4581 }
4582
4583 done_prefixes:
4584
4585 /* REX prefix. */
4586 if (ctxt->rex_prefix & 8)
4587 ctxt->op_bytes = 8; /* REX.W */
4588
4589 /* Opcode byte(s). */
4590 opcode = opcode_table[ctxt->b];
4591 /* Two-byte opcode? */
4592 if (ctxt->b == 0x0f) {
4593 ctxt->opcode_len = 2;
4594 ctxt->b = insn_fetch(u8, ctxt);
4595 opcode = twobyte_table[ctxt->b];
4596
4597 /* 0F_38 opcode map */
4598 if (ctxt->b == 0x38) {
4599 ctxt->opcode_len = 3;
4600 ctxt->b = insn_fetch(u8, ctxt);
4601 opcode = opcode_map_0f_38[ctxt->b];
4602 }
4603 }
4604 ctxt->d = opcode.flags;
4605
4606 if (ctxt->d & ModRM)
4607 ctxt->modrm = insn_fetch(u8, ctxt);
4608
4609 /* vex-prefix instructions are not implemented */
4610 if (ctxt->opcode_len == 1 && (ctxt->b == 0xc5 || ctxt->b == 0xc4) &&
4611 (mode == X86EMUL_MODE_PROT64 || (ctxt->modrm & 0xc0) == 0xc0)) {
4612 ctxt->d = NotImpl;
4613 }
4614
4615 while (ctxt->d & GroupMask) {
4616 switch (ctxt->d & GroupMask) {
4617 case Group:
4618 goffset = (ctxt->modrm >> 3) & 7;
4619 opcode = opcode.u.group[goffset];
4620 break;
4621 case GroupDual:
4622 goffset = (ctxt->modrm >> 3) & 7;
4623 if ((ctxt->modrm >> 6) == 3)
4624 opcode = opcode.u.gdual->mod3[goffset];
4625 else
4626 opcode = opcode.u.gdual->mod012[goffset];
4627 break;
4628 case RMExt:
4629 goffset = ctxt->modrm & 7;
4630 opcode = opcode.u.group[goffset];
4631 break;
4632 case Prefix:
4633 if (ctxt->rep_prefix && op_prefix)
4634 return EMULATION_FAILED;
4635 simd_prefix = op_prefix ? 0x66 : ctxt->rep_prefix;
4636 switch (simd_prefix) {
4637 case 0x00: opcode = opcode.u.gprefix->pfx_no; break;
4638 case 0x66: opcode = opcode.u.gprefix->pfx_66; break;
4639 case 0xf2: opcode = opcode.u.gprefix->pfx_f2; break;
4640 case 0xf3: opcode = opcode.u.gprefix->pfx_f3; break;
4641 }
4642 break;
4643 case Escape:
4644 if (ctxt->modrm > 0xbf)
4645 opcode = opcode.u.esc->high[ctxt->modrm - 0xc0];
4646 else
4647 opcode = opcode.u.esc->op[(ctxt->modrm >> 3) & 7];
4648 break;
4649 case InstrDual:
4650 if ((ctxt->modrm >> 6) == 3)
4651 opcode = opcode.u.idual->mod3;
4652 else
4653 opcode = opcode.u.idual->mod012;
4654 break;
4655 case ModeDual:
4656 if (ctxt->mode == X86EMUL_MODE_PROT64)
4657 opcode = opcode.u.mdual->mode64;
4658 else
4659 opcode = opcode.u.mdual->mode32;
4660 break;
4661 default:
4662 return EMULATION_FAILED;
4663 }
4664
4665 ctxt->d &= ~(u64)GroupMask;
4666 ctxt->d |= opcode.flags;
4667 }
4668
4669 /* Unrecognised? */
4670 if (ctxt->d == 0)
4671 return EMULATION_FAILED;
4672
4673 ctxt->execute = opcode.u.execute;
4674
4675 if (unlikely(ctxt->ud) && likely(!(ctxt->d & EmulateOnUD)))
4676 return EMULATION_FAILED;
4677
4678 if (unlikely(ctxt->d &
4679 (NotImpl|Stack|Op3264|Sse|Mmx|Intercept|CheckPerm|NearBranch|
4680 No16))) {
4681 /*
4682 * These are copied unconditionally here, and checked unconditionally
4683 * in x86_emulate_insn.
4684 */
4685 ctxt->check_perm = opcode.check_perm;
4686 ctxt->intercept = opcode.intercept;
4687
4688 if (ctxt->d & NotImpl)
4689 return EMULATION_FAILED;
4690
4691 if (mode == X86EMUL_MODE_PROT64) {
4692 if (ctxt->op_bytes == 4 && (ctxt->d & Stack))
4693 ctxt->op_bytes = 8;
4694 else if (ctxt->d & NearBranch)
4695 ctxt->op_bytes = 8;
4696 }
4697
4698 if (ctxt->d & Op3264) {
4699 if (mode == X86EMUL_MODE_PROT64)
4700 ctxt->op_bytes = 8;
4701 else
4702 ctxt->op_bytes = 4;
4703 }
4704
4705 if ((ctxt->d & No16) && ctxt->op_bytes == 2)
4706 ctxt->op_bytes = 4;
4707
4708 if (ctxt->d & Sse)
4709 ctxt->op_bytes = 16;
4710 else if (ctxt->d & Mmx)
4711 ctxt->op_bytes = 8;
4712 }
4713
4714 /* ModRM and SIB bytes. */
4715 if (ctxt->d & ModRM) {
4716 rc = decode_modrm(ctxt, &ctxt->memop);
4717 if (!has_seg_override) {
4718 has_seg_override = true;
4719 ctxt->seg_override = ctxt->modrm_seg;
4720 }
4721 } else if (ctxt->d & MemAbs)
4722 rc = decode_abs(ctxt, &ctxt->memop);
4723 if (rc != X86EMUL_CONTINUE)
4724 goto done;
4725
4726 if (!has_seg_override)
4727 ctxt->seg_override = VCPU_SREG_DS;
4728
4729 ctxt->memop.addr.mem.seg = ctxt->seg_override;
4730
4731 /*
4732 * Decode and fetch the source operand: register, memory
4733 * or immediate.
4734 */
4735 rc = decode_operand(ctxt, &ctxt->src, (ctxt->d >> SrcShift) & OpMask);
4736 if (rc != X86EMUL_CONTINUE)
4737 goto done;
4738
4739 /*
4740 * Decode and fetch the second source operand: register, memory
4741 * or immediate.
4742 */
4743 rc = decode_operand(ctxt, &ctxt->src2, (ctxt->d >> Src2Shift) & OpMask);
4744 if (rc != X86EMUL_CONTINUE)
4745 goto done;
4746
4747 /* Decode and fetch the destination operand: register or memory. */
4748 rc = decode_operand(ctxt, &ctxt->dst, (ctxt->d >> DstShift) & OpMask);
4749
4750 if (ctxt->rip_relative)
4751 ctxt->memopp->addr.mem.ea = address_mask(ctxt,
4752 ctxt->memopp->addr.mem.ea + ctxt->_eip);
4753
4754 done:
4755 return (rc != X86EMUL_CONTINUE) ? EMULATION_FAILED : EMULATION_OK;
4756 }
4757
4758 bool x86_page_table_writing_insn(struct x86_emulate_ctxt *ctxt)
4759 {
4760 return ctxt->d & PageTable;
4761 }
4762
4763 static bool string_insn_completed(struct x86_emulate_ctxt *ctxt)
4764 {
4765 /* The second termination condition only applies for REPE
4766 * and REPNE. Test if the repeat string operation prefix is
4767 * REPE/REPZ or REPNE/REPNZ and if it's the case it tests the
4768 * corresponding termination condition according to:
4769 * - if REPE/REPZ and ZF = 0 then done
4770 * - if REPNE/REPNZ and ZF = 1 then done
4771 */
4772 if (((ctxt->b == 0xa6) || (ctxt->b == 0xa7) ||
4773 (ctxt->b == 0xae) || (ctxt->b == 0xaf))
4774 && (((ctxt->rep_prefix == REPE_PREFIX) &&
4775 ((ctxt->eflags & EFLG_ZF) == 0))
4776 || ((ctxt->rep_prefix == REPNE_PREFIX) &&
4777 ((ctxt->eflags & EFLG_ZF) == EFLG_ZF))))
4778 return true;
4779
4780 return false;
4781 }
4782
4783 static int flush_pending_x87_faults(struct x86_emulate_ctxt *ctxt)
4784 {
4785 bool fault = false;
4786
4787 ctxt->ops->get_fpu(ctxt);
4788 asm volatile("1: fwait \n\t"
4789 "2: \n\t"
4790 ".pushsection .fixup,\"ax\" \n\t"
4791 "3: \n\t"
4792 "movb $1, %[fault] \n\t"
4793 "jmp 2b \n\t"
4794 ".popsection \n\t"
4795 _ASM_EXTABLE(1b, 3b)
4796 : [fault]"+qm"(fault));
4797 ctxt->ops->put_fpu(ctxt);
4798
4799 if (unlikely(fault))
4800 return emulate_exception(ctxt, MF_VECTOR, 0, false);
4801
4802 return X86EMUL_CONTINUE;
4803 }
4804
4805 static void fetch_possible_mmx_operand(struct x86_emulate_ctxt *ctxt,
4806 struct operand *op)
4807 {
4808 if (op->type == OP_MM)
4809 read_mmx_reg(ctxt, &op->mm_val, op->addr.mm);
4810 }
4811
4812 static int fastop(struct x86_emulate_ctxt *ctxt, void (*fop)(struct fastop *))
4813 {
4814 ulong flags = (ctxt->eflags & EFLAGS_MASK) | X86_EFLAGS_IF;
4815 if (!(ctxt->d & ByteOp))
4816 fop += __ffs(ctxt->dst.bytes) * FASTOP_SIZE;
4817 asm("push %[flags]; popf; call *%[fastop]; pushf; pop %[flags]\n"
4818 : "+a"(ctxt->dst.val), "+d"(ctxt->src.val), [flags]"+D"(flags),
4819 [fastop]"+S"(fop)
4820 : "c"(ctxt->src2.val));
4821 ctxt->eflags = (ctxt->eflags & ~EFLAGS_MASK) | (flags & EFLAGS_MASK);
4822 if (!fop) /* exception is returned in fop variable */
4823 return emulate_de(ctxt);
4824 return X86EMUL_CONTINUE;
4825 }
4826
4827 void init_decode_cache(struct x86_emulate_ctxt *ctxt)
4828 {
4829 memset(&ctxt->rip_relative, 0,
4830 (void *)&ctxt->modrm - (void *)&ctxt->rip_relative);
4831
4832 ctxt->io_read.pos = 0;
4833 ctxt->io_read.end = 0;
4834 ctxt->mem_read.end = 0;
4835 }
4836
4837 int x86_emulate_insn(struct x86_emulate_ctxt *ctxt)
4838 {
4839 const struct x86_emulate_ops *ops = ctxt->ops;
4840 int rc = X86EMUL_CONTINUE;
4841 int saved_dst_type = ctxt->dst.type;
4842
4843 ctxt->mem_read.pos = 0;
4844
4845 /* LOCK prefix is allowed only with some instructions */
4846 if (ctxt->lock_prefix && (!(ctxt->d & Lock) || ctxt->dst.type != OP_MEM)) {
4847 rc = emulate_ud(ctxt);
4848 goto done;
4849 }
4850
4851 if ((ctxt->d & SrcMask) == SrcMemFAddr && ctxt->src.type != OP_MEM) {
4852 rc = emulate_ud(ctxt);
4853 goto done;
4854 }
4855
4856 if (unlikely(ctxt->d &
4857 (No64|Undefined|Sse|Mmx|Intercept|CheckPerm|Priv|Prot|String))) {
4858 if ((ctxt->mode == X86EMUL_MODE_PROT64 && (ctxt->d & No64)) ||
4859 (ctxt->d & Undefined)) {
4860 rc = emulate_ud(ctxt);
4861 goto done;
4862 }
4863
4864 if (((ctxt->d & (Sse|Mmx)) && ((ops->get_cr(ctxt, 0) & X86_CR0_EM)))
4865 || ((ctxt->d & Sse) && !(ops->get_cr(ctxt, 4) & X86_CR4_OSFXSR))) {
4866 rc = emulate_ud(ctxt);
4867 goto done;
4868 }
4869
4870 if ((ctxt->d & (Sse|Mmx)) && (ops->get_cr(ctxt, 0) & X86_CR0_TS)) {
4871 rc = emulate_nm(ctxt);
4872 goto done;
4873 }
4874
4875 if (ctxt->d & Mmx) {
4876 rc = flush_pending_x87_faults(ctxt);
4877 if (rc != X86EMUL_CONTINUE)
4878 goto done;
4879 /*
4880 * Now that we know the fpu is exception safe, we can fetch
4881 * operands from it.
4882 */
4883 fetch_possible_mmx_operand(ctxt, &ctxt->src);
4884 fetch_possible_mmx_operand(ctxt, &ctxt->src2);
4885 if (!(ctxt->d & Mov))
4886 fetch_possible_mmx_operand(ctxt, &ctxt->dst);
4887 }
4888
4889 if (unlikely(ctxt->guest_mode) && (ctxt->d & Intercept)) {
4890 rc = emulator_check_intercept(ctxt, ctxt->intercept,
4891 X86_ICPT_PRE_EXCEPT);
4892 if (rc != X86EMUL_CONTINUE)
4893 goto done;
4894 }
4895
4896 /* Instruction can only be executed in protected mode */
4897 if ((ctxt->d & Prot) && ctxt->mode < X86EMUL_MODE_PROT16) {
4898 rc = emulate_ud(ctxt);
4899 goto done;
4900 }
4901
4902 /* Privileged instruction can be executed only in CPL=0 */
4903 if ((ctxt->d & Priv) && ops->cpl(ctxt)) {
4904 if (ctxt->d & PrivUD)
4905 rc = emulate_ud(ctxt);
4906 else
4907 rc = emulate_gp(ctxt, 0);
4908 goto done;
4909 }
4910
4911 /* Do instruction specific permission checks */
4912 if (ctxt->d & CheckPerm) {
4913 rc = ctxt->check_perm(ctxt);
4914 if (rc != X86EMUL_CONTINUE)
4915 goto done;
4916 }
4917
4918 if (unlikely(ctxt->guest_mode) && (ctxt->d & Intercept)) {
4919 rc = emulator_check_intercept(ctxt, ctxt->intercept,
4920 X86_ICPT_POST_EXCEPT);
4921 if (rc != X86EMUL_CONTINUE)
4922 goto done;
4923 }
4924
4925 if (ctxt->rep_prefix && (ctxt->d & String)) {
4926 /* All REP prefixes have the same first termination condition */
4927 if (address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) == 0) {
4928 ctxt->eip = ctxt->_eip;
4929 ctxt->eflags &= ~EFLG_RF;
4930 goto done;
4931 }
4932 }
4933 }
4934
4935 if ((ctxt->src.type == OP_MEM) && !(ctxt->d & NoAccess)) {
4936 rc = segmented_read(ctxt, ctxt->src.addr.mem,
4937 ctxt->src.valptr, ctxt->src.bytes);
4938 if (rc != X86EMUL_CONTINUE)
4939 goto done;
4940 ctxt->src.orig_val64 = ctxt->src.val64;
4941 }
4942
4943 if (ctxt->src2.type == OP_MEM) {
4944 rc = segmented_read(ctxt, ctxt->src2.addr.mem,
4945 &ctxt->src2.val, ctxt->src2.bytes);
4946 if (rc != X86EMUL_CONTINUE)
4947 goto done;
4948 }
4949
4950 if ((ctxt->d & DstMask) == ImplicitOps)
4951 goto special_insn;
4952
4953
4954 if ((ctxt->dst.type == OP_MEM) && !(ctxt->d & Mov)) {
4955 /* optimisation - avoid slow emulated read if Mov */
4956 rc = segmented_read(ctxt, ctxt->dst.addr.mem,
4957 &ctxt->dst.val, ctxt->dst.bytes);
4958 if (rc != X86EMUL_CONTINUE) {
4959 if (!(ctxt->d & NoWrite) &&
4960 rc == X86EMUL_PROPAGATE_FAULT &&
4961 ctxt->exception.vector == PF_VECTOR)
4962 ctxt->exception.error_code |= PFERR_WRITE_MASK;
4963 goto done;
4964 }
4965 }
4966 /* Copy full 64-bit value for CMPXCHG8B. */
4967 ctxt->dst.orig_val64 = ctxt->dst.val64;
4968
4969 special_insn:
4970
4971 if (unlikely(ctxt->guest_mode) && (ctxt->d & Intercept)) {
4972 rc = emulator_check_intercept(ctxt, ctxt->intercept,
4973 X86_ICPT_POST_MEMACCESS);
4974 if (rc != X86EMUL_CONTINUE)
4975 goto done;
4976 }
4977
4978 if (ctxt->rep_prefix && (ctxt->d & String))
4979 ctxt->eflags |= EFLG_RF;
4980 else
4981 ctxt->eflags &= ~EFLG_RF;
4982
4983 if (ctxt->execute) {
4984 if (ctxt->d & Fastop) {
4985 void (*fop)(struct fastop *) = (void *)ctxt->execute;
4986 rc = fastop(ctxt, fop);
4987 if (rc != X86EMUL_CONTINUE)
4988 goto done;
4989 goto writeback;
4990 }
4991 rc = ctxt->execute(ctxt);
4992 if (rc != X86EMUL_CONTINUE)
4993 goto done;
4994 goto writeback;
4995 }
4996
4997 if (ctxt->opcode_len == 2)
4998 goto twobyte_insn;
4999 else if (ctxt->opcode_len == 3)
5000 goto threebyte_insn;
5001
5002 switch (ctxt->b) {
5003 case 0x70 ... 0x7f: /* jcc (short) */
5004 if (test_cc(ctxt->b, ctxt->eflags))
5005 rc = jmp_rel(ctxt, ctxt->src.val);
5006 break;
5007 case 0x8d: /* lea r16/r32, m */
5008 ctxt->dst.val = ctxt->src.addr.mem.ea;
5009 break;
5010 case 0x90 ... 0x97: /* nop / xchg reg, rax */
5011 if (ctxt->dst.addr.reg == reg_rmw(ctxt, VCPU_REGS_RAX))
5012 ctxt->dst.type = OP_NONE;
5013 else
5014 rc = em_xchg(ctxt);
5015 break;
5016 case 0x98: /* cbw/cwde/cdqe */
5017 switch (ctxt->op_bytes) {
5018 case 2: ctxt->dst.val = (s8)ctxt->dst.val; break;
5019 case 4: ctxt->dst.val = (s16)ctxt->dst.val; break;
5020 case 8: ctxt->dst.val = (s32)ctxt->dst.val; break;
5021 }
5022 break;
5023 case 0xcc: /* int3 */
5024 rc = emulate_int(ctxt, 3);
5025 break;
5026 case 0xcd: /* int n */
5027 rc = emulate_int(ctxt, ctxt->src.val);
5028 break;
5029 case 0xce: /* into */
5030 if (ctxt->eflags & EFLG_OF)
5031 rc = emulate_int(ctxt, 4);
5032 break;
5033 case 0xe9: /* jmp rel */
5034 case 0xeb: /* jmp rel short */
5035 rc = jmp_rel(ctxt, ctxt->src.val);
5036 ctxt->dst.type = OP_NONE; /* Disable writeback. */
5037 break;
5038 case 0xf4: /* hlt */
5039 ctxt->ops->halt(ctxt);
5040 break;
5041 case 0xf5: /* cmc */
5042 /* complement carry flag from eflags reg */
5043 ctxt->eflags ^= EFLG_CF;
5044 break;
5045 case 0xf8: /* clc */
5046 ctxt->eflags &= ~EFLG_CF;
5047 break;
5048 case 0xf9: /* stc */
5049 ctxt->eflags |= EFLG_CF;
5050 break;
5051 case 0xfc: /* cld */
5052 ctxt->eflags &= ~EFLG_DF;
5053 break;
5054 case 0xfd: /* std */
5055 ctxt->eflags |= EFLG_DF;
5056 break;
5057 default:
5058 goto cannot_emulate;
5059 }
5060
5061 if (rc != X86EMUL_CONTINUE)
5062 goto done;
5063
5064 writeback:
5065 if (ctxt->d & SrcWrite) {
5066 BUG_ON(ctxt->src.type == OP_MEM || ctxt->src.type == OP_MEM_STR);
5067 rc = writeback(ctxt, &ctxt->src);
5068 if (rc != X86EMUL_CONTINUE)
5069 goto done;
5070 }
5071 if (!(ctxt->d & NoWrite)) {
5072 rc = writeback(ctxt, &ctxt->dst);
5073 if (rc != X86EMUL_CONTINUE)
5074 goto done;
5075 }
5076
5077 /*
5078 * restore dst type in case the decoding will be reused
5079 * (happens for string instruction )
5080 */
5081 ctxt->dst.type = saved_dst_type;
5082
5083 if ((ctxt->d & SrcMask) == SrcSI)
5084 string_addr_inc(ctxt, VCPU_REGS_RSI, &ctxt->src);
5085
5086 if ((ctxt->d & DstMask) == DstDI)
5087 string_addr_inc(ctxt, VCPU_REGS_RDI, &ctxt->dst);
5088
5089 if (ctxt->rep_prefix && (ctxt->d & String)) {
5090 unsigned int count;
5091 struct read_cache *r = &ctxt->io_read;
5092 if ((ctxt->d & SrcMask) == SrcSI)
5093 count = ctxt->src.count;
5094 else
5095 count = ctxt->dst.count;
5096 register_address_increment(ctxt, VCPU_REGS_RCX, -count);
5097
5098 if (!string_insn_completed(ctxt)) {
5099 /*
5100 * Re-enter guest when pio read ahead buffer is empty
5101 * or, if it is not used, after each 1024 iteration.
5102 */
5103 if ((r->end != 0 || reg_read(ctxt, VCPU_REGS_RCX) & 0x3ff) &&
5104 (r->end == 0 || r->end != r->pos)) {
5105 /*
5106 * Reset read cache. Usually happens before
5107 * decode, but since instruction is restarted
5108 * we have to do it here.
5109 */
5110 ctxt->mem_read.end = 0;
5111 writeback_registers(ctxt);
5112 return EMULATION_RESTART;
5113 }
5114 goto done; /* skip rip writeback */
5115 }
5116 ctxt->eflags &= ~EFLG_RF;
5117 }
5118
5119 ctxt->eip = ctxt->_eip;
5120
5121 done:
5122 if (rc == X86EMUL_PROPAGATE_FAULT) {
5123 WARN_ON(ctxt->exception.vector > 0x1f);
5124 ctxt->have_exception = true;
5125 }
5126 if (rc == X86EMUL_INTERCEPTED)
5127 return EMULATION_INTERCEPTED;
5128
5129 if (rc == X86EMUL_CONTINUE)
5130 writeback_registers(ctxt);
5131
5132 return (rc == X86EMUL_UNHANDLEABLE) ? EMULATION_FAILED : EMULATION_OK;
5133
5134 twobyte_insn:
5135 switch (ctxt->b) {
5136 case 0x09: /* wbinvd */
5137 (ctxt->ops->wbinvd)(ctxt);
5138 break;
5139 case 0x08: /* invd */
5140 case 0x0d: /* GrpP (prefetch) */
5141 case 0x18: /* Grp16 (prefetch/nop) */
5142 case 0x1f: /* nop */
5143 break;
5144 case 0x20: /* mov cr, reg */
5145 ctxt->dst.val = ops->get_cr(ctxt, ctxt->modrm_reg);
5146 break;
5147 case 0x21: /* mov from dr to reg */
5148 ops->get_dr(ctxt, ctxt->modrm_reg, &ctxt->dst.val);
5149 break;
5150 case 0x40 ... 0x4f: /* cmov */
5151 if (test_cc(ctxt->b, ctxt->eflags))
5152 ctxt->dst.val = ctxt->src.val;
5153 else if (ctxt->op_bytes != 4)
5154 ctxt->dst.type = OP_NONE; /* no writeback */
5155 break;
5156 case 0x80 ... 0x8f: /* jnz rel, etc*/
5157 if (test_cc(ctxt->b, ctxt->eflags))
5158 rc = jmp_rel(ctxt, ctxt->src.val);
5159 break;
5160 case 0x90 ... 0x9f: /* setcc r/m8 */
5161 ctxt->dst.val = test_cc(ctxt->b, ctxt->eflags);
5162 break;
5163 case 0xb6 ... 0xb7: /* movzx */
5164 ctxt->dst.bytes = ctxt->op_bytes;
5165 ctxt->dst.val = (ctxt->src.bytes == 1) ? (u8) ctxt->src.val
5166 : (u16) ctxt->src.val;
5167 break;
5168 case 0xbe ... 0xbf: /* movsx */
5169 ctxt->dst.bytes = ctxt->op_bytes;
5170 ctxt->dst.val = (ctxt->src.bytes == 1) ? (s8) ctxt->src.val :
5171 (s16) ctxt->src.val;
5172 break;
5173 default:
5174 goto cannot_emulate;
5175 }
5176
5177 threebyte_insn:
5178
5179 if (rc != X86EMUL_CONTINUE)
5180 goto done;
5181
5182 goto writeback;
5183
5184 cannot_emulate:
5185 return EMULATION_FAILED;
5186 }
5187
5188 void emulator_invalidate_register_cache(struct x86_emulate_ctxt *ctxt)
5189 {
5190 invalidate_registers(ctxt);
5191 }
5192
5193 void emulator_writeback_register_cache(struct x86_emulate_ctxt *ctxt)
5194 {
5195 writeback_registers(ctxt);
5196 }