]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kvm/x86.c
KVM: VMX: support MSR_IA32_ARCH_CAPABILITIES as a feature MSR
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
16 *
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
19 *
20 */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/mem_encrypt.h>
58
59 #include <trace/events/kvm.h>
60
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70
71 #define CREATE_TRACE_POINTS
72 #include "trace.h"
73
74 #define MAX_IO_MSRS 256
75 #define KVM_MAX_MCE_BANKS 32
76 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
77 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
78
79 #define emul_to_vcpu(ctxt) \
80 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
81
82 /* EFER defaults:
83 * - enable syscall per default because its emulated by KVM
84 * - enable LME and LMA per default on 64 bit KVM
85 */
86 #ifdef CONFIG_X86_64
87 static
88 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
89 #else
90 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
91 #endif
92
93 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
94 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
95
96 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
97 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
98
99 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
100 static void process_nmi(struct kvm_vcpu *vcpu);
101 static void enter_smm(struct kvm_vcpu *vcpu);
102 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
103
104 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
105 EXPORT_SYMBOL_GPL(kvm_x86_ops);
106
107 static bool __read_mostly ignore_msrs = 0;
108 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
109
110 static bool __read_mostly report_ignored_msrs = true;
111 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
112
113 unsigned int min_timer_period_us = 500;
114 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
115
116 static bool __read_mostly kvmclock_periodic_sync = true;
117 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
118
119 bool __read_mostly kvm_has_tsc_control;
120 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
121 u32 __read_mostly kvm_max_guest_tsc_khz;
122 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
123 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits;
124 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
125 u64 __read_mostly kvm_max_tsc_scaling_ratio;
126 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
127 u64 __read_mostly kvm_default_tsc_scaling_ratio;
128 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
129
130 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
131 static u32 __read_mostly tsc_tolerance_ppm = 250;
132 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
133
134 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
135 unsigned int __read_mostly lapic_timer_advance_ns = 0;
136 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
137
138 static bool __read_mostly vector_hashing = true;
139 module_param(vector_hashing, bool, S_IRUGO);
140
141 #define KVM_NR_SHARED_MSRS 16
142
143 struct kvm_shared_msrs_global {
144 int nr;
145 u32 msrs[KVM_NR_SHARED_MSRS];
146 };
147
148 struct kvm_shared_msrs {
149 struct user_return_notifier urn;
150 bool registered;
151 struct kvm_shared_msr_values {
152 u64 host;
153 u64 curr;
154 } values[KVM_NR_SHARED_MSRS];
155 };
156
157 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
158 static struct kvm_shared_msrs __percpu *shared_msrs;
159
160 struct kvm_stats_debugfs_item debugfs_entries[] = {
161 { "pf_fixed", VCPU_STAT(pf_fixed) },
162 { "pf_guest", VCPU_STAT(pf_guest) },
163 { "tlb_flush", VCPU_STAT(tlb_flush) },
164 { "invlpg", VCPU_STAT(invlpg) },
165 { "exits", VCPU_STAT(exits) },
166 { "io_exits", VCPU_STAT(io_exits) },
167 { "mmio_exits", VCPU_STAT(mmio_exits) },
168 { "signal_exits", VCPU_STAT(signal_exits) },
169 { "irq_window", VCPU_STAT(irq_window_exits) },
170 { "nmi_window", VCPU_STAT(nmi_window_exits) },
171 { "halt_exits", VCPU_STAT(halt_exits) },
172 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
173 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
174 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
175 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
176 { "hypercalls", VCPU_STAT(hypercalls) },
177 { "request_irq", VCPU_STAT(request_irq_exits) },
178 { "irq_exits", VCPU_STAT(irq_exits) },
179 { "host_state_reload", VCPU_STAT(host_state_reload) },
180 { "efer_reload", VCPU_STAT(efer_reload) },
181 { "fpu_reload", VCPU_STAT(fpu_reload) },
182 { "insn_emulation", VCPU_STAT(insn_emulation) },
183 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
184 { "irq_injections", VCPU_STAT(irq_injections) },
185 { "nmi_injections", VCPU_STAT(nmi_injections) },
186 { "req_event", VCPU_STAT(req_event) },
187 { "l1d_flush", VCPU_STAT(l1d_flush) },
188 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
189 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
190 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
191 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
192 { "mmu_flooded", VM_STAT(mmu_flooded) },
193 { "mmu_recycled", VM_STAT(mmu_recycled) },
194 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
195 { "mmu_unsync", VM_STAT(mmu_unsync) },
196 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
197 { "largepages", VM_STAT(lpages) },
198 { "max_mmu_page_hash_collisions",
199 VM_STAT(max_mmu_page_hash_collisions) },
200 { NULL }
201 };
202
203 u64 __read_mostly host_xcr0;
204
205 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
206
207 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
208 {
209 int i;
210 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
211 vcpu->arch.apf.gfns[i] = ~0;
212 }
213
214 static void kvm_on_user_return(struct user_return_notifier *urn)
215 {
216 unsigned slot;
217 struct kvm_shared_msrs *locals
218 = container_of(urn, struct kvm_shared_msrs, urn);
219 struct kvm_shared_msr_values *values;
220 unsigned long flags;
221
222 /*
223 * Disabling irqs at this point since the following code could be
224 * interrupted and executed through kvm_arch_hardware_disable()
225 */
226 local_irq_save(flags);
227 if (locals->registered) {
228 locals->registered = false;
229 user_return_notifier_unregister(urn);
230 }
231 local_irq_restore(flags);
232 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
233 values = &locals->values[slot];
234 if (values->host != values->curr) {
235 wrmsrl(shared_msrs_global.msrs[slot], values->host);
236 values->curr = values->host;
237 }
238 }
239 }
240
241 static void shared_msr_update(unsigned slot, u32 msr)
242 {
243 u64 value;
244 unsigned int cpu = smp_processor_id();
245 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
246
247 /* only read, and nobody should modify it at this time,
248 * so don't need lock */
249 if (slot >= shared_msrs_global.nr) {
250 printk(KERN_ERR "kvm: invalid MSR slot!");
251 return;
252 }
253 rdmsrl_safe(msr, &value);
254 smsr->values[slot].host = value;
255 smsr->values[slot].curr = value;
256 }
257
258 void kvm_define_shared_msr(unsigned slot, u32 msr)
259 {
260 BUG_ON(slot >= KVM_NR_SHARED_MSRS);
261 shared_msrs_global.msrs[slot] = msr;
262 if (slot >= shared_msrs_global.nr)
263 shared_msrs_global.nr = slot + 1;
264 }
265 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
266
267 static void kvm_shared_msr_cpu_online(void)
268 {
269 unsigned i;
270
271 for (i = 0; i < shared_msrs_global.nr; ++i)
272 shared_msr_update(i, shared_msrs_global.msrs[i]);
273 }
274
275 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
276 {
277 unsigned int cpu = smp_processor_id();
278 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
279 int err;
280
281 if (((value ^ smsr->values[slot].curr) & mask) == 0)
282 return 0;
283 smsr->values[slot].curr = value;
284 err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
285 if (err)
286 return 1;
287
288 if (!smsr->registered) {
289 smsr->urn.on_user_return = kvm_on_user_return;
290 user_return_notifier_register(&smsr->urn);
291 smsr->registered = true;
292 }
293 return 0;
294 }
295 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
296
297 static void drop_user_return_notifiers(void)
298 {
299 unsigned int cpu = smp_processor_id();
300 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
301
302 if (smsr->registered)
303 kvm_on_user_return(&smsr->urn);
304 }
305
306 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
307 {
308 return vcpu->arch.apic_base;
309 }
310 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
311
312 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
313 {
314 u64 old_state = vcpu->arch.apic_base &
315 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
316 u64 new_state = msr_info->data &
317 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
318 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
319 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
320
321 if ((msr_info->data & reserved_bits) || new_state == X2APIC_ENABLE)
322 return 1;
323 if (!msr_info->host_initiated &&
324 ((new_state == MSR_IA32_APICBASE_ENABLE &&
325 old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
326 (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
327 old_state == 0)))
328 return 1;
329
330 kvm_lapic_set_base(vcpu, msr_info->data);
331 return 0;
332 }
333 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
334
335 asmlinkage __visible void kvm_spurious_fault(void)
336 {
337 /* Fault while not rebooting. We want the trace. */
338 BUG();
339 }
340 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
341
342 #define EXCPT_BENIGN 0
343 #define EXCPT_CONTRIBUTORY 1
344 #define EXCPT_PF 2
345
346 static int exception_class(int vector)
347 {
348 switch (vector) {
349 case PF_VECTOR:
350 return EXCPT_PF;
351 case DE_VECTOR:
352 case TS_VECTOR:
353 case NP_VECTOR:
354 case SS_VECTOR:
355 case GP_VECTOR:
356 return EXCPT_CONTRIBUTORY;
357 default:
358 break;
359 }
360 return EXCPT_BENIGN;
361 }
362
363 #define EXCPT_FAULT 0
364 #define EXCPT_TRAP 1
365 #define EXCPT_ABORT 2
366 #define EXCPT_INTERRUPT 3
367
368 static int exception_type(int vector)
369 {
370 unsigned int mask;
371
372 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
373 return EXCPT_INTERRUPT;
374
375 mask = 1 << vector;
376
377 /* #DB is trap, as instruction watchpoints are handled elsewhere */
378 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
379 return EXCPT_TRAP;
380
381 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
382 return EXCPT_ABORT;
383
384 /* Reserved exceptions will result in fault */
385 return EXCPT_FAULT;
386 }
387
388 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
389 unsigned nr, bool has_error, u32 error_code,
390 bool reinject)
391 {
392 u32 prev_nr;
393 int class1, class2;
394
395 kvm_make_request(KVM_REQ_EVENT, vcpu);
396
397 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
398 queue:
399 if (has_error && !is_protmode(vcpu))
400 has_error = false;
401 if (reinject) {
402 /*
403 * On vmentry, vcpu->arch.exception.pending is only
404 * true if an event injection was blocked by
405 * nested_run_pending. In that case, however,
406 * vcpu_enter_guest requests an immediate exit,
407 * and the guest shouldn't proceed far enough to
408 * need reinjection.
409 */
410 WARN_ON_ONCE(vcpu->arch.exception.pending);
411 vcpu->arch.exception.injected = true;
412 } else {
413 vcpu->arch.exception.pending = true;
414 vcpu->arch.exception.injected = false;
415 }
416 vcpu->arch.exception.has_error_code = has_error;
417 vcpu->arch.exception.nr = nr;
418 vcpu->arch.exception.error_code = error_code;
419 return;
420 }
421
422 /* to check exception */
423 prev_nr = vcpu->arch.exception.nr;
424 if (prev_nr == DF_VECTOR) {
425 /* triple fault -> shutdown */
426 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
427 return;
428 }
429 class1 = exception_class(prev_nr);
430 class2 = exception_class(nr);
431 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
432 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
433 /*
434 * Generate double fault per SDM Table 5-5. Set
435 * exception.pending = true so that the double fault
436 * can trigger a nested vmexit.
437 */
438 vcpu->arch.exception.pending = true;
439 vcpu->arch.exception.injected = false;
440 vcpu->arch.exception.has_error_code = true;
441 vcpu->arch.exception.nr = DF_VECTOR;
442 vcpu->arch.exception.error_code = 0;
443 } else
444 /* replace previous exception with a new one in a hope
445 that instruction re-execution will regenerate lost
446 exception */
447 goto queue;
448 }
449
450 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
451 {
452 kvm_multiple_exception(vcpu, nr, false, 0, false);
453 }
454 EXPORT_SYMBOL_GPL(kvm_queue_exception);
455
456 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
457 {
458 kvm_multiple_exception(vcpu, nr, false, 0, true);
459 }
460 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
461
462 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
463 {
464 if (err)
465 kvm_inject_gp(vcpu, 0);
466 else
467 return kvm_skip_emulated_instruction(vcpu);
468
469 return 1;
470 }
471 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
472
473 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
474 {
475 ++vcpu->stat.pf_guest;
476 vcpu->arch.exception.nested_apf =
477 is_guest_mode(vcpu) && fault->async_page_fault;
478 if (vcpu->arch.exception.nested_apf)
479 vcpu->arch.apf.nested_apf_token = fault->address;
480 else
481 vcpu->arch.cr2 = fault->address;
482 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
483 }
484 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
485
486 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
487 {
488 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
489 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
490 else
491 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
492
493 return fault->nested_page_fault;
494 }
495
496 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
497 {
498 atomic_inc(&vcpu->arch.nmi_queued);
499 kvm_make_request(KVM_REQ_NMI, vcpu);
500 }
501 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
502
503 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
504 {
505 kvm_multiple_exception(vcpu, nr, true, error_code, false);
506 }
507 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
508
509 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
510 {
511 kvm_multiple_exception(vcpu, nr, true, error_code, true);
512 }
513 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
514
515 /*
516 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
517 * a #GP and return false.
518 */
519 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
520 {
521 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
522 return true;
523 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
524 return false;
525 }
526 EXPORT_SYMBOL_GPL(kvm_require_cpl);
527
528 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
529 {
530 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
531 return true;
532
533 kvm_queue_exception(vcpu, UD_VECTOR);
534 return false;
535 }
536 EXPORT_SYMBOL_GPL(kvm_require_dr);
537
538 /*
539 * This function will be used to read from the physical memory of the currently
540 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
541 * can read from guest physical or from the guest's guest physical memory.
542 */
543 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
544 gfn_t ngfn, void *data, int offset, int len,
545 u32 access)
546 {
547 struct x86_exception exception;
548 gfn_t real_gfn;
549 gpa_t ngpa;
550
551 ngpa = gfn_to_gpa(ngfn);
552 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
553 if (real_gfn == UNMAPPED_GVA)
554 return -EFAULT;
555
556 real_gfn = gpa_to_gfn(real_gfn);
557
558 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
559 }
560 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
561
562 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
563 void *data, int offset, int len, u32 access)
564 {
565 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
566 data, offset, len, access);
567 }
568
569 /*
570 * Load the pae pdptrs. Return true is they are all valid.
571 */
572 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
573 {
574 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
575 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
576 int i;
577 int ret;
578 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
579
580 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
581 offset * sizeof(u64), sizeof(pdpte),
582 PFERR_USER_MASK|PFERR_WRITE_MASK);
583 if (ret < 0) {
584 ret = 0;
585 goto out;
586 }
587 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
588 if ((pdpte[i] & PT_PRESENT_MASK) &&
589 (pdpte[i] &
590 vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
591 ret = 0;
592 goto out;
593 }
594 }
595 ret = 1;
596
597 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
598 __set_bit(VCPU_EXREG_PDPTR,
599 (unsigned long *)&vcpu->arch.regs_avail);
600 __set_bit(VCPU_EXREG_PDPTR,
601 (unsigned long *)&vcpu->arch.regs_dirty);
602 out:
603
604 return ret;
605 }
606 EXPORT_SYMBOL_GPL(load_pdptrs);
607
608 bool pdptrs_changed(struct kvm_vcpu *vcpu)
609 {
610 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
611 bool changed = true;
612 int offset;
613 gfn_t gfn;
614 int r;
615
616 if (is_long_mode(vcpu) || !is_pae(vcpu))
617 return false;
618
619 if (!test_bit(VCPU_EXREG_PDPTR,
620 (unsigned long *)&vcpu->arch.regs_avail))
621 return true;
622
623 gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
624 offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
625 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
626 PFERR_USER_MASK | PFERR_WRITE_MASK);
627 if (r < 0)
628 goto out;
629 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
630 out:
631
632 return changed;
633 }
634 EXPORT_SYMBOL_GPL(pdptrs_changed);
635
636 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
637 {
638 unsigned long old_cr0 = kvm_read_cr0(vcpu);
639 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
640
641 cr0 |= X86_CR0_ET;
642
643 #ifdef CONFIG_X86_64
644 if (cr0 & 0xffffffff00000000UL)
645 return 1;
646 #endif
647
648 cr0 &= ~CR0_RESERVED_BITS;
649
650 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
651 return 1;
652
653 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
654 return 1;
655
656 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
657 #ifdef CONFIG_X86_64
658 if ((vcpu->arch.efer & EFER_LME)) {
659 int cs_db, cs_l;
660
661 if (!is_pae(vcpu))
662 return 1;
663 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
664 if (cs_l)
665 return 1;
666 } else
667 #endif
668 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
669 kvm_read_cr3(vcpu)))
670 return 1;
671 }
672
673 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
674 return 1;
675
676 kvm_x86_ops->set_cr0(vcpu, cr0);
677
678 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
679 kvm_clear_async_pf_completion_queue(vcpu);
680 kvm_async_pf_hash_reset(vcpu);
681 }
682
683 if ((cr0 ^ old_cr0) & update_bits)
684 kvm_mmu_reset_context(vcpu);
685
686 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
687 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
688 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
689 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
690
691 return 0;
692 }
693 EXPORT_SYMBOL_GPL(kvm_set_cr0);
694
695 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
696 {
697 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
698 }
699 EXPORT_SYMBOL_GPL(kvm_lmsw);
700
701 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
702 {
703 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
704 !vcpu->guest_xcr0_loaded) {
705 /* kvm_set_xcr() also depends on this */
706 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
707 vcpu->guest_xcr0_loaded = 1;
708 }
709 }
710
711 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
712 {
713 if (vcpu->guest_xcr0_loaded) {
714 if (vcpu->arch.xcr0 != host_xcr0)
715 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
716 vcpu->guest_xcr0_loaded = 0;
717 }
718 }
719
720 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
721 {
722 u64 xcr0 = xcr;
723 u64 old_xcr0 = vcpu->arch.xcr0;
724 u64 valid_bits;
725
726 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
727 if (index != XCR_XFEATURE_ENABLED_MASK)
728 return 1;
729 if (!(xcr0 & XFEATURE_MASK_FP))
730 return 1;
731 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
732 return 1;
733
734 /*
735 * Do not allow the guest to set bits that we do not support
736 * saving. However, xcr0 bit 0 is always set, even if the
737 * emulated CPU does not support XSAVE (see fx_init).
738 */
739 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
740 if (xcr0 & ~valid_bits)
741 return 1;
742
743 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
744 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
745 return 1;
746
747 if (xcr0 & XFEATURE_MASK_AVX512) {
748 if (!(xcr0 & XFEATURE_MASK_YMM))
749 return 1;
750 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
751 return 1;
752 }
753 vcpu->arch.xcr0 = xcr0;
754
755 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
756 kvm_update_cpuid(vcpu);
757 return 0;
758 }
759
760 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
761 {
762 if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
763 __kvm_set_xcr(vcpu, index, xcr)) {
764 kvm_inject_gp(vcpu, 0);
765 return 1;
766 }
767 return 0;
768 }
769 EXPORT_SYMBOL_GPL(kvm_set_xcr);
770
771 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
772 {
773 unsigned long old_cr4 = kvm_read_cr4(vcpu);
774 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
775 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
776
777 if (cr4 & CR4_RESERVED_BITS)
778 return 1;
779
780 if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
781 return 1;
782
783 if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
784 return 1;
785
786 if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
787 return 1;
788
789 if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
790 return 1;
791
792 if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
793 return 1;
794
795 if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
796 return 1;
797
798 if (!guest_cpuid_has(vcpu, X86_FEATURE_UMIP) && (cr4 & X86_CR4_UMIP))
799 return 1;
800
801 if (is_long_mode(vcpu)) {
802 if (!(cr4 & X86_CR4_PAE))
803 return 1;
804 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
805 && ((cr4 ^ old_cr4) & pdptr_bits)
806 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
807 kvm_read_cr3(vcpu)))
808 return 1;
809
810 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
811 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
812 return 1;
813
814 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
815 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
816 return 1;
817 }
818
819 if (kvm_x86_ops->set_cr4(vcpu, cr4))
820 return 1;
821
822 if (((cr4 ^ old_cr4) & pdptr_bits) ||
823 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
824 kvm_mmu_reset_context(vcpu);
825
826 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
827 kvm_update_cpuid(vcpu);
828
829 return 0;
830 }
831 EXPORT_SYMBOL_GPL(kvm_set_cr4);
832
833 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
834 {
835 #ifdef CONFIG_X86_64
836 cr3 &= ~CR3_PCID_INVD;
837 #endif
838
839 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
840 kvm_mmu_sync_roots(vcpu);
841 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
842 return 0;
843 }
844
845 if (is_long_mode(vcpu) &&
846 (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 62)))
847 return 1;
848 else if (is_pae(vcpu) && is_paging(vcpu) &&
849 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
850 return 1;
851
852 vcpu->arch.cr3 = cr3;
853 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
854 kvm_mmu_new_cr3(vcpu);
855 return 0;
856 }
857 EXPORT_SYMBOL_GPL(kvm_set_cr3);
858
859 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
860 {
861 if (cr8 & CR8_RESERVED_BITS)
862 return 1;
863 if (lapic_in_kernel(vcpu))
864 kvm_lapic_set_tpr(vcpu, cr8);
865 else
866 vcpu->arch.cr8 = cr8;
867 return 0;
868 }
869 EXPORT_SYMBOL_GPL(kvm_set_cr8);
870
871 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
872 {
873 if (lapic_in_kernel(vcpu))
874 return kvm_lapic_get_cr8(vcpu);
875 else
876 return vcpu->arch.cr8;
877 }
878 EXPORT_SYMBOL_GPL(kvm_get_cr8);
879
880 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
881 {
882 int i;
883
884 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
885 for (i = 0; i < KVM_NR_DB_REGS; i++)
886 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
887 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
888 }
889 }
890
891 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
892 {
893 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
894 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
895 }
896
897 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
898 {
899 unsigned long dr7;
900
901 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
902 dr7 = vcpu->arch.guest_debug_dr7;
903 else
904 dr7 = vcpu->arch.dr7;
905 kvm_x86_ops->set_dr7(vcpu, dr7);
906 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
907 if (dr7 & DR7_BP_EN_MASK)
908 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
909 }
910
911 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
912 {
913 u64 fixed = DR6_FIXED_1;
914
915 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
916 fixed |= DR6_RTM;
917 return fixed;
918 }
919
920 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
921 {
922 switch (dr) {
923 case 0 ... 3:
924 vcpu->arch.db[dr] = val;
925 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
926 vcpu->arch.eff_db[dr] = val;
927 break;
928 case 4:
929 /* fall through */
930 case 6:
931 if (val & 0xffffffff00000000ULL)
932 return -1; /* #GP */
933 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
934 kvm_update_dr6(vcpu);
935 break;
936 case 5:
937 /* fall through */
938 default: /* 7 */
939 if (val & 0xffffffff00000000ULL)
940 return -1; /* #GP */
941 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
942 kvm_update_dr7(vcpu);
943 break;
944 }
945
946 return 0;
947 }
948
949 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
950 {
951 if (__kvm_set_dr(vcpu, dr, val)) {
952 kvm_inject_gp(vcpu, 0);
953 return 1;
954 }
955 return 0;
956 }
957 EXPORT_SYMBOL_GPL(kvm_set_dr);
958
959 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
960 {
961 switch (dr) {
962 case 0 ... 3:
963 *val = vcpu->arch.db[dr];
964 break;
965 case 4:
966 /* fall through */
967 case 6:
968 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
969 *val = vcpu->arch.dr6;
970 else
971 *val = kvm_x86_ops->get_dr6(vcpu);
972 break;
973 case 5:
974 /* fall through */
975 default: /* 7 */
976 *val = vcpu->arch.dr7;
977 break;
978 }
979 return 0;
980 }
981 EXPORT_SYMBOL_GPL(kvm_get_dr);
982
983 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
984 {
985 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
986 u64 data;
987 int err;
988
989 err = kvm_pmu_rdpmc(vcpu, ecx, &data);
990 if (err)
991 return err;
992 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
993 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
994 return err;
995 }
996 EXPORT_SYMBOL_GPL(kvm_rdpmc);
997
998 /*
999 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1000 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1001 *
1002 * This list is modified at module load time to reflect the
1003 * capabilities of the host cpu. This capabilities test skips MSRs that are
1004 * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
1005 * may depend on host virtualization features rather than host cpu features.
1006 */
1007
1008 static u32 msrs_to_save[] = {
1009 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1010 MSR_STAR,
1011 #ifdef CONFIG_X86_64
1012 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1013 #endif
1014 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1015 MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1016 MSR_IA32_SPEC_CTRL, MSR_IA32_ARCH_CAPABILITIES
1017 };
1018
1019 static unsigned num_msrs_to_save;
1020
1021 static u32 emulated_msrs[] = {
1022 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1023 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1024 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1025 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1026 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1027 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1028 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1029 HV_X64_MSR_RESET,
1030 HV_X64_MSR_VP_INDEX,
1031 HV_X64_MSR_VP_RUNTIME,
1032 HV_X64_MSR_SCONTROL,
1033 HV_X64_MSR_STIMER0_CONFIG,
1034 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1035 MSR_KVM_PV_EOI_EN,
1036
1037 MSR_IA32_TSC_ADJUST,
1038 MSR_IA32_TSCDEADLINE,
1039 MSR_IA32_MISC_ENABLE,
1040 MSR_IA32_MCG_STATUS,
1041 MSR_IA32_MCG_CTL,
1042 MSR_IA32_MCG_EXT_CTL,
1043 MSR_IA32_SMBASE,
1044 MSR_PLATFORM_INFO,
1045 MSR_MISC_FEATURES_ENABLES,
1046 MSR_AMD64_VIRT_SPEC_CTRL,
1047 };
1048
1049 static unsigned num_emulated_msrs;
1050
1051 /*
1052 * List of msr numbers which are used to expose MSR-based features that
1053 * can be used by a hypervisor to validate requested CPU features.
1054 */
1055 static u32 msr_based_features[] = {
1056 MSR_IA32_ARCH_CAPABILITIES,
1057 };
1058
1059 static unsigned int num_msr_based_features;
1060
1061 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1062 {
1063 switch (msr->index) {
1064 case MSR_IA32_ARCH_CAPABILITIES:
1065 rdmsrl_safe(msr->index, &msr->data);
1066 break;
1067 default:
1068 if (kvm_x86_ops->get_msr_feature(msr))
1069 return 1;
1070 }
1071 return 0;
1072 }
1073
1074 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1075 {
1076 struct kvm_msr_entry msr;
1077 int r;
1078
1079 msr.index = index;
1080 r = kvm_get_msr_feature(&msr);
1081 if (r)
1082 return r;
1083
1084 *data = msr.data;
1085
1086 return 0;
1087 }
1088
1089 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1090 {
1091 if (efer & efer_reserved_bits)
1092 return false;
1093
1094 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1095 return false;
1096
1097 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1098 return false;
1099
1100 return true;
1101 }
1102 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1103
1104 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1105 {
1106 u64 old_efer = vcpu->arch.efer;
1107
1108 if (!kvm_valid_efer(vcpu, efer))
1109 return 1;
1110
1111 if (is_paging(vcpu)
1112 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1113 return 1;
1114
1115 efer &= ~EFER_LMA;
1116 efer |= vcpu->arch.efer & EFER_LMA;
1117
1118 kvm_x86_ops->set_efer(vcpu, efer);
1119
1120 /* Update reserved bits */
1121 if ((efer ^ old_efer) & EFER_NX)
1122 kvm_mmu_reset_context(vcpu);
1123
1124 return 0;
1125 }
1126
1127 void kvm_enable_efer_bits(u64 mask)
1128 {
1129 efer_reserved_bits &= ~mask;
1130 }
1131 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1132
1133 /*
1134 * Writes msr value into into the appropriate "register".
1135 * Returns 0 on success, non-0 otherwise.
1136 * Assumes vcpu_load() was already called.
1137 */
1138 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1139 {
1140 switch (msr->index) {
1141 case MSR_FS_BASE:
1142 case MSR_GS_BASE:
1143 case MSR_KERNEL_GS_BASE:
1144 case MSR_CSTAR:
1145 case MSR_LSTAR:
1146 if (is_noncanonical_address(msr->data, vcpu))
1147 return 1;
1148 break;
1149 case MSR_IA32_SYSENTER_EIP:
1150 case MSR_IA32_SYSENTER_ESP:
1151 /*
1152 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1153 * non-canonical address is written on Intel but not on
1154 * AMD (which ignores the top 32-bits, because it does
1155 * not implement 64-bit SYSENTER).
1156 *
1157 * 64-bit code should hence be able to write a non-canonical
1158 * value on AMD. Making the address canonical ensures that
1159 * vmentry does not fail on Intel after writing a non-canonical
1160 * value, and that something deterministic happens if the guest
1161 * invokes 64-bit SYSENTER.
1162 */
1163 msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu));
1164 }
1165 return kvm_x86_ops->set_msr(vcpu, msr);
1166 }
1167 EXPORT_SYMBOL_GPL(kvm_set_msr);
1168
1169 /*
1170 * Adapt set_msr() to msr_io()'s calling convention
1171 */
1172 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1173 {
1174 struct msr_data msr;
1175 int r;
1176
1177 msr.index = index;
1178 msr.host_initiated = true;
1179 r = kvm_get_msr(vcpu, &msr);
1180 if (r)
1181 return r;
1182
1183 *data = msr.data;
1184 return 0;
1185 }
1186
1187 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1188 {
1189 struct msr_data msr;
1190
1191 msr.data = *data;
1192 msr.index = index;
1193 msr.host_initiated = true;
1194 return kvm_set_msr(vcpu, &msr);
1195 }
1196
1197 #ifdef CONFIG_X86_64
1198 struct pvclock_gtod_data {
1199 seqcount_t seq;
1200
1201 struct { /* extract of a clocksource struct */
1202 int vclock_mode;
1203 u64 cycle_last;
1204 u64 mask;
1205 u32 mult;
1206 u32 shift;
1207 } clock;
1208
1209 u64 boot_ns;
1210 u64 nsec_base;
1211 u64 wall_time_sec;
1212 };
1213
1214 static struct pvclock_gtod_data pvclock_gtod_data;
1215
1216 static void update_pvclock_gtod(struct timekeeper *tk)
1217 {
1218 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1219 u64 boot_ns;
1220
1221 boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1222
1223 write_seqcount_begin(&vdata->seq);
1224
1225 /* copy pvclock gtod data */
1226 vdata->clock.vclock_mode = tk->tkr_mono.clock->archdata.vclock_mode;
1227 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
1228 vdata->clock.mask = tk->tkr_mono.mask;
1229 vdata->clock.mult = tk->tkr_mono.mult;
1230 vdata->clock.shift = tk->tkr_mono.shift;
1231
1232 vdata->boot_ns = boot_ns;
1233 vdata->nsec_base = tk->tkr_mono.xtime_nsec;
1234
1235 vdata->wall_time_sec = tk->xtime_sec;
1236
1237 write_seqcount_end(&vdata->seq);
1238 }
1239 #endif
1240
1241 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1242 {
1243 /*
1244 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1245 * vcpu_enter_guest. This function is only called from
1246 * the physical CPU that is running vcpu.
1247 */
1248 kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1249 }
1250
1251 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1252 {
1253 int version;
1254 int r;
1255 struct pvclock_wall_clock wc;
1256 struct timespec64 boot;
1257
1258 if (!wall_clock)
1259 return;
1260
1261 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1262 if (r)
1263 return;
1264
1265 if (version & 1)
1266 ++version; /* first time write, random junk */
1267
1268 ++version;
1269
1270 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1271 return;
1272
1273 /*
1274 * The guest calculates current wall clock time by adding
1275 * system time (updated by kvm_guest_time_update below) to the
1276 * wall clock specified here. guest system time equals host
1277 * system time for us, thus we must fill in host boot time here.
1278 */
1279 getboottime64(&boot);
1280
1281 if (kvm->arch.kvmclock_offset) {
1282 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1283 boot = timespec64_sub(boot, ts);
1284 }
1285 wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1286 wc.nsec = boot.tv_nsec;
1287 wc.version = version;
1288
1289 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1290
1291 version++;
1292 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1293 }
1294
1295 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1296 {
1297 do_shl32_div32(dividend, divisor);
1298 return dividend;
1299 }
1300
1301 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1302 s8 *pshift, u32 *pmultiplier)
1303 {
1304 uint64_t scaled64;
1305 int32_t shift = 0;
1306 uint64_t tps64;
1307 uint32_t tps32;
1308
1309 tps64 = base_hz;
1310 scaled64 = scaled_hz;
1311 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1312 tps64 >>= 1;
1313 shift--;
1314 }
1315
1316 tps32 = (uint32_t)tps64;
1317 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1318 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1319 scaled64 >>= 1;
1320 else
1321 tps32 <<= 1;
1322 shift++;
1323 }
1324
1325 *pshift = shift;
1326 *pmultiplier = div_frac(scaled64, tps32);
1327
1328 pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1329 __func__, base_hz, scaled_hz, shift, *pmultiplier);
1330 }
1331
1332 #ifdef CONFIG_X86_64
1333 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1334 #endif
1335
1336 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1337 static unsigned long max_tsc_khz;
1338
1339 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1340 {
1341 u64 v = (u64)khz * (1000000 + ppm);
1342 do_div(v, 1000000);
1343 return v;
1344 }
1345
1346 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1347 {
1348 u64 ratio;
1349
1350 /* Guest TSC same frequency as host TSC? */
1351 if (!scale) {
1352 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1353 return 0;
1354 }
1355
1356 /* TSC scaling supported? */
1357 if (!kvm_has_tsc_control) {
1358 if (user_tsc_khz > tsc_khz) {
1359 vcpu->arch.tsc_catchup = 1;
1360 vcpu->arch.tsc_always_catchup = 1;
1361 return 0;
1362 } else {
1363 WARN(1, "user requested TSC rate below hardware speed\n");
1364 return -1;
1365 }
1366 }
1367
1368 /* TSC scaling required - calculate ratio */
1369 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1370 user_tsc_khz, tsc_khz);
1371
1372 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1373 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1374 user_tsc_khz);
1375 return -1;
1376 }
1377
1378 vcpu->arch.tsc_scaling_ratio = ratio;
1379 return 0;
1380 }
1381
1382 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1383 {
1384 u32 thresh_lo, thresh_hi;
1385 int use_scaling = 0;
1386
1387 /* tsc_khz can be zero if TSC calibration fails */
1388 if (user_tsc_khz == 0) {
1389 /* set tsc_scaling_ratio to a safe value */
1390 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1391 return -1;
1392 }
1393
1394 /* Compute a scale to convert nanoseconds in TSC cycles */
1395 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1396 &vcpu->arch.virtual_tsc_shift,
1397 &vcpu->arch.virtual_tsc_mult);
1398 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1399
1400 /*
1401 * Compute the variation in TSC rate which is acceptable
1402 * within the range of tolerance and decide if the
1403 * rate being applied is within that bounds of the hardware
1404 * rate. If so, no scaling or compensation need be done.
1405 */
1406 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1407 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1408 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1409 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1410 use_scaling = 1;
1411 }
1412 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1413 }
1414
1415 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1416 {
1417 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1418 vcpu->arch.virtual_tsc_mult,
1419 vcpu->arch.virtual_tsc_shift);
1420 tsc += vcpu->arch.this_tsc_write;
1421 return tsc;
1422 }
1423
1424 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1425 {
1426 #ifdef CONFIG_X86_64
1427 bool vcpus_matched;
1428 struct kvm_arch *ka = &vcpu->kvm->arch;
1429 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1430
1431 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1432 atomic_read(&vcpu->kvm->online_vcpus));
1433
1434 /*
1435 * Once the masterclock is enabled, always perform request in
1436 * order to update it.
1437 *
1438 * In order to enable masterclock, the host clocksource must be TSC
1439 * and the vcpus need to have matched TSCs. When that happens,
1440 * perform request to enable masterclock.
1441 */
1442 if (ka->use_master_clock ||
1443 (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1444 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1445
1446 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1447 atomic_read(&vcpu->kvm->online_vcpus),
1448 ka->use_master_clock, gtod->clock.vclock_mode);
1449 #endif
1450 }
1451
1452 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1453 {
1454 u64 curr_offset = vcpu->arch.tsc_offset;
1455 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1456 }
1457
1458 /*
1459 * Multiply tsc by a fixed point number represented by ratio.
1460 *
1461 * The most significant 64-N bits (mult) of ratio represent the
1462 * integral part of the fixed point number; the remaining N bits
1463 * (frac) represent the fractional part, ie. ratio represents a fixed
1464 * point number (mult + frac * 2^(-N)).
1465 *
1466 * N equals to kvm_tsc_scaling_ratio_frac_bits.
1467 */
1468 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1469 {
1470 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1471 }
1472
1473 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1474 {
1475 u64 _tsc = tsc;
1476 u64 ratio = vcpu->arch.tsc_scaling_ratio;
1477
1478 if (ratio != kvm_default_tsc_scaling_ratio)
1479 _tsc = __scale_tsc(ratio, tsc);
1480
1481 return _tsc;
1482 }
1483 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1484
1485 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1486 {
1487 u64 tsc;
1488
1489 tsc = kvm_scale_tsc(vcpu, rdtsc());
1490
1491 return target_tsc - tsc;
1492 }
1493
1494 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1495 {
1496 return vcpu->arch.tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1497 }
1498 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1499
1500 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1501 {
1502 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1503 vcpu->arch.tsc_offset = offset;
1504 }
1505
1506 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1507 {
1508 struct kvm *kvm = vcpu->kvm;
1509 u64 offset, ns, elapsed;
1510 unsigned long flags;
1511 bool matched;
1512 bool already_matched;
1513 u64 data = msr->data;
1514 bool synchronizing = false;
1515
1516 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1517 offset = kvm_compute_tsc_offset(vcpu, data);
1518 ns = ktime_get_boot_ns();
1519 elapsed = ns - kvm->arch.last_tsc_nsec;
1520
1521 if (vcpu->arch.virtual_tsc_khz) {
1522 if (data == 0 && msr->host_initiated) {
1523 /*
1524 * detection of vcpu initialization -- need to sync
1525 * with other vCPUs. This particularly helps to keep
1526 * kvm_clock stable after CPU hotplug
1527 */
1528 synchronizing = true;
1529 } else {
1530 u64 tsc_exp = kvm->arch.last_tsc_write +
1531 nsec_to_cycles(vcpu, elapsed);
1532 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1533 /*
1534 * Special case: TSC write with a small delta (1 second)
1535 * of virtual cycle time against real time is
1536 * interpreted as an attempt to synchronize the CPU.
1537 */
1538 synchronizing = data < tsc_exp + tsc_hz &&
1539 data + tsc_hz > tsc_exp;
1540 }
1541 }
1542
1543 /*
1544 * For a reliable TSC, we can match TSC offsets, and for an unstable
1545 * TSC, we add elapsed time in this computation. We could let the
1546 * compensation code attempt to catch up if we fall behind, but
1547 * it's better to try to match offsets from the beginning.
1548 */
1549 if (synchronizing &&
1550 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1551 if (!check_tsc_unstable()) {
1552 offset = kvm->arch.cur_tsc_offset;
1553 pr_debug("kvm: matched tsc offset for %llu\n", data);
1554 } else {
1555 u64 delta = nsec_to_cycles(vcpu, elapsed);
1556 data += delta;
1557 offset = kvm_compute_tsc_offset(vcpu, data);
1558 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1559 }
1560 matched = true;
1561 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1562 } else {
1563 /*
1564 * We split periods of matched TSC writes into generations.
1565 * For each generation, we track the original measured
1566 * nanosecond time, offset, and write, so if TSCs are in
1567 * sync, we can match exact offset, and if not, we can match
1568 * exact software computation in compute_guest_tsc()
1569 *
1570 * These values are tracked in kvm->arch.cur_xxx variables.
1571 */
1572 kvm->arch.cur_tsc_generation++;
1573 kvm->arch.cur_tsc_nsec = ns;
1574 kvm->arch.cur_tsc_write = data;
1575 kvm->arch.cur_tsc_offset = offset;
1576 matched = false;
1577 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1578 kvm->arch.cur_tsc_generation, data);
1579 }
1580
1581 /*
1582 * We also track th most recent recorded KHZ, write and time to
1583 * allow the matching interval to be extended at each write.
1584 */
1585 kvm->arch.last_tsc_nsec = ns;
1586 kvm->arch.last_tsc_write = data;
1587 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1588
1589 vcpu->arch.last_guest_tsc = data;
1590
1591 /* Keep track of which generation this VCPU has synchronized to */
1592 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1593 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1594 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1595
1596 if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1597 update_ia32_tsc_adjust_msr(vcpu, offset);
1598
1599 kvm_vcpu_write_tsc_offset(vcpu, offset);
1600 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1601
1602 spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1603 if (!matched) {
1604 kvm->arch.nr_vcpus_matched_tsc = 0;
1605 } else if (!already_matched) {
1606 kvm->arch.nr_vcpus_matched_tsc++;
1607 }
1608
1609 kvm_track_tsc_matching(vcpu);
1610 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1611 }
1612
1613 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1614
1615 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1616 s64 adjustment)
1617 {
1618 kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
1619 }
1620
1621 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1622 {
1623 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1624 WARN_ON(adjustment < 0);
1625 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1626 adjust_tsc_offset_guest(vcpu, adjustment);
1627 }
1628
1629 #ifdef CONFIG_X86_64
1630
1631 static u64 read_tsc(void)
1632 {
1633 u64 ret = (u64)rdtsc_ordered();
1634 u64 last = pvclock_gtod_data.clock.cycle_last;
1635
1636 if (likely(ret >= last))
1637 return ret;
1638
1639 /*
1640 * GCC likes to generate cmov here, but this branch is extremely
1641 * predictable (it's just a function of time and the likely is
1642 * very likely) and there's a data dependence, so force GCC
1643 * to generate a branch instead. I don't barrier() because
1644 * we don't actually need a barrier, and if this function
1645 * ever gets inlined it will generate worse code.
1646 */
1647 asm volatile ("");
1648 return last;
1649 }
1650
1651 static inline u64 vgettsc(u64 *cycle_now)
1652 {
1653 long v;
1654 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1655
1656 *cycle_now = read_tsc();
1657
1658 v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1659 return v * gtod->clock.mult;
1660 }
1661
1662 static int do_monotonic_boot(s64 *t, u64 *cycle_now)
1663 {
1664 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1665 unsigned long seq;
1666 int mode;
1667 u64 ns;
1668
1669 do {
1670 seq = read_seqcount_begin(&gtod->seq);
1671 mode = gtod->clock.vclock_mode;
1672 ns = gtod->nsec_base;
1673 ns += vgettsc(cycle_now);
1674 ns >>= gtod->clock.shift;
1675 ns += gtod->boot_ns;
1676 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1677 *t = ns;
1678
1679 return mode;
1680 }
1681
1682 static int do_realtime(struct timespec *ts, u64 *cycle_now)
1683 {
1684 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1685 unsigned long seq;
1686 int mode;
1687 u64 ns;
1688
1689 do {
1690 seq = read_seqcount_begin(&gtod->seq);
1691 mode = gtod->clock.vclock_mode;
1692 ts->tv_sec = gtod->wall_time_sec;
1693 ns = gtod->nsec_base;
1694 ns += vgettsc(cycle_now);
1695 ns >>= gtod->clock.shift;
1696 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1697
1698 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1699 ts->tv_nsec = ns;
1700
1701 return mode;
1702 }
1703
1704 /* returns true if host is using tsc clocksource */
1705 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *cycle_now)
1706 {
1707 /* checked again under seqlock below */
1708 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1709 return false;
1710
1711 return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1712 }
1713
1714 /* returns true if host is using tsc clocksource */
1715 static bool kvm_get_walltime_and_clockread(struct timespec *ts,
1716 u64 *cycle_now)
1717 {
1718 /* checked again under seqlock below */
1719 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1720 return false;
1721
1722 return do_realtime(ts, cycle_now) == VCLOCK_TSC;
1723 }
1724 #endif
1725
1726 /*
1727 *
1728 * Assuming a stable TSC across physical CPUS, and a stable TSC
1729 * across virtual CPUs, the following condition is possible.
1730 * Each numbered line represents an event visible to both
1731 * CPUs at the next numbered event.
1732 *
1733 * "timespecX" represents host monotonic time. "tscX" represents
1734 * RDTSC value.
1735 *
1736 * VCPU0 on CPU0 | VCPU1 on CPU1
1737 *
1738 * 1. read timespec0,tsc0
1739 * 2. | timespec1 = timespec0 + N
1740 * | tsc1 = tsc0 + M
1741 * 3. transition to guest | transition to guest
1742 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1743 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1744 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1745 *
1746 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1747 *
1748 * - ret0 < ret1
1749 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1750 * ...
1751 * - 0 < N - M => M < N
1752 *
1753 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1754 * always the case (the difference between two distinct xtime instances
1755 * might be smaller then the difference between corresponding TSC reads,
1756 * when updating guest vcpus pvclock areas).
1757 *
1758 * To avoid that problem, do not allow visibility of distinct
1759 * system_timestamp/tsc_timestamp values simultaneously: use a master
1760 * copy of host monotonic time values. Update that master copy
1761 * in lockstep.
1762 *
1763 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1764 *
1765 */
1766
1767 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1768 {
1769 #ifdef CONFIG_X86_64
1770 struct kvm_arch *ka = &kvm->arch;
1771 int vclock_mode;
1772 bool host_tsc_clocksource, vcpus_matched;
1773
1774 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1775 atomic_read(&kvm->online_vcpus));
1776
1777 /*
1778 * If the host uses TSC clock, then passthrough TSC as stable
1779 * to the guest.
1780 */
1781 host_tsc_clocksource = kvm_get_time_and_clockread(
1782 &ka->master_kernel_ns,
1783 &ka->master_cycle_now);
1784
1785 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1786 && !ka->backwards_tsc_observed
1787 && !ka->boot_vcpu_runs_old_kvmclock;
1788
1789 if (ka->use_master_clock)
1790 atomic_set(&kvm_guest_has_master_clock, 1);
1791
1792 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1793 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1794 vcpus_matched);
1795 #endif
1796 }
1797
1798 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1799 {
1800 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1801 }
1802
1803 static void kvm_gen_update_masterclock(struct kvm *kvm)
1804 {
1805 #ifdef CONFIG_X86_64
1806 int i;
1807 struct kvm_vcpu *vcpu;
1808 struct kvm_arch *ka = &kvm->arch;
1809
1810 spin_lock(&ka->pvclock_gtod_sync_lock);
1811 kvm_make_mclock_inprogress_request(kvm);
1812 /* no guest entries from this point */
1813 pvclock_update_vm_gtod_copy(kvm);
1814
1815 kvm_for_each_vcpu(i, vcpu, kvm)
1816 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1817
1818 /* guest entries allowed */
1819 kvm_for_each_vcpu(i, vcpu, kvm)
1820 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
1821
1822 spin_unlock(&ka->pvclock_gtod_sync_lock);
1823 #endif
1824 }
1825
1826 u64 get_kvmclock_ns(struct kvm *kvm)
1827 {
1828 struct kvm_arch *ka = &kvm->arch;
1829 struct pvclock_vcpu_time_info hv_clock;
1830 u64 ret;
1831
1832 spin_lock(&ka->pvclock_gtod_sync_lock);
1833 if (!ka->use_master_clock) {
1834 spin_unlock(&ka->pvclock_gtod_sync_lock);
1835 return ktime_get_boot_ns() + ka->kvmclock_offset;
1836 }
1837
1838 hv_clock.tsc_timestamp = ka->master_cycle_now;
1839 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
1840 spin_unlock(&ka->pvclock_gtod_sync_lock);
1841
1842 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
1843 get_cpu();
1844
1845 if (__this_cpu_read(cpu_tsc_khz)) {
1846 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
1847 &hv_clock.tsc_shift,
1848 &hv_clock.tsc_to_system_mul);
1849 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
1850 } else
1851 ret = ktime_get_boot_ns() + ka->kvmclock_offset;
1852
1853 put_cpu();
1854
1855 return ret;
1856 }
1857
1858 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
1859 {
1860 struct kvm_vcpu_arch *vcpu = &v->arch;
1861 struct pvclock_vcpu_time_info guest_hv_clock;
1862
1863 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1864 &guest_hv_clock, sizeof(guest_hv_clock))))
1865 return;
1866
1867 /* This VCPU is paused, but it's legal for a guest to read another
1868 * VCPU's kvmclock, so we really have to follow the specification where
1869 * it says that version is odd if data is being modified, and even after
1870 * it is consistent.
1871 *
1872 * Version field updates must be kept separate. This is because
1873 * kvm_write_guest_cached might use a "rep movs" instruction, and
1874 * writes within a string instruction are weakly ordered. So there
1875 * are three writes overall.
1876 *
1877 * As a small optimization, only write the version field in the first
1878 * and third write. The vcpu->pv_time cache is still valid, because the
1879 * version field is the first in the struct.
1880 */
1881 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1882
1883 if (guest_hv_clock.version & 1)
1884 ++guest_hv_clock.version; /* first time write, random junk */
1885
1886 vcpu->hv_clock.version = guest_hv_clock.version + 1;
1887 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1888 &vcpu->hv_clock,
1889 sizeof(vcpu->hv_clock.version));
1890
1891 smp_wmb();
1892
1893 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1894 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1895
1896 if (vcpu->pvclock_set_guest_stopped_request) {
1897 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
1898 vcpu->pvclock_set_guest_stopped_request = false;
1899 }
1900
1901 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1902
1903 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1904 &vcpu->hv_clock,
1905 sizeof(vcpu->hv_clock));
1906
1907 smp_wmb();
1908
1909 vcpu->hv_clock.version++;
1910 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1911 &vcpu->hv_clock,
1912 sizeof(vcpu->hv_clock.version));
1913 }
1914
1915 static int kvm_guest_time_update(struct kvm_vcpu *v)
1916 {
1917 unsigned long flags, tgt_tsc_khz;
1918 struct kvm_vcpu_arch *vcpu = &v->arch;
1919 struct kvm_arch *ka = &v->kvm->arch;
1920 s64 kernel_ns;
1921 u64 tsc_timestamp, host_tsc;
1922 u8 pvclock_flags;
1923 bool use_master_clock;
1924
1925 kernel_ns = 0;
1926 host_tsc = 0;
1927
1928 /*
1929 * If the host uses TSC clock, then passthrough TSC as stable
1930 * to the guest.
1931 */
1932 spin_lock(&ka->pvclock_gtod_sync_lock);
1933 use_master_clock = ka->use_master_clock;
1934 if (use_master_clock) {
1935 host_tsc = ka->master_cycle_now;
1936 kernel_ns = ka->master_kernel_ns;
1937 }
1938 spin_unlock(&ka->pvclock_gtod_sync_lock);
1939
1940 /* Keep irq disabled to prevent changes to the clock */
1941 local_irq_save(flags);
1942 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1943 if (unlikely(tgt_tsc_khz == 0)) {
1944 local_irq_restore(flags);
1945 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1946 return 1;
1947 }
1948 if (!use_master_clock) {
1949 host_tsc = rdtsc();
1950 kernel_ns = ktime_get_boot_ns();
1951 }
1952
1953 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1954
1955 /*
1956 * We may have to catch up the TSC to match elapsed wall clock
1957 * time for two reasons, even if kvmclock is used.
1958 * 1) CPU could have been running below the maximum TSC rate
1959 * 2) Broken TSC compensation resets the base at each VCPU
1960 * entry to avoid unknown leaps of TSC even when running
1961 * again on the same CPU. This may cause apparent elapsed
1962 * time to disappear, and the guest to stand still or run
1963 * very slowly.
1964 */
1965 if (vcpu->tsc_catchup) {
1966 u64 tsc = compute_guest_tsc(v, kernel_ns);
1967 if (tsc > tsc_timestamp) {
1968 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1969 tsc_timestamp = tsc;
1970 }
1971 }
1972
1973 local_irq_restore(flags);
1974
1975 /* With all the info we got, fill in the values */
1976
1977 if (kvm_has_tsc_control)
1978 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
1979
1980 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
1981 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
1982 &vcpu->hv_clock.tsc_shift,
1983 &vcpu->hv_clock.tsc_to_system_mul);
1984 vcpu->hw_tsc_khz = tgt_tsc_khz;
1985 }
1986
1987 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1988 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1989 vcpu->last_guest_tsc = tsc_timestamp;
1990
1991 /* If the host uses TSC clocksource, then it is stable */
1992 pvclock_flags = 0;
1993 if (use_master_clock)
1994 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1995
1996 vcpu->hv_clock.flags = pvclock_flags;
1997
1998 if (vcpu->pv_time_enabled)
1999 kvm_setup_pvclock_page(v);
2000 if (v == kvm_get_vcpu(v->kvm, 0))
2001 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2002 return 0;
2003 }
2004
2005 /*
2006 * kvmclock updates which are isolated to a given vcpu, such as
2007 * vcpu->cpu migration, should not allow system_timestamp from
2008 * the rest of the vcpus to remain static. Otherwise ntp frequency
2009 * correction applies to one vcpu's system_timestamp but not
2010 * the others.
2011 *
2012 * So in those cases, request a kvmclock update for all vcpus.
2013 * We need to rate-limit these requests though, as they can
2014 * considerably slow guests that have a large number of vcpus.
2015 * The time for a remote vcpu to update its kvmclock is bound
2016 * by the delay we use to rate-limit the updates.
2017 */
2018
2019 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2020
2021 static void kvmclock_update_fn(struct work_struct *work)
2022 {
2023 int i;
2024 struct delayed_work *dwork = to_delayed_work(work);
2025 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2026 kvmclock_update_work);
2027 struct kvm *kvm = container_of(ka, struct kvm, arch);
2028 struct kvm_vcpu *vcpu;
2029
2030 kvm_for_each_vcpu(i, vcpu, kvm) {
2031 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2032 kvm_vcpu_kick(vcpu);
2033 }
2034 }
2035
2036 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2037 {
2038 struct kvm *kvm = v->kvm;
2039
2040 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2041 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2042 KVMCLOCK_UPDATE_DELAY);
2043 }
2044
2045 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2046
2047 static void kvmclock_sync_fn(struct work_struct *work)
2048 {
2049 struct delayed_work *dwork = to_delayed_work(work);
2050 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2051 kvmclock_sync_work);
2052 struct kvm *kvm = container_of(ka, struct kvm, arch);
2053
2054 if (!kvmclock_periodic_sync)
2055 return;
2056
2057 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2058 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2059 KVMCLOCK_SYNC_PERIOD);
2060 }
2061
2062 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2063 {
2064 u64 mcg_cap = vcpu->arch.mcg_cap;
2065 unsigned bank_num = mcg_cap & 0xff;
2066 u32 msr = msr_info->index;
2067 u64 data = msr_info->data;
2068
2069 switch (msr) {
2070 case MSR_IA32_MCG_STATUS:
2071 vcpu->arch.mcg_status = data;
2072 break;
2073 case MSR_IA32_MCG_CTL:
2074 if (!(mcg_cap & MCG_CTL_P))
2075 return 1;
2076 if (data != 0 && data != ~(u64)0)
2077 return -1;
2078 vcpu->arch.mcg_ctl = data;
2079 break;
2080 default:
2081 if (msr >= MSR_IA32_MC0_CTL &&
2082 msr < MSR_IA32_MCx_CTL(bank_num)) {
2083 u32 offset = msr - MSR_IA32_MC0_CTL;
2084 /* only 0 or all 1s can be written to IA32_MCi_CTL
2085 * some Linux kernels though clear bit 10 in bank 4 to
2086 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2087 * this to avoid an uncatched #GP in the guest
2088 */
2089 if ((offset & 0x3) == 0 &&
2090 data != 0 && (data | (1 << 10)) != ~(u64)0)
2091 return -1;
2092 if (!msr_info->host_initiated &&
2093 (offset & 0x3) == 1 && data != 0)
2094 return -1;
2095 vcpu->arch.mce_banks[offset] = data;
2096 break;
2097 }
2098 return 1;
2099 }
2100 return 0;
2101 }
2102
2103 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2104 {
2105 struct kvm *kvm = vcpu->kvm;
2106 int lm = is_long_mode(vcpu);
2107 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2108 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2109 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2110 : kvm->arch.xen_hvm_config.blob_size_32;
2111 u32 page_num = data & ~PAGE_MASK;
2112 u64 page_addr = data & PAGE_MASK;
2113 u8 *page;
2114 int r;
2115
2116 r = -E2BIG;
2117 if (page_num >= blob_size)
2118 goto out;
2119 r = -ENOMEM;
2120 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2121 if (IS_ERR(page)) {
2122 r = PTR_ERR(page);
2123 goto out;
2124 }
2125 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2126 goto out_free;
2127 r = 0;
2128 out_free:
2129 kfree(page);
2130 out:
2131 return r;
2132 }
2133
2134 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2135 {
2136 gpa_t gpa = data & ~0x3f;
2137
2138 /* Bits 3:5 are reserved, Should be zero */
2139 if (data & 0x38)
2140 return 1;
2141
2142 vcpu->arch.apf.msr_val = data;
2143
2144 if (!(data & KVM_ASYNC_PF_ENABLED)) {
2145 kvm_clear_async_pf_completion_queue(vcpu);
2146 kvm_async_pf_hash_reset(vcpu);
2147 return 0;
2148 }
2149
2150 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2151 sizeof(u32)))
2152 return 1;
2153
2154 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2155 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2156 kvm_async_pf_wakeup_all(vcpu);
2157 return 0;
2158 }
2159
2160 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2161 {
2162 vcpu->arch.pv_time_enabled = false;
2163 }
2164
2165 static void record_steal_time(struct kvm_vcpu *vcpu)
2166 {
2167 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2168 return;
2169
2170 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2171 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2172 return;
2173
2174 vcpu->arch.st.steal.preempted = 0;
2175
2176 if (vcpu->arch.st.steal.version & 1)
2177 vcpu->arch.st.steal.version += 1; /* first time write, random junk */
2178
2179 vcpu->arch.st.steal.version += 1;
2180
2181 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2182 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2183
2184 smp_wmb();
2185
2186 vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2187 vcpu->arch.st.last_steal;
2188 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2189
2190 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2191 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2192
2193 smp_wmb();
2194
2195 vcpu->arch.st.steal.version += 1;
2196
2197 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2198 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2199 }
2200
2201 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2202 {
2203 bool pr = false;
2204 u32 msr = msr_info->index;
2205 u64 data = msr_info->data;
2206
2207 switch (msr) {
2208 case MSR_AMD64_NB_CFG:
2209 case MSR_IA32_UCODE_REV:
2210 case MSR_IA32_UCODE_WRITE:
2211 case MSR_VM_HSAVE_PA:
2212 case MSR_AMD64_PATCH_LOADER:
2213 case MSR_AMD64_BU_CFG2:
2214 case MSR_AMD64_DC_CFG:
2215 break;
2216
2217 case MSR_EFER:
2218 return set_efer(vcpu, data);
2219 case MSR_K7_HWCR:
2220 data &= ~(u64)0x40; /* ignore flush filter disable */
2221 data &= ~(u64)0x100; /* ignore ignne emulation enable */
2222 data &= ~(u64)0x8; /* ignore TLB cache disable */
2223 data &= ~(u64)0x40000; /* ignore Mc status write enable */
2224 if (data != 0) {
2225 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2226 data);
2227 return 1;
2228 }
2229 break;
2230 case MSR_FAM10H_MMIO_CONF_BASE:
2231 if (data != 0) {
2232 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2233 "0x%llx\n", data);
2234 return 1;
2235 }
2236 break;
2237 case MSR_IA32_DEBUGCTLMSR:
2238 if (!data) {
2239 /* We support the non-activated case already */
2240 break;
2241 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2242 /* Values other than LBR and BTF are vendor-specific,
2243 thus reserved and should throw a #GP */
2244 return 1;
2245 }
2246 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2247 __func__, data);
2248 break;
2249 case 0x200 ... 0x2ff:
2250 return kvm_mtrr_set_msr(vcpu, msr, data);
2251 case MSR_IA32_APICBASE:
2252 return kvm_set_apic_base(vcpu, msr_info);
2253 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2254 return kvm_x2apic_msr_write(vcpu, msr, data);
2255 case MSR_IA32_TSCDEADLINE:
2256 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2257 break;
2258 case MSR_IA32_TSC_ADJUST:
2259 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2260 if (!msr_info->host_initiated) {
2261 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2262 adjust_tsc_offset_guest(vcpu, adj);
2263 }
2264 vcpu->arch.ia32_tsc_adjust_msr = data;
2265 }
2266 break;
2267 case MSR_IA32_MISC_ENABLE:
2268 vcpu->arch.ia32_misc_enable_msr = data;
2269 break;
2270 case MSR_IA32_SMBASE:
2271 if (!msr_info->host_initiated)
2272 return 1;
2273 vcpu->arch.smbase = data;
2274 break;
2275 case MSR_KVM_WALL_CLOCK_NEW:
2276 case MSR_KVM_WALL_CLOCK:
2277 vcpu->kvm->arch.wall_clock = data;
2278 kvm_write_wall_clock(vcpu->kvm, data);
2279 break;
2280 case MSR_KVM_SYSTEM_TIME_NEW:
2281 case MSR_KVM_SYSTEM_TIME: {
2282 struct kvm_arch *ka = &vcpu->kvm->arch;
2283
2284 kvmclock_reset(vcpu);
2285
2286 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2287 bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2288
2289 if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2290 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2291
2292 ka->boot_vcpu_runs_old_kvmclock = tmp;
2293 }
2294
2295 vcpu->arch.time = data;
2296 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2297
2298 /* we verify if the enable bit is set... */
2299 if (!(data & 1))
2300 break;
2301
2302 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2303 &vcpu->arch.pv_time, data & ~1ULL,
2304 sizeof(struct pvclock_vcpu_time_info)))
2305 vcpu->arch.pv_time_enabled = false;
2306 else
2307 vcpu->arch.pv_time_enabled = true;
2308
2309 break;
2310 }
2311 case MSR_KVM_ASYNC_PF_EN:
2312 if (kvm_pv_enable_async_pf(vcpu, data))
2313 return 1;
2314 break;
2315 case MSR_KVM_STEAL_TIME:
2316
2317 if (unlikely(!sched_info_on()))
2318 return 1;
2319
2320 if (data & KVM_STEAL_RESERVED_MASK)
2321 return 1;
2322
2323 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2324 data & KVM_STEAL_VALID_BITS,
2325 sizeof(struct kvm_steal_time)))
2326 return 1;
2327
2328 vcpu->arch.st.msr_val = data;
2329
2330 if (!(data & KVM_MSR_ENABLED))
2331 break;
2332
2333 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2334
2335 break;
2336 case MSR_KVM_PV_EOI_EN:
2337 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2338 return 1;
2339 break;
2340
2341 case MSR_IA32_MCG_CTL:
2342 case MSR_IA32_MCG_STATUS:
2343 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2344 return set_msr_mce(vcpu, msr_info);
2345
2346 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2347 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2348 pr = true; /* fall through */
2349 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2350 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2351 if (kvm_pmu_is_valid_msr(vcpu, msr))
2352 return kvm_pmu_set_msr(vcpu, msr_info);
2353
2354 if (pr || data != 0)
2355 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2356 "0x%x data 0x%llx\n", msr, data);
2357 break;
2358 case MSR_K7_CLK_CTL:
2359 /*
2360 * Ignore all writes to this no longer documented MSR.
2361 * Writes are only relevant for old K7 processors,
2362 * all pre-dating SVM, but a recommended workaround from
2363 * AMD for these chips. It is possible to specify the
2364 * affected processor models on the command line, hence
2365 * the need to ignore the workaround.
2366 */
2367 break;
2368 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2369 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2370 case HV_X64_MSR_CRASH_CTL:
2371 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2372 return kvm_hv_set_msr_common(vcpu, msr, data,
2373 msr_info->host_initiated);
2374 case MSR_IA32_BBL_CR_CTL3:
2375 /* Drop writes to this legacy MSR -- see rdmsr
2376 * counterpart for further detail.
2377 */
2378 if (report_ignored_msrs)
2379 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2380 msr, data);
2381 break;
2382 case MSR_AMD64_OSVW_ID_LENGTH:
2383 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2384 return 1;
2385 vcpu->arch.osvw.length = data;
2386 break;
2387 case MSR_AMD64_OSVW_STATUS:
2388 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2389 return 1;
2390 vcpu->arch.osvw.status = data;
2391 break;
2392 case MSR_PLATFORM_INFO:
2393 if (!msr_info->host_initiated ||
2394 data & ~MSR_PLATFORM_INFO_CPUID_FAULT ||
2395 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2396 cpuid_fault_enabled(vcpu)))
2397 return 1;
2398 vcpu->arch.msr_platform_info = data;
2399 break;
2400 case MSR_MISC_FEATURES_ENABLES:
2401 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2402 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2403 !supports_cpuid_fault(vcpu)))
2404 return 1;
2405 vcpu->arch.msr_misc_features_enables = data;
2406 break;
2407 default:
2408 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2409 return xen_hvm_config(vcpu, data);
2410 if (kvm_pmu_is_valid_msr(vcpu, msr))
2411 return kvm_pmu_set_msr(vcpu, msr_info);
2412 if (!ignore_msrs) {
2413 vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2414 msr, data);
2415 return 1;
2416 } else {
2417 if (report_ignored_msrs)
2418 vcpu_unimpl(vcpu,
2419 "ignored wrmsr: 0x%x data 0x%llx\n",
2420 msr, data);
2421 break;
2422 }
2423 }
2424 return 0;
2425 }
2426 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2427
2428
2429 /*
2430 * Reads an msr value (of 'msr_index') into 'pdata'.
2431 * Returns 0 on success, non-0 otherwise.
2432 * Assumes vcpu_load() was already called.
2433 */
2434 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2435 {
2436 return kvm_x86_ops->get_msr(vcpu, msr);
2437 }
2438 EXPORT_SYMBOL_GPL(kvm_get_msr);
2439
2440 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2441 {
2442 u64 data;
2443 u64 mcg_cap = vcpu->arch.mcg_cap;
2444 unsigned bank_num = mcg_cap & 0xff;
2445
2446 switch (msr) {
2447 case MSR_IA32_P5_MC_ADDR:
2448 case MSR_IA32_P5_MC_TYPE:
2449 data = 0;
2450 break;
2451 case MSR_IA32_MCG_CAP:
2452 data = vcpu->arch.mcg_cap;
2453 break;
2454 case MSR_IA32_MCG_CTL:
2455 if (!(mcg_cap & MCG_CTL_P))
2456 return 1;
2457 data = vcpu->arch.mcg_ctl;
2458 break;
2459 case MSR_IA32_MCG_STATUS:
2460 data = vcpu->arch.mcg_status;
2461 break;
2462 default:
2463 if (msr >= MSR_IA32_MC0_CTL &&
2464 msr < MSR_IA32_MCx_CTL(bank_num)) {
2465 u32 offset = msr - MSR_IA32_MC0_CTL;
2466 data = vcpu->arch.mce_banks[offset];
2467 break;
2468 }
2469 return 1;
2470 }
2471 *pdata = data;
2472 return 0;
2473 }
2474
2475 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2476 {
2477 switch (msr_info->index) {
2478 case MSR_IA32_PLATFORM_ID:
2479 case MSR_IA32_EBL_CR_POWERON:
2480 case MSR_IA32_DEBUGCTLMSR:
2481 case MSR_IA32_LASTBRANCHFROMIP:
2482 case MSR_IA32_LASTBRANCHTOIP:
2483 case MSR_IA32_LASTINTFROMIP:
2484 case MSR_IA32_LASTINTTOIP:
2485 case MSR_K8_SYSCFG:
2486 case MSR_K8_TSEG_ADDR:
2487 case MSR_K8_TSEG_MASK:
2488 case MSR_K7_HWCR:
2489 case MSR_VM_HSAVE_PA:
2490 case MSR_K8_INT_PENDING_MSG:
2491 case MSR_AMD64_NB_CFG:
2492 case MSR_FAM10H_MMIO_CONF_BASE:
2493 case MSR_AMD64_BU_CFG2:
2494 case MSR_IA32_PERF_CTL:
2495 case MSR_AMD64_DC_CFG:
2496 msr_info->data = 0;
2497 break;
2498 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2499 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2500 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2501 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2502 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2503 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2504 msr_info->data = 0;
2505 break;
2506 case MSR_IA32_UCODE_REV:
2507 msr_info->data = 0x100000000ULL;
2508 break;
2509 case MSR_MTRRcap:
2510 case 0x200 ... 0x2ff:
2511 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2512 case 0xcd: /* fsb frequency */
2513 msr_info->data = 3;
2514 break;
2515 /*
2516 * MSR_EBC_FREQUENCY_ID
2517 * Conservative value valid for even the basic CPU models.
2518 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2519 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2520 * and 266MHz for model 3, or 4. Set Core Clock
2521 * Frequency to System Bus Frequency Ratio to 1 (bits
2522 * 31:24) even though these are only valid for CPU
2523 * models > 2, however guests may end up dividing or
2524 * multiplying by zero otherwise.
2525 */
2526 case MSR_EBC_FREQUENCY_ID:
2527 msr_info->data = 1 << 24;
2528 break;
2529 case MSR_IA32_APICBASE:
2530 msr_info->data = kvm_get_apic_base(vcpu);
2531 break;
2532 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2533 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2534 break;
2535 case MSR_IA32_TSCDEADLINE:
2536 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2537 break;
2538 case MSR_IA32_TSC_ADJUST:
2539 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2540 break;
2541 case MSR_IA32_MISC_ENABLE:
2542 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2543 break;
2544 case MSR_IA32_SMBASE:
2545 if (!msr_info->host_initiated)
2546 return 1;
2547 msr_info->data = vcpu->arch.smbase;
2548 break;
2549 case MSR_IA32_PERF_STATUS:
2550 /* TSC increment by tick */
2551 msr_info->data = 1000ULL;
2552 /* CPU multiplier */
2553 msr_info->data |= (((uint64_t)4ULL) << 40);
2554 break;
2555 case MSR_EFER:
2556 msr_info->data = vcpu->arch.efer;
2557 break;
2558 case MSR_KVM_WALL_CLOCK:
2559 case MSR_KVM_WALL_CLOCK_NEW:
2560 msr_info->data = vcpu->kvm->arch.wall_clock;
2561 break;
2562 case MSR_KVM_SYSTEM_TIME:
2563 case MSR_KVM_SYSTEM_TIME_NEW:
2564 msr_info->data = vcpu->arch.time;
2565 break;
2566 case MSR_KVM_ASYNC_PF_EN:
2567 msr_info->data = vcpu->arch.apf.msr_val;
2568 break;
2569 case MSR_KVM_STEAL_TIME:
2570 msr_info->data = vcpu->arch.st.msr_val;
2571 break;
2572 case MSR_KVM_PV_EOI_EN:
2573 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2574 break;
2575 case MSR_IA32_P5_MC_ADDR:
2576 case MSR_IA32_P5_MC_TYPE:
2577 case MSR_IA32_MCG_CAP:
2578 case MSR_IA32_MCG_CTL:
2579 case MSR_IA32_MCG_STATUS:
2580 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2581 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2582 case MSR_K7_CLK_CTL:
2583 /*
2584 * Provide expected ramp-up count for K7. All other
2585 * are set to zero, indicating minimum divisors for
2586 * every field.
2587 *
2588 * This prevents guest kernels on AMD host with CPU
2589 * type 6, model 8 and higher from exploding due to
2590 * the rdmsr failing.
2591 */
2592 msr_info->data = 0x20000000;
2593 break;
2594 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2595 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2596 case HV_X64_MSR_CRASH_CTL:
2597 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2598 return kvm_hv_get_msr_common(vcpu,
2599 msr_info->index, &msr_info->data);
2600 break;
2601 case MSR_IA32_BBL_CR_CTL3:
2602 /* This legacy MSR exists but isn't fully documented in current
2603 * silicon. It is however accessed by winxp in very narrow
2604 * scenarios where it sets bit #19, itself documented as
2605 * a "reserved" bit. Best effort attempt to source coherent
2606 * read data here should the balance of the register be
2607 * interpreted by the guest:
2608 *
2609 * L2 cache control register 3: 64GB range, 256KB size,
2610 * enabled, latency 0x1, configured
2611 */
2612 msr_info->data = 0xbe702111;
2613 break;
2614 case MSR_AMD64_OSVW_ID_LENGTH:
2615 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2616 return 1;
2617 msr_info->data = vcpu->arch.osvw.length;
2618 break;
2619 case MSR_AMD64_OSVW_STATUS:
2620 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2621 return 1;
2622 msr_info->data = vcpu->arch.osvw.status;
2623 break;
2624 case MSR_PLATFORM_INFO:
2625 msr_info->data = vcpu->arch.msr_platform_info;
2626 break;
2627 case MSR_MISC_FEATURES_ENABLES:
2628 msr_info->data = vcpu->arch.msr_misc_features_enables;
2629 break;
2630 default:
2631 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2632 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2633 if (!ignore_msrs) {
2634 vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2635 msr_info->index);
2636 return 1;
2637 } else {
2638 if (report_ignored_msrs)
2639 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
2640 msr_info->index);
2641 msr_info->data = 0;
2642 }
2643 break;
2644 }
2645 return 0;
2646 }
2647 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2648
2649 /*
2650 * Read or write a bunch of msrs. All parameters are kernel addresses.
2651 *
2652 * @return number of msrs set successfully.
2653 */
2654 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2655 struct kvm_msr_entry *entries,
2656 int (*do_msr)(struct kvm_vcpu *vcpu,
2657 unsigned index, u64 *data))
2658 {
2659 int i;
2660
2661 for (i = 0; i < msrs->nmsrs; ++i)
2662 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2663 break;
2664
2665 return i;
2666 }
2667
2668 /*
2669 * Read or write a bunch of msrs. Parameters are user addresses.
2670 *
2671 * @return number of msrs set successfully.
2672 */
2673 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2674 int (*do_msr)(struct kvm_vcpu *vcpu,
2675 unsigned index, u64 *data),
2676 int writeback)
2677 {
2678 struct kvm_msrs msrs;
2679 struct kvm_msr_entry *entries;
2680 int r, n;
2681 unsigned size;
2682
2683 r = -EFAULT;
2684 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2685 goto out;
2686
2687 r = -E2BIG;
2688 if (msrs.nmsrs >= MAX_IO_MSRS)
2689 goto out;
2690
2691 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2692 entries = memdup_user(user_msrs->entries, size);
2693 if (IS_ERR(entries)) {
2694 r = PTR_ERR(entries);
2695 goto out;
2696 }
2697
2698 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2699 if (r < 0)
2700 goto out_free;
2701
2702 r = -EFAULT;
2703 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2704 goto out_free;
2705
2706 r = n;
2707
2708 out_free:
2709 kfree(entries);
2710 out:
2711 return r;
2712 }
2713
2714 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2715 {
2716 int r;
2717
2718 switch (ext) {
2719 case KVM_CAP_IRQCHIP:
2720 case KVM_CAP_HLT:
2721 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2722 case KVM_CAP_SET_TSS_ADDR:
2723 case KVM_CAP_EXT_CPUID:
2724 case KVM_CAP_EXT_EMUL_CPUID:
2725 case KVM_CAP_CLOCKSOURCE:
2726 case KVM_CAP_PIT:
2727 case KVM_CAP_NOP_IO_DELAY:
2728 case KVM_CAP_MP_STATE:
2729 case KVM_CAP_SYNC_MMU:
2730 case KVM_CAP_USER_NMI:
2731 case KVM_CAP_REINJECT_CONTROL:
2732 case KVM_CAP_IRQ_INJECT_STATUS:
2733 case KVM_CAP_IOEVENTFD:
2734 case KVM_CAP_IOEVENTFD_NO_LENGTH:
2735 case KVM_CAP_PIT2:
2736 case KVM_CAP_PIT_STATE2:
2737 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2738 case KVM_CAP_XEN_HVM:
2739 case KVM_CAP_VCPU_EVENTS:
2740 case KVM_CAP_HYPERV:
2741 case KVM_CAP_HYPERV_VAPIC:
2742 case KVM_CAP_HYPERV_SPIN:
2743 case KVM_CAP_HYPERV_SYNIC:
2744 case KVM_CAP_HYPERV_SYNIC2:
2745 case KVM_CAP_HYPERV_VP_INDEX:
2746 case KVM_CAP_PCI_SEGMENT:
2747 case KVM_CAP_DEBUGREGS:
2748 case KVM_CAP_X86_ROBUST_SINGLESTEP:
2749 case KVM_CAP_XSAVE:
2750 case KVM_CAP_ASYNC_PF:
2751 case KVM_CAP_GET_TSC_KHZ:
2752 case KVM_CAP_KVMCLOCK_CTRL:
2753 case KVM_CAP_READONLY_MEM:
2754 case KVM_CAP_HYPERV_TIME:
2755 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2756 case KVM_CAP_TSC_DEADLINE_TIMER:
2757 case KVM_CAP_ENABLE_CAP_VM:
2758 case KVM_CAP_DISABLE_QUIRKS:
2759 case KVM_CAP_SET_BOOT_CPU_ID:
2760 case KVM_CAP_SPLIT_IRQCHIP:
2761 case KVM_CAP_IMMEDIATE_EXIT:
2762 case KVM_CAP_GET_MSR_FEATURES:
2763 r = 1;
2764 break;
2765 case KVM_CAP_ADJUST_CLOCK:
2766 r = KVM_CLOCK_TSC_STABLE;
2767 break;
2768 case KVM_CAP_X86_GUEST_MWAIT:
2769 r = kvm_mwait_in_guest();
2770 break;
2771 case KVM_CAP_X86_SMM:
2772 /* SMBASE is usually relocated above 1M on modern chipsets,
2773 * and SMM handlers might indeed rely on 4G segment limits,
2774 * so do not report SMM to be available if real mode is
2775 * emulated via vm86 mode. Still, do not go to great lengths
2776 * to avoid userspace's usage of the feature, because it is a
2777 * fringe case that is not enabled except via specific settings
2778 * of the module parameters.
2779 */
2780 r = kvm_x86_ops->has_emulated_msr(MSR_IA32_SMBASE);
2781 break;
2782 case KVM_CAP_VAPIC:
2783 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2784 break;
2785 case KVM_CAP_NR_VCPUS:
2786 r = KVM_SOFT_MAX_VCPUS;
2787 break;
2788 case KVM_CAP_MAX_VCPUS:
2789 r = KVM_MAX_VCPUS;
2790 break;
2791 case KVM_CAP_NR_MEMSLOTS:
2792 r = KVM_USER_MEM_SLOTS;
2793 break;
2794 case KVM_CAP_PV_MMU: /* obsolete */
2795 r = 0;
2796 break;
2797 case KVM_CAP_MCE:
2798 r = KVM_MAX_MCE_BANKS;
2799 break;
2800 case KVM_CAP_XCRS:
2801 r = boot_cpu_has(X86_FEATURE_XSAVE);
2802 break;
2803 case KVM_CAP_TSC_CONTROL:
2804 r = kvm_has_tsc_control;
2805 break;
2806 case KVM_CAP_X2APIC_API:
2807 r = KVM_X2APIC_API_VALID_FLAGS;
2808 break;
2809 default:
2810 r = 0;
2811 break;
2812 }
2813 return r;
2814
2815 }
2816
2817 long kvm_arch_dev_ioctl(struct file *filp,
2818 unsigned int ioctl, unsigned long arg)
2819 {
2820 void __user *argp = (void __user *)arg;
2821 long r;
2822
2823 switch (ioctl) {
2824 case KVM_GET_MSR_INDEX_LIST: {
2825 struct kvm_msr_list __user *user_msr_list = argp;
2826 struct kvm_msr_list msr_list;
2827 unsigned n;
2828
2829 r = -EFAULT;
2830 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2831 goto out;
2832 n = msr_list.nmsrs;
2833 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2834 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2835 goto out;
2836 r = -E2BIG;
2837 if (n < msr_list.nmsrs)
2838 goto out;
2839 r = -EFAULT;
2840 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2841 num_msrs_to_save * sizeof(u32)))
2842 goto out;
2843 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2844 &emulated_msrs,
2845 num_emulated_msrs * sizeof(u32)))
2846 goto out;
2847 r = 0;
2848 break;
2849 }
2850 case KVM_GET_SUPPORTED_CPUID:
2851 case KVM_GET_EMULATED_CPUID: {
2852 struct kvm_cpuid2 __user *cpuid_arg = argp;
2853 struct kvm_cpuid2 cpuid;
2854
2855 r = -EFAULT;
2856 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2857 goto out;
2858
2859 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2860 ioctl);
2861 if (r)
2862 goto out;
2863
2864 r = -EFAULT;
2865 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2866 goto out;
2867 r = 0;
2868 break;
2869 }
2870 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2871 r = -EFAULT;
2872 if (copy_to_user(argp, &kvm_mce_cap_supported,
2873 sizeof(kvm_mce_cap_supported)))
2874 goto out;
2875 r = 0;
2876 break;
2877 case KVM_GET_MSR_FEATURE_INDEX_LIST: {
2878 struct kvm_msr_list __user *user_msr_list = argp;
2879 struct kvm_msr_list msr_list;
2880 unsigned int n;
2881
2882 r = -EFAULT;
2883 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
2884 goto out;
2885 n = msr_list.nmsrs;
2886 msr_list.nmsrs = num_msr_based_features;
2887 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
2888 goto out;
2889 r = -E2BIG;
2890 if (n < msr_list.nmsrs)
2891 goto out;
2892 r = -EFAULT;
2893 if (copy_to_user(user_msr_list->indices, &msr_based_features,
2894 num_msr_based_features * sizeof(u32)))
2895 goto out;
2896 r = 0;
2897 break;
2898 }
2899 case KVM_GET_MSRS:
2900 r = msr_io(NULL, argp, do_get_msr_feature, 1);
2901 break;
2902 }
2903 default:
2904 r = -EINVAL;
2905 }
2906 out:
2907 return r;
2908 }
2909
2910 static void wbinvd_ipi(void *garbage)
2911 {
2912 wbinvd();
2913 }
2914
2915 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2916 {
2917 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2918 }
2919
2920 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2921 {
2922 /* Address WBINVD may be executed by guest */
2923 if (need_emulate_wbinvd(vcpu)) {
2924 if (kvm_x86_ops->has_wbinvd_exit())
2925 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2926 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2927 smp_call_function_single(vcpu->cpu,
2928 wbinvd_ipi, NULL, 1);
2929 }
2930
2931 kvm_x86_ops->vcpu_load(vcpu, cpu);
2932
2933 /* Apply any externally detected TSC adjustments (due to suspend) */
2934 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2935 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2936 vcpu->arch.tsc_offset_adjustment = 0;
2937 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2938 }
2939
2940 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2941 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2942 rdtsc() - vcpu->arch.last_host_tsc;
2943 if (tsc_delta < 0)
2944 mark_tsc_unstable("KVM discovered backwards TSC");
2945
2946 if (check_tsc_unstable()) {
2947 u64 offset = kvm_compute_tsc_offset(vcpu,
2948 vcpu->arch.last_guest_tsc);
2949 kvm_vcpu_write_tsc_offset(vcpu, offset);
2950 vcpu->arch.tsc_catchup = 1;
2951 }
2952
2953 if (kvm_lapic_hv_timer_in_use(vcpu))
2954 kvm_lapic_restart_hv_timer(vcpu);
2955
2956 /*
2957 * On a host with synchronized TSC, there is no need to update
2958 * kvmclock on vcpu->cpu migration
2959 */
2960 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2961 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2962 if (vcpu->cpu != cpu)
2963 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
2964 vcpu->cpu = cpu;
2965 }
2966
2967 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2968 }
2969
2970 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
2971 {
2972 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2973 return;
2974
2975 vcpu->arch.st.steal.preempted = 1;
2976
2977 kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
2978 &vcpu->arch.st.steal.preempted,
2979 offsetof(struct kvm_steal_time, preempted),
2980 sizeof(vcpu->arch.st.steal.preempted));
2981 }
2982
2983 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2984 {
2985 int idx;
2986
2987 if (vcpu->preempted)
2988 vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
2989
2990 /*
2991 * Disable page faults because we're in atomic context here.
2992 * kvm_write_guest_offset_cached() would call might_fault()
2993 * that relies on pagefault_disable() to tell if there's a
2994 * bug. NOTE: the write to guest memory may not go through if
2995 * during postcopy live migration or if there's heavy guest
2996 * paging.
2997 */
2998 pagefault_disable();
2999 /*
3000 * kvm_memslots() will be called by
3001 * kvm_write_guest_offset_cached() so take the srcu lock.
3002 */
3003 idx = srcu_read_lock(&vcpu->kvm->srcu);
3004 kvm_steal_time_set_preempted(vcpu);
3005 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3006 pagefault_enable();
3007 kvm_x86_ops->vcpu_put(vcpu);
3008 vcpu->arch.last_host_tsc = rdtsc();
3009 /*
3010 * If userspace has set any breakpoints or watchpoints, dr6 is restored
3011 * on every vmexit, but if not, we might have a stale dr6 from the
3012 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3013 */
3014 set_debugreg(0, 6);
3015 }
3016
3017 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3018 struct kvm_lapic_state *s)
3019 {
3020 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
3021 kvm_x86_ops->sync_pir_to_irr(vcpu);
3022
3023 return kvm_apic_get_state(vcpu, s);
3024 }
3025
3026 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3027 struct kvm_lapic_state *s)
3028 {
3029 int r;
3030
3031 r = kvm_apic_set_state(vcpu, s);
3032 if (r)
3033 return r;
3034 update_cr8_intercept(vcpu);
3035
3036 return 0;
3037 }
3038
3039 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3040 {
3041 return (!lapic_in_kernel(vcpu) ||
3042 kvm_apic_accept_pic_intr(vcpu));
3043 }
3044
3045 /*
3046 * if userspace requested an interrupt window, check that the
3047 * interrupt window is open.
3048 *
3049 * No need to exit to userspace if we already have an interrupt queued.
3050 */
3051 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3052 {
3053 return kvm_arch_interrupt_allowed(vcpu) &&
3054 !kvm_cpu_has_interrupt(vcpu) &&
3055 !kvm_event_needs_reinjection(vcpu) &&
3056 kvm_cpu_accept_dm_intr(vcpu);
3057 }
3058
3059 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3060 struct kvm_interrupt *irq)
3061 {
3062 if (irq->irq >= KVM_NR_INTERRUPTS)
3063 return -EINVAL;
3064
3065 if (!irqchip_in_kernel(vcpu->kvm)) {
3066 kvm_queue_interrupt(vcpu, irq->irq, false);
3067 kvm_make_request(KVM_REQ_EVENT, vcpu);
3068 return 0;
3069 }
3070
3071 /*
3072 * With in-kernel LAPIC, we only use this to inject EXTINT, so
3073 * fail for in-kernel 8259.
3074 */
3075 if (pic_in_kernel(vcpu->kvm))
3076 return -ENXIO;
3077
3078 if (vcpu->arch.pending_external_vector != -1)
3079 return -EEXIST;
3080
3081 vcpu->arch.pending_external_vector = irq->irq;
3082 kvm_make_request(KVM_REQ_EVENT, vcpu);
3083 return 0;
3084 }
3085
3086 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3087 {
3088 kvm_inject_nmi(vcpu);
3089
3090 return 0;
3091 }
3092
3093 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3094 {
3095 kvm_make_request(KVM_REQ_SMI, vcpu);
3096
3097 return 0;
3098 }
3099
3100 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3101 struct kvm_tpr_access_ctl *tac)
3102 {
3103 if (tac->flags)
3104 return -EINVAL;
3105 vcpu->arch.tpr_access_reporting = !!tac->enabled;
3106 return 0;
3107 }
3108
3109 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3110 u64 mcg_cap)
3111 {
3112 int r;
3113 unsigned bank_num = mcg_cap & 0xff, bank;
3114
3115 r = -EINVAL;
3116 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3117 goto out;
3118 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3119 goto out;
3120 r = 0;
3121 vcpu->arch.mcg_cap = mcg_cap;
3122 /* Init IA32_MCG_CTL to all 1s */
3123 if (mcg_cap & MCG_CTL_P)
3124 vcpu->arch.mcg_ctl = ~(u64)0;
3125 /* Init IA32_MCi_CTL to all 1s */
3126 for (bank = 0; bank < bank_num; bank++)
3127 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3128
3129 if (kvm_x86_ops->setup_mce)
3130 kvm_x86_ops->setup_mce(vcpu);
3131 out:
3132 return r;
3133 }
3134
3135 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3136 struct kvm_x86_mce *mce)
3137 {
3138 u64 mcg_cap = vcpu->arch.mcg_cap;
3139 unsigned bank_num = mcg_cap & 0xff;
3140 u64 *banks = vcpu->arch.mce_banks;
3141
3142 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3143 return -EINVAL;
3144 /*
3145 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3146 * reporting is disabled
3147 */
3148 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3149 vcpu->arch.mcg_ctl != ~(u64)0)
3150 return 0;
3151 banks += 4 * mce->bank;
3152 /*
3153 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3154 * reporting is disabled for the bank
3155 */
3156 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3157 return 0;
3158 if (mce->status & MCI_STATUS_UC) {
3159 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3160 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3161 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3162 return 0;
3163 }
3164 if (banks[1] & MCI_STATUS_VAL)
3165 mce->status |= MCI_STATUS_OVER;
3166 banks[2] = mce->addr;
3167 banks[3] = mce->misc;
3168 vcpu->arch.mcg_status = mce->mcg_status;
3169 banks[1] = mce->status;
3170 kvm_queue_exception(vcpu, MC_VECTOR);
3171 } else if (!(banks[1] & MCI_STATUS_VAL)
3172 || !(banks[1] & MCI_STATUS_UC)) {
3173 if (banks[1] & MCI_STATUS_VAL)
3174 mce->status |= MCI_STATUS_OVER;
3175 banks[2] = mce->addr;
3176 banks[3] = mce->misc;
3177 banks[1] = mce->status;
3178 } else
3179 banks[1] |= MCI_STATUS_OVER;
3180 return 0;
3181 }
3182
3183 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3184 struct kvm_vcpu_events *events)
3185 {
3186 process_nmi(vcpu);
3187 /*
3188 * FIXME: pass injected and pending separately. This is only
3189 * needed for nested virtualization, whose state cannot be
3190 * migrated yet. For now we can combine them.
3191 */
3192 events->exception.injected =
3193 (vcpu->arch.exception.pending ||
3194 vcpu->arch.exception.injected) &&
3195 !kvm_exception_is_soft(vcpu->arch.exception.nr);
3196 events->exception.nr = vcpu->arch.exception.nr;
3197 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3198 events->exception.pad = 0;
3199 events->exception.error_code = vcpu->arch.exception.error_code;
3200
3201 events->interrupt.injected =
3202 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3203 events->interrupt.nr = vcpu->arch.interrupt.nr;
3204 events->interrupt.soft = 0;
3205 events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3206
3207 events->nmi.injected = vcpu->arch.nmi_injected;
3208 events->nmi.pending = vcpu->arch.nmi_pending != 0;
3209 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3210 events->nmi.pad = 0;
3211
3212 events->sipi_vector = 0; /* never valid when reporting to user space */
3213
3214 events->smi.smm = is_smm(vcpu);
3215 events->smi.pending = vcpu->arch.smi_pending;
3216 events->smi.smm_inside_nmi =
3217 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3218 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3219
3220 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3221 | KVM_VCPUEVENT_VALID_SHADOW
3222 | KVM_VCPUEVENT_VALID_SMM);
3223 memset(&events->reserved, 0, sizeof(events->reserved));
3224 }
3225
3226 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3227
3228 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3229 struct kvm_vcpu_events *events)
3230 {
3231 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3232 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3233 | KVM_VCPUEVENT_VALID_SHADOW
3234 | KVM_VCPUEVENT_VALID_SMM))
3235 return -EINVAL;
3236
3237 if (events->exception.injected &&
3238 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR ||
3239 is_guest_mode(vcpu)))
3240 return -EINVAL;
3241
3242 /* INITs are latched while in SMM */
3243 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3244 (events->smi.smm || events->smi.pending) &&
3245 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3246 return -EINVAL;
3247
3248 process_nmi(vcpu);
3249 vcpu->arch.exception.injected = false;
3250 vcpu->arch.exception.pending = events->exception.injected;
3251 vcpu->arch.exception.nr = events->exception.nr;
3252 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3253 vcpu->arch.exception.error_code = events->exception.error_code;
3254
3255 vcpu->arch.interrupt.pending = events->interrupt.injected;
3256 vcpu->arch.interrupt.nr = events->interrupt.nr;
3257 vcpu->arch.interrupt.soft = events->interrupt.soft;
3258 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3259 kvm_x86_ops->set_interrupt_shadow(vcpu,
3260 events->interrupt.shadow);
3261
3262 vcpu->arch.nmi_injected = events->nmi.injected;
3263 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3264 vcpu->arch.nmi_pending = events->nmi.pending;
3265 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3266
3267 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3268 lapic_in_kernel(vcpu))
3269 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3270
3271 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3272 u32 hflags = vcpu->arch.hflags;
3273 if (events->smi.smm)
3274 hflags |= HF_SMM_MASK;
3275 else
3276 hflags &= ~HF_SMM_MASK;
3277 kvm_set_hflags(vcpu, hflags);
3278
3279 vcpu->arch.smi_pending = events->smi.pending;
3280
3281 if (events->smi.smm) {
3282 if (events->smi.smm_inside_nmi)
3283 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3284 else
3285 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3286 if (lapic_in_kernel(vcpu)) {
3287 if (events->smi.latched_init)
3288 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3289 else
3290 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3291 }
3292 }
3293 }
3294
3295 kvm_make_request(KVM_REQ_EVENT, vcpu);
3296
3297 return 0;
3298 }
3299
3300 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3301 struct kvm_debugregs *dbgregs)
3302 {
3303 unsigned long val;
3304
3305 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3306 kvm_get_dr(vcpu, 6, &val);
3307 dbgregs->dr6 = val;
3308 dbgregs->dr7 = vcpu->arch.dr7;
3309 dbgregs->flags = 0;
3310 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3311 }
3312
3313 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3314 struct kvm_debugregs *dbgregs)
3315 {
3316 if (dbgregs->flags)
3317 return -EINVAL;
3318
3319 if (dbgregs->dr6 & ~0xffffffffull)
3320 return -EINVAL;
3321 if (dbgregs->dr7 & ~0xffffffffull)
3322 return -EINVAL;
3323
3324 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3325 kvm_update_dr0123(vcpu);
3326 vcpu->arch.dr6 = dbgregs->dr6;
3327 kvm_update_dr6(vcpu);
3328 vcpu->arch.dr7 = dbgregs->dr7;
3329 kvm_update_dr7(vcpu);
3330
3331 return 0;
3332 }
3333
3334 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3335
3336 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3337 {
3338 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3339 u64 xstate_bv = xsave->header.xfeatures;
3340 u64 valid;
3341
3342 /*
3343 * Copy legacy XSAVE area, to avoid complications with CPUID
3344 * leaves 0 and 1 in the loop below.
3345 */
3346 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3347
3348 /* Set XSTATE_BV */
3349 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3350 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3351
3352 /*
3353 * Copy each region from the possibly compacted offset to the
3354 * non-compacted offset.
3355 */
3356 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3357 while (valid) {
3358 u64 feature = valid & -valid;
3359 int index = fls64(feature) - 1;
3360 void *src = get_xsave_addr(xsave, feature);
3361
3362 if (src) {
3363 u32 size, offset, ecx, edx;
3364 cpuid_count(XSTATE_CPUID, index,
3365 &size, &offset, &ecx, &edx);
3366 if (feature == XFEATURE_MASK_PKRU)
3367 memcpy(dest + offset, &vcpu->arch.pkru,
3368 sizeof(vcpu->arch.pkru));
3369 else
3370 memcpy(dest + offset, src, size);
3371
3372 }
3373
3374 valid -= feature;
3375 }
3376 }
3377
3378 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3379 {
3380 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3381 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3382 u64 valid;
3383
3384 /*
3385 * Copy legacy XSAVE area, to avoid complications with CPUID
3386 * leaves 0 and 1 in the loop below.
3387 */
3388 memcpy(xsave, src, XSAVE_HDR_OFFSET);
3389
3390 /* Set XSTATE_BV and possibly XCOMP_BV. */
3391 xsave->header.xfeatures = xstate_bv;
3392 if (boot_cpu_has(X86_FEATURE_XSAVES))
3393 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3394
3395 /*
3396 * Copy each region from the non-compacted offset to the
3397 * possibly compacted offset.
3398 */
3399 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3400 while (valid) {
3401 u64 feature = valid & -valid;
3402 int index = fls64(feature) - 1;
3403 void *dest = get_xsave_addr(xsave, feature);
3404
3405 if (dest) {
3406 u32 size, offset, ecx, edx;
3407 cpuid_count(XSTATE_CPUID, index,
3408 &size, &offset, &ecx, &edx);
3409 if (feature == XFEATURE_MASK_PKRU)
3410 memcpy(&vcpu->arch.pkru, src + offset,
3411 sizeof(vcpu->arch.pkru));
3412 else
3413 memcpy(dest, src + offset, size);
3414 }
3415
3416 valid -= feature;
3417 }
3418 }
3419
3420 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3421 struct kvm_xsave *guest_xsave)
3422 {
3423 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3424 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3425 fill_xsave((u8 *) guest_xsave->region, vcpu);
3426 } else {
3427 memcpy(guest_xsave->region,
3428 &vcpu->arch.guest_fpu.state.fxsave,
3429 sizeof(struct fxregs_state));
3430 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3431 XFEATURE_MASK_FPSSE;
3432 }
3433 }
3434
3435 #define XSAVE_MXCSR_OFFSET 24
3436
3437 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3438 struct kvm_xsave *guest_xsave)
3439 {
3440 u64 xstate_bv =
3441 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3442 u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3443
3444 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3445 /*
3446 * Here we allow setting states that are not present in
3447 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
3448 * with old userspace.
3449 */
3450 if (xstate_bv & ~kvm_supported_xcr0() ||
3451 mxcsr & ~mxcsr_feature_mask)
3452 return -EINVAL;
3453 load_xsave(vcpu, (u8 *)guest_xsave->region);
3454 } else {
3455 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3456 mxcsr & ~mxcsr_feature_mask)
3457 return -EINVAL;
3458 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3459 guest_xsave->region, sizeof(struct fxregs_state));
3460 }
3461 return 0;
3462 }
3463
3464 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3465 struct kvm_xcrs *guest_xcrs)
3466 {
3467 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3468 guest_xcrs->nr_xcrs = 0;
3469 return;
3470 }
3471
3472 guest_xcrs->nr_xcrs = 1;
3473 guest_xcrs->flags = 0;
3474 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3475 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3476 }
3477
3478 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3479 struct kvm_xcrs *guest_xcrs)
3480 {
3481 int i, r = 0;
3482
3483 if (!boot_cpu_has(X86_FEATURE_XSAVE))
3484 return -EINVAL;
3485
3486 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3487 return -EINVAL;
3488
3489 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3490 /* Only support XCR0 currently */
3491 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3492 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3493 guest_xcrs->xcrs[i].value);
3494 break;
3495 }
3496 if (r)
3497 r = -EINVAL;
3498 return r;
3499 }
3500
3501 /*
3502 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3503 * stopped by the hypervisor. This function will be called from the host only.
3504 * EINVAL is returned when the host attempts to set the flag for a guest that
3505 * does not support pv clocks.
3506 */
3507 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3508 {
3509 if (!vcpu->arch.pv_time_enabled)
3510 return -EINVAL;
3511 vcpu->arch.pvclock_set_guest_stopped_request = true;
3512 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3513 return 0;
3514 }
3515
3516 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3517 struct kvm_enable_cap *cap)
3518 {
3519 if (cap->flags)
3520 return -EINVAL;
3521
3522 switch (cap->cap) {
3523 case KVM_CAP_HYPERV_SYNIC2:
3524 if (cap->args[0])
3525 return -EINVAL;
3526 case KVM_CAP_HYPERV_SYNIC:
3527 if (!irqchip_in_kernel(vcpu->kvm))
3528 return -EINVAL;
3529 return kvm_hv_activate_synic(vcpu, cap->cap ==
3530 KVM_CAP_HYPERV_SYNIC2);
3531 default:
3532 return -EINVAL;
3533 }
3534 }
3535
3536 long kvm_arch_vcpu_ioctl(struct file *filp,
3537 unsigned int ioctl, unsigned long arg)
3538 {
3539 struct kvm_vcpu *vcpu = filp->private_data;
3540 void __user *argp = (void __user *)arg;
3541 int r;
3542 union {
3543 struct kvm_lapic_state *lapic;
3544 struct kvm_xsave *xsave;
3545 struct kvm_xcrs *xcrs;
3546 void *buffer;
3547 } u;
3548
3549 u.buffer = NULL;
3550 switch (ioctl) {
3551 case KVM_GET_LAPIC: {
3552 r = -EINVAL;
3553 if (!lapic_in_kernel(vcpu))
3554 goto out;
3555 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3556
3557 r = -ENOMEM;
3558 if (!u.lapic)
3559 goto out;
3560 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3561 if (r)
3562 goto out;
3563 r = -EFAULT;
3564 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3565 goto out;
3566 r = 0;
3567 break;
3568 }
3569 case KVM_SET_LAPIC: {
3570 r = -EINVAL;
3571 if (!lapic_in_kernel(vcpu))
3572 goto out;
3573 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3574 if (IS_ERR(u.lapic))
3575 return PTR_ERR(u.lapic);
3576
3577 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3578 break;
3579 }
3580 case KVM_INTERRUPT: {
3581 struct kvm_interrupt irq;
3582
3583 r = -EFAULT;
3584 if (copy_from_user(&irq, argp, sizeof irq))
3585 goto out;
3586 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3587 break;
3588 }
3589 case KVM_NMI: {
3590 r = kvm_vcpu_ioctl_nmi(vcpu);
3591 break;
3592 }
3593 case KVM_SMI: {
3594 r = kvm_vcpu_ioctl_smi(vcpu);
3595 break;
3596 }
3597 case KVM_SET_CPUID: {
3598 struct kvm_cpuid __user *cpuid_arg = argp;
3599 struct kvm_cpuid cpuid;
3600
3601 r = -EFAULT;
3602 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3603 goto out;
3604 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3605 break;
3606 }
3607 case KVM_SET_CPUID2: {
3608 struct kvm_cpuid2 __user *cpuid_arg = argp;
3609 struct kvm_cpuid2 cpuid;
3610
3611 r = -EFAULT;
3612 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3613 goto out;
3614 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3615 cpuid_arg->entries);
3616 break;
3617 }
3618 case KVM_GET_CPUID2: {
3619 struct kvm_cpuid2 __user *cpuid_arg = argp;
3620 struct kvm_cpuid2 cpuid;
3621
3622 r = -EFAULT;
3623 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3624 goto out;
3625 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3626 cpuid_arg->entries);
3627 if (r)
3628 goto out;
3629 r = -EFAULT;
3630 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3631 goto out;
3632 r = 0;
3633 break;
3634 }
3635 case KVM_GET_MSRS: {
3636 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3637 r = msr_io(vcpu, argp, do_get_msr, 1);
3638 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3639 break;
3640 }
3641 case KVM_SET_MSRS: {
3642 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3643 r = msr_io(vcpu, argp, do_set_msr, 0);
3644 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3645 break;
3646 }
3647 case KVM_TPR_ACCESS_REPORTING: {
3648 struct kvm_tpr_access_ctl tac;
3649
3650 r = -EFAULT;
3651 if (copy_from_user(&tac, argp, sizeof tac))
3652 goto out;
3653 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3654 if (r)
3655 goto out;
3656 r = -EFAULT;
3657 if (copy_to_user(argp, &tac, sizeof tac))
3658 goto out;
3659 r = 0;
3660 break;
3661 };
3662 case KVM_SET_VAPIC_ADDR: {
3663 struct kvm_vapic_addr va;
3664 int idx;
3665
3666 r = -EINVAL;
3667 if (!lapic_in_kernel(vcpu))
3668 goto out;
3669 r = -EFAULT;
3670 if (copy_from_user(&va, argp, sizeof va))
3671 goto out;
3672 idx = srcu_read_lock(&vcpu->kvm->srcu);
3673 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3674 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3675 break;
3676 }
3677 case KVM_X86_SETUP_MCE: {
3678 u64 mcg_cap;
3679
3680 r = -EFAULT;
3681 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3682 goto out;
3683 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3684 break;
3685 }
3686 case KVM_X86_SET_MCE: {
3687 struct kvm_x86_mce mce;
3688
3689 r = -EFAULT;
3690 if (copy_from_user(&mce, argp, sizeof mce))
3691 goto out;
3692 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3693 break;
3694 }
3695 case KVM_GET_VCPU_EVENTS: {
3696 struct kvm_vcpu_events events;
3697
3698 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3699
3700 r = -EFAULT;
3701 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3702 break;
3703 r = 0;
3704 break;
3705 }
3706 case KVM_SET_VCPU_EVENTS: {
3707 struct kvm_vcpu_events events;
3708
3709 r = -EFAULT;
3710 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3711 break;
3712
3713 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3714 break;
3715 }
3716 case KVM_GET_DEBUGREGS: {
3717 struct kvm_debugregs dbgregs;
3718
3719 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3720
3721 r = -EFAULT;
3722 if (copy_to_user(argp, &dbgregs,
3723 sizeof(struct kvm_debugregs)))
3724 break;
3725 r = 0;
3726 break;
3727 }
3728 case KVM_SET_DEBUGREGS: {
3729 struct kvm_debugregs dbgregs;
3730
3731 r = -EFAULT;
3732 if (copy_from_user(&dbgregs, argp,
3733 sizeof(struct kvm_debugregs)))
3734 break;
3735
3736 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3737 break;
3738 }
3739 case KVM_GET_XSAVE: {
3740 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3741 r = -ENOMEM;
3742 if (!u.xsave)
3743 break;
3744
3745 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3746
3747 r = -EFAULT;
3748 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3749 break;
3750 r = 0;
3751 break;
3752 }
3753 case KVM_SET_XSAVE: {
3754 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3755 if (IS_ERR(u.xsave))
3756 return PTR_ERR(u.xsave);
3757
3758 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3759 break;
3760 }
3761 case KVM_GET_XCRS: {
3762 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3763 r = -ENOMEM;
3764 if (!u.xcrs)
3765 break;
3766
3767 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3768
3769 r = -EFAULT;
3770 if (copy_to_user(argp, u.xcrs,
3771 sizeof(struct kvm_xcrs)))
3772 break;
3773 r = 0;
3774 break;
3775 }
3776 case KVM_SET_XCRS: {
3777 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3778 if (IS_ERR(u.xcrs))
3779 return PTR_ERR(u.xcrs);
3780
3781 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3782 break;
3783 }
3784 case KVM_SET_TSC_KHZ: {
3785 u32 user_tsc_khz;
3786
3787 r = -EINVAL;
3788 user_tsc_khz = (u32)arg;
3789
3790 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3791 goto out;
3792
3793 if (user_tsc_khz == 0)
3794 user_tsc_khz = tsc_khz;
3795
3796 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3797 r = 0;
3798
3799 goto out;
3800 }
3801 case KVM_GET_TSC_KHZ: {
3802 r = vcpu->arch.virtual_tsc_khz;
3803 goto out;
3804 }
3805 case KVM_KVMCLOCK_CTRL: {
3806 r = kvm_set_guest_paused(vcpu);
3807 goto out;
3808 }
3809 case KVM_ENABLE_CAP: {
3810 struct kvm_enable_cap cap;
3811
3812 r = -EFAULT;
3813 if (copy_from_user(&cap, argp, sizeof(cap)))
3814 goto out;
3815 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3816 break;
3817 }
3818 default:
3819 r = -EINVAL;
3820 }
3821 out:
3822 kfree(u.buffer);
3823 return r;
3824 }
3825
3826 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3827 {
3828 return VM_FAULT_SIGBUS;
3829 }
3830
3831 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3832 {
3833 int ret;
3834
3835 if (addr > (unsigned int)(-3 * PAGE_SIZE))
3836 return -EINVAL;
3837 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3838 return ret;
3839 }
3840
3841 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3842 u64 ident_addr)
3843 {
3844 kvm->arch.ept_identity_map_addr = ident_addr;
3845 return 0;
3846 }
3847
3848 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3849 u32 kvm_nr_mmu_pages)
3850 {
3851 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3852 return -EINVAL;
3853
3854 mutex_lock(&kvm->slots_lock);
3855
3856 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3857 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3858
3859 mutex_unlock(&kvm->slots_lock);
3860 return 0;
3861 }
3862
3863 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3864 {
3865 return kvm->arch.n_max_mmu_pages;
3866 }
3867
3868 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3869 {
3870 struct kvm_pic *pic = kvm->arch.vpic;
3871 int r;
3872
3873 r = 0;
3874 switch (chip->chip_id) {
3875 case KVM_IRQCHIP_PIC_MASTER:
3876 memcpy(&chip->chip.pic, &pic->pics[0],
3877 sizeof(struct kvm_pic_state));
3878 break;
3879 case KVM_IRQCHIP_PIC_SLAVE:
3880 memcpy(&chip->chip.pic, &pic->pics[1],
3881 sizeof(struct kvm_pic_state));
3882 break;
3883 case KVM_IRQCHIP_IOAPIC:
3884 kvm_get_ioapic(kvm, &chip->chip.ioapic);
3885 break;
3886 default:
3887 r = -EINVAL;
3888 break;
3889 }
3890 return r;
3891 }
3892
3893 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3894 {
3895 struct kvm_pic *pic = kvm->arch.vpic;
3896 int r;
3897
3898 r = 0;
3899 switch (chip->chip_id) {
3900 case KVM_IRQCHIP_PIC_MASTER:
3901 spin_lock(&pic->lock);
3902 memcpy(&pic->pics[0], &chip->chip.pic,
3903 sizeof(struct kvm_pic_state));
3904 spin_unlock(&pic->lock);
3905 break;
3906 case KVM_IRQCHIP_PIC_SLAVE:
3907 spin_lock(&pic->lock);
3908 memcpy(&pic->pics[1], &chip->chip.pic,
3909 sizeof(struct kvm_pic_state));
3910 spin_unlock(&pic->lock);
3911 break;
3912 case KVM_IRQCHIP_IOAPIC:
3913 kvm_set_ioapic(kvm, &chip->chip.ioapic);
3914 break;
3915 default:
3916 r = -EINVAL;
3917 break;
3918 }
3919 kvm_pic_update_irq(pic);
3920 return r;
3921 }
3922
3923 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3924 {
3925 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
3926
3927 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
3928
3929 mutex_lock(&kps->lock);
3930 memcpy(ps, &kps->channels, sizeof(*ps));
3931 mutex_unlock(&kps->lock);
3932 return 0;
3933 }
3934
3935 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3936 {
3937 int i;
3938 struct kvm_pit *pit = kvm->arch.vpit;
3939
3940 mutex_lock(&pit->pit_state.lock);
3941 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
3942 for (i = 0; i < 3; i++)
3943 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
3944 mutex_unlock(&pit->pit_state.lock);
3945 return 0;
3946 }
3947
3948 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3949 {
3950 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3951 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3952 sizeof(ps->channels));
3953 ps->flags = kvm->arch.vpit->pit_state.flags;
3954 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3955 memset(&ps->reserved, 0, sizeof(ps->reserved));
3956 return 0;
3957 }
3958
3959 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3960 {
3961 int start = 0;
3962 int i;
3963 u32 prev_legacy, cur_legacy;
3964 struct kvm_pit *pit = kvm->arch.vpit;
3965
3966 mutex_lock(&pit->pit_state.lock);
3967 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3968 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3969 if (!prev_legacy && cur_legacy)
3970 start = 1;
3971 memcpy(&pit->pit_state.channels, &ps->channels,
3972 sizeof(pit->pit_state.channels));
3973 pit->pit_state.flags = ps->flags;
3974 for (i = 0; i < 3; i++)
3975 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
3976 start && i == 0);
3977 mutex_unlock(&pit->pit_state.lock);
3978 return 0;
3979 }
3980
3981 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3982 struct kvm_reinject_control *control)
3983 {
3984 struct kvm_pit *pit = kvm->arch.vpit;
3985
3986 if (!pit)
3987 return -ENXIO;
3988
3989 /* pit->pit_state.lock was overloaded to prevent userspace from getting
3990 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3991 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
3992 */
3993 mutex_lock(&pit->pit_state.lock);
3994 kvm_pit_set_reinject(pit, control->pit_reinject);
3995 mutex_unlock(&pit->pit_state.lock);
3996
3997 return 0;
3998 }
3999
4000 /**
4001 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4002 * @kvm: kvm instance
4003 * @log: slot id and address to which we copy the log
4004 *
4005 * Steps 1-4 below provide general overview of dirty page logging. See
4006 * kvm_get_dirty_log_protect() function description for additional details.
4007 *
4008 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4009 * always flush the TLB (step 4) even if previous step failed and the dirty
4010 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4011 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4012 * writes will be marked dirty for next log read.
4013 *
4014 * 1. Take a snapshot of the bit and clear it if needed.
4015 * 2. Write protect the corresponding page.
4016 * 3. Copy the snapshot to the userspace.
4017 * 4. Flush TLB's if needed.
4018 */
4019 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
4020 {
4021 bool is_dirty = false;
4022 int r;
4023
4024 mutex_lock(&kvm->slots_lock);
4025
4026 /*
4027 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4028 */
4029 if (kvm_x86_ops->flush_log_dirty)
4030 kvm_x86_ops->flush_log_dirty(kvm);
4031
4032 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
4033
4034 /*
4035 * All the TLBs can be flushed out of mmu lock, see the comments in
4036 * kvm_mmu_slot_remove_write_access().
4037 */
4038 lockdep_assert_held(&kvm->slots_lock);
4039 if (is_dirty)
4040 kvm_flush_remote_tlbs(kvm);
4041
4042 mutex_unlock(&kvm->slots_lock);
4043 return r;
4044 }
4045
4046 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4047 bool line_status)
4048 {
4049 if (!irqchip_in_kernel(kvm))
4050 return -ENXIO;
4051
4052 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4053 irq_event->irq, irq_event->level,
4054 line_status);
4055 return 0;
4056 }
4057
4058 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4059 struct kvm_enable_cap *cap)
4060 {
4061 int r;
4062
4063 if (cap->flags)
4064 return -EINVAL;
4065
4066 switch (cap->cap) {
4067 case KVM_CAP_DISABLE_QUIRKS:
4068 kvm->arch.disabled_quirks = cap->args[0];
4069 r = 0;
4070 break;
4071 case KVM_CAP_SPLIT_IRQCHIP: {
4072 mutex_lock(&kvm->lock);
4073 r = -EINVAL;
4074 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4075 goto split_irqchip_unlock;
4076 r = -EEXIST;
4077 if (irqchip_in_kernel(kvm))
4078 goto split_irqchip_unlock;
4079 if (kvm->created_vcpus)
4080 goto split_irqchip_unlock;
4081 r = kvm_setup_empty_irq_routing(kvm);
4082 if (r)
4083 goto split_irqchip_unlock;
4084 /* Pairs with irqchip_in_kernel. */
4085 smp_wmb();
4086 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4087 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4088 r = 0;
4089 split_irqchip_unlock:
4090 mutex_unlock(&kvm->lock);
4091 break;
4092 }
4093 case KVM_CAP_X2APIC_API:
4094 r = -EINVAL;
4095 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4096 break;
4097
4098 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4099 kvm->arch.x2apic_format = true;
4100 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4101 kvm->arch.x2apic_broadcast_quirk_disabled = true;
4102
4103 r = 0;
4104 break;
4105 default:
4106 r = -EINVAL;
4107 break;
4108 }
4109 return r;
4110 }
4111
4112 long kvm_arch_vm_ioctl(struct file *filp,
4113 unsigned int ioctl, unsigned long arg)
4114 {
4115 struct kvm *kvm = filp->private_data;
4116 void __user *argp = (void __user *)arg;
4117 int r = -ENOTTY;
4118 /*
4119 * This union makes it completely explicit to gcc-3.x
4120 * that these two variables' stack usage should be
4121 * combined, not added together.
4122 */
4123 union {
4124 struct kvm_pit_state ps;
4125 struct kvm_pit_state2 ps2;
4126 struct kvm_pit_config pit_config;
4127 } u;
4128
4129 switch (ioctl) {
4130 case KVM_SET_TSS_ADDR:
4131 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4132 break;
4133 case KVM_SET_IDENTITY_MAP_ADDR: {
4134 u64 ident_addr;
4135
4136 mutex_lock(&kvm->lock);
4137 r = -EINVAL;
4138 if (kvm->created_vcpus)
4139 goto set_identity_unlock;
4140 r = -EFAULT;
4141 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
4142 goto set_identity_unlock;
4143 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4144 set_identity_unlock:
4145 mutex_unlock(&kvm->lock);
4146 break;
4147 }
4148 case KVM_SET_NR_MMU_PAGES:
4149 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4150 break;
4151 case KVM_GET_NR_MMU_PAGES:
4152 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4153 break;
4154 case KVM_CREATE_IRQCHIP: {
4155 mutex_lock(&kvm->lock);
4156
4157 r = -EEXIST;
4158 if (irqchip_in_kernel(kvm))
4159 goto create_irqchip_unlock;
4160
4161 r = -EINVAL;
4162 if (kvm->created_vcpus)
4163 goto create_irqchip_unlock;
4164
4165 r = kvm_pic_init(kvm);
4166 if (r)
4167 goto create_irqchip_unlock;
4168
4169 r = kvm_ioapic_init(kvm);
4170 if (r) {
4171 kvm_pic_destroy(kvm);
4172 goto create_irqchip_unlock;
4173 }
4174
4175 r = kvm_setup_default_irq_routing(kvm);
4176 if (r) {
4177 kvm_ioapic_destroy(kvm);
4178 kvm_pic_destroy(kvm);
4179 goto create_irqchip_unlock;
4180 }
4181 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4182 smp_wmb();
4183 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4184 create_irqchip_unlock:
4185 mutex_unlock(&kvm->lock);
4186 break;
4187 }
4188 case KVM_CREATE_PIT:
4189 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4190 goto create_pit;
4191 case KVM_CREATE_PIT2:
4192 r = -EFAULT;
4193 if (copy_from_user(&u.pit_config, argp,
4194 sizeof(struct kvm_pit_config)))
4195 goto out;
4196 create_pit:
4197 mutex_lock(&kvm->lock);
4198 r = -EEXIST;
4199 if (kvm->arch.vpit)
4200 goto create_pit_unlock;
4201 r = -ENOMEM;
4202 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4203 if (kvm->arch.vpit)
4204 r = 0;
4205 create_pit_unlock:
4206 mutex_unlock(&kvm->lock);
4207 break;
4208 case KVM_GET_IRQCHIP: {
4209 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4210 struct kvm_irqchip *chip;
4211
4212 chip = memdup_user(argp, sizeof(*chip));
4213 if (IS_ERR(chip)) {
4214 r = PTR_ERR(chip);
4215 goto out;
4216 }
4217
4218 r = -ENXIO;
4219 if (!irqchip_kernel(kvm))
4220 goto get_irqchip_out;
4221 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4222 if (r)
4223 goto get_irqchip_out;
4224 r = -EFAULT;
4225 if (copy_to_user(argp, chip, sizeof *chip))
4226 goto get_irqchip_out;
4227 r = 0;
4228 get_irqchip_out:
4229 kfree(chip);
4230 break;
4231 }
4232 case KVM_SET_IRQCHIP: {
4233 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4234 struct kvm_irqchip *chip;
4235
4236 chip = memdup_user(argp, sizeof(*chip));
4237 if (IS_ERR(chip)) {
4238 r = PTR_ERR(chip);
4239 goto out;
4240 }
4241
4242 r = -ENXIO;
4243 if (!irqchip_kernel(kvm))
4244 goto set_irqchip_out;
4245 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4246 if (r)
4247 goto set_irqchip_out;
4248 r = 0;
4249 set_irqchip_out:
4250 kfree(chip);
4251 break;
4252 }
4253 case KVM_GET_PIT: {
4254 r = -EFAULT;
4255 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4256 goto out;
4257 r = -ENXIO;
4258 if (!kvm->arch.vpit)
4259 goto out;
4260 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4261 if (r)
4262 goto out;
4263 r = -EFAULT;
4264 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4265 goto out;
4266 r = 0;
4267 break;
4268 }
4269 case KVM_SET_PIT: {
4270 r = -EFAULT;
4271 if (copy_from_user(&u.ps, argp, sizeof u.ps))
4272 goto out;
4273 r = -ENXIO;
4274 if (!kvm->arch.vpit)
4275 goto out;
4276 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4277 break;
4278 }
4279 case KVM_GET_PIT2: {
4280 r = -ENXIO;
4281 if (!kvm->arch.vpit)
4282 goto out;
4283 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4284 if (r)
4285 goto out;
4286 r = -EFAULT;
4287 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4288 goto out;
4289 r = 0;
4290 break;
4291 }
4292 case KVM_SET_PIT2: {
4293 r = -EFAULT;
4294 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4295 goto out;
4296 r = -ENXIO;
4297 if (!kvm->arch.vpit)
4298 goto out;
4299 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4300 break;
4301 }
4302 case KVM_REINJECT_CONTROL: {
4303 struct kvm_reinject_control control;
4304 r = -EFAULT;
4305 if (copy_from_user(&control, argp, sizeof(control)))
4306 goto out;
4307 r = kvm_vm_ioctl_reinject(kvm, &control);
4308 break;
4309 }
4310 case KVM_SET_BOOT_CPU_ID:
4311 r = 0;
4312 mutex_lock(&kvm->lock);
4313 if (kvm->created_vcpus)
4314 r = -EBUSY;
4315 else
4316 kvm->arch.bsp_vcpu_id = arg;
4317 mutex_unlock(&kvm->lock);
4318 break;
4319 case KVM_XEN_HVM_CONFIG: {
4320 struct kvm_xen_hvm_config xhc;
4321 r = -EFAULT;
4322 if (copy_from_user(&xhc, argp, sizeof(xhc)))
4323 goto out;
4324 r = -EINVAL;
4325 if (xhc.flags)
4326 goto out;
4327 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
4328 r = 0;
4329 break;
4330 }
4331 case KVM_SET_CLOCK: {
4332 struct kvm_clock_data user_ns;
4333 u64 now_ns;
4334
4335 r = -EFAULT;
4336 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4337 goto out;
4338
4339 r = -EINVAL;
4340 if (user_ns.flags)
4341 goto out;
4342
4343 r = 0;
4344 /*
4345 * TODO: userspace has to take care of races with VCPU_RUN, so
4346 * kvm_gen_update_masterclock() can be cut down to locked
4347 * pvclock_update_vm_gtod_copy().
4348 */
4349 kvm_gen_update_masterclock(kvm);
4350 now_ns = get_kvmclock_ns(kvm);
4351 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4352 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4353 break;
4354 }
4355 case KVM_GET_CLOCK: {
4356 struct kvm_clock_data user_ns;
4357 u64 now_ns;
4358
4359 now_ns = get_kvmclock_ns(kvm);
4360 user_ns.clock = now_ns;
4361 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4362 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4363
4364 r = -EFAULT;
4365 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4366 goto out;
4367 r = 0;
4368 break;
4369 }
4370 case KVM_ENABLE_CAP: {
4371 struct kvm_enable_cap cap;
4372
4373 r = -EFAULT;
4374 if (copy_from_user(&cap, argp, sizeof(cap)))
4375 goto out;
4376 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4377 break;
4378 }
4379 default:
4380 r = -ENOTTY;
4381 }
4382 out:
4383 return r;
4384 }
4385
4386 static void kvm_init_msr_list(void)
4387 {
4388 u32 dummy[2];
4389 unsigned i, j;
4390
4391 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4392 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4393 continue;
4394
4395 /*
4396 * Even MSRs that are valid in the host may not be exposed
4397 * to the guests in some cases.
4398 */
4399 switch (msrs_to_save[i]) {
4400 case MSR_IA32_BNDCFGS:
4401 if (!kvm_x86_ops->mpx_supported())
4402 continue;
4403 break;
4404 case MSR_TSC_AUX:
4405 if (!kvm_x86_ops->rdtscp_supported())
4406 continue;
4407 break;
4408 default:
4409 break;
4410 }
4411
4412 if (j < i)
4413 msrs_to_save[j] = msrs_to_save[i];
4414 j++;
4415 }
4416 num_msrs_to_save = j;
4417
4418 for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4419 if (!kvm_x86_ops->has_emulated_msr(emulated_msrs[i]))
4420 continue;
4421
4422 if (j < i)
4423 emulated_msrs[j] = emulated_msrs[i];
4424 j++;
4425 }
4426 num_emulated_msrs = j;
4427
4428 for (i = j = 0; i < ARRAY_SIZE(msr_based_features); i++) {
4429 struct kvm_msr_entry msr;
4430
4431 msr.index = msr_based_features[i];
4432 if (kvm_get_msr_feature(&msr))
4433 continue;
4434
4435 if (j < i)
4436 msr_based_features[j] = msr_based_features[i];
4437 j++;
4438 }
4439 num_msr_based_features = j;
4440 }
4441
4442 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4443 const void *v)
4444 {
4445 int handled = 0;
4446 int n;
4447
4448 do {
4449 n = min(len, 8);
4450 if (!(lapic_in_kernel(vcpu) &&
4451 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4452 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4453 break;
4454 handled += n;
4455 addr += n;
4456 len -= n;
4457 v += n;
4458 } while (len);
4459
4460 return handled;
4461 }
4462
4463 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4464 {
4465 int handled = 0;
4466 int n;
4467
4468 do {
4469 n = min(len, 8);
4470 if (!(lapic_in_kernel(vcpu) &&
4471 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4472 addr, n, v))
4473 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4474 break;
4475 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
4476 handled += n;
4477 addr += n;
4478 len -= n;
4479 v += n;
4480 } while (len);
4481
4482 return handled;
4483 }
4484
4485 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4486 struct kvm_segment *var, int seg)
4487 {
4488 kvm_x86_ops->set_segment(vcpu, var, seg);
4489 }
4490
4491 void kvm_get_segment(struct kvm_vcpu *vcpu,
4492 struct kvm_segment *var, int seg)
4493 {
4494 kvm_x86_ops->get_segment(vcpu, var, seg);
4495 }
4496
4497 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4498 struct x86_exception *exception)
4499 {
4500 gpa_t t_gpa;
4501
4502 BUG_ON(!mmu_is_nested(vcpu));
4503
4504 /* NPT walks are always user-walks */
4505 access |= PFERR_USER_MASK;
4506 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4507
4508 return t_gpa;
4509 }
4510
4511 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4512 struct x86_exception *exception)
4513 {
4514 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4515 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4516 }
4517
4518 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4519 struct x86_exception *exception)
4520 {
4521 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4522 access |= PFERR_FETCH_MASK;
4523 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4524 }
4525
4526 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4527 struct x86_exception *exception)
4528 {
4529 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4530 access |= PFERR_WRITE_MASK;
4531 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4532 }
4533
4534 /* uses this to access any guest's mapped memory without checking CPL */
4535 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4536 struct x86_exception *exception)
4537 {
4538 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4539 }
4540
4541 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4542 struct kvm_vcpu *vcpu, u32 access,
4543 struct x86_exception *exception)
4544 {
4545 void *data = val;
4546 int r = X86EMUL_CONTINUE;
4547
4548 while (bytes) {
4549 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4550 exception);
4551 unsigned offset = addr & (PAGE_SIZE-1);
4552 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4553 int ret;
4554
4555 if (gpa == UNMAPPED_GVA)
4556 return X86EMUL_PROPAGATE_FAULT;
4557 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4558 offset, toread);
4559 if (ret < 0) {
4560 r = X86EMUL_IO_NEEDED;
4561 goto out;
4562 }
4563
4564 bytes -= toread;
4565 data += toread;
4566 addr += toread;
4567 }
4568 out:
4569 return r;
4570 }
4571
4572 /* used for instruction fetching */
4573 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4574 gva_t addr, void *val, unsigned int bytes,
4575 struct x86_exception *exception)
4576 {
4577 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4578 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4579 unsigned offset;
4580 int ret;
4581
4582 /* Inline kvm_read_guest_virt_helper for speed. */
4583 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4584 exception);
4585 if (unlikely(gpa == UNMAPPED_GVA))
4586 return X86EMUL_PROPAGATE_FAULT;
4587
4588 offset = addr & (PAGE_SIZE-1);
4589 if (WARN_ON(offset + bytes > PAGE_SIZE))
4590 bytes = (unsigned)PAGE_SIZE - offset;
4591 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4592 offset, bytes);
4593 if (unlikely(ret < 0))
4594 return X86EMUL_IO_NEEDED;
4595
4596 return X86EMUL_CONTINUE;
4597 }
4598
4599 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4600 gva_t addr, void *val, unsigned int bytes,
4601 struct x86_exception *exception)
4602 {
4603 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4604 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4605
4606 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4607 exception);
4608 }
4609 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4610
4611 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4612 gva_t addr, void *val, unsigned int bytes,
4613 struct x86_exception *exception)
4614 {
4615 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4616 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4617 }
4618
4619 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4620 unsigned long addr, void *val, unsigned int bytes)
4621 {
4622 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4623 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4624
4625 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4626 }
4627
4628 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4629 gva_t addr, void *val,
4630 unsigned int bytes,
4631 struct x86_exception *exception)
4632 {
4633 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4634 void *data = val;
4635 int r = X86EMUL_CONTINUE;
4636
4637 /* kvm_write_guest_virt_system can pull in tons of pages. */
4638 vcpu->arch.l1tf_flush_l1d = true;
4639
4640 while (bytes) {
4641 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4642 PFERR_WRITE_MASK,
4643 exception);
4644 unsigned offset = addr & (PAGE_SIZE-1);
4645 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4646 int ret;
4647
4648 if (gpa == UNMAPPED_GVA)
4649 return X86EMUL_PROPAGATE_FAULT;
4650 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4651 if (ret < 0) {
4652 r = X86EMUL_IO_NEEDED;
4653 goto out;
4654 }
4655
4656 bytes -= towrite;
4657 data += towrite;
4658 addr += towrite;
4659 }
4660 out:
4661 return r;
4662 }
4663 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4664
4665 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4666 gpa_t gpa, bool write)
4667 {
4668 /* For APIC access vmexit */
4669 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4670 return 1;
4671
4672 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
4673 trace_vcpu_match_mmio(gva, gpa, write, true);
4674 return 1;
4675 }
4676
4677 return 0;
4678 }
4679
4680 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4681 gpa_t *gpa, struct x86_exception *exception,
4682 bool write)
4683 {
4684 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4685 | (write ? PFERR_WRITE_MASK : 0);
4686
4687 /*
4688 * currently PKRU is only applied to ept enabled guest so
4689 * there is no pkey in EPT page table for L1 guest or EPT
4690 * shadow page table for L2 guest.
4691 */
4692 if (vcpu_match_mmio_gva(vcpu, gva)
4693 && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4694 vcpu->arch.access, 0, access)) {
4695 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4696 (gva & (PAGE_SIZE - 1));
4697 trace_vcpu_match_mmio(gva, *gpa, write, false);
4698 return 1;
4699 }
4700
4701 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4702
4703 if (*gpa == UNMAPPED_GVA)
4704 return -1;
4705
4706 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
4707 }
4708
4709 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4710 const void *val, int bytes)
4711 {
4712 int ret;
4713
4714 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4715 if (ret < 0)
4716 return 0;
4717 kvm_page_track_write(vcpu, gpa, val, bytes);
4718 return 1;
4719 }
4720
4721 struct read_write_emulator_ops {
4722 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4723 int bytes);
4724 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4725 void *val, int bytes);
4726 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4727 int bytes, void *val);
4728 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4729 void *val, int bytes);
4730 bool write;
4731 };
4732
4733 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4734 {
4735 if (vcpu->mmio_read_completed) {
4736 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4737 vcpu->mmio_fragments[0].gpa, val);
4738 vcpu->mmio_read_completed = 0;
4739 return 1;
4740 }
4741
4742 return 0;
4743 }
4744
4745 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4746 void *val, int bytes)
4747 {
4748 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4749 }
4750
4751 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4752 void *val, int bytes)
4753 {
4754 return emulator_write_phys(vcpu, gpa, val, bytes);
4755 }
4756
4757 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4758 {
4759 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
4760 return vcpu_mmio_write(vcpu, gpa, bytes, val);
4761 }
4762
4763 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4764 void *val, int bytes)
4765 {
4766 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
4767 return X86EMUL_IO_NEEDED;
4768 }
4769
4770 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4771 void *val, int bytes)
4772 {
4773 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4774
4775 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4776 return X86EMUL_CONTINUE;
4777 }
4778
4779 static const struct read_write_emulator_ops read_emultor = {
4780 .read_write_prepare = read_prepare,
4781 .read_write_emulate = read_emulate,
4782 .read_write_mmio = vcpu_mmio_read,
4783 .read_write_exit_mmio = read_exit_mmio,
4784 };
4785
4786 static const struct read_write_emulator_ops write_emultor = {
4787 .read_write_emulate = write_emulate,
4788 .read_write_mmio = write_mmio,
4789 .read_write_exit_mmio = write_exit_mmio,
4790 .write = true,
4791 };
4792
4793 static int emulator_read_write_onepage(unsigned long addr, void *val,
4794 unsigned int bytes,
4795 struct x86_exception *exception,
4796 struct kvm_vcpu *vcpu,
4797 const struct read_write_emulator_ops *ops)
4798 {
4799 gpa_t gpa;
4800 int handled, ret;
4801 bool write = ops->write;
4802 struct kvm_mmio_fragment *frag;
4803 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4804
4805 /*
4806 * If the exit was due to a NPF we may already have a GPA.
4807 * If the GPA is present, use it to avoid the GVA to GPA table walk.
4808 * Note, this cannot be used on string operations since string
4809 * operation using rep will only have the initial GPA from the NPF
4810 * occurred.
4811 */
4812 if (vcpu->arch.gpa_available &&
4813 emulator_can_use_gpa(ctxt) &&
4814 (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
4815 gpa = vcpu->arch.gpa_val;
4816 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
4817 } else {
4818 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4819 if (ret < 0)
4820 return X86EMUL_PROPAGATE_FAULT;
4821 }
4822
4823 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
4824 return X86EMUL_CONTINUE;
4825
4826 /*
4827 * Is this MMIO handled locally?
4828 */
4829 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4830 if (handled == bytes)
4831 return X86EMUL_CONTINUE;
4832
4833 gpa += handled;
4834 bytes -= handled;
4835 val += handled;
4836
4837 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4838 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4839 frag->gpa = gpa;
4840 frag->data = val;
4841 frag->len = bytes;
4842 return X86EMUL_CONTINUE;
4843 }
4844
4845 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4846 unsigned long addr,
4847 void *val, unsigned int bytes,
4848 struct x86_exception *exception,
4849 const struct read_write_emulator_ops *ops)
4850 {
4851 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4852 gpa_t gpa;
4853 int rc;
4854
4855 if (ops->read_write_prepare &&
4856 ops->read_write_prepare(vcpu, val, bytes))
4857 return X86EMUL_CONTINUE;
4858
4859 vcpu->mmio_nr_fragments = 0;
4860
4861 /* Crossing a page boundary? */
4862 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4863 int now;
4864
4865 now = -addr & ~PAGE_MASK;
4866 rc = emulator_read_write_onepage(addr, val, now, exception,
4867 vcpu, ops);
4868
4869 if (rc != X86EMUL_CONTINUE)
4870 return rc;
4871 addr += now;
4872 if (ctxt->mode != X86EMUL_MODE_PROT64)
4873 addr = (u32)addr;
4874 val += now;
4875 bytes -= now;
4876 }
4877
4878 rc = emulator_read_write_onepage(addr, val, bytes, exception,
4879 vcpu, ops);
4880 if (rc != X86EMUL_CONTINUE)
4881 return rc;
4882
4883 if (!vcpu->mmio_nr_fragments)
4884 return rc;
4885
4886 gpa = vcpu->mmio_fragments[0].gpa;
4887
4888 vcpu->mmio_needed = 1;
4889 vcpu->mmio_cur_fragment = 0;
4890
4891 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4892 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4893 vcpu->run->exit_reason = KVM_EXIT_MMIO;
4894 vcpu->run->mmio.phys_addr = gpa;
4895
4896 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4897 }
4898
4899 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4900 unsigned long addr,
4901 void *val,
4902 unsigned int bytes,
4903 struct x86_exception *exception)
4904 {
4905 return emulator_read_write(ctxt, addr, val, bytes,
4906 exception, &read_emultor);
4907 }
4908
4909 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4910 unsigned long addr,
4911 const void *val,
4912 unsigned int bytes,
4913 struct x86_exception *exception)
4914 {
4915 return emulator_read_write(ctxt, addr, (void *)val, bytes,
4916 exception, &write_emultor);
4917 }
4918
4919 #define CMPXCHG_TYPE(t, ptr, old, new) \
4920 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4921
4922 #ifdef CONFIG_X86_64
4923 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4924 #else
4925 # define CMPXCHG64(ptr, old, new) \
4926 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4927 #endif
4928
4929 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4930 unsigned long addr,
4931 const void *old,
4932 const void *new,
4933 unsigned int bytes,
4934 struct x86_exception *exception)
4935 {
4936 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4937 gpa_t gpa;
4938 struct page *page;
4939 char *kaddr;
4940 bool exchanged;
4941
4942 /* guests cmpxchg8b have to be emulated atomically */
4943 if (bytes > 8 || (bytes & (bytes - 1)))
4944 goto emul_write;
4945
4946 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4947
4948 if (gpa == UNMAPPED_GVA ||
4949 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4950 goto emul_write;
4951
4952 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4953 goto emul_write;
4954
4955 page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4956 if (is_error_page(page))
4957 goto emul_write;
4958
4959 kaddr = kmap_atomic(page);
4960 kaddr += offset_in_page(gpa);
4961 switch (bytes) {
4962 case 1:
4963 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4964 break;
4965 case 2:
4966 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4967 break;
4968 case 4:
4969 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4970 break;
4971 case 8:
4972 exchanged = CMPXCHG64(kaddr, old, new);
4973 break;
4974 default:
4975 BUG();
4976 }
4977 kunmap_atomic(kaddr);
4978 kvm_release_page_dirty(page);
4979
4980 if (!exchanged)
4981 return X86EMUL_CMPXCHG_FAILED;
4982
4983 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4984 kvm_page_track_write(vcpu, gpa, new, bytes);
4985
4986 return X86EMUL_CONTINUE;
4987
4988 emul_write:
4989 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4990
4991 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4992 }
4993
4994 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4995 {
4996 int r = 0, i;
4997
4998 for (i = 0; i < vcpu->arch.pio.count; i++) {
4999 if (vcpu->arch.pio.in)
5000 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5001 vcpu->arch.pio.size, pd);
5002 else
5003 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5004 vcpu->arch.pio.port, vcpu->arch.pio.size,
5005 pd);
5006 if (r)
5007 break;
5008 pd += vcpu->arch.pio.size;
5009 }
5010 return r;
5011 }
5012
5013 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5014 unsigned short port, void *val,
5015 unsigned int count, bool in)
5016 {
5017 vcpu->arch.pio.port = port;
5018 vcpu->arch.pio.in = in;
5019 vcpu->arch.pio.count = count;
5020 vcpu->arch.pio.size = size;
5021
5022 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5023 vcpu->arch.pio.count = 0;
5024 return 1;
5025 }
5026
5027 vcpu->run->exit_reason = KVM_EXIT_IO;
5028 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5029 vcpu->run->io.size = size;
5030 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5031 vcpu->run->io.count = count;
5032 vcpu->run->io.port = port;
5033
5034 return 0;
5035 }
5036
5037 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5038 int size, unsigned short port, void *val,
5039 unsigned int count)
5040 {
5041 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5042 int ret;
5043
5044 if (vcpu->arch.pio.count)
5045 goto data_avail;
5046
5047 memset(vcpu->arch.pio_data, 0, size * count);
5048
5049 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5050 if (ret) {
5051 data_avail:
5052 memcpy(val, vcpu->arch.pio_data, size * count);
5053 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5054 vcpu->arch.pio.count = 0;
5055 return 1;
5056 }
5057
5058 return 0;
5059 }
5060
5061 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5062 int size, unsigned short port,
5063 const void *val, unsigned int count)
5064 {
5065 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5066
5067 memcpy(vcpu->arch.pio_data, val, size * count);
5068 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
5069 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
5070 }
5071
5072 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
5073 {
5074 return kvm_x86_ops->get_segment_base(vcpu, seg);
5075 }
5076
5077 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
5078 {
5079 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
5080 }
5081
5082 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
5083 {
5084 if (!need_emulate_wbinvd(vcpu))
5085 return X86EMUL_CONTINUE;
5086
5087 if (kvm_x86_ops->has_wbinvd_exit()) {
5088 int cpu = get_cpu();
5089
5090 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5091 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
5092 wbinvd_ipi, NULL, 1);
5093 put_cpu();
5094 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
5095 } else
5096 wbinvd();
5097 return X86EMUL_CONTINUE;
5098 }
5099
5100 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
5101 {
5102 kvm_emulate_wbinvd_noskip(vcpu);
5103 return kvm_skip_emulated_instruction(vcpu);
5104 }
5105 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
5106
5107
5108
5109 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
5110 {
5111 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
5112 }
5113
5114 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
5115 unsigned long *dest)
5116 {
5117 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
5118 }
5119
5120 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
5121 unsigned long value)
5122 {
5123
5124 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
5125 }
5126
5127 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5128 {
5129 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5130 }
5131
5132 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5133 {
5134 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5135 unsigned long value;
5136
5137 switch (cr) {
5138 case 0:
5139 value = kvm_read_cr0(vcpu);
5140 break;
5141 case 2:
5142 value = vcpu->arch.cr2;
5143 break;
5144 case 3:
5145 value = kvm_read_cr3(vcpu);
5146 break;
5147 case 4:
5148 value = kvm_read_cr4(vcpu);
5149 break;
5150 case 8:
5151 value = kvm_get_cr8(vcpu);
5152 break;
5153 default:
5154 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5155 return 0;
5156 }
5157
5158 return value;
5159 }
5160
5161 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5162 {
5163 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5164 int res = 0;
5165
5166 switch (cr) {
5167 case 0:
5168 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5169 break;
5170 case 2:
5171 vcpu->arch.cr2 = val;
5172 break;
5173 case 3:
5174 res = kvm_set_cr3(vcpu, val);
5175 break;
5176 case 4:
5177 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5178 break;
5179 case 8:
5180 res = kvm_set_cr8(vcpu, val);
5181 break;
5182 default:
5183 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5184 res = -1;
5185 }
5186
5187 return res;
5188 }
5189
5190 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5191 {
5192 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5193 }
5194
5195 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5196 {
5197 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5198 }
5199
5200 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5201 {
5202 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5203 }
5204
5205 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5206 {
5207 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5208 }
5209
5210 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5211 {
5212 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5213 }
5214
5215 static unsigned long emulator_get_cached_segment_base(
5216 struct x86_emulate_ctxt *ctxt, int seg)
5217 {
5218 return get_segment_base(emul_to_vcpu(ctxt), seg);
5219 }
5220
5221 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5222 struct desc_struct *desc, u32 *base3,
5223 int seg)
5224 {
5225 struct kvm_segment var;
5226
5227 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5228 *selector = var.selector;
5229
5230 if (var.unusable) {
5231 memset(desc, 0, sizeof(*desc));
5232 if (base3)
5233 *base3 = 0;
5234 return false;
5235 }
5236
5237 if (var.g)
5238 var.limit >>= 12;
5239 set_desc_limit(desc, var.limit);
5240 set_desc_base(desc, (unsigned long)var.base);
5241 #ifdef CONFIG_X86_64
5242 if (base3)
5243 *base3 = var.base >> 32;
5244 #endif
5245 desc->type = var.type;
5246 desc->s = var.s;
5247 desc->dpl = var.dpl;
5248 desc->p = var.present;
5249 desc->avl = var.avl;
5250 desc->l = var.l;
5251 desc->d = var.db;
5252 desc->g = var.g;
5253
5254 return true;
5255 }
5256
5257 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5258 struct desc_struct *desc, u32 base3,
5259 int seg)
5260 {
5261 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5262 struct kvm_segment var;
5263
5264 var.selector = selector;
5265 var.base = get_desc_base(desc);
5266 #ifdef CONFIG_X86_64
5267 var.base |= ((u64)base3) << 32;
5268 #endif
5269 var.limit = get_desc_limit(desc);
5270 if (desc->g)
5271 var.limit = (var.limit << 12) | 0xfff;
5272 var.type = desc->type;
5273 var.dpl = desc->dpl;
5274 var.db = desc->d;
5275 var.s = desc->s;
5276 var.l = desc->l;
5277 var.g = desc->g;
5278 var.avl = desc->avl;
5279 var.present = desc->p;
5280 var.unusable = !var.present;
5281 var.padding = 0;
5282
5283 kvm_set_segment(vcpu, &var, seg);
5284 return;
5285 }
5286
5287 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5288 u32 msr_index, u64 *pdata)
5289 {
5290 struct msr_data msr;
5291 int r;
5292
5293 msr.index = msr_index;
5294 msr.host_initiated = false;
5295 r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5296 if (r)
5297 return r;
5298
5299 *pdata = msr.data;
5300 return 0;
5301 }
5302
5303 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5304 u32 msr_index, u64 data)
5305 {
5306 struct msr_data msr;
5307
5308 msr.data = data;
5309 msr.index = msr_index;
5310 msr.host_initiated = false;
5311 return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5312 }
5313
5314 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5315 {
5316 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5317
5318 return vcpu->arch.smbase;
5319 }
5320
5321 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5322 {
5323 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5324
5325 vcpu->arch.smbase = smbase;
5326 }
5327
5328 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5329 u32 pmc)
5330 {
5331 return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5332 }
5333
5334 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5335 u32 pmc, u64 *pdata)
5336 {
5337 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5338 }
5339
5340 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5341 {
5342 emul_to_vcpu(ctxt)->arch.halt_request = 1;
5343 }
5344
5345 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5346 struct x86_instruction_info *info,
5347 enum x86_intercept_stage stage)
5348 {
5349 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5350 }
5351
5352 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5353 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
5354 {
5355 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
5356 }
5357
5358 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5359 {
5360 return kvm_register_read(emul_to_vcpu(ctxt), reg);
5361 }
5362
5363 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5364 {
5365 kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5366 }
5367
5368 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5369 {
5370 kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5371 }
5372
5373 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
5374 {
5375 return emul_to_vcpu(ctxt)->arch.hflags;
5376 }
5377
5378 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
5379 {
5380 kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags);
5381 }
5382
5383 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt, u64 smbase)
5384 {
5385 return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smbase);
5386 }
5387
5388 static const struct x86_emulate_ops emulate_ops = {
5389 .read_gpr = emulator_read_gpr,
5390 .write_gpr = emulator_write_gpr,
5391 .read_std = kvm_read_guest_virt_system,
5392 .write_std = kvm_write_guest_virt_system,
5393 .read_phys = kvm_read_guest_phys_system,
5394 .fetch = kvm_fetch_guest_virt,
5395 .read_emulated = emulator_read_emulated,
5396 .write_emulated = emulator_write_emulated,
5397 .cmpxchg_emulated = emulator_cmpxchg_emulated,
5398 .invlpg = emulator_invlpg,
5399 .pio_in_emulated = emulator_pio_in_emulated,
5400 .pio_out_emulated = emulator_pio_out_emulated,
5401 .get_segment = emulator_get_segment,
5402 .set_segment = emulator_set_segment,
5403 .get_cached_segment_base = emulator_get_cached_segment_base,
5404 .get_gdt = emulator_get_gdt,
5405 .get_idt = emulator_get_idt,
5406 .set_gdt = emulator_set_gdt,
5407 .set_idt = emulator_set_idt,
5408 .get_cr = emulator_get_cr,
5409 .set_cr = emulator_set_cr,
5410 .cpl = emulator_get_cpl,
5411 .get_dr = emulator_get_dr,
5412 .set_dr = emulator_set_dr,
5413 .get_smbase = emulator_get_smbase,
5414 .set_smbase = emulator_set_smbase,
5415 .set_msr = emulator_set_msr,
5416 .get_msr = emulator_get_msr,
5417 .check_pmc = emulator_check_pmc,
5418 .read_pmc = emulator_read_pmc,
5419 .halt = emulator_halt,
5420 .wbinvd = emulator_wbinvd,
5421 .fix_hypercall = emulator_fix_hypercall,
5422 .intercept = emulator_intercept,
5423 .get_cpuid = emulator_get_cpuid,
5424 .set_nmi_mask = emulator_set_nmi_mask,
5425 .get_hflags = emulator_get_hflags,
5426 .set_hflags = emulator_set_hflags,
5427 .pre_leave_smm = emulator_pre_leave_smm,
5428 };
5429
5430 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5431 {
5432 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5433 /*
5434 * an sti; sti; sequence only disable interrupts for the first
5435 * instruction. So, if the last instruction, be it emulated or
5436 * not, left the system with the INT_STI flag enabled, it
5437 * means that the last instruction is an sti. We should not
5438 * leave the flag on in this case. The same goes for mov ss
5439 */
5440 if (int_shadow & mask)
5441 mask = 0;
5442 if (unlikely(int_shadow || mask)) {
5443 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5444 if (!mask)
5445 kvm_make_request(KVM_REQ_EVENT, vcpu);
5446 }
5447 }
5448
5449 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5450 {
5451 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5452 if (ctxt->exception.vector == PF_VECTOR)
5453 return kvm_propagate_fault(vcpu, &ctxt->exception);
5454
5455 if (ctxt->exception.error_code_valid)
5456 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5457 ctxt->exception.error_code);
5458 else
5459 kvm_queue_exception(vcpu, ctxt->exception.vector);
5460 return false;
5461 }
5462
5463 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5464 {
5465 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5466 int cs_db, cs_l;
5467
5468 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5469
5470 ctxt->eflags = kvm_get_rflags(vcpu);
5471 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
5472
5473 ctxt->eip = kvm_rip_read(vcpu);
5474 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
5475 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
5476 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
5477 cs_db ? X86EMUL_MODE_PROT32 :
5478 X86EMUL_MODE_PROT16;
5479 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5480 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5481 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5482
5483 init_decode_cache(ctxt);
5484 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5485 }
5486
5487 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5488 {
5489 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5490 int ret;
5491
5492 init_emulate_ctxt(vcpu);
5493
5494 ctxt->op_bytes = 2;
5495 ctxt->ad_bytes = 2;
5496 ctxt->_eip = ctxt->eip + inc_eip;
5497 ret = emulate_int_real(ctxt, irq);
5498
5499 if (ret != X86EMUL_CONTINUE)
5500 return EMULATE_FAIL;
5501
5502 ctxt->eip = ctxt->_eip;
5503 kvm_rip_write(vcpu, ctxt->eip);
5504 kvm_set_rflags(vcpu, ctxt->eflags);
5505
5506 if (irq == NMI_VECTOR)
5507 vcpu->arch.nmi_pending = 0;
5508 else
5509 vcpu->arch.interrupt.pending = false;
5510
5511 return EMULATE_DONE;
5512 }
5513 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5514
5515 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5516 {
5517 int r = EMULATE_DONE;
5518
5519 ++vcpu->stat.insn_emulation_fail;
5520 trace_kvm_emulate_insn_failed(vcpu);
5521 if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5522 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5523 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5524 vcpu->run->internal.ndata = 0;
5525 r = EMULATE_USER_EXIT;
5526 }
5527 kvm_queue_exception(vcpu, UD_VECTOR);
5528
5529 return r;
5530 }
5531
5532 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5533 bool write_fault_to_shadow_pgtable,
5534 int emulation_type)
5535 {
5536 gpa_t gpa = cr2;
5537 kvm_pfn_t pfn;
5538
5539 if (emulation_type & EMULTYPE_NO_REEXECUTE)
5540 return false;
5541
5542 if (!vcpu->arch.mmu.direct_map) {
5543 /*
5544 * Write permission should be allowed since only
5545 * write access need to be emulated.
5546 */
5547 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5548
5549 /*
5550 * If the mapping is invalid in guest, let cpu retry
5551 * it to generate fault.
5552 */
5553 if (gpa == UNMAPPED_GVA)
5554 return true;
5555 }
5556
5557 /*
5558 * Do not retry the unhandleable instruction if it faults on the
5559 * readonly host memory, otherwise it will goto a infinite loop:
5560 * retry instruction -> write #PF -> emulation fail -> retry
5561 * instruction -> ...
5562 */
5563 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5564
5565 /*
5566 * If the instruction failed on the error pfn, it can not be fixed,
5567 * report the error to userspace.
5568 */
5569 if (is_error_noslot_pfn(pfn))
5570 return false;
5571
5572 kvm_release_pfn_clean(pfn);
5573
5574 /* The instructions are well-emulated on direct mmu. */
5575 if (vcpu->arch.mmu.direct_map) {
5576 unsigned int indirect_shadow_pages;
5577
5578 spin_lock(&vcpu->kvm->mmu_lock);
5579 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5580 spin_unlock(&vcpu->kvm->mmu_lock);
5581
5582 if (indirect_shadow_pages)
5583 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5584
5585 return true;
5586 }
5587
5588 /*
5589 * if emulation was due to access to shadowed page table
5590 * and it failed try to unshadow page and re-enter the
5591 * guest to let CPU execute the instruction.
5592 */
5593 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5594
5595 /*
5596 * If the access faults on its page table, it can not
5597 * be fixed by unprotecting shadow page and it should
5598 * be reported to userspace.
5599 */
5600 return !write_fault_to_shadow_pgtable;
5601 }
5602
5603 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5604 unsigned long cr2, int emulation_type)
5605 {
5606 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5607 unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5608
5609 last_retry_eip = vcpu->arch.last_retry_eip;
5610 last_retry_addr = vcpu->arch.last_retry_addr;
5611
5612 /*
5613 * If the emulation is caused by #PF and it is non-page_table
5614 * writing instruction, it means the VM-EXIT is caused by shadow
5615 * page protected, we can zap the shadow page and retry this
5616 * instruction directly.
5617 *
5618 * Note: if the guest uses a non-page-table modifying instruction
5619 * on the PDE that points to the instruction, then we will unmap
5620 * the instruction and go to an infinite loop. So, we cache the
5621 * last retried eip and the last fault address, if we meet the eip
5622 * and the address again, we can break out of the potential infinite
5623 * loop.
5624 */
5625 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5626
5627 if (!(emulation_type & EMULTYPE_RETRY))
5628 return false;
5629
5630 if (x86_page_table_writing_insn(ctxt))
5631 return false;
5632
5633 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5634 return false;
5635
5636 vcpu->arch.last_retry_eip = ctxt->eip;
5637 vcpu->arch.last_retry_addr = cr2;
5638
5639 if (!vcpu->arch.mmu.direct_map)
5640 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5641
5642 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5643
5644 return true;
5645 }
5646
5647 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5648 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5649
5650 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5651 {
5652 if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5653 /* This is a good place to trace that we are exiting SMM. */
5654 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5655
5656 /* Process a latched INIT or SMI, if any. */
5657 kvm_make_request(KVM_REQ_EVENT, vcpu);
5658 }
5659
5660 kvm_mmu_reset_context(vcpu);
5661 }
5662
5663 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5664 {
5665 unsigned changed = vcpu->arch.hflags ^ emul_flags;
5666
5667 vcpu->arch.hflags = emul_flags;
5668
5669 if (changed & HF_SMM_MASK)
5670 kvm_smm_changed(vcpu);
5671 }
5672
5673 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5674 unsigned long *db)
5675 {
5676 u32 dr6 = 0;
5677 int i;
5678 u32 enable, rwlen;
5679
5680 enable = dr7;
5681 rwlen = dr7 >> 16;
5682 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5683 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5684 dr6 |= (1 << i);
5685 return dr6;
5686 }
5687
5688 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
5689 {
5690 struct kvm_run *kvm_run = vcpu->run;
5691
5692 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5693 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
5694 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5695 kvm_run->debug.arch.exception = DB_VECTOR;
5696 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5697 *r = EMULATE_USER_EXIT;
5698 } else {
5699 /*
5700 * "Certain debug exceptions may clear bit 0-3. The
5701 * remaining contents of the DR6 register are never
5702 * cleared by the processor".
5703 */
5704 vcpu->arch.dr6 &= ~15;
5705 vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5706 kvm_queue_exception(vcpu, DB_VECTOR);
5707 }
5708 }
5709
5710 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
5711 {
5712 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5713 int r = EMULATE_DONE;
5714
5715 kvm_x86_ops->skip_emulated_instruction(vcpu);
5716
5717 /*
5718 * rflags is the old, "raw" value of the flags. The new value has
5719 * not been saved yet.
5720 *
5721 * This is correct even for TF set by the guest, because "the
5722 * processor will not generate this exception after the instruction
5723 * that sets the TF flag".
5724 */
5725 if (unlikely(rflags & X86_EFLAGS_TF))
5726 kvm_vcpu_do_singlestep(vcpu, &r);
5727 return r == EMULATE_DONE;
5728 }
5729 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
5730
5731 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5732 {
5733 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5734 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5735 struct kvm_run *kvm_run = vcpu->run;
5736 unsigned long eip = kvm_get_linear_rip(vcpu);
5737 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5738 vcpu->arch.guest_debug_dr7,
5739 vcpu->arch.eff_db);
5740
5741 if (dr6 != 0) {
5742 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5743 kvm_run->debug.arch.pc = eip;
5744 kvm_run->debug.arch.exception = DB_VECTOR;
5745 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5746 *r = EMULATE_USER_EXIT;
5747 return true;
5748 }
5749 }
5750
5751 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5752 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5753 unsigned long eip = kvm_get_linear_rip(vcpu);
5754 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5755 vcpu->arch.dr7,
5756 vcpu->arch.db);
5757
5758 if (dr6 != 0) {
5759 vcpu->arch.dr6 &= ~15;
5760 vcpu->arch.dr6 |= dr6 | DR6_RTM;
5761 kvm_queue_exception(vcpu, DB_VECTOR);
5762 *r = EMULATE_DONE;
5763 return true;
5764 }
5765 }
5766
5767 return false;
5768 }
5769
5770 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5771 unsigned long cr2,
5772 int emulation_type,
5773 void *insn,
5774 int insn_len)
5775 {
5776 int r;
5777 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5778 bool writeback = true;
5779 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5780
5781 vcpu->arch.l1tf_flush_l1d = true;
5782
5783 /*
5784 * Clear write_fault_to_shadow_pgtable here to ensure it is
5785 * never reused.
5786 */
5787 vcpu->arch.write_fault_to_shadow_pgtable = false;
5788 kvm_clear_exception_queue(vcpu);
5789
5790 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5791 init_emulate_ctxt(vcpu);
5792
5793 /*
5794 * We will reenter on the same instruction since
5795 * we do not set complete_userspace_io. This does not
5796 * handle watchpoints yet, those would be handled in
5797 * the emulate_ops.
5798 */
5799 if (!(emulation_type & EMULTYPE_SKIP) &&
5800 kvm_vcpu_check_breakpoint(vcpu, &r))
5801 return r;
5802
5803 ctxt->interruptibility = 0;
5804 ctxt->have_exception = false;
5805 ctxt->exception.vector = -1;
5806 ctxt->perm_ok = false;
5807
5808 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5809
5810 r = x86_decode_insn(ctxt, insn, insn_len);
5811
5812 trace_kvm_emulate_insn_start(vcpu);
5813 ++vcpu->stat.insn_emulation;
5814 if (r != EMULATION_OK) {
5815 if (emulation_type & EMULTYPE_TRAP_UD)
5816 return EMULATE_FAIL;
5817 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5818 emulation_type))
5819 return EMULATE_DONE;
5820 if (ctxt->have_exception && inject_emulated_exception(vcpu))
5821 return EMULATE_DONE;
5822 if (emulation_type & EMULTYPE_SKIP)
5823 return EMULATE_FAIL;
5824 return handle_emulation_failure(vcpu);
5825 }
5826 }
5827
5828 if (emulation_type & EMULTYPE_SKIP) {
5829 kvm_rip_write(vcpu, ctxt->_eip);
5830 if (ctxt->eflags & X86_EFLAGS_RF)
5831 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5832 return EMULATE_DONE;
5833 }
5834
5835 if (retry_instruction(ctxt, cr2, emulation_type))
5836 return EMULATE_DONE;
5837
5838 /* this is needed for vmware backdoor interface to work since it
5839 changes registers values during IO operation */
5840 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5841 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5842 emulator_invalidate_register_cache(ctxt);
5843 }
5844
5845 restart:
5846 /* Save the faulting GPA (cr2) in the address field */
5847 ctxt->exception.address = cr2;
5848
5849 r = x86_emulate_insn(ctxt);
5850
5851 if (r == EMULATION_INTERCEPTED)
5852 return EMULATE_DONE;
5853
5854 if (r == EMULATION_FAILED) {
5855 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5856 emulation_type))
5857 return EMULATE_DONE;
5858
5859 return handle_emulation_failure(vcpu);
5860 }
5861
5862 if (ctxt->have_exception) {
5863 r = EMULATE_DONE;
5864 if (inject_emulated_exception(vcpu))
5865 return r;
5866 } else if (vcpu->arch.pio.count) {
5867 if (!vcpu->arch.pio.in) {
5868 /* FIXME: return into emulator if single-stepping. */
5869 vcpu->arch.pio.count = 0;
5870 } else {
5871 writeback = false;
5872 vcpu->arch.complete_userspace_io = complete_emulated_pio;
5873 }
5874 r = EMULATE_USER_EXIT;
5875 } else if (vcpu->mmio_needed) {
5876 if (!vcpu->mmio_is_write)
5877 writeback = false;
5878 r = EMULATE_USER_EXIT;
5879 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5880 } else if (r == EMULATION_RESTART)
5881 goto restart;
5882 else
5883 r = EMULATE_DONE;
5884
5885 if (writeback) {
5886 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5887 toggle_interruptibility(vcpu, ctxt->interruptibility);
5888 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5889 kvm_rip_write(vcpu, ctxt->eip);
5890 if (r == EMULATE_DONE &&
5891 (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
5892 kvm_vcpu_do_singlestep(vcpu, &r);
5893 if (!ctxt->have_exception ||
5894 exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5895 __kvm_set_rflags(vcpu, ctxt->eflags);
5896
5897 /*
5898 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5899 * do nothing, and it will be requested again as soon as
5900 * the shadow expires. But we still need to check here,
5901 * because POPF has no interrupt shadow.
5902 */
5903 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5904 kvm_make_request(KVM_REQ_EVENT, vcpu);
5905 } else
5906 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5907
5908 return r;
5909 }
5910 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5911
5912 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5913 {
5914 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5915 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5916 size, port, &val, 1);
5917 /* do not return to emulator after return from userspace */
5918 vcpu->arch.pio.count = 0;
5919 return ret;
5920 }
5921 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5922
5923 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
5924 {
5925 unsigned long val;
5926
5927 /* We should only ever be called with arch.pio.count equal to 1 */
5928 BUG_ON(vcpu->arch.pio.count != 1);
5929
5930 /* For size less than 4 we merge, else we zero extend */
5931 val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
5932 : 0;
5933
5934 /*
5935 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
5936 * the copy and tracing
5937 */
5938 emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
5939 vcpu->arch.pio.port, &val, 1);
5940 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5941
5942 return 1;
5943 }
5944
5945 int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, unsigned short port)
5946 {
5947 unsigned long val;
5948 int ret;
5949
5950 /* For size less than 4 we merge, else we zero extend */
5951 val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
5952
5953 ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
5954 &val, 1);
5955 if (ret) {
5956 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5957 return ret;
5958 }
5959
5960 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
5961
5962 return 0;
5963 }
5964 EXPORT_SYMBOL_GPL(kvm_fast_pio_in);
5965
5966 static int kvmclock_cpu_down_prep(unsigned int cpu)
5967 {
5968 __this_cpu_write(cpu_tsc_khz, 0);
5969 return 0;
5970 }
5971
5972 static void tsc_khz_changed(void *data)
5973 {
5974 struct cpufreq_freqs *freq = data;
5975 unsigned long khz = 0;
5976
5977 if (data)
5978 khz = freq->new;
5979 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5980 khz = cpufreq_quick_get(raw_smp_processor_id());
5981 if (!khz)
5982 khz = tsc_khz;
5983 __this_cpu_write(cpu_tsc_khz, khz);
5984 }
5985
5986 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5987 void *data)
5988 {
5989 struct cpufreq_freqs *freq = data;
5990 struct kvm *kvm;
5991 struct kvm_vcpu *vcpu;
5992 int i, send_ipi = 0;
5993
5994 /*
5995 * We allow guests to temporarily run on slowing clocks,
5996 * provided we notify them after, or to run on accelerating
5997 * clocks, provided we notify them before. Thus time never
5998 * goes backwards.
5999 *
6000 * However, we have a problem. We can't atomically update
6001 * the frequency of a given CPU from this function; it is
6002 * merely a notifier, which can be called from any CPU.
6003 * Changing the TSC frequency at arbitrary points in time
6004 * requires a recomputation of local variables related to
6005 * the TSC for each VCPU. We must flag these local variables
6006 * to be updated and be sure the update takes place with the
6007 * new frequency before any guests proceed.
6008 *
6009 * Unfortunately, the combination of hotplug CPU and frequency
6010 * change creates an intractable locking scenario; the order
6011 * of when these callouts happen is undefined with respect to
6012 * CPU hotplug, and they can race with each other. As such,
6013 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
6014 * undefined; you can actually have a CPU frequency change take
6015 * place in between the computation of X and the setting of the
6016 * variable. To protect against this problem, all updates of
6017 * the per_cpu tsc_khz variable are done in an interrupt
6018 * protected IPI, and all callers wishing to update the value
6019 * must wait for a synchronous IPI to complete (which is trivial
6020 * if the caller is on the CPU already). This establishes the
6021 * necessary total order on variable updates.
6022 *
6023 * Note that because a guest time update may take place
6024 * anytime after the setting of the VCPU's request bit, the
6025 * correct TSC value must be set before the request. However,
6026 * to ensure the update actually makes it to any guest which
6027 * starts running in hardware virtualization between the set
6028 * and the acquisition of the spinlock, we must also ping the
6029 * CPU after setting the request bit.
6030 *
6031 */
6032
6033 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
6034 return 0;
6035 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
6036 return 0;
6037
6038 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6039
6040 spin_lock(&kvm_lock);
6041 list_for_each_entry(kvm, &vm_list, vm_list) {
6042 kvm_for_each_vcpu(i, vcpu, kvm) {
6043 if (vcpu->cpu != freq->cpu)
6044 continue;
6045 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6046 if (vcpu->cpu != smp_processor_id())
6047 send_ipi = 1;
6048 }
6049 }
6050 spin_unlock(&kvm_lock);
6051
6052 if (freq->old < freq->new && send_ipi) {
6053 /*
6054 * We upscale the frequency. Must make the guest
6055 * doesn't see old kvmclock values while running with
6056 * the new frequency, otherwise we risk the guest sees
6057 * time go backwards.
6058 *
6059 * In case we update the frequency for another cpu
6060 * (which might be in guest context) send an interrupt
6061 * to kick the cpu out of guest context. Next time
6062 * guest context is entered kvmclock will be updated,
6063 * so the guest will not see stale values.
6064 */
6065 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6066 }
6067 return 0;
6068 }
6069
6070 static struct notifier_block kvmclock_cpufreq_notifier_block = {
6071 .notifier_call = kvmclock_cpufreq_notifier
6072 };
6073
6074 static int kvmclock_cpu_online(unsigned int cpu)
6075 {
6076 tsc_khz_changed(NULL);
6077 return 0;
6078 }
6079
6080 static void kvm_timer_init(void)
6081 {
6082 max_tsc_khz = tsc_khz;
6083
6084 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
6085 #ifdef CONFIG_CPU_FREQ
6086 struct cpufreq_policy policy;
6087 int cpu;
6088
6089 memset(&policy, 0, sizeof(policy));
6090 cpu = get_cpu();
6091 cpufreq_get_policy(&policy, cpu);
6092 if (policy.cpuinfo.max_freq)
6093 max_tsc_khz = policy.cpuinfo.max_freq;
6094 put_cpu();
6095 #endif
6096 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
6097 CPUFREQ_TRANSITION_NOTIFIER);
6098 }
6099 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
6100
6101 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
6102 kvmclock_cpu_online, kvmclock_cpu_down_prep);
6103 }
6104
6105 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
6106
6107 int kvm_is_in_guest(void)
6108 {
6109 return __this_cpu_read(current_vcpu) != NULL;
6110 }
6111
6112 static int kvm_is_user_mode(void)
6113 {
6114 int user_mode = 3;
6115
6116 if (__this_cpu_read(current_vcpu))
6117 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
6118
6119 return user_mode != 0;
6120 }
6121
6122 static unsigned long kvm_get_guest_ip(void)
6123 {
6124 unsigned long ip = 0;
6125
6126 if (__this_cpu_read(current_vcpu))
6127 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
6128
6129 return ip;
6130 }
6131
6132 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6133 .is_in_guest = kvm_is_in_guest,
6134 .is_user_mode = kvm_is_user_mode,
6135 .get_guest_ip = kvm_get_guest_ip,
6136 };
6137
6138 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
6139 {
6140 __this_cpu_write(current_vcpu, vcpu);
6141 }
6142 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
6143
6144 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
6145 {
6146 __this_cpu_write(current_vcpu, NULL);
6147 }
6148 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
6149
6150 static void kvm_set_mmio_spte_mask(void)
6151 {
6152 u64 mask;
6153 int maxphyaddr = boot_cpu_data.x86_phys_bits;
6154
6155 /*
6156 * Set the reserved bits and the present bit of an paging-structure
6157 * entry to generate page fault with PFER.RSV = 1.
6158 */
6159 /* Mask the reserved physical address bits. */
6160 mask = rsvd_bits(maxphyaddr, 51);
6161
6162 /* Set the present bit. */
6163 mask |= 1ull;
6164
6165 #ifdef CONFIG_X86_64
6166 /*
6167 * If reserved bit is not supported, clear the present bit to disable
6168 * mmio page fault.
6169 */
6170 if (maxphyaddr == 52)
6171 mask &= ~1ull;
6172 #endif
6173
6174 kvm_mmu_set_mmio_spte_mask(mask, mask);
6175 }
6176
6177 #ifdef CONFIG_X86_64
6178 static void pvclock_gtod_update_fn(struct work_struct *work)
6179 {
6180 struct kvm *kvm;
6181
6182 struct kvm_vcpu *vcpu;
6183 int i;
6184
6185 spin_lock(&kvm_lock);
6186 list_for_each_entry(kvm, &vm_list, vm_list)
6187 kvm_for_each_vcpu(i, vcpu, kvm)
6188 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6189 atomic_set(&kvm_guest_has_master_clock, 0);
6190 spin_unlock(&kvm_lock);
6191 }
6192
6193 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6194
6195 /*
6196 * Notification about pvclock gtod data update.
6197 */
6198 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6199 void *priv)
6200 {
6201 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6202 struct timekeeper *tk = priv;
6203
6204 update_pvclock_gtod(tk);
6205
6206 /* disable master clock if host does not trust, or does not
6207 * use, TSC clocksource
6208 */
6209 if (gtod->clock.vclock_mode != VCLOCK_TSC &&
6210 atomic_read(&kvm_guest_has_master_clock) != 0)
6211 queue_work(system_long_wq, &pvclock_gtod_work);
6212
6213 return 0;
6214 }
6215
6216 static struct notifier_block pvclock_gtod_notifier = {
6217 .notifier_call = pvclock_gtod_notify,
6218 };
6219 #endif
6220
6221 int kvm_arch_init(void *opaque)
6222 {
6223 int r;
6224 struct kvm_x86_ops *ops = opaque;
6225
6226 if (kvm_x86_ops) {
6227 printk(KERN_ERR "kvm: already loaded the other module\n");
6228 r = -EEXIST;
6229 goto out;
6230 }
6231
6232 if (!ops->cpu_has_kvm_support()) {
6233 printk(KERN_ERR "kvm: no hardware support\n");
6234 r = -EOPNOTSUPP;
6235 goto out;
6236 }
6237 if (ops->disabled_by_bios()) {
6238 printk(KERN_WARNING "kvm: disabled by bios\n");
6239 r = -EOPNOTSUPP;
6240 goto out;
6241 }
6242
6243 r = -ENOMEM;
6244 shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6245 if (!shared_msrs) {
6246 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6247 goto out;
6248 }
6249
6250 r = kvm_mmu_module_init();
6251 if (r)
6252 goto out_free_percpu;
6253
6254 kvm_set_mmio_spte_mask();
6255
6256 kvm_x86_ops = ops;
6257
6258 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6259 PT_DIRTY_MASK, PT64_NX_MASK, 0,
6260 PT_PRESENT_MASK, 0, sme_me_mask);
6261 kvm_timer_init();
6262
6263 perf_register_guest_info_callbacks(&kvm_guest_cbs);
6264
6265 if (boot_cpu_has(X86_FEATURE_XSAVE))
6266 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6267
6268 kvm_lapic_init();
6269 #ifdef CONFIG_X86_64
6270 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6271 #endif
6272
6273 return 0;
6274
6275 out_free_percpu:
6276 free_percpu(shared_msrs);
6277 out:
6278 return r;
6279 }
6280
6281 void kvm_arch_exit(void)
6282 {
6283 kvm_lapic_exit();
6284 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6285
6286 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6287 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6288 CPUFREQ_TRANSITION_NOTIFIER);
6289 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6290 #ifdef CONFIG_X86_64
6291 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6292 #endif
6293 kvm_x86_ops = NULL;
6294 kvm_mmu_module_exit();
6295 free_percpu(shared_msrs);
6296 }
6297
6298 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6299 {
6300 ++vcpu->stat.halt_exits;
6301 if (lapic_in_kernel(vcpu)) {
6302 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6303 return 1;
6304 } else {
6305 vcpu->run->exit_reason = KVM_EXIT_HLT;
6306 return 0;
6307 }
6308 }
6309 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6310
6311 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6312 {
6313 int ret = kvm_skip_emulated_instruction(vcpu);
6314 /*
6315 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6316 * KVM_EXIT_DEBUG here.
6317 */
6318 return kvm_vcpu_halt(vcpu) && ret;
6319 }
6320 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6321
6322 #ifdef CONFIG_X86_64
6323 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
6324 unsigned long clock_type)
6325 {
6326 struct kvm_clock_pairing clock_pairing;
6327 struct timespec ts;
6328 u64 cycle;
6329 int ret;
6330
6331 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
6332 return -KVM_EOPNOTSUPP;
6333
6334 if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
6335 return -KVM_EOPNOTSUPP;
6336
6337 clock_pairing.sec = ts.tv_sec;
6338 clock_pairing.nsec = ts.tv_nsec;
6339 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
6340 clock_pairing.flags = 0;
6341
6342 ret = 0;
6343 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
6344 sizeof(struct kvm_clock_pairing)))
6345 ret = -KVM_EFAULT;
6346
6347 return ret;
6348 }
6349 #endif
6350
6351 /*
6352 * kvm_pv_kick_cpu_op: Kick a vcpu.
6353 *
6354 * @apicid - apicid of vcpu to be kicked.
6355 */
6356 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6357 {
6358 struct kvm_lapic_irq lapic_irq;
6359
6360 lapic_irq.shorthand = 0;
6361 lapic_irq.dest_mode = 0;
6362 lapic_irq.level = 0;
6363 lapic_irq.dest_id = apicid;
6364 lapic_irq.msi_redir_hint = false;
6365
6366 lapic_irq.delivery_mode = APIC_DM_REMRD;
6367 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6368 }
6369
6370 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6371 {
6372 vcpu->arch.apicv_active = false;
6373 kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6374 }
6375
6376 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6377 {
6378 unsigned long nr, a0, a1, a2, a3, ret;
6379 int op_64_bit, r;
6380
6381 r = kvm_skip_emulated_instruction(vcpu);
6382
6383 if (kvm_hv_hypercall_enabled(vcpu->kvm))
6384 return kvm_hv_hypercall(vcpu);
6385
6386 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6387 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6388 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6389 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6390 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6391
6392 trace_kvm_hypercall(nr, a0, a1, a2, a3);
6393
6394 op_64_bit = is_64_bit_mode(vcpu);
6395 if (!op_64_bit) {
6396 nr &= 0xFFFFFFFF;
6397 a0 &= 0xFFFFFFFF;
6398 a1 &= 0xFFFFFFFF;
6399 a2 &= 0xFFFFFFFF;
6400 a3 &= 0xFFFFFFFF;
6401 }
6402
6403 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6404 ret = -KVM_EPERM;
6405 goto out;
6406 }
6407
6408 switch (nr) {
6409 case KVM_HC_VAPIC_POLL_IRQ:
6410 ret = 0;
6411 break;
6412 case KVM_HC_KICK_CPU:
6413 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6414 ret = 0;
6415 break;
6416 #ifdef CONFIG_X86_64
6417 case KVM_HC_CLOCK_PAIRING:
6418 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
6419 break;
6420 #endif
6421 default:
6422 ret = -KVM_ENOSYS;
6423 break;
6424 }
6425 out:
6426 if (!op_64_bit)
6427 ret = (u32)ret;
6428 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6429 ++vcpu->stat.hypercalls;
6430 return r;
6431 }
6432 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6433
6434 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6435 {
6436 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6437 char instruction[3];
6438 unsigned long rip = kvm_rip_read(vcpu);
6439
6440 kvm_x86_ops->patch_hypercall(vcpu, instruction);
6441
6442 return emulator_write_emulated(ctxt, rip, instruction, 3,
6443 &ctxt->exception);
6444 }
6445
6446 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6447 {
6448 return vcpu->run->request_interrupt_window &&
6449 likely(!pic_in_kernel(vcpu->kvm));
6450 }
6451
6452 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6453 {
6454 struct kvm_run *kvm_run = vcpu->run;
6455
6456 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6457 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6458 kvm_run->cr8 = kvm_get_cr8(vcpu);
6459 kvm_run->apic_base = kvm_get_apic_base(vcpu);
6460 kvm_run->ready_for_interrupt_injection =
6461 pic_in_kernel(vcpu->kvm) ||
6462 kvm_vcpu_ready_for_interrupt_injection(vcpu);
6463 }
6464
6465 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6466 {
6467 int max_irr, tpr;
6468
6469 if (!kvm_x86_ops->update_cr8_intercept)
6470 return;
6471
6472 if (!lapic_in_kernel(vcpu))
6473 return;
6474
6475 if (vcpu->arch.apicv_active)
6476 return;
6477
6478 if (!vcpu->arch.apic->vapic_addr)
6479 max_irr = kvm_lapic_find_highest_irr(vcpu);
6480 else
6481 max_irr = -1;
6482
6483 if (max_irr != -1)
6484 max_irr >>= 4;
6485
6486 tpr = kvm_lapic_get_cr8(vcpu);
6487
6488 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6489 }
6490
6491 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6492 {
6493 int r;
6494
6495 /* try to reinject previous events if any */
6496 if (vcpu->arch.exception.injected) {
6497 kvm_x86_ops->queue_exception(vcpu);
6498 return 0;
6499 }
6500
6501 /*
6502 * Exceptions must be injected immediately, or the exception
6503 * frame will have the address of the NMI or interrupt handler.
6504 */
6505 if (!vcpu->arch.exception.pending) {
6506 if (vcpu->arch.nmi_injected) {
6507 kvm_x86_ops->set_nmi(vcpu);
6508 return 0;
6509 }
6510
6511 if (vcpu->arch.interrupt.pending) {
6512 kvm_x86_ops->set_irq(vcpu);
6513 return 0;
6514 }
6515 }
6516
6517 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6518 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6519 if (r != 0)
6520 return r;
6521 }
6522
6523 /* try to inject new event if pending */
6524 if (vcpu->arch.exception.pending) {
6525 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6526 vcpu->arch.exception.has_error_code,
6527 vcpu->arch.exception.error_code);
6528
6529 vcpu->arch.exception.pending = false;
6530 vcpu->arch.exception.injected = true;
6531
6532 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6533 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6534 X86_EFLAGS_RF);
6535
6536 if (vcpu->arch.exception.nr == DB_VECTOR &&
6537 (vcpu->arch.dr7 & DR7_GD)) {
6538 vcpu->arch.dr7 &= ~DR7_GD;
6539 kvm_update_dr7(vcpu);
6540 }
6541
6542 kvm_x86_ops->queue_exception(vcpu);
6543 } else if (vcpu->arch.smi_pending && !is_smm(vcpu) && kvm_x86_ops->smi_allowed(vcpu)) {
6544 vcpu->arch.smi_pending = false;
6545 enter_smm(vcpu);
6546 } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6547 --vcpu->arch.nmi_pending;
6548 vcpu->arch.nmi_injected = true;
6549 kvm_x86_ops->set_nmi(vcpu);
6550 } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6551 /*
6552 * Because interrupts can be injected asynchronously, we are
6553 * calling check_nested_events again here to avoid a race condition.
6554 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6555 * proposal and current concerns. Perhaps we should be setting
6556 * KVM_REQ_EVENT only on certain events and not unconditionally?
6557 */
6558 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6559 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6560 if (r != 0)
6561 return r;
6562 }
6563 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6564 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6565 false);
6566 kvm_x86_ops->set_irq(vcpu);
6567 }
6568 }
6569
6570 return 0;
6571 }
6572
6573 static void process_nmi(struct kvm_vcpu *vcpu)
6574 {
6575 unsigned limit = 2;
6576
6577 /*
6578 * x86 is limited to one NMI running, and one NMI pending after it.
6579 * If an NMI is already in progress, limit further NMIs to just one.
6580 * Otherwise, allow two (and we'll inject the first one immediately).
6581 */
6582 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6583 limit = 1;
6584
6585 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6586 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6587 kvm_make_request(KVM_REQ_EVENT, vcpu);
6588 }
6589
6590 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
6591 {
6592 u32 flags = 0;
6593 flags |= seg->g << 23;
6594 flags |= seg->db << 22;
6595 flags |= seg->l << 21;
6596 flags |= seg->avl << 20;
6597 flags |= seg->present << 15;
6598 flags |= seg->dpl << 13;
6599 flags |= seg->s << 12;
6600 flags |= seg->type << 8;
6601 return flags;
6602 }
6603
6604 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6605 {
6606 struct kvm_segment seg;
6607 int offset;
6608
6609 kvm_get_segment(vcpu, &seg, n);
6610 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6611
6612 if (n < 3)
6613 offset = 0x7f84 + n * 12;
6614 else
6615 offset = 0x7f2c + (n - 3) * 12;
6616
6617 put_smstate(u32, buf, offset + 8, seg.base);
6618 put_smstate(u32, buf, offset + 4, seg.limit);
6619 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
6620 }
6621
6622 #ifdef CONFIG_X86_64
6623 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6624 {
6625 struct kvm_segment seg;
6626 int offset;
6627 u16 flags;
6628
6629 kvm_get_segment(vcpu, &seg, n);
6630 offset = 0x7e00 + n * 16;
6631
6632 flags = enter_smm_get_segment_flags(&seg) >> 8;
6633 put_smstate(u16, buf, offset, seg.selector);
6634 put_smstate(u16, buf, offset + 2, flags);
6635 put_smstate(u32, buf, offset + 4, seg.limit);
6636 put_smstate(u64, buf, offset + 8, seg.base);
6637 }
6638 #endif
6639
6640 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6641 {
6642 struct desc_ptr dt;
6643 struct kvm_segment seg;
6644 unsigned long val;
6645 int i;
6646
6647 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6648 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6649 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6650 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6651
6652 for (i = 0; i < 8; i++)
6653 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6654
6655 kvm_get_dr(vcpu, 6, &val);
6656 put_smstate(u32, buf, 0x7fcc, (u32)val);
6657 kvm_get_dr(vcpu, 7, &val);
6658 put_smstate(u32, buf, 0x7fc8, (u32)val);
6659
6660 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6661 put_smstate(u32, buf, 0x7fc4, seg.selector);
6662 put_smstate(u32, buf, 0x7f64, seg.base);
6663 put_smstate(u32, buf, 0x7f60, seg.limit);
6664 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
6665
6666 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6667 put_smstate(u32, buf, 0x7fc0, seg.selector);
6668 put_smstate(u32, buf, 0x7f80, seg.base);
6669 put_smstate(u32, buf, 0x7f7c, seg.limit);
6670 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
6671
6672 kvm_x86_ops->get_gdt(vcpu, &dt);
6673 put_smstate(u32, buf, 0x7f74, dt.address);
6674 put_smstate(u32, buf, 0x7f70, dt.size);
6675
6676 kvm_x86_ops->get_idt(vcpu, &dt);
6677 put_smstate(u32, buf, 0x7f58, dt.address);
6678 put_smstate(u32, buf, 0x7f54, dt.size);
6679
6680 for (i = 0; i < 6; i++)
6681 enter_smm_save_seg_32(vcpu, buf, i);
6682
6683 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6684
6685 /* revision id */
6686 put_smstate(u32, buf, 0x7efc, 0x00020000);
6687 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6688 }
6689
6690 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6691 {
6692 #ifdef CONFIG_X86_64
6693 struct desc_ptr dt;
6694 struct kvm_segment seg;
6695 unsigned long val;
6696 int i;
6697
6698 for (i = 0; i < 16; i++)
6699 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6700
6701 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6702 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6703
6704 kvm_get_dr(vcpu, 6, &val);
6705 put_smstate(u64, buf, 0x7f68, val);
6706 kvm_get_dr(vcpu, 7, &val);
6707 put_smstate(u64, buf, 0x7f60, val);
6708
6709 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6710 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6711 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6712
6713 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6714
6715 /* revision id */
6716 put_smstate(u32, buf, 0x7efc, 0x00020064);
6717
6718 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6719
6720 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6721 put_smstate(u16, buf, 0x7e90, seg.selector);
6722 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
6723 put_smstate(u32, buf, 0x7e94, seg.limit);
6724 put_smstate(u64, buf, 0x7e98, seg.base);
6725
6726 kvm_x86_ops->get_idt(vcpu, &dt);
6727 put_smstate(u32, buf, 0x7e84, dt.size);
6728 put_smstate(u64, buf, 0x7e88, dt.address);
6729
6730 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6731 put_smstate(u16, buf, 0x7e70, seg.selector);
6732 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
6733 put_smstate(u32, buf, 0x7e74, seg.limit);
6734 put_smstate(u64, buf, 0x7e78, seg.base);
6735
6736 kvm_x86_ops->get_gdt(vcpu, &dt);
6737 put_smstate(u32, buf, 0x7e64, dt.size);
6738 put_smstate(u64, buf, 0x7e68, dt.address);
6739
6740 for (i = 0; i < 6; i++)
6741 enter_smm_save_seg_64(vcpu, buf, i);
6742 #else
6743 WARN_ON_ONCE(1);
6744 #endif
6745 }
6746
6747 static void enter_smm(struct kvm_vcpu *vcpu)
6748 {
6749 struct kvm_segment cs, ds;
6750 struct desc_ptr dt;
6751 char buf[512];
6752 u32 cr0;
6753
6754 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6755 memset(buf, 0, 512);
6756 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
6757 enter_smm_save_state_64(vcpu, buf);
6758 else
6759 enter_smm_save_state_32(vcpu, buf);
6760
6761 /*
6762 * Give pre_enter_smm() a chance to make ISA-specific changes to the
6763 * vCPU state (e.g. leave guest mode) after we've saved the state into
6764 * the SMM state-save area.
6765 */
6766 kvm_x86_ops->pre_enter_smm(vcpu, buf);
6767
6768 vcpu->arch.hflags |= HF_SMM_MASK;
6769 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6770
6771 if (kvm_x86_ops->get_nmi_mask(vcpu))
6772 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6773 else
6774 kvm_x86_ops->set_nmi_mask(vcpu, true);
6775
6776 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6777 kvm_rip_write(vcpu, 0x8000);
6778
6779 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6780 kvm_x86_ops->set_cr0(vcpu, cr0);
6781 vcpu->arch.cr0 = cr0;
6782
6783 kvm_x86_ops->set_cr4(vcpu, 0);
6784
6785 /* Undocumented: IDT limit is set to zero on entry to SMM. */
6786 dt.address = dt.size = 0;
6787 kvm_x86_ops->set_idt(vcpu, &dt);
6788
6789 __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6790
6791 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6792 cs.base = vcpu->arch.smbase;
6793
6794 ds.selector = 0;
6795 ds.base = 0;
6796
6797 cs.limit = ds.limit = 0xffffffff;
6798 cs.type = ds.type = 0x3;
6799 cs.dpl = ds.dpl = 0;
6800 cs.db = ds.db = 0;
6801 cs.s = ds.s = 1;
6802 cs.l = ds.l = 0;
6803 cs.g = ds.g = 1;
6804 cs.avl = ds.avl = 0;
6805 cs.present = ds.present = 1;
6806 cs.unusable = ds.unusable = 0;
6807 cs.padding = ds.padding = 0;
6808
6809 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6810 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6811 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6812 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6813 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6814 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6815
6816 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
6817 kvm_x86_ops->set_efer(vcpu, 0);
6818
6819 kvm_update_cpuid(vcpu);
6820 kvm_mmu_reset_context(vcpu);
6821 }
6822
6823 static void process_smi(struct kvm_vcpu *vcpu)
6824 {
6825 vcpu->arch.smi_pending = true;
6826 kvm_make_request(KVM_REQ_EVENT, vcpu);
6827 }
6828
6829 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6830 {
6831 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6832 }
6833
6834 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6835 {
6836 u64 eoi_exit_bitmap[4];
6837
6838 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6839 return;
6840
6841 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6842
6843 if (irqchip_split(vcpu->kvm))
6844 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6845 else {
6846 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
6847 kvm_x86_ops->sync_pir_to_irr(vcpu);
6848 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6849 }
6850 bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6851 vcpu_to_synic(vcpu)->vec_bitmap, 256);
6852 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6853 }
6854
6855 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6856 {
6857 ++vcpu->stat.tlb_flush;
6858 kvm_x86_ops->tlb_flush(vcpu);
6859 }
6860
6861 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
6862 unsigned long start, unsigned long end)
6863 {
6864 unsigned long apic_address;
6865
6866 /*
6867 * The physical address of apic access page is stored in the VMCS.
6868 * Update it when it becomes invalid.
6869 */
6870 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6871 if (start <= apic_address && apic_address < end)
6872 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6873 }
6874
6875 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6876 {
6877 struct page *page = NULL;
6878
6879 if (!lapic_in_kernel(vcpu))
6880 return;
6881
6882 if (!kvm_x86_ops->set_apic_access_page_addr)
6883 return;
6884
6885 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6886 if (is_error_page(page))
6887 return;
6888 kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6889
6890 /*
6891 * Do not pin apic access page in memory, the MMU notifier
6892 * will call us again if it is migrated or swapped out.
6893 */
6894 put_page(page);
6895 }
6896 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6897
6898 /*
6899 * Returns 1 to let vcpu_run() continue the guest execution loop without
6900 * exiting to the userspace. Otherwise, the value will be returned to the
6901 * userspace.
6902 */
6903 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6904 {
6905 int r;
6906 bool req_int_win =
6907 dm_request_for_irq_injection(vcpu) &&
6908 kvm_cpu_accept_dm_intr(vcpu);
6909
6910 bool req_immediate_exit = false;
6911
6912 if (kvm_request_pending(vcpu)) {
6913 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6914 kvm_mmu_unload(vcpu);
6915 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6916 __kvm_migrate_timers(vcpu);
6917 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6918 kvm_gen_update_masterclock(vcpu->kvm);
6919 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6920 kvm_gen_kvmclock_update(vcpu);
6921 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6922 r = kvm_guest_time_update(vcpu);
6923 if (unlikely(r))
6924 goto out;
6925 }
6926 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6927 kvm_mmu_sync_roots(vcpu);
6928 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6929 kvm_vcpu_flush_tlb(vcpu);
6930 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6931 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6932 r = 0;
6933 goto out;
6934 }
6935 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6936 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6937 vcpu->mmio_needed = 0;
6938 r = 0;
6939 goto out;
6940 }
6941 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6942 /* Page is swapped out. Do synthetic halt */
6943 vcpu->arch.apf.halted = true;
6944 r = 1;
6945 goto out;
6946 }
6947 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6948 record_steal_time(vcpu);
6949 if (kvm_check_request(KVM_REQ_SMI, vcpu))
6950 process_smi(vcpu);
6951 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6952 process_nmi(vcpu);
6953 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6954 kvm_pmu_handle_event(vcpu);
6955 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6956 kvm_pmu_deliver_pmi(vcpu);
6957 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6958 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6959 if (test_bit(vcpu->arch.pending_ioapic_eoi,
6960 vcpu->arch.ioapic_handled_vectors)) {
6961 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6962 vcpu->run->eoi.vector =
6963 vcpu->arch.pending_ioapic_eoi;
6964 r = 0;
6965 goto out;
6966 }
6967 }
6968 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6969 vcpu_scan_ioapic(vcpu);
6970 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6971 kvm_vcpu_reload_apic_access_page(vcpu);
6972 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6973 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6974 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6975 r = 0;
6976 goto out;
6977 }
6978 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6979 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6980 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6981 r = 0;
6982 goto out;
6983 }
6984 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
6985 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
6986 vcpu->run->hyperv = vcpu->arch.hyperv.exit;
6987 r = 0;
6988 goto out;
6989 }
6990
6991 /*
6992 * KVM_REQ_HV_STIMER has to be processed after
6993 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
6994 * depend on the guest clock being up-to-date
6995 */
6996 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
6997 kvm_hv_process_stimers(vcpu);
6998 }
6999
7000 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
7001 ++vcpu->stat.req_event;
7002 kvm_apic_accept_events(vcpu);
7003 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
7004 r = 1;
7005 goto out;
7006 }
7007
7008 if (inject_pending_event(vcpu, req_int_win) != 0)
7009 req_immediate_exit = true;
7010 else {
7011 /* Enable SMI/NMI/IRQ window open exits if needed.
7012 *
7013 * SMIs have three cases:
7014 * 1) They can be nested, and then there is nothing to
7015 * do here because RSM will cause a vmexit anyway.
7016 * 2) There is an ISA-specific reason why SMI cannot be
7017 * injected, and the moment when this changes can be
7018 * intercepted.
7019 * 3) Or the SMI can be pending because
7020 * inject_pending_event has completed the injection
7021 * of an IRQ or NMI from the previous vmexit, and
7022 * then we request an immediate exit to inject the
7023 * SMI.
7024 */
7025 if (vcpu->arch.smi_pending && !is_smm(vcpu))
7026 if (!kvm_x86_ops->enable_smi_window(vcpu))
7027 req_immediate_exit = true;
7028 if (vcpu->arch.nmi_pending)
7029 kvm_x86_ops->enable_nmi_window(vcpu);
7030 if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
7031 kvm_x86_ops->enable_irq_window(vcpu);
7032 WARN_ON(vcpu->arch.exception.pending);
7033 }
7034
7035 if (kvm_lapic_enabled(vcpu)) {
7036 update_cr8_intercept(vcpu);
7037 kvm_lapic_sync_to_vapic(vcpu);
7038 }
7039 }
7040
7041 r = kvm_mmu_reload(vcpu);
7042 if (unlikely(r)) {
7043 goto cancel_injection;
7044 }
7045
7046 preempt_disable();
7047
7048 kvm_x86_ops->prepare_guest_switch(vcpu);
7049
7050 /*
7051 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
7052 * IPI are then delayed after guest entry, which ensures that they
7053 * result in virtual interrupt delivery.
7054 */
7055 local_irq_disable();
7056 vcpu->mode = IN_GUEST_MODE;
7057
7058 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7059
7060 /*
7061 * 1) We should set ->mode before checking ->requests. Please see
7062 * the comment in kvm_vcpu_exiting_guest_mode().
7063 *
7064 * 2) For APICv, we should set ->mode before checking PIR.ON. This
7065 * pairs with the memory barrier implicit in pi_test_and_set_on
7066 * (see vmx_deliver_posted_interrupt).
7067 *
7068 * 3) This also orders the write to mode from any reads to the page
7069 * tables done while the VCPU is running. Please see the comment
7070 * in kvm_flush_remote_tlbs.
7071 */
7072 smp_mb__after_srcu_read_unlock();
7073
7074 /*
7075 * This handles the case where a posted interrupt was
7076 * notified with kvm_vcpu_kick.
7077 */
7078 if (kvm_lapic_enabled(vcpu)) {
7079 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
7080 kvm_x86_ops->sync_pir_to_irr(vcpu);
7081 }
7082
7083 if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
7084 || need_resched() || signal_pending(current)) {
7085 vcpu->mode = OUTSIDE_GUEST_MODE;
7086 smp_wmb();
7087 local_irq_enable();
7088 preempt_enable();
7089 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7090 r = 1;
7091 goto cancel_injection;
7092 }
7093
7094 kvm_load_guest_xcr0(vcpu);
7095
7096 if (req_immediate_exit) {
7097 kvm_make_request(KVM_REQ_EVENT, vcpu);
7098 smp_send_reschedule(vcpu->cpu);
7099 }
7100
7101 trace_kvm_entry(vcpu->vcpu_id);
7102 wait_lapic_expire(vcpu);
7103 guest_enter_irqoff();
7104
7105 if (unlikely(vcpu->arch.switch_db_regs)) {
7106 set_debugreg(0, 7);
7107 set_debugreg(vcpu->arch.eff_db[0], 0);
7108 set_debugreg(vcpu->arch.eff_db[1], 1);
7109 set_debugreg(vcpu->arch.eff_db[2], 2);
7110 set_debugreg(vcpu->arch.eff_db[3], 3);
7111 set_debugreg(vcpu->arch.dr6, 6);
7112 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7113 }
7114
7115 kvm_x86_ops->run(vcpu);
7116
7117 /*
7118 * Do this here before restoring debug registers on the host. And
7119 * since we do this before handling the vmexit, a DR access vmexit
7120 * can (a) read the correct value of the debug registers, (b) set
7121 * KVM_DEBUGREG_WONT_EXIT again.
7122 */
7123 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
7124 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
7125 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
7126 kvm_update_dr0123(vcpu);
7127 kvm_update_dr6(vcpu);
7128 kvm_update_dr7(vcpu);
7129 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7130 }
7131
7132 /*
7133 * If the guest has used debug registers, at least dr7
7134 * will be disabled while returning to the host.
7135 * If we don't have active breakpoints in the host, we don't
7136 * care about the messed up debug address registers. But if
7137 * we have some of them active, restore the old state.
7138 */
7139 if (hw_breakpoint_active())
7140 hw_breakpoint_restore();
7141
7142 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
7143
7144 vcpu->mode = OUTSIDE_GUEST_MODE;
7145 smp_wmb();
7146
7147 kvm_put_guest_xcr0(vcpu);
7148
7149 kvm_x86_ops->handle_external_intr(vcpu);
7150
7151 ++vcpu->stat.exits;
7152
7153 guest_exit_irqoff();
7154
7155 local_irq_enable();
7156 preempt_enable();
7157
7158 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7159
7160 /*
7161 * Profile KVM exit RIPs:
7162 */
7163 if (unlikely(prof_on == KVM_PROFILING)) {
7164 unsigned long rip = kvm_rip_read(vcpu);
7165 profile_hit(KVM_PROFILING, (void *)rip);
7166 }
7167
7168 if (unlikely(vcpu->arch.tsc_always_catchup))
7169 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7170
7171 if (vcpu->arch.apic_attention)
7172 kvm_lapic_sync_from_vapic(vcpu);
7173
7174 vcpu->arch.gpa_available = false;
7175 r = kvm_x86_ops->handle_exit(vcpu);
7176 return r;
7177
7178 cancel_injection:
7179 kvm_x86_ops->cancel_injection(vcpu);
7180 if (unlikely(vcpu->arch.apic_attention))
7181 kvm_lapic_sync_from_vapic(vcpu);
7182 out:
7183 return r;
7184 }
7185
7186 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
7187 {
7188 if (!kvm_arch_vcpu_runnable(vcpu) &&
7189 (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
7190 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7191 kvm_vcpu_block(vcpu);
7192 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7193
7194 if (kvm_x86_ops->post_block)
7195 kvm_x86_ops->post_block(vcpu);
7196
7197 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
7198 return 1;
7199 }
7200
7201 kvm_apic_accept_events(vcpu);
7202 switch(vcpu->arch.mp_state) {
7203 case KVM_MP_STATE_HALTED:
7204 vcpu->arch.pv.pv_unhalted = false;
7205 vcpu->arch.mp_state =
7206 KVM_MP_STATE_RUNNABLE;
7207 case KVM_MP_STATE_RUNNABLE:
7208 vcpu->arch.apf.halted = false;
7209 break;
7210 case KVM_MP_STATE_INIT_RECEIVED:
7211 break;
7212 default:
7213 return -EINTR;
7214 break;
7215 }
7216 return 1;
7217 }
7218
7219 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
7220 {
7221 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7222 kvm_x86_ops->check_nested_events(vcpu, false);
7223
7224 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7225 !vcpu->arch.apf.halted);
7226 }
7227
7228 static int vcpu_run(struct kvm_vcpu *vcpu)
7229 {
7230 int r;
7231 struct kvm *kvm = vcpu->kvm;
7232
7233 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7234 vcpu->arch.l1tf_flush_l1d = true;
7235
7236 for (;;) {
7237 if (kvm_vcpu_running(vcpu)) {
7238 r = vcpu_enter_guest(vcpu);
7239 } else {
7240 r = vcpu_block(kvm, vcpu);
7241 }
7242
7243 if (r <= 0)
7244 break;
7245
7246 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
7247 if (kvm_cpu_has_pending_timer(vcpu))
7248 kvm_inject_pending_timer_irqs(vcpu);
7249
7250 if (dm_request_for_irq_injection(vcpu) &&
7251 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
7252 r = 0;
7253 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
7254 ++vcpu->stat.request_irq_exits;
7255 break;
7256 }
7257
7258 kvm_check_async_pf_completion(vcpu);
7259
7260 if (signal_pending(current)) {
7261 r = -EINTR;
7262 vcpu->run->exit_reason = KVM_EXIT_INTR;
7263 ++vcpu->stat.signal_exits;
7264 break;
7265 }
7266 if (need_resched()) {
7267 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7268 cond_resched();
7269 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7270 }
7271 }
7272
7273 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7274
7275 return r;
7276 }
7277
7278 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
7279 {
7280 int r;
7281 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7282 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
7283 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7284 if (r != EMULATE_DONE)
7285 return 0;
7286 return 1;
7287 }
7288
7289 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
7290 {
7291 BUG_ON(!vcpu->arch.pio.count);
7292
7293 return complete_emulated_io(vcpu);
7294 }
7295
7296 /*
7297 * Implements the following, as a state machine:
7298 *
7299 * read:
7300 * for each fragment
7301 * for each mmio piece in the fragment
7302 * write gpa, len
7303 * exit
7304 * copy data
7305 * execute insn
7306 *
7307 * write:
7308 * for each fragment
7309 * for each mmio piece in the fragment
7310 * write gpa, len
7311 * copy data
7312 * exit
7313 */
7314 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7315 {
7316 struct kvm_run *run = vcpu->run;
7317 struct kvm_mmio_fragment *frag;
7318 unsigned len;
7319
7320 BUG_ON(!vcpu->mmio_needed);
7321
7322 /* Complete previous fragment */
7323 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7324 len = min(8u, frag->len);
7325 if (!vcpu->mmio_is_write)
7326 memcpy(frag->data, run->mmio.data, len);
7327
7328 if (frag->len <= 8) {
7329 /* Switch to the next fragment. */
7330 frag++;
7331 vcpu->mmio_cur_fragment++;
7332 } else {
7333 /* Go forward to the next mmio piece. */
7334 frag->data += len;
7335 frag->gpa += len;
7336 frag->len -= len;
7337 }
7338
7339 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7340 vcpu->mmio_needed = 0;
7341
7342 /* FIXME: return into emulator if single-stepping. */
7343 if (vcpu->mmio_is_write)
7344 return 1;
7345 vcpu->mmio_read_completed = 1;
7346 return complete_emulated_io(vcpu);
7347 }
7348
7349 run->exit_reason = KVM_EXIT_MMIO;
7350 run->mmio.phys_addr = frag->gpa;
7351 if (vcpu->mmio_is_write)
7352 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7353 run->mmio.len = min(8u, frag->len);
7354 run->mmio.is_write = vcpu->mmio_is_write;
7355 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7356 return 0;
7357 }
7358
7359
7360 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
7361 {
7362 int r;
7363
7364 kvm_sigset_activate(vcpu);
7365
7366 kvm_load_guest_fpu(vcpu);
7367
7368 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
7369 if (kvm_run->immediate_exit) {
7370 r = -EINTR;
7371 goto out;
7372 }
7373 kvm_vcpu_block(vcpu);
7374 kvm_apic_accept_events(vcpu);
7375 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
7376 r = -EAGAIN;
7377 if (signal_pending(current)) {
7378 r = -EINTR;
7379 vcpu->run->exit_reason = KVM_EXIT_INTR;
7380 ++vcpu->stat.signal_exits;
7381 }
7382 goto out;
7383 }
7384
7385 /* re-sync apic's tpr */
7386 if (!lapic_in_kernel(vcpu)) {
7387 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
7388 r = -EINVAL;
7389 goto out;
7390 }
7391 }
7392
7393 if (unlikely(vcpu->arch.complete_userspace_io)) {
7394 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
7395 vcpu->arch.complete_userspace_io = NULL;
7396 r = cui(vcpu);
7397 if (r <= 0)
7398 goto out;
7399 } else
7400 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7401
7402 if (kvm_run->immediate_exit)
7403 r = -EINTR;
7404 else
7405 r = vcpu_run(vcpu);
7406
7407 out:
7408 kvm_put_guest_fpu(vcpu);
7409 post_kvm_run_save(vcpu);
7410 kvm_sigset_deactivate(vcpu);
7411
7412 return r;
7413 }
7414
7415 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7416 {
7417 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7418 /*
7419 * We are here if userspace calls get_regs() in the middle of
7420 * instruction emulation. Registers state needs to be copied
7421 * back from emulation context to vcpu. Userspace shouldn't do
7422 * that usually, but some bad designed PV devices (vmware
7423 * backdoor interface) need this to work
7424 */
7425 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7426 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7427 }
7428 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7429 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7430 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7431 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7432 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7433 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7434 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7435 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7436 #ifdef CONFIG_X86_64
7437 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7438 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7439 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7440 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7441 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7442 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7443 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7444 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7445 #endif
7446
7447 regs->rip = kvm_rip_read(vcpu);
7448 regs->rflags = kvm_get_rflags(vcpu);
7449
7450 return 0;
7451 }
7452
7453 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7454 {
7455 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7456 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7457
7458 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7459 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7460 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7461 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7462 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7463 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7464 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7465 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7466 #ifdef CONFIG_X86_64
7467 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7468 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7469 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7470 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7471 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7472 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7473 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7474 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7475 #endif
7476
7477 kvm_rip_write(vcpu, regs->rip);
7478 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
7479
7480 vcpu->arch.exception.pending = false;
7481
7482 kvm_make_request(KVM_REQ_EVENT, vcpu);
7483
7484 return 0;
7485 }
7486
7487 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7488 {
7489 struct kvm_segment cs;
7490
7491 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7492 *db = cs.db;
7493 *l = cs.l;
7494 }
7495 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7496
7497 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7498 struct kvm_sregs *sregs)
7499 {
7500 struct desc_ptr dt;
7501
7502 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7503 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7504 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7505 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7506 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7507 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7508
7509 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7510 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7511
7512 kvm_x86_ops->get_idt(vcpu, &dt);
7513 sregs->idt.limit = dt.size;
7514 sregs->idt.base = dt.address;
7515 kvm_x86_ops->get_gdt(vcpu, &dt);
7516 sregs->gdt.limit = dt.size;
7517 sregs->gdt.base = dt.address;
7518
7519 sregs->cr0 = kvm_read_cr0(vcpu);
7520 sregs->cr2 = vcpu->arch.cr2;
7521 sregs->cr3 = kvm_read_cr3(vcpu);
7522 sregs->cr4 = kvm_read_cr4(vcpu);
7523 sregs->cr8 = kvm_get_cr8(vcpu);
7524 sregs->efer = vcpu->arch.efer;
7525 sregs->apic_base = kvm_get_apic_base(vcpu);
7526
7527 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7528
7529 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7530 set_bit(vcpu->arch.interrupt.nr,
7531 (unsigned long *)sregs->interrupt_bitmap);
7532
7533 return 0;
7534 }
7535
7536 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7537 struct kvm_mp_state *mp_state)
7538 {
7539 kvm_apic_accept_events(vcpu);
7540 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7541 vcpu->arch.pv.pv_unhalted)
7542 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7543 else
7544 mp_state->mp_state = vcpu->arch.mp_state;
7545
7546 return 0;
7547 }
7548
7549 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7550 struct kvm_mp_state *mp_state)
7551 {
7552 if (!lapic_in_kernel(vcpu) &&
7553 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7554 return -EINVAL;
7555
7556 /* INITs are latched while in SMM */
7557 if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
7558 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
7559 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
7560 return -EINVAL;
7561
7562 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7563 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7564 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7565 } else
7566 vcpu->arch.mp_state = mp_state->mp_state;
7567 kvm_make_request(KVM_REQ_EVENT, vcpu);
7568 return 0;
7569 }
7570
7571 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7572 int reason, bool has_error_code, u32 error_code)
7573 {
7574 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7575 int ret;
7576
7577 init_emulate_ctxt(vcpu);
7578
7579 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7580 has_error_code, error_code);
7581
7582 if (ret)
7583 return EMULATE_FAIL;
7584
7585 kvm_rip_write(vcpu, ctxt->eip);
7586 kvm_set_rflags(vcpu, ctxt->eflags);
7587 kvm_make_request(KVM_REQ_EVENT, vcpu);
7588 return EMULATE_DONE;
7589 }
7590 EXPORT_SYMBOL_GPL(kvm_task_switch);
7591
7592 int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
7593 {
7594 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
7595 /*
7596 * When EFER.LME and CR0.PG are set, the processor is in
7597 * 64-bit mode (though maybe in a 32-bit code segment).
7598 * CR4.PAE and EFER.LMA must be set.
7599 */
7600 if (!(sregs->cr4 & X86_CR4_PAE)
7601 || !(sregs->efer & EFER_LMA))
7602 return -EINVAL;
7603 } else {
7604 /*
7605 * Not in 64-bit mode: EFER.LMA is clear and the code
7606 * segment cannot be 64-bit.
7607 */
7608 if (sregs->efer & EFER_LMA || sregs->cs.l)
7609 return -EINVAL;
7610 }
7611
7612 return 0;
7613 }
7614
7615 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7616 struct kvm_sregs *sregs)
7617 {
7618 struct msr_data apic_base_msr;
7619 int mmu_reset_needed = 0;
7620 int pending_vec, max_bits, idx;
7621 struct desc_ptr dt;
7622
7623 if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
7624 (sregs->cr4 & X86_CR4_OSXSAVE))
7625 return -EINVAL;
7626
7627 if (kvm_valid_sregs(vcpu, sregs))
7628 return -EINVAL;
7629
7630 apic_base_msr.data = sregs->apic_base;
7631 apic_base_msr.host_initiated = true;
7632 if (kvm_set_apic_base(vcpu, &apic_base_msr))
7633 return -EINVAL;
7634
7635 dt.size = sregs->idt.limit;
7636 dt.address = sregs->idt.base;
7637 kvm_x86_ops->set_idt(vcpu, &dt);
7638 dt.size = sregs->gdt.limit;
7639 dt.address = sregs->gdt.base;
7640 kvm_x86_ops->set_gdt(vcpu, &dt);
7641
7642 vcpu->arch.cr2 = sregs->cr2;
7643 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7644 vcpu->arch.cr3 = sregs->cr3;
7645 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7646
7647 kvm_set_cr8(vcpu, sregs->cr8);
7648
7649 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7650 kvm_x86_ops->set_efer(vcpu, sregs->efer);
7651
7652 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7653 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7654 vcpu->arch.cr0 = sregs->cr0;
7655
7656 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7657 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7658 if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE))
7659 kvm_update_cpuid(vcpu);
7660
7661 idx = srcu_read_lock(&vcpu->kvm->srcu);
7662 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7663 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7664 mmu_reset_needed = 1;
7665 }
7666 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7667
7668 if (mmu_reset_needed)
7669 kvm_mmu_reset_context(vcpu);
7670
7671 max_bits = KVM_NR_INTERRUPTS;
7672 pending_vec = find_first_bit(
7673 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
7674 if (pending_vec < max_bits) {
7675 kvm_queue_interrupt(vcpu, pending_vec, false);
7676 pr_debug("Set back pending irq %d\n", pending_vec);
7677 }
7678
7679 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7680 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7681 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7682 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7683 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7684 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7685
7686 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7687 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7688
7689 update_cr8_intercept(vcpu);
7690
7691 /* Older userspace won't unhalt the vcpu on reset. */
7692 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7693 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7694 !is_protmode(vcpu))
7695 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7696
7697 kvm_make_request(KVM_REQ_EVENT, vcpu);
7698
7699 return 0;
7700 }
7701
7702 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7703 struct kvm_guest_debug *dbg)
7704 {
7705 unsigned long rflags;
7706 int i, r;
7707
7708 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7709 r = -EBUSY;
7710 if (vcpu->arch.exception.pending)
7711 goto out;
7712 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7713 kvm_queue_exception(vcpu, DB_VECTOR);
7714 else
7715 kvm_queue_exception(vcpu, BP_VECTOR);
7716 }
7717
7718 /*
7719 * Read rflags as long as potentially injected trace flags are still
7720 * filtered out.
7721 */
7722 rflags = kvm_get_rflags(vcpu);
7723
7724 vcpu->guest_debug = dbg->control;
7725 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7726 vcpu->guest_debug = 0;
7727
7728 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7729 for (i = 0; i < KVM_NR_DB_REGS; ++i)
7730 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7731 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7732 } else {
7733 for (i = 0; i < KVM_NR_DB_REGS; i++)
7734 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7735 }
7736 kvm_update_dr7(vcpu);
7737
7738 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7739 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7740 get_segment_base(vcpu, VCPU_SREG_CS);
7741
7742 /*
7743 * Trigger an rflags update that will inject or remove the trace
7744 * flags.
7745 */
7746 kvm_set_rflags(vcpu, rflags);
7747
7748 kvm_x86_ops->update_bp_intercept(vcpu);
7749
7750 r = 0;
7751
7752 out:
7753
7754 return r;
7755 }
7756
7757 /*
7758 * Translate a guest virtual address to a guest physical address.
7759 */
7760 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7761 struct kvm_translation *tr)
7762 {
7763 unsigned long vaddr = tr->linear_address;
7764 gpa_t gpa;
7765 int idx;
7766
7767 idx = srcu_read_lock(&vcpu->kvm->srcu);
7768 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7769 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7770 tr->physical_address = gpa;
7771 tr->valid = gpa != UNMAPPED_GVA;
7772 tr->writeable = 1;
7773 tr->usermode = 0;
7774
7775 return 0;
7776 }
7777
7778 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7779 {
7780 struct fxregs_state *fxsave =
7781 &vcpu->arch.guest_fpu.state.fxsave;
7782
7783 memcpy(fpu->fpr, fxsave->st_space, 128);
7784 fpu->fcw = fxsave->cwd;
7785 fpu->fsw = fxsave->swd;
7786 fpu->ftwx = fxsave->twd;
7787 fpu->last_opcode = fxsave->fop;
7788 fpu->last_ip = fxsave->rip;
7789 fpu->last_dp = fxsave->rdp;
7790 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7791
7792 return 0;
7793 }
7794
7795 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7796 {
7797 struct fxregs_state *fxsave =
7798 &vcpu->arch.guest_fpu.state.fxsave;
7799
7800 memcpy(fxsave->st_space, fpu->fpr, 128);
7801 fxsave->cwd = fpu->fcw;
7802 fxsave->swd = fpu->fsw;
7803 fxsave->twd = fpu->ftwx;
7804 fxsave->fop = fpu->last_opcode;
7805 fxsave->rip = fpu->last_ip;
7806 fxsave->rdp = fpu->last_dp;
7807 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7808
7809 return 0;
7810 }
7811
7812 static void fx_init(struct kvm_vcpu *vcpu)
7813 {
7814 fpstate_init(&vcpu->arch.guest_fpu.state);
7815 if (boot_cpu_has(X86_FEATURE_XSAVES))
7816 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7817 host_xcr0 | XSTATE_COMPACTION_ENABLED;
7818
7819 /*
7820 * Ensure guest xcr0 is valid for loading
7821 */
7822 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7823
7824 vcpu->arch.cr0 |= X86_CR0_ET;
7825 }
7826
7827 /* Swap (qemu) user FPU context for the guest FPU context. */
7828 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7829 {
7830 preempt_disable();
7831 copy_fpregs_to_fpstate(&vcpu->arch.user_fpu);
7832 /* PKRU is separately restored in kvm_x86_ops->run. */
7833 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state,
7834 ~XFEATURE_MASK_PKRU);
7835 preempt_enable();
7836 trace_kvm_fpu(1);
7837 }
7838
7839 /* When vcpu_run ends, restore user space FPU context. */
7840 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7841 {
7842 preempt_disable();
7843 copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7844 copy_kernel_to_fpregs(&vcpu->arch.user_fpu.state);
7845 preempt_enable();
7846 ++vcpu->stat.fpu_reload;
7847 trace_kvm_fpu(0);
7848 }
7849
7850 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7851 {
7852 void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
7853
7854 kvmclock_reset(vcpu);
7855
7856 kvm_x86_ops->vcpu_free(vcpu);
7857 free_cpumask_var(wbinvd_dirty_mask);
7858 }
7859
7860 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7861 unsigned int id)
7862 {
7863 struct kvm_vcpu *vcpu;
7864
7865 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7866 printk_once(KERN_WARNING
7867 "kvm: SMP vm created on host with unstable TSC; "
7868 "guest TSC will not be reliable\n");
7869
7870 vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7871
7872 return vcpu;
7873 }
7874
7875 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7876 {
7877 int r;
7878
7879 kvm_vcpu_mtrr_init(vcpu);
7880 r = vcpu_load(vcpu);
7881 if (r)
7882 return r;
7883 kvm_vcpu_reset(vcpu, false);
7884 kvm_mmu_setup(vcpu);
7885 vcpu_put(vcpu);
7886 return r;
7887 }
7888
7889 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7890 {
7891 struct msr_data msr;
7892 struct kvm *kvm = vcpu->kvm;
7893
7894 kvm_hv_vcpu_postcreate(vcpu);
7895
7896 if (vcpu_load(vcpu))
7897 return;
7898 msr.data = 0x0;
7899 msr.index = MSR_IA32_TSC;
7900 msr.host_initiated = true;
7901 kvm_write_tsc(vcpu, &msr);
7902 vcpu_put(vcpu);
7903
7904 if (!kvmclock_periodic_sync)
7905 return;
7906
7907 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7908 KVMCLOCK_SYNC_PERIOD);
7909 }
7910
7911 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7912 {
7913 int r;
7914 vcpu->arch.apf.msr_val = 0;
7915
7916 r = vcpu_load(vcpu);
7917 BUG_ON(r);
7918 kvm_mmu_unload(vcpu);
7919 vcpu_put(vcpu);
7920
7921 kvm_x86_ops->vcpu_free(vcpu);
7922 }
7923
7924 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7925 {
7926 kvm_lapic_reset(vcpu, init_event);
7927
7928 vcpu->arch.hflags = 0;
7929
7930 vcpu->arch.smi_pending = 0;
7931 atomic_set(&vcpu->arch.nmi_queued, 0);
7932 vcpu->arch.nmi_pending = 0;
7933 vcpu->arch.nmi_injected = false;
7934 kvm_clear_interrupt_queue(vcpu);
7935 kvm_clear_exception_queue(vcpu);
7936 vcpu->arch.exception.pending = false;
7937
7938 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7939 kvm_update_dr0123(vcpu);
7940 vcpu->arch.dr6 = DR6_INIT;
7941 kvm_update_dr6(vcpu);
7942 vcpu->arch.dr7 = DR7_FIXED_1;
7943 kvm_update_dr7(vcpu);
7944
7945 vcpu->arch.cr2 = 0;
7946
7947 kvm_make_request(KVM_REQ_EVENT, vcpu);
7948 vcpu->arch.apf.msr_val = 0;
7949 vcpu->arch.st.msr_val = 0;
7950
7951 kvmclock_reset(vcpu);
7952
7953 kvm_clear_async_pf_completion_queue(vcpu);
7954 kvm_async_pf_hash_reset(vcpu);
7955 vcpu->arch.apf.halted = false;
7956
7957 if (kvm_mpx_supported()) {
7958 void *mpx_state_buffer;
7959
7960 /*
7961 * To avoid have the INIT path from kvm_apic_has_events() that be
7962 * called with loaded FPU and does not let userspace fix the state.
7963 */
7964 if (init_event)
7965 kvm_put_guest_fpu(vcpu);
7966 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
7967 XFEATURE_MASK_BNDREGS);
7968 if (mpx_state_buffer)
7969 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
7970 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
7971 XFEATURE_MASK_BNDCSR);
7972 if (mpx_state_buffer)
7973 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
7974 if (init_event)
7975 kvm_load_guest_fpu(vcpu);
7976 }
7977
7978 if (!init_event) {
7979 kvm_pmu_reset(vcpu);
7980 vcpu->arch.smbase = 0x30000;
7981
7982 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
7983 vcpu->arch.msr_misc_features_enables = 0;
7984
7985 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7986 }
7987
7988 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7989 vcpu->arch.regs_avail = ~0;
7990 vcpu->arch.regs_dirty = ~0;
7991
7992 vcpu->arch.ia32_xss = 0;
7993
7994 kvm_x86_ops->vcpu_reset(vcpu, init_event);
7995 }
7996
7997 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7998 {
7999 struct kvm_segment cs;
8000
8001 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8002 cs.selector = vector << 8;
8003 cs.base = vector << 12;
8004 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8005 kvm_rip_write(vcpu, 0);
8006 }
8007
8008 int kvm_arch_hardware_enable(void)
8009 {
8010 struct kvm *kvm;
8011 struct kvm_vcpu *vcpu;
8012 int i;
8013 int ret;
8014 u64 local_tsc;
8015 u64 max_tsc = 0;
8016 bool stable, backwards_tsc = false;
8017
8018 kvm_shared_msr_cpu_online();
8019 ret = kvm_x86_ops->hardware_enable();
8020 if (ret != 0)
8021 return ret;
8022
8023 local_tsc = rdtsc();
8024 stable = !check_tsc_unstable();
8025 list_for_each_entry(kvm, &vm_list, vm_list) {
8026 kvm_for_each_vcpu(i, vcpu, kvm) {
8027 if (!stable && vcpu->cpu == smp_processor_id())
8028 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8029 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
8030 backwards_tsc = true;
8031 if (vcpu->arch.last_host_tsc > max_tsc)
8032 max_tsc = vcpu->arch.last_host_tsc;
8033 }
8034 }
8035 }
8036
8037 /*
8038 * Sometimes, even reliable TSCs go backwards. This happens on
8039 * platforms that reset TSC during suspend or hibernate actions, but
8040 * maintain synchronization. We must compensate. Fortunately, we can
8041 * detect that condition here, which happens early in CPU bringup,
8042 * before any KVM threads can be running. Unfortunately, we can't
8043 * bring the TSCs fully up to date with real time, as we aren't yet far
8044 * enough into CPU bringup that we know how much real time has actually
8045 * elapsed; our helper function, ktime_get_boot_ns() will be using boot
8046 * variables that haven't been updated yet.
8047 *
8048 * So we simply find the maximum observed TSC above, then record the
8049 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
8050 * the adjustment will be applied. Note that we accumulate
8051 * adjustments, in case multiple suspend cycles happen before some VCPU
8052 * gets a chance to run again. In the event that no KVM threads get a
8053 * chance to run, we will miss the entire elapsed period, as we'll have
8054 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
8055 * loose cycle time. This isn't too big a deal, since the loss will be
8056 * uniform across all VCPUs (not to mention the scenario is extremely
8057 * unlikely). It is possible that a second hibernate recovery happens
8058 * much faster than a first, causing the observed TSC here to be
8059 * smaller; this would require additional padding adjustment, which is
8060 * why we set last_host_tsc to the local tsc observed here.
8061 *
8062 * N.B. - this code below runs only on platforms with reliable TSC,
8063 * as that is the only way backwards_tsc is set above. Also note
8064 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
8065 * have the same delta_cyc adjustment applied if backwards_tsc
8066 * is detected. Note further, this adjustment is only done once,
8067 * as we reset last_host_tsc on all VCPUs to stop this from being
8068 * called multiple times (one for each physical CPU bringup).
8069 *
8070 * Platforms with unreliable TSCs don't have to deal with this, they
8071 * will be compensated by the logic in vcpu_load, which sets the TSC to
8072 * catchup mode. This will catchup all VCPUs to real time, but cannot
8073 * guarantee that they stay in perfect synchronization.
8074 */
8075 if (backwards_tsc) {
8076 u64 delta_cyc = max_tsc - local_tsc;
8077 list_for_each_entry(kvm, &vm_list, vm_list) {
8078 kvm->arch.backwards_tsc_observed = true;
8079 kvm_for_each_vcpu(i, vcpu, kvm) {
8080 vcpu->arch.tsc_offset_adjustment += delta_cyc;
8081 vcpu->arch.last_host_tsc = local_tsc;
8082 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8083 }
8084
8085 /*
8086 * We have to disable TSC offset matching.. if you were
8087 * booting a VM while issuing an S4 host suspend....
8088 * you may have some problem. Solving this issue is
8089 * left as an exercise to the reader.
8090 */
8091 kvm->arch.last_tsc_nsec = 0;
8092 kvm->arch.last_tsc_write = 0;
8093 }
8094
8095 }
8096 return 0;
8097 }
8098
8099 void kvm_arch_hardware_disable(void)
8100 {
8101 kvm_x86_ops->hardware_disable();
8102 drop_user_return_notifiers();
8103 }
8104
8105 int kvm_arch_hardware_setup(void)
8106 {
8107 int r;
8108
8109 r = kvm_x86_ops->hardware_setup();
8110 if (r != 0)
8111 return r;
8112
8113 if (kvm_has_tsc_control) {
8114 /*
8115 * Make sure the user can only configure tsc_khz values that
8116 * fit into a signed integer.
8117 * A min value is not calculated needed because it will always
8118 * be 1 on all machines.
8119 */
8120 u64 max = min(0x7fffffffULL,
8121 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
8122 kvm_max_guest_tsc_khz = max;
8123
8124 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
8125 }
8126
8127 kvm_init_msr_list();
8128 return 0;
8129 }
8130
8131 void kvm_arch_hardware_unsetup(void)
8132 {
8133 kvm_x86_ops->hardware_unsetup();
8134 }
8135
8136 void kvm_arch_check_processor_compat(void *rtn)
8137 {
8138 kvm_x86_ops->check_processor_compatibility(rtn);
8139 }
8140
8141 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
8142 {
8143 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
8144 }
8145 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
8146
8147 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
8148 {
8149 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
8150 }
8151
8152 struct static_key kvm_no_apic_vcpu __read_mostly;
8153 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
8154
8155 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
8156 {
8157 struct page *page;
8158 int r;
8159
8160 vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu);
8161 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
8162 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
8163 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8164 else
8165 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
8166
8167 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
8168 if (!page) {
8169 r = -ENOMEM;
8170 goto fail;
8171 }
8172 vcpu->arch.pio_data = page_address(page);
8173
8174 kvm_set_tsc_khz(vcpu, max_tsc_khz);
8175
8176 r = kvm_mmu_create(vcpu);
8177 if (r < 0)
8178 goto fail_free_pio_data;
8179
8180 if (irqchip_in_kernel(vcpu->kvm)) {
8181 r = kvm_create_lapic(vcpu);
8182 if (r < 0)
8183 goto fail_mmu_destroy;
8184 } else
8185 static_key_slow_inc(&kvm_no_apic_vcpu);
8186
8187 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
8188 GFP_KERNEL);
8189 if (!vcpu->arch.mce_banks) {
8190 r = -ENOMEM;
8191 goto fail_free_lapic;
8192 }
8193 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
8194
8195 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
8196 r = -ENOMEM;
8197 goto fail_free_mce_banks;
8198 }
8199
8200 fx_init(vcpu);
8201
8202 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
8203
8204 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
8205
8206 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
8207
8208 kvm_async_pf_hash_reset(vcpu);
8209 kvm_pmu_init(vcpu);
8210
8211 vcpu->arch.pending_external_vector = -1;
8212 vcpu->arch.preempted_in_kernel = false;
8213
8214 kvm_hv_vcpu_init(vcpu);
8215
8216 return 0;
8217
8218 fail_free_mce_banks:
8219 kfree(vcpu->arch.mce_banks);
8220 fail_free_lapic:
8221 kvm_free_lapic(vcpu);
8222 fail_mmu_destroy:
8223 kvm_mmu_destroy(vcpu);
8224 fail_free_pio_data:
8225 free_page((unsigned long)vcpu->arch.pio_data);
8226 fail:
8227 return r;
8228 }
8229
8230 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
8231 {
8232 int idx;
8233
8234 kvm_hv_vcpu_uninit(vcpu);
8235 kvm_pmu_destroy(vcpu);
8236 kfree(vcpu->arch.mce_banks);
8237 kvm_free_lapic(vcpu);
8238 idx = srcu_read_lock(&vcpu->kvm->srcu);
8239 kvm_mmu_destroy(vcpu);
8240 srcu_read_unlock(&vcpu->kvm->srcu, idx);
8241 free_page((unsigned long)vcpu->arch.pio_data);
8242 if (!lapic_in_kernel(vcpu))
8243 static_key_slow_dec(&kvm_no_apic_vcpu);
8244 }
8245
8246 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
8247 {
8248 vcpu->arch.l1tf_flush_l1d = true;
8249 kvm_x86_ops->sched_in(vcpu, cpu);
8250 }
8251
8252 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
8253 {
8254 if (type)
8255 return -EINVAL;
8256
8257 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
8258 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
8259 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
8260 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
8261 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
8262
8263 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
8264 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
8265 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
8266 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
8267 &kvm->arch.irq_sources_bitmap);
8268
8269 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
8270 mutex_init(&kvm->arch.apic_map_lock);
8271 mutex_init(&kvm->arch.hyperv.hv_lock);
8272 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
8273
8274 kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
8275 pvclock_update_vm_gtod_copy(kvm);
8276
8277 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
8278 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
8279
8280 kvm_page_track_init(kvm);
8281 kvm_mmu_init_vm(kvm);
8282
8283 if (kvm_x86_ops->vm_init)
8284 return kvm_x86_ops->vm_init(kvm);
8285
8286 return 0;
8287 }
8288
8289 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
8290 {
8291 int r;
8292 r = vcpu_load(vcpu);
8293 BUG_ON(r);
8294 kvm_mmu_unload(vcpu);
8295 vcpu_put(vcpu);
8296 }
8297
8298 static void kvm_free_vcpus(struct kvm *kvm)
8299 {
8300 unsigned int i;
8301 struct kvm_vcpu *vcpu;
8302
8303 /*
8304 * Unpin any mmu pages first.
8305 */
8306 kvm_for_each_vcpu(i, vcpu, kvm) {
8307 kvm_clear_async_pf_completion_queue(vcpu);
8308 kvm_unload_vcpu_mmu(vcpu);
8309 }
8310 kvm_for_each_vcpu(i, vcpu, kvm)
8311 kvm_arch_vcpu_free(vcpu);
8312
8313 mutex_lock(&kvm->lock);
8314 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
8315 kvm->vcpus[i] = NULL;
8316
8317 atomic_set(&kvm->online_vcpus, 0);
8318 mutex_unlock(&kvm->lock);
8319 }
8320
8321 void kvm_arch_sync_events(struct kvm *kvm)
8322 {
8323 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
8324 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
8325 kvm_free_pit(kvm);
8326 }
8327
8328 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8329 {
8330 int i, r;
8331 unsigned long hva;
8332 struct kvm_memslots *slots = kvm_memslots(kvm);
8333 struct kvm_memory_slot *slot, old;
8334
8335 /* Called with kvm->slots_lock held. */
8336 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
8337 return -EINVAL;
8338
8339 slot = id_to_memslot(slots, id);
8340 if (size) {
8341 if (slot->npages)
8342 return -EEXIST;
8343
8344 /*
8345 * MAP_SHARED to prevent internal slot pages from being moved
8346 * by fork()/COW.
8347 */
8348 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
8349 MAP_SHARED | MAP_ANONYMOUS, 0);
8350 if (IS_ERR((void *)hva))
8351 return PTR_ERR((void *)hva);
8352 } else {
8353 if (!slot->npages)
8354 return 0;
8355
8356 hva = 0;
8357 }
8358
8359 old = *slot;
8360 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
8361 struct kvm_userspace_memory_region m;
8362
8363 m.slot = id | (i << 16);
8364 m.flags = 0;
8365 m.guest_phys_addr = gpa;
8366 m.userspace_addr = hva;
8367 m.memory_size = size;
8368 r = __kvm_set_memory_region(kvm, &m);
8369 if (r < 0)
8370 return r;
8371 }
8372
8373 if (!size)
8374 vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
8375
8376 return 0;
8377 }
8378 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
8379
8380 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8381 {
8382 int r;
8383
8384 mutex_lock(&kvm->slots_lock);
8385 r = __x86_set_memory_region(kvm, id, gpa, size);
8386 mutex_unlock(&kvm->slots_lock);
8387
8388 return r;
8389 }
8390 EXPORT_SYMBOL_GPL(x86_set_memory_region);
8391
8392 void kvm_arch_destroy_vm(struct kvm *kvm)
8393 {
8394 if (current->mm == kvm->mm) {
8395 /*
8396 * Free memory regions allocated on behalf of userspace,
8397 * unless the the memory map has changed due to process exit
8398 * or fd copying.
8399 */
8400 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
8401 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
8402 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
8403 }
8404 if (kvm_x86_ops->vm_destroy)
8405 kvm_x86_ops->vm_destroy(kvm);
8406 kvm_pic_destroy(kvm);
8407 kvm_ioapic_destroy(kvm);
8408 kvm_free_vcpus(kvm);
8409 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
8410 kvm_mmu_uninit_vm(kvm);
8411 kvm_page_track_cleanup(kvm);
8412 }
8413
8414 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
8415 struct kvm_memory_slot *dont)
8416 {
8417 int i;
8418
8419 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8420 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
8421 kvfree(free->arch.rmap[i]);
8422 free->arch.rmap[i] = NULL;
8423 }
8424 if (i == 0)
8425 continue;
8426
8427 if (!dont || free->arch.lpage_info[i - 1] !=
8428 dont->arch.lpage_info[i - 1]) {
8429 kvfree(free->arch.lpage_info[i - 1]);
8430 free->arch.lpage_info[i - 1] = NULL;
8431 }
8432 }
8433
8434 kvm_page_track_free_memslot(free, dont);
8435 }
8436
8437 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
8438 unsigned long npages)
8439 {
8440 int i;
8441
8442 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8443 struct kvm_lpage_info *linfo;
8444 unsigned long ugfn;
8445 int lpages;
8446 int level = i + 1;
8447
8448 lpages = gfn_to_index(slot->base_gfn + npages - 1,
8449 slot->base_gfn, level) + 1;
8450
8451 slot->arch.rmap[i] =
8452 kvzalloc(lpages * sizeof(*slot->arch.rmap[i]), GFP_KERNEL);
8453 if (!slot->arch.rmap[i])
8454 goto out_free;
8455 if (i == 0)
8456 continue;
8457
8458 linfo = kvzalloc(lpages * sizeof(*linfo), GFP_KERNEL);
8459 if (!linfo)
8460 goto out_free;
8461
8462 slot->arch.lpage_info[i - 1] = linfo;
8463
8464 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
8465 linfo[0].disallow_lpage = 1;
8466 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
8467 linfo[lpages - 1].disallow_lpage = 1;
8468 ugfn = slot->userspace_addr >> PAGE_SHIFT;
8469 /*
8470 * If the gfn and userspace address are not aligned wrt each
8471 * other, or if explicitly asked to, disable large page
8472 * support for this slot
8473 */
8474 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
8475 !kvm_largepages_enabled()) {
8476 unsigned long j;
8477
8478 for (j = 0; j < lpages; ++j)
8479 linfo[j].disallow_lpage = 1;
8480 }
8481 }
8482
8483 if (kvm_page_track_create_memslot(slot, npages))
8484 goto out_free;
8485
8486 return 0;
8487
8488 out_free:
8489 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8490 kvfree(slot->arch.rmap[i]);
8491 slot->arch.rmap[i] = NULL;
8492 if (i == 0)
8493 continue;
8494
8495 kvfree(slot->arch.lpage_info[i - 1]);
8496 slot->arch.lpage_info[i - 1] = NULL;
8497 }
8498 return -ENOMEM;
8499 }
8500
8501 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
8502 {
8503 /*
8504 * memslots->generation has been incremented.
8505 * mmio generation may have reached its maximum value.
8506 */
8507 kvm_mmu_invalidate_mmio_sptes(kvm, slots);
8508 }
8509
8510 int kvm_arch_prepare_memory_region(struct kvm *kvm,
8511 struct kvm_memory_slot *memslot,
8512 const struct kvm_userspace_memory_region *mem,
8513 enum kvm_mr_change change)
8514 {
8515 return 0;
8516 }
8517
8518 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8519 struct kvm_memory_slot *new)
8520 {
8521 /* Still write protect RO slot */
8522 if (new->flags & KVM_MEM_READONLY) {
8523 kvm_mmu_slot_remove_write_access(kvm, new);
8524 return;
8525 }
8526
8527 /*
8528 * Call kvm_x86_ops dirty logging hooks when they are valid.
8529 *
8530 * kvm_x86_ops->slot_disable_log_dirty is called when:
8531 *
8532 * - KVM_MR_CREATE with dirty logging is disabled
8533 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8534 *
8535 * The reason is, in case of PML, we need to set D-bit for any slots
8536 * with dirty logging disabled in order to eliminate unnecessary GPA
8537 * logging in PML buffer (and potential PML buffer full VMEXT). This
8538 * guarantees leaving PML enabled during guest's lifetime won't have
8539 * any additonal overhead from PML when guest is running with dirty
8540 * logging disabled for memory slots.
8541 *
8542 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8543 * to dirty logging mode.
8544 *
8545 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8546 *
8547 * In case of write protect:
8548 *
8549 * Write protect all pages for dirty logging.
8550 *
8551 * All the sptes including the large sptes which point to this
8552 * slot are set to readonly. We can not create any new large
8553 * spte on this slot until the end of the logging.
8554 *
8555 * See the comments in fast_page_fault().
8556 */
8557 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8558 if (kvm_x86_ops->slot_enable_log_dirty)
8559 kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8560 else
8561 kvm_mmu_slot_remove_write_access(kvm, new);
8562 } else {
8563 if (kvm_x86_ops->slot_disable_log_dirty)
8564 kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8565 }
8566 }
8567
8568 void kvm_arch_commit_memory_region(struct kvm *kvm,
8569 const struct kvm_userspace_memory_region *mem,
8570 const struct kvm_memory_slot *old,
8571 const struct kvm_memory_slot *new,
8572 enum kvm_mr_change change)
8573 {
8574 int nr_mmu_pages = 0;
8575
8576 if (!kvm->arch.n_requested_mmu_pages)
8577 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8578
8579 if (nr_mmu_pages)
8580 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8581
8582 /*
8583 * Dirty logging tracks sptes in 4k granularity, meaning that large
8584 * sptes have to be split. If live migration is successful, the guest
8585 * in the source machine will be destroyed and large sptes will be
8586 * created in the destination. However, if the guest continues to run
8587 * in the source machine (for example if live migration fails), small
8588 * sptes will remain around and cause bad performance.
8589 *
8590 * Scan sptes if dirty logging has been stopped, dropping those
8591 * which can be collapsed into a single large-page spte. Later
8592 * page faults will create the large-page sptes.
8593 */
8594 if ((change != KVM_MR_DELETE) &&
8595 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8596 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8597 kvm_mmu_zap_collapsible_sptes(kvm, new);
8598
8599 /*
8600 * Set up write protection and/or dirty logging for the new slot.
8601 *
8602 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8603 * been zapped so no dirty logging staff is needed for old slot. For
8604 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8605 * new and it's also covered when dealing with the new slot.
8606 *
8607 * FIXME: const-ify all uses of struct kvm_memory_slot.
8608 */
8609 if (change != KVM_MR_DELETE)
8610 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8611 }
8612
8613 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8614 {
8615 kvm_mmu_invalidate_zap_all_pages(kvm);
8616 }
8617
8618 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8619 struct kvm_memory_slot *slot)
8620 {
8621 kvm_page_track_flush_slot(kvm, slot);
8622 }
8623
8624 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8625 {
8626 if (!list_empty_careful(&vcpu->async_pf.done))
8627 return true;
8628
8629 if (kvm_apic_has_events(vcpu))
8630 return true;
8631
8632 if (vcpu->arch.pv.pv_unhalted)
8633 return true;
8634
8635 if (vcpu->arch.exception.pending)
8636 return true;
8637
8638 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
8639 (vcpu->arch.nmi_pending &&
8640 kvm_x86_ops->nmi_allowed(vcpu)))
8641 return true;
8642
8643 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
8644 (vcpu->arch.smi_pending && !is_smm(vcpu)))
8645 return true;
8646
8647 if (kvm_arch_interrupt_allowed(vcpu) &&
8648 kvm_cpu_has_interrupt(vcpu))
8649 return true;
8650
8651 if (kvm_hv_has_stimer_pending(vcpu))
8652 return true;
8653
8654 return false;
8655 }
8656
8657 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8658 {
8659 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8660 }
8661
8662 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
8663 {
8664 return vcpu->arch.preempted_in_kernel;
8665 }
8666
8667 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8668 {
8669 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8670 }
8671
8672 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8673 {
8674 return kvm_x86_ops->interrupt_allowed(vcpu);
8675 }
8676
8677 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8678 {
8679 if (is_64_bit_mode(vcpu))
8680 return kvm_rip_read(vcpu);
8681 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8682 kvm_rip_read(vcpu));
8683 }
8684 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8685
8686 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8687 {
8688 return kvm_get_linear_rip(vcpu) == linear_rip;
8689 }
8690 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8691
8692 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8693 {
8694 unsigned long rflags;
8695
8696 rflags = kvm_x86_ops->get_rflags(vcpu);
8697 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8698 rflags &= ~X86_EFLAGS_TF;
8699 return rflags;
8700 }
8701 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8702
8703 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8704 {
8705 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8706 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8707 rflags |= X86_EFLAGS_TF;
8708 kvm_x86_ops->set_rflags(vcpu, rflags);
8709 }
8710
8711 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8712 {
8713 __kvm_set_rflags(vcpu, rflags);
8714 kvm_make_request(KVM_REQ_EVENT, vcpu);
8715 }
8716 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8717
8718 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8719 {
8720 int r;
8721
8722 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8723 work->wakeup_all)
8724 return;
8725
8726 r = kvm_mmu_reload(vcpu);
8727 if (unlikely(r))
8728 return;
8729
8730 if (!vcpu->arch.mmu.direct_map &&
8731 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8732 return;
8733
8734 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8735 }
8736
8737 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8738 {
8739 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8740 }
8741
8742 static inline u32 kvm_async_pf_next_probe(u32 key)
8743 {
8744 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8745 }
8746
8747 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8748 {
8749 u32 key = kvm_async_pf_hash_fn(gfn);
8750
8751 while (vcpu->arch.apf.gfns[key] != ~0)
8752 key = kvm_async_pf_next_probe(key);
8753
8754 vcpu->arch.apf.gfns[key] = gfn;
8755 }
8756
8757 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8758 {
8759 int i;
8760 u32 key = kvm_async_pf_hash_fn(gfn);
8761
8762 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8763 (vcpu->arch.apf.gfns[key] != gfn &&
8764 vcpu->arch.apf.gfns[key] != ~0); i++)
8765 key = kvm_async_pf_next_probe(key);
8766
8767 return key;
8768 }
8769
8770 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8771 {
8772 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8773 }
8774
8775 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8776 {
8777 u32 i, j, k;
8778
8779 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8780 while (true) {
8781 vcpu->arch.apf.gfns[i] = ~0;
8782 do {
8783 j = kvm_async_pf_next_probe(j);
8784 if (vcpu->arch.apf.gfns[j] == ~0)
8785 return;
8786 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8787 /*
8788 * k lies cyclically in ]i,j]
8789 * | i.k.j |
8790 * |....j i.k.| or |.k..j i...|
8791 */
8792 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8793 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8794 i = j;
8795 }
8796 }
8797
8798 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8799 {
8800
8801 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8802 sizeof(val));
8803 }
8804
8805 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
8806 {
8807
8808 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
8809 sizeof(u32));
8810 }
8811
8812 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8813 struct kvm_async_pf *work)
8814 {
8815 struct x86_exception fault;
8816
8817 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8818 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8819
8820 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8821 (vcpu->arch.apf.send_user_only &&
8822 kvm_x86_ops->get_cpl(vcpu) == 0))
8823 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8824 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8825 fault.vector = PF_VECTOR;
8826 fault.error_code_valid = true;
8827 fault.error_code = 0;
8828 fault.nested_page_fault = false;
8829 fault.address = work->arch.token;
8830 fault.async_page_fault = true;
8831 kvm_inject_page_fault(vcpu, &fault);
8832 }
8833 }
8834
8835 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8836 struct kvm_async_pf *work)
8837 {
8838 struct x86_exception fault;
8839 u32 val;
8840
8841 if (work->wakeup_all)
8842 work->arch.token = ~0; /* broadcast wakeup */
8843 else
8844 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8845 trace_kvm_async_pf_ready(work->arch.token, work->gva);
8846
8847 if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
8848 !apf_get_user(vcpu, &val)) {
8849 if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
8850 vcpu->arch.exception.pending &&
8851 vcpu->arch.exception.nr == PF_VECTOR &&
8852 !apf_put_user(vcpu, 0)) {
8853 vcpu->arch.exception.injected = false;
8854 vcpu->arch.exception.pending = false;
8855 vcpu->arch.exception.nr = 0;
8856 vcpu->arch.exception.has_error_code = false;
8857 vcpu->arch.exception.error_code = 0;
8858 } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8859 fault.vector = PF_VECTOR;
8860 fault.error_code_valid = true;
8861 fault.error_code = 0;
8862 fault.nested_page_fault = false;
8863 fault.address = work->arch.token;
8864 fault.async_page_fault = true;
8865 kvm_inject_page_fault(vcpu, &fault);
8866 }
8867 }
8868 vcpu->arch.apf.halted = false;
8869 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8870 }
8871
8872 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8873 {
8874 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8875 return true;
8876 else
8877 return kvm_can_do_async_pf(vcpu);
8878 }
8879
8880 void kvm_arch_start_assignment(struct kvm *kvm)
8881 {
8882 atomic_inc(&kvm->arch.assigned_device_count);
8883 }
8884 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8885
8886 void kvm_arch_end_assignment(struct kvm *kvm)
8887 {
8888 atomic_dec(&kvm->arch.assigned_device_count);
8889 }
8890 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8891
8892 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8893 {
8894 return atomic_read(&kvm->arch.assigned_device_count);
8895 }
8896 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8897
8898 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8899 {
8900 atomic_inc(&kvm->arch.noncoherent_dma_count);
8901 }
8902 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8903
8904 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8905 {
8906 atomic_dec(&kvm->arch.noncoherent_dma_count);
8907 }
8908 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8909
8910 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8911 {
8912 return atomic_read(&kvm->arch.noncoherent_dma_count);
8913 }
8914 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8915
8916 bool kvm_arch_has_irq_bypass(void)
8917 {
8918 return kvm_x86_ops->update_pi_irte != NULL;
8919 }
8920
8921 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8922 struct irq_bypass_producer *prod)
8923 {
8924 struct kvm_kernel_irqfd *irqfd =
8925 container_of(cons, struct kvm_kernel_irqfd, consumer);
8926
8927 irqfd->producer = prod;
8928
8929 return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8930 prod->irq, irqfd->gsi, 1);
8931 }
8932
8933 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8934 struct irq_bypass_producer *prod)
8935 {
8936 int ret;
8937 struct kvm_kernel_irqfd *irqfd =
8938 container_of(cons, struct kvm_kernel_irqfd, consumer);
8939
8940 WARN_ON(irqfd->producer != prod);
8941 irqfd->producer = NULL;
8942
8943 /*
8944 * When producer of consumer is unregistered, we change back to
8945 * remapped mode, so we can re-use the current implementation
8946 * when the irq is masked/disabled or the consumer side (KVM
8947 * int this case doesn't want to receive the interrupts.
8948 */
8949 ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8950 if (ret)
8951 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8952 " fails: %d\n", irqfd->consumer.token, ret);
8953 }
8954
8955 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8956 uint32_t guest_irq, bool set)
8957 {
8958 if (!kvm_x86_ops->update_pi_irte)
8959 return -EINVAL;
8960
8961 return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8962 }
8963
8964 bool kvm_vector_hashing_enabled(void)
8965 {
8966 return vector_hashing;
8967 }
8968 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
8969
8970 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8971 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8972 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8973 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8974 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8975 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8976 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8977 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8978 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8979 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8980 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8981 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8982 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8983 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8984 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8985 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8986 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
8987 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
8988 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);