]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kvm/x86.c
UBUNTU: SAUCE: [Fix] x86/KVM/VMX: Add L1D flush logic
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
16 *
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
19 *
20 */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/mem_encrypt.h>
58
59 #include <trace/events/kvm.h>
60
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70
71 #define CREATE_TRACE_POINTS
72 #include "trace.h"
73
74 #define MAX_IO_MSRS 256
75 #define KVM_MAX_MCE_BANKS 32
76 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
77 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
78
79 #define emul_to_vcpu(ctxt) \
80 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
81
82 /* EFER defaults:
83 * - enable syscall per default because its emulated by KVM
84 * - enable LME and LMA per default on 64 bit KVM
85 */
86 #ifdef CONFIG_X86_64
87 static
88 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
89 #else
90 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
91 #endif
92
93 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
94 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
95
96 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
97 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
98
99 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
100 static void process_nmi(struct kvm_vcpu *vcpu);
101 static void enter_smm(struct kvm_vcpu *vcpu);
102 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
103
104 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
105 EXPORT_SYMBOL_GPL(kvm_x86_ops);
106
107 static bool __read_mostly ignore_msrs = 0;
108 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
109
110 static bool __read_mostly report_ignored_msrs = true;
111 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
112
113 unsigned int min_timer_period_us = 200;
114 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
115
116 static bool __read_mostly kvmclock_periodic_sync = true;
117 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
118
119 bool __read_mostly kvm_has_tsc_control;
120 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
121 u32 __read_mostly kvm_max_guest_tsc_khz;
122 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
123 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits;
124 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
125 u64 __read_mostly kvm_max_tsc_scaling_ratio;
126 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
127 u64 __read_mostly kvm_default_tsc_scaling_ratio;
128 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
129
130 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
131 static u32 __read_mostly tsc_tolerance_ppm = 250;
132 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
133
134 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
135 unsigned int __read_mostly lapic_timer_advance_ns = 0;
136 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
137
138 static bool __read_mostly vector_hashing = true;
139 module_param(vector_hashing, bool, S_IRUGO);
140
141 #define KVM_NR_SHARED_MSRS 16
142
143 struct kvm_shared_msrs_global {
144 int nr;
145 u32 msrs[KVM_NR_SHARED_MSRS];
146 };
147
148 struct kvm_shared_msrs {
149 struct user_return_notifier urn;
150 bool registered;
151 struct kvm_shared_msr_values {
152 u64 host;
153 u64 curr;
154 } values[KVM_NR_SHARED_MSRS];
155 };
156
157 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
158 static struct kvm_shared_msrs __percpu *shared_msrs;
159
160 struct kvm_stats_debugfs_item debugfs_entries[] = {
161 { "pf_fixed", VCPU_STAT(pf_fixed) },
162 { "pf_guest", VCPU_STAT(pf_guest) },
163 { "tlb_flush", VCPU_STAT(tlb_flush) },
164 { "invlpg", VCPU_STAT(invlpg) },
165 { "exits", VCPU_STAT(exits) },
166 { "io_exits", VCPU_STAT(io_exits) },
167 { "mmio_exits", VCPU_STAT(mmio_exits) },
168 { "signal_exits", VCPU_STAT(signal_exits) },
169 { "irq_window", VCPU_STAT(irq_window_exits) },
170 { "nmi_window", VCPU_STAT(nmi_window_exits) },
171 { "halt_exits", VCPU_STAT(halt_exits) },
172 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
173 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
174 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
175 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
176 { "hypercalls", VCPU_STAT(hypercalls) },
177 { "request_irq", VCPU_STAT(request_irq_exits) },
178 { "irq_exits", VCPU_STAT(irq_exits) },
179 { "host_state_reload", VCPU_STAT(host_state_reload) },
180 { "efer_reload", VCPU_STAT(efer_reload) },
181 { "fpu_reload", VCPU_STAT(fpu_reload) },
182 { "insn_emulation", VCPU_STAT(insn_emulation) },
183 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
184 { "irq_injections", VCPU_STAT(irq_injections) },
185 { "nmi_injections", VCPU_STAT(nmi_injections) },
186 { "req_event", VCPU_STAT(req_event) },
187 { "l1d_flush", VCPU_STAT(l1d_flush) },
188 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
189 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
190 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
191 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
192 { "mmu_flooded", VM_STAT(mmu_flooded) },
193 { "mmu_recycled", VM_STAT(mmu_recycled) },
194 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
195 { "mmu_unsync", VM_STAT(mmu_unsync) },
196 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
197 { "largepages", VM_STAT(lpages) },
198 { "max_mmu_page_hash_collisions",
199 VM_STAT(max_mmu_page_hash_collisions) },
200 { NULL }
201 };
202
203 u64 __read_mostly host_xcr0;
204
205 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
206
207 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
208 {
209 int i;
210 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
211 vcpu->arch.apf.gfns[i] = ~0;
212 }
213
214 static void kvm_on_user_return(struct user_return_notifier *urn)
215 {
216 unsigned slot;
217 struct kvm_shared_msrs *locals
218 = container_of(urn, struct kvm_shared_msrs, urn);
219 struct kvm_shared_msr_values *values;
220 unsigned long flags;
221
222 /*
223 * Disabling irqs at this point since the following code could be
224 * interrupted and executed through kvm_arch_hardware_disable()
225 */
226 local_irq_save(flags);
227 if (locals->registered) {
228 locals->registered = false;
229 user_return_notifier_unregister(urn);
230 }
231 local_irq_restore(flags);
232 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
233 values = &locals->values[slot];
234 if (values->host != values->curr) {
235 wrmsrl(shared_msrs_global.msrs[slot], values->host);
236 values->curr = values->host;
237 }
238 }
239 }
240
241 static void shared_msr_update(unsigned slot, u32 msr)
242 {
243 u64 value;
244 unsigned int cpu = smp_processor_id();
245 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
246
247 /* only read, and nobody should modify it at this time,
248 * so don't need lock */
249 if (slot >= shared_msrs_global.nr) {
250 printk(KERN_ERR "kvm: invalid MSR slot!");
251 return;
252 }
253 rdmsrl_safe(msr, &value);
254 smsr->values[slot].host = value;
255 smsr->values[slot].curr = value;
256 }
257
258 void kvm_define_shared_msr(unsigned slot, u32 msr)
259 {
260 BUG_ON(slot >= KVM_NR_SHARED_MSRS);
261 shared_msrs_global.msrs[slot] = msr;
262 if (slot >= shared_msrs_global.nr)
263 shared_msrs_global.nr = slot + 1;
264 }
265 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
266
267 static void kvm_shared_msr_cpu_online(void)
268 {
269 unsigned i;
270
271 for (i = 0; i < shared_msrs_global.nr; ++i)
272 shared_msr_update(i, shared_msrs_global.msrs[i]);
273 }
274
275 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
276 {
277 unsigned int cpu = smp_processor_id();
278 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
279 int err;
280
281 if (((value ^ smsr->values[slot].curr) & mask) == 0)
282 return 0;
283 smsr->values[slot].curr = value;
284 err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
285 if (err)
286 return 1;
287
288 if (!smsr->registered) {
289 smsr->urn.on_user_return = kvm_on_user_return;
290 user_return_notifier_register(&smsr->urn);
291 smsr->registered = true;
292 }
293 return 0;
294 }
295 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
296
297 static void drop_user_return_notifiers(void)
298 {
299 unsigned int cpu = smp_processor_id();
300 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
301
302 if (smsr->registered)
303 kvm_on_user_return(&smsr->urn);
304 }
305
306 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
307 {
308 return vcpu->arch.apic_base;
309 }
310 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
311
312 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
313 {
314 u64 old_state = vcpu->arch.apic_base &
315 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
316 u64 new_state = msr_info->data &
317 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
318 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
319 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
320
321 if ((msr_info->data & reserved_bits) || new_state == X2APIC_ENABLE)
322 return 1;
323 if (!msr_info->host_initiated &&
324 ((new_state == MSR_IA32_APICBASE_ENABLE &&
325 old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
326 (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
327 old_state == 0)))
328 return 1;
329
330 kvm_lapic_set_base(vcpu, msr_info->data);
331 return 0;
332 }
333 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
334
335 asmlinkage __visible void kvm_spurious_fault(void)
336 {
337 /* Fault while not rebooting. We want the trace. */
338 BUG();
339 }
340 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
341
342 #define EXCPT_BENIGN 0
343 #define EXCPT_CONTRIBUTORY 1
344 #define EXCPT_PF 2
345
346 static int exception_class(int vector)
347 {
348 switch (vector) {
349 case PF_VECTOR:
350 return EXCPT_PF;
351 case DE_VECTOR:
352 case TS_VECTOR:
353 case NP_VECTOR:
354 case SS_VECTOR:
355 case GP_VECTOR:
356 return EXCPT_CONTRIBUTORY;
357 default:
358 break;
359 }
360 return EXCPT_BENIGN;
361 }
362
363 #define EXCPT_FAULT 0
364 #define EXCPT_TRAP 1
365 #define EXCPT_ABORT 2
366 #define EXCPT_INTERRUPT 3
367
368 static int exception_type(int vector)
369 {
370 unsigned int mask;
371
372 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
373 return EXCPT_INTERRUPT;
374
375 mask = 1 << vector;
376
377 /* #DB is trap, as instruction watchpoints are handled elsewhere */
378 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
379 return EXCPT_TRAP;
380
381 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
382 return EXCPT_ABORT;
383
384 /* Reserved exceptions will result in fault */
385 return EXCPT_FAULT;
386 }
387
388 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
389 unsigned nr, bool has_error, u32 error_code,
390 bool reinject)
391 {
392 u32 prev_nr;
393 int class1, class2;
394
395 kvm_make_request(KVM_REQ_EVENT, vcpu);
396
397 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
398 queue:
399 if (has_error && !is_protmode(vcpu))
400 has_error = false;
401 if (reinject) {
402 /*
403 * On vmentry, vcpu->arch.exception.pending is only
404 * true if an event injection was blocked by
405 * nested_run_pending. In that case, however,
406 * vcpu_enter_guest requests an immediate exit,
407 * and the guest shouldn't proceed far enough to
408 * need reinjection.
409 */
410 WARN_ON_ONCE(vcpu->arch.exception.pending);
411 vcpu->arch.exception.injected = true;
412 } else {
413 vcpu->arch.exception.pending = true;
414 vcpu->arch.exception.injected = false;
415 }
416 vcpu->arch.exception.has_error_code = has_error;
417 vcpu->arch.exception.nr = nr;
418 vcpu->arch.exception.error_code = error_code;
419 return;
420 }
421
422 /* to check exception */
423 prev_nr = vcpu->arch.exception.nr;
424 if (prev_nr == DF_VECTOR) {
425 /* triple fault -> shutdown */
426 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
427 return;
428 }
429 class1 = exception_class(prev_nr);
430 class2 = exception_class(nr);
431 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
432 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
433 /*
434 * Generate double fault per SDM Table 5-5. Set
435 * exception.pending = true so that the double fault
436 * can trigger a nested vmexit.
437 */
438 vcpu->arch.exception.pending = true;
439 vcpu->arch.exception.injected = false;
440 vcpu->arch.exception.has_error_code = true;
441 vcpu->arch.exception.nr = DF_VECTOR;
442 vcpu->arch.exception.error_code = 0;
443 } else
444 /* replace previous exception with a new one in a hope
445 that instruction re-execution will regenerate lost
446 exception */
447 goto queue;
448 }
449
450 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
451 {
452 kvm_multiple_exception(vcpu, nr, false, 0, false);
453 }
454 EXPORT_SYMBOL_GPL(kvm_queue_exception);
455
456 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
457 {
458 kvm_multiple_exception(vcpu, nr, false, 0, true);
459 }
460 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
461
462 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
463 {
464 if (err)
465 kvm_inject_gp(vcpu, 0);
466 else
467 return kvm_skip_emulated_instruction(vcpu);
468
469 return 1;
470 }
471 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
472
473 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
474 {
475 ++vcpu->stat.pf_guest;
476 vcpu->arch.exception.nested_apf =
477 is_guest_mode(vcpu) && fault->async_page_fault;
478 if (vcpu->arch.exception.nested_apf)
479 vcpu->arch.apf.nested_apf_token = fault->address;
480 else
481 vcpu->arch.cr2 = fault->address;
482 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
483 }
484 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
485
486 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
487 {
488 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
489 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
490 else
491 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
492
493 return fault->nested_page_fault;
494 }
495
496 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
497 {
498 atomic_inc(&vcpu->arch.nmi_queued);
499 kvm_make_request(KVM_REQ_NMI, vcpu);
500 }
501 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
502
503 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
504 {
505 kvm_multiple_exception(vcpu, nr, true, error_code, false);
506 }
507 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
508
509 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
510 {
511 kvm_multiple_exception(vcpu, nr, true, error_code, true);
512 }
513 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
514
515 /*
516 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
517 * a #GP and return false.
518 */
519 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
520 {
521 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
522 return true;
523 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
524 return false;
525 }
526 EXPORT_SYMBOL_GPL(kvm_require_cpl);
527
528 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
529 {
530 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
531 return true;
532
533 kvm_queue_exception(vcpu, UD_VECTOR);
534 return false;
535 }
536 EXPORT_SYMBOL_GPL(kvm_require_dr);
537
538 /*
539 * This function will be used to read from the physical memory of the currently
540 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
541 * can read from guest physical or from the guest's guest physical memory.
542 */
543 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
544 gfn_t ngfn, void *data, int offset, int len,
545 u32 access)
546 {
547 struct x86_exception exception;
548 gfn_t real_gfn;
549 gpa_t ngpa;
550
551 ngpa = gfn_to_gpa(ngfn);
552 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
553 if (real_gfn == UNMAPPED_GVA)
554 return -EFAULT;
555
556 real_gfn = gpa_to_gfn(real_gfn);
557
558 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
559 }
560 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
561
562 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
563 void *data, int offset, int len, u32 access)
564 {
565 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
566 data, offset, len, access);
567 }
568
569 /*
570 * Load the pae pdptrs. Return true is they are all valid.
571 */
572 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
573 {
574 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
575 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
576 int i;
577 int ret;
578 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
579
580 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
581 offset * sizeof(u64), sizeof(pdpte),
582 PFERR_USER_MASK|PFERR_WRITE_MASK);
583 if (ret < 0) {
584 ret = 0;
585 goto out;
586 }
587 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
588 if ((pdpte[i] & PT_PRESENT_MASK) &&
589 (pdpte[i] &
590 vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
591 ret = 0;
592 goto out;
593 }
594 }
595 ret = 1;
596
597 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
598 __set_bit(VCPU_EXREG_PDPTR,
599 (unsigned long *)&vcpu->arch.regs_avail);
600 __set_bit(VCPU_EXREG_PDPTR,
601 (unsigned long *)&vcpu->arch.regs_dirty);
602 out:
603
604 return ret;
605 }
606 EXPORT_SYMBOL_GPL(load_pdptrs);
607
608 bool pdptrs_changed(struct kvm_vcpu *vcpu)
609 {
610 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
611 bool changed = true;
612 int offset;
613 gfn_t gfn;
614 int r;
615
616 if (is_long_mode(vcpu) || !is_pae(vcpu))
617 return false;
618
619 if (!test_bit(VCPU_EXREG_PDPTR,
620 (unsigned long *)&vcpu->arch.regs_avail))
621 return true;
622
623 gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
624 offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
625 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
626 PFERR_USER_MASK | PFERR_WRITE_MASK);
627 if (r < 0)
628 goto out;
629 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
630 out:
631
632 return changed;
633 }
634 EXPORT_SYMBOL_GPL(pdptrs_changed);
635
636 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
637 {
638 unsigned long old_cr0 = kvm_read_cr0(vcpu);
639 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
640
641 cr0 |= X86_CR0_ET;
642
643 #ifdef CONFIG_X86_64
644 if (cr0 & 0xffffffff00000000UL)
645 return 1;
646 #endif
647
648 cr0 &= ~CR0_RESERVED_BITS;
649
650 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
651 return 1;
652
653 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
654 return 1;
655
656 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
657 #ifdef CONFIG_X86_64
658 if ((vcpu->arch.efer & EFER_LME)) {
659 int cs_db, cs_l;
660
661 if (!is_pae(vcpu))
662 return 1;
663 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
664 if (cs_l)
665 return 1;
666 } else
667 #endif
668 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
669 kvm_read_cr3(vcpu)))
670 return 1;
671 }
672
673 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
674 return 1;
675
676 kvm_x86_ops->set_cr0(vcpu, cr0);
677
678 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
679 kvm_clear_async_pf_completion_queue(vcpu);
680 kvm_async_pf_hash_reset(vcpu);
681 }
682
683 if ((cr0 ^ old_cr0) & update_bits)
684 kvm_mmu_reset_context(vcpu);
685
686 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
687 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
688 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
689 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
690
691 return 0;
692 }
693 EXPORT_SYMBOL_GPL(kvm_set_cr0);
694
695 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
696 {
697 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
698 }
699 EXPORT_SYMBOL_GPL(kvm_lmsw);
700
701 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
702 {
703 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
704 !vcpu->guest_xcr0_loaded) {
705 /* kvm_set_xcr() also depends on this */
706 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
707 vcpu->guest_xcr0_loaded = 1;
708 }
709 }
710
711 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
712 {
713 if (vcpu->guest_xcr0_loaded) {
714 if (vcpu->arch.xcr0 != host_xcr0)
715 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
716 vcpu->guest_xcr0_loaded = 0;
717 }
718 }
719
720 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
721 {
722 u64 xcr0 = xcr;
723 u64 old_xcr0 = vcpu->arch.xcr0;
724 u64 valid_bits;
725
726 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
727 if (index != XCR_XFEATURE_ENABLED_MASK)
728 return 1;
729 if (!(xcr0 & XFEATURE_MASK_FP))
730 return 1;
731 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
732 return 1;
733
734 /*
735 * Do not allow the guest to set bits that we do not support
736 * saving. However, xcr0 bit 0 is always set, even if the
737 * emulated CPU does not support XSAVE (see fx_init).
738 */
739 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
740 if (xcr0 & ~valid_bits)
741 return 1;
742
743 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
744 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
745 return 1;
746
747 if (xcr0 & XFEATURE_MASK_AVX512) {
748 if (!(xcr0 & XFEATURE_MASK_YMM))
749 return 1;
750 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
751 return 1;
752 }
753 vcpu->arch.xcr0 = xcr0;
754
755 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
756 kvm_update_cpuid(vcpu);
757 return 0;
758 }
759
760 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
761 {
762 if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
763 __kvm_set_xcr(vcpu, index, xcr)) {
764 kvm_inject_gp(vcpu, 0);
765 return 1;
766 }
767 return 0;
768 }
769 EXPORT_SYMBOL_GPL(kvm_set_xcr);
770
771 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
772 {
773 unsigned long old_cr4 = kvm_read_cr4(vcpu);
774 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
775 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
776
777 if (cr4 & CR4_RESERVED_BITS)
778 return 1;
779
780 if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
781 return 1;
782
783 if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
784 return 1;
785
786 if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
787 return 1;
788
789 if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
790 return 1;
791
792 if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
793 return 1;
794
795 if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
796 return 1;
797
798 if (!guest_cpuid_has(vcpu, X86_FEATURE_UMIP) && (cr4 & X86_CR4_UMIP))
799 return 1;
800
801 if (is_long_mode(vcpu)) {
802 if (!(cr4 & X86_CR4_PAE))
803 return 1;
804 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
805 && ((cr4 ^ old_cr4) & pdptr_bits)
806 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
807 kvm_read_cr3(vcpu)))
808 return 1;
809
810 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
811 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
812 return 1;
813
814 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
815 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
816 return 1;
817 }
818
819 if (kvm_x86_ops->set_cr4(vcpu, cr4))
820 return 1;
821
822 if (((cr4 ^ old_cr4) & pdptr_bits) ||
823 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
824 kvm_mmu_reset_context(vcpu);
825
826 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
827 kvm_update_cpuid(vcpu);
828
829 return 0;
830 }
831 EXPORT_SYMBOL_GPL(kvm_set_cr4);
832
833 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
834 {
835 #ifdef CONFIG_X86_64
836 cr3 &= ~CR3_PCID_INVD;
837 #endif
838
839 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
840 kvm_mmu_sync_roots(vcpu);
841 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
842 return 0;
843 }
844
845 if (is_long_mode(vcpu) &&
846 (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
847 return 1;
848 else if (is_pae(vcpu) && is_paging(vcpu) &&
849 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
850 return 1;
851
852 vcpu->arch.cr3 = cr3;
853 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
854 kvm_mmu_new_cr3(vcpu);
855 return 0;
856 }
857 EXPORT_SYMBOL_GPL(kvm_set_cr3);
858
859 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
860 {
861 if (cr8 & CR8_RESERVED_BITS)
862 return 1;
863 if (lapic_in_kernel(vcpu))
864 kvm_lapic_set_tpr(vcpu, cr8);
865 else
866 vcpu->arch.cr8 = cr8;
867 return 0;
868 }
869 EXPORT_SYMBOL_GPL(kvm_set_cr8);
870
871 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
872 {
873 if (lapic_in_kernel(vcpu))
874 return kvm_lapic_get_cr8(vcpu);
875 else
876 return vcpu->arch.cr8;
877 }
878 EXPORT_SYMBOL_GPL(kvm_get_cr8);
879
880 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
881 {
882 int i;
883
884 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
885 for (i = 0; i < KVM_NR_DB_REGS; i++)
886 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
887 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
888 }
889 }
890
891 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
892 {
893 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
894 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
895 }
896
897 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
898 {
899 unsigned long dr7;
900
901 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
902 dr7 = vcpu->arch.guest_debug_dr7;
903 else
904 dr7 = vcpu->arch.dr7;
905 kvm_x86_ops->set_dr7(vcpu, dr7);
906 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
907 if (dr7 & DR7_BP_EN_MASK)
908 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
909 }
910
911 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
912 {
913 u64 fixed = DR6_FIXED_1;
914
915 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
916 fixed |= DR6_RTM;
917 return fixed;
918 }
919
920 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
921 {
922 switch (dr) {
923 case 0 ... 3:
924 vcpu->arch.db[dr] = val;
925 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
926 vcpu->arch.eff_db[dr] = val;
927 break;
928 case 4:
929 /* fall through */
930 case 6:
931 if (val & 0xffffffff00000000ULL)
932 return -1; /* #GP */
933 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
934 kvm_update_dr6(vcpu);
935 break;
936 case 5:
937 /* fall through */
938 default: /* 7 */
939 if (val & 0xffffffff00000000ULL)
940 return -1; /* #GP */
941 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
942 kvm_update_dr7(vcpu);
943 break;
944 }
945
946 return 0;
947 }
948
949 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
950 {
951 if (__kvm_set_dr(vcpu, dr, val)) {
952 kvm_inject_gp(vcpu, 0);
953 return 1;
954 }
955 return 0;
956 }
957 EXPORT_SYMBOL_GPL(kvm_set_dr);
958
959 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
960 {
961 switch (dr) {
962 case 0 ... 3:
963 *val = vcpu->arch.db[dr];
964 break;
965 case 4:
966 /* fall through */
967 case 6:
968 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
969 *val = vcpu->arch.dr6;
970 else
971 *val = kvm_x86_ops->get_dr6(vcpu);
972 break;
973 case 5:
974 /* fall through */
975 default: /* 7 */
976 *val = vcpu->arch.dr7;
977 break;
978 }
979 return 0;
980 }
981 EXPORT_SYMBOL_GPL(kvm_get_dr);
982
983 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
984 {
985 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
986 u64 data;
987 int err;
988
989 err = kvm_pmu_rdpmc(vcpu, ecx, &data);
990 if (err)
991 return err;
992 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
993 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
994 return err;
995 }
996 EXPORT_SYMBOL_GPL(kvm_rdpmc);
997
998 /*
999 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1000 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1001 *
1002 * This list is modified at module load time to reflect the
1003 * capabilities of the host cpu. This capabilities test skips MSRs that are
1004 * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
1005 * may depend on host virtualization features rather than host cpu features.
1006 */
1007
1008 static u32 msrs_to_save[] = {
1009 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1010 MSR_STAR,
1011 #ifdef CONFIG_X86_64
1012 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1013 #endif
1014 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1015 MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1016 MSR_IA32_SPEC_CTRL, MSR_IA32_ARCH_CAPABILITIES
1017 };
1018
1019 static unsigned num_msrs_to_save;
1020
1021 static u32 emulated_msrs[] = {
1022 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1023 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1024 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1025 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1026 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1027 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1028 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1029 HV_X64_MSR_RESET,
1030 HV_X64_MSR_VP_INDEX,
1031 HV_X64_MSR_VP_RUNTIME,
1032 HV_X64_MSR_SCONTROL,
1033 HV_X64_MSR_STIMER0_CONFIG,
1034 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1035 MSR_KVM_PV_EOI_EN,
1036
1037 MSR_IA32_TSC_ADJUST,
1038 MSR_IA32_TSCDEADLINE,
1039 MSR_IA32_MISC_ENABLE,
1040 MSR_IA32_MCG_STATUS,
1041 MSR_IA32_MCG_CTL,
1042 MSR_IA32_MCG_EXT_CTL,
1043 MSR_IA32_SMBASE,
1044 MSR_PLATFORM_INFO,
1045 MSR_MISC_FEATURES_ENABLES,
1046 MSR_AMD64_VIRT_SPEC_CTRL,
1047 };
1048
1049 static unsigned num_emulated_msrs;
1050
1051 /*
1052 * List of msr numbers which are used to expose MSR-based features that
1053 * can be used by a hypervisor to validate requested CPU features.
1054 */
1055 static u32 msr_based_features[] = {
1056 MSR_F10H_DECFG,
1057 MSR_IA32_UCODE_REV,
1058 MSR_IA32_ARCH_CAPABILITIES,
1059 };
1060
1061 static unsigned int num_msr_based_features;
1062
1063 u64 kvm_get_arch_capabilities(void)
1064 {
1065 u64 data;
1066
1067 rdmsrl_safe(MSR_IA32_ARCH_CAPABILITIES, &data);
1068
1069 /*
1070 * If we're doing cache flushes (either "always" or "cond")
1071 * we will do one whenever the guest does a vmlaunch/vmresume.
1072 * If an outer hypervisor is doing the cache flush for us
1073 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1074 * capability to the guest too, and if EPT is disabled we're not
1075 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1076 * require a nested hypervisor to do a flush of its own.
1077 */
1078 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1079 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1080
1081 return data;
1082 }
1083 EXPORT_SYMBOL_GPL(kvm_get_arch_capabilities);
1084
1085 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1086 {
1087 switch (msr->index) {
1088 case MSR_IA32_ARCH_CAPABILITIES:
1089 msr->data = kvm_get_arch_capabilities();
1090 break;
1091 case MSR_IA32_UCODE_REV:
1092 rdmsrl_safe(msr->index, &msr->data);
1093 break;
1094 default:
1095 if (kvm_x86_ops->get_msr_feature(msr))
1096 return 1;
1097 }
1098 return 0;
1099 }
1100
1101 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1102 {
1103 struct kvm_msr_entry msr;
1104 int r;
1105
1106 msr.index = index;
1107 r = kvm_get_msr_feature(&msr);
1108 if (r)
1109 return r;
1110
1111 *data = msr.data;
1112
1113 return 0;
1114 }
1115
1116 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1117 {
1118 if (efer & efer_reserved_bits)
1119 return false;
1120
1121 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1122 return false;
1123
1124 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1125 return false;
1126
1127 return true;
1128 }
1129 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1130
1131 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1132 {
1133 u64 old_efer = vcpu->arch.efer;
1134
1135 if (!kvm_valid_efer(vcpu, efer))
1136 return 1;
1137
1138 if (is_paging(vcpu)
1139 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1140 return 1;
1141
1142 efer &= ~EFER_LMA;
1143 efer |= vcpu->arch.efer & EFER_LMA;
1144
1145 kvm_x86_ops->set_efer(vcpu, efer);
1146
1147 /* Update reserved bits */
1148 if ((efer ^ old_efer) & EFER_NX)
1149 kvm_mmu_reset_context(vcpu);
1150
1151 return 0;
1152 }
1153
1154 void kvm_enable_efer_bits(u64 mask)
1155 {
1156 efer_reserved_bits &= ~mask;
1157 }
1158 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1159
1160 /*
1161 * Writes msr value into into the appropriate "register".
1162 * Returns 0 on success, non-0 otherwise.
1163 * Assumes vcpu_load() was already called.
1164 */
1165 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1166 {
1167 switch (msr->index) {
1168 case MSR_FS_BASE:
1169 case MSR_GS_BASE:
1170 case MSR_KERNEL_GS_BASE:
1171 case MSR_CSTAR:
1172 case MSR_LSTAR:
1173 if (is_noncanonical_address(msr->data, vcpu))
1174 return 1;
1175 break;
1176 case MSR_IA32_SYSENTER_EIP:
1177 case MSR_IA32_SYSENTER_ESP:
1178 /*
1179 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1180 * non-canonical address is written on Intel but not on
1181 * AMD (which ignores the top 32-bits, because it does
1182 * not implement 64-bit SYSENTER).
1183 *
1184 * 64-bit code should hence be able to write a non-canonical
1185 * value on AMD. Making the address canonical ensures that
1186 * vmentry does not fail on Intel after writing a non-canonical
1187 * value, and that something deterministic happens if the guest
1188 * invokes 64-bit SYSENTER.
1189 */
1190 msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu));
1191 }
1192 return kvm_x86_ops->set_msr(vcpu, msr);
1193 }
1194 EXPORT_SYMBOL_GPL(kvm_set_msr);
1195
1196 /*
1197 * Adapt set_msr() to msr_io()'s calling convention
1198 */
1199 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1200 {
1201 struct msr_data msr;
1202 int r;
1203
1204 msr.index = index;
1205 msr.host_initiated = true;
1206 r = kvm_get_msr(vcpu, &msr);
1207 if (r)
1208 return r;
1209
1210 *data = msr.data;
1211 return 0;
1212 }
1213
1214 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1215 {
1216 struct msr_data msr;
1217
1218 msr.data = *data;
1219 msr.index = index;
1220 msr.host_initiated = true;
1221 return kvm_set_msr(vcpu, &msr);
1222 }
1223
1224 #ifdef CONFIG_X86_64
1225 struct pvclock_gtod_data {
1226 seqcount_t seq;
1227
1228 struct { /* extract of a clocksource struct */
1229 int vclock_mode;
1230 u64 cycle_last;
1231 u64 mask;
1232 u32 mult;
1233 u32 shift;
1234 } clock;
1235
1236 u64 boot_ns;
1237 u64 nsec_base;
1238 u64 wall_time_sec;
1239 };
1240
1241 static struct pvclock_gtod_data pvclock_gtod_data;
1242
1243 static void update_pvclock_gtod(struct timekeeper *tk)
1244 {
1245 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1246 u64 boot_ns;
1247
1248 boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1249
1250 write_seqcount_begin(&vdata->seq);
1251
1252 /* copy pvclock gtod data */
1253 vdata->clock.vclock_mode = tk->tkr_mono.clock->archdata.vclock_mode;
1254 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
1255 vdata->clock.mask = tk->tkr_mono.mask;
1256 vdata->clock.mult = tk->tkr_mono.mult;
1257 vdata->clock.shift = tk->tkr_mono.shift;
1258
1259 vdata->boot_ns = boot_ns;
1260 vdata->nsec_base = tk->tkr_mono.xtime_nsec;
1261
1262 vdata->wall_time_sec = tk->xtime_sec;
1263
1264 write_seqcount_end(&vdata->seq);
1265 }
1266 #endif
1267
1268 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1269 {
1270 /*
1271 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1272 * vcpu_enter_guest. This function is only called from
1273 * the physical CPU that is running vcpu.
1274 */
1275 kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1276 }
1277
1278 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1279 {
1280 int version;
1281 int r;
1282 struct pvclock_wall_clock wc;
1283 struct timespec64 boot;
1284
1285 if (!wall_clock)
1286 return;
1287
1288 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1289 if (r)
1290 return;
1291
1292 if (version & 1)
1293 ++version; /* first time write, random junk */
1294
1295 ++version;
1296
1297 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1298 return;
1299
1300 /*
1301 * The guest calculates current wall clock time by adding
1302 * system time (updated by kvm_guest_time_update below) to the
1303 * wall clock specified here. guest system time equals host
1304 * system time for us, thus we must fill in host boot time here.
1305 */
1306 getboottime64(&boot);
1307
1308 if (kvm->arch.kvmclock_offset) {
1309 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1310 boot = timespec64_sub(boot, ts);
1311 }
1312 wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1313 wc.nsec = boot.tv_nsec;
1314 wc.version = version;
1315
1316 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1317
1318 version++;
1319 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1320 }
1321
1322 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1323 {
1324 do_shl32_div32(dividend, divisor);
1325 return dividend;
1326 }
1327
1328 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1329 s8 *pshift, u32 *pmultiplier)
1330 {
1331 uint64_t scaled64;
1332 int32_t shift = 0;
1333 uint64_t tps64;
1334 uint32_t tps32;
1335
1336 tps64 = base_hz;
1337 scaled64 = scaled_hz;
1338 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1339 tps64 >>= 1;
1340 shift--;
1341 }
1342
1343 tps32 = (uint32_t)tps64;
1344 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1345 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1346 scaled64 >>= 1;
1347 else
1348 tps32 <<= 1;
1349 shift++;
1350 }
1351
1352 *pshift = shift;
1353 *pmultiplier = div_frac(scaled64, tps32);
1354
1355 pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1356 __func__, base_hz, scaled_hz, shift, *pmultiplier);
1357 }
1358
1359 #ifdef CONFIG_X86_64
1360 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1361 #endif
1362
1363 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1364 static unsigned long max_tsc_khz;
1365
1366 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1367 {
1368 u64 v = (u64)khz * (1000000 + ppm);
1369 do_div(v, 1000000);
1370 return v;
1371 }
1372
1373 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1374 {
1375 u64 ratio;
1376
1377 /* Guest TSC same frequency as host TSC? */
1378 if (!scale) {
1379 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1380 return 0;
1381 }
1382
1383 /* TSC scaling supported? */
1384 if (!kvm_has_tsc_control) {
1385 if (user_tsc_khz > tsc_khz) {
1386 vcpu->arch.tsc_catchup = 1;
1387 vcpu->arch.tsc_always_catchup = 1;
1388 return 0;
1389 } else {
1390 WARN(1, "user requested TSC rate below hardware speed\n");
1391 return -1;
1392 }
1393 }
1394
1395 /* TSC scaling required - calculate ratio */
1396 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1397 user_tsc_khz, tsc_khz);
1398
1399 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1400 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1401 user_tsc_khz);
1402 return -1;
1403 }
1404
1405 vcpu->arch.tsc_scaling_ratio = ratio;
1406 return 0;
1407 }
1408
1409 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1410 {
1411 u32 thresh_lo, thresh_hi;
1412 int use_scaling = 0;
1413
1414 /* tsc_khz can be zero if TSC calibration fails */
1415 if (user_tsc_khz == 0) {
1416 /* set tsc_scaling_ratio to a safe value */
1417 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1418 return -1;
1419 }
1420
1421 /* Compute a scale to convert nanoseconds in TSC cycles */
1422 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1423 &vcpu->arch.virtual_tsc_shift,
1424 &vcpu->arch.virtual_tsc_mult);
1425 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1426
1427 /*
1428 * Compute the variation in TSC rate which is acceptable
1429 * within the range of tolerance and decide if the
1430 * rate being applied is within that bounds of the hardware
1431 * rate. If so, no scaling or compensation need be done.
1432 */
1433 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1434 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1435 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1436 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1437 use_scaling = 1;
1438 }
1439 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1440 }
1441
1442 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1443 {
1444 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1445 vcpu->arch.virtual_tsc_mult,
1446 vcpu->arch.virtual_tsc_shift);
1447 tsc += vcpu->arch.this_tsc_write;
1448 return tsc;
1449 }
1450
1451 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1452 {
1453 #ifdef CONFIG_X86_64
1454 bool vcpus_matched;
1455 struct kvm_arch *ka = &vcpu->kvm->arch;
1456 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1457
1458 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1459 atomic_read(&vcpu->kvm->online_vcpus));
1460
1461 /*
1462 * Once the masterclock is enabled, always perform request in
1463 * order to update it.
1464 *
1465 * In order to enable masterclock, the host clocksource must be TSC
1466 * and the vcpus need to have matched TSCs. When that happens,
1467 * perform request to enable masterclock.
1468 */
1469 if (ka->use_master_clock ||
1470 (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1471 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1472
1473 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1474 atomic_read(&vcpu->kvm->online_vcpus),
1475 ka->use_master_clock, gtod->clock.vclock_mode);
1476 #endif
1477 }
1478
1479 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1480 {
1481 u64 curr_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1482 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1483 }
1484
1485 /*
1486 * Multiply tsc by a fixed point number represented by ratio.
1487 *
1488 * The most significant 64-N bits (mult) of ratio represent the
1489 * integral part of the fixed point number; the remaining N bits
1490 * (frac) represent the fractional part, ie. ratio represents a fixed
1491 * point number (mult + frac * 2^(-N)).
1492 *
1493 * N equals to kvm_tsc_scaling_ratio_frac_bits.
1494 */
1495 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1496 {
1497 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1498 }
1499
1500 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1501 {
1502 u64 _tsc = tsc;
1503 u64 ratio = vcpu->arch.tsc_scaling_ratio;
1504
1505 if (ratio != kvm_default_tsc_scaling_ratio)
1506 _tsc = __scale_tsc(ratio, tsc);
1507
1508 return _tsc;
1509 }
1510 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1511
1512 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1513 {
1514 u64 tsc;
1515
1516 tsc = kvm_scale_tsc(vcpu, rdtsc());
1517
1518 return target_tsc - tsc;
1519 }
1520
1521 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1522 {
1523 u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1524
1525 return tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1526 }
1527 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1528
1529 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1530 {
1531 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1532 vcpu->arch.tsc_offset = offset;
1533 }
1534
1535 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1536 {
1537 struct kvm *kvm = vcpu->kvm;
1538 u64 offset, ns, elapsed;
1539 unsigned long flags;
1540 bool matched;
1541 bool already_matched;
1542 u64 data = msr->data;
1543 bool synchronizing = false;
1544
1545 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1546 offset = kvm_compute_tsc_offset(vcpu, data);
1547 ns = ktime_get_boot_ns();
1548 elapsed = ns - kvm->arch.last_tsc_nsec;
1549
1550 if (vcpu->arch.virtual_tsc_khz) {
1551 if (data == 0 && msr->host_initiated) {
1552 /*
1553 * detection of vcpu initialization -- need to sync
1554 * with other vCPUs. This particularly helps to keep
1555 * kvm_clock stable after CPU hotplug
1556 */
1557 synchronizing = true;
1558 } else {
1559 u64 tsc_exp = kvm->arch.last_tsc_write +
1560 nsec_to_cycles(vcpu, elapsed);
1561 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1562 /*
1563 * Special case: TSC write with a small delta (1 second)
1564 * of virtual cycle time against real time is
1565 * interpreted as an attempt to synchronize the CPU.
1566 */
1567 synchronizing = data < tsc_exp + tsc_hz &&
1568 data + tsc_hz > tsc_exp;
1569 }
1570 }
1571
1572 /*
1573 * For a reliable TSC, we can match TSC offsets, and for an unstable
1574 * TSC, we add elapsed time in this computation. We could let the
1575 * compensation code attempt to catch up if we fall behind, but
1576 * it's better to try to match offsets from the beginning.
1577 */
1578 if (synchronizing &&
1579 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1580 if (!check_tsc_unstable()) {
1581 offset = kvm->arch.cur_tsc_offset;
1582 pr_debug("kvm: matched tsc offset for %llu\n", data);
1583 } else {
1584 u64 delta = nsec_to_cycles(vcpu, elapsed);
1585 data += delta;
1586 offset = kvm_compute_tsc_offset(vcpu, data);
1587 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1588 }
1589 matched = true;
1590 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1591 } else {
1592 /*
1593 * We split periods of matched TSC writes into generations.
1594 * For each generation, we track the original measured
1595 * nanosecond time, offset, and write, so if TSCs are in
1596 * sync, we can match exact offset, and if not, we can match
1597 * exact software computation in compute_guest_tsc()
1598 *
1599 * These values are tracked in kvm->arch.cur_xxx variables.
1600 */
1601 kvm->arch.cur_tsc_generation++;
1602 kvm->arch.cur_tsc_nsec = ns;
1603 kvm->arch.cur_tsc_write = data;
1604 kvm->arch.cur_tsc_offset = offset;
1605 matched = false;
1606 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1607 kvm->arch.cur_tsc_generation, data);
1608 }
1609
1610 /*
1611 * We also track th most recent recorded KHZ, write and time to
1612 * allow the matching interval to be extended at each write.
1613 */
1614 kvm->arch.last_tsc_nsec = ns;
1615 kvm->arch.last_tsc_write = data;
1616 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1617
1618 vcpu->arch.last_guest_tsc = data;
1619
1620 /* Keep track of which generation this VCPU has synchronized to */
1621 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1622 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1623 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1624
1625 if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1626 update_ia32_tsc_adjust_msr(vcpu, offset);
1627
1628 kvm_vcpu_write_tsc_offset(vcpu, offset);
1629 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1630
1631 spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1632 if (!matched) {
1633 kvm->arch.nr_vcpus_matched_tsc = 0;
1634 } else if (!already_matched) {
1635 kvm->arch.nr_vcpus_matched_tsc++;
1636 }
1637
1638 kvm_track_tsc_matching(vcpu);
1639 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1640 }
1641
1642 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1643
1644 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1645 s64 adjustment)
1646 {
1647 kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
1648 }
1649
1650 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1651 {
1652 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1653 WARN_ON(adjustment < 0);
1654 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1655 adjust_tsc_offset_guest(vcpu, adjustment);
1656 }
1657
1658 #ifdef CONFIG_X86_64
1659
1660 static u64 read_tsc(void)
1661 {
1662 u64 ret = (u64)rdtsc_ordered();
1663 u64 last = pvclock_gtod_data.clock.cycle_last;
1664
1665 if (likely(ret >= last))
1666 return ret;
1667
1668 /*
1669 * GCC likes to generate cmov here, but this branch is extremely
1670 * predictable (it's just a function of time and the likely is
1671 * very likely) and there's a data dependence, so force GCC
1672 * to generate a branch instead. I don't barrier() because
1673 * we don't actually need a barrier, and if this function
1674 * ever gets inlined it will generate worse code.
1675 */
1676 asm volatile ("");
1677 return last;
1678 }
1679
1680 static inline u64 vgettsc(u64 *cycle_now)
1681 {
1682 long v;
1683 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1684
1685 *cycle_now = read_tsc();
1686
1687 v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1688 return v * gtod->clock.mult;
1689 }
1690
1691 static int do_monotonic_boot(s64 *t, u64 *cycle_now)
1692 {
1693 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1694 unsigned long seq;
1695 int mode;
1696 u64 ns;
1697
1698 do {
1699 seq = read_seqcount_begin(&gtod->seq);
1700 mode = gtod->clock.vclock_mode;
1701 ns = gtod->nsec_base;
1702 ns += vgettsc(cycle_now);
1703 ns >>= gtod->clock.shift;
1704 ns += gtod->boot_ns;
1705 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1706 *t = ns;
1707
1708 return mode;
1709 }
1710
1711 static int do_realtime(struct timespec *ts, u64 *cycle_now)
1712 {
1713 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1714 unsigned long seq;
1715 int mode;
1716 u64 ns;
1717
1718 do {
1719 seq = read_seqcount_begin(&gtod->seq);
1720 mode = gtod->clock.vclock_mode;
1721 ts->tv_sec = gtod->wall_time_sec;
1722 ns = gtod->nsec_base;
1723 ns += vgettsc(cycle_now);
1724 ns >>= gtod->clock.shift;
1725 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1726
1727 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1728 ts->tv_nsec = ns;
1729
1730 return mode;
1731 }
1732
1733 /* returns true if host is using tsc clocksource */
1734 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *cycle_now)
1735 {
1736 /* checked again under seqlock below */
1737 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1738 return false;
1739
1740 return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1741 }
1742
1743 /* returns true if host is using tsc clocksource */
1744 static bool kvm_get_walltime_and_clockread(struct timespec *ts,
1745 u64 *cycle_now)
1746 {
1747 /* checked again under seqlock below */
1748 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1749 return false;
1750
1751 return do_realtime(ts, cycle_now) == VCLOCK_TSC;
1752 }
1753 #endif
1754
1755 /*
1756 *
1757 * Assuming a stable TSC across physical CPUS, and a stable TSC
1758 * across virtual CPUs, the following condition is possible.
1759 * Each numbered line represents an event visible to both
1760 * CPUs at the next numbered event.
1761 *
1762 * "timespecX" represents host monotonic time. "tscX" represents
1763 * RDTSC value.
1764 *
1765 * VCPU0 on CPU0 | VCPU1 on CPU1
1766 *
1767 * 1. read timespec0,tsc0
1768 * 2. | timespec1 = timespec0 + N
1769 * | tsc1 = tsc0 + M
1770 * 3. transition to guest | transition to guest
1771 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1772 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1773 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1774 *
1775 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1776 *
1777 * - ret0 < ret1
1778 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1779 * ...
1780 * - 0 < N - M => M < N
1781 *
1782 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1783 * always the case (the difference between two distinct xtime instances
1784 * might be smaller then the difference between corresponding TSC reads,
1785 * when updating guest vcpus pvclock areas).
1786 *
1787 * To avoid that problem, do not allow visibility of distinct
1788 * system_timestamp/tsc_timestamp values simultaneously: use a master
1789 * copy of host monotonic time values. Update that master copy
1790 * in lockstep.
1791 *
1792 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1793 *
1794 */
1795
1796 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1797 {
1798 #ifdef CONFIG_X86_64
1799 struct kvm_arch *ka = &kvm->arch;
1800 int vclock_mode;
1801 bool host_tsc_clocksource, vcpus_matched;
1802
1803 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1804 atomic_read(&kvm->online_vcpus));
1805
1806 /*
1807 * If the host uses TSC clock, then passthrough TSC as stable
1808 * to the guest.
1809 */
1810 host_tsc_clocksource = kvm_get_time_and_clockread(
1811 &ka->master_kernel_ns,
1812 &ka->master_cycle_now);
1813
1814 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1815 && !ka->backwards_tsc_observed
1816 && !ka->boot_vcpu_runs_old_kvmclock;
1817
1818 if (ka->use_master_clock)
1819 atomic_set(&kvm_guest_has_master_clock, 1);
1820
1821 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1822 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1823 vcpus_matched);
1824 #endif
1825 }
1826
1827 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1828 {
1829 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1830 }
1831
1832 static void kvm_gen_update_masterclock(struct kvm *kvm)
1833 {
1834 #ifdef CONFIG_X86_64
1835 int i;
1836 struct kvm_vcpu *vcpu;
1837 struct kvm_arch *ka = &kvm->arch;
1838
1839 spin_lock(&ka->pvclock_gtod_sync_lock);
1840 kvm_make_mclock_inprogress_request(kvm);
1841 /* no guest entries from this point */
1842 pvclock_update_vm_gtod_copy(kvm);
1843
1844 kvm_for_each_vcpu(i, vcpu, kvm)
1845 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1846
1847 /* guest entries allowed */
1848 kvm_for_each_vcpu(i, vcpu, kvm)
1849 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
1850
1851 spin_unlock(&ka->pvclock_gtod_sync_lock);
1852 #endif
1853 }
1854
1855 u64 get_kvmclock_ns(struct kvm *kvm)
1856 {
1857 struct kvm_arch *ka = &kvm->arch;
1858 struct pvclock_vcpu_time_info hv_clock;
1859 u64 ret;
1860
1861 spin_lock(&ka->pvclock_gtod_sync_lock);
1862 if (!ka->use_master_clock) {
1863 spin_unlock(&ka->pvclock_gtod_sync_lock);
1864 return ktime_get_boot_ns() + ka->kvmclock_offset;
1865 }
1866
1867 hv_clock.tsc_timestamp = ka->master_cycle_now;
1868 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
1869 spin_unlock(&ka->pvclock_gtod_sync_lock);
1870
1871 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
1872 get_cpu();
1873
1874 if (__this_cpu_read(cpu_tsc_khz)) {
1875 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
1876 &hv_clock.tsc_shift,
1877 &hv_clock.tsc_to_system_mul);
1878 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
1879 } else
1880 ret = ktime_get_boot_ns() + ka->kvmclock_offset;
1881
1882 put_cpu();
1883
1884 return ret;
1885 }
1886
1887 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
1888 {
1889 struct kvm_vcpu_arch *vcpu = &v->arch;
1890 struct pvclock_vcpu_time_info guest_hv_clock;
1891
1892 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1893 &guest_hv_clock, sizeof(guest_hv_clock))))
1894 return;
1895
1896 /* This VCPU is paused, but it's legal for a guest to read another
1897 * VCPU's kvmclock, so we really have to follow the specification where
1898 * it says that version is odd if data is being modified, and even after
1899 * it is consistent.
1900 *
1901 * Version field updates must be kept separate. This is because
1902 * kvm_write_guest_cached might use a "rep movs" instruction, and
1903 * writes within a string instruction are weakly ordered. So there
1904 * are three writes overall.
1905 *
1906 * As a small optimization, only write the version field in the first
1907 * and third write. The vcpu->pv_time cache is still valid, because the
1908 * version field is the first in the struct.
1909 */
1910 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1911
1912 if (guest_hv_clock.version & 1)
1913 ++guest_hv_clock.version; /* first time write, random junk */
1914
1915 vcpu->hv_clock.version = guest_hv_clock.version + 1;
1916 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1917 &vcpu->hv_clock,
1918 sizeof(vcpu->hv_clock.version));
1919
1920 smp_wmb();
1921
1922 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1923 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1924
1925 if (vcpu->pvclock_set_guest_stopped_request) {
1926 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
1927 vcpu->pvclock_set_guest_stopped_request = false;
1928 }
1929
1930 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1931
1932 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1933 &vcpu->hv_clock,
1934 sizeof(vcpu->hv_clock));
1935
1936 smp_wmb();
1937
1938 vcpu->hv_clock.version++;
1939 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1940 &vcpu->hv_clock,
1941 sizeof(vcpu->hv_clock.version));
1942 }
1943
1944 static int kvm_guest_time_update(struct kvm_vcpu *v)
1945 {
1946 unsigned long flags, tgt_tsc_khz;
1947 struct kvm_vcpu_arch *vcpu = &v->arch;
1948 struct kvm_arch *ka = &v->kvm->arch;
1949 s64 kernel_ns;
1950 u64 tsc_timestamp, host_tsc;
1951 u8 pvclock_flags;
1952 bool use_master_clock;
1953
1954 kernel_ns = 0;
1955 host_tsc = 0;
1956
1957 /*
1958 * If the host uses TSC clock, then passthrough TSC as stable
1959 * to the guest.
1960 */
1961 spin_lock(&ka->pvclock_gtod_sync_lock);
1962 use_master_clock = ka->use_master_clock;
1963 if (use_master_clock) {
1964 host_tsc = ka->master_cycle_now;
1965 kernel_ns = ka->master_kernel_ns;
1966 }
1967 spin_unlock(&ka->pvclock_gtod_sync_lock);
1968
1969 /* Keep irq disabled to prevent changes to the clock */
1970 local_irq_save(flags);
1971 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1972 if (unlikely(tgt_tsc_khz == 0)) {
1973 local_irq_restore(flags);
1974 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1975 return 1;
1976 }
1977 if (!use_master_clock) {
1978 host_tsc = rdtsc();
1979 kernel_ns = ktime_get_boot_ns();
1980 }
1981
1982 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1983
1984 /*
1985 * We may have to catch up the TSC to match elapsed wall clock
1986 * time for two reasons, even if kvmclock is used.
1987 * 1) CPU could have been running below the maximum TSC rate
1988 * 2) Broken TSC compensation resets the base at each VCPU
1989 * entry to avoid unknown leaps of TSC even when running
1990 * again on the same CPU. This may cause apparent elapsed
1991 * time to disappear, and the guest to stand still or run
1992 * very slowly.
1993 */
1994 if (vcpu->tsc_catchup) {
1995 u64 tsc = compute_guest_tsc(v, kernel_ns);
1996 if (tsc > tsc_timestamp) {
1997 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1998 tsc_timestamp = tsc;
1999 }
2000 }
2001
2002 local_irq_restore(flags);
2003
2004 /* With all the info we got, fill in the values */
2005
2006 if (kvm_has_tsc_control)
2007 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2008
2009 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2010 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2011 &vcpu->hv_clock.tsc_shift,
2012 &vcpu->hv_clock.tsc_to_system_mul);
2013 vcpu->hw_tsc_khz = tgt_tsc_khz;
2014 }
2015
2016 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2017 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2018 vcpu->last_guest_tsc = tsc_timestamp;
2019
2020 /* If the host uses TSC clocksource, then it is stable */
2021 pvclock_flags = 0;
2022 if (use_master_clock)
2023 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2024
2025 vcpu->hv_clock.flags = pvclock_flags;
2026
2027 if (vcpu->pv_time_enabled)
2028 kvm_setup_pvclock_page(v);
2029 if (v == kvm_get_vcpu(v->kvm, 0))
2030 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2031 return 0;
2032 }
2033
2034 /*
2035 * kvmclock updates which are isolated to a given vcpu, such as
2036 * vcpu->cpu migration, should not allow system_timestamp from
2037 * the rest of the vcpus to remain static. Otherwise ntp frequency
2038 * correction applies to one vcpu's system_timestamp but not
2039 * the others.
2040 *
2041 * So in those cases, request a kvmclock update for all vcpus.
2042 * We need to rate-limit these requests though, as they can
2043 * considerably slow guests that have a large number of vcpus.
2044 * The time for a remote vcpu to update its kvmclock is bound
2045 * by the delay we use to rate-limit the updates.
2046 */
2047
2048 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2049
2050 static void kvmclock_update_fn(struct work_struct *work)
2051 {
2052 int i;
2053 struct delayed_work *dwork = to_delayed_work(work);
2054 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2055 kvmclock_update_work);
2056 struct kvm *kvm = container_of(ka, struct kvm, arch);
2057 struct kvm_vcpu *vcpu;
2058
2059 kvm_for_each_vcpu(i, vcpu, kvm) {
2060 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2061 kvm_vcpu_kick(vcpu);
2062 }
2063 }
2064
2065 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2066 {
2067 struct kvm *kvm = v->kvm;
2068
2069 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2070 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2071 KVMCLOCK_UPDATE_DELAY);
2072 }
2073
2074 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2075
2076 static void kvmclock_sync_fn(struct work_struct *work)
2077 {
2078 struct delayed_work *dwork = to_delayed_work(work);
2079 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2080 kvmclock_sync_work);
2081 struct kvm *kvm = container_of(ka, struct kvm, arch);
2082
2083 if (!kvmclock_periodic_sync)
2084 return;
2085
2086 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2087 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2088 KVMCLOCK_SYNC_PERIOD);
2089 }
2090
2091 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2092 {
2093 u64 mcg_cap = vcpu->arch.mcg_cap;
2094 unsigned bank_num = mcg_cap & 0xff;
2095 u32 msr = msr_info->index;
2096 u64 data = msr_info->data;
2097
2098 switch (msr) {
2099 case MSR_IA32_MCG_STATUS:
2100 vcpu->arch.mcg_status = data;
2101 break;
2102 case MSR_IA32_MCG_CTL:
2103 if (!(mcg_cap & MCG_CTL_P))
2104 return 1;
2105 if (data != 0 && data != ~(u64)0)
2106 return -1;
2107 vcpu->arch.mcg_ctl = data;
2108 break;
2109 default:
2110 if (msr >= MSR_IA32_MC0_CTL &&
2111 msr < MSR_IA32_MCx_CTL(bank_num)) {
2112 u32 offset = msr - MSR_IA32_MC0_CTL;
2113 /* only 0 or all 1s can be written to IA32_MCi_CTL
2114 * some Linux kernels though clear bit 10 in bank 4 to
2115 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2116 * this to avoid an uncatched #GP in the guest
2117 */
2118 if ((offset & 0x3) == 0 &&
2119 data != 0 && (data | (1 << 10)) != ~(u64)0)
2120 return -1;
2121 if (!msr_info->host_initiated &&
2122 (offset & 0x3) == 1 && data != 0)
2123 return -1;
2124 vcpu->arch.mce_banks[offset] = data;
2125 break;
2126 }
2127 return 1;
2128 }
2129 return 0;
2130 }
2131
2132 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2133 {
2134 struct kvm *kvm = vcpu->kvm;
2135 int lm = is_long_mode(vcpu);
2136 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2137 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2138 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2139 : kvm->arch.xen_hvm_config.blob_size_32;
2140 u32 page_num = data & ~PAGE_MASK;
2141 u64 page_addr = data & PAGE_MASK;
2142 u8 *page;
2143 int r;
2144
2145 r = -E2BIG;
2146 if (page_num >= blob_size)
2147 goto out;
2148 r = -ENOMEM;
2149 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2150 if (IS_ERR(page)) {
2151 r = PTR_ERR(page);
2152 goto out;
2153 }
2154 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2155 goto out_free;
2156 r = 0;
2157 out_free:
2158 kfree(page);
2159 out:
2160 return r;
2161 }
2162
2163 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2164 {
2165 gpa_t gpa = data & ~0x3f;
2166
2167 /* Bits 3:5 are reserved, Should be zero */
2168 if (data & 0x38)
2169 return 1;
2170
2171 vcpu->arch.apf.msr_val = data;
2172
2173 if (!(data & KVM_ASYNC_PF_ENABLED)) {
2174 kvm_clear_async_pf_completion_queue(vcpu);
2175 kvm_async_pf_hash_reset(vcpu);
2176 return 0;
2177 }
2178
2179 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2180 sizeof(u32)))
2181 return 1;
2182
2183 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2184 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2185 kvm_async_pf_wakeup_all(vcpu);
2186 return 0;
2187 }
2188
2189 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2190 {
2191 vcpu->arch.pv_time_enabled = false;
2192 }
2193
2194 static void record_steal_time(struct kvm_vcpu *vcpu)
2195 {
2196 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2197 return;
2198
2199 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2200 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2201 return;
2202
2203 vcpu->arch.st.steal.preempted = 0;
2204
2205 if (vcpu->arch.st.steal.version & 1)
2206 vcpu->arch.st.steal.version += 1; /* first time write, random junk */
2207
2208 vcpu->arch.st.steal.version += 1;
2209
2210 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2211 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2212
2213 smp_wmb();
2214
2215 vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2216 vcpu->arch.st.last_steal;
2217 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2218
2219 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2220 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2221
2222 smp_wmb();
2223
2224 vcpu->arch.st.steal.version += 1;
2225
2226 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2227 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2228 }
2229
2230 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2231 {
2232 bool pr = false;
2233 u32 msr = msr_info->index;
2234 u64 data = msr_info->data;
2235
2236 switch (msr) {
2237 case MSR_AMD64_NB_CFG:
2238 case MSR_IA32_UCODE_WRITE:
2239 case MSR_VM_HSAVE_PA:
2240 case MSR_AMD64_PATCH_LOADER:
2241 case MSR_AMD64_BU_CFG2:
2242 case MSR_AMD64_DC_CFG:
2243 break;
2244
2245 case MSR_IA32_UCODE_REV:
2246 if (msr_info->host_initiated)
2247 vcpu->arch.microcode_version = data;
2248 break;
2249 case MSR_EFER:
2250 return set_efer(vcpu, data);
2251 case MSR_K7_HWCR:
2252 data &= ~(u64)0x40; /* ignore flush filter disable */
2253 data &= ~(u64)0x100; /* ignore ignne emulation enable */
2254 data &= ~(u64)0x8; /* ignore TLB cache disable */
2255 data &= ~(u64)0x40000; /* ignore Mc status write enable */
2256 if (data != 0) {
2257 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2258 data);
2259 return 1;
2260 }
2261 break;
2262 case MSR_FAM10H_MMIO_CONF_BASE:
2263 if (data != 0) {
2264 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2265 "0x%llx\n", data);
2266 return 1;
2267 }
2268 break;
2269 case MSR_IA32_DEBUGCTLMSR:
2270 if (!data) {
2271 /* We support the non-activated case already */
2272 break;
2273 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2274 /* Values other than LBR and BTF are vendor-specific,
2275 thus reserved and should throw a #GP */
2276 return 1;
2277 }
2278 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2279 __func__, data);
2280 break;
2281 case 0x200 ... 0x2ff:
2282 return kvm_mtrr_set_msr(vcpu, msr, data);
2283 case MSR_IA32_APICBASE:
2284 return kvm_set_apic_base(vcpu, msr_info);
2285 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2286 return kvm_x2apic_msr_write(vcpu, msr, data);
2287 case MSR_IA32_TSCDEADLINE:
2288 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2289 break;
2290 case MSR_IA32_TSC_ADJUST:
2291 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2292 if (!msr_info->host_initiated) {
2293 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2294 adjust_tsc_offset_guest(vcpu, adj);
2295 }
2296 vcpu->arch.ia32_tsc_adjust_msr = data;
2297 }
2298 break;
2299 case MSR_IA32_MISC_ENABLE:
2300 vcpu->arch.ia32_misc_enable_msr = data;
2301 break;
2302 case MSR_IA32_SMBASE:
2303 if (!msr_info->host_initiated)
2304 return 1;
2305 vcpu->arch.smbase = data;
2306 break;
2307 case MSR_IA32_TSC:
2308 kvm_write_tsc(vcpu, msr_info);
2309 break;
2310 case MSR_KVM_WALL_CLOCK_NEW:
2311 case MSR_KVM_WALL_CLOCK:
2312 vcpu->kvm->arch.wall_clock = data;
2313 kvm_write_wall_clock(vcpu->kvm, data);
2314 break;
2315 case MSR_KVM_SYSTEM_TIME_NEW:
2316 case MSR_KVM_SYSTEM_TIME: {
2317 struct kvm_arch *ka = &vcpu->kvm->arch;
2318
2319 kvmclock_reset(vcpu);
2320
2321 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2322 bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2323
2324 if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2325 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2326
2327 ka->boot_vcpu_runs_old_kvmclock = tmp;
2328 }
2329
2330 vcpu->arch.time = data;
2331 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2332
2333 /* we verify if the enable bit is set... */
2334 if (!(data & 1))
2335 break;
2336
2337 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2338 &vcpu->arch.pv_time, data & ~1ULL,
2339 sizeof(struct pvclock_vcpu_time_info)))
2340 vcpu->arch.pv_time_enabled = false;
2341 else
2342 vcpu->arch.pv_time_enabled = true;
2343
2344 break;
2345 }
2346 case MSR_KVM_ASYNC_PF_EN:
2347 if (kvm_pv_enable_async_pf(vcpu, data))
2348 return 1;
2349 break;
2350 case MSR_KVM_STEAL_TIME:
2351
2352 if (unlikely(!sched_info_on()))
2353 return 1;
2354
2355 if (data & KVM_STEAL_RESERVED_MASK)
2356 return 1;
2357
2358 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2359 data & KVM_STEAL_VALID_BITS,
2360 sizeof(struct kvm_steal_time)))
2361 return 1;
2362
2363 vcpu->arch.st.msr_val = data;
2364
2365 if (!(data & KVM_MSR_ENABLED))
2366 break;
2367
2368 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2369
2370 break;
2371 case MSR_KVM_PV_EOI_EN:
2372 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2373 return 1;
2374 break;
2375
2376 case MSR_IA32_MCG_CTL:
2377 case MSR_IA32_MCG_STATUS:
2378 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2379 return set_msr_mce(vcpu, msr_info);
2380
2381 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2382 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2383 pr = true; /* fall through */
2384 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2385 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2386 if (kvm_pmu_is_valid_msr(vcpu, msr))
2387 return kvm_pmu_set_msr(vcpu, msr_info);
2388
2389 if (pr || data != 0)
2390 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2391 "0x%x data 0x%llx\n", msr, data);
2392 break;
2393 case MSR_K7_CLK_CTL:
2394 /*
2395 * Ignore all writes to this no longer documented MSR.
2396 * Writes are only relevant for old K7 processors,
2397 * all pre-dating SVM, but a recommended workaround from
2398 * AMD for these chips. It is possible to specify the
2399 * affected processor models on the command line, hence
2400 * the need to ignore the workaround.
2401 */
2402 break;
2403 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2404 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2405 case HV_X64_MSR_CRASH_CTL:
2406 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2407 return kvm_hv_set_msr_common(vcpu, msr, data,
2408 msr_info->host_initiated);
2409 case MSR_IA32_BBL_CR_CTL3:
2410 /* Drop writes to this legacy MSR -- see rdmsr
2411 * counterpart for further detail.
2412 */
2413 if (report_ignored_msrs)
2414 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2415 msr, data);
2416 break;
2417 case MSR_AMD64_OSVW_ID_LENGTH:
2418 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2419 return 1;
2420 vcpu->arch.osvw.length = data;
2421 break;
2422 case MSR_AMD64_OSVW_STATUS:
2423 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2424 return 1;
2425 vcpu->arch.osvw.status = data;
2426 break;
2427 case MSR_PLATFORM_INFO:
2428 if (!msr_info->host_initiated ||
2429 data & ~MSR_PLATFORM_INFO_CPUID_FAULT ||
2430 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2431 cpuid_fault_enabled(vcpu)))
2432 return 1;
2433 vcpu->arch.msr_platform_info = data;
2434 break;
2435 case MSR_MISC_FEATURES_ENABLES:
2436 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2437 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2438 !supports_cpuid_fault(vcpu)))
2439 return 1;
2440 vcpu->arch.msr_misc_features_enables = data;
2441 break;
2442 default:
2443 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2444 return xen_hvm_config(vcpu, data);
2445 if (kvm_pmu_is_valid_msr(vcpu, msr))
2446 return kvm_pmu_set_msr(vcpu, msr_info);
2447 if (!ignore_msrs) {
2448 vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2449 msr, data);
2450 return 1;
2451 } else {
2452 if (report_ignored_msrs)
2453 vcpu_unimpl(vcpu,
2454 "ignored wrmsr: 0x%x data 0x%llx\n",
2455 msr, data);
2456 break;
2457 }
2458 }
2459 return 0;
2460 }
2461 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2462
2463
2464 /*
2465 * Reads an msr value (of 'msr_index') into 'pdata'.
2466 * Returns 0 on success, non-0 otherwise.
2467 * Assumes vcpu_load() was already called.
2468 */
2469 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2470 {
2471 return kvm_x86_ops->get_msr(vcpu, msr);
2472 }
2473 EXPORT_SYMBOL_GPL(kvm_get_msr);
2474
2475 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2476 {
2477 u64 data;
2478 u64 mcg_cap = vcpu->arch.mcg_cap;
2479 unsigned bank_num = mcg_cap & 0xff;
2480
2481 switch (msr) {
2482 case MSR_IA32_P5_MC_ADDR:
2483 case MSR_IA32_P5_MC_TYPE:
2484 data = 0;
2485 break;
2486 case MSR_IA32_MCG_CAP:
2487 data = vcpu->arch.mcg_cap;
2488 break;
2489 case MSR_IA32_MCG_CTL:
2490 if (!(mcg_cap & MCG_CTL_P))
2491 return 1;
2492 data = vcpu->arch.mcg_ctl;
2493 break;
2494 case MSR_IA32_MCG_STATUS:
2495 data = vcpu->arch.mcg_status;
2496 break;
2497 default:
2498 if (msr >= MSR_IA32_MC0_CTL &&
2499 msr < MSR_IA32_MCx_CTL(bank_num)) {
2500 u32 offset = msr - MSR_IA32_MC0_CTL;
2501 data = vcpu->arch.mce_banks[offset];
2502 break;
2503 }
2504 return 1;
2505 }
2506 *pdata = data;
2507 return 0;
2508 }
2509
2510 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2511 {
2512 switch (msr_info->index) {
2513 case MSR_IA32_PLATFORM_ID:
2514 case MSR_IA32_EBL_CR_POWERON:
2515 case MSR_IA32_DEBUGCTLMSR:
2516 case MSR_IA32_LASTBRANCHFROMIP:
2517 case MSR_IA32_LASTBRANCHTOIP:
2518 case MSR_IA32_LASTINTFROMIP:
2519 case MSR_IA32_LASTINTTOIP:
2520 case MSR_K8_SYSCFG:
2521 case MSR_K8_TSEG_ADDR:
2522 case MSR_K8_TSEG_MASK:
2523 case MSR_K7_HWCR:
2524 case MSR_VM_HSAVE_PA:
2525 case MSR_K8_INT_PENDING_MSG:
2526 case MSR_AMD64_NB_CFG:
2527 case MSR_FAM10H_MMIO_CONF_BASE:
2528 case MSR_AMD64_BU_CFG2:
2529 case MSR_IA32_PERF_CTL:
2530 case MSR_AMD64_DC_CFG:
2531 msr_info->data = 0;
2532 break;
2533 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2534 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2535 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2536 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2537 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2538 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2539 msr_info->data = 0;
2540 break;
2541 case MSR_IA32_UCODE_REV:
2542 msr_info->data = vcpu->arch.microcode_version;
2543 break;
2544 case MSR_IA32_TSC:
2545 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
2546 break;
2547 case MSR_MTRRcap:
2548 case 0x200 ... 0x2ff:
2549 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2550 case 0xcd: /* fsb frequency */
2551 msr_info->data = 3;
2552 break;
2553 /*
2554 * MSR_EBC_FREQUENCY_ID
2555 * Conservative value valid for even the basic CPU models.
2556 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2557 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2558 * and 266MHz for model 3, or 4. Set Core Clock
2559 * Frequency to System Bus Frequency Ratio to 1 (bits
2560 * 31:24) even though these are only valid for CPU
2561 * models > 2, however guests may end up dividing or
2562 * multiplying by zero otherwise.
2563 */
2564 case MSR_EBC_FREQUENCY_ID:
2565 msr_info->data = 1 << 24;
2566 break;
2567 case MSR_IA32_APICBASE:
2568 msr_info->data = kvm_get_apic_base(vcpu);
2569 break;
2570 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2571 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2572 break;
2573 case MSR_IA32_TSCDEADLINE:
2574 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2575 break;
2576 case MSR_IA32_TSC_ADJUST:
2577 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2578 break;
2579 case MSR_IA32_MISC_ENABLE:
2580 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2581 break;
2582 case MSR_IA32_SMBASE:
2583 if (!msr_info->host_initiated)
2584 return 1;
2585 msr_info->data = vcpu->arch.smbase;
2586 break;
2587 case MSR_IA32_PERF_STATUS:
2588 /* TSC increment by tick */
2589 msr_info->data = 1000ULL;
2590 /* CPU multiplier */
2591 msr_info->data |= (((uint64_t)4ULL) << 40);
2592 break;
2593 case MSR_EFER:
2594 msr_info->data = vcpu->arch.efer;
2595 break;
2596 case MSR_KVM_WALL_CLOCK:
2597 case MSR_KVM_WALL_CLOCK_NEW:
2598 msr_info->data = vcpu->kvm->arch.wall_clock;
2599 break;
2600 case MSR_KVM_SYSTEM_TIME:
2601 case MSR_KVM_SYSTEM_TIME_NEW:
2602 msr_info->data = vcpu->arch.time;
2603 break;
2604 case MSR_KVM_ASYNC_PF_EN:
2605 msr_info->data = vcpu->arch.apf.msr_val;
2606 break;
2607 case MSR_KVM_STEAL_TIME:
2608 msr_info->data = vcpu->arch.st.msr_val;
2609 break;
2610 case MSR_KVM_PV_EOI_EN:
2611 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2612 break;
2613 case MSR_IA32_P5_MC_ADDR:
2614 case MSR_IA32_P5_MC_TYPE:
2615 case MSR_IA32_MCG_CAP:
2616 case MSR_IA32_MCG_CTL:
2617 case MSR_IA32_MCG_STATUS:
2618 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2619 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2620 case MSR_K7_CLK_CTL:
2621 /*
2622 * Provide expected ramp-up count for K7. All other
2623 * are set to zero, indicating minimum divisors for
2624 * every field.
2625 *
2626 * This prevents guest kernels on AMD host with CPU
2627 * type 6, model 8 and higher from exploding due to
2628 * the rdmsr failing.
2629 */
2630 msr_info->data = 0x20000000;
2631 break;
2632 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2633 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2634 case HV_X64_MSR_CRASH_CTL:
2635 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2636 return kvm_hv_get_msr_common(vcpu,
2637 msr_info->index, &msr_info->data);
2638 break;
2639 case MSR_IA32_BBL_CR_CTL3:
2640 /* This legacy MSR exists but isn't fully documented in current
2641 * silicon. It is however accessed by winxp in very narrow
2642 * scenarios where it sets bit #19, itself documented as
2643 * a "reserved" bit. Best effort attempt to source coherent
2644 * read data here should the balance of the register be
2645 * interpreted by the guest:
2646 *
2647 * L2 cache control register 3: 64GB range, 256KB size,
2648 * enabled, latency 0x1, configured
2649 */
2650 msr_info->data = 0xbe702111;
2651 break;
2652 case MSR_AMD64_OSVW_ID_LENGTH:
2653 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2654 return 1;
2655 msr_info->data = vcpu->arch.osvw.length;
2656 break;
2657 case MSR_AMD64_OSVW_STATUS:
2658 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2659 return 1;
2660 msr_info->data = vcpu->arch.osvw.status;
2661 break;
2662 case MSR_PLATFORM_INFO:
2663 msr_info->data = vcpu->arch.msr_platform_info;
2664 break;
2665 case MSR_MISC_FEATURES_ENABLES:
2666 msr_info->data = vcpu->arch.msr_misc_features_enables;
2667 break;
2668 default:
2669 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2670 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2671 if (!ignore_msrs) {
2672 vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2673 msr_info->index);
2674 return 1;
2675 } else {
2676 if (report_ignored_msrs)
2677 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
2678 msr_info->index);
2679 msr_info->data = 0;
2680 }
2681 break;
2682 }
2683 return 0;
2684 }
2685 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2686
2687 /*
2688 * Read or write a bunch of msrs. All parameters are kernel addresses.
2689 *
2690 * @return number of msrs set successfully.
2691 */
2692 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2693 struct kvm_msr_entry *entries,
2694 int (*do_msr)(struct kvm_vcpu *vcpu,
2695 unsigned index, u64 *data))
2696 {
2697 int i;
2698
2699 for (i = 0; i < msrs->nmsrs; ++i)
2700 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2701 break;
2702
2703 return i;
2704 }
2705
2706 /*
2707 * Read or write a bunch of msrs. Parameters are user addresses.
2708 *
2709 * @return number of msrs set successfully.
2710 */
2711 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2712 int (*do_msr)(struct kvm_vcpu *vcpu,
2713 unsigned index, u64 *data),
2714 int writeback)
2715 {
2716 struct kvm_msrs msrs;
2717 struct kvm_msr_entry *entries;
2718 int r, n;
2719 unsigned size;
2720
2721 r = -EFAULT;
2722 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2723 goto out;
2724
2725 r = -E2BIG;
2726 if (msrs.nmsrs >= MAX_IO_MSRS)
2727 goto out;
2728
2729 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2730 entries = memdup_user(user_msrs->entries, size);
2731 if (IS_ERR(entries)) {
2732 r = PTR_ERR(entries);
2733 goto out;
2734 }
2735
2736 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2737 if (r < 0)
2738 goto out_free;
2739
2740 r = -EFAULT;
2741 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2742 goto out_free;
2743
2744 r = n;
2745
2746 out_free:
2747 kfree(entries);
2748 out:
2749 return r;
2750 }
2751
2752 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2753 {
2754 int r;
2755
2756 switch (ext) {
2757 case KVM_CAP_IRQCHIP:
2758 case KVM_CAP_HLT:
2759 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2760 case KVM_CAP_SET_TSS_ADDR:
2761 case KVM_CAP_EXT_CPUID:
2762 case KVM_CAP_EXT_EMUL_CPUID:
2763 case KVM_CAP_CLOCKSOURCE:
2764 case KVM_CAP_PIT:
2765 case KVM_CAP_NOP_IO_DELAY:
2766 case KVM_CAP_MP_STATE:
2767 case KVM_CAP_SYNC_MMU:
2768 case KVM_CAP_USER_NMI:
2769 case KVM_CAP_REINJECT_CONTROL:
2770 case KVM_CAP_IRQ_INJECT_STATUS:
2771 case KVM_CAP_IOEVENTFD:
2772 case KVM_CAP_IOEVENTFD_NO_LENGTH:
2773 case KVM_CAP_PIT2:
2774 case KVM_CAP_PIT_STATE2:
2775 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2776 case KVM_CAP_XEN_HVM:
2777 case KVM_CAP_VCPU_EVENTS:
2778 case KVM_CAP_HYPERV:
2779 case KVM_CAP_HYPERV_VAPIC:
2780 case KVM_CAP_HYPERV_SPIN:
2781 case KVM_CAP_HYPERV_SYNIC:
2782 case KVM_CAP_HYPERV_SYNIC2:
2783 case KVM_CAP_HYPERV_VP_INDEX:
2784 case KVM_CAP_PCI_SEGMENT:
2785 case KVM_CAP_DEBUGREGS:
2786 case KVM_CAP_X86_ROBUST_SINGLESTEP:
2787 case KVM_CAP_XSAVE:
2788 case KVM_CAP_ASYNC_PF:
2789 case KVM_CAP_GET_TSC_KHZ:
2790 case KVM_CAP_KVMCLOCK_CTRL:
2791 case KVM_CAP_READONLY_MEM:
2792 case KVM_CAP_HYPERV_TIME:
2793 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2794 case KVM_CAP_TSC_DEADLINE_TIMER:
2795 case KVM_CAP_ENABLE_CAP_VM:
2796 case KVM_CAP_DISABLE_QUIRKS:
2797 case KVM_CAP_SET_BOOT_CPU_ID:
2798 case KVM_CAP_SPLIT_IRQCHIP:
2799 case KVM_CAP_IMMEDIATE_EXIT:
2800 case KVM_CAP_GET_MSR_FEATURES:
2801 r = 1;
2802 break;
2803 case KVM_CAP_ADJUST_CLOCK:
2804 r = KVM_CLOCK_TSC_STABLE;
2805 break;
2806 case KVM_CAP_X86_GUEST_MWAIT:
2807 r = kvm_mwait_in_guest();
2808 break;
2809 case KVM_CAP_X86_SMM:
2810 /* SMBASE is usually relocated above 1M on modern chipsets,
2811 * and SMM handlers might indeed rely on 4G segment limits,
2812 * so do not report SMM to be available if real mode is
2813 * emulated via vm86 mode. Still, do not go to great lengths
2814 * to avoid userspace's usage of the feature, because it is a
2815 * fringe case that is not enabled except via specific settings
2816 * of the module parameters.
2817 */
2818 r = kvm_x86_ops->has_emulated_msr(MSR_IA32_SMBASE);
2819 break;
2820 case KVM_CAP_VAPIC:
2821 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2822 break;
2823 case KVM_CAP_NR_VCPUS:
2824 r = KVM_SOFT_MAX_VCPUS;
2825 break;
2826 case KVM_CAP_MAX_VCPUS:
2827 r = KVM_MAX_VCPUS;
2828 break;
2829 case KVM_CAP_NR_MEMSLOTS:
2830 r = KVM_USER_MEM_SLOTS;
2831 break;
2832 case KVM_CAP_PV_MMU: /* obsolete */
2833 r = 0;
2834 break;
2835 case KVM_CAP_MCE:
2836 r = KVM_MAX_MCE_BANKS;
2837 break;
2838 case KVM_CAP_XCRS:
2839 r = boot_cpu_has(X86_FEATURE_XSAVE);
2840 break;
2841 case KVM_CAP_TSC_CONTROL:
2842 r = kvm_has_tsc_control;
2843 break;
2844 case KVM_CAP_X2APIC_API:
2845 r = KVM_X2APIC_API_VALID_FLAGS;
2846 break;
2847 default:
2848 r = 0;
2849 break;
2850 }
2851 return r;
2852
2853 }
2854
2855 long kvm_arch_dev_ioctl(struct file *filp,
2856 unsigned int ioctl, unsigned long arg)
2857 {
2858 void __user *argp = (void __user *)arg;
2859 long r;
2860
2861 switch (ioctl) {
2862 case KVM_GET_MSR_INDEX_LIST: {
2863 struct kvm_msr_list __user *user_msr_list = argp;
2864 struct kvm_msr_list msr_list;
2865 unsigned n;
2866
2867 r = -EFAULT;
2868 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2869 goto out;
2870 n = msr_list.nmsrs;
2871 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2872 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2873 goto out;
2874 r = -E2BIG;
2875 if (n < msr_list.nmsrs)
2876 goto out;
2877 r = -EFAULT;
2878 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2879 num_msrs_to_save * sizeof(u32)))
2880 goto out;
2881 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2882 &emulated_msrs,
2883 num_emulated_msrs * sizeof(u32)))
2884 goto out;
2885 r = 0;
2886 break;
2887 }
2888 case KVM_GET_SUPPORTED_CPUID:
2889 case KVM_GET_EMULATED_CPUID: {
2890 struct kvm_cpuid2 __user *cpuid_arg = argp;
2891 struct kvm_cpuid2 cpuid;
2892
2893 r = -EFAULT;
2894 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2895 goto out;
2896
2897 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2898 ioctl);
2899 if (r)
2900 goto out;
2901
2902 r = -EFAULT;
2903 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2904 goto out;
2905 r = 0;
2906 break;
2907 }
2908 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2909 r = -EFAULT;
2910 if (copy_to_user(argp, &kvm_mce_cap_supported,
2911 sizeof(kvm_mce_cap_supported)))
2912 goto out;
2913 r = 0;
2914 break;
2915 case KVM_GET_MSR_FEATURE_INDEX_LIST: {
2916 struct kvm_msr_list __user *user_msr_list = argp;
2917 struct kvm_msr_list msr_list;
2918 unsigned int n;
2919
2920 r = -EFAULT;
2921 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
2922 goto out;
2923 n = msr_list.nmsrs;
2924 msr_list.nmsrs = num_msr_based_features;
2925 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
2926 goto out;
2927 r = -E2BIG;
2928 if (n < msr_list.nmsrs)
2929 goto out;
2930 r = -EFAULT;
2931 if (copy_to_user(user_msr_list->indices, &msr_based_features,
2932 num_msr_based_features * sizeof(u32)))
2933 goto out;
2934 r = 0;
2935 break;
2936 }
2937 case KVM_GET_MSRS:
2938 r = msr_io(NULL, argp, do_get_msr_feature, 1);
2939 break;
2940 }
2941 default:
2942 r = -EINVAL;
2943 }
2944 out:
2945 return r;
2946 }
2947
2948 static void wbinvd_ipi(void *garbage)
2949 {
2950 wbinvd();
2951 }
2952
2953 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2954 {
2955 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2956 }
2957
2958 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2959 {
2960 /* Address WBINVD may be executed by guest */
2961 if (need_emulate_wbinvd(vcpu)) {
2962 if (kvm_x86_ops->has_wbinvd_exit())
2963 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2964 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2965 smp_call_function_single(vcpu->cpu,
2966 wbinvd_ipi, NULL, 1);
2967 }
2968
2969 kvm_x86_ops->vcpu_load(vcpu, cpu);
2970
2971 /* Apply any externally detected TSC adjustments (due to suspend) */
2972 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2973 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2974 vcpu->arch.tsc_offset_adjustment = 0;
2975 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2976 }
2977
2978 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2979 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2980 rdtsc() - vcpu->arch.last_host_tsc;
2981 if (tsc_delta < 0)
2982 mark_tsc_unstable("KVM discovered backwards TSC");
2983
2984 if (check_tsc_unstable()) {
2985 u64 offset = kvm_compute_tsc_offset(vcpu,
2986 vcpu->arch.last_guest_tsc);
2987 kvm_vcpu_write_tsc_offset(vcpu, offset);
2988 vcpu->arch.tsc_catchup = 1;
2989 }
2990
2991 if (kvm_lapic_hv_timer_in_use(vcpu))
2992 kvm_lapic_restart_hv_timer(vcpu);
2993
2994 /*
2995 * On a host with synchronized TSC, there is no need to update
2996 * kvmclock on vcpu->cpu migration
2997 */
2998 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2999 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3000 if (vcpu->cpu != cpu)
3001 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3002 vcpu->cpu = cpu;
3003 }
3004
3005 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3006 }
3007
3008 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3009 {
3010 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3011 return;
3012
3013 vcpu->arch.st.steal.preempted = 1;
3014
3015 kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
3016 &vcpu->arch.st.steal.preempted,
3017 offsetof(struct kvm_steal_time, preempted),
3018 sizeof(vcpu->arch.st.steal.preempted));
3019 }
3020
3021 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3022 {
3023 int idx;
3024
3025 if (vcpu->preempted)
3026 vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
3027
3028 /*
3029 * Disable page faults because we're in atomic context here.
3030 * kvm_write_guest_offset_cached() would call might_fault()
3031 * that relies on pagefault_disable() to tell if there's a
3032 * bug. NOTE: the write to guest memory may not go through if
3033 * during postcopy live migration or if there's heavy guest
3034 * paging.
3035 */
3036 pagefault_disable();
3037 /*
3038 * kvm_memslots() will be called by
3039 * kvm_write_guest_offset_cached() so take the srcu lock.
3040 */
3041 idx = srcu_read_lock(&vcpu->kvm->srcu);
3042 kvm_steal_time_set_preempted(vcpu);
3043 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3044 pagefault_enable();
3045 kvm_x86_ops->vcpu_put(vcpu);
3046 vcpu->arch.last_host_tsc = rdtsc();
3047 /*
3048 * If userspace has set any breakpoints or watchpoints, dr6 is restored
3049 * on every vmexit, but if not, we might have a stale dr6 from the
3050 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3051 */
3052 set_debugreg(0, 6);
3053 }
3054
3055 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3056 struct kvm_lapic_state *s)
3057 {
3058 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
3059 kvm_x86_ops->sync_pir_to_irr(vcpu);
3060
3061 return kvm_apic_get_state(vcpu, s);
3062 }
3063
3064 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3065 struct kvm_lapic_state *s)
3066 {
3067 int r;
3068
3069 r = kvm_apic_set_state(vcpu, s);
3070 if (r)
3071 return r;
3072 update_cr8_intercept(vcpu);
3073
3074 return 0;
3075 }
3076
3077 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3078 {
3079 return (!lapic_in_kernel(vcpu) ||
3080 kvm_apic_accept_pic_intr(vcpu));
3081 }
3082
3083 /*
3084 * if userspace requested an interrupt window, check that the
3085 * interrupt window is open.
3086 *
3087 * No need to exit to userspace if we already have an interrupt queued.
3088 */
3089 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3090 {
3091 return kvm_arch_interrupt_allowed(vcpu) &&
3092 !kvm_cpu_has_interrupt(vcpu) &&
3093 !kvm_event_needs_reinjection(vcpu) &&
3094 kvm_cpu_accept_dm_intr(vcpu);
3095 }
3096
3097 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3098 struct kvm_interrupt *irq)
3099 {
3100 if (irq->irq >= KVM_NR_INTERRUPTS)
3101 return -EINVAL;
3102
3103 if (!irqchip_in_kernel(vcpu->kvm)) {
3104 kvm_queue_interrupt(vcpu, irq->irq, false);
3105 kvm_make_request(KVM_REQ_EVENT, vcpu);
3106 return 0;
3107 }
3108
3109 /*
3110 * With in-kernel LAPIC, we only use this to inject EXTINT, so
3111 * fail for in-kernel 8259.
3112 */
3113 if (pic_in_kernel(vcpu->kvm))
3114 return -ENXIO;
3115
3116 if (vcpu->arch.pending_external_vector != -1)
3117 return -EEXIST;
3118
3119 vcpu->arch.pending_external_vector = irq->irq;
3120 kvm_make_request(KVM_REQ_EVENT, vcpu);
3121 return 0;
3122 }
3123
3124 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3125 {
3126 kvm_inject_nmi(vcpu);
3127
3128 return 0;
3129 }
3130
3131 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3132 {
3133 kvm_make_request(KVM_REQ_SMI, vcpu);
3134
3135 return 0;
3136 }
3137
3138 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3139 struct kvm_tpr_access_ctl *tac)
3140 {
3141 if (tac->flags)
3142 return -EINVAL;
3143 vcpu->arch.tpr_access_reporting = !!tac->enabled;
3144 return 0;
3145 }
3146
3147 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3148 u64 mcg_cap)
3149 {
3150 int r;
3151 unsigned bank_num = mcg_cap & 0xff, bank;
3152
3153 r = -EINVAL;
3154 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3155 goto out;
3156 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3157 goto out;
3158 r = 0;
3159 vcpu->arch.mcg_cap = mcg_cap;
3160 /* Init IA32_MCG_CTL to all 1s */
3161 if (mcg_cap & MCG_CTL_P)
3162 vcpu->arch.mcg_ctl = ~(u64)0;
3163 /* Init IA32_MCi_CTL to all 1s */
3164 for (bank = 0; bank < bank_num; bank++)
3165 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3166
3167 if (kvm_x86_ops->setup_mce)
3168 kvm_x86_ops->setup_mce(vcpu);
3169 out:
3170 return r;
3171 }
3172
3173 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3174 struct kvm_x86_mce *mce)
3175 {
3176 u64 mcg_cap = vcpu->arch.mcg_cap;
3177 unsigned bank_num = mcg_cap & 0xff;
3178 u64 *banks = vcpu->arch.mce_banks;
3179
3180 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3181 return -EINVAL;
3182 /*
3183 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3184 * reporting is disabled
3185 */
3186 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3187 vcpu->arch.mcg_ctl != ~(u64)0)
3188 return 0;
3189 banks += 4 * mce->bank;
3190 /*
3191 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3192 * reporting is disabled for the bank
3193 */
3194 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3195 return 0;
3196 if (mce->status & MCI_STATUS_UC) {
3197 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3198 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3199 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3200 return 0;
3201 }
3202 if (banks[1] & MCI_STATUS_VAL)
3203 mce->status |= MCI_STATUS_OVER;
3204 banks[2] = mce->addr;
3205 banks[3] = mce->misc;
3206 vcpu->arch.mcg_status = mce->mcg_status;
3207 banks[1] = mce->status;
3208 kvm_queue_exception(vcpu, MC_VECTOR);
3209 } else if (!(banks[1] & MCI_STATUS_VAL)
3210 || !(banks[1] & MCI_STATUS_UC)) {
3211 if (banks[1] & MCI_STATUS_VAL)
3212 mce->status |= MCI_STATUS_OVER;
3213 banks[2] = mce->addr;
3214 banks[3] = mce->misc;
3215 banks[1] = mce->status;
3216 } else
3217 banks[1] |= MCI_STATUS_OVER;
3218 return 0;
3219 }
3220
3221 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3222 struct kvm_vcpu_events *events)
3223 {
3224 process_nmi(vcpu);
3225 /*
3226 * FIXME: pass injected and pending separately. This is only
3227 * needed for nested virtualization, whose state cannot be
3228 * migrated yet. For now we can combine them.
3229 */
3230 events->exception.injected =
3231 (vcpu->arch.exception.pending ||
3232 vcpu->arch.exception.injected) &&
3233 !kvm_exception_is_soft(vcpu->arch.exception.nr);
3234 events->exception.nr = vcpu->arch.exception.nr;
3235 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3236 events->exception.pad = 0;
3237 events->exception.error_code = vcpu->arch.exception.error_code;
3238
3239 events->interrupt.injected =
3240 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3241 events->interrupt.nr = vcpu->arch.interrupt.nr;
3242 events->interrupt.soft = 0;
3243 events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3244
3245 events->nmi.injected = vcpu->arch.nmi_injected;
3246 events->nmi.pending = vcpu->arch.nmi_pending != 0;
3247 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3248 events->nmi.pad = 0;
3249
3250 events->sipi_vector = 0; /* never valid when reporting to user space */
3251
3252 events->smi.smm = is_smm(vcpu);
3253 events->smi.pending = vcpu->arch.smi_pending;
3254 events->smi.smm_inside_nmi =
3255 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3256 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3257
3258 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3259 | KVM_VCPUEVENT_VALID_SHADOW
3260 | KVM_VCPUEVENT_VALID_SMM);
3261 memset(&events->reserved, 0, sizeof(events->reserved));
3262 }
3263
3264 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3265
3266 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3267 struct kvm_vcpu_events *events)
3268 {
3269 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3270 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3271 | KVM_VCPUEVENT_VALID_SHADOW
3272 | KVM_VCPUEVENT_VALID_SMM))
3273 return -EINVAL;
3274
3275 if (events->exception.injected &&
3276 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR ||
3277 is_guest_mode(vcpu)))
3278 return -EINVAL;
3279
3280 /* INITs are latched while in SMM */
3281 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3282 (events->smi.smm || events->smi.pending) &&
3283 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3284 return -EINVAL;
3285
3286 process_nmi(vcpu);
3287 vcpu->arch.exception.injected = false;
3288 vcpu->arch.exception.pending = events->exception.injected;
3289 vcpu->arch.exception.nr = events->exception.nr;
3290 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3291 vcpu->arch.exception.error_code = events->exception.error_code;
3292
3293 vcpu->arch.interrupt.pending = events->interrupt.injected;
3294 vcpu->arch.interrupt.nr = events->interrupt.nr;
3295 vcpu->arch.interrupt.soft = events->interrupt.soft;
3296 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3297 kvm_x86_ops->set_interrupt_shadow(vcpu,
3298 events->interrupt.shadow);
3299
3300 vcpu->arch.nmi_injected = events->nmi.injected;
3301 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3302 vcpu->arch.nmi_pending = events->nmi.pending;
3303 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3304
3305 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3306 lapic_in_kernel(vcpu))
3307 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3308
3309 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3310 u32 hflags = vcpu->arch.hflags;
3311 if (events->smi.smm)
3312 hflags |= HF_SMM_MASK;
3313 else
3314 hflags &= ~HF_SMM_MASK;
3315 kvm_set_hflags(vcpu, hflags);
3316
3317 vcpu->arch.smi_pending = events->smi.pending;
3318
3319 if (events->smi.smm) {
3320 if (events->smi.smm_inside_nmi)
3321 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3322 else
3323 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3324 if (lapic_in_kernel(vcpu)) {
3325 if (events->smi.latched_init)
3326 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3327 else
3328 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3329 }
3330 }
3331 }
3332
3333 kvm_make_request(KVM_REQ_EVENT, vcpu);
3334
3335 return 0;
3336 }
3337
3338 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3339 struct kvm_debugregs *dbgregs)
3340 {
3341 unsigned long val;
3342
3343 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3344 kvm_get_dr(vcpu, 6, &val);
3345 dbgregs->dr6 = val;
3346 dbgregs->dr7 = vcpu->arch.dr7;
3347 dbgregs->flags = 0;
3348 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3349 }
3350
3351 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3352 struct kvm_debugregs *dbgregs)
3353 {
3354 if (dbgregs->flags)
3355 return -EINVAL;
3356
3357 if (dbgregs->dr6 & ~0xffffffffull)
3358 return -EINVAL;
3359 if (dbgregs->dr7 & ~0xffffffffull)
3360 return -EINVAL;
3361
3362 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3363 kvm_update_dr0123(vcpu);
3364 vcpu->arch.dr6 = dbgregs->dr6;
3365 kvm_update_dr6(vcpu);
3366 vcpu->arch.dr7 = dbgregs->dr7;
3367 kvm_update_dr7(vcpu);
3368
3369 return 0;
3370 }
3371
3372 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3373
3374 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3375 {
3376 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3377 u64 xstate_bv = xsave->header.xfeatures;
3378 u64 valid;
3379
3380 /*
3381 * Copy legacy XSAVE area, to avoid complications with CPUID
3382 * leaves 0 and 1 in the loop below.
3383 */
3384 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3385
3386 /* Set XSTATE_BV */
3387 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3388 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3389
3390 /*
3391 * Copy each region from the possibly compacted offset to the
3392 * non-compacted offset.
3393 */
3394 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3395 while (valid) {
3396 u64 feature = valid & -valid;
3397 int index = fls64(feature) - 1;
3398 void *src = get_xsave_addr(xsave, feature);
3399
3400 if (src) {
3401 u32 size, offset, ecx, edx;
3402 cpuid_count(XSTATE_CPUID, index,
3403 &size, &offset, &ecx, &edx);
3404 if (feature == XFEATURE_MASK_PKRU)
3405 memcpy(dest + offset, &vcpu->arch.pkru,
3406 sizeof(vcpu->arch.pkru));
3407 else
3408 memcpy(dest + offset, src, size);
3409
3410 }
3411
3412 valid -= feature;
3413 }
3414 }
3415
3416 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3417 {
3418 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3419 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3420 u64 valid;
3421
3422 /*
3423 * Copy legacy XSAVE area, to avoid complications with CPUID
3424 * leaves 0 and 1 in the loop below.
3425 */
3426 memcpy(xsave, src, XSAVE_HDR_OFFSET);
3427
3428 /* Set XSTATE_BV and possibly XCOMP_BV. */
3429 xsave->header.xfeatures = xstate_bv;
3430 if (boot_cpu_has(X86_FEATURE_XSAVES))
3431 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3432
3433 /*
3434 * Copy each region from the non-compacted offset to the
3435 * possibly compacted offset.
3436 */
3437 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3438 while (valid) {
3439 u64 feature = valid & -valid;
3440 int index = fls64(feature) - 1;
3441 void *dest = get_xsave_addr(xsave, feature);
3442
3443 if (dest) {
3444 u32 size, offset, ecx, edx;
3445 cpuid_count(XSTATE_CPUID, index,
3446 &size, &offset, &ecx, &edx);
3447 if (feature == XFEATURE_MASK_PKRU)
3448 memcpy(&vcpu->arch.pkru, src + offset,
3449 sizeof(vcpu->arch.pkru));
3450 else
3451 memcpy(dest, src + offset, size);
3452 }
3453
3454 valid -= feature;
3455 }
3456 }
3457
3458 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3459 struct kvm_xsave *guest_xsave)
3460 {
3461 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3462 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3463 fill_xsave((u8 *) guest_xsave->region, vcpu);
3464 } else {
3465 memcpy(guest_xsave->region,
3466 &vcpu->arch.guest_fpu.state.fxsave,
3467 sizeof(struct fxregs_state));
3468 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3469 XFEATURE_MASK_FPSSE;
3470 }
3471 }
3472
3473 #define XSAVE_MXCSR_OFFSET 24
3474
3475 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3476 struct kvm_xsave *guest_xsave)
3477 {
3478 u64 xstate_bv =
3479 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3480 u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3481
3482 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3483 /*
3484 * Here we allow setting states that are not present in
3485 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
3486 * with old userspace.
3487 */
3488 if (xstate_bv & ~kvm_supported_xcr0() ||
3489 mxcsr & ~mxcsr_feature_mask)
3490 return -EINVAL;
3491 load_xsave(vcpu, (u8 *)guest_xsave->region);
3492 } else {
3493 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3494 mxcsr & ~mxcsr_feature_mask)
3495 return -EINVAL;
3496 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3497 guest_xsave->region, sizeof(struct fxregs_state));
3498 }
3499 return 0;
3500 }
3501
3502 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3503 struct kvm_xcrs *guest_xcrs)
3504 {
3505 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3506 guest_xcrs->nr_xcrs = 0;
3507 return;
3508 }
3509
3510 guest_xcrs->nr_xcrs = 1;
3511 guest_xcrs->flags = 0;
3512 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3513 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3514 }
3515
3516 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3517 struct kvm_xcrs *guest_xcrs)
3518 {
3519 int i, r = 0;
3520
3521 if (!boot_cpu_has(X86_FEATURE_XSAVE))
3522 return -EINVAL;
3523
3524 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3525 return -EINVAL;
3526
3527 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3528 /* Only support XCR0 currently */
3529 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3530 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3531 guest_xcrs->xcrs[i].value);
3532 break;
3533 }
3534 if (r)
3535 r = -EINVAL;
3536 return r;
3537 }
3538
3539 /*
3540 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3541 * stopped by the hypervisor. This function will be called from the host only.
3542 * EINVAL is returned when the host attempts to set the flag for a guest that
3543 * does not support pv clocks.
3544 */
3545 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3546 {
3547 if (!vcpu->arch.pv_time_enabled)
3548 return -EINVAL;
3549 vcpu->arch.pvclock_set_guest_stopped_request = true;
3550 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3551 return 0;
3552 }
3553
3554 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3555 struct kvm_enable_cap *cap)
3556 {
3557 if (cap->flags)
3558 return -EINVAL;
3559
3560 switch (cap->cap) {
3561 case KVM_CAP_HYPERV_SYNIC2:
3562 if (cap->args[0])
3563 return -EINVAL;
3564 case KVM_CAP_HYPERV_SYNIC:
3565 if (!irqchip_in_kernel(vcpu->kvm))
3566 return -EINVAL;
3567 return kvm_hv_activate_synic(vcpu, cap->cap ==
3568 KVM_CAP_HYPERV_SYNIC2);
3569 default:
3570 return -EINVAL;
3571 }
3572 }
3573
3574 long kvm_arch_vcpu_ioctl(struct file *filp,
3575 unsigned int ioctl, unsigned long arg)
3576 {
3577 struct kvm_vcpu *vcpu = filp->private_data;
3578 void __user *argp = (void __user *)arg;
3579 int r;
3580 union {
3581 struct kvm_lapic_state *lapic;
3582 struct kvm_xsave *xsave;
3583 struct kvm_xcrs *xcrs;
3584 void *buffer;
3585 } u;
3586
3587 u.buffer = NULL;
3588 switch (ioctl) {
3589 case KVM_GET_LAPIC: {
3590 r = -EINVAL;
3591 if (!lapic_in_kernel(vcpu))
3592 goto out;
3593 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3594
3595 r = -ENOMEM;
3596 if (!u.lapic)
3597 goto out;
3598 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3599 if (r)
3600 goto out;
3601 r = -EFAULT;
3602 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3603 goto out;
3604 r = 0;
3605 break;
3606 }
3607 case KVM_SET_LAPIC: {
3608 r = -EINVAL;
3609 if (!lapic_in_kernel(vcpu))
3610 goto out;
3611 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3612 if (IS_ERR(u.lapic))
3613 return PTR_ERR(u.lapic);
3614
3615 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3616 break;
3617 }
3618 case KVM_INTERRUPT: {
3619 struct kvm_interrupt irq;
3620
3621 r = -EFAULT;
3622 if (copy_from_user(&irq, argp, sizeof irq))
3623 goto out;
3624 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3625 break;
3626 }
3627 case KVM_NMI: {
3628 r = kvm_vcpu_ioctl_nmi(vcpu);
3629 break;
3630 }
3631 case KVM_SMI: {
3632 r = kvm_vcpu_ioctl_smi(vcpu);
3633 break;
3634 }
3635 case KVM_SET_CPUID: {
3636 struct kvm_cpuid __user *cpuid_arg = argp;
3637 struct kvm_cpuid cpuid;
3638
3639 r = -EFAULT;
3640 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3641 goto out;
3642 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3643 break;
3644 }
3645 case KVM_SET_CPUID2: {
3646 struct kvm_cpuid2 __user *cpuid_arg = argp;
3647 struct kvm_cpuid2 cpuid;
3648
3649 r = -EFAULT;
3650 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3651 goto out;
3652 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3653 cpuid_arg->entries);
3654 break;
3655 }
3656 case KVM_GET_CPUID2: {
3657 struct kvm_cpuid2 __user *cpuid_arg = argp;
3658 struct kvm_cpuid2 cpuid;
3659
3660 r = -EFAULT;
3661 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3662 goto out;
3663 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3664 cpuid_arg->entries);
3665 if (r)
3666 goto out;
3667 r = -EFAULT;
3668 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3669 goto out;
3670 r = 0;
3671 break;
3672 }
3673 case KVM_GET_MSRS: {
3674 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3675 r = msr_io(vcpu, argp, do_get_msr, 1);
3676 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3677 break;
3678 }
3679 case KVM_SET_MSRS: {
3680 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3681 r = msr_io(vcpu, argp, do_set_msr, 0);
3682 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3683 break;
3684 }
3685 case KVM_TPR_ACCESS_REPORTING: {
3686 struct kvm_tpr_access_ctl tac;
3687
3688 r = -EFAULT;
3689 if (copy_from_user(&tac, argp, sizeof tac))
3690 goto out;
3691 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3692 if (r)
3693 goto out;
3694 r = -EFAULT;
3695 if (copy_to_user(argp, &tac, sizeof tac))
3696 goto out;
3697 r = 0;
3698 break;
3699 };
3700 case KVM_SET_VAPIC_ADDR: {
3701 struct kvm_vapic_addr va;
3702 int idx;
3703
3704 r = -EINVAL;
3705 if (!lapic_in_kernel(vcpu))
3706 goto out;
3707 r = -EFAULT;
3708 if (copy_from_user(&va, argp, sizeof va))
3709 goto out;
3710 idx = srcu_read_lock(&vcpu->kvm->srcu);
3711 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3712 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3713 break;
3714 }
3715 case KVM_X86_SETUP_MCE: {
3716 u64 mcg_cap;
3717
3718 r = -EFAULT;
3719 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3720 goto out;
3721 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3722 break;
3723 }
3724 case KVM_X86_SET_MCE: {
3725 struct kvm_x86_mce mce;
3726
3727 r = -EFAULT;
3728 if (copy_from_user(&mce, argp, sizeof mce))
3729 goto out;
3730 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3731 break;
3732 }
3733 case KVM_GET_VCPU_EVENTS: {
3734 struct kvm_vcpu_events events;
3735
3736 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3737
3738 r = -EFAULT;
3739 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3740 break;
3741 r = 0;
3742 break;
3743 }
3744 case KVM_SET_VCPU_EVENTS: {
3745 struct kvm_vcpu_events events;
3746
3747 r = -EFAULT;
3748 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3749 break;
3750
3751 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3752 break;
3753 }
3754 case KVM_GET_DEBUGREGS: {
3755 struct kvm_debugregs dbgregs;
3756
3757 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3758
3759 r = -EFAULT;
3760 if (copy_to_user(argp, &dbgregs,
3761 sizeof(struct kvm_debugregs)))
3762 break;
3763 r = 0;
3764 break;
3765 }
3766 case KVM_SET_DEBUGREGS: {
3767 struct kvm_debugregs dbgregs;
3768
3769 r = -EFAULT;
3770 if (copy_from_user(&dbgregs, argp,
3771 sizeof(struct kvm_debugregs)))
3772 break;
3773
3774 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3775 break;
3776 }
3777 case KVM_GET_XSAVE: {
3778 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3779 r = -ENOMEM;
3780 if (!u.xsave)
3781 break;
3782
3783 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3784
3785 r = -EFAULT;
3786 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3787 break;
3788 r = 0;
3789 break;
3790 }
3791 case KVM_SET_XSAVE: {
3792 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3793 if (IS_ERR(u.xsave))
3794 return PTR_ERR(u.xsave);
3795
3796 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3797 break;
3798 }
3799 case KVM_GET_XCRS: {
3800 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3801 r = -ENOMEM;
3802 if (!u.xcrs)
3803 break;
3804
3805 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3806
3807 r = -EFAULT;
3808 if (copy_to_user(argp, u.xcrs,
3809 sizeof(struct kvm_xcrs)))
3810 break;
3811 r = 0;
3812 break;
3813 }
3814 case KVM_SET_XCRS: {
3815 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3816 if (IS_ERR(u.xcrs))
3817 return PTR_ERR(u.xcrs);
3818
3819 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3820 break;
3821 }
3822 case KVM_SET_TSC_KHZ: {
3823 u32 user_tsc_khz;
3824
3825 r = -EINVAL;
3826 user_tsc_khz = (u32)arg;
3827
3828 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3829 goto out;
3830
3831 if (user_tsc_khz == 0)
3832 user_tsc_khz = tsc_khz;
3833
3834 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3835 r = 0;
3836
3837 goto out;
3838 }
3839 case KVM_GET_TSC_KHZ: {
3840 r = vcpu->arch.virtual_tsc_khz;
3841 goto out;
3842 }
3843 case KVM_KVMCLOCK_CTRL: {
3844 r = kvm_set_guest_paused(vcpu);
3845 goto out;
3846 }
3847 case KVM_ENABLE_CAP: {
3848 struct kvm_enable_cap cap;
3849
3850 r = -EFAULT;
3851 if (copy_from_user(&cap, argp, sizeof(cap)))
3852 goto out;
3853 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3854 break;
3855 }
3856 default:
3857 r = -EINVAL;
3858 }
3859 out:
3860 kfree(u.buffer);
3861 return r;
3862 }
3863
3864 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3865 {
3866 return VM_FAULT_SIGBUS;
3867 }
3868
3869 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3870 {
3871 int ret;
3872
3873 if (addr > (unsigned int)(-3 * PAGE_SIZE))
3874 return -EINVAL;
3875 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3876 return ret;
3877 }
3878
3879 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3880 u64 ident_addr)
3881 {
3882 kvm->arch.ept_identity_map_addr = ident_addr;
3883 return 0;
3884 }
3885
3886 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3887 u32 kvm_nr_mmu_pages)
3888 {
3889 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3890 return -EINVAL;
3891
3892 mutex_lock(&kvm->slots_lock);
3893
3894 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3895 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3896
3897 mutex_unlock(&kvm->slots_lock);
3898 return 0;
3899 }
3900
3901 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3902 {
3903 return kvm->arch.n_max_mmu_pages;
3904 }
3905
3906 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3907 {
3908 struct kvm_pic *pic = kvm->arch.vpic;
3909 int r;
3910
3911 r = 0;
3912 switch (chip->chip_id) {
3913 case KVM_IRQCHIP_PIC_MASTER:
3914 memcpy(&chip->chip.pic, &pic->pics[0],
3915 sizeof(struct kvm_pic_state));
3916 break;
3917 case KVM_IRQCHIP_PIC_SLAVE:
3918 memcpy(&chip->chip.pic, &pic->pics[1],
3919 sizeof(struct kvm_pic_state));
3920 break;
3921 case KVM_IRQCHIP_IOAPIC:
3922 kvm_get_ioapic(kvm, &chip->chip.ioapic);
3923 break;
3924 default:
3925 r = -EINVAL;
3926 break;
3927 }
3928 return r;
3929 }
3930
3931 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3932 {
3933 struct kvm_pic *pic = kvm->arch.vpic;
3934 int r;
3935
3936 r = 0;
3937 switch (chip->chip_id) {
3938 case KVM_IRQCHIP_PIC_MASTER:
3939 spin_lock(&pic->lock);
3940 memcpy(&pic->pics[0], &chip->chip.pic,
3941 sizeof(struct kvm_pic_state));
3942 spin_unlock(&pic->lock);
3943 break;
3944 case KVM_IRQCHIP_PIC_SLAVE:
3945 spin_lock(&pic->lock);
3946 memcpy(&pic->pics[1], &chip->chip.pic,
3947 sizeof(struct kvm_pic_state));
3948 spin_unlock(&pic->lock);
3949 break;
3950 case KVM_IRQCHIP_IOAPIC:
3951 kvm_set_ioapic(kvm, &chip->chip.ioapic);
3952 break;
3953 default:
3954 r = -EINVAL;
3955 break;
3956 }
3957 kvm_pic_update_irq(pic);
3958 return r;
3959 }
3960
3961 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3962 {
3963 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
3964
3965 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
3966
3967 mutex_lock(&kps->lock);
3968 memcpy(ps, &kps->channels, sizeof(*ps));
3969 mutex_unlock(&kps->lock);
3970 return 0;
3971 }
3972
3973 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3974 {
3975 int i;
3976 struct kvm_pit *pit = kvm->arch.vpit;
3977
3978 mutex_lock(&pit->pit_state.lock);
3979 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
3980 for (i = 0; i < 3; i++)
3981 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
3982 mutex_unlock(&pit->pit_state.lock);
3983 return 0;
3984 }
3985
3986 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3987 {
3988 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3989 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3990 sizeof(ps->channels));
3991 ps->flags = kvm->arch.vpit->pit_state.flags;
3992 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3993 memset(&ps->reserved, 0, sizeof(ps->reserved));
3994 return 0;
3995 }
3996
3997 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3998 {
3999 int start = 0;
4000 int i;
4001 u32 prev_legacy, cur_legacy;
4002 struct kvm_pit *pit = kvm->arch.vpit;
4003
4004 mutex_lock(&pit->pit_state.lock);
4005 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4006 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4007 if (!prev_legacy && cur_legacy)
4008 start = 1;
4009 memcpy(&pit->pit_state.channels, &ps->channels,
4010 sizeof(pit->pit_state.channels));
4011 pit->pit_state.flags = ps->flags;
4012 for (i = 0; i < 3; i++)
4013 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4014 start && i == 0);
4015 mutex_unlock(&pit->pit_state.lock);
4016 return 0;
4017 }
4018
4019 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4020 struct kvm_reinject_control *control)
4021 {
4022 struct kvm_pit *pit = kvm->arch.vpit;
4023
4024 if (!pit)
4025 return -ENXIO;
4026
4027 /* pit->pit_state.lock was overloaded to prevent userspace from getting
4028 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4029 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
4030 */
4031 mutex_lock(&pit->pit_state.lock);
4032 kvm_pit_set_reinject(pit, control->pit_reinject);
4033 mutex_unlock(&pit->pit_state.lock);
4034
4035 return 0;
4036 }
4037
4038 /**
4039 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4040 * @kvm: kvm instance
4041 * @log: slot id and address to which we copy the log
4042 *
4043 * Steps 1-4 below provide general overview of dirty page logging. See
4044 * kvm_get_dirty_log_protect() function description for additional details.
4045 *
4046 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4047 * always flush the TLB (step 4) even if previous step failed and the dirty
4048 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4049 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4050 * writes will be marked dirty for next log read.
4051 *
4052 * 1. Take a snapshot of the bit and clear it if needed.
4053 * 2. Write protect the corresponding page.
4054 * 3. Copy the snapshot to the userspace.
4055 * 4. Flush TLB's if needed.
4056 */
4057 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
4058 {
4059 bool is_dirty = false;
4060 int r;
4061
4062 mutex_lock(&kvm->slots_lock);
4063
4064 /*
4065 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4066 */
4067 if (kvm_x86_ops->flush_log_dirty)
4068 kvm_x86_ops->flush_log_dirty(kvm);
4069
4070 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
4071
4072 /*
4073 * All the TLBs can be flushed out of mmu lock, see the comments in
4074 * kvm_mmu_slot_remove_write_access().
4075 */
4076 lockdep_assert_held(&kvm->slots_lock);
4077 if (is_dirty)
4078 kvm_flush_remote_tlbs(kvm);
4079
4080 mutex_unlock(&kvm->slots_lock);
4081 return r;
4082 }
4083
4084 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4085 bool line_status)
4086 {
4087 if (!irqchip_in_kernel(kvm))
4088 return -ENXIO;
4089
4090 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4091 irq_event->irq, irq_event->level,
4092 line_status);
4093 return 0;
4094 }
4095
4096 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4097 struct kvm_enable_cap *cap)
4098 {
4099 int r;
4100
4101 if (cap->flags)
4102 return -EINVAL;
4103
4104 switch (cap->cap) {
4105 case KVM_CAP_DISABLE_QUIRKS:
4106 kvm->arch.disabled_quirks = cap->args[0];
4107 r = 0;
4108 break;
4109 case KVM_CAP_SPLIT_IRQCHIP: {
4110 mutex_lock(&kvm->lock);
4111 r = -EINVAL;
4112 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4113 goto split_irqchip_unlock;
4114 r = -EEXIST;
4115 if (irqchip_in_kernel(kvm))
4116 goto split_irqchip_unlock;
4117 if (kvm->created_vcpus)
4118 goto split_irqchip_unlock;
4119 r = kvm_setup_empty_irq_routing(kvm);
4120 if (r)
4121 goto split_irqchip_unlock;
4122 /* Pairs with irqchip_in_kernel. */
4123 smp_wmb();
4124 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4125 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4126 r = 0;
4127 split_irqchip_unlock:
4128 mutex_unlock(&kvm->lock);
4129 break;
4130 }
4131 case KVM_CAP_X2APIC_API:
4132 r = -EINVAL;
4133 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4134 break;
4135
4136 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4137 kvm->arch.x2apic_format = true;
4138 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4139 kvm->arch.x2apic_broadcast_quirk_disabled = true;
4140
4141 r = 0;
4142 break;
4143 default:
4144 r = -EINVAL;
4145 break;
4146 }
4147 return r;
4148 }
4149
4150 long kvm_arch_vm_ioctl(struct file *filp,
4151 unsigned int ioctl, unsigned long arg)
4152 {
4153 struct kvm *kvm = filp->private_data;
4154 void __user *argp = (void __user *)arg;
4155 int r = -ENOTTY;
4156 /*
4157 * This union makes it completely explicit to gcc-3.x
4158 * that these two variables' stack usage should be
4159 * combined, not added together.
4160 */
4161 union {
4162 struct kvm_pit_state ps;
4163 struct kvm_pit_state2 ps2;
4164 struct kvm_pit_config pit_config;
4165 } u;
4166
4167 switch (ioctl) {
4168 case KVM_SET_TSS_ADDR:
4169 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4170 break;
4171 case KVM_SET_IDENTITY_MAP_ADDR: {
4172 u64 ident_addr;
4173
4174 mutex_lock(&kvm->lock);
4175 r = -EINVAL;
4176 if (kvm->created_vcpus)
4177 goto set_identity_unlock;
4178 r = -EFAULT;
4179 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
4180 goto set_identity_unlock;
4181 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4182 set_identity_unlock:
4183 mutex_unlock(&kvm->lock);
4184 break;
4185 }
4186 case KVM_SET_NR_MMU_PAGES:
4187 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4188 break;
4189 case KVM_GET_NR_MMU_PAGES:
4190 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4191 break;
4192 case KVM_CREATE_IRQCHIP: {
4193 mutex_lock(&kvm->lock);
4194
4195 r = -EEXIST;
4196 if (irqchip_in_kernel(kvm))
4197 goto create_irqchip_unlock;
4198
4199 r = -EINVAL;
4200 if (kvm->created_vcpus)
4201 goto create_irqchip_unlock;
4202
4203 r = kvm_pic_init(kvm);
4204 if (r)
4205 goto create_irqchip_unlock;
4206
4207 r = kvm_ioapic_init(kvm);
4208 if (r) {
4209 kvm_pic_destroy(kvm);
4210 goto create_irqchip_unlock;
4211 }
4212
4213 r = kvm_setup_default_irq_routing(kvm);
4214 if (r) {
4215 kvm_ioapic_destroy(kvm);
4216 kvm_pic_destroy(kvm);
4217 goto create_irqchip_unlock;
4218 }
4219 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4220 smp_wmb();
4221 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4222 create_irqchip_unlock:
4223 mutex_unlock(&kvm->lock);
4224 break;
4225 }
4226 case KVM_CREATE_PIT:
4227 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4228 goto create_pit;
4229 case KVM_CREATE_PIT2:
4230 r = -EFAULT;
4231 if (copy_from_user(&u.pit_config, argp,
4232 sizeof(struct kvm_pit_config)))
4233 goto out;
4234 create_pit:
4235 mutex_lock(&kvm->lock);
4236 r = -EEXIST;
4237 if (kvm->arch.vpit)
4238 goto create_pit_unlock;
4239 r = -ENOMEM;
4240 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4241 if (kvm->arch.vpit)
4242 r = 0;
4243 create_pit_unlock:
4244 mutex_unlock(&kvm->lock);
4245 break;
4246 case KVM_GET_IRQCHIP: {
4247 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4248 struct kvm_irqchip *chip;
4249
4250 chip = memdup_user(argp, sizeof(*chip));
4251 if (IS_ERR(chip)) {
4252 r = PTR_ERR(chip);
4253 goto out;
4254 }
4255
4256 r = -ENXIO;
4257 if (!irqchip_kernel(kvm))
4258 goto get_irqchip_out;
4259 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4260 if (r)
4261 goto get_irqchip_out;
4262 r = -EFAULT;
4263 if (copy_to_user(argp, chip, sizeof *chip))
4264 goto get_irqchip_out;
4265 r = 0;
4266 get_irqchip_out:
4267 kfree(chip);
4268 break;
4269 }
4270 case KVM_SET_IRQCHIP: {
4271 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4272 struct kvm_irqchip *chip;
4273
4274 chip = memdup_user(argp, sizeof(*chip));
4275 if (IS_ERR(chip)) {
4276 r = PTR_ERR(chip);
4277 goto out;
4278 }
4279
4280 r = -ENXIO;
4281 if (!irqchip_kernel(kvm))
4282 goto set_irqchip_out;
4283 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4284 if (r)
4285 goto set_irqchip_out;
4286 r = 0;
4287 set_irqchip_out:
4288 kfree(chip);
4289 break;
4290 }
4291 case KVM_GET_PIT: {
4292 r = -EFAULT;
4293 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4294 goto out;
4295 r = -ENXIO;
4296 if (!kvm->arch.vpit)
4297 goto out;
4298 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4299 if (r)
4300 goto out;
4301 r = -EFAULT;
4302 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4303 goto out;
4304 r = 0;
4305 break;
4306 }
4307 case KVM_SET_PIT: {
4308 r = -EFAULT;
4309 if (copy_from_user(&u.ps, argp, sizeof u.ps))
4310 goto out;
4311 r = -ENXIO;
4312 if (!kvm->arch.vpit)
4313 goto out;
4314 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4315 break;
4316 }
4317 case KVM_GET_PIT2: {
4318 r = -ENXIO;
4319 if (!kvm->arch.vpit)
4320 goto out;
4321 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4322 if (r)
4323 goto out;
4324 r = -EFAULT;
4325 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4326 goto out;
4327 r = 0;
4328 break;
4329 }
4330 case KVM_SET_PIT2: {
4331 r = -EFAULT;
4332 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4333 goto out;
4334 r = -ENXIO;
4335 if (!kvm->arch.vpit)
4336 goto out;
4337 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4338 break;
4339 }
4340 case KVM_REINJECT_CONTROL: {
4341 struct kvm_reinject_control control;
4342 r = -EFAULT;
4343 if (copy_from_user(&control, argp, sizeof(control)))
4344 goto out;
4345 r = kvm_vm_ioctl_reinject(kvm, &control);
4346 break;
4347 }
4348 case KVM_SET_BOOT_CPU_ID:
4349 r = 0;
4350 mutex_lock(&kvm->lock);
4351 if (kvm->created_vcpus)
4352 r = -EBUSY;
4353 else
4354 kvm->arch.bsp_vcpu_id = arg;
4355 mutex_unlock(&kvm->lock);
4356 break;
4357 case KVM_XEN_HVM_CONFIG: {
4358 struct kvm_xen_hvm_config xhc;
4359 r = -EFAULT;
4360 if (copy_from_user(&xhc, argp, sizeof(xhc)))
4361 goto out;
4362 r = -EINVAL;
4363 if (xhc.flags)
4364 goto out;
4365 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
4366 r = 0;
4367 break;
4368 }
4369 case KVM_SET_CLOCK: {
4370 struct kvm_clock_data user_ns;
4371 u64 now_ns;
4372
4373 r = -EFAULT;
4374 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4375 goto out;
4376
4377 r = -EINVAL;
4378 if (user_ns.flags)
4379 goto out;
4380
4381 r = 0;
4382 /*
4383 * TODO: userspace has to take care of races with VCPU_RUN, so
4384 * kvm_gen_update_masterclock() can be cut down to locked
4385 * pvclock_update_vm_gtod_copy().
4386 */
4387 kvm_gen_update_masterclock(kvm);
4388 now_ns = get_kvmclock_ns(kvm);
4389 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4390 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4391 break;
4392 }
4393 case KVM_GET_CLOCK: {
4394 struct kvm_clock_data user_ns;
4395 u64 now_ns;
4396
4397 now_ns = get_kvmclock_ns(kvm);
4398 user_ns.clock = now_ns;
4399 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4400 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4401
4402 r = -EFAULT;
4403 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4404 goto out;
4405 r = 0;
4406 break;
4407 }
4408 case KVM_ENABLE_CAP: {
4409 struct kvm_enable_cap cap;
4410
4411 r = -EFAULT;
4412 if (copy_from_user(&cap, argp, sizeof(cap)))
4413 goto out;
4414 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4415 break;
4416 }
4417 default:
4418 r = -ENOTTY;
4419 }
4420 out:
4421 return r;
4422 }
4423
4424 static void kvm_init_msr_list(void)
4425 {
4426 u32 dummy[2];
4427 unsigned i, j;
4428
4429 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4430 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4431 continue;
4432
4433 /*
4434 * Even MSRs that are valid in the host may not be exposed
4435 * to the guests in some cases.
4436 */
4437 switch (msrs_to_save[i]) {
4438 case MSR_IA32_BNDCFGS:
4439 if (!kvm_x86_ops->mpx_supported())
4440 continue;
4441 break;
4442 case MSR_TSC_AUX:
4443 if (!kvm_x86_ops->rdtscp_supported())
4444 continue;
4445 break;
4446 default:
4447 break;
4448 }
4449
4450 if (j < i)
4451 msrs_to_save[j] = msrs_to_save[i];
4452 j++;
4453 }
4454 num_msrs_to_save = j;
4455
4456 for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4457 if (!kvm_x86_ops->has_emulated_msr(emulated_msrs[i]))
4458 continue;
4459
4460 if (j < i)
4461 emulated_msrs[j] = emulated_msrs[i];
4462 j++;
4463 }
4464 num_emulated_msrs = j;
4465
4466 for (i = j = 0; i < ARRAY_SIZE(msr_based_features); i++) {
4467 struct kvm_msr_entry msr;
4468
4469 msr.index = msr_based_features[i];
4470 if (kvm_get_msr_feature(&msr))
4471 continue;
4472
4473 if (j < i)
4474 msr_based_features[j] = msr_based_features[i];
4475 j++;
4476 }
4477 num_msr_based_features = j;
4478 }
4479
4480 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4481 const void *v)
4482 {
4483 int handled = 0;
4484 int n;
4485
4486 do {
4487 n = min(len, 8);
4488 if (!(lapic_in_kernel(vcpu) &&
4489 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4490 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4491 break;
4492 handled += n;
4493 addr += n;
4494 len -= n;
4495 v += n;
4496 } while (len);
4497
4498 return handled;
4499 }
4500
4501 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4502 {
4503 int handled = 0;
4504 int n;
4505
4506 do {
4507 n = min(len, 8);
4508 if (!(lapic_in_kernel(vcpu) &&
4509 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4510 addr, n, v))
4511 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4512 break;
4513 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
4514 handled += n;
4515 addr += n;
4516 len -= n;
4517 v += n;
4518 } while (len);
4519
4520 return handled;
4521 }
4522
4523 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4524 struct kvm_segment *var, int seg)
4525 {
4526 kvm_x86_ops->set_segment(vcpu, var, seg);
4527 }
4528
4529 void kvm_get_segment(struct kvm_vcpu *vcpu,
4530 struct kvm_segment *var, int seg)
4531 {
4532 kvm_x86_ops->get_segment(vcpu, var, seg);
4533 }
4534
4535 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4536 struct x86_exception *exception)
4537 {
4538 gpa_t t_gpa;
4539
4540 BUG_ON(!mmu_is_nested(vcpu));
4541
4542 /* NPT walks are always user-walks */
4543 access |= PFERR_USER_MASK;
4544 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4545
4546 return t_gpa;
4547 }
4548
4549 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4550 struct x86_exception *exception)
4551 {
4552 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4553 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4554 }
4555
4556 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4557 struct x86_exception *exception)
4558 {
4559 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4560 access |= PFERR_FETCH_MASK;
4561 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4562 }
4563
4564 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4565 struct x86_exception *exception)
4566 {
4567 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4568 access |= PFERR_WRITE_MASK;
4569 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4570 }
4571
4572 /* uses this to access any guest's mapped memory without checking CPL */
4573 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4574 struct x86_exception *exception)
4575 {
4576 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4577 }
4578
4579 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4580 struct kvm_vcpu *vcpu, u32 access,
4581 struct x86_exception *exception)
4582 {
4583 void *data = val;
4584 int r = X86EMUL_CONTINUE;
4585
4586 while (bytes) {
4587 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4588 exception);
4589 unsigned offset = addr & (PAGE_SIZE-1);
4590 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4591 int ret;
4592
4593 if (gpa == UNMAPPED_GVA)
4594 return X86EMUL_PROPAGATE_FAULT;
4595 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4596 offset, toread);
4597 if (ret < 0) {
4598 r = X86EMUL_IO_NEEDED;
4599 goto out;
4600 }
4601
4602 bytes -= toread;
4603 data += toread;
4604 addr += toread;
4605 }
4606 out:
4607 return r;
4608 }
4609
4610 /* used for instruction fetching */
4611 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4612 gva_t addr, void *val, unsigned int bytes,
4613 struct x86_exception *exception)
4614 {
4615 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4616 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4617 unsigned offset;
4618 int ret;
4619
4620 /* Inline kvm_read_guest_virt_helper for speed. */
4621 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4622 exception);
4623 if (unlikely(gpa == UNMAPPED_GVA))
4624 return X86EMUL_PROPAGATE_FAULT;
4625
4626 offset = addr & (PAGE_SIZE-1);
4627 if (WARN_ON(offset + bytes > PAGE_SIZE))
4628 bytes = (unsigned)PAGE_SIZE - offset;
4629 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4630 offset, bytes);
4631 if (unlikely(ret < 0))
4632 return X86EMUL_IO_NEEDED;
4633
4634 return X86EMUL_CONTINUE;
4635 }
4636
4637 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
4638 gva_t addr, void *val, unsigned int bytes,
4639 struct x86_exception *exception)
4640 {
4641 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4642
4643 /*
4644 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
4645 * is returned, but our callers are not ready for that and they blindly
4646 * call kvm_inject_page_fault. Ensure that they at least do not leak
4647 * uninitialized kernel stack memory into cr2 and error code.
4648 */
4649 memset(exception, 0, sizeof(*exception));
4650 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4651 exception);
4652 }
4653 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4654
4655 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
4656 gva_t addr, void *val, unsigned int bytes,
4657 struct x86_exception *exception, bool system)
4658 {
4659 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4660 u32 access = 0;
4661
4662 if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
4663 access |= PFERR_USER_MASK;
4664
4665 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
4666 }
4667
4668 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4669 unsigned long addr, void *val, unsigned int bytes)
4670 {
4671 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4672 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4673
4674 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4675 }
4676
4677 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4678 struct kvm_vcpu *vcpu, u32 access,
4679 struct x86_exception *exception)
4680 {
4681 void *data = val;
4682 int r = X86EMUL_CONTINUE;
4683
4684 while (bytes) {
4685 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4686 access,
4687 exception);
4688 unsigned offset = addr & (PAGE_SIZE-1);
4689 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4690 int ret;
4691
4692 if (gpa == UNMAPPED_GVA)
4693 return X86EMUL_PROPAGATE_FAULT;
4694 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4695 if (ret < 0) {
4696 r = X86EMUL_IO_NEEDED;
4697 goto out;
4698 }
4699
4700 bytes -= towrite;
4701 data += towrite;
4702 addr += towrite;
4703 }
4704 out:
4705 return r;
4706 }
4707
4708 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
4709 unsigned int bytes, struct x86_exception *exception,
4710 bool system)
4711 {
4712 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4713 u32 access = PFERR_WRITE_MASK;
4714
4715 if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
4716 access |= PFERR_USER_MASK;
4717
4718 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
4719 access, exception);
4720 }
4721
4722 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
4723 unsigned int bytes, struct x86_exception *exception)
4724 {
4725 /* kvm_write_guest_virt_system can pull in tons of pages. */
4726 vcpu->arch.l1tf_flush_l1d = true;
4727
4728 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
4729 PFERR_WRITE_MASK, exception);
4730 }
4731 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4732
4733 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4734 gpa_t gpa, bool write)
4735 {
4736 /* For APIC access vmexit */
4737 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4738 return 1;
4739
4740 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
4741 trace_vcpu_match_mmio(gva, gpa, write, true);
4742 return 1;
4743 }
4744
4745 return 0;
4746 }
4747
4748 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4749 gpa_t *gpa, struct x86_exception *exception,
4750 bool write)
4751 {
4752 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4753 | (write ? PFERR_WRITE_MASK : 0);
4754
4755 /*
4756 * currently PKRU is only applied to ept enabled guest so
4757 * there is no pkey in EPT page table for L1 guest or EPT
4758 * shadow page table for L2 guest.
4759 */
4760 if (vcpu_match_mmio_gva(vcpu, gva)
4761 && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4762 vcpu->arch.access, 0, access)) {
4763 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4764 (gva & (PAGE_SIZE - 1));
4765 trace_vcpu_match_mmio(gva, *gpa, write, false);
4766 return 1;
4767 }
4768
4769 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4770
4771 if (*gpa == UNMAPPED_GVA)
4772 return -1;
4773
4774 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
4775 }
4776
4777 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4778 const void *val, int bytes)
4779 {
4780 int ret;
4781
4782 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4783 if (ret < 0)
4784 return 0;
4785 kvm_page_track_write(vcpu, gpa, val, bytes);
4786 return 1;
4787 }
4788
4789 struct read_write_emulator_ops {
4790 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4791 int bytes);
4792 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4793 void *val, int bytes);
4794 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4795 int bytes, void *val);
4796 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4797 void *val, int bytes);
4798 bool write;
4799 };
4800
4801 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4802 {
4803 if (vcpu->mmio_read_completed) {
4804 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4805 vcpu->mmio_fragments[0].gpa, val);
4806 vcpu->mmio_read_completed = 0;
4807 return 1;
4808 }
4809
4810 return 0;
4811 }
4812
4813 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4814 void *val, int bytes)
4815 {
4816 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4817 }
4818
4819 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4820 void *val, int bytes)
4821 {
4822 return emulator_write_phys(vcpu, gpa, val, bytes);
4823 }
4824
4825 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4826 {
4827 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
4828 return vcpu_mmio_write(vcpu, gpa, bytes, val);
4829 }
4830
4831 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4832 void *val, int bytes)
4833 {
4834 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
4835 return X86EMUL_IO_NEEDED;
4836 }
4837
4838 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4839 void *val, int bytes)
4840 {
4841 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4842
4843 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4844 return X86EMUL_CONTINUE;
4845 }
4846
4847 static const struct read_write_emulator_ops read_emultor = {
4848 .read_write_prepare = read_prepare,
4849 .read_write_emulate = read_emulate,
4850 .read_write_mmio = vcpu_mmio_read,
4851 .read_write_exit_mmio = read_exit_mmio,
4852 };
4853
4854 static const struct read_write_emulator_ops write_emultor = {
4855 .read_write_emulate = write_emulate,
4856 .read_write_mmio = write_mmio,
4857 .read_write_exit_mmio = write_exit_mmio,
4858 .write = true,
4859 };
4860
4861 static int emulator_read_write_onepage(unsigned long addr, void *val,
4862 unsigned int bytes,
4863 struct x86_exception *exception,
4864 struct kvm_vcpu *vcpu,
4865 const struct read_write_emulator_ops *ops)
4866 {
4867 gpa_t gpa;
4868 int handled, ret;
4869 bool write = ops->write;
4870 struct kvm_mmio_fragment *frag;
4871 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4872
4873 /*
4874 * If the exit was due to a NPF we may already have a GPA.
4875 * If the GPA is present, use it to avoid the GVA to GPA table walk.
4876 * Note, this cannot be used on string operations since string
4877 * operation using rep will only have the initial GPA from the NPF
4878 * occurred.
4879 */
4880 if (vcpu->arch.gpa_available &&
4881 emulator_can_use_gpa(ctxt) &&
4882 (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
4883 gpa = vcpu->arch.gpa_val;
4884 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
4885 } else {
4886 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4887 if (ret < 0)
4888 return X86EMUL_PROPAGATE_FAULT;
4889 }
4890
4891 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
4892 return X86EMUL_CONTINUE;
4893
4894 /*
4895 * Is this MMIO handled locally?
4896 */
4897 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4898 if (handled == bytes)
4899 return X86EMUL_CONTINUE;
4900
4901 gpa += handled;
4902 bytes -= handled;
4903 val += handled;
4904
4905 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4906 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4907 frag->gpa = gpa;
4908 frag->data = val;
4909 frag->len = bytes;
4910 return X86EMUL_CONTINUE;
4911 }
4912
4913 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4914 unsigned long addr,
4915 void *val, unsigned int bytes,
4916 struct x86_exception *exception,
4917 const struct read_write_emulator_ops *ops)
4918 {
4919 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4920 gpa_t gpa;
4921 int rc;
4922
4923 if (ops->read_write_prepare &&
4924 ops->read_write_prepare(vcpu, val, bytes))
4925 return X86EMUL_CONTINUE;
4926
4927 vcpu->mmio_nr_fragments = 0;
4928
4929 /* Crossing a page boundary? */
4930 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4931 int now;
4932
4933 now = -addr & ~PAGE_MASK;
4934 rc = emulator_read_write_onepage(addr, val, now, exception,
4935 vcpu, ops);
4936
4937 if (rc != X86EMUL_CONTINUE)
4938 return rc;
4939 addr += now;
4940 if (ctxt->mode != X86EMUL_MODE_PROT64)
4941 addr = (u32)addr;
4942 val += now;
4943 bytes -= now;
4944 }
4945
4946 rc = emulator_read_write_onepage(addr, val, bytes, exception,
4947 vcpu, ops);
4948 if (rc != X86EMUL_CONTINUE)
4949 return rc;
4950
4951 if (!vcpu->mmio_nr_fragments)
4952 return rc;
4953
4954 gpa = vcpu->mmio_fragments[0].gpa;
4955
4956 vcpu->mmio_needed = 1;
4957 vcpu->mmio_cur_fragment = 0;
4958
4959 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4960 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4961 vcpu->run->exit_reason = KVM_EXIT_MMIO;
4962 vcpu->run->mmio.phys_addr = gpa;
4963
4964 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4965 }
4966
4967 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4968 unsigned long addr,
4969 void *val,
4970 unsigned int bytes,
4971 struct x86_exception *exception)
4972 {
4973 return emulator_read_write(ctxt, addr, val, bytes,
4974 exception, &read_emultor);
4975 }
4976
4977 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4978 unsigned long addr,
4979 const void *val,
4980 unsigned int bytes,
4981 struct x86_exception *exception)
4982 {
4983 return emulator_read_write(ctxt, addr, (void *)val, bytes,
4984 exception, &write_emultor);
4985 }
4986
4987 #define CMPXCHG_TYPE(t, ptr, old, new) \
4988 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4989
4990 #ifdef CONFIG_X86_64
4991 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4992 #else
4993 # define CMPXCHG64(ptr, old, new) \
4994 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4995 #endif
4996
4997 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4998 unsigned long addr,
4999 const void *old,
5000 const void *new,
5001 unsigned int bytes,
5002 struct x86_exception *exception)
5003 {
5004 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5005 gpa_t gpa;
5006 struct page *page;
5007 char *kaddr;
5008 bool exchanged;
5009
5010 /* guests cmpxchg8b have to be emulated atomically */
5011 if (bytes > 8 || (bytes & (bytes - 1)))
5012 goto emul_write;
5013
5014 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5015
5016 if (gpa == UNMAPPED_GVA ||
5017 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5018 goto emul_write;
5019
5020 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
5021 goto emul_write;
5022
5023 page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
5024 if (is_error_page(page))
5025 goto emul_write;
5026
5027 kaddr = kmap_atomic(page);
5028 kaddr += offset_in_page(gpa);
5029 switch (bytes) {
5030 case 1:
5031 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5032 break;
5033 case 2:
5034 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5035 break;
5036 case 4:
5037 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5038 break;
5039 case 8:
5040 exchanged = CMPXCHG64(kaddr, old, new);
5041 break;
5042 default:
5043 BUG();
5044 }
5045 kunmap_atomic(kaddr);
5046 kvm_release_page_dirty(page);
5047
5048 if (!exchanged)
5049 return X86EMUL_CMPXCHG_FAILED;
5050
5051 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5052 kvm_page_track_write(vcpu, gpa, new, bytes);
5053
5054 return X86EMUL_CONTINUE;
5055
5056 emul_write:
5057 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5058
5059 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5060 }
5061
5062 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5063 {
5064 int r = 0, i;
5065
5066 for (i = 0; i < vcpu->arch.pio.count; i++) {
5067 if (vcpu->arch.pio.in)
5068 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5069 vcpu->arch.pio.size, pd);
5070 else
5071 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5072 vcpu->arch.pio.port, vcpu->arch.pio.size,
5073 pd);
5074 if (r)
5075 break;
5076 pd += vcpu->arch.pio.size;
5077 }
5078 return r;
5079 }
5080
5081 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5082 unsigned short port, void *val,
5083 unsigned int count, bool in)
5084 {
5085 vcpu->arch.pio.port = port;
5086 vcpu->arch.pio.in = in;
5087 vcpu->arch.pio.count = count;
5088 vcpu->arch.pio.size = size;
5089
5090 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5091 vcpu->arch.pio.count = 0;
5092 return 1;
5093 }
5094
5095 vcpu->run->exit_reason = KVM_EXIT_IO;
5096 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5097 vcpu->run->io.size = size;
5098 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5099 vcpu->run->io.count = count;
5100 vcpu->run->io.port = port;
5101
5102 return 0;
5103 }
5104
5105 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5106 int size, unsigned short port, void *val,
5107 unsigned int count)
5108 {
5109 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5110 int ret;
5111
5112 if (vcpu->arch.pio.count)
5113 goto data_avail;
5114
5115 memset(vcpu->arch.pio_data, 0, size * count);
5116
5117 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5118 if (ret) {
5119 data_avail:
5120 memcpy(val, vcpu->arch.pio_data, size * count);
5121 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5122 vcpu->arch.pio.count = 0;
5123 return 1;
5124 }
5125
5126 return 0;
5127 }
5128
5129 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5130 int size, unsigned short port,
5131 const void *val, unsigned int count)
5132 {
5133 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5134
5135 memcpy(vcpu->arch.pio_data, val, size * count);
5136 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
5137 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
5138 }
5139
5140 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
5141 {
5142 return kvm_x86_ops->get_segment_base(vcpu, seg);
5143 }
5144
5145 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
5146 {
5147 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
5148 }
5149
5150 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
5151 {
5152 if (!need_emulate_wbinvd(vcpu))
5153 return X86EMUL_CONTINUE;
5154
5155 if (kvm_x86_ops->has_wbinvd_exit()) {
5156 int cpu = get_cpu();
5157
5158 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5159 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
5160 wbinvd_ipi, NULL, 1);
5161 put_cpu();
5162 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
5163 } else
5164 wbinvd();
5165 return X86EMUL_CONTINUE;
5166 }
5167
5168 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
5169 {
5170 kvm_emulate_wbinvd_noskip(vcpu);
5171 return kvm_skip_emulated_instruction(vcpu);
5172 }
5173 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
5174
5175
5176
5177 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
5178 {
5179 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
5180 }
5181
5182 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
5183 unsigned long *dest)
5184 {
5185 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
5186 }
5187
5188 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
5189 unsigned long value)
5190 {
5191
5192 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
5193 }
5194
5195 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5196 {
5197 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5198 }
5199
5200 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5201 {
5202 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5203 unsigned long value;
5204
5205 switch (cr) {
5206 case 0:
5207 value = kvm_read_cr0(vcpu);
5208 break;
5209 case 2:
5210 value = vcpu->arch.cr2;
5211 break;
5212 case 3:
5213 value = kvm_read_cr3(vcpu);
5214 break;
5215 case 4:
5216 value = kvm_read_cr4(vcpu);
5217 break;
5218 case 8:
5219 value = kvm_get_cr8(vcpu);
5220 break;
5221 default:
5222 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5223 return 0;
5224 }
5225
5226 return value;
5227 }
5228
5229 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5230 {
5231 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5232 int res = 0;
5233
5234 switch (cr) {
5235 case 0:
5236 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5237 break;
5238 case 2:
5239 vcpu->arch.cr2 = val;
5240 break;
5241 case 3:
5242 res = kvm_set_cr3(vcpu, val);
5243 break;
5244 case 4:
5245 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5246 break;
5247 case 8:
5248 res = kvm_set_cr8(vcpu, val);
5249 break;
5250 default:
5251 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5252 res = -1;
5253 }
5254
5255 return res;
5256 }
5257
5258 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5259 {
5260 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5261 }
5262
5263 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5264 {
5265 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5266 }
5267
5268 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5269 {
5270 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5271 }
5272
5273 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5274 {
5275 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5276 }
5277
5278 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5279 {
5280 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5281 }
5282
5283 static unsigned long emulator_get_cached_segment_base(
5284 struct x86_emulate_ctxt *ctxt, int seg)
5285 {
5286 return get_segment_base(emul_to_vcpu(ctxt), seg);
5287 }
5288
5289 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5290 struct desc_struct *desc, u32 *base3,
5291 int seg)
5292 {
5293 struct kvm_segment var;
5294
5295 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5296 *selector = var.selector;
5297
5298 if (var.unusable) {
5299 memset(desc, 0, sizeof(*desc));
5300 if (base3)
5301 *base3 = 0;
5302 return false;
5303 }
5304
5305 if (var.g)
5306 var.limit >>= 12;
5307 set_desc_limit(desc, var.limit);
5308 set_desc_base(desc, (unsigned long)var.base);
5309 #ifdef CONFIG_X86_64
5310 if (base3)
5311 *base3 = var.base >> 32;
5312 #endif
5313 desc->type = var.type;
5314 desc->s = var.s;
5315 desc->dpl = var.dpl;
5316 desc->p = var.present;
5317 desc->avl = var.avl;
5318 desc->l = var.l;
5319 desc->d = var.db;
5320 desc->g = var.g;
5321
5322 return true;
5323 }
5324
5325 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5326 struct desc_struct *desc, u32 base3,
5327 int seg)
5328 {
5329 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5330 struct kvm_segment var;
5331
5332 var.selector = selector;
5333 var.base = get_desc_base(desc);
5334 #ifdef CONFIG_X86_64
5335 var.base |= ((u64)base3) << 32;
5336 #endif
5337 var.limit = get_desc_limit(desc);
5338 if (desc->g)
5339 var.limit = (var.limit << 12) | 0xfff;
5340 var.type = desc->type;
5341 var.dpl = desc->dpl;
5342 var.db = desc->d;
5343 var.s = desc->s;
5344 var.l = desc->l;
5345 var.g = desc->g;
5346 var.avl = desc->avl;
5347 var.present = desc->p;
5348 var.unusable = !var.present;
5349 var.padding = 0;
5350
5351 kvm_set_segment(vcpu, &var, seg);
5352 return;
5353 }
5354
5355 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5356 u32 msr_index, u64 *pdata)
5357 {
5358 struct msr_data msr;
5359 int r;
5360
5361 msr.index = msr_index;
5362 msr.host_initiated = false;
5363 r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5364 if (r)
5365 return r;
5366
5367 *pdata = msr.data;
5368 return 0;
5369 }
5370
5371 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5372 u32 msr_index, u64 data)
5373 {
5374 struct msr_data msr;
5375
5376 msr.data = data;
5377 msr.index = msr_index;
5378 msr.host_initiated = false;
5379 return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5380 }
5381
5382 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5383 {
5384 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5385
5386 return vcpu->arch.smbase;
5387 }
5388
5389 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5390 {
5391 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5392
5393 vcpu->arch.smbase = smbase;
5394 }
5395
5396 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5397 u32 pmc)
5398 {
5399 return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5400 }
5401
5402 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5403 u32 pmc, u64 *pdata)
5404 {
5405 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5406 }
5407
5408 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5409 {
5410 emul_to_vcpu(ctxt)->arch.halt_request = 1;
5411 }
5412
5413 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5414 struct x86_instruction_info *info,
5415 enum x86_intercept_stage stage)
5416 {
5417 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5418 }
5419
5420 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5421 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
5422 {
5423 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
5424 }
5425
5426 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5427 {
5428 return kvm_register_read(emul_to_vcpu(ctxt), reg);
5429 }
5430
5431 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5432 {
5433 kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5434 }
5435
5436 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5437 {
5438 kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5439 }
5440
5441 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
5442 {
5443 return emul_to_vcpu(ctxt)->arch.hflags;
5444 }
5445
5446 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
5447 {
5448 kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags);
5449 }
5450
5451 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt, u64 smbase)
5452 {
5453 return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smbase);
5454 }
5455
5456 static const struct x86_emulate_ops emulate_ops = {
5457 .read_gpr = emulator_read_gpr,
5458 .write_gpr = emulator_write_gpr,
5459 .read_std = emulator_read_std,
5460 .write_std = emulator_write_std,
5461 .read_phys = kvm_read_guest_phys_system,
5462 .fetch = kvm_fetch_guest_virt,
5463 .read_emulated = emulator_read_emulated,
5464 .write_emulated = emulator_write_emulated,
5465 .cmpxchg_emulated = emulator_cmpxchg_emulated,
5466 .invlpg = emulator_invlpg,
5467 .pio_in_emulated = emulator_pio_in_emulated,
5468 .pio_out_emulated = emulator_pio_out_emulated,
5469 .get_segment = emulator_get_segment,
5470 .set_segment = emulator_set_segment,
5471 .get_cached_segment_base = emulator_get_cached_segment_base,
5472 .get_gdt = emulator_get_gdt,
5473 .get_idt = emulator_get_idt,
5474 .set_gdt = emulator_set_gdt,
5475 .set_idt = emulator_set_idt,
5476 .get_cr = emulator_get_cr,
5477 .set_cr = emulator_set_cr,
5478 .cpl = emulator_get_cpl,
5479 .get_dr = emulator_get_dr,
5480 .set_dr = emulator_set_dr,
5481 .get_smbase = emulator_get_smbase,
5482 .set_smbase = emulator_set_smbase,
5483 .set_msr = emulator_set_msr,
5484 .get_msr = emulator_get_msr,
5485 .check_pmc = emulator_check_pmc,
5486 .read_pmc = emulator_read_pmc,
5487 .halt = emulator_halt,
5488 .wbinvd = emulator_wbinvd,
5489 .fix_hypercall = emulator_fix_hypercall,
5490 .intercept = emulator_intercept,
5491 .get_cpuid = emulator_get_cpuid,
5492 .set_nmi_mask = emulator_set_nmi_mask,
5493 .get_hflags = emulator_get_hflags,
5494 .set_hflags = emulator_set_hflags,
5495 .pre_leave_smm = emulator_pre_leave_smm,
5496 };
5497
5498 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5499 {
5500 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5501 /*
5502 * an sti; sti; sequence only disable interrupts for the first
5503 * instruction. So, if the last instruction, be it emulated or
5504 * not, left the system with the INT_STI flag enabled, it
5505 * means that the last instruction is an sti. We should not
5506 * leave the flag on in this case. The same goes for mov ss
5507 */
5508 if (int_shadow & mask)
5509 mask = 0;
5510 if (unlikely(int_shadow || mask)) {
5511 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5512 if (!mask)
5513 kvm_make_request(KVM_REQ_EVENT, vcpu);
5514 }
5515 }
5516
5517 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5518 {
5519 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5520 if (ctxt->exception.vector == PF_VECTOR)
5521 return kvm_propagate_fault(vcpu, &ctxt->exception);
5522
5523 if (ctxt->exception.error_code_valid)
5524 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5525 ctxt->exception.error_code);
5526 else
5527 kvm_queue_exception(vcpu, ctxt->exception.vector);
5528 return false;
5529 }
5530
5531 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5532 {
5533 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5534 int cs_db, cs_l;
5535
5536 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5537
5538 ctxt->eflags = kvm_get_rflags(vcpu);
5539 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
5540
5541 ctxt->eip = kvm_rip_read(vcpu);
5542 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
5543 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
5544 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
5545 cs_db ? X86EMUL_MODE_PROT32 :
5546 X86EMUL_MODE_PROT16;
5547 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5548 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5549 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5550
5551 init_decode_cache(ctxt);
5552 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5553 }
5554
5555 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5556 {
5557 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5558 int ret;
5559
5560 init_emulate_ctxt(vcpu);
5561
5562 ctxt->op_bytes = 2;
5563 ctxt->ad_bytes = 2;
5564 ctxt->_eip = ctxt->eip + inc_eip;
5565 ret = emulate_int_real(ctxt, irq);
5566
5567 if (ret != X86EMUL_CONTINUE)
5568 return EMULATE_FAIL;
5569
5570 ctxt->eip = ctxt->_eip;
5571 kvm_rip_write(vcpu, ctxt->eip);
5572 kvm_set_rflags(vcpu, ctxt->eflags);
5573
5574 if (irq == NMI_VECTOR)
5575 vcpu->arch.nmi_pending = 0;
5576 else
5577 vcpu->arch.interrupt.pending = false;
5578
5579 return EMULATE_DONE;
5580 }
5581 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5582
5583 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5584 {
5585 int r = EMULATE_DONE;
5586
5587 ++vcpu->stat.insn_emulation_fail;
5588 trace_kvm_emulate_insn_failed(vcpu);
5589 if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5590 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5591 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5592 vcpu->run->internal.ndata = 0;
5593 r = EMULATE_USER_EXIT;
5594 }
5595 kvm_queue_exception(vcpu, UD_VECTOR);
5596
5597 return r;
5598 }
5599
5600 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5601 bool write_fault_to_shadow_pgtable,
5602 int emulation_type)
5603 {
5604 gpa_t gpa = cr2;
5605 kvm_pfn_t pfn;
5606
5607 if (emulation_type & EMULTYPE_NO_REEXECUTE)
5608 return false;
5609
5610 if (!vcpu->arch.mmu.direct_map) {
5611 /*
5612 * Write permission should be allowed since only
5613 * write access need to be emulated.
5614 */
5615 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5616
5617 /*
5618 * If the mapping is invalid in guest, let cpu retry
5619 * it to generate fault.
5620 */
5621 if (gpa == UNMAPPED_GVA)
5622 return true;
5623 }
5624
5625 /*
5626 * Do not retry the unhandleable instruction if it faults on the
5627 * readonly host memory, otherwise it will goto a infinite loop:
5628 * retry instruction -> write #PF -> emulation fail -> retry
5629 * instruction -> ...
5630 */
5631 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5632
5633 /*
5634 * If the instruction failed on the error pfn, it can not be fixed,
5635 * report the error to userspace.
5636 */
5637 if (is_error_noslot_pfn(pfn))
5638 return false;
5639
5640 kvm_release_pfn_clean(pfn);
5641
5642 /* The instructions are well-emulated on direct mmu. */
5643 if (vcpu->arch.mmu.direct_map) {
5644 unsigned int indirect_shadow_pages;
5645
5646 spin_lock(&vcpu->kvm->mmu_lock);
5647 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5648 spin_unlock(&vcpu->kvm->mmu_lock);
5649
5650 if (indirect_shadow_pages)
5651 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5652
5653 return true;
5654 }
5655
5656 /*
5657 * if emulation was due to access to shadowed page table
5658 * and it failed try to unshadow page and re-enter the
5659 * guest to let CPU execute the instruction.
5660 */
5661 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5662
5663 /*
5664 * If the access faults on its page table, it can not
5665 * be fixed by unprotecting shadow page and it should
5666 * be reported to userspace.
5667 */
5668 return !write_fault_to_shadow_pgtable;
5669 }
5670
5671 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5672 unsigned long cr2, int emulation_type)
5673 {
5674 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5675 unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5676
5677 last_retry_eip = vcpu->arch.last_retry_eip;
5678 last_retry_addr = vcpu->arch.last_retry_addr;
5679
5680 /*
5681 * If the emulation is caused by #PF and it is non-page_table
5682 * writing instruction, it means the VM-EXIT is caused by shadow
5683 * page protected, we can zap the shadow page and retry this
5684 * instruction directly.
5685 *
5686 * Note: if the guest uses a non-page-table modifying instruction
5687 * on the PDE that points to the instruction, then we will unmap
5688 * the instruction and go to an infinite loop. So, we cache the
5689 * last retried eip and the last fault address, if we meet the eip
5690 * and the address again, we can break out of the potential infinite
5691 * loop.
5692 */
5693 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5694
5695 if (!(emulation_type & EMULTYPE_RETRY))
5696 return false;
5697
5698 if (x86_page_table_writing_insn(ctxt))
5699 return false;
5700
5701 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5702 return false;
5703
5704 vcpu->arch.last_retry_eip = ctxt->eip;
5705 vcpu->arch.last_retry_addr = cr2;
5706
5707 if (!vcpu->arch.mmu.direct_map)
5708 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5709
5710 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5711
5712 return true;
5713 }
5714
5715 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5716 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5717
5718 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5719 {
5720 if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5721 /* This is a good place to trace that we are exiting SMM. */
5722 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5723
5724 /* Process a latched INIT or SMI, if any. */
5725 kvm_make_request(KVM_REQ_EVENT, vcpu);
5726 }
5727
5728 kvm_mmu_reset_context(vcpu);
5729 }
5730
5731 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5732 {
5733 unsigned changed = vcpu->arch.hflags ^ emul_flags;
5734
5735 vcpu->arch.hflags = emul_flags;
5736
5737 if (changed & HF_SMM_MASK)
5738 kvm_smm_changed(vcpu);
5739 }
5740
5741 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5742 unsigned long *db)
5743 {
5744 u32 dr6 = 0;
5745 int i;
5746 u32 enable, rwlen;
5747
5748 enable = dr7;
5749 rwlen = dr7 >> 16;
5750 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5751 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5752 dr6 |= (1 << i);
5753 return dr6;
5754 }
5755
5756 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
5757 {
5758 struct kvm_run *kvm_run = vcpu->run;
5759
5760 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5761 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
5762 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5763 kvm_run->debug.arch.exception = DB_VECTOR;
5764 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5765 *r = EMULATE_USER_EXIT;
5766 } else {
5767 /*
5768 * "Certain debug exceptions may clear bit 0-3. The
5769 * remaining contents of the DR6 register are never
5770 * cleared by the processor".
5771 */
5772 vcpu->arch.dr6 &= ~15;
5773 vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5774 kvm_queue_exception(vcpu, DB_VECTOR);
5775 }
5776 }
5777
5778 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
5779 {
5780 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5781 int r = EMULATE_DONE;
5782
5783 kvm_x86_ops->skip_emulated_instruction(vcpu);
5784
5785 /*
5786 * rflags is the old, "raw" value of the flags. The new value has
5787 * not been saved yet.
5788 *
5789 * This is correct even for TF set by the guest, because "the
5790 * processor will not generate this exception after the instruction
5791 * that sets the TF flag".
5792 */
5793 if (unlikely(rflags & X86_EFLAGS_TF))
5794 kvm_vcpu_do_singlestep(vcpu, &r);
5795 return r == EMULATE_DONE;
5796 }
5797 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
5798
5799 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5800 {
5801 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5802 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5803 struct kvm_run *kvm_run = vcpu->run;
5804 unsigned long eip = kvm_get_linear_rip(vcpu);
5805 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5806 vcpu->arch.guest_debug_dr7,
5807 vcpu->arch.eff_db);
5808
5809 if (dr6 != 0) {
5810 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5811 kvm_run->debug.arch.pc = eip;
5812 kvm_run->debug.arch.exception = DB_VECTOR;
5813 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5814 *r = EMULATE_USER_EXIT;
5815 return true;
5816 }
5817 }
5818
5819 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5820 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5821 unsigned long eip = kvm_get_linear_rip(vcpu);
5822 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5823 vcpu->arch.dr7,
5824 vcpu->arch.db);
5825
5826 if (dr6 != 0) {
5827 vcpu->arch.dr6 &= ~15;
5828 vcpu->arch.dr6 |= dr6 | DR6_RTM;
5829 kvm_queue_exception(vcpu, DB_VECTOR);
5830 *r = EMULATE_DONE;
5831 return true;
5832 }
5833 }
5834
5835 return false;
5836 }
5837
5838 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5839 unsigned long cr2,
5840 int emulation_type,
5841 void *insn,
5842 int insn_len)
5843 {
5844 int r;
5845 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5846 bool writeback = true;
5847 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5848
5849 vcpu->arch.l1tf_flush_l1d = true;
5850
5851 /*
5852 * Clear write_fault_to_shadow_pgtable here to ensure it is
5853 * never reused.
5854 */
5855 vcpu->arch.write_fault_to_shadow_pgtable = false;
5856 kvm_clear_exception_queue(vcpu);
5857
5858 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5859 init_emulate_ctxt(vcpu);
5860
5861 /*
5862 * We will reenter on the same instruction since
5863 * we do not set complete_userspace_io. This does not
5864 * handle watchpoints yet, those would be handled in
5865 * the emulate_ops.
5866 */
5867 if (!(emulation_type & EMULTYPE_SKIP) &&
5868 kvm_vcpu_check_breakpoint(vcpu, &r))
5869 return r;
5870
5871 ctxt->interruptibility = 0;
5872 ctxt->have_exception = false;
5873 ctxt->exception.vector = -1;
5874 ctxt->perm_ok = false;
5875
5876 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5877
5878 r = x86_decode_insn(ctxt, insn, insn_len);
5879
5880 trace_kvm_emulate_insn_start(vcpu);
5881 ++vcpu->stat.insn_emulation;
5882 if (r != EMULATION_OK) {
5883 if (emulation_type & EMULTYPE_TRAP_UD)
5884 return EMULATE_FAIL;
5885 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5886 emulation_type))
5887 return EMULATE_DONE;
5888 if (ctxt->have_exception && inject_emulated_exception(vcpu))
5889 return EMULATE_DONE;
5890 if (emulation_type & EMULTYPE_SKIP)
5891 return EMULATE_FAIL;
5892 return handle_emulation_failure(vcpu);
5893 }
5894 }
5895
5896 if (emulation_type & EMULTYPE_SKIP) {
5897 kvm_rip_write(vcpu, ctxt->_eip);
5898 if (ctxt->eflags & X86_EFLAGS_RF)
5899 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5900 return EMULATE_DONE;
5901 }
5902
5903 if (retry_instruction(ctxt, cr2, emulation_type))
5904 return EMULATE_DONE;
5905
5906 /* this is needed for vmware backdoor interface to work since it
5907 changes registers values during IO operation */
5908 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5909 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5910 emulator_invalidate_register_cache(ctxt);
5911 }
5912
5913 restart:
5914 /* Save the faulting GPA (cr2) in the address field */
5915 ctxt->exception.address = cr2;
5916
5917 r = x86_emulate_insn(ctxt);
5918
5919 if (r == EMULATION_INTERCEPTED)
5920 return EMULATE_DONE;
5921
5922 if (r == EMULATION_FAILED) {
5923 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5924 emulation_type))
5925 return EMULATE_DONE;
5926
5927 return handle_emulation_failure(vcpu);
5928 }
5929
5930 if (ctxt->have_exception) {
5931 r = EMULATE_DONE;
5932 if (inject_emulated_exception(vcpu))
5933 return r;
5934 } else if (vcpu->arch.pio.count) {
5935 if (!vcpu->arch.pio.in) {
5936 /* FIXME: return into emulator if single-stepping. */
5937 vcpu->arch.pio.count = 0;
5938 } else {
5939 writeback = false;
5940 vcpu->arch.complete_userspace_io = complete_emulated_pio;
5941 }
5942 r = EMULATE_USER_EXIT;
5943 } else if (vcpu->mmio_needed) {
5944 if (!vcpu->mmio_is_write)
5945 writeback = false;
5946 r = EMULATE_USER_EXIT;
5947 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5948 } else if (r == EMULATION_RESTART)
5949 goto restart;
5950 else
5951 r = EMULATE_DONE;
5952
5953 if (writeback) {
5954 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5955 toggle_interruptibility(vcpu, ctxt->interruptibility);
5956 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5957 kvm_rip_write(vcpu, ctxt->eip);
5958 if (r == EMULATE_DONE &&
5959 (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
5960 kvm_vcpu_do_singlestep(vcpu, &r);
5961 if (!ctxt->have_exception ||
5962 exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5963 __kvm_set_rflags(vcpu, ctxt->eflags);
5964
5965 /*
5966 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5967 * do nothing, and it will be requested again as soon as
5968 * the shadow expires. But we still need to check here,
5969 * because POPF has no interrupt shadow.
5970 */
5971 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5972 kvm_make_request(KVM_REQ_EVENT, vcpu);
5973 } else
5974 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5975
5976 return r;
5977 }
5978 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5979
5980 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5981 {
5982 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5983 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5984 size, port, &val, 1);
5985 /* do not return to emulator after return from userspace */
5986 vcpu->arch.pio.count = 0;
5987 return ret;
5988 }
5989 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5990
5991 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
5992 {
5993 unsigned long val;
5994
5995 /* We should only ever be called with arch.pio.count equal to 1 */
5996 BUG_ON(vcpu->arch.pio.count != 1);
5997
5998 /* For size less than 4 we merge, else we zero extend */
5999 val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
6000 : 0;
6001
6002 /*
6003 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
6004 * the copy and tracing
6005 */
6006 emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
6007 vcpu->arch.pio.port, &val, 1);
6008 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6009
6010 return 1;
6011 }
6012
6013 int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, unsigned short port)
6014 {
6015 unsigned long val;
6016 int ret;
6017
6018 /* For size less than 4 we merge, else we zero extend */
6019 val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
6020
6021 ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
6022 &val, 1);
6023 if (ret) {
6024 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6025 return ret;
6026 }
6027
6028 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
6029
6030 return 0;
6031 }
6032 EXPORT_SYMBOL_GPL(kvm_fast_pio_in);
6033
6034 static int kvmclock_cpu_down_prep(unsigned int cpu)
6035 {
6036 __this_cpu_write(cpu_tsc_khz, 0);
6037 return 0;
6038 }
6039
6040 static void tsc_khz_changed(void *data)
6041 {
6042 struct cpufreq_freqs *freq = data;
6043 unsigned long khz = 0;
6044
6045 if (data)
6046 khz = freq->new;
6047 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6048 khz = cpufreq_quick_get(raw_smp_processor_id());
6049 if (!khz)
6050 khz = tsc_khz;
6051 __this_cpu_write(cpu_tsc_khz, khz);
6052 }
6053
6054 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
6055 void *data)
6056 {
6057 struct cpufreq_freqs *freq = data;
6058 struct kvm *kvm;
6059 struct kvm_vcpu *vcpu;
6060 int i, send_ipi = 0;
6061
6062 /*
6063 * We allow guests to temporarily run on slowing clocks,
6064 * provided we notify them after, or to run on accelerating
6065 * clocks, provided we notify them before. Thus time never
6066 * goes backwards.
6067 *
6068 * However, we have a problem. We can't atomically update
6069 * the frequency of a given CPU from this function; it is
6070 * merely a notifier, which can be called from any CPU.
6071 * Changing the TSC frequency at arbitrary points in time
6072 * requires a recomputation of local variables related to
6073 * the TSC for each VCPU. We must flag these local variables
6074 * to be updated and be sure the update takes place with the
6075 * new frequency before any guests proceed.
6076 *
6077 * Unfortunately, the combination of hotplug CPU and frequency
6078 * change creates an intractable locking scenario; the order
6079 * of when these callouts happen is undefined with respect to
6080 * CPU hotplug, and they can race with each other. As such,
6081 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
6082 * undefined; you can actually have a CPU frequency change take
6083 * place in between the computation of X and the setting of the
6084 * variable. To protect against this problem, all updates of
6085 * the per_cpu tsc_khz variable are done in an interrupt
6086 * protected IPI, and all callers wishing to update the value
6087 * must wait for a synchronous IPI to complete (which is trivial
6088 * if the caller is on the CPU already). This establishes the
6089 * necessary total order on variable updates.
6090 *
6091 * Note that because a guest time update may take place
6092 * anytime after the setting of the VCPU's request bit, the
6093 * correct TSC value must be set before the request. However,
6094 * to ensure the update actually makes it to any guest which
6095 * starts running in hardware virtualization between the set
6096 * and the acquisition of the spinlock, we must also ping the
6097 * CPU after setting the request bit.
6098 *
6099 */
6100
6101 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
6102 return 0;
6103 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
6104 return 0;
6105
6106 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6107
6108 spin_lock(&kvm_lock);
6109 list_for_each_entry(kvm, &vm_list, vm_list) {
6110 kvm_for_each_vcpu(i, vcpu, kvm) {
6111 if (vcpu->cpu != freq->cpu)
6112 continue;
6113 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6114 if (vcpu->cpu != smp_processor_id())
6115 send_ipi = 1;
6116 }
6117 }
6118 spin_unlock(&kvm_lock);
6119
6120 if (freq->old < freq->new && send_ipi) {
6121 /*
6122 * We upscale the frequency. Must make the guest
6123 * doesn't see old kvmclock values while running with
6124 * the new frequency, otherwise we risk the guest sees
6125 * time go backwards.
6126 *
6127 * In case we update the frequency for another cpu
6128 * (which might be in guest context) send an interrupt
6129 * to kick the cpu out of guest context. Next time
6130 * guest context is entered kvmclock will be updated,
6131 * so the guest will not see stale values.
6132 */
6133 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6134 }
6135 return 0;
6136 }
6137
6138 static struct notifier_block kvmclock_cpufreq_notifier_block = {
6139 .notifier_call = kvmclock_cpufreq_notifier
6140 };
6141
6142 static int kvmclock_cpu_online(unsigned int cpu)
6143 {
6144 tsc_khz_changed(NULL);
6145 return 0;
6146 }
6147
6148 static void kvm_timer_init(void)
6149 {
6150 max_tsc_khz = tsc_khz;
6151
6152 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
6153 #ifdef CONFIG_CPU_FREQ
6154 struct cpufreq_policy policy;
6155 int cpu;
6156
6157 memset(&policy, 0, sizeof(policy));
6158 cpu = get_cpu();
6159 cpufreq_get_policy(&policy, cpu);
6160 if (policy.cpuinfo.max_freq)
6161 max_tsc_khz = policy.cpuinfo.max_freq;
6162 put_cpu();
6163 #endif
6164 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
6165 CPUFREQ_TRANSITION_NOTIFIER);
6166 }
6167 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
6168
6169 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
6170 kvmclock_cpu_online, kvmclock_cpu_down_prep);
6171 }
6172
6173 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
6174
6175 int kvm_is_in_guest(void)
6176 {
6177 return __this_cpu_read(current_vcpu) != NULL;
6178 }
6179
6180 static int kvm_is_user_mode(void)
6181 {
6182 int user_mode = 3;
6183
6184 if (__this_cpu_read(current_vcpu))
6185 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
6186
6187 return user_mode != 0;
6188 }
6189
6190 static unsigned long kvm_get_guest_ip(void)
6191 {
6192 unsigned long ip = 0;
6193
6194 if (__this_cpu_read(current_vcpu))
6195 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
6196
6197 return ip;
6198 }
6199
6200 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6201 .is_in_guest = kvm_is_in_guest,
6202 .is_user_mode = kvm_is_user_mode,
6203 .get_guest_ip = kvm_get_guest_ip,
6204 };
6205
6206 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
6207 {
6208 __this_cpu_write(current_vcpu, vcpu);
6209 }
6210 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
6211
6212 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
6213 {
6214 __this_cpu_write(current_vcpu, NULL);
6215 }
6216 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
6217
6218 static void kvm_set_mmio_spte_mask(void)
6219 {
6220 u64 mask;
6221 int maxphyaddr = boot_cpu_data.x86_phys_bits;
6222
6223 /*
6224 * Set the reserved bits and the present bit of an paging-structure
6225 * entry to generate page fault with PFER.RSV = 1.
6226 */
6227 /* Mask the reserved physical address bits. */
6228 mask = rsvd_bits(maxphyaddr, 51);
6229
6230 /* Set the present bit. */
6231 mask |= 1ull;
6232
6233 #ifdef CONFIG_X86_64
6234 /*
6235 * If reserved bit is not supported, clear the present bit to disable
6236 * mmio page fault.
6237 */
6238 if (maxphyaddr == 52)
6239 mask &= ~1ull;
6240 #endif
6241
6242 kvm_mmu_set_mmio_spte_mask(mask, mask);
6243 }
6244
6245 #ifdef CONFIG_X86_64
6246 static void pvclock_gtod_update_fn(struct work_struct *work)
6247 {
6248 struct kvm *kvm;
6249
6250 struct kvm_vcpu *vcpu;
6251 int i;
6252
6253 spin_lock(&kvm_lock);
6254 list_for_each_entry(kvm, &vm_list, vm_list)
6255 kvm_for_each_vcpu(i, vcpu, kvm)
6256 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6257 atomic_set(&kvm_guest_has_master_clock, 0);
6258 spin_unlock(&kvm_lock);
6259 }
6260
6261 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6262
6263 /*
6264 * Notification about pvclock gtod data update.
6265 */
6266 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6267 void *priv)
6268 {
6269 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6270 struct timekeeper *tk = priv;
6271
6272 update_pvclock_gtod(tk);
6273
6274 /* disable master clock if host does not trust, or does not
6275 * use, TSC clocksource
6276 */
6277 if (gtod->clock.vclock_mode != VCLOCK_TSC &&
6278 atomic_read(&kvm_guest_has_master_clock) != 0)
6279 queue_work(system_long_wq, &pvclock_gtod_work);
6280
6281 return 0;
6282 }
6283
6284 static struct notifier_block pvclock_gtod_notifier = {
6285 .notifier_call = pvclock_gtod_notify,
6286 };
6287 #endif
6288
6289 int kvm_arch_init(void *opaque)
6290 {
6291 int r;
6292 struct kvm_x86_ops *ops = opaque;
6293
6294 if (kvm_x86_ops) {
6295 printk(KERN_ERR "kvm: already loaded the other module\n");
6296 r = -EEXIST;
6297 goto out;
6298 }
6299
6300 if (!ops->cpu_has_kvm_support()) {
6301 printk(KERN_ERR "kvm: no hardware support\n");
6302 r = -EOPNOTSUPP;
6303 goto out;
6304 }
6305 if (ops->disabled_by_bios()) {
6306 printk(KERN_WARNING "kvm: disabled by bios\n");
6307 r = -EOPNOTSUPP;
6308 goto out;
6309 }
6310
6311 r = -ENOMEM;
6312 shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6313 if (!shared_msrs) {
6314 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6315 goto out;
6316 }
6317
6318 r = kvm_mmu_module_init();
6319 if (r)
6320 goto out_free_percpu;
6321
6322 kvm_set_mmio_spte_mask();
6323
6324 kvm_x86_ops = ops;
6325
6326 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6327 PT_DIRTY_MASK, PT64_NX_MASK, 0,
6328 PT_PRESENT_MASK, 0, sme_me_mask);
6329 kvm_timer_init();
6330
6331 perf_register_guest_info_callbacks(&kvm_guest_cbs);
6332
6333 if (boot_cpu_has(X86_FEATURE_XSAVE))
6334 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6335
6336 kvm_lapic_init();
6337 #ifdef CONFIG_X86_64
6338 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6339 #endif
6340
6341 return 0;
6342
6343 out_free_percpu:
6344 free_percpu(shared_msrs);
6345 out:
6346 return r;
6347 }
6348
6349 void kvm_arch_exit(void)
6350 {
6351 kvm_lapic_exit();
6352 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6353
6354 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6355 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6356 CPUFREQ_TRANSITION_NOTIFIER);
6357 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6358 #ifdef CONFIG_X86_64
6359 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6360 #endif
6361 kvm_x86_ops = NULL;
6362 kvm_mmu_module_exit();
6363 free_percpu(shared_msrs);
6364 }
6365
6366 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6367 {
6368 ++vcpu->stat.halt_exits;
6369 if (lapic_in_kernel(vcpu)) {
6370 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6371 return 1;
6372 } else {
6373 vcpu->run->exit_reason = KVM_EXIT_HLT;
6374 return 0;
6375 }
6376 }
6377 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6378
6379 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6380 {
6381 int ret = kvm_skip_emulated_instruction(vcpu);
6382 /*
6383 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6384 * KVM_EXIT_DEBUG here.
6385 */
6386 return kvm_vcpu_halt(vcpu) && ret;
6387 }
6388 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6389
6390 #ifdef CONFIG_X86_64
6391 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
6392 unsigned long clock_type)
6393 {
6394 struct kvm_clock_pairing clock_pairing;
6395 struct timespec ts;
6396 u64 cycle;
6397 int ret;
6398
6399 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
6400 return -KVM_EOPNOTSUPP;
6401
6402 if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
6403 return -KVM_EOPNOTSUPP;
6404
6405 clock_pairing.sec = ts.tv_sec;
6406 clock_pairing.nsec = ts.tv_nsec;
6407 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
6408 clock_pairing.flags = 0;
6409
6410 ret = 0;
6411 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
6412 sizeof(struct kvm_clock_pairing)))
6413 ret = -KVM_EFAULT;
6414
6415 return ret;
6416 }
6417 #endif
6418
6419 /*
6420 * kvm_pv_kick_cpu_op: Kick a vcpu.
6421 *
6422 * @apicid - apicid of vcpu to be kicked.
6423 */
6424 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6425 {
6426 struct kvm_lapic_irq lapic_irq;
6427
6428 lapic_irq.shorthand = 0;
6429 lapic_irq.dest_mode = 0;
6430 lapic_irq.level = 0;
6431 lapic_irq.dest_id = apicid;
6432 lapic_irq.msi_redir_hint = false;
6433
6434 lapic_irq.delivery_mode = APIC_DM_REMRD;
6435 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6436 }
6437
6438 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6439 {
6440 vcpu->arch.apicv_active = false;
6441 kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6442 }
6443
6444 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6445 {
6446 unsigned long nr, a0, a1, a2, a3, ret;
6447 int op_64_bit;
6448
6449 if (kvm_hv_hypercall_enabled(vcpu->kvm)) {
6450 if (!kvm_hv_hypercall(vcpu))
6451 return 0;
6452 goto out;
6453 }
6454
6455 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6456 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6457 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6458 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6459 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6460
6461 trace_kvm_hypercall(nr, a0, a1, a2, a3);
6462
6463 op_64_bit = is_64_bit_mode(vcpu);
6464 if (!op_64_bit) {
6465 nr &= 0xFFFFFFFF;
6466 a0 &= 0xFFFFFFFF;
6467 a1 &= 0xFFFFFFFF;
6468 a2 &= 0xFFFFFFFF;
6469 a3 &= 0xFFFFFFFF;
6470 }
6471
6472 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6473 ret = -KVM_EPERM;
6474 goto out_error;
6475 }
6476
6477 switch (nr) {
6478 case KVM_HC_VAPIC_POLL_IRQ:
6479 ret = 0;
6480 break;
6481 case KVM_HC_KICK_CPU:
6482 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6483 ret = 0;
6484 break;
6485 #ifdef CONFIG_X86_64
6486 case KVM_HC_CLOCK_PAIRING:
6487 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
6488 break;
6489 #endif
6490 default:
6491 ret = -KVM_ENOSYS;
6492 break;
6493 }
6494 out_error:
6495 if (!op_64_bit)
6496 ret = (u32)ret;
6497 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6498
6499 out:
6500 ++vcpu->stat.hypercalls;
6501 return kvm_skip_emulated_instruction(vcpu);
6502 }
6503 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6504
6505 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6506 {
6507 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6508 char instruction[3];
6509 unsigned long rip = kvm_rip_read(vcpu);
6510
6511 kvm_x86_ops->patch_hypercall(vcpu, instruction);
6512
6513 return emulator_write_emulated(ctxt, rip, instruction, 3,
6514 &ctxt->exception);
6515 }
6516
6517 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6518 {
6519 return vcpu->run->request_interrupt_window &&
6520 likely(!pic_in_kernel(vcpu->kvm));
6521 }
6522
6523 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6524 {
6525 struct kvm_run *kvm_run = vcpu->run;
6526
6527 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6528 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6529 kvm_run->cr8 = kvm_get_cr8(vcpu);
6530 kvm_run->apic_base = kvm_get_apic_base(vcpu);
6531 kvm_run->ready_for_interrupt_injection =
6532 pic_in_kernel(vcpu->kvm) ||
6533 kvm_vcpu_ready_for_interrupt_injection(vcpu);
6534 }
6535
6536 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6537 {
6538 int max_irr, tpr;
6539
6540 if (!kvm_x86_ops->update_cr8_intercept)
6541 return;
6542
6543 if (!lapic_in_kernel(vcpu))
6544 return;
6545
6546 if (vcpu->arch.apicv_active)
6547 return;
6548
6549 if (!vcpu->arch.apic->vapic_addr)
6550 max_irr = kvm_lapic_find_highest_irr(vcpu);
6551 else
6552 max_irr = -1;
6553
6554 if (max_irr != -1)
6555 max_irr >>= 4;
6556
6557 tpr = kvm_lapic_get_cr8(vcpu);
6558
6559 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6560 }
6561
6562 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6563 {
6564 int r;
6565
6566 /* try to reinject previous events if any */
6567 if (vcpu->arch.exception.injected) {
6568 kvm_x86_ops->queue_exception(vcpu);
6569 return 0;
6570 }
6571
6572 /*
6573 * Exceptions must be injected immediately, or the exception
6574 * frame will have the address of the NMI or interrupt handler.
6575 */
6576 if (!vcpu->arch.exception.pending) {
6577 if (vcpu->arch.nmi_injected) {
6578 kvm_x86_ops->set_nmi(vcpu);
6579 return 0;
6580 }
6581
6582 if (vcpu->arch.interrupt.pending) {
6583 kvm_x86_ops->set_irq(vcpu);
6584 return 0;
6585 }
6586 }
6587
6588 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6589 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6590 if (r != 0)
6591 return r;
6592 }
6593
6594 /* try to inject new event if pending */
6595 if (vcpu->arch.exception.pending) {
6596 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6597 vcpu->arch.exception.has_error_code,
6598 vcpu->arch.exception.error_code);
6599
6600 vcpu->arch.exception.pending = false;
6601 vcpu->arch.exception.injected = true;
6602
6603 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6604 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6605 X86_EFLAGS_RF);
6606
6607 if (vcpu->arch.exception.nr == DB_VECTOR &&
6608 (vcpu->arch.dr7 & DR7_GD)) {
6609 vcpu->arch.dr7 &= ~DR7_GD;
6610 kvm_update_dr7(vcpu);
6611 }
6612
6613 kvm_x86_ops->queue_exception(vcpu);
6614 } else if (vcpu->arch.smi_pending && !is_smm(vcpu) && kvm_x86_ops->smi_allowed(vcpu)) {
6615 vcpu->arch.smi_pending = false;
6616 enter_smm(vcpu);
6617 } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6618 --vcpu->arch.nmi_pending;
6619 vcpu->arch.nmi_injected = true;
6620 kvm_x86_ops->set_nmi(vcpu);
6621 } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6622 /*
6623 * Because interrupts can be injected asynchronously, we are
6624 * calling check_nested_events again here to avoid a race condition.
6625 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6626 * proposal and current concerns. Perhaps we should be setting
6627 * KVM_REQ_EVENT only on certain events and not unconditionally?
6628 */
6629 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6630 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6631 if (r != 0)
6632 return r;
6633 }
6634 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6635 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6636 false);
6637 kvm_x86_ops->set_irq(vcpu);
6638 }
6639 }
6640
6641 return 0;
6642 }
6643
6644 static void process_nmi(struct kvm_vcpu *vcpu)
6645 {
6646 unsigned limit = 2;
6647
6648 /*
6649 * x86 is limited to one NMI running, and one NMI pending after it.
6650 * If an NMI is already in progress, limit further NMIs to just one.
6651 * Otherwise, allow two (and we'll inject the first one immediately).
6652 */
6653 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6654 limit = 1;
6655
6656 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6657 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6658 kvm_make_request(KVM_REQ_EVENT, vcpu);
6659 }
6660
6661 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
6662 {
6663 u32 flags = 0;
6664 flags |= seg->g << 23;
6665 flags |= seg->db << 22;
6666 flags |= seg->l << 21;
6667 flags |= seg->avl << 20;
6668 flags |= seg->present << 15;
6669 flags |= seg->dpl << 13;
6670 flags |= seg->s << 12;
6671 flags |= seg->type << 8;
6672 return flags;
6673 }
6674
6675 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6676 {
6677 struct kvm_segment seg;
6678 int offset;
6679
6680 kvm_get_segment(vcpu, &seg, n);
6681 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6682
6683 if (n < 3)
6684 offset = 0x7f84 + n * 12;
6685 else
6686 offset = 0x7f2c + (n - 3) * 12;
6687
6688 put_smstate(u32, buf, offset + 8, seg.base);
6689 put_smstate(u32, buf, offset + 4, seg.limit);
6690 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
6691 }
6692
6693 #ifdef CONFIG_X86_64
6694 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6695 {
6696 struct kvm_segment seg;
6697 int offset;
6698 u16 flags;
6699
6700 kvm_get_segment(vcpu, &seg, n);
6701 offset = 0x7e00 + n * 16;
6702
6703 flags = enter_smm_get_segment_flags(&seg) >> 8;
6704 put_smstate(u16, buf, offset, seg.selector);
6705 put_smstate(u16, buf, offset + 2, flags);
6706 put_smstate(u32, buf, offset + 4, seg.limit);
6707 put_smstate(u64, buf, offset + 8, seg.base);
6708 }
6709 #endif
6710
6711 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6712 {
6713 struct desc_ptr dt;
6714 struct kvm_segment seg;
6715 unsigned long val;
6716 int i;
6717
6718 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6719 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6720 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6721 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6722
6723 for (i = 0; i < 8; i++)
6724 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6725
6726 kvm_get_dr(vcpu, 6, &val);
6727 put_smstate(u32, buf, 0x7fcc, (u32)val);
6728 kvm_get_dr(vcpu, 7, &val);
6729 put_smstate(u32, buf, 0x7fc8, (u32)val);
6730
6731 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6732 put_smstate(u32, buf, 0x7fc4, seg.selector);
6733 put_smstate(u32, buf, 0x7f64, seg.base);
6734 put_smstate(u32, buf, 0x7f60, seg.limit);
6735 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
6736
6737 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6738 put_smstate(u32, buf, 0x7fc0, seg.selector);
6739 put_smstate(u32, buf, 0x7f80, seg.base);
6740 put_smstate(u32, buf, 0x7f7c, seg.limit);
6741 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
6742
6743 kvm_x86_ops->get_gdt(vcpu, &dt);
6744 put_smstate(u32, buf, 0x7f74, dt.address);
6745 put_smstate(u32, buf, 0x7f70, dt.size);
6746
6747 kvm_x86_ops->get_idt(vcpu, &dt);
6748 put_smstate(u32, buf, 0x7f58, dt.address);
6749 put_smstate(u32, buf, 0x7f54, dt.size);
6750
6751 for (i = 0; i < 6; i++)
6752 enter_smm_save_seg_32(vcpu, buf, i);
6753
6754 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6755
6756 /* revision id */
6757 put_smstate(u32, buf, 0x7efc, 0x00020000);
6758 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6759 }
6760
6761 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6762 {
6763 #ifdef CONFIG_X86_64
6764 struct desc_ptr dt;
6765 struct kvm_segment seg;
6766 unsigned long val;
6767 int i;
6768
6769 for (i = 0; i < 16; i++)
6770 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6771
6772 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6773 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6774
6775 kvm_get_dr(vcpu, 6, &val);
6776 put_smstate(u64, buf, 0x7f68, val);
6777 kvm_get_dr(vcpu, 7, &val);
6778 put_smstate(u64, buf, 0x7f60, val);
6779
6780 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6781 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6782 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6783
6784 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6785
6786 /* revision id */
6787 put_smstate(u32, buf, 0x7efc, 0x00020064);
6788
6789 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6790
6791 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6792 put_smstate(u16, buf, 0x7e90, seg.selector);
6793 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
6794 put_smstate(u32, buf, 0x7e94, seg.limit);
6795 put_smstate(u64, buf, 0x7e98, seg.base);
6796
6797 kvm_x86_ops->get_idt(vcpu, &dt);
6798 put_smstate(u32, buf, 0x7e84, dt.size);
6799 put_smstate(u64, buf, 0x7e88, dt.address);
6800
6801 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6802 put_smstate(u16, buf, 0x7e70, seg.selector);
6803 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
6804 put_smstate(u32, buf, 0x7e74, seg.limit);
6805 put_smstate(u64, buf, 0x7e78, seg.base);
6806
6807 kvm_x86_ops->get_gdt(vcpu, &dt);
6808 put_smstate(u32, buf, 0x7e64, dt.size);
6809 put_smstate(u64, buf, 0x7e68, dt.address);
6810
6811 for (i = 0; i < 6; i++)
6812 enter_smm_save_seg_64(vcpu, buf, i);
6813 #else
6814 WARN_ON_ONCE(1);
6815 #endif
6816 }
6817
6818 static void enter_smm(struct kvm_vcpu *vcpu)
6819 {
6820 struct kvm_segment cs, ds;
6821 struct desc_ptr dt;
6822 char buf[512];
6823 u32 cr0;
6824
6825 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6826 memset(buf, 0, 512);
6827 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
6828 enter_smm_save_state_64(vcpu, buf);
6829 else
6830 enter_smm_save_state_32(vcpu, buf);
6831
6832 /*
6833 * Give pre_enter_smm() a chance to make ISA-specific changes to the
6834 * vCPU state (e.g. leave guest mode) after we've saved the state into
6835 * the SMM state-save area.
6836 */
6837 kvm_x86_ops->pre_enter_smm(vcpu, buf);
6838
6839 vcpu->arch.hflags |= HF_SMM_MASK;
6840 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6841
6842 if (kvm_x86_ops->get_nmi_mask(vcpu))
6843 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6844 else
6845 kvm_x86_ops->set_nmi_mask(vcpu, true);
6846
6847 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6848 kvm_rip_write(vcpu, 0x8000);
6849
6850 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6851 kvm_x86_ops->set_cr0(vcpu, cr0);
6852 vcpu->arch.cr0 = cr0;
6853
6854 kvm_x86_ops->set_cr4(vcpu, 0);
6855
6856 /* Undocumented: IDT limit is set to zero on entry to SMM. */
6857 dt.address = dt.size = 0;
6858 kvm_x86_ops->set_idt(vcpu, &dt);
6859
6860 __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6861
6862 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6863 cs.base = vcpu->arch.smbase;
6864
6865 ds.selector = 0;
6866 ds.base = 0;
6867
6868 cs.limit = ds.limit = 0xffffffff;
6869 cs.type = ds.type = 0x3;
6870 cs.dpl = ds.dpl = 0;
6871 cs.db = ds.db = 0;
6872 cs.s = ds.s = 1;
6873 cs.l = ds.l = 0;
6874 cs.g = ds.g = 1;
6875 cs.avl = ds.avl = 0;
6876 cs.present = ds.present = 1;
6877 cs.unusable = ds.unusable = 0;
6878 cs.padding = ds.padding = 0;
6879
6880 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6881 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6882 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6883 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6884 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6885 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6886
6887 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
6888 kvm_x86_ops->set_efer(vcpu, 0);
6889
6890 kvm_update_cpuid(vcpu);
6891 kvm_mmu_reset_context(vcpu);
6892 }
6893
6894 static void process_smi(struct kvm_vcpu *vcpu)
6895 {
6896 vcpu->arch.smi_pending = true;
6897 kvm_make_request(KVM_REQ_EVENT, vcpu);
6898 }
6899
6900 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6901 {
6902 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6903 }
6904
6905 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6906 {
6907 u64 eoi_exit_bitmap[4];
6908
6909 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6910 return;
6911
6912 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6913
6914 if (irqchip_split(vcpu->kvm))
6915 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6916 else {
6917 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
6918 kvm_x86_ops->sync_pir_to_irr(vcpu);
6919 if (ioapic_in_kernel(vcpu->kvm))
6920 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6921 }
6922 bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6923 vcpu_to_synic(vcpu)->vec_bitmap, 256);
6924 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6925 }
6926
6927 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6928 {
6929 ++vcpu->stat.tlb_flush;
6930 kvm_x86_ops->tlb_flush(vcpu);
6931 }
6932
6933 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
6934 unsigned long start, unsigned long end)
6935 {
6936 unsigned long apic_address;
6937
6938 /*
6939 * The physical address of apic access page is stored in the VMCS.
6940 * Update it when it becomes invalid.
6941 */
6942 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6943 if (start <= apic_address && apic_address < end)
6944 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6945 }
6946
6947 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6948 {
6949 struct page *page = NULL;
6950
6951 if (!lapic_in_kernel(vcpu))
6952 return;
6953
6954 if (!kvm_x86_ops->set_apic_access_page_addr)
6955 return;
6956
6957 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6958 if (is_error_page(page))
6959 return;
6960 kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6961
6962 /*
6963 * Do not pin apic access page in memory, the MMU notifier
6964 * will call us again if it is migrated or swapped out.
6965 */
6966 put_page(page);
6967 }
6968 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6969
6970 /*
6971 * Returns 1 to let vcpu_run() continue the guest execution loop without
6972 * exiting to the userspace. Otherwise, the value will be returned to the
6973 * userspace.
6974 */
6975 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6976 {
6977 int r;
6978 bool req_int_win =
6979 dm_request_for_irq_injection(vcpu) &&
6980 kvm_cpu_accept_dm_intr(vcpu);
6981
6982 bool req_immediate_exit = false;
6983
6984 if (kvm_request_pending(vcpu)) {
6985 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6986 kvm_mmu_unload(vcpu);
6987 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6988 __kvm_migrate_timers(vcpu);
6989 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6990 kvm_gen_update_masterclock(vcpu->kvm);
6991 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6992 kvm_gen_kvmclock_update(vcpu);
6993 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6994 r = kvm_guest_time_update(vcpu);
6995 if (unlikely(r))
6996 goto out;
6997 }
6998 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6999 kvm_mmu_sync_roots(vcpu);
7000 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
7001 kvm_vcpu_flush_tlb(vcpu);
7002 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
7003 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
7004 r = 0;
7005 goto out;
7006 }
7007 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
7008 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
7009 vcpu->mmio_needed = 0;
7010 r = 0;
7011 goto out;
7012 }
7013 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
7014 /* Page is swapped out. Do synthetic halt */
7015 vcpu->arch.apf.halted = true;
7016 r = 1;
7017 goto out;
7018 }
7019 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
7020 record_steal_time(vcpu);
7021 if (kvm_check_request(KVM_REQ_SMI, vcpu))
7022 process_smi(vcpu);
7023 if (kvm_check_request(KVM_REQ_NMI, vcpu))
7024 process_nmi(vcpu);
7025 if (kvm_check_request(KVM_REQ_PMU, vcpu))
7026 kvm_pmu_handle_event(vcpu);
7027 if (kvm_check_request(KVM_REQ_PMI, vcpu))
7028 kvm_pmu_deliver_pmi(vcpu);
7029 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
7030 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
7031 if (test_bit(vcpu->arch.pending_ioapic_eoi,
7032 vcpu->arch.ioapic_handled_vectors)) {
7033 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
7034 vcpu->run->eoi.vector =
7035 vcpu->arch.pending_ioapic_eoi;
7036 r = 0;
7037 goto out;
7038 }
7039 }
7040 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
7041 vcpu_scan_ioapic(vcpu);
7042 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
7043 kvm_vcpu_reload_apic_access_page(vcpu);
7044 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
7045 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7046 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
7047 r = 0;
7048 goto out;
7049 }
7050 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
7051 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7052 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
7053 r = 0;
7054 goto out;
7055 }
7056 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
7057 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
7058 vcpu->run->hyperv = vcpu->arch.hyperv.exit;
7059 r = 0;
7060 goto out;
7061 }
7062
7063 /*
7064 * KVM_REQ_HV_STIMER has to be processed after
7065 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
7066 * depend on the guest clock being up-to-date
7067 */
7068 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
7069 kvm_hv_process_stimers(vcpu);
7070 }
7071
7072 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
7073 ++vcpu->stat.req_event;
7074 kvm_apic_accept_events(vcpu);
7075 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
7076 r = 1;
7077 goto out;
7078 }
7079
7080 if (inject_pending_event(vcpu, req_int_win) != 0)
7081 req_immediate_exit = true;
7082 else {
7083 /* Enable SMI/NMI/IRQ window open exits if needed.
7084 *
7085 * SMIs have three cases:
7086 * 1) They can be nested, and then there is nothing to
7087 * do here because RSM will cause a vmexit anyway.
7088 * 2) There is an ISA-specific reason why SMI cannot be
7089 * injected, and the moment when this changes can be
7090 * intercepted.
7091 * 3) Or the SMI can be pending because
7092 * inject_pending_event has completed the injection
7093 * of an IRQ or NMI from the previous vmexit, and
7094 * then we request an immediate exit to inject the
7095 * SMI.
7096 */
7097 if (vcpu->arch.smi_pending && !is_smm(vcpu))
7098 if (!kvm_x86_ops->enable_smi_window(vcpu))
7099 req_immediate_exit = true;
7100 if (vcpu->arch.nmi_pending)
7101 kvm_x86_ops->enable_nmi_window(vcpu);
7102 if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
7103 kvm_x86_ops->enable_irq_window(vcpu);
7104 WARN_ON(vcpu->arch.exception.pending);
7105 }
7106
7107 if (kvm_lapic_enabled(vcpu)) {
7108 update_cr8_intercept(vcpu);
7109 kvm_lapic_sync_to_vapic(vcpu);
7110 }
7111 }
7112
7113 r = kvm_mmu_reload(vcpu);
7114 if (unlikely(r)) {
7115 goto cancel_injection;
7116 }
7117
7118 preempt_disable();
7119
7120 kvm_x86_ops->prepare_guest_switch(vcpu);
7121
7122 /*
7123 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
7124 * IPI are then delayed after guest entry, which ensures that they
7125 * result in virtual interrupt delivery.
7126 */
7127 local_irq_disable();
7128 vcpu->mode = IN_GUEST_MODE;
7129
7130 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7131
7132 /*
7133 * 1) We should set ->mode before checking ->requests. Please see
7134 * the comment in kvm_vcpu_exiting_guest_mode().
7135 *
7136 * 2) For APICv, we should set ->mode before checking PIR.ON. This
7137 * pairs with the memory barrier implicit in pi_test_and_set_on
7138 * (see vmx_deliver_posted_interrupt).
7139 *
7140 * 3) This also orders the write to mode from any reads to the page
7141 * tables done while the VCPU is running. Please see the comment
7142 * in kvm_flush_remote_tlbs.
7143 */
7144 smp_mb__after_srcu_read_unlock();
7145
7146 /*
7147 * This handles the case where a posted interrupt was
7148 * notified with kvm_vcpu_kick.
7149 */
7150 if (kvm_lapic_enabled(vcpu)) {
7151 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
7152 kvm_x86_ops->sync_pir_to_irr(vcpu);
7153 }
7154
7155 if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
7156 || need_resched() || signal_pending(current)) {
7157 vcpu->mode = OUTSIDE_GUEST_MODE;
7158 smp_wmb();
7159 local_irq_enable();
7160 preempt_enable();
7161 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7162 r = 1;
7163 goto cancel_injection;
7164 }
7165
7166 kvm_load_guest_xcr0(vcpu);
7167
7168 if (req_immediate_exit) {
7169 kvm_make_request(KVM_REQ_EVENT, vcpu);
7170 smp_send_reschedule(vcpu->cpu);
7171 }
7172
7173 trace_kvm_entry(vcpu->vcpu_id);
7174 wait_lapic_expire(vcpu);
7175 guest_enter_irqoff();
7176
7177 if (unlikely(vcpu->arch.switch_db_regs)) {
7178 set_debugreg(0, 7);
7179 set_debugreg(vcpu->arch.eff_db[0], 0);
7180 set_debugreg(vcpu->arch.eff_db[1], 1);
7181 set_debugreg(vcpu->arch.eff_db[2], 2);
7182 set_debugreg(vcpu->arch.eff_db[3], 3);
7183 set_debugreg(vcpu->arch.dr6, 6);
7184 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7185 }
7186
7187 kvm_x86_ops->run(vcpu);
7188
7189 /*
7190 * Do this here before restoring debug registers on the host. And
7191 * since we do this before handling the vmexit, a DR access vmexit
7192 * can (a) read the correct value of the debug registers, (b) set
7193 * KVM_DEBUGREG_WONT_EXIT again.
7194 */
7195 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
7196 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
7197 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
7198 kvm_update_dr0123(vcpu);
7199 kvm_update_dr6(vcpu);
7200 kvm_update_dr7(vcpu);
7201 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7202 }
7203
7204 /*
7205 * If the guest has used debug registers, at least dr7
7206 * will be disabled while returning to the host.
7207 * If we don't have active breakpoints in the host, we don't
7208 * care about the messed up debug address registers. But if
7209 * we have some of them active, restore the old state.
7210 */
7211 if (hw_breakpoint_active())
7212 hw_breakpoint_restore();
7213
7214 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
7215
7216 vcpu->mode = OUTSIDE_GUEST_MODE;
7217 smp_wmb();
7218
7219 kvm_put_guest_xcr0(vcpu);
7220
7221 kvm_x86_ops->handle_external_intr(vcpu);
7222
7223 ++vcpu->stat.exits;
7224
7225 guest_exit_irqoff();
7226
7227 local_irq_enable();
7228 preempt_enable();
7229
7230 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7231
7232 /*
7233 * Profile KVM exit RIPs:
7234 */
7235 if (unlikely(prof_on == KVM_PROFILING)) {
7236 unsigned long rip = kvm_rip_read(vcpu);
7237 profile_hit(KVM_PROFILING, (void *)rip);
7238 }
7239
7240 if (unlikely(vcpu->arch.tsc_always_catchup))
7241 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7242
7243 if (vcpu->arch.apic_attention)
7244 kvm_lapic_sync_from_vapic(vcpu);
7245
7246 vcpu->arch.gpa_available = false;
7247 r = kvm_x86_ops->handle_exit(vcpu);
7248 return r;
7249
7250 cancel_injection:
7251 kvm_x86_ops->cancel_injection(vcpu);
7252 if (unlikely(vcpu->arch.apic_attention))
7253 kvm_lapic_sync_from_vapic(vcpu);
7254 out:
7255 return r;
7256 }
7257
7258 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
7259 {
7260 if (!kvm_arch_vcpu_runnable(vcpu) &&
7261 (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
7262 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7263 kvm_vcpu_block(vcpu);
7264 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7265
7266 if (kvm_x86_ops->post_block)
7267 kvm_x86_ops->post_block(vcpu);
7268
7269 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
7270 return 1;
7271 }
7272
7273 kvm_apic_accept_events(vcpu);
7274 switch(vcpu->arch.mp_state) {
7275 case KVM_MP_STATE_HALTED:
7276 vcpu->arch.pv.pv_unhalted = false;
7277 vcpu->arch.mp_state =
7278 KVM_MP_STATE_RUNNABLE;
7279 case KVM_MP_STATE_RUNNABLE:
7280 vcpu->arch.apf.halted = false;
7281 break;
7282 case KVM_MP_STATE_INIT_RECEIVED:
7283 break;
7284 default:
7285 return -EINTR;
7286 break;
7287 }
7288 return 1;
7289 }
7290
7291 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
7292 {
7293 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7294 kvm_x86_ops->check_nested_events(vcpu, false);
7295
7296 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7297 !vcpu->arch.apf.halted);
7298 }
7299
7300 static int vcpu_run(struct kvm_vcpu *vcpu)
7301 {
7302 int r;
7303 struct kvm *kvm = vcpu->kvm;
7304
7305 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7306 vcpu->arch.l1tf_flush_l1d = true;
7307
7308 for (;;) {
7309 if (kvm_vcpu_running(vcpu)) {
7310 r = vcpu_enter_guest(vcpu);
7311 } else {
7312 r = vcpu_block(kvm, vcpu);
7313 }
7314
7315 if (r <= 0)
7316 break;
7317
7318 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
7319 if (kvm_cpu_has_pending_timer(vcpu))
7320 kvm_inject_pending_timer_irqs(vcpu);
7321
7322 if (dm_request_for_irq_injection(vcpu) &&
7323 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
7324 r = 0;
7325 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
7326 ++vcpu->stat.request_irq_exits;
7327 break;
7328 }
7329
7330 kvm_check_async_pf_completion(vcpu);
7331
7332 if (signal_pending(current)) {
7333 r = -EINTR;
7334 vcpu->run->exit_reason = KVM_EXIT_INTR;
7335 ++vcpu->stat.signal_exits;
7336 break;
7337 }
7338 if (need_resched()) {
7339 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7340 cond_resched();
7341 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7342 }
7343 }
7344
7345 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7346
7347 return r;
7348 }
7349
7350 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
7351 {
7352 int r;
7353 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7354 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
7355 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7356 if (r != EMULATE_DONE)
7357 return 0;
7358 return 1;
7359 }
7360
7361 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
7362 {
7363 BUG_ON(!vcpu->arch.pio.count);
7364
7365 return complete_emulated_io(vcpu);
7366 }
7367
7368 /*
7369 * Implements the following, as a state machine:
7370 *
7371 * read:
7372 * for each fragment
7373 * for each mmio piece in the fragment
7374 * write gpa, len
7375 * exit
7376 * copy data
7377 * execute insn
7378 *
7379 * write:
7380 * for each fragment
7381 * for each mmio piece in the fragment
7382 * write gpa, len
7383 * copy data
7384 * exit
7385 */
7386 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7387 {
7388 struct kvm_run *run = vcpu->run;
7389 struct kvm_mmio_fragment *frag;
7390 unsigned len;
7391
7392 BUG_ON(!vcpu->mmio_needed);
7393
7394 /* Complete previous fragment */
7395 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7396 len = min(8u, frag->len);
7397 if (!vcpu->mmio_is_write)
7398 memcpy(frag->data, run->mmio.data, len);
7399
7400 if (frag->len <= 8) {
7401 /* Switch to the next fragment. */
7402 frag++;
7403 vcpu->mmio_cur_fragment++;
7404 } else {
7405 /* Go forward to the next mmio piece. */
7406 frag->data += len;
7407 frag->gpa += len;
7408 frag->len -= len;
7409 }
7410
7411 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7412 vcpu->mmio_needed = 0;
7413
7414 /* FIXME: return into emulator if single-stepping. */
7415 if (vcpu->mmio_is_write)
7416 return 1;
7417 vcpu->mmio_read_completed = 1;
7418 return complete_emulated_io(vcpu);
7419 }
7420
7421 run->exit_reason = KVM_EXIT_MMIO;
7422 run->mmio.phys_addr = frag->gpa;
7423 if (vcpu->mmio_is_write)
7424 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7425 run->mmio.len = min(8u, frag->len);
7426 run->mmio.is_write = vcpu->mmio_is_write;
7427 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7428 return 0;
7429 }
7430
7431
7432 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
7433 {
7434 int r;
7435
7436 kvm_sigset_activate(vcpu);
7437
7438 kvm_load_guest_fpu(vcpu);
7439
7440 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
7441 if (kvm_run->immediate_exit) {
7442 r = -EINTR;
7443 goto out;
7444 }
7445 kvm_vcpu_block(vcpu);
7446 kvm_apic_accept_events(vcpu);
7447 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
7448 r = -EAGAIN;
7449 if (signal_pending(current)) {
7450 r = -EINTR;
7451 vcpu->run->exit_reason = KVM_EXIT_INTR;
7452 ++vcpu->stat.signal_exits;
7453 }
7454 goto out;
7455 }
7456
7457 /* re-sync apic's tpr */
7458 if (!lapic_in_kernel(vcpu)) {
7459 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
7460 r = -EINVAL;
7461 goto out;
7462 }
7463 }
7464
7465 if (unlikely(vcpu->arch.complete_userspace_io)) {
7466 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
7467 vcpu->arch.complete_userspace_io = NULL;
7468 r = cui(vcpu);
7469 if (r <= 0)
7470 goto out;
7471 } else
7472 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7473
7474 if (kvm_run->immediate_exit)
7475 r = -EINTR;
7476 else
7477 r = vcpu_run(vcpu);
7478
7479 out:
7480 kvm_put_guest_fpu(vcpu);
7481 post_kvm_run_save(vcpu);
7482 kvm_sigset_deactivate(vcpu);
7483
7484 return r;
7485 }
7486
7487 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7488 {
7489 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7490 /*
7491 * We are here if userspace calls get_regs() in the middle of
7492 * instruction emulation. Registers state needs to be copied
7493 * back from emulation context to vcpu. Userspace shouldn't do
7494 * that usually, but some bad designed PV devices (vmware
7495 * backdoor interface) need this to work
7496 */
7497 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7498 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7499 }
7500 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7501 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7502 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7503 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7504 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7505 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7506 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7507 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7508 #ifdef CONFIG_X86_64
7509 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7510 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7511 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7512 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7513 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7514 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7515 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7516 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7517 #endif
7518
7519 regs->rip = kvm_rip_read(vcpu);
7520 regs->rflags = kvm_get_rflags(vcpu);
7521
7522 return 0;
7523 }
7524
7525 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7526 {
7527 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7528 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7529
7530 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7531 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7532 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7533 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7534 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7535 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7536 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7537 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7538 #ifdef CONFIG_X86_64
7539 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7540 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7541 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7542 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7543 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7544 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7545 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7546 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7547 #endif
7548
7549 kvm_rip_write(vcpu, regs->rip);
7550 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
7551
7552 vcpu->arch.exception.pending = false;
7553
7554 kvm_make_request(KVM_REQ_EVENT, vcpu);
7555
7556 return 0;
7557 }
7558
7559 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7560 {
7561 struct kvm_segment cs;
7562
7563 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7564 *db = cs.db;
7565 *l = cs.l;
7566 }
7567 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7568
7569 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7570 struct kvm_sregs *sregs)
7571 {
7572 struct desc_ptr dt;
7573
7574 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7575 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7576 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7577 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7578 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7579 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7580
7581 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7582 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7583
7584 kvm_x86_ops->get_idt(vcpu, &dt);
7585 sregs->idt.limit = dt.size;
7586 sregs->idt.base = dt.address;
7587 kvm_x86_ops->get_gdt(vcpu, &dt);
7588 sregs->gdt.limit = dt.size;
7589 sregs->gdt.base = dt.address;
7590
7591 sregs->cr0 = kvm_read_cr0(vcpu);
7592 sregs->cr2 = vcpu->arch.cr2;
7593 sregs->cr3 = kvm_read_cr3(vcpu);
7594 sregs->cr4 = kvm_read_cr4(vcpu);
7595 sregs->cr8 = kvm_get_cr8(vcpu);
7596 sregs->efer = vcpu->arch.efer;
7597 sregs->apic_base = kvm_get_apic_base(vcpu);
7598
7599 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7600
7601 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7602 set_bit(vcpu->arch.interrupt.nr,
7603 (unsigned long *)sregs->interrupt_bitmap);
7604
7605 return 0;
7606 }
7607
7608 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7609 struct kvm_mp_state *mp_state)
7610 {
7611 kvm_apic_accept_events(vcpu);
7612 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7613 vcpu->arch.pv.pv_unhalted)
7614 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7615 else
7616 mp_state->mp_state = vcpu->arch.mp_state;
7617
7618 return 0;
7619 }
7620
7621 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7622 struct kvm_mp_state *mp_state)
7623 {
7624 if (!lapic_in_kernel(vcpu) &&
7625 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7626 return -EINVAL;
7627
7628 /* INITs are latched while in SMM */
7629 if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
7630 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
7631 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
7632 return -EINVAL;
7633
7634 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7635 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7636 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7637 } else
7638 vcpu->arch.mp_state = mp_state->mp_state;
7639 kvm_make_request(KVM_REQ_EVENT, vcpu);
7640 return 0;
7641 }
7642
7643 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7644 int reason, bool has_error_code, u32 error_code)
7645 {
7646 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7647 int ret;
7648
7649 init_emulate_ctxt(vcpu);
7650
7651 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7652 has_error_code, error_code);
7653
7654 if (ret)
7655 return EMULATE_FAIL;
7656
7657 kvm_rip_write(vcpu, ctxt->eip);
7658 kvm_set_rflags(vcpu, ctxt->eflags);
7659 kvm_make_request(KVM_REQ_EVENT, vcpu);
7660 return EMULATE_DONE;
7661 }
7662 EXPORT_SYMBOL_GPL(kvm_task_switch);
7663
7664 int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
7665 {
7666 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
7667 /*
7668 * When EFER.LME and CR0.PG are set, the processor is in
7669 * 64-bit mode (though maybe in a 32-bit code segment).
7670 * CR4.PAE and EFER.LMA must be set.
7671 */
7672 if (!(sregs->cr4 & X86_CR4_PAE)
7673 || !(sregs->efer & EFER_LMA))
7674 return -EINVAL;
7675 } else {
7676 /*
7677 * Not in 64-bit mode: EFER.LMA is clear and the code
7678 * segment cannot be 64-bit.
7679 */
7680 if (sregs->efer & EFER_LMA || sregs->cs.l)
7681 return -EINVAL;
7682 }
7683
7684 return 0;
7685 }
7686
7687 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7688 struct kvm_sregs *sregs)
7689 {
7690 struct msr_data apic_base_msr;
7691 int mmu_reset_needed = 0;
7692 int cpuid_update_needed = 0;
7693 int pending_vec, max_bits, idx;
7694 struct desc_ptr dt;
7695
7696 if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
7697 (sregs->cr4 & X86_CR4_OSXSAVE))
7698 return -EINVAL;
7699
7700 if (kvm_valid_sregs(vcpu, sregs))
7701 return -EINVAL;
7702
7703 apic_base_msr.data = sregs->apic_base;
7704 apic_base_msr.host_initiated = true;
7705 if (kvm_set_apic_base(vcpu, &apic_base_msr))
7706 return -EINVAL;
7707
7708 dt.size = sregs->idt.limit;
7709 dt.address = sregs->idt.base;
7710 kvm_x86_ops->set_idt(vcpu, &dt);
7711 dt.size = sregs->gdt.limit;
7712 dt.address = sregs->gdt.base;
7713 kvm_x86_ops->set_gdt(vcpu, &dt);
7714
7715 vcpu->arch.cr2 = sregs->cr2;
7716 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7717 vcpu->arch.cr3 = sregs->cr3;
7718 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7719
7720 kvm_set_cr8(vcpu, sregs->cr8);
7721
7722 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7723 kvm_x86_ops->set_efer(vcpu, sregs->efer);
7724
7725 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7726 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7727 vcpu->arch.cr0 = sregs->cr0;
7728
7729 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7730 cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
7731 (X86_CR4_OSXSAVE | X86_CR4_PKE));
7732 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7733 if (cpuid_update_needed)
7734 kvm_update_cpuid(vcpu);
7735
7736 idx = srcu_read_lock(&vcpu->kvm->srcu);
7737 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7738 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7739 mmu_reset_needed = 1;
7740 }
7741 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7742
7743 if (mmu_reset_needed)
7744 kvm_mmu_reset_context(vcpu);
7745
7746 max_bits = KVM_NR_INTERRUPTS;
7747 pending_vec = find_first_bit(
7748 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
7749 if (pending_vec < max_bits) {
7750 kvm_queue_interrupt(vcpu, pending_vec, false);
7751 pr_debug("Set back pending irq %d\n", pending_vec);
7752 }
7753
7754 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7755 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7756 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7757 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7758 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7759 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7760
7761 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7762 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7763
7764 update_cr8_intercept(vcpu);
7765
7766 /* Older userspace won't unhalt the vcpu on reset. */
7767 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7768 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7769 !is_protmode(vcpu))
7770 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7771
7772 kvm_make_request(KVM_REQ_EVENT, vcpu);
7773
7774 return 0;
7775 }
7776
7777 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7778 struct kvm_guest_debug *dbg)
7779 {
7780 unsigned long rflags;
7781 int i, r;
7782
7783 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7784 r = -EBUSY;
7785 if (vcpu->arch.exception.pending)
7786 goto out;
7787 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7788 kvm_queue_exception(vcpu, DB_VECTOR);
7789 else
7790 kvm_queue_exception(vcpu, BP_VECTOR);
7791 }
7792
7793 /*
7794 * Read rflags as long as potentially injected trace flags are still
7795 * filtered out.
7796 */
7797 rflags = kvm_get_rflags(vcpu);
7798
7799 vcpu->guest_debug = dbg->control;
7800 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7801 vcpu->guest_debug = 0;
7802
7803 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7804 for (i = 0; i < KVM_NR_DB_REGS; ++i)
7805 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7806 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7807 } else {
7808 for (i = 0; i < KVM_NR_DB_REGS; i++)
7809 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7810 }
7811 kvm_update_dr7(vcpu);
7812
7813 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7814 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7815 get_segment_base(vcpu, VCPU_SREG_CS);
7816
7817 /*
7818 * Trigger an rflags update that will inject or remove the trace
7819 * flags.
7820 */
7821 kvm_set_rflags(vcpu, rflags);
7822
7823 kvm_x86_ops->update_bp_intercept(vcpu);
7824
7825 r = 0;
7826
7827 out:
7828
7829 return r;
7830 }
7831
7832 /*
7833 * Translate a guest virtual address to a guest physical address.
7834 */
7835 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7836 struct kvm_translation *tr)
7837 {
7838 unsigned long vaddr = tr->linear_address;
7839 gpa_t gpa;
7840 int idx;
7841
7842 idx = srcu_read_lock(&vcpu->kvm->srcu);
7843 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7844 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7845 tr->physical_address = gpa;
7846 tr->valid = gpa != UNMAPPED_GVA;
7847 tr->writeable = 1;
7848 tr->usermode = 0;
7849
7850 return 0;
7851 }
7852
7853 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7854 {
7855 struct fxregs_state *fxsave =
7856 &vcpu->arch.guest_fpu.state.fxsave;
7857
7858 memcpy(fpu->fpr, fxsave->st_space, 128);
7859 fpu->fcw = fxsave->cwd;
7860 fpu->fsw = fxsave->swd;
7861 fpu->ftwx = fxsave->twd;
7862 fpu->last_opcode = fxsave->fop;
7863 fpu->last_ip = fxsave->rip;
7864 fpu->last_dp = fxsave->rdp;
7865 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7866
7867 return 0;
7868 }
7869
7870 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7871 {
7872 struct fxregs_state *fxsave =
7873 &vcpu->arch.guest_fpu.state.fxsave;
7874
7875 memcpy(fxsave->st_space, fpu->fpr, 128);
7876 fxsave->cwd = fpu->fcw;
7877 fxsave->swd = fpu->fsw;
7878 fxsave->twd = fpu->ftwx;
7879 fxsave->fop = fpu->last_opcode;
7880 fxsave->rip = fpu->last_ip;
7881 fxsave->rdp = fpu->last_dp;
7882 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7883
7884 return 0;
7885 }
7886
7887 static void fx_init(struct kvm_vcpu *vcpu)
7888 {
7889 fpstate_init(&vcpu->arch.guest_fpu.state);
7890 if (boot_cpu_has(X86_FEATURE_XSAVES))
7891 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7892 host_xcr0 | XSTATE_COMPACTION_ENABLED;
7893
7894 /*
7895 * Ensure guest xcr0 is valid for loading
7896 */
7897 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7898
7899 vcpu->arch.cr0 |= X86_CR0_ET;
7900 }
7901
7902 /* Swap (qemu) user FPU context for the guest FPU context. */
7903 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7904 {
7905 preempt_disable();
7906 copy_fpregs_to_fpstate(&vcpu->arch.user_fpu);
7907 /* PKRU is separately restored in kvm_x86_ops->run. */
7908 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state,
7909 ~XFEATURE_MASK_PKRU);
7910 preempt_enable();
7911 trace_kvm_fpu(1);
7912 }
7913
7914 /* When vcpu_run ends, restore user space FPU context. */
7915 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7916 {
7917 preempt_disable();
7918 copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7919 copy_kernel_to_fpregs(&vcpu->arch.user_fpu.state);
7920 preempt_enable();
7921 ++vcpu->stat.fpu_reload;
7922 trace_kvm_fpu(0);
7923 }
7924
7925 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7926 {
7927 void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
7928
7929 kvmclock_reset(vcpu);
7930
7931 kvm_x86_ops->vcpu_free(vcpu);
7932 free_cpumask_var(wbinvd_dirty_mask);
7933 }
7934
7935 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7936 unsigned int id)
7937 {
7938 struct kvm_vcpu *vcpu;
7939
7940 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7941 printk_once(KERN_WARNING
7942 "kvm: SMP vm created on host with unstable TSC; "
7943 "guest TSC will not be reliable\n");
7944
7945 vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7946
7947 return vcpu;
7948 }
7949
7950 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7951 {
7952 int r;
7953
7954 kvm_vcpu_mtrr_init(vcpu);
7955 r = vcpu_load(vcpu);
7956 if (r)
7957 return r;
7958 kvm_vcpu_reset(vcpu, false);
7959 kvm_mmu_setup(vcpu);
7960 vcpu_put(vcpu);
7961 return r;
7962 }
7963
7964 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7965 {
7966 struct msr_data msr;
7967 struct kvm *kvm = vcpu->kvm;
7968
7969 kvm_hv_vcpu_postcreate(vcpu);
7970
7971 if (vcpu_load(vcpu))
7972 return;
7973 msr.data = 0x0;
7974 msr.index = MSR_IA32_TSC;
7975 msr.host_initiated = true;
7976 kvm_write_tsc(vcpu, &msr);
7977 vcpu_put(vcpu);
7978
7979 if (!kvmclock_periodic_sync)
7980 return;
7981
7982 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7983 KVMCLOCK_SYNC_PERIOD);
7984 }
7985
7986 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7987 {
7988 int r;
7989 vcpu->arch.apf.msr_val = 0;
7990
7991 r = vcpu_load(vcpu);
7992 BUG_ON(r);
7993 kvm_mmu_unload(vcpu);
7994 vcpu_put(vcpu);
7995
7996 kvm_x86_ops->vcpu_free(vcpu);
7997 }
7998
7999 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
8000 {
8001 kvm_lapic_reset(vcpu, init_event);
8002
8003 vcpu->arch.hflags = 0;
8004
8005 vcpu->arch.smi_pending = 0;
8006 atomic_set(&vcpu->arch.nmi_queued, 0);
8007 vcpu->arch.nmi_pending = 0;
8008 vcpu->arch.nmi_injected = false;
8009 kvm_clear_interrupt_queue(vcpu);
8010 kvm_clear_exception_queue(vcpu);
8011 vcpu->arch.exception.pending = false;
8012
8013 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
8014 kvm_update_dr0123(vcpu);
8015 vcpu->arch.dr6 = DR6_INIT;
8016 kvm_update_dr6(vcpu);
8017 vcpu->arch.dr7 = DR7_FIXED_1;
8018 kvm_update_dr7(vcpu);
8019
8020 vcpu->arch.cr2 = 0;
8021
8022 kvm_make_request(KVM_REQ_EVENT, vcpu);
8023 vcpu->arch.apf.msr_val = 0;
8024 vcpu->arch.st.msr_val = 0;
8025
8026 kvmclock_reset(vcpu);
8027
8028 kvm_clear_async_pf_completion_queue(vcpu);
8029 kvm_async_pf_hash_reset(vcpu);
8030 vcpu->arch.apf.halted = false;
8031
8032 if (kvm_mpx_supported()) {
8033 void *mpx_state_buffer;
8034
8035 /*
8036 * To avoid have the INIT path from kvm_apic_has_events() that be
8037 * called with loaded FPU and does not let userspace fix the state.
8038 */
8039 if (init_event)
8040 kvm_put_guest_fpu(vcpu);
8041 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
8042 XFEATURE_MASK_BNDREGS);
8043 if (mpx_state_buffer)
8044 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
8045 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
8046 XFEATURE_MASK_BNDCSR);
8047 if (mpx_state_buffer)
8048 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
8049 if (init_event)
8050 kvm_load_guest_fpu(vcpu);
8051 }
8052
8053 if (!init_event) {
8054 kvm_pmu_reset(vcpu);
8055 vcpu->arch.smbase = 0x30000;
8056
8057 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
8058 vcpu->arch.msr_misc_features_enables = 0;
8059
8060 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8061 }
8062
8063 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
8064 vcpu->arch.regs_avail = ~0;
8065 vcpu->arch.regs_dirty = ~0;
8066
8067 vcpu->arch.ia32_xss = 0;
8068
8069 kvm_x86_ops->vcpu_reset(vcpu, init_event);
8070 }
8071
8072 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
8073 {
8074 struct kvm_segment cs;
8075
8076 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8077 cs.selector = vector << 8;
8078 cs.base = vector << 12;
8079 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8080 kvm_rip_write(vcpu, 0);
8081 }
8082
8083 int kvm_arch_hardware_enable(void)
8084 {
8085 struct kvm *kvm;
8086 struct kvm_vcpu *vcpu;
8087 int i;
8088 int ret;
8089 u64 local_tsc;
8090 u64 max_tsc = 0;
8091 bool stable, backwards_tsc = false;
8092
8093 kvm_shared_msr_cpu_online();
8094 ret = kvm_x86_ops->hardware_enable();
8095 if (ret != 0)
8096 return ret;
8097
8098 local_tsc = rdtsc();
8099 stable = !check_tsc_unstable();
8100 list_for_each_entry(kvm, &vm_list, vm_list) {
8101 kvm_for_each_vcpu(i, vcpu, kvm) {
8102 if (!stable && vcpu->cpu == smp_processor_id())
8103 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8104 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
8105 backwards_tsc = true;
8106 if (vcpu->arch.last_host_tsc > max_tsc)
8107 max_tsc = vcpu->arch.last_host_tsc;
8108 }
8109 }
8110 }
8111
8112 /*
8113 * Sometimes, even reliable TSCs go backwards. This happens on
8114 * platforms that reset TSC during suspend or hibernate actions, but
8115 * maintain synchronization. We must compensate. Fortunately, we can
8116 * detect that condition here, which happens early in CPU bringup,
8117 * before any KVM threads can be running. Unfortunately, we can't
8118 * bring the TSCs fully up to date with real time, as we aren't yet far
8119 * enough into CPU bringup that we know how much real time has actually
8120 * elapsed; our helper function, ktime_get_boot_ns() will be using boot
8121 * variables that haven't been updated yet.
8122 *
8123 * So we simply find the maximum observed TSC above, then record the
8124 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
8125 * the adjustment will be applied. Note that we accumulate
8126 * adjustments, in case multiple suspend cycles happen before some VCPU
8127 * gets a chance to run again. In the event that no KVM threads get a
8128 * chance to run, we will miss the entire elapsed period, as we'll have
8129 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
8130 * loose cycle time. This isn't too big a deal, since the loss will be
8131 * uniform across all VCPUs (not to mention the scenario is extremely
8132 * unlikely). It is possible that a second hibernate recovery happens
8133 * much faster than a first, causing the observed TSC here to be
8134 * smaller; this would require additional padding adjustment, which is
8135 * why we set last_host_tsc to the local tsc observed here.
8136 *
8137 * N.B. - this code below runs only on platforms with reliable TSC,
8138 * as that is the only way backwards_tsc is set above. Also note
8139 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
8140 * have the same delta_cyc adjustment applied if backwards_tsc
8141 * is detected. Note further, this adjustment is only done once,
8142 * as we reset last_host_tsc on all VCPUs to stop this from being
8143 * called multiple times (one for each physical CPU bringup).
8144 *
8145 * Platforms with unreliable TSCs don't have to deal with this, they
8146 * will be compensated by the logic in vcpu_load, which sets the TSC to
8147 * catchup mode. This will catchup all VCPUs to real time, but cannot
8148 * guarantee that they stay in perfect synchronization.
8149 */
8150 if (backwards_tsc) {
8151 u64 delta_cyc = max_tsc - local_tsc;
8152 list_for_each_entry(kvm, &vm_list, vm_list) {
8153 kvm->arch.backwards_tsc_observed = true;
8154 kvm_for_each_vcpu(i, vcpu, kvm) {
8155 vcpu->arch.tsc_offset_adjustment += delta_cyc;
8156 vcpu->arch.last_host_tsc = local_tsc;
8157 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8158 }
8159
8160 /*
8161 * We have to disable TSC offset matching.. if you were
8162 * booting a VM while issuing an S4 host suspend....
8163 * you may have some problem. Solving this issue is
8164 * left as an exercise to the reader.
8165 */
8166 kvm->arch.last_tsc_nsec = 0;
8167 kvm->arch.last_tsc_write = 0;
8168 }
8169
8170 }
8171 return 0;
8172 }
8173
8174 void kvm_arch_hardware_disable(void)
8175 {
8176 kvm_x86_ops->hardware_disable();
8177 drop_user_return_notifiers();
8178 }
8179
8180 int kvm_arch_hardware_setup(void)
8181 {
8182 int r;
8183
8184 r = kvm_x86_ops->hardware_setup();
8185 if (r != 0)
8186 return r;
8187
8188 if (kvm_has_tsc_control) {
8189 /*
8190 * Make sure the user can only configure tsc_khz values that
8191 * fit into a signed integer.
8192 * A min value is not calculated needed because it will always
8193 * be 1 on all machines.
8194 */
8195 u64 max = min(0x7fffffffULL,
8196 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
8197 kvm_max_guest_tsc_khz = max;
8198
8199 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
8200 }
8201
8202 kvm_init_msr_list();
8203 return 0;
8204 }
8205
8206 void kvm_arch_hardware_unsetup(void)
8207 {
8208 kvm_x86_ops->hardware_unsetup();
8209 }
8210
8211 void kvm_arch_check_processor_compat(void *rtn)
8212 {
8213 kvm_x86_ops->check_processor_compatibility(rtn);
8214 }
8215
8216 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
8217 {
8218 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
8219 }
8220 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
8221
8222 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
8223 {
8224 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
8225 }
8226
8227 struct static_key kvm_no_apic_vcpu __read_mostly;
8228 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
8229
8230 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
8231 {
8232 struct page *page;
8233 int r;
8234
8235 vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu);
8236 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
8237 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
8238 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8239 else
8240 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
8241
8242 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
8243 if (!page) {
8244 r = -ENOMEM;
8245 goto fail;
8246 }
8247 vcpu->arch.pio_data = page_address(page);
8248
8249 kvm_set_tsc_khz(vcpu, max_tsc_khz);
8250
8251 r = kvm_mmu_create(vcpu);
8252 if (r < 0)
8253 goto fail_free_pio_data;
8254
8255 if (irqchip_in_kernel(vcpu->kvm)) {
8256 r = kvm_create_lapic(vcpu);
8257 if (r < 0)
8258 goto fail_mmu_destroy;
8259 } else
8260 static_key_slow_inc(&kvm_no_apic_vcpu);
8261
8262 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
8263 GFP_KERNEL);
8264 if (!vcpu->arch.mce_banks) {
8265 r = -ENOMEM;
8266 goto fail_free_lapic;
8267 }
8268 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
8269
8270 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
8271 r = -ENOMEM;
8272 goto fail_free_mce_banks;
8273 }
8274
8275 fx_init(vcpu);
8276
8277 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
8278
8279 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
8280
8281 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
8282
8283 kvm_async_pf_hash_reset(vcpu);
8284 kvm_pmu_init(vcpu);
8285
8286 vcpu->arch.pending_external_vector = -1;
8287 vcpu->arch.preempted_in_kernel = false;
8288
8289 kvm_hv_vcpu_init(vcpu);
8290
8291 return 0;
8292
8293 fail_free_mce_banks:
8294 kfree(vcpu->arch.mce_banks);
8295 fail_free_lapic:
8296 kvm_free_lapic(vcpu);
8297 fail_mmu_destroy:
8298 kvm_mmu_destroy(vcpu);
8299 fail_free_pio_data:
8300 free_page((unsigned long)vcpu->arch.pio_data);
8301 fail:
8302 return r;
8303 }
8304
8305 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
8306 {
8307 int idx;
8308
8309 kvm_hv_vcpu_uninit(vcpu);
8310 kvm_pmu_destroy(vcpu);
8311 kfree(vcpu->arch.mce_banks);
8312 kvm_free_lapic(vcpu);
8313 idx = srcu_read_lock(&vcpu->kvm->srcu);
8314 kvm_mmu_destroy(vcpu);
8315 srcu_read_unlock(&vcpu->kvm->srcu, idx);
8316 free_page((unsigned long)vcpu->arch.pio_data);
8317 if (!lapic_in_kernel(vcpu))
8318 static_key_slow_dec(&kvm_no_apic_vcpu);
8319 }
8320
8321 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
8322 {
8323 vcpu->arch.l1tf_flush_l1d = true;
8324 kvm_x86_ops->sched_in(vcpu, cpu);
8325 }
8326
8327 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
8328 {
8329 if (type)
8330 return -EINVAL;
8331
8332 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
8333 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
8334 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
8335 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
8336 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
8337
8338 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
8339 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
8340 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
8341 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
8342 &kvm->arch.irq_sources_bitmap);
8343
8344 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
8345 mutex_init(&kvm->arch.apic_map_lock);
8346 mutex_init(&kvm->arch.hyperv.hv_lock);
8347 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
8348
8349 kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
8350 pvclock_update_vm_gtod_copy(kvm);
8351
8352 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
8353 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
8354
8355 kvm_page_track_init(kvm);
8356 kvm_mmu_init_vm(kvm);
8357
8358 if (kvm_x86_ops->vm_init)
8359 return kvm_x86_ops->vm_init(kvm);
8360
8361 return 0;
8362 }
8363
8364 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
8365 {
8366 int r;
8367 r = vcpu_load(vcpu);
8368 BUG_ON(r);
8369 kvm_mmu_unload(vcpu);
8370 vcpu_put(vcpu);
8371 }
8372
8373 static void kvm_free_vcpus(struct kvm *kvm)
8374 {
8375 unsigned int i;
8376 struct kvm_vcpu *vcpu;
8377
8378 /*
8379 * Unpin any mmu pages first.
8380 */
8381 kvm_for_each_vcpu(i, vcpu, kvm) {
8382 kvm_clear_async_pf_completion_queue(vcpu);
8383 kvm_unload_vcpu_mmu(vcpu);
8384 }
8385 kvm_for_each_vcpu(i, vcpu, kvm)
8386 kvm_arch_vcpu_free(vcpu);
8387
8388 mutex_lock(&kvm->lock);
8389 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
8390 kvm->vcpus[i] = NULL;
8391
8392 atomic_set(&kvm->online_vcpus, 0);
8393 mutex_unlock(&kvm->lock);
8394 }
8395
8396 void kvm_arch_sync_events(struct kvm *kvm)
8397 {
8398 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
8399 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
8400 kvm_free_pit(kvm);
8401 }
8402
8403 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8404 {
8405 int i, r;
8406 unsigned long hva;
8407 struct kvm_memslots *slots = kvm_memslots(kvm);
8408 struct kvm_memory_slot *slot, old;
8409
8410 /* Called with kvm->slots_lock held. */
8411 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
8412 return -EINVAL;
8413
8414 slot = id_to_memslot(slots, id);
8415 if (size) {
8416 if (slot->npages)
8417 return -EEXIST;
8418
8419 /*
8420 * MAP_SHARED to prevent internal slot pages from being moved
8421 * by fork()/COW.
8422 */
8423 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
8424 MAP_SHARED | MAP_ANONYMOUS, 0);
8425 if (IS_ERR((void *)hva))
8426 return PTR_ERR((void *)hva);
8427 } else {
8428 if (!slot->npages)
8429 return 0;
8430
8431 hva = 0;
8432 }
8433
8434 old = *slot;
8435 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
8436 struct kvm_userspace_memory_region m;
8437
8438 m.slot = id | (i << 16);
8439 m.flags = 0;
8440 m.guest_phys_addr = gpa;
8441 m.userspace_addr = hva;
8442 m.memory_size = size;
8443 r = __kvm_set_memory_region(kvm, &m);
8444 if (r < 0)
8445 return r;
8446 }
8447
8448 if (!size)
8449 vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
8450
8451 return 0;
8452 }
8453 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
8454
8455 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8456 {
8457 int r;
8458
8459 mutex_lock(&kvm->slots_lock);
8460 r = __x86_set_memory_region(kvm, id, gpa, size);
8461 mutex_unlock(&kvm->slots_lock);
8462
8463 return r;
8464 }
8465 EXPORT_SYMBOL_GPL(x86_set_memory_region);
8466
8467 void kvm_arch_destroy_vm(struct kvm *kvm)
8468 {
8469 if (current->mm == kvm->mm) {
8470 /*
8471 * Free memory regions allocated on behalf of userspace,
8472 * unless the the memory map has changed due to process exit
8473 * or fd copying.
8474 */
8475 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
8476 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
8477 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
8478 }
8479 if (kvm_x86_ops->vm_destroy)
8480 kvm_x86_ops->vm_destroy(kvm);
8481 kvm_pic_destroy(kvm);
8482 kvm_ioapic_destroy(kvm);
8483 kvm_free_vcpus(kvm);
8484 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
8485 kvm_mmu_uninit_vm(kvm);
8486 kvm_page_track_cleanup(kvm);
8487 }
8488
8489 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
8490 struct kvm_memory_slot *dont)
8491 {
8492 int i;
8493
8494 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8495 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
8496 kvfree(free->arch.rmap[i]);
8497 free->arch.rmap[i] = NULL;
8498 }
8499 if (i == 0)
8500 continue;
8501
8502 if (!dont || free->arch.lpage_info[i - 1] !=
8503 dont->arch.lpage_info[i - 1]) {
8504 kvfree(free->arch.lpage_info[i - 1]);
8505 free->arch.lpage_info[i - 1] = NULL;
8506 }
8507 }
8508
8509 kvm_page_track_free_memslot(free, dont);
8510 }
8511
8512 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
8513 unsigned long npages)
8514 {
8515 int i;
8516
8517 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8518 struct kvm_lpage_info *linfo;
8519 unsigned long ugfn;
8520 int lpages;
8521 int level = i + 1;
8522
8523 lpages = gfn_to_index(slot->base_gfn + npages - 1,
8524 slot->base_gfn, level) + 1;
8525
8526 slot->arch.rmap[i] =
8527 kvzalloc(lpages * sizeof(*slot->arch.rmap[i]), GFP_KERNEL);
8528 if (!slot->arch.rmap[i])
8529 goto out_free;
8530 if (i == 0)
8531 continue;
8532
8533 linfo = kvzalloc(lpages * sizeof(*linfo), GFP_KERNEL);
8534 if (!linfo)
8535 goto out_free;
8536
8537 slot->arch.lpage_info[i - 1] = linfo;
8538
8539 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
8540 linfo[0].disallow_lpage = 1;
8541 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
8542 linfo[lpages - 1].disallow_lpage = 1;
8543 ugfn = slot->userspace_addr >> PAGE_SHIFT;
8544 /*
8545 * If the gfn and userspace address are not aligned wrt each
8546 * other, or if explicitly asked to, disable large page
8547 * support for this slot
8548 */
8549 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
8550 !kvm_largepages_enabled()) {
8551 unsigned long j;
8552
8553 for (j = 0; j < lpages; ++j)
8554 linfo[j].disallow_lpage = 1;
8555 }
8556 }
8557
8558 if (kvm_page_track_create_memslot(slot, npages))
8559 goto out_free;
8560
8561 return 0;
8562
8563 out_free:
8564 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8565 kvfree(slot->arch.rmap[i]);
8566 slot->arch.rmap[i] = NULL;
8567 if (i == 0)
8568 continue;
8569
8570 kvfree(slot->arch.lpage_info[i - 1]);
8571 slot->arch.lpage_info[i - 1] = NULL;
8572 }
8573 return -ENOMEM;
8574 }
8575
8576 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
8577 {
8578 /*
8579 * memslots->generation has been incremented.
8580 * mmio generation may have reached its maximum value.
8581 */
8582 kvm_mmu_invalidate_mmio_sptes(kvm, slots);
8583 }
8584
8585 int kvm_arch_prepare_memory_region(struct kvm *kvm,
8586 struct kvm_memory_slot *memslot,
8587 const struct kvm_userspace_memory_region *mem,
8588 enum kvm_mr_change change)
8589 {
8590 return 0;
8591 }
8592
8593 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8594 struct kvm_memory_slot *new)
8595 {
8596 /* Still write protect RO slot */
8597 if (new->flags & KVM_MEM_READONLY) {
8598 kvm_mmu_slot_remove_write_access(kvm, new);
8599 return;
8600 }
8601
8602 /*
8603 * Call kvm_x86_ops dirty logging hooks when they are valid.
8604 *
8605 * kvm_x86_ops->slot_disable_log_dirty is called when:
8606 *
8607 * - KVM_MR_CREATE with dirty logging is disabled
8608 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8609 *
8610 * The reason is, in case of PML, we need to set D-bit for any slots
8611 * with dirty logging disabled in order to eliminate unnecessary GPA
8612 * logging in PML buffer (and potential PML buffer full VMEXT). This
8613 * guarantees leaving PML enabled during guest's lifetime won't have
8614 * any additonal overhead from PML when guest is running with dirty
8615 * logging disabled for memory slots.
8616 *
8617 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8618 * to dirty logging mode.
8619 *
8620 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8621 *
8622 * In case of write protect:
8623 *
8624 * Write protect all pages for dirty logging.
8625 *
8626 * All the sptes including the large sptes which point to this
8627 * slot are set to readonly. We can not create any new large
8628 * spte on this slot until the end of the logging.
8629 *
8630 * See the comments in fast_page_fault().
8631 */
8632 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8633 if (kvm_x86_ops->slot_enable_log_dirty)
8634 kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8635 else
8636 kvm_mmu_slot_remove_write_access(kvm, new);
8637 } else {
8638 if (kvm_x86_ops->slot_disable_log_dirty)
8639 kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8640 }
8641 }
8642
8643 void kvm_arch_commit_memory_region(struct kvm *kvm,
8644 const struct kvm_userspace_memory_region *mem,
8645 const struct kvm_memory_slot *old,
8646 const struct kvm_memory_slot *new,
8647 enum kvm_mr_change change)
8648 {
8649 int nr_mmu_pages = 0;
8650
8651 if (!kvm->arch.n_requested_mmu_pages)
8652 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8653
8654 if (nr_mmu_pages)
8655 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8656
8657 /*
8658 * Dirty logging tracks sptes in 4k granularity, meaning that large
8659 * sptes have to be split. If live migration is successful, the guest
8660 * in the source machine will be destroyed and large sptes will be
8661 * created in the destination. However, if the guest continues to run
8662 * in the source machine (for example if live migration fails), small
8663 * sptes will remain around and cause bad performance.
8664 *
8665 * Scan sptes if dirty logging has been stopped, dropping those
8666 * which can be collapsed into a single large-page spte. Later
8667 * page faults will create the large-page sptes.
8668 */
8669 if ((change != KVM_MR_DELETE) &&
8670 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8671 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8672 kvm_mmu_zap_collapsible_sptes(kvm, new);
8673
8674 /*
8675 * Set up write protection and/or dirty logging for the new slot.
8676 *
8677 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8678 * been zapped so no dirty logging staff is needed for old slot. For
8679 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8680 * new and it's also covered when dealing with the new slot.
8681 *
8682 * FIXME: const-ify all uses of struct kvm_memory_slot.
8683 */
8684 if (change != KVM_MR_DELETE)
8685 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8686 }
8687
8688 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8689 {
8690 kvm_mmu_invalidate_zap_all_pages(kvm);
8691 }
8692
8693 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8694 struct kvm_memory_slot *slot)
8695 {
8696 kvm_page_track_flush_slot(kvm, slot);
8697 }
8698
8699 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8700 {
8701 if (!list_empty_careful(&vcpu->async_pf.done))
8702 return true;
8703
8704 if (kvm_apic_has_events(vcpu))
8705 return true;
8706
8707 if (vcpu->arch.pv.pv_unhalted)
8708 return true;
8709
8710 if (vcpu->arch.exception.pending)
8711 return true;
8712
8713 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
8714 (vcpu->arch.nmi_pending &&
8715 kvm_x86_ops->nmi_allowed(vcpu)))
8716 return true;
8717
8718 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
8719 (vcpu->arch.smi_pending && !is_smm(vcpu)))
8720 return true;
8721
8722 if (kvm_arch_interrupt_allowed(vcpu) &&
8723 kvm_cpu_has_interrupt(vcpu))
8724 return true;
8725
8726 if (kvm_hv_has_stimer_pending(vcpu))
8727 return true;
8728
8729 return false;
8730 }
8731
8732 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8733 {
8734 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8735 }
8736
8737 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
8738 {
8739 return vcpu->arch.preempted_in_kernel;
8740 }
8741
8742 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8743 {
8744 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8745 }
8746
8747 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8748 {
8749 return kvm_x86_ops->interrupt_allowed(vcpu);
8750 }
8751
8752 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8753 {
8754 if (is_64_bit_mode(vcpu))
8755 return kvm_rip_read(vcpu);
8756 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8757 kvm_rip_read(vcpu));
8758 }
8759 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8760
8761 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8762 {
8763 return kvm_get_linear_rip(vcpu) == linear_rip;
8764 }
8765 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8766
8767 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8768 {
8769 unsigned long rflags;
8770
8771 rflags = kvm_x86_ops->get_rflags(vcpu);
8772 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8773 rflags &= ~X86_EFLAGS_TF;
8774 return rflags;
8775 }
8776 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8777
8778 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8779 {
8780 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8781 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8782 rflags |= X86_EFLAGS_TF;
8783 kvm_x86_ops->set_rflags(vcpu, rflags);
8784 }
8785
8786 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8787 {
8788 __kvm_set_rflags(vcpu, rflags);
8789 kvm_make_request(KVM_REQ_EVENT, vcpu);
8790 }
8791 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8792
8793 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8794 {
8795 int r;
8796
8797 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8798 work->wakeup_all)
8799 return;
8800
8801 r = kvm_mmu_reload(vcpu);
8802 if (unlikely(r))
8803 return;
8804
8805 if (!vcpu->arch.mmu.direct_map &&
8806 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8807 return;
8808
8809 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8810 }
8811
8812 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8813 {
8814 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8815 }
8816
8817 static inline u32 kvm_async_pf_next_probe(u32 key)
8818 {
8819 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8820 }
8821
8822 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8823 {
8824 u32 key = kvm_async_pf_hash_fn(gfn);
8825
8826 while (vcpu->arch.apf.gfns[key] != ~0)
8827 key = kvm_async_pf_next_probe(key);
8828
8829 vcpu->arch.apf.gfns[key] = gfn;
8830 }
8831
8832 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8833 {
8834 int i;
8835 u32 key = kvm_async_pf_hash_fn(gfn);
8836
8837 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8838 (vcpu->arch.apf.gfns[key] != gfn &&
8839 vcpu->arch.apf.gfns[key] != ~0); i++)
8840 key = kvm_async_pf_next_probe(key);
8841
8842 return key;
8843 }
8844
8845 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8846 {
8847 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8848 }
8849
8850 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8851 {
8852 u32 i, j, k;
8853
8854 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8855 while (true) {
8856 vcpu->arch.apf.gfns[i] = ~0;
8857 do {
8858 j = kvm_async_pf_next_probe(j);
8859 if (vcpu->arch.apf.gfns[j] == ~0)
8860 return;
8861 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8862 /*
8863 * k lies cyclically in ]i,j]
8864 * | i.k.j |
8865 * |....j i.k.| or |.k..j i...|
8866 */
8867 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8868 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8869 i = j;
8870 }
8871 }
8872
8873 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8874 {
8875
8876 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8877 sizeof(val));
8878 }
8879
8880 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
8881 {
8882
8883 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
8884 sizeof(u32));
8885 }
8886
8887 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8888 struct kvm_async_pf *work)
8889 {
8890 struct x86_exception fault;
8891
8892 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8893 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8894
8895 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8896 (vcpu->arch.apf.send_user_only &&
8897 kvm_x86_ops->get_cpl(vcpu) == 0))
8898 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8899 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8900 fault.vector = PF_VECTOR;
8901 fault.error_code_valid = true;
8902 fault.error_code = 0;
8903 fault.nested_page_fault = false;
8904 fault.address = work->arch.token;
8905 fault.async_page_fault = true;
8906 kvm_inject_page_fault(vcpu, &fault);
8907 }
8908 }
8909
8910 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8911 struct kvm_async_pf *work)
8912 {
8913 struct x86_exception fault;
8914 u32 val;
8915
8916 if (work->wakeup_all)
8917 work->arch.token = ~0; /* broadcast wakeup */
8918 else
8919 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8920 trace_kvm_async_pf_ready(work->arch.token, work->gva);
8921
8922 if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
8923 !apf_get_user(vcpu, &val)) {
8924 if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
8925 vcpu->arch.exception.pending &&
8926 vcpu->arch.exception.nr == PF_VECTOR &&
8927 !apf_put_user(vcpu, 0)) {
8928 vcpu->arch.exception.injected = false;
8929 vcpu->arch.exception.pending = false;
8930 vcpu->arch.exception.nr = 0;
8931 vcpu->arch.exception.has_error_code = false;
8932 vcpu->arch.exception.error_code = 0;
8933 } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8934 fault.vector = PF_VECTOR;
8935 fault.error_code_valid = true;
8936 fault.error_code = 0;
8937 fault.nested_page_fault = false;
8938 fault.address = work->arch.token;
8939 fault.async_page_fault = true;
8940 kvm_inject_page_fault(vcpu, &fault);
8941 }
8942 }
8943 vcpu->arch.apf.halted = false;
8944 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8945 }
8946
8947 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8948 {
8949 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8950 return true;
8951 else
8952 return kvm_can_do_async_pf(vcpu);
8953 }
8954
8955 void kvm_arch_start_assignment(struct kvm *kvm)
8956 {
8957 atomic_inc(&kvm->arch.assigned_device_count);
8958 }
8959 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8960
8961 void kvm_arch_end_assignment(struct kvm *kvm)
8962 {
8963 atomic_dec(&kvm->arch.assigned_device_count);
8964 }
8965 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8966
8967 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8968 {
8969 return atomic_read(&kvm->arch.assigned_device_count);
8970 }
8971 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8972
8973 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8974 {
8975 atomic_inc(&kvm->arch.noncoherent_dma_count);
8976 }
8977 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8978
8979 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8980 {
8981 atomic_dec(&kvm->arch.noncoherent_dma_count);
8982 }
8983 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8984
8985 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8986 {
8987 return atomic_read(&kvm->arch.noncoherent_dma_count);
8988 }
8989 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8990
8991 bool kvm_arch_has_irq_bypass(void)
8992 {
8993 return kvm_x86_ops->update_pi_irte != NULL;
8994 }
8995
8996 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8997 struct irq_bypass_producer *prod)
8998 {
8999 struct kvm_kernel_irqfd *irqfd =
9000 container_of(cons, struct kvm_kernel_irqfd, consumer);
9001
9002 irqfd->producer = prod;
9003
9004 return kvm_x86_ops->update_pi_irte(irqfd->kvm,
9005 prod->irq, irqfd->gsi, 1);
9006 }
9007
9008 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
9009 struct irq_bypass_producer *prod)
9010 {
9011 int ret;
9012 struct kvm_kernel_irqfd *irqfd =
9013 container_of(cons, struct kvm_kernel_irqfd, consumer);
9014
9015 WARN_ON(irqfd->producer != prod);
9016 irqfd->producer = NULL;
9017
9018 /*
9019 * When producer of consumer is unregistered, we change back to
9020 * remapped mode, so we can re-use the current implementation
9021 * when the irq is masked/disabled or the consumer side (KVM
9022 * int this case doesn't want to receive the interrupts.
9023 */
9024 ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
9025 if (ret)
9026 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
9027 " fails: %d\n", irqfd->consumer.token, ret);
9028 }
9029
9030 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
9031 uint32_t guest_irq, bool set)
9032 {
9033 if (!kvm_x86_ops->update_pi_irte)
9034 return -EINVAL;
9035
9036 return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
9037 }
9038
9039 bool kvm_vector_hashing_enabled(void)
9040 {
9041 return vector_hashing;
9042 }
9043 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
9044
9045 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
9046 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
9047 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
9048 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
9049 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
9050 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
9051 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
9052 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
9053 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
9054 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
9055 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
9056 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
9057 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
9058 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
9059 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
9060 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
9061 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
9062 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
9063 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);