]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/bio.c
block: do not use interruptible wait anywhere
[mirror_ubuntu-bionic-kernel.git] / block / bio.c
1 /*
2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
31
32 #include <trace/events/block.h>
33 #include "blk.h"
34
35 /*
36 * Test patch to inline a certain number of bi_io_vec's inside the bio
37 * itself, to shrink a bio data allocation from two mempool calls to one
38 */
39 #define BIO_INLINE_VECS 4
40
41 /*
42 * if you change this list, also change bvec_alloc or things will
43 * break badly! cannot be bigger than what you can fit into an
44 * unsigned short
45 */
46 #define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
47 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
48 BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
49 };
50 #undef BV
51
52 /*
53 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
54 * IO code that does not need private memory pools.
55 */
56 struct bio_set *fs_bio_set;
57 EXPORT_SYMBOL(fs_bio_set);
58
59 /*
60 * Our slab pool management
61 */
62 struct bio_slab {
63 struct kmem_cache *slab;
64 unsigned int slab_ref;
65 unsigned int slab_size;
66 char name[8];
67 };
68 static DEFINE_MUTEX(bio_slab_lock);
69 static struct bio_slab *bio_slabs;
70 static unsigned int bio_slab_nr, bio_slab_max;
71
72 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
73 {
74 unsigned int sz = sizeof(struct bio) + extra_size;
75 struct kmem_cache *slab = NULL;
76 struct bio_slab *bslab, *new_bio_slabs;
77 unsigned int new_bio_slab_max;
78 unsigned int i, entry = -1;
79
80 mutex_lock(&bio_slab_lock);
81
82 i = 0;
83 while (i < bio_slab_nr) {
84 bslab = &bio_slabs[i];
85
86 if (!bslab->slab && entry == -1)
87 entry = i;
88 else if (bslab->slab_size == sz) {
89 slab = bslab->slab;
90 bslab->slab_ref++;
91 break;
92 }
93 i++;
94 }
95
96 if (slab)
97 goto out_unlock;
98
99 if (bio_slab_nr == bio_slab_max && entry == -1) {
100 new_bio_slab_max = bio_slab_max << 1;
101 new_bio_slabs = krealloc(bio_slabs,
102 new_bio_slab_max * sizeof(struct bio_slab),
103 GFP_KERNEL);
104 if (!new_bio_slabs)
105 goto out_unlock;
106 bio_slab_max = new_bio_slab_max;
107 bio_slabs = new_bio_slabs;
108 }
109 if (entry == -1)
110 entry = bio_slab_nr++;
111
112 bslab = &bio_slabs[entry];
113
114 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
115 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
116 SLAB_HWCACHE_ALIGN, NULL);
117 if (!slab)
118 goto out_unlock;
119
120 bslab->slab = slab;
121 bslab->slab_ref = 1;
122 bslab->slab_size = sz;
123 out_unlock:
124 mutex_unlock(&bio_slab_lock);
125 return slab;
126 }
127
128 static void bio_put_slab(struct bio_set *bs)
129 {
130 struct bio_slab *bslab = NULL;
131 unsigned int i;
132
133 mutex_lock(&bio_slab_lock);
134
135 for (i = 0; i < bio_slab_nr; i++) {
136 if (bs->bio_slab == bio_slabs[i].slab) {
137 bslab = &bio_slabs[i];
138 break;
139 }
140 }
141
142 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
143 goto out;
144
145 WARN_ON(!bslab->slab_ref);
146
147 if (--bslab->slab_ref)
148 goto out;
149
150 kmem_cache_destroy(bslab->slab);
151 bslab->slab = NULL;
152
153 out:
154 mutex_unlock(&bio_slab_lock);
155 }
156
157 unsigned int bvec_nr_vecs(unsigned short idx)
158 {
159 return bvec_slabs[idx].nr_vecs;
160 }
161
162 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
163 {
164 if (!idx)
165 return;
166 idx--;
167
168 BIO_BUG_ON(idx >= BVEC_POOL_NR);
169
170 if (idx == BVEC_POOL_MAX) {
171 mempool_free(bv, pool);
172 } else {
173 struct biovec_slab *bvs = bvec_slabs + idx;
174
175 kmem_cache_free(bvs->slab, bv);
176 }
177 }
178
179 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
180 mempool_t *pool)
181 {
182 struct bio_vec *bvl;
183
184 /*
185 * see comment near bvec_array define!
186 */
187 switch (nr) {
188 case 1:
189 *idx = 0;
190 break;
191 case 2 ... 4:
192 *idx = 1;
193 break;
194 case 5 ... 16:
195 *idx = 2;
196 break;
197 case 17 ... 64:
198 *idx = 3;
199 break;
200 case 65 ... 128:
201 *idx = 4;
202 break;
203 case 129 ... BIO_MAX_PAGES:
204 *idx = 5;
205 break;
206 default:
207 return NULL;
208 }
209
210 /*
211 * idx now points to the pool we want to allocate from. only the
212 * 1-vec entry pool is mempool backed.
213 */
214 if (*idx == BVEC_POOL_MAX) {
215 fallback:
216 bvl = mempool_alloc(pool, gfp_mask);
217 } else {
218 struct biovec_slab *bvs = bvec_slabs + *idx;
219 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
220
221 /*
222 * Make this allocation restricted and don't dump info on
223 * allocation failures, since we'll fallback to the mempool
224 * in case of failure.
225 */
226 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
227
228 /*
229 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
230 * is set, retry with the 1-entry mempool
231 */
232 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
233 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
234 *idx = BVEC_POOL_MAX;
235 goto fallback;
236 }
237 }
238
239 (*idx)++;
240 return bvl;
241 }
242
243 void bio_uninit(struct bio *bio)
244 {
245 bio_disassociate_task(bio);
246 }
247 EXPORT_SYMBOL(bio_uninit);
248
249 static void bio_free(struct bio *bio)
250 {
251 struct bio_set *bs = bio->bi_pool;
252 void *p;
253
254 bio_uninit(bio);
255
256 if (bs) {
257 bvec_free(bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
258
259 /*
260 * If we have front padding, adjust the bio pointer before freeing
261 */
262 p = bio;
263 p -= bs->front_pad;
264
265 mempool_free(p, bs->bio_pool);
266 } else {
267 /* Bio was allocated by bio_kmalloc() */
268 kfree(bio);
269 }
270 }
271
272 /*
273 * Users of this function have their own bio allocation. Subsequently,
274 * they must remember to pair any call to bio_init() with bio_uninit()
275 * when IO has completed, or when the bio is released.
276 */
277 void bio_init(struct bio *bio, struct bio_vec *table,
278 unsigned short max_vecs)
279 {
280 memset(bio, 0, sizeof(*bio));
281 atomic_set(&bio->__bi_remaining, 1);
282 atomic_set(&bio->__bi_cnt, 1);
283
284 bio->bi_io_vec = table;
285 bio->bi_max_vecs = max_vecs;
286 }
287 EXPORT_SYMBOL(bio_init);
288
289 /**
290 * bio_reset - reinitialize a bio
291 * @bio: bio to reset
292 *
293 * Description:
294 * After calling bio_reset(), @bio will be in the same state as a freshly
295 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
296 * preserved are the ones that are initialized by bio_alloc_bioset(). See
297 * comment in struct bio.
298 */
299 void bio_reset(struct bio *bio)
300 {
301 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
302
303 bio_uninit(bio);
304
305 memset(bio, 0, BIO_RESET_BYTES);
306 bio->bi_flags = flags;
307 atomic_set(&bio->__bi_remaining, 1);
308 }
309 EXPORT_SYMBOL(bio_reset);
310
311 static struct bio *__bio_chain_endio(struct bio *bio)
312 {
313 struct bio *parent = bio->bi_private;
314
315 if (!parent->bi_status)
316 parent->bi_status = bio->bi_status;
317 bio_put(bio);
318 return parent;
319 }
320
321 static void bio_chain_endio(struct bio *bio)
322 {
323 bio_endio(__bio_chain_endio(bio));
324 }
325
326 /**
327 * bio_chain - chain bio completions
328 * @bio: the target bio
329 * @parent: the @bio's parent bio
330 *
331 * The caller won't have a bi_end_io called when @bio completes - instead,
332 * @parent's bi_end_io won't be called until both @parent and @bio have
333 * completed; the chained bio will also be freed when it completes.
334 *
335 * The caller must not set bi_private or bi_end_io in @bio.
336 */
337 void bio_chain(struct bio *bio, struct bio *parent)
338 {
339 BUG_ON(bio->bi_private || bio->bi_end_io);
340
341 bio->bi_private = parent;
342 bio->bi_end_io = bio_chain_endio;
343 bio_inc_remaining(parent);
344 }
345 EXPORT_SYMBOL(bio_chain);
346
347 static void bio_alloc_rescue(struct work_struct *work)
348 {
349 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
350 struct bio *bio;
351
352 while (1) {
353 spin_lock(&bs->rescue_lock);
354 bio = bio_list_pop(&bs->rescue_list);
355 spin_unlock(&bs->rescue_lock);
356
357 if (!bio)
358 break;
359
360 generic_make_request(bio);
361 }
362 }
363
364 static void punt_bios_to_rescuer(struct bio_set *bs)
365 {
366 struct bio_list punt, nopunt;
367 struct bio *bio;
368
369 if (WARN_ON_ONCE(!bs->rescue_workqueue))
370 return;
371 /*
372 * In order to guarantee forward progress we must punt only bios that
373 * were allocated from this bio_set; otherwise, if there was a bio on
374 * there for a stacking driver higher up in the stack, processing it
375 * could require allocating bios from this bio_set, and doing that from
376 * our own rescuer would be bad.
377 *
378 * Since bio lists are singly linked, pop them all instead of trying to
379 * remove from the middle of the list:
380 */
381
382 bio_list_init(&punt);
383 bio_list_init(&nopunt);
384
385 while ((bio = bio_list_pop(&current->bio_list[0])))
386 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
387 current->bio_list[0] = nopunt;
388
389 bio_list_init(&nopunt);
390 while ((bio = bio_list_pop(&current->bio_list[1])))
391 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
392 current->bio_list[1] = nopunt;
393
394 spin_lock(&bs->rescue_lock);
395 bio_list_merge(&bs->rescue_list, &punt);
396 spin_unlock(&bs->rescue_lock);
397
398 queue_work(bs->rescue_workqueue, &bs->rescue_work);
399 }
400
401 /**
402 * bio_alloc_bioset - allocate a bio for I/O
403 * @gfp_mask: the GFP_* mask given to the slab allocator
404 * @nr_iovecs: number of iovecs to pre-allocate
405 * @bs: the bio_set to allocate from.
406 *
407 * Description:
408 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
409 * backed by the @bs's mempool.
410 *
411 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
412 * always be able to allocate a bio. This is due to the mempool guarantees.
413 * To make this work, callers must never allocate more than 1 bio at a time
414 * from this pool. Callers that need to allocate more than 1 bio must always
415 * submit the previously allocated bio for IO before attempting to allocate
416 * a new one. Failure to do so can cause deadlocks under memory pressure.
417 *
418 * Note that when running under generic_make_request() (i.e. any block
419 * driver), bios are not submitted until after you return - see the code in
420 * generic_make_request() that converts recursion into iteration, to prevent
421 * stack overflows.
422 *
423 * This would normally mean allocating multiple bios under
424 * generic_make_request() would be susceptible to deadlocks, but we have
425 * deadlock avoidance code that resubmits any blocked bios from a rescuer
426 * thread.
427 *
428 * However, we do not guarantee forward progress for allocations from other
429 * mempools. Doing multiple allocations from the same mempool under
430 * generic_make_request() should be avoided - instead, use bio_set's front_pad
431 * for per bio allocations.
432 *
433 * RETURNS:
434 * Pointer to new bio on success, NULL on failure.
435 */
436 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
437 struct bio_set *bs)
438 {
439 gfp_t saved_gfp = gfp_mask;
440 unsigned front_pad;
441 unsigned inline_vecs;
442 struct bio_vec *bvl = NULL;
443 struct bio *bio;
444 void *p;
445
446 if (!bs) {
447 if (nr_iovecs > UIO_MAXIOV)
448 return NULL;
449
450 p = kmalloc(sizeof(struct bio) +
451 nr_iovecs * sizeof(struct bio_vec),
452 gfp_mask);
453 front_pad = 0;
454 inline_vecs = nr_iovecs;
455 } else {
456 /* should not use nobvec bioset for nr_iovecs > 0 */
457 if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
458 return NULL;
459 /*
460 * generic_make_request() converts recursion to iteration; this
461 * means if we're running beneath it, any bios we allocate and
462 * submit will not be submitted (and thus freed) until after we
463 * return.
464 *
465 * This exposes us to a potential deadlock if we allocate
466 * multiple bios from the same bio_set() while running
467 * underneath generic_make_request(). If we were to allocate
468 * multiple bios (say a stacking block driver that was splitting
469 * bios), we would deadlock if we exhausted the mempool's
470 * reserve.
471 *
472 * We solve this, and guarantee forward progress, with a rescuer
473 * workqueue per bio_set. If we go to allocate and there are
474 * bios on current->bio_list, we first try the allocation
475 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
476 * bios we would be blocking to the rescuer workqueue before
477 * we retry with the original gfp_flags.
478 */
479
480 if (current->bio_list &&
481 (!bio_list_empty(&current->bio_list[0]) ||
482 !bio_list_empty(&current->bio_list[1])) &&
483 bs->rescue_workqueue)
484 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
485
486 p = mempool_alloc(bs->bio_pool, gfp_mask);
487 if (!p && gfp_mask != saved_gfp) {
488 punt_bios_to_rescuer(bs);
489 gfp_mask = saved_gfp;
490 p = mempool_alloc(bs->bio_pool, gfp_mask);
491 }
492
493 front_pad = bs->front_pad;
494 inline_vecs = BIO_INLINE_VECS;
495 }
496
497 if (unlikely(!p))
498 return NULL;
499
500 bio = p + front_pad;
501 bio_init(bio, NULL, 0);
502
503 if (nr_iovecs > inline_vecs) {
504 unsigned long idx = 0;
505
506 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
507 if (!bvl && gfp_mask != saved_gfp) {
508 punt_bios_to_rescuer(bs);
509 gfp_mask = saved_gfp;
510 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
511 }
512
513 if (unlikely(!bvl))
514 goto err_free;
515
516 bio->bi_flags |= idx << BVEC_POOL_OFFSET;
517 } else if (nr_iovecs) {
518 bvl = bio->bi_inline_vecs;
519 }
520
521 bio->bi_pool = bs;
522 bio->bi_max_vecs = nr_iovecs;
523 bio->bi_io_vec = bvl;
524 return bio;
525
526 err_free:
527 mempool_free(p, bs->bio_pool);
528 return NULL;
529 }
530 EXPORT_SYMBOL(bio_alloc_bioset);
531
532 void zero_fill_bio(struct bio *bio)
533 {
534 unsigned long flags;
535 struct bio_vec bv;
536 struct bvec_iter iter;
537
538 bio_for_each_segment(bv, bio, iter) {
539 char *data = bvec_kmap_irq(&bv, &flags);
540 memset(data, 0, bv.bv_len);
541 flush_dcache_page(bv.bv_page);
542 bvec_kunmap_irq(data, &flags);
543 }
544 }
545 EXPORT_SYMBOL(zero_fill_bio);
546
547 /**
548 * bio_put - release a reference to a bio
549 * @bio: bio to release reference to
550 *
551 * Description:
552 * Put a reference to a &struct bio, either one you have gotten with
553 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
554 **/
555 void bio_put(struct bio *bio)
556 {
557 if (!bio_flagged(bio, BIO_REFFED))
558 bio_free(bio);
559 else {
560 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
561
562 /*
563 * last put frees it
564 */
565 if (atomic_dec_and_test(&bio->__bi_cnt))
566 bio_free(bio);
567 }
568 }
569 EXPORT_SYMBOL(bio_put);
570
571 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
572 {
573 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
574 blk_recount_segments(q, bio);
575
576 return bio->bi_phys_segments;
577 }
578 EXPORT_SYMBOL(bio_phys_segments);
579
580 /**
581 * __bio_clone_fast - clone a bio that shares the original bio's biovec
582 * @bio: destination bio
583 * @bio_src: bio to clone
584 *
585 * Clone a &bio. Caller will own the returned bio, but not
586 * the actual data it points to. Reference count of returned
587 * bio will be one.
588 *
589 * Caller must ensure that @bio_src is not freed before @bio.
590 */
591 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
592 {
593 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
594
595 /*
596 * most users will be overriding ->bi_disk with a new target,
597 * so we don't set nor calculate new physical/hw segment counts here
598 */
599 bio->bi_disk = bio_src->bi_disk;
600 bio->bi_partno = bio_src->bi_partno;
601 bio_set_flag(bio, BIO_CLONED);
602 if (bio_flagged(bio_src, BIO_THROTTLED))
603 bio_set_flag(bio, BIO_THROTTLED);
604 bio->bi_opf = bio_src->bi_opf;
605 bio->bi_write_hint = bio_src->bi_write_hint;
606 bio->bi_iter = bio_src->bi_iter;
607 bio->bi_io_vec = bio_src->bi_io_vec;
608
609 bio_clone_blkcg_association(bio, bio_src);
610 }
611 EXPORT_SYMBOL(__bio_clone_fast);
612
613 /**
614 * bio_clone_fast - clone a bio that shares the original bio's biovec
615 * @bio: bio to clone
616 * @gfp_mask: allocation priority
617 * @bs: bio_set to allocate from
618 *
619 * Like __bio_clone_fast, only also allocates the returned bio
620 */
621 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
622 {
623 struct bio *b;
624
625 b = bio_alloc_bioset(gfp_mask, 0, bs);
626 if (!b)
627 return NULL;
628
629 __bio_clone_fast(b, bio);
630
631 if (bio_integrity(bio)) {
632 int ret;
633
634 ret = bio_integrity_clone(b, bio, gfp_mask);
635
636 if (ret < 0) {
637 bio_put(b);
638 return NULL;
639 }
640 }
641
642 return b;
643 }
644 EXPORT_SYMBOL(bio_clone_fast);
645
646 /**
647 * bio_clone_bioset - clone a bio
648 * @bio_src: bio to clone
649 * @gfp_mask: allocation priority
650 * @bs: bio_set to allocate from
651 *
652 * Clone bio. Caller will own the returned bio, but not the actual data it
653 * points to. Reference count of returned bio will be one.
654 */
655 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
656 struct bio_set *bs)
657 {
658 struct bvec_iter iter;
659 struct bio_vec bv;
660 struct bio *bio;
661
662 /*
663 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
664 * bio_src->bi_io_vec to bio->bi_io_vec.
665 *
666 * We can't do that anymore, because:
667 *
668 * - The point of cloning the biovec is to produce a bio with a biovec
669 * the caller can modify: bi_idx and bi_bvec_done should be 0.
670 *
671 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if
672 * we tried to clone the whole thing bio_alloc_bioset() would fail.
673 * But the clone should succeed as long as the number of biovecs we
674 * actually need to allocate is fewer than BIO_MAX_PAGES.
675 *
676 * - Lastly, bi_vcnt should not be looked at or relied upon by code
677 * that does not own the bio - reason being drivers don't use it for
678 * iterating over the biovec anymore, so expecting it to be kept up
679 * to date (i.e. for clones that share the parent biovec) is just
680 * asking for trouble and would force extra work on
681 * __bio_clone_fast() anyways.
682 */
683
684 bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
685 if (!bio)
686 return NULL;
687 bio->bi_disk = bio_src->bi_disk;
688 bio->bi_opf = bio_src->bi_opf;
689 bio->bi_write_hint = bio_src->bi_write_hint;
690 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector;
691 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size;
692
693 switch (bio_op(bio)) {
694 case REQ_OP_DISCARD:
695 case REQ_OP_SECURE_ERASE:
696 case REQ_OP_WRITE_ZEROES:
697 break;
698 case REQ_OP_WRITE_SAME:
699 bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
700 break;
701 default:
702 bio_for_each_segment(bv, bio_src, iter)
703 bio->bi_io_vec[bio->bi_vcnt++] = bv;
704 break;
705 }
706
707 if (bio_integrity(bio_src)) {
708 int ret;
709
710 ret = bio_integrity_clone(bio, bio_src, gfp_mask);
711 if (ret < 0) {
712 bio_put(bio);
713 return NULL;
714 }
715 }
716
717 bio_clone_blkcg_association(bio, bio_src);
718
719 return bio;
720 }
721 EXPORT_SYMBOL(bio_clone_bioset);
722
723 /**
724 * bio_add_pc_page - attempt to add page to bio
725 * @q: the target queue
726 * @bio: destination bio
727 * @page: page to add
728 * @len: vec entry length
729 * @offset: vec entry offset
730 *
731 * Attempt to add a page to the bio_vec maplist. This can fail for a
732 * number of reasons, such as the bio being full or target block device
733 * limitations. The target block device must allow bio's up to PAGE_SIZE,
734 * so it is always possible to add a single page to an empty bio.
735 *
736 * This should only be used by REQ_PC bios.
737 */
738 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
739 *page, unsigned int len, unsigned int offset)
740 {
741 int retried_segments = 0;
742 struct bio_vec *bvec;
743
744 /*
745 * cloned bio must not modify vec list
746 */
747 if (unlikely(bio_flagged(bio, BIO_CLONED)))
748 return 0;
749
750 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
751 return 0;
752
753 /*
754 * For filesystems with a blocksize smaller than the pagesize
755 * we will often be called with the same page as last time and
756 * a consecutive offset. Optimize this special case.
757 */
758 if (bio->bi_vcnt > 0) {
759 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
760
761 if (page == prev->bv_page &&
762 offset == prev->bv_offset + prev->bv_len) {
763 prev->bv_len += len;
764 bio->bi_iter.bi_size += len;
765 goto done;
766 }
767
768 /*
769 * If the queue doesn't support SG gaps and adding this
770 * offset would create a gap, disallow it.
771 */
772 if (bvec_gap_to_prev(q, prev, offset))
773 return 0;
774 }
775
776 if (bio->bi_vcnt >= bio->bi_max_vecs)
777 return 0;
778
779 /*
780 * setup the new entry, we might clear it again later if we
781 * cannot add the page
782 */
783 bvec = &bio->bi_io_vec[bio->bi_vcnt];
784 bvec->bv_page = page;
785 bvec->bv_len = len;
786 bvec->bv_offset = offset;
787 bio->bi_vcnt++;
788 bio->bi_phys_segments++;
789 bio->bi_iter.bi_size += len;
790
791 /*
792 * Perform a recount if the number of segments is greater
793 * than queue_max_segments(q).
794 */
795
796 while (bio->bi_phys_segments > queue_max_segments(q)) {
797
798 if (retried_segments)
799 goto failed;
800
801 retried_segments = 1;
802 blk_recount_segments(q, bio);
803 }
804
805 /* If we may be able to merge these biovecs, force a recount */
806 if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
807 bio_clear_flag(bio, BIO_SEG_VALID);
808
809 done:
810 return len;
811
812 failed:
813 bvec->bv_page = NULL;
814 bvec->bv_len = 0;
815 bvec->bv_offset = 0;
816 bio->bi_vcnt--;
817 bio->bi_iter.bi_size -= len;
818 blk_recount_segments(q, bio);
819 return 0;
820 }
821 EXPORT_SYMBOL(bio_add_pc_page);
822
823 /**
824 * bio_add_page - attempt to add page to bio
825 * @bio: destination bio
826 * @page: page to add
827 * @len: vec entry length
828 * @offset: vec entry offset
829 *
830 * Attempt to add a page to the bio_vec maplist. This will only fail
831 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
832 */
833 int bio_add_page(struct bio *bio, struct page *page,
834 unsigned int len, unsigned int offset)
835 {
836 struct bio_vec *bv;
837
838 /*
839 * cloned bio must not modify vec list
840 */
841 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
842 return 0;
843
844 /*
845 * For filesystems with a blocksize smaller than the pagesize
846 * we will often be called with the same page as last time and
847 * a consecutive offset. Optimize this special case.
848 */
849 if (bio->bi_vcnt > 0) {
850 bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
851
852 if (page == bv->bv_page &&
853 offset == bv->bv_offset + bv->bv_len) {
854 bv->bv_len += len;
855 goto done;
856 }
857 }
858
859 if (bio->bi_vcnt >= bio->bi_max_vecs)
860 return 0;
861
862 bv = &bio->bi_io_vec[bio->bi_vcnt];
863 bv->bv_page = page;
864 bv->bv_len = len;
865 bv->bv_offset = offset;
866
867 bio->bi_vcnt++;
868 done:
869 bio->bi_iter.bi_size += len;
870 return len;
871 }
872 EXPORT_SYMBOL(bio_add_page);
873
874 /**
875 * bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
876 * @bio: bio to add pages to
877 * @iter: iov iterator describing the region to be mapped
878 *
879 * Pins as many pages from *iter and appends them to @bio's bvec array. The
880 * pages will have to be released using put_page() when done.
881 */
882 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
883 {
884 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
885 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
886 struct page **pages = (struct page **)bv;
887 size_t offset, diff;
888 ssize_t size;
889
890 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
891 if (unlikely(size <= 0))
892 return size ? size : -EFAULT;
893 nr_pages = (size + offset + PAGE_SIZE - 1) / PAGE_SIZE;
894
895 /*
896 * Deep magic below: We need to walk the pinned pages backwards
897 * because we are abusing the space allocated for the bio_vecs
898 * for the page array. Because the bio_vecs are larger than the
899 * page pointers by definition this will always work. But it also
900 * means we can't use bio_add_page, so any changes to it's semantics
901 * need to be reflected here as well.
902 */
903 bio->bi_iter.bi_size += size;
904 bio->bi_vcnt += nr_pages;
905
906 diff = (nr_pages * PAGE_SIZE - offset) - size;
907 while (nr_pages--) {
908 bv[nr_pages].bv_page = pages[nr_pages];
909 bv[nr_pages].bv_len = PAGE_SIZE;
910 bv[nr_pages].bv_offset = 0;
911 }
912
913 bv[0].bv_offset += offset;
914 bv[0].bv_len -= offset;
915 if (diff)
916 bv[bio->bi_vcnt - 1].bv_len -= diff;
917
918 iov_iter_advance(iter, size);
919 return 0;
920 }
921 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
922
923 static void submit_bio_wait_endio(struct bio *bio)
924 {
925 complete(bio->bi_private);
926 }
927
928 /**
929 * submit_bio_wait - submit a bio, and wait until it completes
930 * @bio: The &struct bio which describes the I/O
931 *
932 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
933 * bio_endio() on failure.
934 *
935 * WARNING: Unlike to how submit_bio() is usually used, this function does not
936 * result in bio reference to be consumed. The caller must drop the reference
937 * on his own.
938 */
939 int submit_bio_wait(struct bio *bio)
940 {
941 DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
942
943 bio->bi_private = &done;
944 bio->bi_end_io = submit_bio_wait_endio;
945 bio->bi_opf |= REQ_SYNC;
946 submit_bio(bio);
947 wait_for_completion_io(&done);
948
949 return blk_status_to_errno(bio->bi_status);
950 }
951 EXPORT_SYMBOL(submit_bio_wait);
952
953 /**
954 * bio_advance - increment/complete a bio by some number of bytes
955 * @bio: bio to advance
956 * @bytes: number of bytes to complete
957 *
958 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
959 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
960 * be updated on the last bvec as well.
961 *
962 * @bio will then represent the remaining, uncompleted portion of the io.
963 */
964 void bio_advance(struct bio *bio, unsigned bytes)
965 {
966 if (bio_integrity(bio))
967 bio_integrity_advance(bio, bytes);
968
969 bio_advance_iter(bio, &bio->bi_iter, bytes);
970 }
971 EXPORT_SYMBOL(bio_advance);
972
973 /**
974 * bio_alloc_pages - allocates a single page for each bvec in a bio
975 * @bio: bio to allocate pages for
976 * @gfp_mask: flags for allocation
977 *
978 * Allocates pages up to @bio->bi_vcnt.
979 *
980 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
981 * freed.
982 */
983 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
984 {
985 int i;
986 struct bio_vec *bv;
987
988 bio_for_each_segment_all(bv, bio, i) {
989 bv->bv_page = alloc_page(gfp_mask);
990 if (!bv->bv_page) {
991 while (--bv >= bio->bi_io_vec)
992 __free_page(bv->bv_page);
993 return -ENOMEM;
994 }
995 }
996
997 return 0;
998 }
999 EXPORT_SYMBOL(bio_alloc_pages);
1000
1001 /**
1002 * bio_copy_data - copy contents of data buffers from one chain of bios to
1003 * another
1004 * @src: source bio list
1005 * @dst: destination bio list
1006 *
1007 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
1008 * @src and @dst as linked lists of bios.
1009 *
1010 * Stops when it reaches the end of either @src or @dst - that is, copies
1011 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1012 */
1013 void bio_copy_data(struct bio *dst, struct bio *src)
1014 {
1015 struct bvec_iter src_iter, dst_iter;
1016 struct bio_vec src_bv, dst_bv;
1017 void *src_p, *dst_p;
1018 unsigned bytes;
1019
1020 src_iter = src->bi_iter;
1021 dst_iter = dst->bi_iter;
1022
1023 while (1) {
1024 if (!src_iter.bi_size) {
1025 src = src->bi_next;
1026 if (!src)
1027 break;
1028
1029 src_iter = src->bi_iter;
1030 }
1031
1032 if (!dst_iter.bi_size) {
1033 dst = dst->bi_next;
1034 if (!dst)
1035 break;
1036
1037 dst_iter = dst->bi_iter;
1038 }
1039
1040 src_bv = bio_iter_iovec(src, src_iter);
1041 dst_bv = bio_iter_iovec(dst, dst_iter);
1042
1043 bytes = min(src_bv.bv_len, dst_bv.bv_len);
1044
1045 src_p = kmap_atomic(src_bv.bv_page);
1046 dst_p = kmap_atomic(dst_bv.bv_page);
1047
1048 memcpy(dst_p + dst_bv.bv_offset,
1049 src_p + src_bv.bv_offset,
1050 bytes);
1051
1052 kunmap_atomic(dst_p);
1053 kunmap_atomic(src_p);
1054
1055 bio_advance_iter(src, &src_iter, bytes);
1056 bio_advance_iter(dst, &dst_iter, bytes);
1057 }
1058 }
1059 EXPORT_SYMBOL(bio_copy_data);
1060
1061 struct bio_map_data {
1062 int is_our_pages;
1063 struct iov_iter iter;
1064 struct iovec iov[];
1065 };
1066
1067 static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
1068 gfp_t gfp_mask)
1069 {
1070 struct bio_map_data *bmd;
1071 if (data->nr_segs > UIO_MAXIOV)
1072 return NULL;
1073
1074 bmd = kmalloc(sizeof(struct bio_map_data) +
1075 sizeof(struct iovec) * data->nr_segs, gfp_mask);
1076 if (!bmd)
1077 return NULL;
1078 memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
1079 bmd->iter = *data;
1080 bmd->iter.iov = bmd->iov;
1081 return bmd;
1082 }
1083
1084 /**
1085 * bio_copy_from_iter - copy all pages from iov_iter to bio
1086 * @bio: The &struct bio which describes the I/O as destination
1087 * @iter: iov_iter as source
1088 *
1089 * Copy all pages from iov_iter to bio.
1090 * Returns 0 on success, or error on failure.
1091 */
1092 static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
1093 {
1094 int i;
1095 struct bio_vec *bvec;
1096
1097 bio_for_each_segment_all(bvec, bio, i) {
1098 ssize_t ret;
1099
1100 ret = copy_page_from_iter(bvec->bv_page,
1101 bvec->bv_offset,
1102 bvec->bv_len,
1103 iter);
1104
1105 if (!iov_iter_count(iter))
1106 break;
1107
1108 if (ret < bvec->bv_len)
1109 return -EFAULT;
1110 }
1111
1112 return 0;
1113 }
1114
1115 /**
1116 * bio_copy_to_iter - copy all pages from bio to iov_iter
1117 * @bio: The &struct bio which describes the I/O as source
1118 * @iter: iov_iter as destination
1119 *
1120 * Copy all pages from bio to iov_iter.
1121 * Returns 0 on success, or error on failure.
1122 */
1123 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1124 {
1125 int i;
1126 struct bio_vec *bvec;
1127
1128 bio_for_each_segment_all(bvec, bio, i) {
1129 ssize_t ret;
1130
1131 ret = copy_page_to_iter(bvec->bv_page,
1132 bvec->bv_offset,
1133 bvec->bv_len,
1134 &iter);
1135
1136 if (!iov_iter_count(&iter))
1137 break;
1138
1139 if (ret < bvec->bv_len)
1140 return -EFAULT;
1141 }
1142
1143 return 0;
1144 }
1145
1146 void bio_free_pages(struct bio *bio)
1147 {
1148 struct bio_vec *bvec;
1149 int i;
1150
1151 bio_for_each_segment_all(bvec, bio, i)
1152 __free_page(bvec->bv_page);
1153 }
1154 EXPORT_SYMBOL(bio_free_pages);
1155
1156 /**
1157 * bio_uncopy_user - finish previously mapped bio
1158 * @bio: bio being terminated
1159 *
1160 * Free pages allocated from bio_copy_user_iov() and write back data
1161 * to user space in case of a read.
1162 */
1163 int bio_uncopy_user(struct bio *bio)
1164 {
1165 struct bio_map_data *bmd = bio->bi_private;
1166 int ret = 0;
1167
1168 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1169 /*
1170 * if we're in a workqueue, the request is orphaned, so
1171 * don't copy into a random user address space, just free
1172 * and return -EINTR so user space doesn't expect any data.
1173 */
1174 if (!current->mm)
1175 ret = -EINTR;
1176 else if (bio_data_dir(bio) == READ)
1177 ret = bio_copy_to_iter(bio, bmd->iter);
1178 if (bmd->is_our_pages)
1179 bio_free_pages(bio);
1180 }
1181 kfree(bmd);
1182 bio_put(bio);
1183 return ret;
1184 }
1185
1186 /**
1187 * bio_copy_user_iov - copy user data to bio
1188 * @q: destination block queue
1189 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1190 * @iter: iovec iterator
1191 * @gfp_mask: memory allocation flags
1192 *
1193 * Prepares and returns a bio for indirect user io, bouncing data
1194 * to/from kernel pages as necessary. Must be paired with
1195 * call bio_uncopy_user() on io completion.
1196 */
1197 struct bio *bio_copy_user_iov(struct request_queue *q,
1198 struct rq_map_data *map_data,
1199 struct iov_iter *iter,
1200 gfp_t gfp_mask)
1201 {
1202 struct bio_map_data *bmd;
1203 struct page *page;
1204 struct bio *bio;
1205 int i = 0, ret;
1206 int nr_pages;
1207 unsigned int len = iter->count;
1208 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1209
1210 bmd = bio_alloc_map_data(iter, gfp_mask);
1211 if (!bmd)
1212 return ERR_PTR(-ENOMEM);
1213
1214 /*
1215 * We need to do a deep copy of the iov_iter including the iovecs.
1216 * The caller provided iov might point to an on-stack or otherwise
1217 * shortlived one.
1218 */
1219 bmd->is_our_pages = map_data ? 0 : 1;
1220
1221 nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1222 if (nr_pages > BIO_MAX_PAGES)
1223 nr_pages = BIO_MAX_PAGES;
1224
1225 ret = -ENOMEM;
1226 bio = bio_kmalloc(gfp_mask, nr_pages);
1227 if (!bio)
1228 goto out_bmd;
1229
1230 ret = 0;
1231
1232 if (map_data) {
1233 nr_pages = 1 << map_data->page_order;
1234 i = map_data->offset / PAGE_SIZE;
1235 }
1236 while (len) {
1237 unsigned int bytes = PAGE_SIZE;
1238
1239 bytes -= offset;
1240
1241 if (bytes > len)
1242 bytes = len;
1243
1244 if (map_data) {
1245 if (i == map_data->nr_entries * nr_pages) {
1246 ret = -ENOMEM;
1247 break;
1248 }
1249
1250 page = map_data->pages[i / nr_pages];
1251 page += (i % nr_pages);
1252
1253 i++;
1254 } else {
1255 page = alloc_page(q->bounce_gfp | gfp_mask);
1256 if (!page) {
1257 ret = -ENOMEM;
1258 break;
1259 }
1260 }
1261
1262 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1263 break;
1264
1265 len -= bytes;
1266 offset = 0;
1267 }
1268
1269 if (ret)
1270 goto cleanup;
1271
1272 if (map_data)
1273 map_data->offset += bio->bi_iter.bi_size;
1274
1275 /*
1276 * success
1277 */
1278 if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
1279 (map_data && map_data->from_user)) {
1280 ret = bio_copy_from_iter(bio, iter);
1281 if (ret)
1282 goto cleanup;
1283 } else {
1284 iov_iter_advance(iter, bio->bi_iter.bi_size);
1285 }
1286
1287 bio->bi_private = bmd;
1288 if (map_data && map_data->null_mapped)
1289 bio_set_flag(bio, BIO_NULL_MAPPED);
1290 return bio;
1291 cleanup:
1292 if (!map_data)
1293 bio_free_pages(bio);
1294 bio_put(bio);
1295 out_bmd:
1296 kfree(bmd);
1297 return ERR_PTR(ret);
1298 }
1299
1300 /**
1301 * bio_map_user_iov - map user iovec into bio
1302 * @q: the struct request_queue for the bio
1303 * @iter: iovec iterator
1304 * @gfp_mask: memory allocation flags
1305 *
1306 * Map the user space address into a bio suitable for io to a block
1307 * device. Returns an error pointer in case of error.
1308 */
1309 struct bio *bio_map_user_iov(struct request_queue *q,
1310 struct iov_iter *iter,
1311 gfp_t gfp_mask)
1312 {
1313 int j;
1314 struct bio *bio;
1315 int ret;
1316 struct bio_vec *bvec;
1317
1318 if (!iov_iter_count(iter))
1319 return ERR_PTR(-EINVAL);
1320
1321 bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES));
1322 if (!bio)
1323 return ERR_PTR(-ENOMEM);
1324
1325 while (iov_iter_count(iter)) {
1326 struct page **pages;
1327 ssize_t bytes;
1328 size_t offs, added = 0;
1329 int npages;
1330
1331 bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
1332 if (unlikely(bytes <= 0)) {
1333 ret = bytes ? bytes : -EFAULT;
1334 goto out_unmap;
1335 }
1336
1337 npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
1338
1339 if (unlikely(offs & queue_dma_alignment(q))) {
1340 ret = -EINVAL;
1341 j = 0;
1342 } else {
1343 for (j = 0; j < npages; j++) {
1344 struct page *page = pages[j];
1345 unsigned int n = PAGE_SIZE - offs;
1346 unsigned short prev_bi_vcnt = bio->bi_vcnt;
1347
1348 if (n > bytes)
1349 n = bytes;
1350
1351 if (!bio_add_pc_page(q, bio, page, n, offs))
1352 break;
1353
1354 /*
1355 * check if vector was merged with previous
1356 * drop page reference if needed
1357 */
1358 if (bio->bi_vcnt == prev_bi_vcnt)
1359 put_page(page);
1360
1361 added += n;
1362 bytes -= n;
1363 offs = 0;
1364 }
1365 iov_iter_advance(iter, added);
1366 }
1367 /*
1368 * release the pages we didn't map into the bio, if any
1369 */
1370 while (j < npages)
1371 put_page(pages[j++]);
1372 kvfree(pages);
1373 /* couldn't stuff something into bio? */
1374 if (bytes)
1375 break;
1376 }
1377
1378 bio_set_flag(bio, BIO_USER_MAPPED);
1379
1380 /*
1381 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
1382 * it would normally disappear when its bi_end_io is run.
1383 * however, we need it for the unmap, so grab an extra
1384 * reference to it
1385 */
1386 bio_get(bio);
1387 return bio;
1388
1389 out_unmap:
1390 bio_for_each_segment_all(bvec, bio, j) {
1391 put_page(bvec->bv_page);
1392 }
1393 bio_put(bio);
1394 return ERR_PTR(ret);
1395 }
1396
1397 static void __bio_unmap_user(struct bio *bio)
1398 {
1399 struct bio_vec *bvec;
1400 int i;
1401
1402 /*
1403 * make sure we dirty pages we wrote to
1404 */
1405 bio_for_each_segment_all(bvec, bio, i) {
1406 if (bio_data_dir(bio) == READ)
1407 set_page_dirty_lock(bvec->bv_page);
1408
1409 put_page(bvec->bv_page);
1410 }
1411
1412 bio_put(bio);
1413 }
1414
1415 /**
1416 * bio_unmap_user - unmap a bio
1417 * @bio: the bio being unmapped
1418 *
1419 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1420 * process context.
1421 *
1422 * bio_unmap_user() may sleep.
1423 */
1424 void bio_unmap_user(struct bio *bio)
1425 {
1426 __bio_unmap_user(bio);
1427 bio_put(bio);
1428 }
1429
1430 static void bio_map_kern_endio(struct bio *bio)
1431 {
1432 bio_put(bio);
1433 }
1434
1435 /**
1436 * bio_map_kern - map kernel address into bio
1437 * @q: the struct request_queue for the bio
1438 * @data: pointer to buffer to map
1439 * @len: length in bytes
1440 * @gfp_mask: allocation flags for bio allocation
1441 *
1442 * Map the kernel address into a bio suitable for io to a block
1443 * device. Returns an error pointer in case of error.
1444 */
1445 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1446 gfp_t gfp_mask)
1447 {
1448 unsigned long kaddr = (unsigned long)data;
1449 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1450 unsigned long start = kaddr >> PAGE_SHIFT;
1451 const int nr_pages = end - start;
1452 int offset, i;
1453 struct bio *bio;
1454
1455 bio = bio_kmalloc(gfp_mask, nr_pages);
1456 if (!bio)
1457 return ERR_PTR(-ENOMEM);
1458
1459 offset = offset_in_page(kaddr);
1460 for (i = 0; i < nr_pages; i++) {
1461 unsigned int bytes = PAGE_SIZE - offset;
1462
1463 if (len <= 0)
1464 break;
1465
1466 if (bytes > len)
1467 bytes = len;
1468
1469 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1470 offset) < bytes) {
1471 /* we don't support partial mappings */
1472 bio_put(bio);
1473 return ERR_PTR(-EINVAL);
1474 }
1475
1476 data += bytes;
1477 len -= bytes;
1478 offset = 0;
1479 }
1480
1481 bio->bi_end_io = bio_map_kern_endio;
1482 return bio;
1483 }
1484 EXPORT_SYMBOL(bio_map_kern);
1485
1486 static void bio_copy_kern_endio(struct bio *bio)
1487 {
1488 bio_free_pages(bio);
1489 bio_put(bio);
1490 }
1491
1492 static void bio_copy_kern_endio_read(struct bio *bio)
1493 {
1494 char *p = bio->bi_private;
1495 struct bio_vec *bvec;
1496 int i;
1497
1498 bio_for_each_segment_all(bvec, bio, i) {
1499 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1500 p += bvec->bv_len;
1501 }
1502
1503 bio_copy_kern_endio(bio);
1504 }
1505
1506 /**
1507 * bio_copy_kern - copy kernel address into bio
1508 * @q: the struct request_queue for the bio
1509 * @data: pointer to buffer to copy
1510 * @len: length in bytes
1511 * @gfp_mask: allocation flags for bio and page allocation
1512 * @reading: data direction is READ
1513 *
1514 * copy the kernel address into a bio suitable for io to a block
1515 * device. Returns an error pointer in case of error.
1516 */
1517 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1518 gfp_t gfp_mask, int reading)
1519 {
1520 unsigned long kaddr = (unsigned long)data;
1521 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1522 unsigned long start = kaddr >> PAGE_SHIFT;
1523 struct bio *bio;
1524 void *p = data;
1525 int nr_pages = 0;
1526
1527 /*
1528 * Overflow, abort
1529 */
1530 if (end < start)
1531 return ERR_PTR(-EINVAL);
1532
1533 nr_pages = end - start;
1534 bio = bio_kmalloc(gfp_mask, nr_pages);
1535 if (!bio)
1536 return ERR_PTR(-ENOMEM);
1537
1538 while (len) {
1539 struct page *page;
1540 unsigned int bytes = PAGE_SIZE;
1541
1542 if (bytes > len)
1543 bytes = len;
1544
1545 page = alloc_page(q->bounce_gfp | gfp_mask);
1546 if (!page)
1547 goto cleanup;
1548
1549 if (!reading)
1550 memcpy(page_address(page), p, bytes);
1551
1552 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1553 break;
1554
1555 len -= bytes;
1556 p += bytes;
1557 }
1558
1559 if (reading) {
1560 bio->bi_end_io = bio_copy_kern_endio_read;
1561 bio->bi_private = data;
1562 } else {
1563 bio->bi_end_io = bio_copy_kern_endio;
1564 }
1565
1566 return bio;
1567
1568 cleanup:
1569 bio_free_pages(bio);
1570 bio_put(bio);
1571 return ERR_PTR(-ENOMEM);
1572 }
1573
1574 /*
1575 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1576 * for performing direct-IO in BIOs.
1577 *
1578 * The problem is that we cannot run set_page_dirty() from interrupt context
1579 * because the required locks are not interrupt-safe. So what we can do is to
1580 * mark the pages dirty _before_ performing IO. And in interrupt context,
1581 * check that the pages are still dirty. If so, fine. If not, redirty them
1582 * in process context.
1583 *
1584 * We special-case compound pages here: normally this means reads into hugetlb
1585 * pages. The logic in here doesn't really work right for compound pages
1586 * because the VM does not uniformly chase down the head page in all cases.
1587 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1588 * handle them at all. So we skip compound pages here at an early stage.
1589 *
1590 * Note that this code is very hard to test under normal circumstances because
1591 * direct-io pins the pages with get_user_pages(). This makes
1592 * is_page_cache_freeable return false, and the VM will not clean the pages.
1593 * But other code (eg, flusher threads) could clean the pages if they are mapped
1594 * pagecache.
1595 *
1596 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1597 * deferred bio dirtying paths.
1598 */
1599
1600 /*
1601 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1602 */
1603 void bio_set_pages_dirty(struct bio *bio)
1604 {
1605 struct bio_vec *bvec;
1606 int i;
1607
1608 bio_for_each_segment_all(bvec, bio, i) {
1609 struct page *page = bvec->bv_page;
1610
1611 if (page && !PageCompound(page))
1612 set_page_dirty_lock(page);
1613 }
1614 }
1615
1616 static void bio_release_pages(struct bio *bio)
1617 {
1618 struct bio_vec *bvec;
1619 int i;
1620
1621 bio_for_each_segment_all(bvec, bio, i) {
1622 struct page *page = bvec->bv_page;
1623
1624 if (page)
1625 put_page(page);
1626 }
1627 }
1628
1629 /*
1630 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1631 * If they are, then fine. If, however, some pages are clean then they must
1632 * have been written out during the direct-IO read. So we take another ref on
1633 * the BIO and the offending pages and re-dirty the pages in process context.
1634 *
1635 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1636 * here on. It will run one put_page() against each page and will run one
1637 * bio_put() against the BIO.
1638 */
1639
1640 static void bio_dirty_fn(struct work_struct *work);
1641
1642 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1643 static DEFINE_SPINLOCK(bio_dirty_lock);
1644 static struct bio *bio_dirty_list;
1645
1646 /*
1647 * This runs in process context
1648 */
1649 static void bio_dirty_fn(struct work_struct *work)
1650 {
1651 unsigned long flags;
1652 struct bio *bio;
1653
1654 spin_lock_irqsave(&bio_dirty_lock, flags);
1655 bio = bio_dirty_list;
1656 bio_dirty_list = NULL;
1657 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1658
1659 while (bio) {
1660 struct bio *next = bio->bi_private;
1661
1662 bio_set_pages_dirty(bio);
1663 bio_release_pages(bio);
1664 bio_put(bio);
1665 bio = next;
1666 }
1667 }
1668
1669 void bio_check_pages_dirty(struct bio *bio)
1670 {
1671 struct bio_vec *bvec;
1672 int nr_clean_pages = 0;
1673 int i;
1674
1675 bio_for_each_segment_all(bvec, bio, i) {
1676 struct page *page = bvec->bv_page;
1677
1678 if (PageDirty(page) || PageCompound(page)) {
1679 put_page(page);
1680 bvec->bv_page = NULL;
1681 } else {
1682 nr_clean_pages++;
1683 }
1684 }
1685
1686 if (nr_clean_pages) {
1687 unsigned long flags;
1688
1689 spin_lock_irqsave(&bio_dirty_lock, flags);
1690 bio->bi_private = bio_dirty_list;
1691 bio_dirty_list = bio;
1692 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1693 schedule_work(&bio_dirty_work);
1694 } else {
1695 bio_put(bio);
1696 }
1697 }
1698
1699 void generic_start_io_acct(struct request_queue *q, int rw,
1700 unsigned long sectors, struct hd_struct *part)
1701 {
1702 int cpu = part_stat_lock();
1703
1704 part_round_stats(q, cpu, part);
1705 part_stat_inc(cpu, part, ios[rw]);
1706 part_stat_add(cpu, part, sectors[rw], sectors);
1707 part_inc_in_flight(q, part, rw);
1708
1709 part_stat_unlock();
1710 }
1711 EXPORT_SYMBOL(generic_start_io_acct);
1712
1713 void generic_end_io_acct(struct request_queue *q, int rw,
1714 struct hd_struct *part, unsigned long start_time)
1715 {
1716 unsigned long duration = jiffies - start_time;
1717 int cpu = part_stat_lock();
1718
1719 part_stat_add(cpu, part, ticks[rw], duration);
1720 part_round_stats(q, cpu, part);
1721 part_dec_in_flight(q, part, rw);
1722
1723 part_stat_unlock();
1724 }
1725 EXPORT_SYMBOL(generic_end_io_acct);
1726
1727 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1728 void bio_flush_dcache_pages(struct bio *bi)
1729 {
1730 struct bio_vec bvec;
1731 struct bvec_iter iter;
1732
1733 bio_for_each_segment(bvec, bi, iter)
1734 flush_dcache_page(bvec.bv_page);
1735 }
1736 EXPORT_SYMBOL(bio_flush_dcache_pages);
1737 #endif
1738
1739 static inline bool bio_remaining_done(struct bio *bio)
1740 {
1741 /*
1742 * If we're not chaining, then ->__bi_remaining is always 1 and
1743 * we always end io on the first invocation.
1744 */
1745 if (!bio_flagged(bio, BIO_CHAIN))
1746 return true;
1747
1748 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1749
1750 if (atomic_dec_and_test(&bio->__bi_remaining)) {
1751 bio_clear_flag(bio, BIO_CHAIN);
1752 return true;
1753 }
1754
1755 return false;
1756 }
1757
1758 /**
1759 * bio_endio - end I/O on a bio
1760 * @bio: bio
1761 *
1762 * Description:
1763 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1764 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1765 * bio unless they own it and thus know that it has an end_io function.
1766 *
1767 * bio_endio() can be called several times on a bio that has been chained
1768 * using bio_chain(). The ->bi_end_io() function will only be called the
1769 * last time. At this point the BLK_TA_COMPLETE tracing event will be
1770 * generated if BIO_TRACE_COMPLETION is set.
1771 **/
1772 void bio_endio(struct bio *bio)
1773 {
1774 again:
1775 if (!bio_remaining_done(bio))
1776 return;
1777 if (!bio_integrity_endio(bio))
1778 return;
1779
1780 /*
1781 * Need to have a real endio function for chained bios, otherwise
1782 * various corner cases will break (like stacking block devices that
1783 * save/restore bi_end_io) - however, we want to avoid unbounded
1784 * recursion and blowing the stack. Tail call optimization would
1785 * handle this, but compiling with frame pointers also disables
1786 * gcc's sibling call optimization.
1787 */
1788 if (bio->bi_end_io == bio_chain_endio) {
1789 bio = __bio_chain_endio(bio);
1790 goto again;
1791 }
1792
1793 if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1794 trace_block_bio_complete(bio->bi_disk->queue, bio,
1795 blk_status_to_errno(bio->bi_status));
1796 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1797 }
1798
1799 blk_throtl_bio_endio(bio);
1800 /* release cgroup info */
1801 bio_uninit(bio);
1802 if (bio->bi_end_io)
1803 bio->bi_end_io(bio);
1804 }
1805 EXPORT_SYMBOL(bio_endio);
1806
1807 /**
1808 * bio_split - split a bio
1809 * @bio: bio to split
1810 * @sectors: number of sectors to split from the front of @bio
1811 * @gfp: gfp mask
1812 * @bs: bio set to allocate from
1813 *
1814 * Allocates and returns a new bio which represents @sectors from the start of
1815 * @bio, and updates @bio to represent the remaining sectors.
1816 *
1817 * Unless this is a discard request the newly allocated bio will point
1818 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1819 * @bio is not freed before the split.
1820 */
1821 struct bio *bio_split(struct bio *bio, int sectors,
1822 gfp_t gfp, struct bio_set *bs)
1823 {
1824 struct bio *split;
1825
1826 BUG_ON(sectors <= 0);
1827 BUG_ON(sectors >= bio_sectors(bio));
1828
1829 split = bio_clone_fast(bio, gfp, bs);
1830 if (!split)
1831 return NULL;
1832
1833 split->bi_iter.bi_size = sectors << 9;
1834
1835 if (bio_integrity(split))
1836 bio_integrity_trim(split);
1837
1838 bio_advance(bio, split->bi_iter.bi_size);
1839
1840 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1841 bio_set_flag(split, BIO_TRACE_COMPLETION);
1842
1843 return split;
1844 }
1845 EXPORT_SYMBOL(bio_split);
1846
1847 /**
1848 * bio_trim - trim a bio
1849 * @bio: bio to trim
1850 * @offset: number of sectors to trim from the front of @bio
1851 * @size: size we want to trim @bio to, in sectors
1852 */
1853 void bio_trim(struct bio *bio, int offset, int size)
1854 {
1855 /* 'bio' is a cloned bio which we need to trim to match
1856 * the given offset and size.
1857 */
1858
1859 size <<= 9;
1860 if (offset == 0 && size == bio->bi_iter.bi_size)
1861 return;
1862
1863 bio_clear_flag(bio, BIO_SEG_VALID);
1864
1865 bio_advance(bio, offset << 9);
1866
1867 bio->bi_iter.bi_size = size;
1868
1869 if (bio_integrity(bio))
1870 bio_integrity_trim(bio);
1871
1872 }
1873 EXPORT_SYMBOL_GPL(bio_trim);
1874
1875 /*
1876 * create memory pools for biovec's in a bio_set.
1877 * use the global biovec slabs created for general use.
1878 */
1879 mempool_t *biovec_create_pool(int pool_entries)
1880 {
1881 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1882
1883 return mempool_create_slab_pool(pool_entries, bp->slab);
1884 }
1885
1886 void bioset_free(struct bio_set *bs)
1887 {
1888 if (bs->rescue_workqueue)
1889 destroy_workqueue(bs->rescue_workqueue);
1890
1891 mempool_destroy(bs->bio_pool);
1892 mempool_destroy(bs->bvec_pool);
1893
1894 bioset_integrity_free(bs);
1895 bio_put_slab(bs);
1896
1897 kfree(bs);
1898 }
1899 EXPORT_SYMBOL(bioset_free);
1900
1901 /**
1902 * bioset_create - Create a bio_set
1903 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1904 * @front_pad: Number of bytes to allocate in front of the returned bio
1905 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1906 * and %BIOSET_NEED_RESCUER
1907 *
1908 * Description:
1909 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1910 * to ask for a number of bytes to be allocated in front of the bio.
1911 * Front pad allocation is useful for embedding the bio inside
1912 * another structure, to avoid allocating extra data to go with the bio.
1913 * Note that the bio must be embedded at the END of that structure always,
1914 * or things will break badly.
1915 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1916 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1917 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1918 * dispatch queued requests when the mempool runs out of space.
1919 *
1920 */
1921 struct bio_set *bioset_create(unsigned int pool_size,
1922 unsigned int front_pad,
1923 int flags)
1924 {
1925 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1926 struct bio_set *bs;
1927
1928 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1929 if (!bs)
1930 return NULL;
1931
1932 bs->front_pad = front_pad;
1933
1934 spin_lock_init(&bs->rescue_lock);
1935 bio_list_init(&bs->rescue_list);
1936 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1937
1938 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1939 if (!bs->bio_slab) {
1940 kfree(bs);
1941 return NULL;
1942 }
1943
1944 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1945 if (!bs->bio_pool)
1946 goto bad;
1947
1948 if (flags & BIOSET_NEED_BVECS) {
1949 bs->bvec_pool = biovec_create_pool(pool_size);
1950 if (!bs->bvec_pool)
1951 goto bad;
1952 }
1953
1954 if (!(flags & BIOSET_NEED_RESCUER))
1955 return bs;
1956
1957 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1958 if (!bs->rescue_workqueue)
1959 goto bad;
1960
1961 return bs;
1962 bad:
1963 bioset_free(bs);
1964 return NULL;
1965 }
1966 EXPORT_SYMBOL(bioset_create);
1967
1968 #ifdef CONFIG_BLK_CGROUP
1969
1970 /**
1971 * bio_associate_blkcg - associate a bio with the specified blkcg
1972 * @bio: target bio
1973 * @blkcg_css: css of the blkcg to associate
1974 *
1975 * Associate @bio with the blkcg specified by @blkcg_css. Block layer will
1976 * treat @bio as if it were issued by a task which belongs to the blkcg.
1977 *
1978 * This function takes an extra reference of @blkcg_css which will be put
1979 * when @bio is released. The caller must own @bio and is responsible for
1980 * synchronizing calls to this function.
1981 */
1982 int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
1983 {
1984 if (unlikely(bio->bi_css))
1985 return -EBUSY;
1986 css_get(blkcg_css);
1987 bio->bi_css = blkcg_css;
1988 return 0;
1989 }
1990 EXPORT_SYMBOL_GPL(bio_associate_blkcg);
1991
1992 /**
1993 * bio_disassociate_task - undo bio_associate_current()
1994 * @bio: target bio
1995 */
1996 void bio_disassociate_task(struct bio *bio)
1997 {
1998 if (bio->bi_ioc) {
1999 put_io_context(bio->bi_ioc);
2000 bio->bi_ioc = NULL;
2001 }
2002 if (bio->bi_css) {
2003 css_put(bio->bi_css);
2004 bio->bi_css = NULL;
2005 }
2006 }
2007
2008 /**
2009 * bio_clone_blkcg_association - clone blkcg association from src to dst bio
2010 * @dst: destination bio
2011 * @src: source bio
2012 */
2013 void bio_clone_blkcg_association(struct bio *dst, struct bio *src)
2014 {
2015 if (src->bi_css)
2016 WARN_ON(bio_associate_blkcg(dst, src->bi_css));
2017 }
2018 EXPORT_SYMBOL_GPL(bio_clone_blkcg_association);
2019 #endif /* CONFIG_BLK_CGROUP */
2020
2021 static void __init biovec_init_slabs(void)
2022 {
2023 int i;
2024
2025 for (i = 0; i < BVEC_POOL_NR; i++) {
2026 int size;
2027 struct biovec_slab *bvs = bvec_slabs + i;
2028
2029 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2030 bvs->slab = NULL;
2031 continue;
2032 }
2033
2034 size = bvs->nr_vecs * sizeof(struct bio_vec);
2035 bvs->slab = kmem_cache_create(bvs->name, size, 0,
2036 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2037 }
2038 }
2039
2040 static int __init init_bio(void)
2041 {
2042 bio_slab_max = 2;
2043 bio_slab_nr = 0;
2044 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2045 if (!bio_slabs)
2046 panic("bio: can't allocate bios\n");
2047
2048 bio_integrity_init();
2049 biovec_init_slabs();
2050
2051 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
2052 if (!fs_bio_set)
2053 panic("bio: can't allocate bios\n");
2054
2055 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2056 panic("bio: can't create integrity pool\n");
2057
2058 return 0;
2059 }
2060 subsys_initcall(init_bio);