]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-core.c
block, bfq: correctly charge and reset entity service in all cases
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 #include <linux/debugfs.h>
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/block.h>
40
41 #include "blk.h"
42 #include "blk-mq.h"
43 #include "blk-mq-sched.h"
44 #include "blk-wbt.h"
45
46 #ifdef CONFIG_DEBUG_FS
47 struct dentry *blk_debugfs_root;
48 #endif
49
50 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
55
56 DEFINE_IDA(blk_queue_ida);
57
58 /*
59 * For the allocated request tables
60 */
61 struct kmem_cache *request_cachep;
62
63 /*
64 * For queue allocation
65 */
66 struct kmem_cache *blk_requestq_cachep;
67
68 /*
69 * Controlling structure to kblockd
70 */
71 static struct workqueue_struct *kblockd_workqueue;
72
73 static void blk_clear_congested(struct request_list *rl, int sync)
74 {
75 #ifdef CONFIG_CGROUP_WRITEBACK
76 clear_wb_congested(rl->blkg->wb_congested, sync);
77 #else
78 /*
79 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
80 * flip its congestion state for events on other blkcgs.
81 */
82 if (rl == &rl->q->root_rl)
83 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
84 #endif
85 }
86
87 static void blk_set_congested(struct request_list *rl, int sync)
88 {
89 #ifdef CONFIG_CGROUP_WRITEBACK
90 set_wb_congested(rl->blkg->wb_congested, sync);
91 #else
92 /* see blk_clear_congested() */
93 if (rl == &rl->q->root_rl)
94 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
95 #endif
96 }
97
98 void blk_queue_congestion_threshold(struct request_queue *q)
99 {
100 int nr;
101
102 nr = q->nr_requests - (q->nr_requests / 8) + 1;
103 if (nr > q->nr_requests)
104 nr = q->nr_requests;
105 q->nr_congestion_on = nr;
106
107 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
108 if (nr < 1)
109 nr = 1;
110 q->nr_congestion_off = nr;
111 }
112
113 void blk_rq_init(struct request_queue *q, struct request *rq)
114 {
115 memset(rq, 0, sizeof(*rq));
116
117 INIT_LIST_HEAD(&rq->queuelist);
118 INIT_LIST_HEAD(&rq->timeout_list);
119 rq->cpu = -1;
120 rq->q = q;
121 rq->__sector = (sector_t) -1;
122 INIT_HLIST_NODE(&rq->hash);
123 RB_CLEAR_NODE(&rq->rb_node);
124 rq->tag = -1;
125 rq->internal_tag = -1;
126 rq->start_time = jiffies;
127 set_start_time_ns(rq);
128 rq->part = NULL;
129 }
130 EXPORT_SYMBOL(blk_rq_init);
131
132 static const struct {
133 int errno;
134 const char *name;
135 } blk_errors[] = {
136 [BLK_STS_OK] = { 0, "" },
137 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
138 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
139 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
140 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
141 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
142 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
143 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
144 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
145 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
146 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
147
148 /* device mapper special case, should not leak out: */
149 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
150
151 /* everything else not covered above: */
152 [BLK_STS_IOERR] = { -EIO, "I/O" },
153 };
154
155 blk_status_t errno_to_blk_status(int errno)
156 {
157 int i;
158
159 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
160 if (blk_errors[i].errno == errno)
161 return (__force blk_status_t)i;
162 }
163
164 return BLK_STS_IOERR;
165 }
166 EXPORT_SYMBOL_GPL(errno_to_blk_status);
167
168 int blk_status_to_errno(blk_status_t status)
169 {
170 int idx = (__force int)status;
171
172 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
173 return -EIO;
174 return blk_errors[idx].errno;
175 }
176 EXPORT_SYMBOL_GPL(blk_status_to_errno);
177
178 static void print_req_error(struct request *req, blk_status_t status)
179 {
180 int idx = (__force int)status;
181
182 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
183 return;
184
185 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
186 __func__, blk_errors[idx].name, req->rq_disk ?
187 req->rq_disk->disk_name : "?",
188 (unsigned long long)blk_rq_pos(req));
189 }
190
191 static void req_bio_endio(struct request *rq, struct bio *bio,
192 unsigned int nbytes, blk_status_t error)
193 {
194 if (error)
195 bio->bi_status = error;
196
197 if (unlikely(rq->rq_flags & RQF_QUIET))
198 bio_set_flag(bio, BIO_QUIET);
199
200 bio_advance(bio, nbytes);
201
202 /* don't actually finish bio if it's part of flush sequence */
203 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
204 bio_endio(bio);
205 }
206
207 void blk_dump_rq_flags(struct request *rq, char *msg)
208 {
209 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
210 rq->rq_disk ? rq->rq_disk->disk_name : "?",
211 (unsigned long long) rq->cmd_flags);
212
213 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
214 (unsigned long long)blk_rq_pos(rq),
215 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
216 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
217 rq->bio, rq->biotail, blk_rq_bytes(rq));
218 }
219 EXPORT_SYMBOL(blk_dump_rq_flags);
220
221 static void blk_delay_work(struct work_struct *work)
222 {
223 struct request_queue *q;
224
225 q = container_of(work, struct request_queue, delay_work.work);
226 spin_lock_irq(q->queue_lock);
227 __blk_run_queue(q);
228 spin_unlock_irq(q->queue_lock);
229 }
230
231 /**
232 * blk_delay_queue - restart queueing after defined interval
233 * @q: The &struct request_queue in question
234 * @msecs: Delay in msecs
235 *
236 * Description:
237 * Sometimes queueing needs to be postponed for a little while, to allow
238 * resources to come back. This function will make sure that queueing is
239 * restarted around the specified time.
240 */
241 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
242 {
243 lockdep_assert_held(q->queue_lock);
244 WARN_ON_ONCE(q->mq_ops);
245
246 if (likely(!blk_queue_dead(q)))
247 queue_delayed_work(kblockd_workqueue, &q->delay_work,
248 msecs_to_jiffies(msecs));
249 }
250 EXPORT_SYMBOL(blk_delay_queue);
251
252 /**
253 * blk_start_queue_async - asynchronously restart a previously stopped queue
254 * @q: The &struct request_queue in question
255 *
256 * Description:
257 * blk_start_queue_async() will clear the stop flag on the queue, and
258 * ensure that the request_fn for the queue is run from an async
259 * context.
260 **/
261 void blk_start_queue_async(struct request_queue *q)
262 {
263 lockdep_assert_held(q->queue_lock);
264 WARN_ON_ONCE(q->mq_ops);
265
266 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
267 blk_run_queue_async(q);
268 }
269 EXPORT_SYMBOL(blk_start_queue_async);
270
271 /**
272 * blk_start_queue - restart a previously stopped queue
273 * @q: The &struct request_queue in question
274 *
275 * Description:
276 * blk_start_queue() will clear the stop flag on the queue, and call
277 * the request_fn for the queue if it was in a stopped state when
278 * entered. Also see blk_stop_queue().
279 **/
280 void blk_start_queue(struct request_queue *q)
281 {
282 lockdep_assert_held(q->queue_lock);
283 WARN_ON(!in_interrupt() && !irqs_disabled());
284 WARN_ON_ONCE(q->mq_ops);
285
286 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
287 __blk_run_queue(q);
288 }
289 EXPORT_SYMBOL(blk_start_queue);
290
291 /**
292 * blk_stop_queue - stop a queue
293 * @q: The &struct request_queue in question
294 *
295 * Description:
296 * The Linux block layer assumes that a block driver will consume all
297 * entries on the request queue when the request_fn strategy is called.
298 * Often this will not happen, because of hardware limitations (queue
299 * depth settings). If a device driver gets a 'queue full' response,
300 * or if it simply chooses not to queue more I/O at one point, it can
301 * call this function to prevent the request_fn from being called until
302 * the driver has signalled it's ready to go again. This happens by calling
303 * blk_start_queue() to restart queue operations.
304 **/
305 void blk_stop_queue(struct request_queue *q)
306 {
307 lockdep_assert_held(q->queue_lock);
308 WARN_ON_ONCE(q->mq_ops);
309
310 cancel_delayed_work(&q->delay_work);
311 queue_flag_set(QUEUE_FLAG_STOPPED, q);
312 }
313 EXPORT_SYMBOL(blk_stop_queue);
314
315 /**
316 * blk_sync_queue - cancel any pending callbacks on a queue
317 * @q: the queue
318 *
319 * Description:
320 * The block layer may perform asynchronous callback activity
321 * on a queue, such as calling the unplug function after a timeout.
322 * A block device may call blk_sync_queue to ensure that any
323 * such activity is cancelled, thus allowing it to release resources
324 * that the callbacks might use. The caller must already have made sure
325 * that its ->make_request_fn will not re-add plugging prior to calling
326 * this function.
327 *
328 * This function does not cancel any asynchronous activity arising
329 * out of elevator or throttling code. That would require elevator_exit()
330 * and blkcg_exit_queue() to be called with queue lock initialized.
331 *
332 */
333 void blk_sync_queue(struct request_queue *q)
334 {
335 del_timer_sync(&q->timeout);
336 cancel_work_sync(&q->timeout_work);
337
338 if (q->mq_ops) {
339 struct blk_mq_hw_ctx *hctx;
340 int i;
341
342 cancel_delayed_work_sync(&q->requeue_work);
343 queue_for_each_hw_ctx(q, hctx, i)
344 cancel_delayed_work_sync(&hctx->run_work);
345 } else {
346 cancel_delayed_work_sync(&q->delay_work);
347 }
348 }
349 EXPORT_SYMBOL(blk_sync_queue);
350
351 /**
352 * blk_set_preempt_only - set QUEUE_FLAG_PREEMPT_ONLY
353 * @q: request queue pointer
354 *
355 * Returns the previous value of the PREEMPT_ONLY flag - 0 if the flag was not
356 * set and 1 if the flag was already set.
357 */
358 int blk_set_preempt_only(struct request_queue *q)
359 {
360 unsigned long flags;
361 int res;
362
363 spin_lock_irqsave(q->queue_lock, flags);
364 res = queue_flag_test_and_set(QUEUE_FLAG_PREEMPT_ONLY, q);
365 spin_unlock_irqrestore(q->queue_lock, flags);
366
367 return res;
368 }
369 EXPORT_SYMBOL_GPL(blk_set_preempt_only);
370
371 void blk_clear_preempt_only(struct request_queue *q)
372 {
373 unsigned long flags;
374
375 spin_lock_irqsave(q->queue_lock, flags);
376 queue_flag_clear(QUEUE_FLAG_PREEMPT_ONLY, q);
377 wake_up_all(&q->mq_freeze_wq);
378 spin_unlock_irqrestore(q->queue_lock, flags);
379 }
380 EXPORT_SYMBOL_GPL(blk_clear_preempt_only);
381
382 /**
383 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
384 * @q: The queue to run
385 *
386 * Description:
387 * Invoke request handling on a queue if there are any pending requests.
388 * May be used to restart request handling after a request has completed.
389 * This variant runs the queue whether or not the queue has been
390 * stopped. Must be called with the queue lock held and interrupts
391 * disabled. See also @blk_run_queue.
392 */
393 inline void __blk_run_queue_uncond(struct request_queue *q)
394 {
395 lockdep_assert_held(q->queue_lock);
396 WARN_ON_ONCE(q->mq_ops);
397
398 if (unlikely(blk_queue_dead(q)))
399 return;
400
401 /*
402 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
403 * the queue lock internally. As a result multiple threads may be
404 * running such a request function concurrently. Keep track of the
405 * number of active request_fn invocations such that blk_drain_queue()
406 * can wait until all these request_fn calls have finished.
407 */
408 q->request_fn_active++;
409 q->request_fn(q);
410 q->request_fn_active--;
411 }
412 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
413
414 /**
415 * __blk_run_queue - run a single device queue
416 * @q: The queue to run
417 *
418 * Description:
419 * See @blk_run_queue.
420 */
421 void __blk_run_queue(struct request_queue *q)
422 {
423 lockdep_assert_held(q->queue_lock);
424 WARN_ON_ONCE(q->mq_ops);
425
426 if (unlikely(blk_queue_stopped(q)))
427 return;
428
429 __blk_run_queue_uncond(q);
430 }
431 EXPORT_SYMBOL(__blk_run_queue);
432
433 /**
434 * blk_run_queue_async - run a single device queue in workqueue context
435 * @q: The queue to run
436 *
437 * Description:
438 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
439 * of us.
440 *
441 * Note:
442 * Since it is not allowed to run q->delay_work after blk_cleanup_queue()
443 * has canceled q->delay_work, callers must hold the queue lock to avoid
444 * race conditions between blk_cleanup_queue() and blk_run_queue_async().
445 */
446 void blk_run_queue_async(struct request_queue *q)
447 {
448 lockdep_assert_held(q->queue_lock);
449 WARN_ON_ONCE(q->mq_ops);
450
451 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
452 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
453 }
454 EXPORT_SYMBOL(blk_run_queue_async);
455
456 /**
457 * blk_run_queue - run a single device queue
458 * @q: The queue to run
459 *
460 * Description:
461 * Invoke request handling on this queue, if it has pending work to do.
462 * May be used to restart queueing when a request has completed.
463 */
464 void blk_run_queue(struct request_queue *q)
465 {
466 unsigned long flags;
467
468 WARN_ON_ONCE(q->mq_ops);
469
470 spin_lock_irqsave(q->queue_lock, flags);
471 __blk_run_queue(q);
472 spin_unlock_irqrestore(q->queue_lock, flags);
473 }
474 EXPORT_SYMBOL(blk_run_queue);
475
476 void blk_put_queue(struct request_queue *q)
477 {
478 kobject_put(&q->kobj);
479 }
480 EXPORT_SYMBOL(blk_put_queue);
481
482 /**
483 * __blk_drain_queue - drain requests from request_queue
484 * @q: queue to drain
485 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
486 *
487 * Drain requests from @q. If @drain_all is set, all requests are drained.
488 * If not, only ELVPRIV requests are drained. The caller is responsible
489 * for ensuring that no new requests which need to be drained are queued.
490 */
491 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
492 __releases(q->queue_lock)
493 __acquires(q->queue_lock)
494 {
495 int i;
496
497 lockdep_assert_held(q->queue_lock);
498 WARN_ON_ONCE(q->mq_ops);
499
500 while (true) {
501 bool drain = false;
502
503 /*
504 * The caller might be trying to drain @q before its
505 * elevator is initialized.
506 */
507 if (q->elevator)
508 elv_drain_elevator(q);
509
510 blkcg_drain_queue(q);
511
512 /*
513 * This function might be called on a queue which failed
514 * driver init after queue creation or is not yet fully
515 * active yet. Some drivers (e.g. fd and loop) get unhappy
516 * in such cases. Kick queue iff dispatch queue has
517 * something on it and @q has request_fn set.
518 */
519 if (!list_empty(&q->queue_head) && q->request_fn)
520 __blk_run_queue(q);
521
522 drain |= q->nr_rqs_elvpriv;
523 drain |= q->request_fn_active;
524
525 /*
526 * Unfortunately, requests are queued at and tracked from
527 * multiple places and there's no single counter which can
528 * be drained. Check all the queues and counters.
529 */
530 if (drain_all) {
531 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
532 drain |= !list_empty(&q->queue_head);
533 for (i = 0; i < 2; i++) {
534 drain |= q->nr_rqs[i];
535 drain |= q->in_flight[i];
536 if (fq)
537 drain |= !list_empty(&fq->flush_queue[i]);
538 }
539 }
540
541 if (!drain)
542 break;
543
544 spin_unlock_irq(q->queue_lock);
545
546 msleep(10);
547
548 spin_lock_irq(q->queue_lock);
549 }
550
551 /*
552 * With queue marked dead, any woken up waiter will fail the
553 * allocation path, so the wakeup chaining is lost and we're
554 * left with hung waiters. We need to wake up those waiters.
555 */
556 if (q->request_fn) {
557 struct request_list *rl;
558
559 blk_queue_for_each_rl(rl, q)
560 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
561 wake_up_all(&rl->wait[i]);
562 }
563 }
564
565 void blk_drain_queue(struct request_queue *q)
566 {
567 spin_lock_irq(q->queue_lock);
568 __blk_drain_queue(q, true);
569 spin_unlock_irq(q->queue_lock);
570 }
571
572 /**
573 * blk_queue_bypass_start - enter queue bypass mode
574 * @q: queue of interest
575 *
576 * In bypass mode, only the dispatch FIFO queue of @q is used. This
577 * function makes @q enter bypass mode and drains all requests which were
578 * throttled or issued before. On return, it's guaranteed that no request
579 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
580 * inside queue or RCU read lock.
581 */
582 void blk_queue_bypass_start(struct request_queue *q)
583 {
584 WARN_ON_ONCE(q->mq_ops);
585
586 spin_lock_irq(q->queue_lock);
587 q->bypass_depth++;
588 queue_flag_set(QUEUE_FLAG_BYPASS, q);
589 spin_unlock_irq(q->queue_lock);
590
591 /*
592 * Queues start drained. Skip actual draining till init is
593 * complete. This avoids lenghty delays during queue init which
594 * can happen many times during boot.
595 */
596 if (blk_queue_init_done(q)) {
597 spin_lock_irq(q->queue_lock);
598 __blk_drain_queue(q, false);
599 spin_unlock_irq(q->queue_lock);
600
601 /* ensure blk_queue_bypass() is %true inside RCU read lock */
602 synchronize_rcu();
603 }
604 }
605 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
606
607 /**
608 * blk_queue_bypass_end - leave queue bypass mode
609 * @q: queue of interest
610 *
611 * Leave bypass mode and restore the normal queueing behavior.
612 *
613 * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
614 * this function is called for both blk-sq and blk-mq queues.
615 */
616 void blk_queue_bypass_end(struct request_queue *q)
617 {
618 spin_lock_irq(q->queue_lock);
619 if (!--q->bypass_depth)
620 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
621 WARN_ON_ONCE(q->bypass_depth < 0);
622 spin_unlock_irq(q->queue_lock);
623 }
624 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
625
626 void blk_set_queue_dying(struct request_queue *q)
627 {
628 spin_lock_irq(q->queue_lock);
629 queue_flag_set(QUEUE_FLAG_DYING, q);
630 spin_unlock_irq(q->queue_lock);
631
632 /*
633 * When queue DYING flag is set, we need to block new req
634 * entering queue, so we call blk_freeze_queue_start() to
635 * prevent I/O from crossing blk_queue_enter().
636 */
637 blk_freeze_queue_start(q);
638
639 if (q->mq_ops)
640 blk_mq_wake_waiters(q);
641 else {
642 struct request_list *rl;
643
644 spin_lock_irq(q->queue_lock);
645 blk_queue_for_each_rl(rl, q) {
646 if (rl->rq_pool) {
647 wake_up_all(&rl->wait[BLK_RW_SYNC]);
648 wake_up_all(&rl->wait[BLK_RW_ASYNC]);
649 }
650 }
651 spin_unlock_irq(q->queue_lock);
652 }
653
654 /* Make blk_queue_enter() reexamine the DYING flag. */
655 wake_up_all(&q->mq_freeze_wq);
656 }
657 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
658
659 /**
660 * blk_cleanup_queue - shutdown a request queue
661 * @q: request queue to shutdown
662 *
663 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
664 * put it. All future requests will be failed immediately with -ENODEV.
665 */
666 void blk_cleanup_queue(struct request_queue *q)
667 {
668 spinlock_t *lock = q->queue_lock;
669
670 /* mark @q DYING, no new request or merges will be allowed afterwards */
671 mutex_lock(&q->sysfs_lock);
672 blk_set_queue_dying(q);
673 spin_lock_irq(lock);
674
675 /*
676 * A dying queue is permanently in bypass mode till released. Note
677 * that, unlike blk_queue_bypass_start(), we aren't performing
678 * synchronize_rcu() after entering bypass mode to avoid the delay
679 * as some drivers create and destroy a lot of queues while
680 * probing. This is still safe because blk_release_queue() will be
681 * called only after the queue refcnt drops to zero and nothing,
682 * RCU or not, would be traversing the queue by then.
683 */
684 q->bypass_depth++;
685 queue_flag_set(QUEUE_FLAG_BYPASS, q);
686
687 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
688 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
689 queue_flag_set(QUEUE_FLAG_DYING, q);
690 spin_unlock_irq(lock);
691 mutex_unlock(&q->sysfs_lock);
692
693 /*
694 * Drain all requests queued before DYING marking. Set DEAD flag to
695 * prevent that q->request_fn() gets invoked after draining finished.
696 */
697 blk_freeze_queue(q);
698 spin_lock_irq(lock);
699 queue_flag_set(QUEUE_FLAG_DEAD, q);
700 spin_unlock_irq(lock);
701
702 /*
703 * make sure all in-progress dispatch are completed because
704 * blk_freeze_queue() can only complete all requests, and
705 * dispatch may still be in-progress since we dispatch requests
706 * from more than one contexts.
707 *
708 * No need to quiesce queue if it isn't initialized yet since
709 * blk_freeze_queue() should be enough for cases of passthrough
710 * request.
711 */
712 if (q->mq_ops && blk_queue_init_done(q))
713 blk_mq_quiesce_queue(q);
714
715 /* for synchronous bio-based driver finish in-flight integrity i/o */
716 blk_flush_integrity();
717
718 /* @q won't process any more request, flush async actions */
719 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
720 blk_sync_queue(q);
721
722 if (q->mq_ops)
723 blk_mq_free_queue(q);
724 percpu_ref_exit(&q->q_usage_counter);
725
726 spin_lock_irq(lock);
727 if (q->queue_lock != &q->__queue_lock)
728 q->queue_lock = &q->__queue_lock;
729 spin_unlock_irq(lock);
730
731 /* @q is and will stay empty, shutdown and put */
732 blk_put_queue(q);
733 }
734 EXPORT_SYMBOL(blk_cleanup_queue);
735
736 /* Allocate memory local to the request queue */
737 static void *alloc_request_simple(gfp_t gfp_mask, void *data)
738 {
739 struct request_queue *q = data;
740
741 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
742 }
743
744 static void free_request_simple(void *element, void *data)
745 {
746 kmem_cache_free(request_cachep, element);
747 }
748
749 static void *alloc_request_size(gfp_t gfp_mask, void *data)
750 {
751 struct request_queue *q = data;
752 struct request *rq;
753
754 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
755 q->node);
756 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
757 kfree(rq);
758 rq = NULL;
759 }
760 return rq;
761 }
762
763 static void free_request_size(void *element, void *data)
764 {
765 struct request_queue *q = data;
766
767 if (q->exit_rq_fn)
768 q->exit_rq_fn(q, element);
769 kfree(element);
770 }
771
772 int blk_init_rl(struct request_list *rl, struct request_queue *q,
773 gfp_t gfp_mask)
774 {
775 if (unlikely(rl->rq_pool) || q->mq_ops)
776 return 0;
777
778 rl->q = q;
779 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
780 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
781 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
782 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
783
784 if (q->cmd_size) {
785 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
786 alloc_request_size, free_request_size,
787 q, gfp_mask, q->node);
788 } else {
789 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
790 alloc_request_simple, free_request_simple,
791 q, gfp_mask, q->node);
792 }
793 if (!rl->rq_pool)
794 return -ENOMEM;
795
796 if (rl != &q->root_rl)
797 WARN_ON_ONCE(!blk_get_queue(q));
798
799 return 0;
800 }
801
802 void blk_exit_rl(struct request_queue *q, struct request_list *rl)
803 {
804 if (rl->rq_pool) {
805 mempool_destroy(rl->rq_pool);
806 if (rl != &q->root_rl)
807 blk_put_queue(q);
808 }
809 }
810
811 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
812 {
813 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
814 }
815 EXPORT_SYMBOL(blk_alloc_queue);
816
817 /**
818 * blk_queue_enter() - try to increase q->q_usage_counter
819 * @q: request queue pointer
820 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
821 */
822 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
823 {
824 const bool preempt = flags & BLK_MQ_REQ_PREEMPT;
825
826 while (true) {
827 bool success = false;
828
829 rcu_read_lock();
830 if (percpu_ref_tryget_live(&q->q_usage_counter)) {
831 /*
832 * The code that sets the PREEMPT_ONLY flag is
833 * responsible for ensuring that that flag is globally
834 * visible before the queue is unfrozen.
835 */
836 if (preempt || !blk_queue_preempt_only(q)) {
837 success = true;
838 } else {
839 percpu_ref_put(&q->q_usage_counter);
840 }
841 }
842 rcu_read_unlock();
843
844 if (success)
845 return 0;
846
847 if (flags & BLK_MQ_REQ_NOWAIT)
848 return -EBUSY;
849
850 /*
851 * read pair of barrier in blk_freeze_queue_start(),
852 * we need to order reading __PERCPU_REF_DEAD flag of
853 * .q_usage_counter and reading .mq_freeze_depth or
854 * queue dying flag, otherwise the following wait may
855 * never return if the two reads are reordered.
856 */
857 smp_rmb();
858
859 wait_event(q->mq_freeze_wq,
860 (atomic_read(&q->mq_freeze_depth) == 0 &&
861 (preempt || !blk_queue_preempt_only(q))) ||
862 blk_queue_dying(q));
863 if (blk_queue_dying(q))
864 return -ENODEV;
865 }
866 }
867
868 void blk_queue_exit(struct request_queue *q)
869 {
870 percpu_ref_put(&q->q_usage_counter);
871 }
872
873 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
874 {
875 struct request_queue *q =
876 container_of(ref, struct request_queue, q_usage_counter);
877
878 wake_up_all(&q->mq_freeze_wq);
879 }
880
881 static void blk_rq_timed_out_timer(struct timer_list *t)
882 {
883 struct request_queue *q = from_timer(q, t, timeout);
884
885 kblockd_schedule_work(&q->timeout_work);
886 }
887
888 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
889 {
890 struct request_queue *q;
891
892 q = kmem_cache_alloc_node(blk_requestq_cachep,
893 gfp_mask | __GFP_ZERO, node_id);
894 if (!q)
895 return NULL;
896
897 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
898 if (q->id < 0)
899 goto fail_q;
900
901 q->bio_split = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
902 if (!q->bio_split)
903 goto fail_id;
904
905 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
906 if (!q->backing_dev_info)
907 goto fail_split;
908
909 q->stats = blk_alloc_queue_stats();
910 if (!q->stats)
911 goto fail_stats;
912
913 q->backing_dev_info->ra_pages =
914 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
915 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
916 q->backing_dev_info->name = "block";
917 q->node = node_id;
918
919 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
920 laptop_mode_timer_fn, 0);
921 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
922 INIT_WORK(&q->timeout_work, NULL);
923 INIT_LIST_HEAD(&q->queue_head);
924 INIT_LIST_HEAD(&q->timeout_list);
925 INIT_LIST_HEAD(&q->icq_list);
926 #ifdef CONFIG_BLK_CGROUP
927 INIT_LIST_HEAD(&q->blkg_list);
928 #endif
929 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
930
931 kobject_init(&q->kobj, &blk_queue_ktype);
932
933 #ifdef CONFIG_BLK_DEV_IO_TRACE
934 mutex_init(&q->blk_trace_mutex);
935 #endif
936 mutex_init(&q->sysfs_lock);
937 spin_lock_init(&q->__queue_lock);
938
939 /*
940 * By default initialize queue_lock to internal lock and driver can
941 * override it later if need be.
942 */
943 q->queue_lock = &q->__queue_lock;
944
945 /*
946 * A queue starts its life with bypass turned on to avoid
947 * unnecessary bypass on/off overhead and nasty surprises during
948 * init. The initial bypass will be finished when the queue is
949 * registered by blk_register_queue().
950 */
951 q->bypass_depth = 1;
952 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
953
954 init_waitqueue_head(&q->mq_freeze_wq);
955
956 /*
957 * Init percpu_ref in atomic mode so that it's faster to shutdown.
958 * See blk_register_queue() for details.
959 */
960 if (percpu_ref_init(&q->q_usage_counter,
961 blk_queue_usage_counter_release,
962 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
963 goto fail_bdi;
964
965 if (blkcg_init_queue(q))
966 goto fail_ref;
967
968 return q;
969
970 fail_ref:
971 percpu_ref_exit(&q->q_usage_counter);
972 fail_bdi:
973 blk_free_queue_stats(q->stats);
974 fail_stats:
975 bdi_put(q->backing_dev_info);
976 fail_split:
977 bioset_free(q->bio_split);
978 fail_id:
979 ida_simple_remove(&blk_queue_ida, q->id);
980 fail_q:
981 kmem_cache_free(blk_requestq_cachep, q);
982 return NULL;
983 }
984 EXPORT_SYMBOL(blk_alloc_queue_node);
985
986 /**
987 * blk_init_queue - prepare a request queue for use with a block device
988 * @rfn: The function to be called to process requests that have been
989 * placed on the queue.
990 * @lock: Request queue spin lock
991 *
992 * Description:
993 * If a block device wishes to use the standard request handling procedures,
994 * which sorts requests and coalesces adjacent requests, then it must
995 * call blk_init_queue(). The function @rfn will be called when there
996 * are requests on the queue that need to be processed. If the device
997 * supports plugging, then @rfn may not be called immediately when requests
998 * are available on the queue, but may be called at some time later instead.
999 * Plugged queues are generally unplugged when a buffer belonging to one
1000 * of the requests on the queue is needed, or due to memory pressure.
1001 *
1002 * @rfn is not required, or even expected, to remove all requests off the
1003 * queue, but only as many as it can handle at a time. If it does leave
1004 * requests on the queue, it is responsible for arranging that the requests
1005 * get dealt with eventually.
1006 *
1007 * The queue spin lock must be held while manipulating the requests on the
1008 * request queue; this lock will be taken also from interrupt context, so irq
1009 * disabling is needed for it.
1010 *
1011 * Function returns a pointer to the initialized request queue, or %NULL if
1012 * it didn't succeed.
1013 *
1014 * Note:
1015 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1016 * when the block device is deactivated (such as at module unload).
1017 **/
1018
1019 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1020 {
1021 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1022 }
1023 EXPORT_SYMBOL(blk_init_queue);
1024
1025 struct request_queue *
1026 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1027 {
1028 struct request_queue *q;
1029
1030 q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1031 if (!q)
1032 return NULL;
1033
1034 q->request_fn = rfn;
1035 if (lock)
1036 q->queue_lock = lock;
1037 if (blk_init_allocated_queue(q) < 0) {
1038 blk_cleanup_queue(q);
1039 return NULL;
1040 }
1041
1042 return q;
1043 }
1044 EXPORT_SYMBOL(blk_init_queue_node);
1045
1046 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
1047
1048
1049 int blk_init_allocated_queue(struct request_queue *q)
1050 {
1051 WARN_ON_ONCE(q->mq_ops);
1052
1053 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
1054 if (!q->fq)
1055 return -ENOMEM;
1056
1057 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
1058 goto out_free_flush_queue;
1059
1060 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
1061 goto out_exit_flush_rq;
1062
1063 INIT_WORK(&q->timeout_work, blk_timeout_work);
1064 q->queue_flags |= QUEUE_FLAG_DEFAULT;
1065
1066 /*
1067 * This also sets hw/phys segments, boundary and size
1068 */
1069 blk_queue_make_request(q, blk_queue_bio);
1070
1071 q->sg_reserved_size = INT_MAX;
1072
1073 /* Protect q->elevator from elevator_change */
1074 mutex_lock(&q->sysfs_lock);
1075
1076 /* init elevator */
1077 if (elevator_init(q, NULL)) {
1078 mutex_unlock(&q->sysfs_lock);
1079 goto out_exit_flush_rq;
1080 }
1081
1082 mutex_unlock(&q->sysfs_lock);
1083 return 0;
1084
1085 out_exit_flush_rq:
1086 if (q->exit_rq_fn)
1087 q->exit_rq_fn(q, q->fq->flush_rq);
1088 out_free_flush_queue:
1089 blk_free_flush_queue(q->fq);
1090 q->fq = NULL;
1091 return -ENOMEM;
1092 }
1093 EXPORT_SYMBOL(blk_init_allocated_queue);
1094
1095 bool blk_get_queue(struct request_queue *q)
1096 {
1097 if (likely(!blk_queue_dying(q))) {
1098 __blk_get_queue(q);
1099 return true;
1100 }
1101
1102 return false;
1103 }
1104 EXPORT_SYMBOL(blk_get_queue);
1105
1106 static inline void blk_free_request(struct request_list *rl, struct request *rq)
1107 {
1108 if (rq->rq_flags & RQF_ELVPRIV) {
1109 elv_put_request(rl->q, rq);
1110 if (rq->elv.icq)
1111 put_io_context(rq->elv.icq->ioc);
1112 }
1113
1114 mempool_free(rq, rl->rq_pool);
1115 }
1116
1117 /*
1118 * ioc_batching returns true if the ioc is a valid batching request and
1119 * should be given priority access to a request.
1120 */
1121 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1122 {
1123 if (!ioc)
1124 return 0;
1125
1126 /*
1127 * Make sure the process is able to allocate at least 1 request
1128 * even if the batch times out, otherwise we could theoretically
1129 * lose wakeups.
1130 */
1131 return ioc->nr_batch_requests == q->nr_batching ||
1132 (ioc->nr_batch_requests > 0
1133 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1134 }
1135
1136 /*
1137 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1138 * will cause the process to be a "batcher" on all queues in the system. This
1139 * is the behaviour we want though - once it gets a wakeup it should be given
1140 * a nice run.
1141 */
1142 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1143 {
1144 if (!ioc || ioc_batching(q, ioc))
1145 return;
1146
1147 ioc->nr_batch_requests = q->nr_batching;
1148 ioc->last_waited = jiffies;
1149 }
1150
1151 static void __freed_request(struct request_list *rl, int sync)
1152 {
1153 struct request_queue *q = rl->q;
1154
1155 if (rl->count[sync] < queue_congestion_off_threshold(q))
1156 blk_clear_congested(rl, sync);
1157
1158 if (rl->count[sync] + 1 <= q->nr_requests) {
1159 if (waitqueue_active(&rl->wait[sync]))
1160 wake_up(&rl->wait[sync]);
1161
1162 blk_clear_rl_full(rl, sync);
1163 }
1164 }
1165
1166 /*
1167 * A request has just been released. Account for it, update the full and
1168 * congestion status, wake up any waiters. Called under q->queue_lock.
1169 */
1170 static void freed_request(struct request_list *rl, bool sync,
1171 req_flags_t rq_flags)
1172 {
1173 struct request_queue *q = rl->q;
1174
1175 q->nr_rqs[sync]--;
1176 rl->count[sync]--;
1177 if (rq_flags & RQF_ELVPRIV)
1178 q->nr_rqs_elvpriv--;
1179
1180 __freed_request(rl, sync);
1181
1182 if (unlikely(rl->starved[sync ^ 1]))
1183 __freed_request(rl, sync ^ 1);
1184 }
1185
1186 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1187 {
1188 struct request_list *rl;
1189 int on_thresh, off_thresh;
1190
1191 WARN_ON_ONCE(q->mq_ops);
1192
1193 spin_lock_irq(q->queue_lock);
1194 q->nr_requests = nr;
1195 blk_queue_congestion_threshold(q);
1196 on_thresh = queue_congestion_on_threshold(q);
1197 off_thresh = queue_congestion_off_threshold(q);
1198
1199 blk_queue_for_each_rl(rl, q) {
1200 if (rl->count[BLK_RW_SYNC] >= on_thresh)
1201 blk_set_congested(rl, BLK_RW_SYNC);
1202 else if (rl->count[BLK_RW_SYNC] < off_thresh)
1203 blk_clear_congested(rl, BLK_RW_SYNC);
1204
1205 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1206 blk_set_congested(rl, BLK_RW_ASYNC);
1207 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1208 blk_clear_congested(rl, BLK_RW_ASYNC);
1209
1210 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1211 blk_set_rl_full(rl, BLK_RW_SYNC);
1212 } else {
1213 blk_clear_rl_full(rl, BLK_RW_SYNC);
1214 wake_up(&rl->wait[BLK_RW_SYNC]);
1215 }
1216
1217 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1218 blk_set_rl_full(rl, BLK_RW_ASYNC);
1219 } else {
1220 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1221 wake_up(&rl->wait[BLK_RW_ASYNC]);
1222 }
1223 }
1224
1225 spin_unlock_irq(q->queue_lock);
1226 return 0;
1227 }
1228
1229 /**
1230 * __get_request - get a free request
1231 * @rl: request list to allocate from
1232 * @op: operation and flags
1233 * @bio: bio to allocate request for (can be %NULL)
1234 * @flags: BLQ_MQ_REQ_* flags
1235 *
1236 * Get a free request from @q. This function may fail under memory
1237 * pressure or if @q is dead.
1238 *
1239 * Must be called with @q->queue_lock held and,
1240 * Returns ERR_PTR on failure, with @q->queue_lock held.
1241 * Returns request pointer on success, with @q->queue_lock *not held*.
1242 */
1243 static struct request *__get_request(struct request_list *rl, unsigned int op,
1244 struct bio *bio, blk_mq_req_flags_t flags)
1245 {
1246 struct request_queue *q = rl->q;
1247 struct request *rq;
1248 struct elevator_type *et = q->elevator->type;
1249 struct io_context *ioc = rq_ioc(bio);
1250 struct io_cq *icq = NULL;
1251 const bool is_sync = op_is_sync(op);
1252 int may_queue;
1253 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC :
1254 __GFP_DIRECT_RECLAIM;
1255 req_flags_t rq_flags = RQF_ALLOCED;
1256
1257 lockdep_assert_held(q->queue_lock);
1258
1259 if (unlikely(blk_queue_dying(q)))
1260 return ERR_PTR(-ENODEV);
1261
1262 may_queue = elv_may_queue(q, op);
1263 if (may_queue == ELV_MQUEUE_NO)
1264 goto rq_starved;
1265
1266 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1267 if (rl->count[is_sync]+1 >= q->nr_requests) {
1268 /*
1269 * The queue will fill after this allocation, so set
1270 * it as full, and mark this process as "batching".
1271 * This process will be allowed to complete a batch of
1272 * requests, others will be blocked.
1273 */
1274 if (!blk_rl_full(rl, is_sync)) {
1275 ioc_set_batching(q, ioc);
1276 blk_set_rl_full(rl, is_sync);
1277 } else {
1278 if (may_queue != ELV_MQUEUE_MUST
1279 && !ioc_batching(q, ioc)) {
1280 /*
1281 * The queue is full and the allocating
1282 * process is not a "batcher", and not
1283 * exempted by the IO scheduler
1284 */
1285 return ERR_PTR(-ENOMEM);
1286 }
1287 }
1288 }
1289 blk_set_congested(rl, is_sync);
1290 }
1291
1292 /*
1293 * Only allow batching queuers to allocate up to 50% over the defined
1294 * limit of requests, otherwise we could have thousands of requests
1295 * allocated with any setting of ->nr_requests
1296 */
1297 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1298 return ERR_PTR(-ENOMEM);
1299
1300 q->nr_rqs[is_sync]++;
1301 rl->count[is_sync]++;
1302 rl->starved[is_sync] = 0;
1303
1304 /*
1305 * Decide whether the new request will be managed by elevator. If
1306 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
1307 * prevent the current elevator from being destroyed until the new
1308 * request is freed. This guarantees icq's won't be destroyed and
1309 * makes creating new ones safe.
1310 *
1311 * Flush requests do not use the elevator so skip initialization.
1312 * This allows a request to share the flush and elevator data.
1313 *
1314 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1315 * it will be created after releasing queue_lock.
1316 */
1317 if (!op_is_flush(op) && !blk_queue_bypass(q)) {
1318 rq_flags |= RQF_ELVPRIV;
1319 q->nr_rqs_elvpriv++;
1320 if (et->icq_cache && ioc)
1321 icq = ioc_lookup_icq(ioc, q);
1322 }
1323
1324 if (blk_queue_io_stat(q))
1325 rq_flags |= RQF_IO_STAT;
1326 spin_unlock_irq(q->queue_lock);
1327
1328 /* allocate and init request */
1329 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1330 if (!rq)
1331 goto fail_alloc;
1332
1333 blk_rq_init(q, rq);
1334 blk_rq_set_rl(rq, rl);
1335 rq->cmd_flags = op;
1336 rq->rq_flags = rq_flags;
1337 if (flags & BLK_MQ_REQ_PREEMPT)
1338 rq->rq_flags |= RQF_PREEMPT;
1339
1340 /* init elvpriv */
1341 if (rq_flags & RQF_ELVPRIV) {
1342 if (unlikely(et->icq_cache && !icq)) {
1343 if (ioc)
1344 icq = ioc_create_icq(ioc, q, gfp_mask);
1345 if (!icq)
1346 goto fail_elvpriv;
1347 }
1348
1349 rq->elv.icq = icq;
1350 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1351 goto fail_elvpriv;
1352
1353 /* @rq->elv.icq holds io_context until @rq is freed */
1354 if (icq)
1355 get_io_context(icq->ioc);
1356 }
1357 out:
1358 /*
1359 * ioc may be NULL here, and ioc_batching will be false. That's
1360 * OK, if the queue is under the request limit then requests need
1361 * not count toward the nr_batch_requests limit. There will always
1362 * be some limit enforced by BLK_BATCH_TIME.
1363 */
1364 if (ioc_batching(q, ioc))
1365 ioc->nr_batch_requests--;
1366
1367 trace_block_getrq(q, bio, op);
1368 return rq;
1369
1370 fail_elvpriv:
1371 /*
1372 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1373 * and may fail indefinitely under memory pressure and thus
1374 * shouldn't stall IO. Treat this request as !elvpriv. This will
1375 * disturb iosched and blkcg but weird is bettern than dead.
1376 */
1377 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1378 __func__, dev_name(q->backing_dev_info->dev));
1379
1380 rq->rq_flags &= ~RQF_ELVPRIV;
1381 rq->elv.icq = NULL;
1382
1383 spin_lock_irq(q->queue_lock);
1384 q->nr_rqs_elvpriv--;
1385 spin_unlock_irq(q->queue_lock);
1386 goto out;
1387
1388 fail_alloc:
1389 /*
1390 * Allocation failed presumably due to memory. Undo anything we
1391 * might have messed up.
1392 *
1393 * Allocating task should really be put onto the front of the wait
1394 * queue, but this is pretty rare.
1395 */
1396 spin_lock_irq(q->queue_lock);
1397 freed_request(rl, is_sync, rq_flags);
1398
1399 /*
1400 * in the very unlikely event that allocation failed and no
1401 * requests for this direction was pending, mark us starved so that
1402 * freeing of a request in the other direction will notice
1403 * us. another possible fix would be to split the rq mempool into
1404 * READ and WRITE
1405 */
1406 rq_starved:
1407 if (unlikely(rl->count[is_sync] == 0))
1408 rl->starved[is_sync] = 1;
1409 return ERR_PTR(-ENOMEM);
1410 }
1411
1412 /**
1413 * get_request - get a free request
1414 * @q: request_queue to allocate request from
1415 * @op: operation and flags
1416 * @bio: bio to allocate request for (can be %NULL)
1417 * @flags: BLK_MQ_REQ_* flags.
1418 *
1419 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1420 * this function keeps retrying under memory pressure and fails iff @q is dead.
1421 *
1422 * Must be called with @q->queue_lock held and,
1423 * Returns ERR_PTR on failure, with @q->queue_lock held.
1424 * Returns request pointer on success, with @q->queue_lock *not held*.
1425 */
1426 static struct request *get_request(struct request_queue *q, unsigned int op,
1427 struct bio *bio, blk_mq_req_flags_t flags)
1428 {
1429 const bool is_sync = op_is_sync(op);
1430 DEFINE_WAIT(wait);
1431 struct request_list *rl;
1432 struct request *rq;
1433
1434 lockdep_assert_held(q->queue_lock);
1435 WARN_ON_ONCE(q->mq_ops);
1436
1437 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1438 retry:
1439 rq = __get_request(rl, op, bio, flags);
1440 if (!IS_ERR(rq))
1441 return rq;
1442
1443 if (op & REQ_NOWAIT) {
1444 blk_put_rl(rl);
1445 return ERR_PTR(-EAGAIN);
1446 }
1447
1448 if ((flags & BLK_MQ_REQ_NOWAIT) || unlikely(blk_queue_dying(q))) {
1449 blk_put_rl(rl);
1450 return rq;
1451 }
1452
1453 /* wait on @rl and retry */
1454 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1455 TASK_UNINTERRUPTIBLE);
1456
1457 trace_block_sleeprq(q, bio, op);
1458
1459 spin_unlock_irq(q->queue_lock);
1460 io_schedule();
1461
1462 /*
1463 * After sleeping, we become a "batching" process and will be able
1464 * to allocate at least one request, and up to a big batch of them
1465 * for a small period time. See ioc_batching, ioc_set_batching
1466 */
1467 ioc_set_batching(q, current->io_context);
1468
1469 spin_lock_irq(q->queue_lock);
1470 finish_wait(&rl->wait[is_sync], &wait);
1471
1472 goto retry;
1473 }
1474
1475 /* flags: BLK_MQ_REQ_PREEMPT and/or BLK_MQ_REQ_NOWAIT. */
1476 static struct request *blk_old_get_request(struct request_queue *q,
1477 unsigned int op, blk_mq_req_flags_t flags)
1478 {
1479 struct request *rq;
1480 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC :
1481 __GFP_DIRECT_RECLAIM;
1482 int ret = 0;
1483
1484 WARN_ON_ONCE(q->mq_ops);
1485
1486 /* create ioc upfront */
1487 create_io_context(gfp_mask, q->node);
1488
1489 ret = blk_queue_enter(q, flags);
1490 if (ret)
1491 return ERR_PTR(ret);
1492 spin_lock_irq(q->queue_lock);
1493 rq = get_request(q, op, NULL, flags);
1494 if (IS_ERR(rq)) {
1495 spin_unlock_irq(q->queue_lock);
1496 blk_queue_exit(q);
1497 return rq;
1498 }
1499
1500 /* q->queue_lock is unlocked at this point */
1501 rq->__data_len = 0;
1502 rq->__sector = (sector_t) -1;
1503 rq->bio = rq->biotail = NULL;
1504 return rq;
1505 }
1506
1507 /**
1508 * blk_get_request_flags - allocate a request
1509 * @q: request queue to allocate a request for
1510 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
1511 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
1512 */
1513 struct request *blk_get_request_flags(struct request_queue *q, unsigned int op,
1514 blk_mq_req_flags_t flags)
1515 {
1516 struct request *req;
1517
1518 WARN_ON_ONCE(op & REQ_NOWAIT);
1519 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
1520
1521 if (q->mq_ops) {
1522 req = blk_mq_alloc_request(q, op, flags);
1523 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
1524 q->mq_ops->initialize_rq_fn(req);
1525 } else {
1526 req = blk_old_get_request(q, op, flags);
1527 if (!IS_ERR(req) && q->initialize_rq_fn)
1528 q->initialize_rq_fn(req);
1529 }
1530
1531 return req;
1532 }
1533 EXPORT_SYMBOL(blk_get_request_flags);
1534
1535 struct request *blk_get_request(struct request_queue *q, unsigned int op,
1536 gfp_t gfp_mask)
1537 {
1538 return blk_get_request_flags(q, op, gfp_mask & __GFP_DIRECT_RECLAIM ?
1539 0 : BLK_MQ_REQ_NOWAIT);
1540 }
1541 EXPORT_SYMBOL(blk_get_request);
1542
1543 /**
1544 * blk_requeue_request - put a request back on queue
1545 * @q: request queue where request should be inserted
1546 * @rq: request to be inserted
1547 *
1548 * Description:
1549 * Drivers often keep queueing requests until the hardware cannot accept
1550 * more, when that condition happens we need to put the request back
1551 * on the queue. Must be called with queue lock held.
1552 */
1553 void blk_requeue_request(struct request_queue *q, struct request *rq)
1554 {
1555 lockdep_assert_held(q->queue_lock);
1556 WARN_ON_ONCE(q->mq_ops);
1557
1558 blk_delete_timer(rq);
1559 blk_clear_rq_complete(rq);
1560 trace_block_rq_requeue(q, rq);
1561 wbt_requeue(q->rq_wb, &rq->issue_stat);
1562
1563 if (rq->rq_flags & RQF_QUEUED)
1564 blk_queue_end_tag(q, rq);
1565
1566 BUG_ON(blk_queued_rq(rq));
1567
1568 elv_requeue_request(q, rq);
1569 }
1570 EXPORT_SYMBOL(blk_requeue_request);
1571
1572 static void add_acct_request(struct request_queue *q, struct request *rq,
1573 int where)
1574 {
1575 blk_account_io_start(rq, true);
1576 __elv_add_request(q, rq, where);
1577 }
1578
1579 static void part_round_stats_single(struct request_queue *q, int cpu,
1580 struct hd_struct *part, unsigned long now,
1581 unsigned int inflight)
1582 {
1583 if (inflight) {
1584 __part_stat_add(cpu, part, time_in_queue,
1585 inflight * (now - part->stamp));
1586 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1587 }
1588 part->stamp = now;
1589 }
1590
1591 /**
1592 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1593 * @q: target block queue
1594 * @cpu: cpu number for stats access
1595 * @part: target partition
1596 *
1597 * The average IO queue length and utilisation statistics are maintained
1598 * by observing the current state of the queue length and the amount of
1599 * time it has been in this state for.
1600 *
1601 * Normally, that accounting is done on IO completion, but that can result
1602 * in more than a second's worth of IO being accounted for within any one
1603 * second, leading to >100% utilisation. To deal with that, we call this
1604 * function to do a round-off before returning the results when reading
1605 * /proc/diskstats. This accounts immediately for all queue usage up to
1606 * the current jiffies and restarts the counters again.
1607 */
1608 void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part)
1609 {
1610 struct hd_struct *part2 = NULL;
1611 unsigned long now = jiffies;
1612 unsigned int inflight[2];
1613 int stats = 0;
1614
1615 if (part->stamp != now)
1616 stats |= 1;
1617
1618 if (part->partno) {
1619 part2 = &part_to_disk(part)->part0;
1620 if (part2->stamp != now)
1621 stats |= 2;
1622 }
1623
1624 if (!stats)
1625 return;
1626
1627 part_in_flight(q, part, inflight);
1628
1629 if (stats & 2)
1630 part_round_stats_single(q, cpu, part2, now, inflight[1]);
1631 if (stats & 1)
1632 part_round_stats_single(q, cpu, part, now, inflight[0]);
1633 }
1634 EXPORT_SYMBOL_GPL(part_round_stats);
1635
1636 #ifdef CONFIG_PM
1637 static void blk_pm_put_request(struct request *rq)
1638 {
1639 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
1640 pm_runtime_mark_last_busy(rq->q->dev);
1641 }
1642 #else
1643 static inline void blk_pm_put_request(struct request *rq) {}
1644 #endif
1645
1646 void __blk_put_request(struct request_queue *q, struct request *req)
1647 {
1648 req_flags_t rq_flags = req->rq_flags;
1649
1650 if (unlikely(!q))
1651 return;
1652
1653 if (q->mq_ops) {
1654 blk_mq_free_request(req);
1655 return;
1656 }
1657
1658 lockdep_assert_held(q->queue_lock);
1659
1660 blk_pm_put_request(req);
1661
1662 elv_completed_request(q, req);
1663
1664 /* this is a bio leak */
1665 WARN_ON(req->bio != NULL);
1666
1667 wbt_done(q->rq_wb, &req->issue_stat);
1668
1669 /*
1670 * Request may not have originated from ll_rw_blk. if not,
1671 * it didn't come out of our reserved rq pools
1672 */
1673 if (rq_flags & RQF_ALLOCED) {
1674 struct request_list *rl = blk_rq_rl(req);
1675 bool sync = op_is_sync(req->cmd_flags);
1676
1677 BUG_ON(!list_empty(&req->queuelist));
1678 BUG_ON(ELV_ON_HASH(req));
1679
1680 blk_free_request(rl, req);
1681 freed_request(rl, sync, rq_flags);
1682 blk_put_rl(rl);
1683 blk_queue_exit(q);
1684 }
1685 }
1686 EXPORT_SYMBOL_GPL(__blk_put_request);
1687
1688 void blk_put_request(struct request *req)
1689 {
1690 struct request_queue *q = req->q;
1691
1692 if (q->mq_ops)
1693 blk_mq_free_request(req);
1694 else {
1695 unsigned long flags;
1696
1697 spin_lock_irqsave(q->queue_lock, flags);
1698 __blk_put_request(q, req);
1699 spin_unlock_irqrestore(q->queue_lock, flags);
1700 }
1701 }
1702 EXPORT_SYMBOL(blk_put_request);
1703
1704 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1705 struct bio *bio)
1706 {
1707 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1708
1709 if (!ll_back_merge_fn(q, req, bio))
1710 return false;
1711
1712 trace_block_bio_backmerge(q, req, bio);
1713
1714 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1715 blk_rq_set_mixed_merge(req);
1716
1717 req->biotail->bi_next = bio;
1718 req->biotail = bio;
1719 req->__data_len += bio->bi_iter.bi_size;
1720 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1721
1722 blk_account_io_start(req, false);
1723 return true;
1724 }
1725
1726 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1727 struct bio *bio)
1728 {
1729 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1730
1731 if (!ll_front_merge_fn(q, req, bio))
1732 return false;
1733
1734 trace_block_bio_frontmerge(q, req, bio);
1735
1736 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1737 blk_rq_set_mixed_merge(req);
1738
1739 bio->bi_next = req->bio;
1740 req->bio = bio;
1741
1742 req->__sector = bio->bi_iter.bi_sector;
1743 req->__data_len += bio->bi_iter.bi_size;
1744 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1745
1746 blk_account_io_start(req, false);
1747 return true;
1748 }
1749
1750 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1751 struct bio *bio)
1752 {
1753 unsigned short segments = blk_rq_nr_discard_segments(req);
1754
1755 if (segments >= queue_max_discard_segments(q))
1756 goto no_merge;
1757 if (blk_rq_sectors(req) + bio_sectors(bio) >
1758 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1759 goto no_merge;
1760
1761 req->biotail->bi_next = bio;
1762 req->biotail = bio;
1763 req->__data_len += bio->bi_iter.bi_size;
1764 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1765 req->nr_phys_segments = segments + 1;
1766
1767 blk_account_io_start(req, false);
1768 return true;
1769 no_merge:
1770 req_set_nomerge(q, req);
1771 return false;
1772 }
1773
1774 /**
1775 * blk_attempt_plug_merge - try to merge with %current's plugged list
1776 * @q: request_queue new bio is being queued at
1777 * @bio: new bio being queued
1778 * @request_count: out parameter for number of traversed plugged requests
1779 * @same_queue_rq: pointer to &struct request that gets filled in when
1780 * another request associated with @q is found on the plug list
1781 * (optional, may be %NULL)
1782 *
1783 * Determine whether @bio being queued on @q can be merged with a request
1784 * on %current's plugged list. Returns %true if merge was successful,
1785 * otherwise %false.
1786 *
1787 * Plugging coalesces IOs from the same issuer for the same purpose without
1788 * going through @q->queue_lock. As such it's more of an issuing mechanism
1789 * than scheduling, and the request, while may have elvpriv data, is not
1790 * added on the elevator at this point. In addition, we don't have
1791 * reliable access to the elevator outside queue lock. Only check basic
1792 * merging parameters without querying the elevator.
1793 *
1794 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1795 */
1796 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1797 unsigned int *request_count,
1798 struct request **same_queue_rq)
1799 {
1800 struct blk_plug *plug;
1801 struct request *rq;
1802 struct list_head *plug_list;
1803
1804 plug = current->plug;
1805 if (!plug)
1806 return false;
1807 *request_count = 0;
1808
1809 if (q->mq_ops)
1810 plug_list = &plug->mq_list;
1811 else
1812 plug_list = &plug->list;
1813
1814 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1815 bool merged = false;
1816
1817 if (rq->q == q) {
1818 (*request_count)++;
1819 /*
1820 * Only blk-mq multiple hardware queues case checks the
1821 * rq in the same queue, there should be only one such
1822 * rq in a queue
1823 **/
1824 if (same_queue_rq)
1825 *same_queue_rq = rq;
1826 }
1827
1828 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1829 continue;
1830
1831 switch (blk_try_merge(rq, bio)) {
1832 case ELEVATOR_BACK_MERGE:
1833 merged = bio_attempt_back_merge(q, rq, bio);
1834 break;
1835 case ELEVATOR_FRONT_MERGE:
1836 merged = bio_attempt_front_merge(q, rq, bio);
1837 break;
1838 case ELEVATOR_DISCARD_MERGE:
1839 merged = bio_attempt_discard_merge(q, rq, bio);
1840 break;
1841 default:
1842 break;
1843 }
1844
1845 if (merged)
1846 return true;
1847 }
1848
1849 return false;
1850 }
1851
1852 unsigned int blk_plug_queued_count(struct request_queue *q)
1853 {
1854 struct blk_plug *plug;
1855 struct request *rq;
1856 struct list_head *plug_list;
1857 unsigned int ret = 0;
1858
1859 plug = current->plug;
1860 if (!plug)
1861 goto out;
1862
1863 if (q->mq_ops)
1864 plug_list = &plug->mq_list;
1865 else
1866 plug_list = &plug->list;
1867
1868 list_for_each_entry(rq, plug_list, queuelist) {
1869 if (rq->q == q)
1870 ret++;
1871 }
1872 out:
1873 return ret;
1874 }
1875
1876 void blk_init_request_from_bio(struct request *req, struct bio *bio)
1877 {
1878 struct io_context *ioc = rq_ioc(bio);
1879
1880 if (bio->bi_opf & REQ_RAHEAD)
1881 req->cmd_flags |= REQ_FAILFAST_MASK;
1882
1883 req->__sector = bio->bi_iter.bi_sector;
1884 if (ioprio_valid(bio_prio(bio)))
1885 req->ioprio = bio_prio(bio);
1886 else if (ioc)
1887 req->ioprio = ioc->ioprio;
1888 else
1889 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
1890 req->write_hint = bio->bi_write_hint;
1891 blk_rq_bio_prep(req->q, req, bio);
1892 }
1893 EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
1894
1895 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1896 {
1897 struct blk_plug *plug;
1898 int where = ELEVATOR_INSERT_SORT;
1899 struct request *req, *free;
1900 unsigned int request_count = 0;
1901 unsigned int wb_acct;
1902
1903 /*
1904 * low level driver can indicate that it wants pages above a
1905 * certain limit bounced to low memory (ie for highmem, or even
1906 * ISA dma in theory)
1907 */
1908 blk_queue_bounce(q, &bio);
1909
1910 blk_queue_split(q, &bio);
1911
1912 if (!bio_integrity_prep(bio))
1913 return BLK_QC_T_NONE;
1914
1915 if (op_is_flush(bio->bi_opf)) {
1916 spin_lock_irq(q->queue_lock);
1917 where = ELEVATOR_INSERT_FLUSH;
1918 goto get_rq;
1919 }
1920
1921 /*
1922 * Check if we can merge with the plugged list before grabbing
1923 * any locks.
1924 */
1925 if (!blk_queue_nomerges(q)) {
1926 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1927 return BLK_QC_T_NONE;
1928 } else
1929 request_count = blk_plug_queued_count(q);
1930
1931 spin_lock_irq(q->queue_lock);
1932
1933 switch (elv_merge(q, &req, bio)) {
1934 case ELEVATOR_BACK_MERGE:
1935 if (!bio_attempt_back_merge(q, req, bio))
1936 break;
1937 elv_bio_merged(q, req, bio);
1938 free = attempt_back_merge(q, req);
1939 if (free)
1940 __blk_put_request(q, free);
1941 else
1942 elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
1943 goto out_unlock;
1944 case ELEVATOR_FRONT_MERGE:
1945 if (!bio_attempt_front_merge(q, req, bio))
1946 break;
1947 elv_bio_merged(q, req, bio);
1948 free = attempt_front_merge(q, req);
1949 if (free)
1950 __blk_put_request(q, free);
1951 else
1952 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
1953 goto out_unlock;
1954 default:
1955 break;
1956 }
1957
1958 get_rq:
1959 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1960
1961 /*
1962 * Grab a free request. This is might sleep but can not fail.
1963 * Returns with the queue unlocked.
1964 */
1965 blk_queue_enter_live(q);
1966 req = get_request(q, bio->bi_opf, bio, 0);
1967 if (IS_ERR(req)) {
1968 blk_queue_exit(q);
1969 __wbt_done(q->rq_wb, wb_acct);
1970 if (PTR_ERR(req) == -ENOMEM)
1971 bio->bi_status = BLK_STS_RESOURCE;
1972 else
1973 bio->bi_status = BLK_STS_IOERR;
1974 bio_endio(bio);
1975 goto out_unlock;
1976 }
1977
1978 wbt_track(&req->issue_stat, wb_acct);
1979
1980 /*
1981 * After dropping the lock and possibly sleeping here, our request
1982 * may now be mergeable after it had proven unmergeable (above).
1983 * We don't worry about that case for efficiency. It won't happen
1984 * often, and the elevators are able to handle it.
1985 */
1986 blk_init_request_from_bio(req, bio);
1987
1988 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1989 req->cpu = raw_smp_processor_id();
1990
1991 plug = current->plug;
1992 if (plug) {
1993 /*
1994 * If this is the first request added after a plug, fire
1995 * of a plug trace.
1996 *
1997 * @request_count may become stale because of schedule
1998 * out, so check plug list again.
1999 */
2000 if (!request_count || list_empty(&plug->list))
2001 trace_block_plug(q);
2002 else {
2003 struct request *last = list_entry_rq(plug->list.prev);
2004 if (request_count >= BLK_MAX_REQUEST_COUNT ||
2005 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
2006 blk_flush_plug_list(plug, false);
2007 trace_block_plug(q);
2008 }
2009 }
2010 list_add_tail(&req->queuelist, &plug->list);
2011 blk_account_io_start(req, true);
2012 } else {
2013 spin_lock_irq(q->queue_lock);
2014 add_acct_request(q, req, where);
2015 __blk_run_queue(q);
2016 out_unlock:
2017 spin_unlock_irq(q->queue_lock);
2018 }
2019
2020 return BLK_QC_T_NONE;
2021 }
2022
2023 static void handle_bad_sector(struct bio *bio)
2024 {
2025 char b[BDEVNAME_SIZE];
2026
2027 printk(KERN_INFO "attempt to access beyond end of device\n");
2028 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
2029 bio_devname(bio, b), bio->bi_opf,
2030 (unsigned long long)bio_end_sector(bio),
2031 (long long)get_capacity(bio->bi_disk));
2032 }
2033
2034 #ifdef CONFIG_FAIL_MAKE_REQUEST
2035
2036 static DECLARE_FAULT_ATTR(fail_make_request);
2037
2038 static int __init setup_fail_make_request(char *str)
2039 {
2040 return setup_fault_attr(&fail_make_request, str);
2041 }
2042 __setup("fail_make_request=", setup_fail_make_request);
2043
2044 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
2045 {
2046 return part->make_it_fail && should_fail(&fail_make_request, bytes);
2047 }
2048
2049 static int __init fail_make_request_debugfs(void)
2050 {
2051 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
2052 NULL, &fail_make_request);
2053
2054 return PTR_ERR_OR_ZERO(dir);
2055 }
2056
2057 late_initcall(fail_make_request_debugfs);
2058
2059 #else /* CONFIG_FAIL_MAKE_REQUEST */
2060
2061 static inline bool should_fail_request(struct hd_struct *part,
2062 unsigned int bytes)
2063 {
2064 return false;
2065 }
2066
2067 #endif /* CONFIG_FAIL_MAKE_REQUEST */
2068
2069 /*
2070 * Remap block n of partition p to block n+start(p) of the disk.
2071 */
2072 static inline int blk_partition_remap(struct bio *bio)
2073 {
2074 struct hd_struct *p;
2075 int ret = 0;
2076
2077 /*
2078 * Zone reset does not include bi_size so bio_sectors() is always 0.
2079 * Include a test for the reset op code and perform the remap if needed.
2080 */
2081 if (!bio->bi_partno ||
2082 (!bio_sectors(bio) && bio_op(bio) != REQ_OP_ZONE_RESET))
2083 return 0;
2084
2085 rcu_read_lock();
2086 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
2087 if (likely(p && !should_fail_request(p, bio->bi_iter.bi_size))) {
2088 bio->bi_iter.bi_sector += p->start_sect;
2089 bio->bi_partno = 0;
2090 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
2091 bio->bi_iter.bi_sector - p->start_sect);
2092 } else {
2093 printk("%s: fail for partition %d\n", __func__, bio->bi_partno);
2094 ret = -EIO;
2095 }
2096 rcu_read_unlock();
2097
2098 return ret;
2099 }
2100
2101 /*
2102 * Check whether this bio extends beyond the end of the device.
2103 */
2104 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
2105 {
2106 sector_t maxsector;
2107
2108 if (!nr_sectors)
2109 return 0;
2110
2111 /* Test device or partition size, when known. */
2112 maxsector = get_capacity(bio->bi_disk);
2113 if (maxsector) {
2114 sector_t sector = bio->bi_iter.bi_sector;
2115
2116 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
2117 /*
2118 * This may well happen - the kernel calls bread()
2119 * without checking the size of the device, e.g., when
2120 * mounting a device.
2121 */
2122 handle_bad_sector(bio);
2123 return 1;
2124 }
2125 }
2126
2127 return 0;
2128 }
2129
2130 static noinline_for_stack bool
2131 generic_make_request_checks(struct bio *bio)
2132 {
2133 struct request_queue *q;
2134 int nr_sectors = bio_sectors(bio);
2135 blk_status_t status = BLK_STS_IOERR;
2136 char b[BDEVNAME_SIZE];
2137
2138 might_sleep();
2139
2140 if (bio_check_eod(bio, nr_sectors))
2141 goto end_io;
2142
2143 q = bio->bi_disk->queue;
2144 if (unlikely(!q)) {
2145 printk(KERN_ERR
2146 "generic_make_request: Trying to access "
2147 "nonexistent block-device %s (%Lu)\n",
2148 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
2149 goto end_io;
2150 }
2151
2152 /*
2153 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2154 * if queue is not a request based queue.
2155 */
2156
2157 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
2158 goto not_supported;
2159
2160 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
2161 goto end_io;
2162
2163 if (blk_partition_remap(bio))
2164 goto end_io;
2165
2166 if (bio_check_eod(bio, nr_sectors))
2167 goto end_io;
2168
2169 /*
2170 * Filter flush bio's early so that make_request based
2171 * drivers without flush support don't have to worry
2172 * about them.
2173 */
2174 if (op_is_flush(bio->bi_opf) &&
2175 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
2176 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
2177 if (!nr_sectors) {
2178 status = BLK_STS_OK;
2179 goto end_io;
2180 }
2181 }
2182
2183 switch (bio_op(bio)) {
2184 case REQ_OP_DISCARD:
2185 if (!blk_queue_discard(q))
2186 goto not_supported;
2187 break;
2188 case REQ_OP_SECURE_ERASE:
2189 if (!blk_queue_secure_erase(q))
2190 goto not_supported;
2191 break;
2192 case REQ_OP_WRITE_SAME:
2193 if (!q->limits.max_write_same_sectors)
2194 goto not_supported;
2195 break;
2196 case REQ_OP_ZONE_REPORT:
2197 case REQ_OP_ZONE_RESET:
2198 if (!blk_queue_is_zoned(q))
2199 goto not_supported;
2200 break;
2201 case REQ_OP_WRITE_ZEROES:
2202 if (!q->limits.max_write_zeroes_sectors)
2203 goto not_supported;
2204 break;
2205 default:
2206 break;
2207 }
2208
2209 /*
2210 * Various block parts want %current->io_context and lazy ioc
2211 * allocation ends up trading a lot of pain for a small amount of
2212 * memory. Just allocate it upfront. This may fail and block
2213 * layer knows how to live with it.
2214 */
2215 create_io_context(GFP_ATOMIC, q->node);
2216
2217 if (!blkcg_bio_issue_check(q, bio))
2218 return false;
2219
2220 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2221 trace_block_bio_queue(q, bio);
2222 /* Now that enqueuing has been traced, we need to trace
2223 * completion as well.
2224 */
2225 bio_set_flag(bio, BIO_TRACE_COMPLETION);
2226 }
2227 return true;
2228
2229 not_supported:
2230 status = BLK_STS_NOTSUPP;
2231 end_io:
2232 bio->bi_status = status;
2233 bio_endio(bio);
2234 return false;
2235 }
2236
2237 /**
2238 * generic_make_request - hand a buffer to its device driver for I/O
2239 * @bio: The bio describing the location in memory and on the device.
2240 *
2241 * generic_make_request() is used to make I/O requests of block
2242 * devices. It is passed a &struct bio, which describes the I/O that needs
2243 * to be done.
2244 *
2245 * generic_make_request() does not return any status. The
2246 * success/failure status of the request, along with notification of
2247 * completion, is delivered asynchronously through the bio->bi_end_io
2248 * function described (one day) else where.
2249 *
2250 * The caller of generic_make_request must make sure that bi_io_vec
2251 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2252 * set to describe the device address, and the
2253 * bi_end_io and optionally bi_private are set to describe how
2254 * completion notification should be signaled.
2255 *
2256 * generic_make_request and the drivers it calls may use bi_next if this
2257 * bio happens to be merged with someone else, and may resubmit the bio to
2258 * a lower device by calling into generic_make_request recursively, which
2259 * means the bio should NOT be touched after the call to ->make_request_fn.
2260 */
2261 blk_qc_t generic_make_request(struct bio *bio)
2262 {
2263 /*
2264 * bio_list_on_stack[0] contains bios submitted by the current
2265 * make_request_fn.
2266 * bio_list_on_stack[1] contains bios that were submitted before
2267 * the current make_request_fn, but that haven't been processed
2268 * yet.
2269 */
2270 struct bio_list bio_list_on_stack[2];
2271 blk_qc_t ret = BLK_QC_T_NONE;
2272
2273 if (!generic_make_request_checks(bio))
2274 goto out;
2275
2276 /*
2277 * We only want one ->make_request_fn to be active at a time, else
2278 * stack usage with stacked devices could be a problem. So use
2279 * current->bio_list to keep a list of requests submited by a
2280 * make_request_fn function. current->bio_list is also used as a
2281 * flag to say if generic_make_request is currently active in this
2282 * task or not. If it is NULL, then no make_request is active. If
2283 * it is non-NULL, then a make_request is active, and new requests
2284 * should be added at the tail
2285 */
2286 if (current->bio_list) {
2287 bio_list_add(&current->bio_list[0], bio);
2288 goto out;
2289 }
2290
2291 /* following loop may be a bit non-obvious, and so deserves some
2292 * explanation.
2293 * Before entering the loop, bio->bi_next is NULL (as all callers
2294 * ensure that) so we have a list with a single bio.
2295 * We pretend that we have just taken it off a longer list, so
2296 * we assign bio_list to a pointer to the bio_list_on_stack,
2297 * thus initialising the bio_list of new bios to be
2298 * added. ->make_request() may indeed add some more bios
2299 * through a recursive call to generic_make_request. If it
2300 * did, we find a non-NULL value in bio_list and re-enter the loop
2301 * from the top. In this case we really did just take the bio
2302 * of the top of the list (no pretending) and so remove it from
2303 * bio_list, and call into ->make_request() again.
2304 */
2305 BUG_ON(bio->bi_next);
2306 bio_list_init(&bio_list_on_stack[0]);
2307 current->bio_list = bio_list_on_stack;
2308 do {
2309 struct request_queue *q = bio->bi_disk->queue;
2310 blk_mq_req_flags_t flags = bio->bi_opf & REQ_NOWAIT ?
2311 BLK_MQ_REQ_NOWAIT : 0;
2312
2313 if (likely(blk_queue_enter(q, flags) == 0)) {
2314 struct bio_list lower, same;
2315
2316 /* Create a fresh bio_list for all subordinate requests */
2317 bio_list_on_stack[1] = bio_list_on_stack[0];
2318 bio_list_init(&bio_list_on_stack[0]);
2319 ret = q->make_request_fn(q, bio);
2320
2321 blk_queue_exit(q);
2322
2323 /* sort new bios into those for a lower level
2324 * and those for the same level
2325 */
2326 bio_list_init(&lower);
2327 bio_list_init(&same);
2328 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
2329 if (q == bio->bi_disk->queue)
2330 bio_list_add(&same, bio);
2331 else
2332 bio_list_add(&lower, bio);
2333 /* now assemble so we handle the lowest level first */
2334 bio_list_merge(&bio_list_on_stack[0], &lower);
2335 bio_list_merge(&bio_list_on_stack[0], &same);
2336 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
2337 } else {
2338 if (unlikely(!blk_queue_dying(q) &&
2339 (bio->bi_opf & REQ_NOWAIT)))
2340 bio_wouldblock_error(bio);
2341 else
2342 bio_io_error(bio);
2343 }
2344 bio = bio_list_pop(&bio_list_on_stack[0]);
2345 } while (bio);
2346 current->bio_list = NULL; /* deactivate */
2347
2348 out:
2349 return ret;
2350 }
2351 EXPORT_SYMBOL(generic_make_request);
2352
2353 /**
2354 * direct_make_request - hand a buffer directly to its device driver for I/O
2355 * @bio: The bio describing the location in memory and on the device.
2356 *
2357 * This function behaves like generic_make_request(), but does not protect
2358 * against recursion. Must only be used if the called driver is known
2359 * to not call generic_make_request (or direct_make_request) again from
2360 * its make_request function. (Calling direct_make_request again from
2361 * a workqueue is perfectly fine as that doesn't recurse).
2362 */
2363 blk_qc_t direct_make_request(struct bio *bio)
2364 {
2365 struct request_queue *q = bio->bi_disk->queue;
2366 bool nowait = bio->bi_opf & REQ_NOWAIT;
2367 blk_qc_t ret;
2368
2369 if (!generic_make_request_checks(bio))
2370 return BLK_QC_T_NONE;
2371
2372 if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
2373 if (nowait && !blk_queue_dying(q))
2374 bio->bi_status = BLK_STS_AGAIN;
2375 else
2376 bio->bi_status = BLK_STS_IOERR;
2377 bio_endio(bio);
2378 return BLK_QC_T_NONE;
2379 }
2380
2381 ret = q->make_request_fn(q, bio);
2382 blk_queue_exit(q);
2383 return ret;
2384 }
2385 EXPORT_SYMBOL_GPL(direct_make_request);
2386
2387 /**
2388 * submit_bio - submit a bio to the block device layer for I/O
2389 * @bio: The &struct bio which describes the I/O
2390 *
2391 * submit_bio() is very similar in purpose to generic_make_request(), and
2392 * uses that function to do most of the work. Both are fairly rough
2393 * interfaces; @bio must be presetup and ready for I/O.
2394 *
2395 */
2396 blk_qc_t submit_bio(struct bio *bio)
2397 {
2398 /*
2399 * If it's a regular read/write or a barrier with data attached,
2400 * go through the normal accounting stuff before submission.
2401 */
2402 if (bio_has_data(bio)) {
2403 unsigned int count;
2404
2405 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2406 count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
2407 else
2408 count = bio_sectors(bio);
2409
2410 if (op_is_write(bio_op(bio))) {
2411 count_vm_events(PGPGOUT, count);
2412 } else {
2413 task_io_account_read(bio->bi_iter.bi_size);
2414 count_vm_events(PGPGIN, count);
2415 }
2416
2417 if (unlikely(block_dump)) {
2418 char b[BDEVNAME_SIZE];
2419 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2420 current->comm, task_pid_nr(current),
2421 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2422 (unsigned long long)bio->bi_iter.bi_sector,
2423 bio_devname(bio, b), count);
2424 }
2425 }
2426
2427 return generic_make_request(bio);
2428 }
2429 EXPORT_SYMBOL(submit_bio);
2430
2431 bool blk_poll(struct request_queue *q, blk_qc_t cookie)
2432 {
2433 if (!q->poll_fn || !blk_qc_t_valid(cookie))
2434 return false;
2435
2436 if (current->plug)
2437 blk_flush_plug_list(current->plug, false);
2438 return q->poll_fn(q, cookie);
2439 }
2440 EXPORT_SYMBOL_GPL(blk_poll);
2441
2442 /**
2443 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2444 * for new the queue limits
2445 * @q: the queue
2446 * @rq: the request being checked
2447 *
2448 * Description:
2449 * @rq may have been made based on weaker limitations of upper-level queues
2450 * in request stacking drivers, and it may violate the limitation of @q.
2451 * Since the block layer and the underlying device driver trust @rq
2452 * after it is inserted to @q, it should be checked against @q before
2453 * the insertion using this generic function.
2454 *
2455 * Request stacking drivers like request-based dm may change the queue
2456 * limits when retrying requests on other queues. Those requests need
2457 * to be checked against the new queue limits again during dispatch.
2458 */
2459 static int blk_cloned_rq_check_limits(struct request_queue *q,
2460 struct request *rq)
2461 {
2462 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2463 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2464 return -EIO;
2465 }
2466
2467 /*
2468 * queue's settings related to segment counting like q->bounce_pfn
2469 * may differ from that of other stacking queues.
2470 * Recalculate it to check the request correctly on this queue's
2471 * limitation.
2472 */
2473 blk_recalc_rq_segments(rq);
2474 if (rq->nr_phys_segments > queue_max_segments(q)) {
2475 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2476 return -EIO;
2477 }
2478
2479 return 0;
2480 }
2481
2482 /**
2483 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2484 * @q: the queue to submit the request
2485 * @rq: the request being queued
2486 */
2487 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2488 {
2489 unsigned long flags;
2490 int where = ELEVATOR_INSERT_BACK;
2491
2492 if (blk_cloned_rq_check_limits(q, rq))
2493 return BLK_STS_IOERR;
2494
2495 if (rq->rq_disk &&
2496 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2497 return BLK_STS_IOERR;
2498
2499 if (q->mq_ops) {
2500 if (blk_queue_io_stat(q))
2501 blk_account_io_start(rq, true);
2502 /*
2503 * Since we have a scheduler attached on the top device,
2504 * bypass a potential scheduler on the bottom device for
2505 * insert.
2506 */
2507 blk_mq_request_bypass_insert(rq, true);
2508 return BLK_STS_OK;
2509 }
2510
2511 spin_lock_irqsave(q->queue_lock, flags);
2512 if (unlikely(blk_queue_dying(q))) {
2513 spin_unlock_irqrestore(q->queue_lock, flags);
2514 return BLK_STS_IOERR;
2515 }
2516
2517 /*
2518 * Submitting request must be dequeued before calling this function
2519 * because it will be linked to another request_queue
2520 */
2521 BUG_ON(blk_queued_rq(rq));
2522
2523 if (op_is_flush(rq->cmd_flags))
2524 where = ELEVATOR_INSERT_FLUSH;
2525
2526 add_acct_request(q, rq, where);
2527 if (where == ELEVATOR_INSERT_FLUSH)
2528 __blk_run_queue(q);
2529 spin_unlock_irqrestore(q->queue_lock, flags);
2530
2531 return BLK_STS_OK;
2532 }
2533 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2534
2535 /**
2536 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2537 * @rq: request to examine
2538 *
2539 * Description:
2540 * A request could be merge of IOs which require different failure
2541 * handling. This function determines the number of bytes which
2542 * can be failed from the beginning of the request without
2543 * crossing into area which need to be retried further.
2544 *
2545 * Return:
2546 * The number of bytes to fail.
2547 */
2548 unsigned int blk_rq_err_bytes(const struct request *rq)
2549 {
2550 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2551 unsigned int bytes = 0;
2552 struct bio *bio;
2553
2554 if (!(rq->rq_flags & RQF_MIXED_MERGE))
2555 return blk_rq_bytes(rq);
2556
2557 /*
2558 * Currently the only 'mixing' which can happen is between
2559 * different fastfail types. We can safely fail portions
2560 * which have all the failfast bits that the first one has -
2561 * the ones which are at least as eager to fail as the first
2562 * one.
2563 */
2564 for (bio = rq->bio; bio; bio = bio->bi_next) {
2565 if ((bio->bi_opf & ff) != ff)
2566 break;
2567 bytes += bio->bi_iter.bi_size;
2568 }
2569
2570 /* this could lead to infinite loop */
2571 BUG_ON(blk_rq_bytes(rq) && !bytes);
2572 return bytes;
2573 }
2574 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2575
2576 void blk_account_io_completion(struct request *req, unsigned int bytes)
2577 {
2578 if (blk_do_io_stat(req)) {
2579 const int rw = rq_data_dir(req);
2580 struct hd_struct *part;
2581 int cpu;
2582
2583 cpu = part_stat_lock();
2584 part = req->part;
2585 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2586 part_stat_unlock();
2587 }
2588 }
2589
2590 void blk_account_io_done(struct request *req)
2591 {
2592 /*
2593 * Account IO completion. flush_rq isn't accounted as a
2594 * normal IO on queueing nor completion. Accounting the
2595 * containing request is enough.
2596 */
2597 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2598 unsigned long duration = jiffies - req->start_time;
2599 const int rw = rq_data_dir(req);
2600 struct hd_struct *part;
2601 int cpu;
2602
2603 cpu = part_stat_lock();
2604 part = req->part;
2605
2606 part_stat_inc(cpu, part, ios[rw]);
2607 part_stat_add(cpu, part, ticks[rw], duration);
2608 part_round_stats(req->q, cpu, part);
2609 part_dec_in_flight(req->q, part, rw);
2610
2611 hd_struct_put(part);
2612 part_stat_unlock();
2613 }
2614 }
2615
2616 #ifdef CONFIG_PM
2617 /*
2618 * Don't process normal requests when queue is suspended
2619 * or in the process of suspending/resuming
2620 */
2621 static bool blk_pm_allow_request(struct request *rq)
2622 {
2623 switch (rq->q->rpm_status) {
2624 case RPM_RESUMING:
2625 case RPM_SUSPENDING:
2626 return rq->rq_flags & RQF_PM;
2627 case RPM_SUSPENDED:
2628 return false;
2629 }
2630
2631 return true;
2632 }
2633 #else
2634 static bool blk_pm_allow_request(struct request *rq)
2635 {
2636 return true;
2637 }
2638 #endif
2639
2640 void blk_account_io_start(struct request *rq, bool new_io)
2641 {
2642 struct hd_struct *part;
2643 int rw = rq_data_dir(rq);
2644 int cpu;
2645
2646 if (!blk_do_io_stat(rq))
2647 return;
2648
2649 cpu = part_stat_lock();
2650
2651 if (!new_io) {
2652 part = rq->part;
2653 part_stat_inc(cpu, part, merges[rw]);
2654 } else {
2655 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2656 if (!hd_struct_try_get(part)) {
2657 /*
2658 * The partition is already being removed,
2659 * the request will be accounted on the disk only
2660 *
2661 * We take a reference on disk->part0 although that
2662 * partition will never be deleted, so we can treat
2663 * it as any other partition.
2664 */
2665 part = &rq->rq_disk->part0;
2666 hd_struct_get(part);
2667 }
2668 part_round_stats(rq->q, cpu, part);
2669 part_inc_in_flight(rq->q, part, rw);
2670 rq->part = part;
2671 }
2672
2673 part_stat_unlock();
2674 }
2675
2676 static struct request *elv_next_request(struct request_queue *q)
2677 {
2678 struct request *rq;
2679 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
2680
2681 WARN_ON_ONCE(q->mq_ops);
2682
2683 while (1) {
2684 list_for_each_entry(rq, &q->queue_head, queuelist) {
2685 if (blk_pm_allow_request(rq))
2686 return rq;
2687
2688 if (rq->rq_flags & RQF_SOFTBARRIER)
2689 break;
2690 }
2691
2692 /*
2693 * Flush request is running and flush request isn't queueable
2694 * in the drive, we can hold the queue till flush request is
2695 * finished. Even we don't do this, driver can't dispatch next
2696 * requests and will requeue them. And this can improve
2697 * throughput too. For example, we have request flush1, write1,
2698 * flush 2. flush1 is dispatched, then queue is hold, write1
2699 * isn't inserted to queue. After flush1 is finished, flush2
2700 * will be dispatched. Since disk cache is already clean,
2701 * flush2 will be finished very soon, so looks like flush2 is
2702 * folded to flush1.
2703 * Since the queue is hold, a flag is set to indicate the queue
2704 * should be restarted later. Please see flush_end_io() for
2705 * details.
2706 */
2707 if (fq->flush_pending_idx != fq->flush_running_idx &&
2708 !queue_flush_queueable(q)) {
2709 fq->flush_queue_delayed = 1;
2710 return NULL;
2711 }
2712 if (unlikely(blk_queue_bypass(q)) ||
2713 !q->elevator->type->ops.sq.elevator_dispatch_fn(q, 0))
2714 return NULL;
2715 }
2716 }
2717
2718 /**
2719 * blk_peek_request - peek at the top of a request queue
2720 * @q: request queue to peek at
2721 *
2722 * Description:
2723 * Return the request at the top of @q. The returned request
2724 * should be started using blk_start_request() before LLD starts
2725 * processing it.
2726 *
2727 * Return:
2728 * Pointer to the request at the top of @q if available. Null
2729 * otherwise.
2730 */
2731 struct request *blk_peek_request(struct request_queue *q)
2732 {
2733 struct request *rq;
2734 int ret;
2735
2736 lockdep_assert_held(q->queue_lock);
2737 WARN_ON_ONCE(q->mq_ops);
2738
2739 while ((rq = elv_next_request(q)) != NULL) {
2740 if (!(rq->rq_flags & RQF_STARTED)) {
2741 /*
2742 * This is the first time the device driver
2743 * sees this request (possibly after
2744 * requeueing). Notify IO scheduler.
2745 */
2746 if (rq->rq_flags & RQF_SORTED)
2747 elv_activate_rq(q, rq);
2748
2749 /*
2750 * just mark as started even if we don't start
2751 * it, a request that has been delayed should
2752 * not be passed by new incoming requests
2753 */
2754 rq->rq_flags |= RQF_STARTED;
2755 trace_block_rq_issue(q, rq);
2756 }
2757
2758 if (!q->boundary_rq || q->boundary_rq == rq) {
2759 q->end_sector = rq_end_sector(rq);
2760 q->boundary_rq = NULL;
2761 }
2762
2763 if (rq->rq_flags & RQF_DONTPREP)
2764 break;
2765
2766 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2767 /*
2768 * make sure space for the drain appears we
2769 * know we can do this because max_hw_segments
2770 * has been adjusted to be one fewer than the
2771 * device can handle
2772 */
2773 rq->nr_phys_segments++;
2774 }
2775
2776 if (!q->prep_rq_fn)
2777 break;
2778
2779 ret = q->prep_rq_fn(q, rq);
2780 if (ret == BLKPREP_OK) {
2781 break;
2782 } else if (ret == BLKPREP_DEFER) {
2783 /*
2784 * the request may have been (partially) prepped.
2785 * we need to keep this request in the front to
2786 * avoid resource deadlock. RQF_STARTED will
2787 * prevent other fs requests from passing this one.
2788 */
2789 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2790 !(rq->rq_flags & RQF_DONTPREP)) {
2791 /*
2792 * remove the space for the drain we added
2793 * so that we don't add it again
2794 */
2795 --rq->nr_phys_segments;
2796 }
2797
2798 rq = NULL;
2799 break;
2800 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2801 rq->rq_flags |= RQF_QUIET;
2802 /*
2803 * Mark this request as started so we don't trigger
2804 * any debug logic in the end I/O path.
2805 */
2806 blk_start_request(rq);
2807 __blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2808 BLK_STS_TARGET : BLK_STS_IOERR);
2809 } else {
2810 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2811 break;
2812 }
2813 }
2814
2815 return rq;
2816 }
2817 EXPORT_SYMBOL(blk_peek_request);
2818
2819 static void blk_dequeue_request(struct request *rq)
2820 {
2821 struct request_queue *q = rq->q;
2822
2823 BUG_ON(list_empty(&rq->queuelist));
2824 BUG_ON(ELV_ON_HASH(rq));
2825
2826 list_del_init(&rq->queuelist);
2827
2828 /*
2829 * the time frame between a request being removed from the lists
2830 * and to it is freed is accounted as io that is in progress at
2831 * the driver side.
2832 */
2833 if (blk_account_rq(rq)) {
2834 q->in_flight[rq_is_sync(rq)]++;
2835 set_io_start_time_ns(rq);
2836 }
2837 }
2838
2839 /**
2840 * blk_start_request - start request processing on the driver
2841 * @req: request to dequeue
2842 *
2843 * Description:
2844 * Dequeue @req and start timeout timer on it. This hands off the
2845 * request to the driver.
2846 */
2847 void blk_start_request(struct request *req)
2848 {
2849 lockdep_assert_held(req->q->queue_lock);
2850 WARN_ON_ONCE(req->q->mq_ops);
2851
2852 blk_dequeue_request(req);
2853
2854 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2855 blk_stat_set_issue(&req->issue_stat, blk_rq_sectors(req));
2856 req->rq_flags |= RQF_STATS;
2857 wbt_issue(req->q->rq_wb, &req->issue_stat);
2858 }
2859
2860 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2861 blk_add_timer(req);
2862 }
2863 EXPORT_SYMBOL(blk_start_request);
2864
2865 /**
2866 * blk_fetch_request - fetch a request from a request queue
2867 * @q: request queue to fetch a request from
2868 *
2869 * Description:
2870 * Return the request at the top of @q. The request is started on
2871 * return and LLD can start processing it immediately.
2872 *
2873 * Return:
2874 * Pointer to the request at the top of @q if available. Null
2875 * otherwise.
2876 */
2877 struct request *blk_fetch_request(struct request_queue *q)
2878 {
2879 struct request *rq;
2880
2881 lockdep_assert_held(q->queue_lock);
2882 WARN_ON_ONCE(q->mq_ops);
2883
2884 rq = blk_peek_request(q);
2885 if (rq)
2886 blk_start_request(rq);
2887 return rq;
2888 }
2889 EXPORT_SYMBOL(blk_fetch_request);
2890
2891 /*
2892 * Steal bios from a request and add them to a bio list.
2893 * The request must not have been partially completed before.
2894 */
2895 void blk_steal_bios(struct bio_list *list, struct request *rq)
2896 {
2897 if (rq->bio) {
2898 if (list->tail)
2899 list->tail->bi_next = rq->bio;
2900 else
2901 list->head = rq->bio;
2902 list->tail = rq->biotail;
2903
2904 rq->bio = NULL;
2905 rq->biotail = NULL;
2906 }
2907
2908 rq->__data_len = 0;
2909 }
2910 EXPORT_SYMBOL_GPL(blk_steal_bios);
2911
2912 /**
2913 * blk_update_request - Special helper function for request stacking drivers
2914 * @req: the request being processed
2915 * @error: block status code
2916 * @nr_bytes: number of bytes to complete @req
2917 *
2918 * Description:
2919 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2920 * the request structure even if @req doesn't have leftover.
2921 * If @req has leftover, sets it up for the next range of segments.
2922 *
2923 * This special helper function is only for request stacking drivers
2924 * (e.g. request-based dm) so that they can handle partial completion.
2925 * Actual device drivers should use blk_end_request instead.
2926 *
2927 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2928 * %false return from this function.
2929 *
2930 * Return:
2931 * %false - this request doesn't have any more data
2932 * %true - this request has more data
2933 **/
2934 bool blk_update_request(struct request *req, blk_status_t error,
2935 unsigned int nr_bytes)
2936 {
2937 int total_bytes;
2938
2939 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
2940
2941 if (!req->bio)
2942 return false;
2943
2944 if (unlikely(error && !blk_rq_is_passthrough(req) &&
2945 !(req->rq_flags & RQF_QUIET)))
2946 print_req_error(req, error);
2947
2948 blk_account_io_completion(req, nr_bytes);
2949
2950 total_bytes = 0;
2951 while (req->bio) {
2952 struct bio *bio = req->bio;
2953 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2954
2955 if (bio_bytes == bio->bi_iter.bi_size)
2956 req->bio = bio->bi_next;
2957
2958 /* Completion has already been traced */
2959 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
2960 req_bio_endio(req, bio, bio_bytes, error);
2961
2962 total_bytes += bio_bytes;
2963 nr_bytes -= bio_bytes;
2964
2965 if (!nr_bytes)
2966 break;
2967 }
2968
2969 /*
2970 * completely done
2971 */
2972 if (!req->bio) {
2973 /*
2974 * Reset counters so that the request stacking driver
2975 * can find how many bytes remain in the request
2976 * later.
2977 */
2978 req->__data_len = 0;
2979 return false;
2980 }
2981
2982 req->__data_len -= total_bytes;
2983
2984 /* update sector only for requests with clear definition of sector */
2985 if (!blk_rq_is_passthrough(req))
2986 req->__sector += total_bytes >> 9;
2987
2988 /* mixed attributes always follow the first bio */
2989 if (req->rq_flags & RQF_MIXED_MERGE) {
2990 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2991 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
2992 }
2993
2994 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
2995 /*
2996 * If total number of sectors is less than the first segment
2997 * size, something has gone terribly wrong.
2998 */
2999 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
3000 blk_dump_rq_flags(req, "request botched");
3001 req->__data_len = blk_rq_cur_bytes(req);
3002 }
3003
3004 /* recalculate the number of segments */
3005 blk_recalc_rq_segments(req);
3006 }
3007
3008 return true;
3009 }
3010 EXPORT_SYMBOL_GPL(blk_update_request);
3011
3012 static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
3013 unsigned int nr_bytes,
3014 unsigned int bidi_bytes)
3015 {
3016 if (blk_update_request(rq, error, nr_bytes))
3017 return true;
3018
3019 /* Bidi request must be completed as a whole */
3020 if (unlikely(blk_bidi_rq(rq)) &&
3021 blk_update_request(rq->next_rq, error, bidi_bytes))
3022 return true;
3023
3024 if (blk_queue_add_random(rq->q))
3025 add_disk_randomness(rq->rq_disk);
3026
3027 return false;
3028 }
3029
3030 /**
3031 * blk_unprep_request - unprepare a request
3032 * @req: the request
3033 *
3034 * This function makes a request ready for complete resubmission (or
3035 * completion). It happens only after all error handling is complete,
3036 * so represents the appropriate moment to deallocate any resources
3037 * that were allocated to the request in the prep_rq_fn. The queue
3038 * lock is held when calling this.
3039 */
3040 void blk_unprep_request(struct request *req)
3041 {
3042 struct request_queue *q = req->q;
3043
3044 req->rq_flags &= ~RQF_DONTPREP;
3045 if (q->unprep_rq_fn)
3046 q->unprep_rq_fn(q, req);
3047 }
3048 EXPORT_SYMBOL_GPL(blk_unprep_request);
3049
3050 void blk_finish_request(struct request *req, blk_status_t error)
3051 {
3052 struct request_queue *q = req->q;
3053
3054 lockdep_assert_held(req->q->queue_lock);
3055 WARN_ON_ONCE(q->mq_ops);
3056
3057 if (req->rq_flags & RQF_STATS)
3058 blk_stat_add(req);
3059
3060 if (req->rq_flags & RQF_QUEUED)
3061 blk_queue_end_tag(q, req);
3062
3063 BUG_ON(blk_queued_rq(req));
3064
3065 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
3066 laptop_io_completion(req->q->backing_dev_info);
3067
3068 blk_delete_timer(req);
3069
3070 if (req->rq_flags & RQF_DONTPREP)
3071 blk_unprep_request(req);
3072
3073 blk_account_io_done(req);
3074
3075 if (req->end_io) {
3076 wbt_done(req->q->rq_wb, &req->issue_stat);
3077 req->end_io(req, error);
3078 } else {
3079 if (blk_bidi_rq(req))
3080 __blk_put_request(req->next_rq->q, req->next_rq);
3081
3082 __blk_put_request(q, req);
3083 }
3084 }
3085 EXPORT_SYMBOL(blk_finish_request);
3086
3087 /**
3088 * blk_end_bidi_request - Complete a bidi request
3089 * @rq: the request to complete
3090 * @error: block status code
3091 * @nr_bytes: number of bytes to complete @rq
3092 * @bidi_bytes: number of bytes to complete @rq->next_rq
3093 *
3094 * Description:
3095 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
3096 * Drivers that supports bidi can safely call this member for any
3097 * type of request, bidi or uni. In the later case @bidi_bytes is
3098 * just ignored.
3099 *
3100 * Return:
3101 * %false - we are done with this request
3102 * %true - still buffers pending for this request
3103 **/
3104 static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
3105 unsigned int nr_bytes, unsigned int bidi_bytes)
3106 {
3107 struct request_queue *q = rq->q;
3108 unsigned long flags;
3109
3110 WARN_ON_ONCE(q->mq_ops);
3111
3112 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3113 return true;
3114
3115 spin_lock_irqsave(q->queue_lock, flags);
3116 blk_finish_request(rq, error);
3117 spin_unlock_irqrestore(q->queue_lock, flags);
3118
3119 return false;
3120 }
3121
3122 /**
3123 * __blk_end_bidi_request - Complete a bidi request with queue lock held
3124 * @rq: the request to complete
3125 * @error: block status code
3126 * @nr_bytes: number of bytes to complete @rq
3127 * @bidi_bytes: number of bytes to complete @rq->next_rq
3128 *
3129 * Description:
3130 * Identical to blk_end_bidi_request() except that queue lock is
3131 * assumed to be locked on entry and remains so on return.
3132 *
3133 * Return:
3134 * %false - we are done with this request
3135 * %true - still buffers pending for this request
3136 **/
3137 static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
3138 unsigned int nr_bytes, unsigned int bidi_bytes)
3139 {
3140 lockdep_assert_held(rq->q->queue_lock);
3141 WARN_ON_ONCE(rq->q->mq_ops);
3142
3143 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3144 return true;
3145
3146 blk_finish_request(rq, error);
3147
3148 return false;
3149 }
3150
3151 /**
3152 * blk_end_request - Helper function for drivers to complete the request.
3153 * @rq: the request being processed
3154 * @error: block status code
3155 * @nr_bytes: number of bytes to complete
3156 *
3157 * Description:
3158 * Ends I/O on a number of bytes attached to @rq.
3159 * If @rq has leftover, sets it up for the next range of segments.
3160 *
3161 * Return:
3162 * %false - we are done with this request
3163 * %true - still buffers pending for this request
3164 **/
3165 bool blk_end_request(struct request *rq, blk_status_t error,
3166 unsigned int nr_bytes)
3167 {
3168 WARN_ON_ONCE(rq->q->mq_ops);
3169 return blk_end_bidi_request(rq, error, nr_bytes, 0);
3170 }
3171 EXPORT_SYMBOL(blk_end_request);
3172
3173 /**
3174 * blk_end_request_all - Helper function for drives to finish the request.
3175 * @rq: the request to finish
3176 * @error: block status code
3177 *
3178 * Description:
3179 * Completely finish @rq.
3180 */
3181 void blk_end_request_all(struct request *rq, blk_status_t error)
3182 {
3183 bool pending;
3184 unsigned int bidi_bytes = 0;
3185
3186 if (unlikely(blk_bidi_rq(rq)))
3187 bidi_bytes = blk_rq_bytes(rq->next_rq);
3188
3189 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3190 BUG_ON(pending);
3191 }
3192 EXPORT_SYMBOL(blk_end_request_all);
3193
3194 /**
3195 * __blk_end_request - Helper function for drivers to complete the request.
3196 * @rq: the request being processed
3197 * @error: block status code
3198 * @nr_bytes: number of bytes to complete
3199 *
3200 * Description:
3201 * Must be called with queue lock held unlike blk_end_request().
3202 *
3203 * Return:
3204 * %false - we are done with this request
3205 * %true - still buffers pending for this request
3206 **/
3207 bool __blk_end_request(struct request *rq, blk_status_t error,
3208 unsigned int nr_bytes)
3209 {
3210 lockdep_assert_held(rq->q->queue_lock);
3211 WARN_ON_ONCE(rq->q->mq_ops);
3212
3213 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
3214 }
3215 EXPORT_SYMBOL(__blk_end_request);
3216
3217 /**
3218 * __blk_end_request_all - Helper function for drives to finish the request.
3219 * @rq: the request to finish
3220 * @error: block status code
3221 *
3222 * Description:
3223 * Completely finish @rq. Must be called with queue lock held.
3224 */
3225 void __blk_end_request_all(struct request *rq, blk_status_t error)
3226 {
3227 bool pending;
3228 unsigned int bidi_bytes = 0;
3229
3230 lockdep_assert_held(rq->q->queue_lock);
3231 WARN_ON_ONCE(rq->q->mq_ops);
3232
3233 if (unlikely(blk_bidi_rq(rq)))
3234 bidi_bytes = blk_rq_bytes(rq->next_rq);
3235
3236 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3237 BUG_ON(pending);
3238 }
3239 EXPORT_SYMBOL(__blk_end_request_all);
3240
3241 /**
3242 * __blk_end_request_cur - Helper function to finish the current request chunk.
3243 * @rq: the request to finish the current chunk for
3244 * @error: block status code
3245 *
3246 * Description:
3247 * Complete the current consecutively mapped chunk from @rq. Must
3248 * be called with queue lock held.
3249 *
3250 * Return:
3251 * %false - we are done with this request
3252 * %true - still buffers pending for this request
3253 */
3254 bool __blk_end_request_cur(struct request *rq, blk_status_t error)
3255 {
3256 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
3257 }
3258 EXPORT_SYMBOL(__blk_end_request_cur);
3259
3260 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3261 struct bio *bio)
3262 {
3263 if (bio_has_data(bio))
3264 rq->nr_phys_segments = bio_phys_segments(q, bio);
3265 else if (bio_op(bio) == REQ_OP_DISCARD)
3266 rq->nr_phys_segments = 1;
3267
3268 rq->__data_len = bio->bi_iter.bi_size;
3269 rq->bio = rq->biotail = bio;
3270
3271 if (bio->bi_disk)
3272 rq->rq_disk = bio->bi_disk;
3273 }
3274
3275 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3276 /**
3277 * rq_flush_dcache_pages - Helper function to flush all pages in a request
3278 * @rq: the request to be flushed
3279 *
3280 * Description:
3281 * Flush all pages in @rq.
3282 */
3283 void rq_flush_dcache_pages(struct request *rq)
3284 {
3285 struct req_iterator iter;
3286 struct bio_vec bvec;
3287
3288 rq_for_each_segment(bvec, rq, iter)
3289 flush_dcache_page(bvec.bv_page);
3290 }
3291 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3292 #endif
3293
3294 /**
3295 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3296 * @q : the queue of the device being checked
3297 *
3298 * Description:
3299 * Check if underlying low-level drivers of a device are busy.
3300 * If the drivers want to export their busy state, they must set own
3301 * exporting function using blk_queue_lld_busy() first.
3302 *
3303 * Basically, this function is used only by request stacking drivers
3304 * to stop dispatching requests to underlying devices when underlying
3305 * devices are busy. This behavior helps more I/O merging on the queue
3306 * of the request stacking driver and prevents I/O throughput regression
3307 * on burst I/O load.
3308 *
3309 * Return:
3310 * 0 - Not busy (The request stacking driver should dispatch request)
3311 * 1 - Busy (The request stacking driver should stop dispatching request)
3312 */
3313 int blk_lld_busy(struct request_queue *q)
3314 {
3315 if (q->lld_busy_fn)
3316 return q->lld_busy_fn(q);
3317
3318 return 0;
3319 }
3320 EXPORT_SYMBOL_GPL(blk_lld_busy);
3321
3322 /**
3323 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3324 * @rq: the clone request to be cleaned up
3325 *
3326 * Description:
3327 * Free all bios in @rq for a cloned request.
3328 */
3329 void blk_rq_unprep_clone(struct request *rq)
3330 {
3331 struct bio *bio;
3332
3333 while ((bio = rq->bio) != NULL) {
3334 rq->bio = bio->bi_next;
3335
3336 bio_put(bio);
3337 }
3338 }
3339 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3340
3341 /*
3342 * Copy attributes of the original request to the clone request.
3343 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3344 */
3345 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3346 {
3347 dst->cpu = src->cpu;
3348 dst->__sector = blk_rq_pos(src);
3349 dst->__data_len = blk_rq_bytes(src);
3350 if (src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3351 dst->rq_flags |= RQF_SPECIAL_PAYLOAD;
3352 dst->special_vec = src->special_vec;
3353 }
3354 dst->nr_phys_segments = src->nr_phys_segments;
3355 dst->ioprio = src->ioprio;
3356 dst->extra_len = src->extra_len;
3357 }
3358
3359 /**
3360 * blk_rq_prep_clone - Helper function to setup clone request
3361 * @rq: the request to be setup
3362 * @rq_src: original request to be cloned
3363 * @bs: bio_set that bios for clone are allocated from
3364 * @gfp_mask: memory allocation mask for bio
3365 * @bio_ctr: setup function to be called for each clone bio.
3366 * Returns %0 for success, non %0 for failure.
3367 * @data: private data to be passed to @bio_ctr
3368 *
3369 * Description:
3370 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3371 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3372 * are not copied, and copying such parts is the caller's responsibility.
3373 * Also, pages which the original bios are pointing to are not copied
3374 * and the cloned bios just point same pages.
3375 * So cloned bios must be completed before original bios, which means
3376 * the caller must complete @rq before @rq_src.
3377 */
3378 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3379 struct bio_set *bs, gfp_t gfp_mask,
3380 int (*bio_ctr)(struct bio *, struct bio *, void *),
3381 void *data)
3382 {
3383 struct bio *bio, *bio_src;
3384
3385 if (!bs)
3386 bs = fs_bio_set;
3387
3388 __rq_for_each_bio(bio_src, rq_src) {
3389 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3390 if (!bio)
3391 goto free_and_out;
3392
3393 if (bio_ctr && bio_ctr(bio, bio_src, data))
3394 goto free_and_out;
3395
3396 if (rq->bio) {
3397 rq->biotail->bi_next = bio;
3398 rq->biotail = bio;
3399 } else
3400 rq->bio = rq->biotail = bio;
3401 }
3402
3403 __blk_rq_prep_clone(rq, rq_src);
3404
3405 return 0;
3406
3407 free_and_out:
3408 if (bio)
3409 bio_put(bio);
3410 blk_rq_unprep_clone(rq);
3411
3412 return -ENOMEM;
3413 }
3414 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3415
3416 int kblockd_schedule_work(struct work_struct *work)
3417 {
3418 return queue_work(kblockd_workqueue, work);
3419 }
3420 EXPORT_SYMBOL(kblockd_schedule_work);
3421
3422 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3423 {
3424 return queue_work_on(cpu, kblockd_workqueue, work);
3425 }
3426 EXPORT_SYMBOL(kblockd_schedule_work_on);
3427
3428 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3429 unsigned long delay)
3430 {
3431 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3432 }
3433 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3434
3435 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3436 unsigned long delay)
3437 {
3438 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3439 }
3440 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3441
3442 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3443 unsigned long delay)
3444 {
3445 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3446 }
3447 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3448
3449 /**
3450 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3451 * @plug: The &struct blk_plug that needs to be initialized
3452 *
3453 * Description:
3454 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3455 * pending I/O should the task end up blocking between blk_start_plug() and
3456 * blk_finish_plug(). This is important from a performance perspective, but
3457 * also ensures that we don't deadlock. For instance, if the task is blocking
3458 * for a memory allocation, memory reclaim could end up wanting to free a
3459 * page belonging to that request that is currently residing in our private
3460 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3461 * this kind of deadlock.
3462 */
3463 void blk_start_plug(struct blk_plug *plug)
3464 {
3465 struct task_struct *tsk = current;
3466
3467 /*
3468 * If this is a nested plug, don't actually assign it.
3469 */
3470 if (tsk->plug)
3471 return;
3472
3473 INIT_LIST_HEAD(&plug->list);
3474 INIT_LIST_HEAD(&plug->mq_list);
3475 INIT_LIST_HEAD(&plug->cb_list);
3476 /*
3477 * Store ordering should not be needed here, since a potential
3478 * preempt will imply a full memory barrier
3479 */
3480 tsk->plug = plug;
3481 }
3482 EXPORT_SYMBOL(blk_start_plug);
3483
3484 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3485 {
3486 struct request *rqa = container_of(a, struct request, queuelist);
3487 struct request *rqb = container_of(b, struct request, queuelist);
3488
3489 return !(rqa->q < rqb->q ||
3490 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3491 }
3492
3493 /*
3494 * If 'from_schedule' is true, then postpone the dispatch of requests
3495 * until a safe kblockd context. We due this to avoid accidental big
3496 * additional stack usage in driver dispatch, in places where the originally
3497 * plugger did not intend it.
3498 */
3499 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3500 bool from_schedule)
3501 __releases(q->queue_lock)
3502 {
3503 lockdep_assert_held(q->queue_lock);
3504
3505 trace_block_unplug(q, depth, !from_schedule);
3506
3507 if (from_schedule)
3508 blk_run_queue_async(q);
3509 else
3510 __blk_run_queue(q);
3511 spin_unlock(q->queue_lock);
3512 }
3513
3514 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3515 {
3516 LIST_HEAD(callbacks);
3517
3518 while (!list_empty(&plug->cb_list)) {
3519 list_splice_init(&plug->cb_list, &callbacks);
3520
3521 while (!list_empty(&callbacks)) {
3522 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3523 struct blk_plug_cb,
3524 list);
3525 list_del(&cb->list);
3526 cb->callback(cb, from_schedule);
3527 }
3528 }
3529 }
3530
3531 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3532 int size)
3533 {
3534 struct blk_plug *plug = current->plug;
3535 struct blk_plug_cb *cb;
3536
3537 if (!plug)
3538 return NULL;
3539
3540 list_for_each_entry(cb, &plug->cb_list, list)
3541 if (cb->callback == unplug && cb->data == data)
3542 return cb;
3543
3544 /* Not currently on the callback list */
3545 BUG_ON(size < sizeof(*cb));
3546 cb = kzalloc(size, GFP_ATOMIC);
3547 if (cb) {
3548 cb->data = data;
3549 cb->callback = unplug;
3550 list_add(&cb->list, &plug->cb_list);
3551 }
3552 return cb;
3553 }
3554 EXPORT_SYMBOL(blk_check_plugged);
3555
3556 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3557 {
3558 struct request_queue *q;
3559 unsigned long flags;
3560 struct request *rq;
3561 LIST_HEAD(list);
3562 unsigned int depth;
3563
3564 flush_plug_callbacks(plug, from_schedule);
3565
3566 if (!list_empty(&plug->mq_list))
3567 blk_mq_flush_plug_list(plug, from_schedule);
3568
3569 if (list_empty(&plug->list))
3570 return;
3571
3572 list_splice_init(&plug->list, &list);
3573
3574 list_sort(NULL, &list, plug_rq_cmp);
3575
3576 q = NULL;
3577 depth = 0;
3578
3579 /*
3580 * Save and disable interrupts here, to avoid doing it for every
3581 * queue lock we have to take.
3582 */
3583 local_irq_save(flags);
3584 while (!list_empty(&list)) {
3585 rq = list_entry_rq(list.next);
3586 list_del_init(&rq->queuelist);
3587 BUG_ON(!rq->q);
3588 if (rq->q != q) {
3589 /*
3590 * This drops the queue lock
3591 */
3592 if (q)
3593 queue_unplugged(q, depth, from_schedule);
3594 q = rq->q;
3595 depth = 0;
3596 spin_lock(q->queue_lock);
3597 }
3598
3599 /*
3600 * Short-circuit if @q is dead
3601 */
3602 if (unlikely(blk_queue_dying(q))) {
3603 __blk_end_request_all(rq, BLK_STS_IOERR);
3604 continue;
3605 }
3606
3607 /*
3608 * rq is already accounted, so use raw insert
3609 */
3610 if (op_is_flush(rq->cmd_flags))
3611 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3612 else
3613 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3614
3615 depth++;
3616 }
3617
3618 /*
3619 * This drops the queue lock
3620 */
3621 if (q)
3622 queue_unplugged(q, depth, from_schedule);
3623
3624 local_irq_restore(flags);
3625 }
3626
3627 void blk_finish_plug(struct blk_plug *plug)
3628 {
3629 if (plug != current->plug)
3630 return;
3631 blk_flush_plug_list(plug, false);
3632
3633 current->plug = NULL;
3634 }
3635 EXPORT_SYMBOL(blk_finish_plug);
3636
3637 #ifdef CONFIG_PM
3638 /**
3639 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3640 * @q: the queue of the device
3641 * @dev: the device the queue belongs to
3642 *
3643 * Description:
3644 * Initialize runtime-PM-related fields for @q and start auto suspend for
3645 * @dev. Drivers that want to take advantage of request-based runtime PM
3646 * should call this function after @dev has been initialized, and its
3647 * request queue @q has been allocated, and runtime PM for it can not happen
3648 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3649 * cases, driver should call this function before any I/O has taken place.
3650 *
3651 * This function takes care of setting up using auto suspend for the device,
3652 * the autosuspend delay is set to -1 to make runtime suspend impossible
3653 * until an updated value is either set by user or by driver. Drivers do
3654 * not need to touch other autosuspend settings.
3655 *
3656 * The block layer runtime PM is request based, so only works for drivers
3657 * that use request as their IO unit instead of those directly use bio's.
3658 */
3659 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3660 {
3661 /* Don't enable runtime PM for blk-mq until it is ready */
3662 if (q->mq_ops) {
3663 pm_runtime_disable(dev);
3664 return;
3665 }
3666
3667 q->dev = dev;
3668 q->rpm_status = RPM_ACTIVE;
3669 pm_runtime_set_autosuspend_delay(q->dev, -1);
3670 pm_runtime_use_autosuspend(q->dev);
3671 }
3672 EXPORT_SYMBOL(blk_pm_runtime_init);
3673
3674 /**
3675 * blk_pre_runtime_suspend - Pre runtime suspend check
3676 * @q: the queue of the device
3677 *
3678 * Description:
3679 * This function will check if runtime suspend is allowed for the device
3680 * by examining if there are any requests pending in the queue. If there
3681 * are requests pending, the device can not be runtime suspended; otherwise,
3682 * the queue's status will be updated to SUSPENDING and the driver can
3683 * proceed to suspend the device.
3684 *
3685 * For the not allowed case, we mark last busy for the device so that
3686 * runtime PM core will try to autosuspend it some time later.
3687 *
3688 * This function should be called near the start of the device's
3689 * runtime_suspend callback.
3690 *
3691 * Return:
3692 * 0 - OK to runtime suspend the device
3693 * -EBUSY - Device should not be runtime suspended
3694 */
3695 int blk_pre_runtime_suspend(struct request_queue *q)
3696 {
3697 int ret = 0;
3698
3699 if (!q->dev)
3700 return ret;
3701
3702 spin_lock_irq(q->queue_lock);
3703 if (q->nr_pending) {
3704 ret = -EBUSY;
3705 pm_runtime_mark_last_busy(q->dev);
3706 } else {
3707 q->rpm_status = RPM_SUSPENDING;
3708 }
3709 spin_unlock_irq(q->queue_lock);
3710 return ret;
3711 }
3712 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3713
3714 /**
3715 * blk_post_runtime_suspend - Post runtime suspend processing
3716 * @q: the queue of the device
3717 * @err: return value of the device's runtime_suspend function
3718 *
3719 * Description:
3720 * Update the queue's runtime status according to the return value of the
3721 * device's runtime suspend function and mark last busy for the device so
3722 * that PM core will try to auto suspend the device at a later time.
3723 *
3724 * This function should be called near the end of the device's
3725 * runtime_suspend callback.
3726 */
3727 void blk_post_runtime_suspend(struct request_queue *q, int err)
3728 {
3729 if (!q->dev)
3730 return;
3731
3732 spin_lock_irq(q->queue_lock);
3733 if (!err) {
3734 q->rpm_status = RPM_SUSPENDED;
3735 } else {
3736 q->rpm_status = RPM_ACTIVE;
3737 pm_runtime_mark_last_busy(q->dev);
3738 }
3739 spin_unlock_irq(q->queue_lock);
3740 }
3741 EXPORT_SYMBOL(blk_post_runtime_suspend);
3742
3743 /**
3744 * blk_pre_runtime_resume - Pre runtime resume processing
3745 * @q: the queue of the device
3746 *
3747 * Description:
3748 * Update the queue's runtime status to RESUMING in preparation for the
3749 * runtime resume of the device.
3750 *
3751 * This function should be called near the start of the device's
3752 * runtime_resume callback.
3753 */
3754 void blk_pre_runtime_resume(struct request_queue *q)
3755 {
3756 if (!q->dev)
3757 return;
3758
3759 spin_lock_irq(q->queue_lock);
3760 q->rpm_status = RPM_RESUMING;
3761 spin_unlock_irq(q->queue_lock);
3762 }
3763 EXPORT_SYMBOL(blk_pre_runtime_resume);
3764
3765 /**
3766 * blk_post_runtime_resume - Post runtime resume processing
3767 * @q: the queue of the device
3768 * @err: return value of the device's runtime_resume function
3769 *
3770 * Description:
3771 * Update the queue's runtime status according to the return value of the
3772 * device's runtime_resume function. If it is successfully resumed, process
3773 * the requests that are queued into the device's queue when it is resuming
3774 * and then mark last busy and initiate autosuspend for it.
3775 *
3776 * This function should be called near the end of the device's
3777 * runtime_resume callback.
3778 */
3779 void blk_post_runtime_resume(struct request_queue *q, int err)
3780 {
3781 if (!q->dev)
3782 return;
3783
3784 spin_lock_irq(q->queue_lock);
3785 if (!err) {
3786 q->rpm_status = RPM_ACTIVE;
3787 __blk_run_queue(q);
3788 pm_runtime_mark_last_busy(q->dev);
3789 pm_request_autosuspend(q->dev);
3790 } else {
3791 q->rpm_status = RPM_SUSPENDED;
3792 }
3793 spin_unlock_irq(q->queue_lock);
3794 }
3795 EXPORT_SYMBOL(blk_post_runtime_resume);
3796
3797 /**
3798 * blk_set_runtime_active - Force runtime status of the queue to be active
3799 * @q: the queue of the device
3800 *
3801 * If the device is left runtime suspended during system suspend the resume
3802 * hook typically resumes the device and corrects runtime status
3803 * accordingly. However, that does not affect the queue runtime PM status
3804 * which is still "suspended". This prevents processing requests from the
3805 * queue.
3806 *
3807 * This function can be used in driver's resume hook to correct queue
3808 * runtime PM status and re-enable peeking requests from the queue. It
3809 * should be called before first request is added to the queue.
3810 */
3811 void blk_set_runtime_active(struct request_queue *q)
3812 {
3813 spin_lock_irq(q->queue_lock);
3814 q->rpm_status = RPM_ACTIVE;
3815 pm_runtime_mark_last_busy(q->dev);
3816 pm_request_autosuspend(q->dev);
3817 spin_unlock_irq(q->queue_lock);
3818 }
3819 EXPORT_SYMBOL(blk_set_runtime_active);
3820 #endif
3821
3822 int __init blk_dev_init(void)
3823 {
3824 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3825 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3826 FIELD_SIZEOF(struct request, cmd_flags));
3827 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3828 FIELD_SIZEOF(struct bio, bi_opf));
3829
3830 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3831 kblockd_workqueue = alloc_workqueue("kblockd",
3832 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3833 if (!kblockd_workqueue)
3834 panic("Failed to create kblockd\n");
3835
3836 request_cachep = kmem_cache_create("blkdev_requests",
3837 sizeof(struct request), 0, SLAB_PANIC, NULL);
3838
3839 blk_requestq_cachep = kmem_cache_create("request_queue",
3840 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3841
3842 #ifdef CONFIG_DEBUG_FS
3843 blk_debugfs_root = debugfs_create_dir("block", NULL);
3844 #endif
3845
3846 return 0;
3847 }