]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-core.c
blk-mq: fix sysfs inflight counter
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 #include <linux/debugfs.h>
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/block.h>
40
41 #include "blk.h"
42 #include "blk-mq.h"
43 #include "blk-mq-sched.h"
44 #include "blk-wbt.h"
45
46 #ifdef CONFIG_DEBUG_FS
47 struct dentry *blk_debugfs_root;
48 #endif
49
50 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
55
56 DEFINE_IDA(blk_queue_ida);
57
58 /*
59 * For the allocated request tables
60 */
61 struct kmem_cache *request_cachep;
62
63 /*
64 * For queue allocation
65 */
66 struct kmem_cache *blk_requestq_cachep;
67
68 /*
69 * Controlling structure to kblockd
70 */
71 static struct workqueue_struct *kblockd_workqueue;
72
73 static void blk_clear_congested(struct request_list *rl, int sync)
74 {
75 #ifdef CONFIG_CGROUP_WRITEBACK
76 clear_wb_congested(rl->blkg->wb_congested, sync);
77 #else
78 /*
79 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
80 * flip its congestion state for events on other blkcgs.
81 */
82 if (rl == &rl->q->root_rl)
83 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
84 #endif
85 }
86
87 static void blk_set_congested(struct request_list *rl, int sync)
88 {
89 #ifdef CONFIG_CGROUP_WRITEBACK
90 set_wb_congested(rl->blkg->wb_congested, sync);
91 #else
92 /* see blk_clear_congested() */
93 if (rl == &rl->q->root_rl)
94 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
95 #endif
96 }
97
98 void blk_queue_congestion_threshold(struct request_queue *q)
99 {
100 int nr;
101
102 nr = q->nr_requests - (q->nr_requests / 8) + 1;
103 if (nr > q->nr_requests)
104 nr = q->nr_requests;
105 q->nr_congestion_on = nr;
106
107 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
108 if (nr < 1)
109 nr = 1;
110 q->nr_congestion_off = nr;
111 }
112
113 void blk_rq_init(struct request_queue *q, struct request *rq)
114 {
115 memset(rq, 0, sizeof(*rq));
116
117 INIT_LIST_HEAD(&rq->queuelist);
118 INIT_LIST_HEAD(&rq->timeout_list);
119 rq->cpu = -1;
120 rq->q = q;
121 rq->__sector = (sector_t) -1;
122 INIT_HLIST_NODE(&rq->hash);
123 RB_CLEAR_NODE(&rq->rb_node);
124 rq->tag = -1;
125 rq->internal_tag = -1;
126 rq->start_time = jiffies;
127 set_start_time_ns(rq);
128 rq->part = NULL;
129 }
130 EXPORT_SYMBOL(blk_rq_init);
131
132 static const struct {
133 int errno;
134 const char *name;
135 } blk_errors[] = {
136 [BLK_STS_OK] = { 0, "" },
137 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
138 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
139 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
140 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
141 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
142 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
143 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
144 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
145 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
146 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
147
148 /* device mapper special case, should not leak out: */
149 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
150
151 /* everything else not covered above: */
152 [BLK_STS_IOERR] = { -EIO, "I/O" },
153 };
154
155 blk_status_t errno_to_blk_status(int errno)
156 {
157 int i;
158
159 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
160 if (blk_errors[i].errno == errno)
161 return (__force blk_status_t)i;
162 }
163
164 return BLK_STS_IOERR;
165 }
166 EXPORT_SYMBOL_GPL(errno_to_blk_status);
167
168 int blk_status_to_errno(blk_status_t status)
169 {
170 int idx = (__force int)status;
171
172 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
173 return -EIO;
174 return blk_errors[idx].errno;
175 }
176 EXPORT_SYMBOL_GPL(blk_status_to_errno);
177
178 static void print_req_error(struct request *req, blk_status_t status)
179 {
180 int idx = (__force int)status;
181
182 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
183 return;
184
185 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
186 __func__, blk_errors[idx].name, req->rq_disk ?
187 req->rq_disk->disk_name : "?",
188 (unsigned long long)blk_rq_pos(req));
189 }
190
191 static void req_bio_endio(struct request *rq, struct bio *bio,
192 unsigned int nbytes, blk_status_t error)
193 {
194 if (error)
195 bio->bi_status = error;
196
197 if (unlikely(rq->rq_flags & RQF_QUIET))
198 bio_set_flag(bio, BIO_QUIET);
199
200 bio_advance(bio, nbytes);
201
202 /* don't actually finish bio if it's part of flush sequence */
203 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
204 bio_endio(bio);
205 }
206
207 void blk_dump_rq_flags(struct request *rq, char *msg)
208 {
209 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
210 rq->rq_disk ? rq->rq_disk->disk_name : "?",
211 (unsigned long long) rq->cmd_flags);
212
213 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
214 (unsigned long long)blk_rq_pos(rq),
215 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
216 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
217 rq->bio, rq->biotail, blk_rq_bytes(rq));
218 }
219 EXPORT_SYMBOL(blk_dump_rq_flags);
220
221 static void blk_delay_work(struct work_struct *work)
222 {
223 struct request_queue *q;
224
225 q = container_of(work, struct request_queue, delay_work.work);
226 spin_lock_irq(q->queue_lock);
227 __blk_run_queue(q);
228 spin_unlock_irq(q->queue_lock);
229 }
230
231 /**
232 * blk_delay_queue - restart queueing after defined interval
233 * @q: The &struct request_queue in question
234 * @msecs: Delay in msecs
235 *
236 * Description:
237 * Sometimes queueing needs to be postponed for a little while, to allow
238 * resources to come back. This function will make sure that queueing is
239 * restarted around the specified time.
240 */
241 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
242 {
243 lockdep_assert_held(q->queue_lock);
244 WARN_ON_ONCE(q->mq_ops);
245
246 if (likely(!blk_queue_dead(q)))
247 queue_delayed_work(kblockd_workqueue, &q->delay_work,
248 msecs_to_jiffies(msecs));
249 }
250 EXPORT_SYMBOL(blk_delay_queue);
251
252 /**
253 * blk_start_queue_async - asynchronously restart a previously stopped queue
254 * @q: The &struct request_queue in question
255 *
256 * Description:
257 * blk_start_queue_async() will clear the stop flag on the queue, and
258 * ensure that the request_fn for the queue is run from an async
259 * context.
260 **/
261 void blk_start_queue_async(struct request_queue *q)
262 {
263 lockdep_assert_held(q->queue_lock);
264 WARN_ON_ONCE(q->mq_ops);
265
266 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
267 blk_run_queue_async(q);
268 }
269 EXPORT_SYMBOL(blk_start_queue_async);
270
271 /**
272 * blk_start_queue - restart a previously stopped queue
273 * @q: The &struct request_queue in question
274 *
275 * Description:
276 * blk_start_queue() will clear the stop flag on the queue, and call
277 * the request_fn for the queue if it was in a stopped state when
278 * entered. Also see blk_stop_queue().
279 **/
280 void blk_start_queue(struct request_queue *q)
281 {
282 lockdep_assert_held(q->queue_lock);
283 WARN_ON(!in_interrupt() && !irqs_disabled());
284 WARN_ON_ONCE(q->mq_ops);
285
286 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
287 __blk_run_queue(q);
288 }
289 EXPORT_SYMBOL(blk_start_queue);
290
291 /**
292 * blk_stop_queue - stop a queue
293 * @q: The &struct request_queue in question
294 *
295 * Description:
296 * The Linux block layer assumes that a block driver will consume all
297 * entries on the request queue when the request_fn strategy is called.
298 * Often this will not happen, because of hardware limitations (queue
299 * depth settings). If a device driver gets a 'queue full' response,
300 * or if it simply chooses not to queue more I/O at one point, it can
301 * call this function to prevent the request_fn from being called until
302 * the driver has signalled it's ready to go again. This happens by calling
303 * blk_start_queue() to restart queue operations.
304 **/
305 void blk_stop_queue(struct request_queue *q)
306 {
307 lockdep_assert_held(q->queue_lock);
308 WARN_ON_ONCE(q->mq_ops);
309
310 cancel_delayed_work(&q->delay_work);
311 queue_flag_set(QUEUE_FLAG_STOPPED, q);
312 }
313 EXPORT_SYMBOL(blk_stop_queue);
314
315 /**
316 * blk_sync_queue - cancel any pending callbacks on a queue
317 * @q: the queue
318 *
319 * Description:
320 * The block layer may perform asynchronous callback activity
321 * on a queue, such as calling the unplug function after a timeout.
322 * A block device may call blk_sync_queue to ensure that any
323 * such activity is cancelled, thus allowing it to release resources
324 * that the callbacks might use. The caller must already have made sure
325 * that its ->make_request_fn will not re-add plugging prior to calling
326 * this function.
327 *
328 * This function does not cancel any asynchronous activity arising
329 * out of elevator or throttling code. That would require elevator_exit()
330 * and blkcg_exit_queue() to be called with queue lock initialized.
331 *
332 */
333 void blk_sync_queue(struct request_queue *q)
334 {
335 del_timer_sync(&q->timeout);
336 cancel_work_sync(&q->timeout_work);
337
338 if (q->mq_ops) {
339 struct blk_mq_hw_ctx *hctx;
340 int i;
341
342 cancel_delayed_work_sync(&q->requeue_work);
343 queue_for_each_hw_ctx(q, hctx, i)
344 cancel_delayed_work_sync(&hctx->run_work);
345 } else {
346 cancel_delayed_work_sync(&q->delay_work);
347 }
348 }
349 EXPORT_SYMBOL(blk_sync_queue);
350
351 /**
352 * blk_set_preempt_only - set QUEUE_FLAG_PREEMPT_ONLY
353 * @q: request queue pointer
354 *
355 * Returns the previous value of the PREEMPT_ONLY flag - 0 if the flag was not
356 * set and 1 if the flag was already set.
357 */
358 int blk_set_preempt_only(struct request_queue *q)
359 {
360 unsigned long flags;
361 int res;
362
363 spin_lock_irqsave(q->queue_lock, flags);
364 res = queue_flag_test_and_set(QUEUE_FLAG_PREEMPT_ONLY, q);
365 spin_unlock_irqrestore(q->queue_lock, flags);
366
367 return res;
368 }
369 EXPORT_SYMBOL_GPL(blk_set_preempt_only);
370
371 void blk_clear_preempt_only(struct request_queue *q)
372 {
373 unsigned long flags;
374
375 spin_lock_irqsave(q->queue_lock, flags);
376 queue_flag_clear(QUEUE_FLAG_PREEMPT_ONLY, q);
377 wake_up_all(&q->mq_freeze_wq);
378 spin_unlock_irqrestore(q->queue_lock, flags);
379 }
380 EXPORT_SYMBOL_GPL(blk_clear_preempt_only);
381
382 /**
383 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
384 * @q: The queue to run
385 *
386 * Description:
387 * Invoke request handling on a queue if there are any pending requests.
388 * May be used to restart request handling after a request has completed.
389 * This variant runs the queue whether or not the queue has been
390 * stopped. Must be called with the queue lock held and interrupts
391 * disabled. See also @blk_run_queue.
392 */
393 inline void __blk_run_queue_uncond(struct request_queue *q)
394 {
395 lockdep_assert_held(q->queue_lock);
396 WARN_ON_ONCE(q->mq_ops);
397
398 if (unlikely(blk_queue_dead(q)))
399 return;
400
401 /*
402 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
403 * the queue lock internally. As a result multiple threads may be
404 * running such a request function concurrently. Keep track of the
405 * number of active request_fn invocations such that blk_drain_queue()
406 * can wait until all these request_fn calls have finished.
407 */
408 q->request_fn_active++;
409 q->request_fn(q);
410 q->request_fn_active--;
411 }
412 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
413
414 /**
415 * __blk_run_queue - run a single device queue
416 * @q: The queue to run
417 *
418 * Description:
419 * See @blk_run_queue.
420 */
421 void __blk_run_queue(struct request_queue *q)
422 {
423 lockdep_assert_held(q->queue_lock);
424 WARN_ON_ONCE(q->mq_ops);
425
426 if (unlikely(blk_queue_stopped(q)))
427 return;
428
429 __blk_run_queue_uncond(q);
430 }
431 EXPORT_SYMBOL(__blk_run_queue);
432
433 /**
434 * blk_run_queue_async - run a single device queue in workqueue context
435 * @q: The queue to run
436 *
437 * Description:
438 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
439 * of us.
440 *
441 * Note:
442 * Since it is not allowed to run q->delay_work after blk_cleanup_queue()
443 * has canceled q->delay_work, callers must hold the queue lock to avoid
444 * race conditions between blk_cleanup_queue() and blk_run_queue_async().
445 */
446 void blk_run_queue_async(struct request_queue *q)
447 {
448 lockdep_assert_held(q->queue_lock);
449 WARN_ON_ONCE(q->mq_ops);
450
451 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
452 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
453 }
454 EXPORT_SYMBOL(blk_run_queue_async);
455
456 /**
457 * blk_run_queue - run a single device queue
458 * @q: The queue to run
459 *
460 * Description:
461 * Invoke request handling on this queue, if it has pending work to do.
462 * May be used to restart queueing when a request has completed.
463 */
464 void blk_run_queue(struct request_queue *q)
465 {
466 unsigned long flags;
467
468 WARN_ON_ONCE(q->mq_ops);
469
470 spin_lock_irqsave(q->queue_lock, flags);
471 __blk_run_queue(q);
472 spin_unlock_irqrestore(q->queue_lock, flags);
473 }
474 EXPORT_SYMBOL(blk_run_queue);
475
476 void blk_put_queue(struct request_queue *q)
477 {
478 kobject_put(&q->kobj);
479 }
480 EXPORT_SYMBOL(blk_put_queue);
481
482 /**
483 * __blk_drain_queue - drain requests from request_queue
484 * @q: queue to drain
485 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
486 *
487 * Drain requests from @q. If @drain_all is set, all requests are drained.
488 * If not, only ELVPRIV requests are drained. The caller is responsible
489 * for ensuring that no new requests which need to be drained are queued.
490 */
491 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
492 __releases(q->queue_lock)
493 __acquires(q->queue_lock)
494 {
495 int i;
496
497 lockdep_assert_held(q->queue_lock);
498 WARN_ON_ONCE(q->mq_ops);
499
500 while (true) {
501 bool drain = false;
502
503 /*
504 * The caller might be trying to drain @q before its
505 * elevator is initialized.
506 */
507 if (q->elevator)
508 elv_drain_elevator(q);
509
510 blkcg_drain_queue(q);
511
512 /*
513 * This function might be called on a queue which failed
514 * driver init after queue creation or is not yet fully
515 * active yet. Some drivers (e.g. fd and loop) get unhappy
516 * in such cases. Kick queue iff dispatch queue has
517 * something on it and @q has request_fn set.
518 */
519 if (!list_empty(&q->queue_head) && q->request_fn)
520 __blk_run_queue(q);
521
522 drain |= q->nr_rqs_elvpriv;
523 drain |= q->request_fn_active;
524
525 /*
526 * Unfortunately, requests are queued at and tracked from
527 * multiple places and there's no single counter which can
528 * be drained. Check all the queues and counters.
529 */
530 if (drain_all) {
531 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
532 drain |= !list_empty(&q->queue_head);
533 for (i = 0; i < 2; i++) {
534 drain |= q->nr_rqs[i];
535 drain |= q->in_flight[i];
536 if (fq)
537 drain |= !list_empty(&fq->flush_queue[i]);
538 }
539 }
540
541 if (!drain)
542 break;
543
544 spin_unlock_irq(q->queue_lock);
545
546 msleep(10);
547
548 spin_lock_irq(q->queue_lock);
549 }
550
551 /*
552 * With queue marked dead, any woken up waiter will fail the
553 * allocation path, so the wakeup chaining is lost and we're
554 * left with hung waiters. We need to wake up those waiters.
555 */
556 if (q->request_fn) {
557 struct request_list *rl;
558
559 blk_queue_for_each_rl(rl, q)
560 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
561 wake_up_all(&rl->wait[i]);
562 }
563 }
564
565 void blk_drain_queue(struct request_queue *q)
566 {
567 spin_lock_irq(q->queue_lock);
568 __blk_drain_queue(q, true);
569 spin_unlock_irq(q->queue_lock);
570 }
571
572 /**
573 * blk_queue_bypass_start - enter queue bypass mode
574 * @q: queue of interest
575 *
576 * In bypass mode, only the dispatch FIFO queue of @q is used. This
577 * function makes @q enter bypass mode and drains all requests which were
578 * throttled or issued before. On return, it's guaranteed that no request
579 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
580 * inside queue or RCU read lock.
581 */
582 void blk_queue_bypass_start(struct request_queue *q)
583 {
584 WARN_ON_ONCE(q->mq_ops);
585
586 spin_lock_irq(q->queue_lock);
587 q->bypass_depth++;
588 queue_flag_set(QUEUE_FLAG_BYPASS, q);
589 spin_unlock_irq(q->queue_lock);
590
591 /*
592 * Queues start drained. Skip actual draining till init is
593 * complete. This avoids lenghty delays during queue init which
594 * can happen many times during boot.
595 */
596 if (blk_queue_init_done(q)) {
597 spin_lock_irq(q->queue_lock);
598 __blk_drain_queue(q, false);
599 spin_unlock_irq(q->queue_lock);
600
601 /* ensure blk_queue_bypass() is %true inside RCU read lock */
602 synchronize_rcu();
603 }
604 }
605 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
606
607 /**
608 * blk_queue_bypass_end - leave queue bypass mode
609 * @q: queue of interest
610 *
611 * Leave bypass mode and restore the normal queueing behavior.
612 *
613 * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
614 * this function is called for both blk-sq and blk-mq queues.
615 */
616 void blk_queue_bypass_end(struct request_queue *q)
617 {
618 spin_lock_irq(q->queue_lock);
619 if (!--q->bypass_depth)
620 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
621 WARN_ON_ONCE(q->bypass_depth < 0);
622 spin_unlock_irq(q->queue_lock);
623 }
624 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
625
626 void blk_set_queue_dying(struct request_queue *q)
627 {
628 spin_lock_irq(q->queue_lock);
629 queue_flag_set(QUEUE_FLAG_DYING, q);
630 spin_unlock_irq(q->queue_lock);
631
632 /*
633 * When queue DYING flag is set, we need to block new req
634 * entering queue, so we call blk_freeze_queue_start() to
635 * prevent I/O from crossing blk_queue_enter().
636 */
637 blk_freeze_queue_start(q);
638
639 if (q->mq_ops)
640 blk_mq_wake_waiters(q);
641 else {
642 struct request_list *rl;
643
644 spin_lock_irq(q->queue_lock);
645 blk_queue_for_each_rl(rl, q) {
646 if (rl->rq_pool) {
647 wake_up_all(&rl->wait[BLK_RW_SYNC]);
648 wake_up_all(&rl->wait[BLK_RW_ASYNC]);
649 }
650 }
651 spin_unlock_irq(q->queue_lock);
652 }
653
654 /* Make blk_queue_enter() reexamine the DYING flag. */
655 wake_up_all(&q->mq_freeze_wq);
656 }
657 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
658
659 /**
660 * blk_cleanup_queue - shutdown a request queue
661 * @q: request queue to shutdown
662 *
663 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
664 * put it. All future requests will be failed immediately with -ENODEV.
665 */
666 void blk_cleanup_queue(struct request_queue *q)
667 {
668 spinlock_t *lock = q->queue_lock;
669
670 /* mark @q DYING, no new request or merges will be allowed afterwards */
671 mutex_lock(&q->sysfs_lock);
672 blk_set_queue_dying(q);
673 spin_lock_irq(lock);
674
675 /*
676 * A dying queue is permanently in bypass mode till released. Note
677 * that, unlike blk_queue_bypass_start(), we aren't performing
678 * synchronize_rcu() after entering bypass mode to avoid the delay
679 * as some drivers create and destroy a lot of queues while
680 * probing. This is still safe because blk_release_queue() will be
681 * called only after the queue refcnt drops to zero and nothing,
682 * RCU or not, would be traversing the queue by then.
683 */
684 q->bypass_depth++;
685 queue_flag_set(QUEUE_FLAG_BYPASS, q);
686
687 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
688 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
689 queue_flag_set(QUEUE_FLAG_DYING, q);
690 spin_unlock_irq(lock);
691 mutex_unlock(&q->sysfs_lock);
692
693 /*
694 * Drain all requests queued before DYING marking. Set DEAD flag to
695 * prevent that q->request_fn() gets invoked after draining finished.
696 */
697 blk_freeze_queue(q);
698 spin_lock_irq(lock);
699 queue_flag_set(QUEUE_FLAG_DEAD, q);
700 spin_unlock_irq(lock);
701
702 /*
703 * make sure all in-progress dispatch are completed because
704 * blk_freeze_queue() can only complete all requests, and
705 * dispatch may still be in-progress since we dispatch requests
706 * from more than one contexts
707 */
708 if (q->mq_ops)
709 blk_mq_quiesce_queue(q);
710
711 /* for synchronous bio-based driver finish in-flight integrity i/o */
712 blk_flush_integrity();
713
714 /* @q won't process any more request, flush async actions */
715 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
716 blk_sync_queue(q);
717
718 if (q->mq_ops)
719 blk_mq_free_queue(q);
720 percpu_ref_exit(&q->q_usage_counter);
721
722 spin_lock_irq(lock);
723 if (q->queue_lock != &q->__queue_lock)
724 q->queue_lock = &q->__queue_lock;
725 spin_unlock_irq(lock);
726
727 /* @q is and will stay empty, shutdown and put */
728 blk_put_queue(q);
729 }
730 EXPORT_SYMBOL(blk_cleanup_queue);
731
732 /* Allocate memory local to the request queue */
733 static void *alloc_request_simple(gfp_t gfp_mask, void *data)
734 {
735 struct request_queue *q = data;
736
737 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
738 }
739
740 static void free_request_simple(void *element, void *data)
741 {
742 kmem_cache_free(request_cachep, element);
743 }
744
745 static void *alloc_request_size(gfp_t gfp_mask, void *data)
746 {
747 struct request_queue *q = data;
748 struct request *rq;
749
750 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
751 q->node);
752 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
753 kfree(rq);
754 rq = NULL;
755 }
756 return rq;
757 }
758
759 static void free_request_size(void *element, void *data)
760 {
761 struct request_queue *q = data;
762
763 if (q->exit_rq_fn)
764 q->exit_rq_fn(q, element);
765 kfree(element);
766 }
767
768 int blk_init_rl(struct request_list *rl, struct request_queue *q,
769 gfp_t gfp_mask)
770 {
771 if (unlikely(rl->rq_pool) || q->mq_ops)
772 return 0;
773
774 rl->q = q;
775 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
776 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
777 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
778 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
779
780 if (q->cmd_size) {
781 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
782 alloc_request_size, free_request_size,
783 q, gfp_mask, q->node);
784 } else {
785 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
786 alloc_request_simple, free_request_simple,
787 q, gfp_mask, q->node);
788 }
789 if (!rl->rq_pool)
790 return -ENOMEM;
791
792 if (rl != &q->root_rl)
793 WARN_ON_ONCE(!blk_get_queue(q));
794
795 return 0;
796 }
797
798 void blk_exit_rl(struct request_queue *q, struct request_list *rl)
799 {
800 if (rl->rq_pool) {
801 mempool_destroy(rl->rq_pool);
802 if (rl != &q->root_rl)
803 blk_put_queue(q);
804 }
805 }
806
807 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
808 {
809 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
810 }
811 EXPORT_SYMBOL(blk_alloc_queue);
812
813 /**
814 * blk_queue_enter() - try to increase q->q_usage_counter
815 * @q: request queue pointer
816 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
817 */
818 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
819 {
820 const bool preempt = flags & BLK_MQ_REQ_PREEMPT;
821
822 while (true) {
823 bool success = false;
824
825 rcu_read_lock();
826 if (percpu_ref_tryget_live(&q->q_usage_counter)) {
827 /*
828 * The code that sets the PREEMPT_ONLY flag is
829 * responsible for ensuring that that flag is globally
830 * visible before the queue is unfrozen.
831 */
832 if (preempt || !blk_queue_preempt_only(q)) {
833 success = true;
834 } else {
835 percpu_ref_put(&q->q_usage_counter);
836 }
837 }
838 rcu_read_unlock();
839
840 if (success)
841 return 0;
842
843 if (flags & BLK_MQ_REQ_NOWAIT)
844 return -EBUSY;
845
846 /*
847 * read pair of barrier in blk_freeze_queue_start(),
848 * we need to order reading __PERCPU_REF_DEAD flag of
849 * .q_usage_counter and reading .mq_freeze_depth or
850 * queue dying flag, otherwise the following wait may
851 * never return if the two reads are reordered.
852 */
853 smp_rmb();
854
855 wait_event(q->mq_freeze_wq,
856 (atomic_read(&q->mq_freeze_depth) == 0 &&
857 (preempt || !blk_queue_preempt_only(q))) ||
858 blk_queue_dying(q));
859 if (blk_queue_dying(q))
860 return -ENODEV;
861 }
862 }
863
864 void blk_queue_exit(struct request_queue *q)
865 {
866 percpu_ref_put(&q->q_usage_counter);
867 }
868
869 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
870 {
871 struct request_queue *q =
872 container_of(ref, struct request_queue, q_usage_counter);
873
874 wake_up_all(&q->mq_freeze_wq);
875 }
876
877 static void blk_rq_timed_out_timer(struct timer_list *t)
878 {
879 struct request_queue *q = from_timer(q, t, timeout);
880
881 kblockd_schedule_work(&q->timeout_work);
882 }
883
884 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
885 {
886 struct request_queue *q;
887
888 q = kmem_cache_alloc_node(blk_requestq_cachep,
889 gfp_mask | __GFP_ZERO, node_id);
890 if (!q)
891 return NULL;
892
893 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
894 if (q->id < 0)
895 goto fail_q;
896
897 q->bio_split = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
898 if (!q->bio_split)
899 goto fail_id;
900
901 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
902 if (!q->backing_dev_info)
903 goto fail_split;
904
905 q->stats = blk_alloc_queue_stats();
906 if (!q->stats)
907 goto fail_stats;
908
909 q->backing_dev_info->ra_pages =
910 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
911 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
912 q->backing_dev_info->name = "block";
913 q->node = node_id;
914
915 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
916 laptop_mode_timer_fn, 0);
917 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
918 INIT_WORK(&q->timeout_work, NULL);
919 INIT_LIST_HEAD(&q->queue_head);
920 INIT_LIST_HEAD(&q->timeout_list);
921 INIT_LIST_HEAD(&q->icq_list);
922 #ifdef CONFIG_BLK_CGROUP
923 INIT_LIST_HEAD(&q->blkg_list);
924 #endif
925 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
926
927 kobject_init(&q->kobj, &blk_queue_ktype);
928
929 #ifdef CONFIG_BLK_DEV_IO_TRACE
930 mutex_init(&q->blk_trace_mutex);
931 #endif
932 mutex_init(&q->sysfs_lock);
933 spin_lock_init(&q->__queue_lock);
934
935 /*
936 * By default initialize queue_lock to internal lock and driver can
937 * override it later if need be.
938 */
939 q->queue_lock = &q->__queue_lock;
940
941 /*
942 * A queue starts its life with bypass turned on to avoid
943 * unnecessary bypass on/off overhead and nasty surprises during
944 * init. The initial bypass will be finished when the queue is
945 * registered by blk_register_queue().
946 */
947 q->bypass_depth = 1;
948 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
949
950 init_waitqueue_head(&q->mq_freeze_wq);
951
952 /*
953 * Init percpu_ref in atomic mode so that it's faster to shutdown.
954 * See blk_register_queue() for details.
955 */
956 if (percpu_ref_init(&q->q_usage_counter,
957 blk_queue_usage_counter_release,
958 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
959 goto fail_bdi;
960
961 if (blkcg_init_queue(q))
962 goto fail_ref;
963
964 return q;
965
966 fail_ref:
967 percpu_ref_exit(&q->q_usage_counter);
968 fail_bdi:
969 blk_free_queue_stats(q->stats);
970 fail_stats:
971 bdi_put(q->backing_dev_info);
972 fail_split:
973 bioset_free(q->bio_split);
974 fail_id:
975 ida_simple_remove(&blk_queue_ida, q->id);
976 fail_q:
977 kmem_cache_free(blk_requestq_cachep, q);
978 return NULL;
979 }
980 EXPORT_SYMBOL(blk_alloc_queue_node);
981
982 /**
983 * blk_init_queue - prepare a request queue for use with a block device
984 * @rfn: The function to be called to process requests that have been
985 * placed on the queue.
986 * @lock: Request queue spin lock
987 *
988 * Description:
989 * If a block device wishes to use the standard request handling procedures,
990 * which sorts requests and coalesces adjacent requests, then it must
991 * call blk_init_queue(). The function @rfn will be called when there
992 * are requests on the queue that need to be processed. If the device
993 * supports plugging, then @rfn may not be called immediately when requests
994 * are available on the queue, but may be called at some time later instead.
995 * Plugged queues are generally unplugged when a buffer belonging to one
996 * of the requests on the queue is needed, or due to memory pressure.
997 *
998 * @rfn is not required, or even expected, to remove all requests off the
999 * queue, but only as many as it can handle at a time. If it does leave
1000 * requests on the queue, it is responsible for arranging that the requests
1001 * get dealt with eventually.
1002 *
1003 * The queue spin lock must be held while manipulating the requests on the
1004 * request queue; this lock will be taken also from interrupt context, so irq
1005 * disabling is needed for it.
1006 *
1007 * Function returns a pointer to the initialized request queue, or %NULL if
1008 * it didn't succeed.
1009 *
1010 * Note:
1011 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1012 * when the block device is deactivated (such as at module unload).
1013 **/
1014
1015 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1016 {
1017 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1018 }
1019 EXPORT_SYMBOL(blk_init_queue);
1020
1021 struct request_queue *
1022 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1023 {
1024 struct request_queue *q;
1025
1026 q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1027 if (!q)
1028 return NULL;
1029
1030 q->request_fn = rfn;
1031 if (lock)
1032 q->queue_lock = lock;
1033 if (blk_init_allocated_queue(q) < 0) {
1034 blk_cleanup_queue(q);
1035 return NULL;
1036 }
1037
1038 return q;
1039 }
1040 EXPORT_SYMBOL(blk_init_queue_node);
1041
1042 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
1043
1044
1045 int blk_init_allocated_queue(struct request_queue *q)
1046 {
1047 WARN_ON_ONCE(q->mq_ops);
1048
1049 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
1050 if (!q->fq)
1051 return -ENOMEM;
1052
1053 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
1054 goto out_free_flush_queue;
1055
1056 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
1057 goto out_exit_flush_rq;
1058
1059 INIT_WORK(&q->timeout_work, blk_timeout_work);
1060 q->queue_flags |= QUEUE_FLAG_DEFAULT;
1061
1062 /*
1063 * This also sets hw/phys segments, boundary and size
1064 */
1065 blk_queue_make_request(q, blk_queue_bio);
1066
1067 q->sg_reserved_size = INT_MAX;
1068
1069 /* Protect q->elevator from elevator_change */
1070 mutex_lock(&q->sysfs_lock);
1071
1072 /* init elevator */
1073 if (elevator_init(q, NULL)) {
1074 mutex_unlock(&q->sysfs_lock);
1075 goto out_exit_flush_rq;
1076 }
1077
1078 mutex_unlock(&q->sysfs_lock);
1079 return 0;
1080
1081 out_exit_flush_rq:
1082 if (q->exit_rq_fn)
1083 q->exit_rq_fn(q, q->fq->flush_rq);
1084 out_free_flush_queue:
1085 blk_free_flush_queue(q->fq);
1086 return -ENOMEM;
1087 }
1088 EXPORT_SYMBOL(blk_init_allocated_queue);
1089
1090 bool blk_get_queue(struct request_queue *q)
1091 {
1092 if (likely(!blk_queue_dying(q))) {
1093 __blk_get_queue(q);
1094 return true;
1095 }
1096
1097 return false;
1098 }
1099 EXPORT_SYMBOL(blk_get_queue);
1100
1101 static inline void blk_free_request(struct request_list *rl, struct request *rq)
1102 {
1103 if (rq->rq_flags & RQF_ELVPRIV) {
1104 elv_put_request(rl->q, rq);
1105 if (rq->elv.icq)
1106 put_io_context(rq->elv.icq->ioc);
1107 }
1108
1109 mempool_free(rq, rl->rq_pool);
1110 }
1111
1112 /*
1113 * ioc_batching returns true if the ioc is a valid batching request and
1114 * should be given priority access to a request.
1115 */
1116 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1117 {
1118 if (!ioc)
1119 return 0;
1120
1121 /*
1122 * Make sure the process is able to allocate at least 1 request
1123 * even if the batch times out, otherwise we could theoretically
1124 * lose wakeups.
1125 */
1126 return ioc->nr_batch_requests == q->nr_batching ||
1127 (ioc->nr_batch_requests > 0
1128 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1129 }
1130
1131 /*
1132 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1133 * will cause the process to be a "batcher" on all queues in the system. This
1134 * is the behaviour we want though - once it gets a wakeup it should be given
1135 * a nice run.
1136 */
1137 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1138 {
1139 if (!ioc || ioc_batching(q, ioc))
1140 return;
1141
1142 ioc->nr_batch_requests = q->nr_batching;
1143 ioc->last_waited = jiffies;
1144 }
1145
1146 static void __freed_request(struct request_list *rl, int sync)
1147 {
1148 struct request_queue *q = rl->q;
1149
1150 if (rl->count[sync] < queue_congestion_off_threshold(q))
1151 blk_clear_congested(rl, sync);
1152
1153 if (rl->count[sync] + 1 <= q->nr_requests) {
1154 if (waitqueue_active(&rl->wait[sync]))
1155 wake_up(&rl->wait[sync]);
1156
1157 blk_clear_rl_full(rl, sync);
1158 }
1159 }
1160
1161 /*
1162 * A request has just been released. Account for it, update the full and
1163 * congestion status, wake up any waiters. Called under q->queue_lock.
1164 */
1165 static void freed_request(struct request_list *rl, bool sync,
1166 req_flags_t rq_flags)
1167 {
1168 struct request_queue *q = rl->q;
1169
1170 q->nr_rqs[sync]--;
1171 rl->count[sync]--;
1172 if (rq_flags & RQF_ELVPRIV)
1173 q->nr_rqs_elvpriv--;
1174
1175 __freed_request(rl, sync);
1176
1177 if (unlikely(rl->starved[sync ^ 1]))
1178 __freed_request(rl, sync ^ 1);
1179 }
1180
1181 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1182 {
1183 struct request_list *rl;
1184 int on_thresh, off_thresh;
1185
1186 WARN_ON_ONCE(q->mq_ops);
1187
1188 spin_lock_irq(q->queue_lock);
1189 q->nr_requests = nr;
1190 blk_queue_congestion_threshold(q);
1191 on_thresh = queue_congestion_on_threshold(q);
1192 off_thresh = queue_congestion_off_threshold(q);
1193
1194 blk_queue_for_each_rl(rl, q) {
1195 if (rl->count[BLK_RW_SYNC] >= on_thresh)
1196 blk_set_congested(rl, BLK_RW_SYNC);
1197 else if (rl->count[BLK_RW_SYNC] < off_thresh)
1198 blk_clear_congested(rl, BLK_RW_SYNC);
1199
1200 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1201 blk_set_congested(rl, BLK_RW_ASYNC);
1202 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1203 blk_clear_congested(rl, BLK_RW_ASYNC);
1204
1205 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1206 blk_set_rl_full(rl, BLK_RW_SYNC);
1207 } else {
1208 blk_clear_rl_full(rl, BLK_RW_SYNC);
1209 wake_up(&rl->wait[BLK_RW_SYNC]);
1210 }
1211
1212 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1213 blk_set_rl_full(rl, BLK_RW_ASYNC);
1214 } else {
1215 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1216 wake_up(&rl->wait[BLK_RW_ASYNC]);
1217 }
1218 }
1219
1220 spin_unlock_irq(q->queue_lock);
1221 return 0;
1222 }
1223
1224 /**
1225 * __get_request - get a free request
1226 * @rl: request list to allocate from
1227 * @op: operation and flags
1228 * @bio: bio to allocate request for (can be %NULL)
1229 * @flags: BLQ_MQ_REQ_* flags
1230 *
1231 * Get a free request from @q. This function may fail under memory
1232 * pressure or if @q is dead.
1233 *
1234 * Must be called with @q->queue_lock held and,
1235 * Returns ERR_PTR on failure, with @q->queue_lock held.
1236 * Returns request pointer on success, with @q->queue_lock *not held*.
1237 */
1238 static struct request *__get_request(struct request_list *rl, unsigned int op,
1239 struct bio *bio, blk_mq_req_flags_t flags)
1240 {
1241 struct request_queue *q = rl->q;
1242 struct request *rq;
1243 struct elevator_type *et = q->elevator->type;
1244 struct io_context *ioc = rq_ioc(bio);
1245 struct io_cq *icq = NULL;
1246 const bool is_sync = op_is_sync(op);
1247 int may_queue;
1248 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC :
1249 __GFP_DIRECT_RECLAIM;
1250 req_flags_t rq_flags = RQF_ALLOCED;
1251
1252 lockdep_assert_held(q->queue_lock);
1253
1254 if (unlikely(blk_queue_dying(q)))
1255 return ERR_PTR(-ENODEV);
1256
1257 may_queue = elv_may_queue(q, op);
1258 if (may_queue == ELV_MQUEUE_NO)
1259 goto rq_starved;
1260
1261 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1262 if (rl->count[is_sync]+1 >= q->nr_requests) {
1263 /*
1264 * The queue will fill after this allocation, so set
1265 * it as full, and mark this process as "batching".
1266 * This process will be allowed to complete a batch of
1267 * requests, others will be blocked.
1268 */
1269 if (!blk_rl_full(rl, is_sync)) {
1270 ioc_set_batching(q, ioc);
1271 blk_set_rl_full(rl, is_sync);
1272 } else {
1273 if (may_queue != ELV_MQUEUE_MUST
1274 && !ioc_batching(q, ioc)) {
1275 /*
1276 * The queue is full and the allocating
1277 * process is not a "batcher", and not
1278 * exempted by the IO scheduler
1279 */
1280 return ERR_PTR(-ENOMEM);
1281 }
1282 }
1283 }
1284 blk_set_congested(rl, is_sync);
1285 }
1286
1287 /*
1288 * Only allow batching queuers to allocate up to 50% over the defined
1289 * limit of requests, otherwise we could have thousands of requests
1290 * allocated with any setting of ->nr_requests
1291 */
1292 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1293 return ERR_PTR(-ENOMEM);
1294
1295 q->nr_rqs[is_sync]++;
1296 rl->count[is_sync]++;
1297 rl->starved[is_sync] = 0;
1298
1299 /*
1300 * Decide whether the new request will be managed by elevator. If
1301 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
1302 * prevent the current elevator from being destroyed until the new
1303 * request is freed. This guarantees icq's won't be destroyed and
1304 * makes creating new ones safe.
1305 *
1306 * Flush requests do not use the elevator so skip initialization.
1307 * This allows a request to share the flush and elevator data.
1308 *
1309 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1310 * it will be created after releasing queue_lock.
1311 */
1312 if (!op_is_flush(op) && !blk_queue_bypass(q)) {
1313 rq_flags |= RQF_ELVPRIV;
1314 q->nr_rqs_elvpriv++;
1315 if (et->icq_cache && ioc)
1316 icq = ioc_lookup_icq(ioc, q);
1317 }
1318
1319 if (blk_queue_io_stat(q))
1320 rq_flags |= RQF_IO_STAT;
1321 spin_unlock_irq(q->queue_lock);
1322
1323 /* allocate and init request */
1324 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1325 if (!rq)
1326 goto fail_alloc;
1327
1328 blk_rq_init(q, rq);
1329 blk_rq_set_rl(rq, rl);
1330 rq->cmd_flags = op;
1331 rq->rq_flags = rq_flags;
1332 if (flags & BLK_MQ_REQ_PREEMPT)
1333 rq->rq_flags |= RQF_PREEMPT;
1334
1335 /* init elvpriv */
1336 if (rq_flags & RQF_ELVPRIV) {
1337 if (unlikely(et->icq_cache && !icq)) {
1338 if (ioc)
1339 icq = ioc_create_icq(ioc, q, gfp_mask);
1340 if (!icq)
1341 goto fail_elvpriv;
1342 }
1343
1344 rq->elv.icq = icq;
1345 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1346 goto fail_elvpriv;
1347
1348 /* @rq->elv.icq holds io_context until @rq is freed */
1349 if (icq)
1350 get_io_context(icq->ioc);
1351 }
1352 out:
1353 /*
1354 * ioc may be NULL here, and ioc_batching will be false. That's
1355 * OK, if the queue is under the request limit then requests need
1356 * not count toward the nr_batch_requests limit. There will always
1357 * be some limit enforced by BLK_BATCH_TIME.
1358 */
1359 if (ioc_batching(q, ioc))
1360 ioc->nr_batch_requests--;
1361
1362 trace_block_getrq(q, bio, op);
1363 return rq;
1364
1365 fail_elvpriv:
1366 /*
1367 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1368 * and may fail indefinitely under memory pressure and thus
1369 * shouldn't stall IO. Treat this request as !elvpriv. This will
1370 * disturb iosched and blkcg but weird is bettern than dead.
1371 */
1372 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1373 __func__, dev_name(q->backing_dev_info->dev));
1374
1375 rq->rq_flags &= ~RQF_ELVPRIV;
1376 rq->elv.icq = NULL;
1377
1378 spin_lock_irq(q->queue_lock);
1379 q->nr_rqs_elvpriv--;
1380 spin_unlock_irq(q->queue_lock);
1381 goto out;
1382
1383 fail_alloc:
1384 /*
1385 * Allocation failed presumably due to memory. Undo anything we
1386 * might have messed up.
1387 *
1388 * Allocating task should really be put onto the front of the wait
1389 * queue, but this is pretty rare.
1390 */
1391 spin_lock_irq(q->queue_lock);
1392 freed_request(rl, is_sync, rq_flags);
1393
1394 /*
1395 * in the very unlikely event that allocation failed and no
1396 * requests for this direction was pending, mark us starved so that
1397 * freeing of a request in the other direction will notice
1398 * us. another possible fix would be to split the rq mempool into
1399 * READ and WRITE
1400 */
1401 rq_starved:
1402 if (unlikely(rl->count[is_sync] == 0))
1403 rl->starved[is_sync] = 1;
1404 return ERR_PTR(-ENOMEM);
1405 }
1406
1407 /**
1408 * get_request - get a free request
1409 * @q: request_queue to allocate request from
1410 * @op: operation and flags
1411 * @bio: bio to allocate request for (can be %NULL)
1412 * @flags: BLK_MQ_REQ_* flags.
1413 *
1414 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1415 * this function keeps retrying under memory pressure and fails iff @q is dead.
1416 *
1417 * Must be called with @q->queue_lock held and,
1418 * Returns ERR_PTR on failure, with @q->queue_lock held.
1419 * Returns request pointer on success, with @q->queue_lock *not held*.
1420 */
1421 static struct request *get_request(struct request_queue *q, unsigned int op,
1422 struct bio *bio, blk_mq_req_flags_t flags)
1423 {
1424 const bool is_sync = op_is_sync(op);
1425 DEFINE_WAIT(wait);
1426 struct request_list *rl;
1427 struct request *rq;
1428
1429 lockdep_assert_held(q->queue_lock);
1430 WARN_ON_ONCE(q->mq_ops);
1431
1432 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1433 retry:
1434 rq = __get_request(rl, op, bio, flags);
1435 if (!IS_ERR(rq))
1436 return rq;
1437
1438 if (op & REQ_NOWAIT) {
1439 blk_put_rl(rl);
1440 return ERR_PTR(-EAGAIN);
1441 }
1442
1443 if ((flags & BLK_MQ_REQ_NOWAIT) || unlikely(blk_queue_dying(q))) {
1444 blk_put_rl(rl);
1445 return rq;
1446 }
1447
1448 /* wait on @rl and retry */
1449 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1450 TASK_UNINTERRUPTIBLE);
1451
1452 trace_block_sleeprq(q, bio, op);
1453
1454 spin_unlock_irq(q->queue_lock);
1455 io_schedule();
1456
1457 /*
1458 * After sleeping, we become a "batching" process and will be able
1459 * to allocate at least one request, and up to a big batch of them
1460 * for a small period time. See ioc_batching, ioc_set_batching
1461 */
1462 ioc_set_batching(q, current->io_context);
1463
1464 spin_lock_irq(q->queue_lock);
1465 finish_wait(&rl->wait[is_sync], &wait);
1466
1467 goto retry;
1468 }
1469
1470 /* flags: BLK_MQ_REQ_PREEMPT and/or BLK_MQ_REQ_NOWAIT. */
1471 static struct request *blk_old_get_request(struct request_queue *q,
1472 unsigned int op, blk_mq_req_flags_t flags)
1473 {
1474 struct request *rq;
1475 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC :
1476 __GFP_DIRECT_RECLAIM;
1477 int ret = 0;
1478
1479 WARN_ON_ONCE(q->mq_ops);
1480
1481 /* create ioc upfront */
1482 create_io_context(gfp_mask, q->node);
1483
1484 ret = blk_queue_enter(q, flags);
1485 if (ret)
1486 return ERR_PTR(ret);
1487 spin_lock_irq(q->queue_lock);
1488 rq = get_request(q, op, NULL, flags);
1489 if (IS_ERR(rq)) {
1490 spin_unlock_irq(q->queue_lock);
1491 blk_queue_exit(q);
1492 return rq;
1493 }
1494
1495 /* q->queue_lock is unlocked at this point */
1496 rq->__data_len = 0;
1497 rq->__sector = (sector_t) -1;
1498 rq->bio = rq->biotail = NULL;
1499 return rq;
1500 }
1501
1502 /**
1503 * blk_get_request_flags - allocate a request
1504 * @q: request queue to allocate a request for
1505 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
1506 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
1507 */
1508 struct request *blk_get_request_flags(struct request_queue *q, unsigned int op,
1509 blk_mq_req_flags_t flags)
1510 {
1511 struct request *req;
1512
1513 WARN_ON_ONCE(op & REQ_NOWAIT);
1514 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
1515
1516 if (q->mq_ops) {
1517 req = blk_mq_alloc_request(q, op, flags);
1518 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
1519 q->mq_ops->initialize_rq_fn(req);
1520 } else {
1521 req = blk_old_get_request(q, op, flags);
1522 if (!IS_ERR(req) && q->initialize_rq_fn)
1523 q->initialize_rq_fn(req);
1524 }
1525
1526 return req;
1527 }
1528 EXPORT_SYMBOL(blk_get_request_flags);
1529
1530 struct request *blk_get_request(struct request_queue *q, unsigned int op,
1531 gfp_t gfp_mask)
1532 {
1533 return blk_get_request_flags(q, op, gfp_mask & __GFP_DIRECT_RECLAIM ?
1534 0 : BLK_MQ_REQ_NOWAIT);
1535 }
1536 EXPORT_SYMBOL(blk_get_request);
1537
1538 /**
1539 * blk_requeue_request - put a request back on queue
1540 * @q: request queue where request should be inserted
1541 * @rq: request to be inserted
1542 *
1543 * Description:
1544 * Drivers often keep queueing requests until the hardware cannot accept
1545 * more, when that condition happens we need to put the request back
1546 * on the queue. Must be called with queue lock held.
1547 */
1548 void blk_requeue_request(struct request_queue *q, struct request *rq)
1549 {
1550 lockdep_assert_held(q->queue_lock);
1551 WARN_ON_ONCE(q->mq_ops);
1552
1553 blk_delete_timer(rq);
1554 blk_clear_rq_complete(rq);
1555 trace_block_rq_requeue(q, rq);
1556 wbt_requeue(q->rq_wb, &rq->issue_stat);
1557
1558 if (rq->rq_flags & RQF_QUEUED)
1559 blk_queue_end_tag(q, rq);
1560
1561 BUG_ON(blk_queued_rq(rq));
1562
1563 elv_requeue_request(q, rq);
1564 }
1565 EXPORT_SYMBOL(blk_requeue_request);
1566
1567 static void add_acct_request(struct request_queue *q, struct request *rq,
1568 int where)
1569 {
1570 blk_account_io_start(rq, true);
1571 __elv_add_request(q, rq, where);
1572 }
1573
1574 static void part_round_stats_single(struct request_queue *q, int cpu,
1575 struct hd_struct *part, unsigned long now,
1576 unsigned int inflight)
1577 {
1578 if (inflight) {
1579 __part_stat_add(cpu, part, time_in_queue,
1580 inflight * (now - part->stamp));
1581 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1582 }
1583 part->stamp = now;
1584 }
1585
1586 /**
1587 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1588 * @q: target block queue
1589 * @cpu: cpu number for stats access
1590 * @part: target partition
1591 *
1592 * The average IO queue length and utilisation statistics are maintained
1593 * by observing the current state of the queue length and the amount of
1594 * time it has been in this state for.
1595 *
1596 * Normally, that accounting is done on IO completion, but that can result
1597 * in more than a second's worth of IO being accounted for within any one
1598 * second, leading to >100% utilisation. To deal with that, we call this
1599 * function to do a round-off before returning the results when reading
1600 * /proc/diskstats. This accounts immediately for all queue usage up to
1601 * the current jiffies and restarts the counters again.
1602 */
1603 void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part)
1604 {
1605 struct hd_struct *part2 = NULL;
1606 unsigned long now = jiffies;
1607 unsigned int inflight[2];
1608 int stats = 0;
1609
1610 if (part->stamp != now)
1611 stats |= 1;
1612
1613 if (part->partno) {
1614 part2 = &part_to_disk(part)->part0;
1615 if (part2->stamp != now)
1616 stats |= 2;
1617 }
1618
1619 if (!stats)
1620 return;
1621
1622 part_in_flight(q, part, inflight);
1623
1624 if (stats & 2)
1625 part_round_stats_single(q, cpu, part2, now, inflight[1]);
1626 if (stats & 1)
1627 part_round_stats_single(q, cpu, part, now, inflight[0]);
1628 }
1629 EXPORT_SYMBOL_GPL(part_round_stats);
1630
1631 #ifdef CONFIG_PM
1632 static void blk_pm_put_request(struct request *rq)
1633 {
1634 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
1635 pm_runtime_mark_last_busy(rq->q->dev);
1636 }
1637 #else
1638 static inline void blk_pm_put_request(struct request *rq) {}
1639 #endif
1640
1641 void __blk_put_request(struct request_queue *q, struct request *req)
1642 {
1643 req_flags_t rq_flags = req->rq_flags;
1644
1645 if (unlikely(!q))
1646 return;
1647
1648 if (q->mq_ops) {
1649 blk_mq_free_request(req);
1650 return;
1651 }
1652
1653 lockdep_assert_held(q->queue_lock);
1654
1655 blk_pm_put_request(req);
1656
1657 elv_completed_request(q, req);
1658
1659 /* this is a bio leak */
1660 WARN_ON(req->bio != NULL);
1661
1662 wbt_done(q->rq_wb, &req->issue_stat);
1663
1664 /*
1665 * Request may not have originated from ll_rw_blk. if not,
1666 * it didn't come out of our reserved rq pools
1667 */
1668 if (rq_flags & RQF_ALLOCED) {
1669 struct request_list *rl = blk_rq_rl(req);
1670 bool sync = op_is_sync(req->cmd_flags);
1671
1672 BUG_ON(!list_empty(&req->queuelist));
1673 BUG_ON(ELV_ON_HASH(req));
1674
1675 blk_free_request(rl, req);
1676 freed_request(rl, sync, rq_flags);
1677 blk_put_rl(rl);
1678 blk_queue_exit(q);
1679 }
1680 }
1681 EXPORT_SYMBOL_GPL(__blk_put_request);
1682
1683 void blk_put_request(struct request *req)
1684 {
1685 struct request_queue *q = req->q;
1686
1687 if (q->mq_ops)
1688 blk_mq_free_request(req);
1689 else {
1690 unsigned long flags;
1691
1692 spin_lock_irqsave(q->queue_lock, flags);
1693 __blk_put_request(q, req);
1694 spin_unlock_irqrestore(q->queue_lock, flags);
1695 }
1696 }
1697 EXPORT_SYMBOL(blk_put_request);
1698
1699 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1700 struct bio *bio)
1701 {
1702 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1703
1704 if (!ll_back_merge_fn(q, req, bio))
1705 return false;
1706
1707 trace_block_bio_backmerge(q, req, bio);
1708
1709 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1710 blk_rq_set_mixed_merge(req);
1711
1712 req->biotail->bi_next = bio;
1713 req->biotail = bio;
1714 req->__data_len += bio->bi_iter.bi_size;
1715 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1716
1717 blk_account_io_start(req, false);
1718 return true;
1719 }
1720
1721 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1722 struct bio *bio)
1723 {
1724 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1725
1726 if (!ll_front_merge_fn(q, req, bio))
1727 return false;
1728
1729 trace_block_bio_frontmerge(q, req, bio);
1730
1731 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1732 blk_rq_set_mixed_merge(req);
1733
1734 bio->bi_next = req->bio;
1735 req->bio = bio;
1736
1737 req->__sector = bio->bi_iter.bi_sector;
1738 req->__data_len += bio->bi_iter.bi_size;
1739 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1740
1741 blk_account_io_start(req, false);
1742 return true;
1743 }
1744
1745 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1746 struct bio *bio)
1747 {
1748 unsigned short segments = blk_rq_nr_discard_segments(req);
1749
1750 if (segments >= queue_max_discard_segments(q))
1751 goto no_merge;
1752 if (blk_rq_sectors(req) + bio_sectors(bio) >
1753 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1754 goto no_merge;
1755
1756 req->biotail->bi_next = bio;
1757 req->biotail = bio;
1758 req->__data_len += bio->bi_iter.bi_size;
1759 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1760 req->nr_phys_segments = segments + 1;
1761
1762 blk_account_io_start(req, false);
1763 return true;
1764 no_merge:
1765 req_set_nomerge(q, req);
1766 return false;
1767 }
1768
1769 /**
1770 * blk_attempt_plug_merge - try to merge with %current's plugged list
1771 * @q: request_queue new bio is being queued at
1772 * @bio: new bio being queued
1773 * @request_count: out parameter for number of traversed plugged requests
1774 * @same_queue_rq: pointer to &struct request that gets filled in when
1775 * another request associated with @q is found on the plug list
1776 * (optional, may be %NULL)
1777 *
1778 * Determine whether @bio being queued on @q can be merged with a request
1779 * on %current's plugged list. Returns %true if merge was successful,
1780 * otherwise %false.
1781 *
1782 * Plugging coalesces IOs from the same issuer for the same purpose without
1783 * going through @q->queue_lock. As such it's more of an issuing mechanism
1784 * than scheduling, and the request, while may have elvpriv data, is not
1785 * added on the elevator at this point. In addition, we don't have
1786 * reliable access to the elevator outside queue lock. Only check basic
1787 * merging parameters without querying the elevator.
1788 *
1789 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1790 */
1791 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1792 unsigned int *request_count,
1793 struct request **same_queue_rq)
1794 {
1795 struct blk_plug *plug;
1796 struct request *rq;
1797 struct list_head *plug_list;
1798
1799 plug = current->plug;
1800 if (!plug)
1801 return false;
1802 *request_count = 0;
1803
1804 if (q->mq_ops)
1805 plug_list = &plug->mq_list;
1806 else
1807 plug_list = &plug->list;
1808
1809 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1810 bool merged = false;
1811
1812 if (rq->q == q) {
1813 (*request_count)++;
1814 /*
1815 * Only blk-mq multiple hardware queues case checks the
1816 * rq in the same queue, there should be only one such
1817 * rq in a queue
1818 **/
1819 if (same_queue_rq)
1820 *same_queue_rq = rq;
1821 }
1822
1823 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1824 continue;
1825
1826 switch (blk_try_merge(rq, bio)) {
1827 case ELEVATOR_BACK_MERGE:
1828 merged = bio_attempt_back_merge(q, rq, bio);
1829 break;
1830 case ELEVATOR_FRONT_MERGE:
1831 merged = bio_attempt_front_merge(q, rq, bio);
1832 break;
1833 case ELEVATOR_DISCARD_MERGE:
1834 merged = bio_attempt_discard_merge(q, rq, bio);
1835 break;
1836 default:
1837 break;
1838 }
1839
1840 if (merged)
1841 return true;
1842 }
1843
1844 return false;
1845 }
1846
1847 unsigned int blk_plug_queued_count(struct request_queue *q)
1848 {
1849 struct blk_plug *plug;
1850 struct request *rq;
1851 struct list_head *plug_list;
1852 unsigned int ret = 0;
1853
1854 plug = current->plug;
1855 if (!plug)
1856 goto out;
1857
1858 if (q->mq_ops)
1859 plug_list = &plug->mq_list;
1860 else
1861 plug_list = &plug->list;
1862
1863 list_for_each_entry(rq, plug_list, queuelist) {
1864 if (rq->q == q)
1865 ret++;
1866 }
1867 out:
1868 return ret;
1869 }
1870
1871 void blk_init_request_from_bio(struct request *req, struct bio *bio)
1872 {
1873 struct io_context *ioc = rq_ioc(bio);
1874
1875 if (bio->bi_opf & REQ_RAHEAD)
1876 req->cmd_flags |= REQ_FAILFAST_MASK;
1877
1878 req->__sector = bio->bi_iter.bi_sector;
1879 if (ioprio_valid(bio_prio(bio)))
1880 req->ioprio = bio_prio(bio);
1881 else if (ioc)
1882 req->ioprio = ioc->ioprio;
1883 else
1884 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
1885 req->write_hint = bio->bi_write_hint;
1886 blk_rq_bio_prep(req->q, req, bio);
1887 }
1888 EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
1889
1890 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1891 {
1892 struct blk_plug *plug;
1893 int where = ELEVATOR_INSERT_SORT;
1894 struct request *req, *free;
1895 unsigned int request_count = 0;
1896 unsigned int wb_acct;
1897
1898 /*
1899 * low level driver can indicate that it wants pages above a
1900 * certain limit bounced to low memory (ie for highmem, or even
1901 * ISA dma in theory)
1902 */
1903 blk_queue_bounce(q, &bio);
1904
1905 blk_queue_split(q, &bio);
1906
1907 if (!bio_integrity_prep(bio))
1908 return BLK_QC_T_NONE;
1909
1910 if (op_is_flush(bio->bi_opf)) {
1911 spin_lock_irq(q->queue_lock);
1912 where = ELEVATOR_INSERT_FLUSH;
1913 goto get_rq;
1914 }
1915
1916 /*
1917 * Check if we can merge with the plugged list before grabbing
1918 * any locks.
1919 */
1920 if (!blk_queue_nomerges(q)) {
1921 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1922 return BLK_QC_T_NONE;
1923 } else
1924 request_count = blk_plug_queued_count(q);
1925
1926 spin_lock_irq(q->queue_lock);
1927
1928 switch (elv_merge(q, &req, bio)) {
1929 case ELEVATOR_BACK_MERGE:
1930 if (!bio_attempt_back_merge(q, req, bio))
1931 break;
1932 elv_bio_merged(q, req, bio);
1933 free = attempt_back_merge(q, req);
1934 if (free)
1935 __blk_put_request(q, free);
1936 else
1937 elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
1938 goto out_unlock;
1939 case ELEVATOR_FRONT_MERGE:
1940 if (!bio_attempt_front_merge(q, req, bio))
1941 break;
1942 elv_bio_merged(q, req, bio);
1943 free = attempt_front_merge(q, req);
1944 if (free)
1945 __blk_put_request(q, free);
1946 else
1947 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
1948 goto out_unlock;
1949 default:
1950 break;
1951 }
1952
1953 get_rq:
1954 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1955
1956 /*
1957 * Grab a free request. This is might sleep but can not fail.
1958 * Returns with the queue unlocked.
1959 */
1960 blk_queue_enter_live(q);
1961 req = get_request(q, bio->bi_opf, bio, 0);
1962 if (IS_ERR(req)) {
1963 blk_queue_exit(q);
1964 __wbt_done(q->rq_wb, wb_acct);
1965 if (PTR_ERR(req) == -ENOMEM)
1966 bio->bi_status = BLK_STS_RESOURCE;
1967 else
1968 bio->bi_status = BLK_STS_IOERR;
1969 bio_endio(bio);
1970 goto out_unlock;
1971 }
1972
1973 wbt_track(&req->issue_stat, wb_acct);
1974
1975 /*
1976 * After dropping the lock and possibly sleeping here, our request
1977 * may now be mergeable after it had proven unmergeable (above).
1978 * We don't worry about that case for efficiency. It won't happen
1979 * often, and the elevators are able to handle it.
1980 */
1981 blk_init_request_from_bio(req, bio);
1982
1983 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1984 req->cpu = raw_smp_processor_id();
1985
1986 plug = current->plug;
1987 if (plug) {
1988 /*
1989 * If this is the first request added after a plug, fire
1990 * of a plug trace.
1991 *
1992 * @request_count may become stale because of schedule
1993 * out, so check plug list again.
1994 */
1995 if (!request_count || list_empty(&plug->list))
1996 trace_block_plug(q);
1997 else {
1998 struct request *last = list_entry_rq(plug->list.prev);
1999 if (request_count >= BLK_MAX_REQUEST_COUNT ||
2000 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
2001 blk_flush_plug_list(plug, false);
2002 trace_block_plug(q);
2003 }
2004 }
2005 list_add_tail(&req->queuelist, &plug->list);
2006 blk_account_io_start(req, true);
2007 } else {
2008 spin_lock_irq(q->queue_lock);
2009 add_acct_request(q, req, where);
2010 __blk_run_queue(q);
2011 out_unlock:
2012 spin_unlock_irq(q->queue_lock);
2013 }
2014
2015 return BLK_QC_T_NONE;
2016 }
2017
2018 static void handle_bad_sector(struct bio *bio)
2019 {
2020 char b[BDEVNAME_SIZE];
2021
2022 printk(KERN_INFO "attempt to access beyond end of device\n");
2023 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
2024 bio_devname(bio, b), bio->bi_opf,
2025 (unsigned long long)bio_end_sector(bio),
2026 (long long)get_capacity(bio->bi_disk));
2027 }
2028
2029 #ifdef CONFIG_FAIL_MAKE_REQUEST
2030
2031 static DECLARE_FAULT_ATTR(fail_make_request);
2032
2033 static int __init setup_fail_make_request(char *str)
2034 {
2035 return setup_fault_attr(&fail_make_request, str);
2036 }
2037 __setup("fail_make_request=", setup_fail_make_request);
2038
2039 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
2040 {
2041 return part->make_it_fail && should_fail(&fail_make_request, bytes);
2042 }
2043
2044 static int __init fail_make_request_debugfs(void)
2045 {
2046 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
2047 NULL, &fail_make_request);
2048
2049 return PTR_ERR_OR_ZERO(dir);
2050 }
2051
2052 late_initcall(fail_make_request_debugfs);
2053
2054 #else /* CONFIG_FAIL_MAKE_REQUEST */
2055
2056 static inline bool should_fail_request(struct hd_struct *part,
2057 unsigned int bytes)
2058 {
2059 return false;
2060 }
2061
2062 #endif /* CONFIG_FAIL_MAKE_REQUEST */
2063
2064 /*
2065 * Remap block n of partition p to block n+start(p) of the disk.
2066 */
2067 static inline int blk_partition_remap(struct bio *bio)
2068 {
2069 struct hd_struct *p;
2070 int ret = 0;
2071
2072 /*
2073 * Zone reset does not include bi_size so bio_sectors() is always 0.
2074 * Include a test for the reset op code and perform the remap if needed.
2075 */
2076 if (!bio->bi_partno ||
2077 (!bio_sectors(bio) && bio_op(bio) != REQ_OP_ZONE_RESET))
2078 return 0;
2079
2080 rcu_read_lock();
2081 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
2082 if (likely(p && !should_fail_request(p, bio->bi_iter.bi_size))) {
2083 bio->bi_iter.bi_sector += p->start_sect;
2084 bio->bi_partno = 0;
2085 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
2086 bio->bi_iter.bi_sector - p->start_sect);
2087 } else {
2088 printk("%s: fail for partition %d\n", __func__, bio->bi_partno);
2089 ret = -EIO;
2090 }
2091 rcu_read_unlock();
2092
2093 return ret;
2094 }
2095
2096 /*
2097 * Check whether this bio extends beyond the end of the device.
2098 */
2099 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
2100 {
2101 sector_t maxsector;
2102
2103 if (!nr_sectors)
2104 return 0;
2105
2106 /* Test device or partition size, when known. */
2107 maxsector = get_capacity(bio->bi_disk);
2108 if (maxsector) {
2109 sector_t sector = bio->bi_iter.bi_sector;
2110
2111 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
2112 /*
2113 * This may well happen - the kernel calls bread()
2114 * without checking the size of the device, e.g., when
2115 * mounting a device.
2116 */
2117 handle_bad_sector(bio);
2118 return 1;
2119 }
2120 }
2121
2122 return 0;
2123 }
2124
2125 static noinline_for_stack bool
2126 generic_make_request_checks(struct bio *bio)
2127 {
2128 struct request_queue *q;
2129 int nr_sectors = bio_sectors(bio);
2130 blk_status_t status = BLK_STS_IOERR;
2131 char b[BDEVNAME_SIZE];
2132
2133 might_sleep();
2134
2135 if (bio_check_eod(bio, nr_sectors))
2136 goto end_io;
2137
2138 q = bio->bi_disk->queue;
2139 if (unlikely(!q)) {
2140 printk(KERN_ERR
2141 "generic_make_request: Trying to access "
2142 "nonexistent block-device %s (%Lu)\n",
2143 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
2144 goto end_io;
2145 }
2146
2147 /*
2148 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2149 * if queue is not a request based queue.
2150 */
2151
2152 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
2153 goto not_supported;
2154
2155 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
2156 goto end_io;
2157
2158 if (blk_partition_remap(bio))
2159 goto end_io;
2160
2161 if (bio_check_eod(bio, nr_sectors))
2162 goto end_io;
2163
2164 /*
2165 * Filter flush bio's early so that make_request based
2166 * drivers without flush support don't have to worry
2167 * about them.
2168 */
2169 if (op_is_flush(bio->bi_opf) &&
2170 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
2171 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
2172 if (!nr_sectors) {
2173 status = BLK_STS_OK;
2174 goto end_io;
2175 }
2176 }
2177
2178 switch (bio_op(bio)) {
2179 case REQ_OP_DISCARD:
2180 if (!blk_queue_discard(q))
2181 goto not_supported;
2182 break;
2183 case REQ_OP_SECURE_ERASE:
2184 if (!blk_queue_secure_erase(q))
2185 goto not_supported;
2186 break;
2187 case REQ_OP_WRITE_SAME:
2188 if (!q->limits.max_write_same_sectors)
2189 goto not_supported;
2190 break;
2191 case REQ_OP_ZONE_REPORT:
2192 case REQ_OP_ZONE_RESET:
2193 if (!blk_queue_is_zoned(q))
2194 goto not_supported;
2195 break;
2196 case REQ_OP_WRITE_ZEROES:
2197 if (!q->limits.max_write_zeroes_sectors)
2198 goto not_supported;
2199 break;
2200 default:
2201 break;
2202 }
2203
2204 /*
2205 * Various block parts want %current->io_context and lazy ioc
2206 * allocation ends up trading a lot of pain for a small amount of
2207 * memory. Just allocate it upfront. This may fail and block
2208 * layer knows how to live with it.
2209 */
2210 create_io_context(GFP_ATOMIC, q->node);
2211
2212 if (!blkcg_bio_issue_check(q, bio))
2213 return false;
2214
2215 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2216 trace_block_bio_queue(q, bio);
2217 /* Now that enqueuing has been traced, we need to trace
2218 * completion as well.
2219 */
2220 bio_set_flag(bio, BIO_TRACE_COMPLETION);
2221 }
2222 return true;
2223
2224 not_supported:
2225 status = BLK_STS_NOTSUPP;
2226 end_io:
2227 bio->bi_status = status;
2228 bio_endio(bio);
2229 return false;
2230 }
2231
2232 /**
2233 * generic_make_request - hand a buffer to its device driver for I/O
2234 * @bio: The bio describing the location in memory and on the device.
2235 *
2236 * generic_make_request() is used to make I/O requests of block
2237 * devices. It is passed a &struct bio, which describes the I/O that needs
2238 * to be done.
2239 *
2240 * generic_make_request() does not return any status. The
2241 * success/failure status of the request, along with notification of
2242 * completion, is delivered asynchronously through the bio->bi_end_io
2243 * function described (one day) else where.
2244 *
2245 * The caller of generic_make_request must make sure that bi_io_vec
2246 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2247 * set to describe the device address, and the
2248 * bi_end_io and optionally bi_private are set to describe how
2249 * completion notification should be signaled.
2250 *
2251 * generic_make_request and the drivers it calls may use bi_next if this
2252 * bio happens to be merged with someone else, and may resubmit the bio to
2253 * a lower device by calling into generic_make_request recursively, which
2254 * means the bio should NOT be touched after the call to ->make_request_fn.
2255 */
2256 blk_qc_t generic_make_request(struct bio *bio)
2257 {
2258 /*
2259 * bio_list_on_stack[0] contains bios submitted by the current
2260 * make_request_fn.
2261 * bio_list_on_stack[1] contains bios that were submitted before
2262 * the current make_request_fn, but that haven't been processed
2263 * yet.
2264 */
2265 struct bio_list bio_list_on_stack[2];
2266 blk_qc_t ret = BLK_QC_T_NONE;
2267
2268 if (!generic_make_request_checks(bio))
2269 goto out;
2270
2271 /*
2272 * We only want one ->make_request_fn to be active at a time, else
2273 * stack usage with stacked devices could be a problem. So use
2274 * current->bio_list to keep a list of requests submited by a
2275 * make_request_fn function. current->bio_list is also used as a
2276 * flag to say if generic_make_request is currently active in this
2277 * task or not. If it is NULL, then no make_request is active. If
2278 * it is non-NULL, then a make_request is active, and new requests
2279 * should be added at the tail
2280 */
2281 if (current->bio_list) {
2282 bio_list_add(&current->bio_list[0], bio);
2283 goto out;
2284 }
2285
2286 /* following loop may be a bit non-obvious, and so deserves some
2287 * explanation.
2288 * Before entering the loop, bio->bi_next is NULL (as all callers
2289 * ensure that) so we have a list with a single bio.
2290 * We pretend that we have just taken it off a longer list, so
2291 * we assign bio_list to a pointer to the bio_list_on_stack,
2292 * thus initialising the bio_list of new bios to be
2293 * added. ->make_request() may indeed add some more bios
2294 * through a recursive call to generic_make_request. If it
2295 * did, we find a non-NULL value in bio_list and re-enter the loop
2296 * from the top. In this case we really did just take the bio
2297 * of the top of the list (no pretending) and so remove it from
2298 * bio_list, and call into ->make_request() again.
2299 */
2300 BUG_ON(bio->bi_next);
2301 bio_list_init(&bio_list_on_stack[0]);
2302 current->bio_list = bio_list_on_stack;
2303 do {
2304 struct request_queue *q = bio->bi_disk->queue;
2305 blk_mq_req_flags_t flags = bio->bi_opf & REQ_NOWAIT ?
2306 BLK_MQ_REQ_NOWAIT : 0;
2307
2308 if (likely(blk_queue_enter(q, flags) == 0)) {
2309 struct bio_list lower, same;
2310
2311 /* Create a fresh bio_list for all subordinate requests */
2312 bio_list_on_stack[1] = bio_list_on_stack[0];
2313 bio_list_init(&bio_list_on_stack[0]);
2314 ret = q->make_request_fn(q, bio);
2315
2316 blk_queue_exit(q);
2317
2318 /* sort new bios into those for a lower level
2319 * and those for the same level
2320 */
2321 bio_list_init(&lower);
2322 bio_list_init(&same);
2323 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
2324 if (q == bio->bi_disk->queue)
2325 bio_list_add(&same, bio);
2326 else
2327 bio_list_add(&lower, bio);
2328 /* now assemble so we handle the lowest level first */
2329 bio_list_merge(&bio_list_on_stack[0], &lower);
2330 bio_list_merge(&bio_list_on_stack[0], &same);
2331 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
2332 } else {
2333 if (unlikely(!blk_queue_dying(q) &&
2334 (bio->bi_opf & REQ_NOWAIT)))
2335 bio_wouldblock_error(bio);
2336 else
2337 bio_io_error(bio);
2338 }
2339 bio = bio_list_pop(&bio_list_on_stack[0]);
2340 } while (bio);
2341 current->bio_list = NULL; /* deactivate */
2342
2343 out:
2344 return ret;
2345 }
2346 EXPORT_SYMBOL(generic_make_request);
2347
2348 /**
2349 * direct_make_request - hand a buffer directly to its device driver for I/O
2350 * @bio: The bio describing the location in memory and on the device.
2351 *
2352 * This function behaves like generic_make_request(), but does not protect
2353 * against recursion. Must only be used if the called driver is known
2354 * to not call generic_make_request (or direct_make_request) again from
2355 * its make_request function. (Calling direct_make_request again from
2356 * a workqueue is perfectly fine as that doesn't recurse).
2357 */
2358 blk_qc_t direct_make_request(struct bio *bio)
2359 {
2360 struct request_queue *q = bio->bi_disk->queue;
2361 bool nowait = bio->bi_opf & REQ_NOWAIT;
2362 blk_qc_t ret;
2363
2364 if (!generic_make_request_checks(bio))
2365 return BLK_QC_T_NONE;
2366
2367 if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
2368 if (nowait && !blk_queue_dying(q))
2369 bio->bi_status = BLK_STS_AGAIN;
2370 else
2371 bio->bi_status = BLK_STS_IOERR;
2372 bio_endio(bio);
2373 return BLK_QC_T_NONE;
2374 }
2375
2376 ret = q->make_request_fn(q, bio);
2377 blk_queue_exit(q);
2378 return ret;
2379 }
2380 EXPORT_SYMBOL_GPL(direct_make_request);
2381
2382 /**
2383 * submit_bio - submit a bio to the block device layer for I/O
2384 * @bio: The &struct bio which describes the I/O
2385 *
2386 * submit_bio() is very similar in purpose to generic_make_request(), and
2387 * uses that function to do most of the work. Both are fairly rough
2388 * interfaces; @bio must be presetup and ready for I/O.
2389 *
2390 */
2391 blk_qc_t submit_bio(struct bio *bio)
2392 {
2393 /*
2394 * If it's a regular read/write or a barrier with data attached,
2395 * go through the normal accounting stuff before submission.
2396 */
2397 if (bio_has_data(bio)) {
2398 unsigned int count;
2399
2400 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2401 count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
2402 else
2403 count = bio_sectors(bio);
2404
2405 if (op_is_write(bio_op(bio))) {
2406 count_vm_events(PGPGOUT, count);
2407 } else {
2408 task_io_account_read(bio->bi_iter.bi_size);
2409 count_vm_events(PGPGIN, count);
2410 }
2411
2412 if (unlikely(block_dump)) {
2413 char b[BDEVNAME_SIZE];
2414 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2415 current->comm, task_pid_nr(current),
2416 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2417 (unsigned long long)bio->bi_iter.bi_sector,
2418 bio_devname(bio, b), count);
2419 }
2420 }
2421
2422 return generic_make_request(bio);
2423 }
2424 EXPORT_SYMBOL(submit_bio);
2425
2426 bool blk_poll(struct request_queue *q, blk_qc_t cookie)
2427 {
2428 if (!q->poll_fn || !blk_qc_t_valid(cookie))
2429 return false;
2430
2431 if (current->plug)
2432 blk_flush_plug_list(current->plug, false);
2433 return q->poll_fn(q, cookie);
2434 }
2435 EXPORT_SYMBOL_GPL(blk_poll);
2436
2437 /**
2438 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2439 * for new the queue limits
2440 * @q: the queue
2441 * @rq: the request being checked
2442 *
2443 * Description:
2444 * @rq may have been made based on weaker limitations of upper-level queues
2445 * in request stacking drivers, and it may violate the limitation of @q.
2446 * Since the block layer and the underlying device driver trust @rq
2447 * after it is inserted to @q, it should be checked against @q before
2448 * the insertion using this generic function.
2449 *
2450 * Request stacking drivers like request-based dm may change the queue
2451 * limits when retrying requests on other queues. Those requests need
2452 * to be checked against the new queue limits again during dispatch.
2453 */
2454 static int blk_cloned_rq_check_limits(struct request_queue *q,
2455 struct request *rq)
2456 {
2457 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2458 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2459 return -EIO;
2460 }
2461
2462 /*
2463 * queue's settings related to segment counting like q->bounce_pfn
2464 * may differ from that of other stacking queues.
2465 * Recalculate it to check the request correctly on this queue's
2466 * limitation.
2467 */
2468 blk_recalc_rq_segments(rq);
2469 if (rq->nr_phys_segments > queue_max_segments(q)) {
2470 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2471 return -EIO;
2472 }
2473
2474 return 0;
2475 }
2476
2477 /**
2478 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2479 * @q: the queue to submit the request
2480 * @rq: the request being queued
2481 */
2482 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2483 {
2484 unsigned long flags;
2485 int where = ELEVATOR_INSERT_BACK;
2486
2487 if (blk_cloned_rq_check_limits(q, rq))
2488 return BLK_STS_IOERR;
2489
2490 if (rq->rq_disk &&
2491 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2492 return BLK_STS_IOERR;
2493
2494 if (q->mq_ops) {
2495 if (blk_queue_io_stat(q))
2496 blk_account_io_start(rq, true);
2497 /*
2498 * Since we have a scheduler attached on the top device,
2499 * bypass a potential scheduler on the bottom device for
2500 * insert.
2501 */
2502 blk_mq_request_bypass_insert(rq, true);
2503 return BLK_STS_OK;
2504 }
2505
2506 spin_lock_irqsave(q->queue_lock, flags);
2507 if (unlikely(blk_queue_dying(q))) {
2508 spin_unlock_irqrestore(q->queue_lock, flags);
2509 return BLK_STS_IOERR;
2510 }
2511
2512 /*
2513 * Submitting request must be dequeued before calling this function
2514 * because it will be linked to another request_queue
2515 */
2516 BUG_ON(blk_queued_rq(rq));
2517
2518 if (op_is_flush(rq->cmd_flags))
2519 where = ELEVATOR_INSERT_FLUSH;
2520
2521 add_acct_request(q, rq, where);
2522 if (where == ELEVATOR_INSERT_FLUSH)
2523 __blk_run_queue(q);
2524 spin_unlock_irqrestore(q->queue_lock, flags);
2525
2526 return BLK_STS_OK;
2527 }
2528 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2529
2530 /**
2531 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2532 * @rq: request to examine
2533 *
2534 * Description:
2535 * A request could be merge of IOs which require different failure
2536 * handling. This function determines the number of bytes which
2537 * can be failed from the beginning of the request without
2538 * crossing into area which need to be retried further.
2539 *
2540 * Return:
2541 * The number of bytes to fail.
2542 */
2543 unsigned int blk_rq_err_bytes(const struct request *rq)
2544 {
2545 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2546 unsigned int bytes = 0;
2547 struct bio *bio;
2548
2549 if (!(rq->rq_flags & RQF_MIXED_MERGE))
2550 return blk_rq_bytes(rq);
2551
2552 /*
2553 * Currently the only 'mixing' which can happen is between
2554 * different fastfail types. We can safely fail portions
2555 * which have all the failfast bits that the first one has -
2556 * the ones which are at least as eager to fail as the first
2557 * one.
2558 */
2559 for (bio = rq->bio; bio; bio = bio->bi_next) {
2560 if ((bio->bi_opf & ff) != ff)
2561 break;
2562 bytes += bio->bi_iter.bi_size;
2563 }
2564
2565 /* this could lead to infinite loop */
2566 BUG_ON(blk_rq_bytes(rq) && !bytes);
2567 return bytes;
2568 }
2569 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2570
2571 void blk_account_io_completion(struct request *req, unsigned int bytes)
2572 {
2573 if (blk_do_io_stat(req)) {
2574 const int rw = rq_data_dir(req);
2575 struct hd_struct *part;
2576 int cpu;
2577
2578 cpu = part_stat_lock();
2579 part = req->part;
2580 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2581 part_stat_unlock();
2582 }
2583 }
2584
2585 void blk_account_io_done(struct request *req)
2586 {
2587 /*
2588 * Account IO completion. flush_rq isn't accounted as a
2589 * normal IO on queueing nor completion. Accounting the
2590 * containing request is enough.
2591 */
2592 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2593 unsigned long duration = jiffies - req->start_time;
2594 const int rw = rq_data_dir(req);
2595 struct hd_struct *part;
2596 int cpu;
2597
2598 cpu = part_stat_lock();
2599 part = req->part;
2600
2601 part_stat_inc(cpu, part, ios[rw]);
2602 part_stat_add(cpu, part, ticks[rw], duration);
2603 part_round_stats(req->q, cpu, part);
2604 part_dec_in_flight(req->q, part, rw);
2605
2606 hd_struct_put(part);
2607 part_stat_unlock();
2608 }
2609 }
2610
2611 #ifdef CONFIG_PM
2612 /*
2613 * Don't process normal requests when queue is suspended
2614 * or in the process of suspending/resuming
2615 */
2616 static bool blk_pm_allow_request(struct request *rq)
2617 {
2618 switch (rq->q->rpm_status) {
2619 case RPM_RESUMING:
2620 case RPM_SUSPENDING:
2621 return rq->rq_flags & RQF_PM;
2622 case RPM_SUSPENDED:
2623 return false;
2624 }
2625
2626 return true;
2627 }
2628 #else
2629 static bool blk_pm_allow_request(struct request *rq)
2630 {
2631 return true;
2632 }
2633 #endif
2634
2635 void blk_account_io_start(struct request *rq, bool new_io)
2636 {
2637 struct hd_struct *part;
2638 int rw = rq_data_dir(rq);
2639 int cpu;
2640
2641 if (!blk_do_io_stat(rq))
2642 return;
2643
2644 cpu = part_stat_lock();
2645
2646 if (!new_io) {
2647 part = rq->part;
2648 part_stat_inc(cpu, part, merges[rw]);
2649 } else {
2650 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2651 if (!hd_struct_try_get(part)) {
2652 /*
2653 * The partition is already being removed,
2654 * the request will be accounted on the disk only
2655 *
2656 * We take a reference on disk->part0 although that
2657 * partition will never be deleted, so we can treat
2658 * it as any other partition.
2659 */
2660 part = &rq->rq_disk->part0;
2661 hd_struct_get(part);
2662 }
2663 part_round_stats(rq->q, cpu, part);
2664 part_inc_in_flight(rq->q, part, rw);
2665 rq->part = part;
2666 }
2667
2668 part_stat_unlock();
2669 }
2670
2671 static struct request *elv_next_request(struct request_queue *q)
2672 {
2673 struct request *rq;
2674 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
2675
2676 WARN_ON_ONCE(q->mq_ops);
2677
2678 while (1) {
2679 list_for_each_entry(rq, &q->queue_head, queuelist) {
2680 if (blk_pm_allow_request(rq))
2681 return rq;
2682
2683 if (rq->rq_flags & RQF_SOFTBARRIER)
2684 break;
2685 }
2686
2687 /*
2688 * Flush request is running and flush request isn't queueable
2689 * in the drive, we can hold the queue till flush request is
2690 * finished. Even we don't do this, driver can't dispatch next
2691 * requests and will requeue them. And this can improve
2692 * throughput too. For example, we have request flush1, write1,
2693 * flush 2. flush1 is dispatched, then queue is hold, write1
2694 * isn't inserted to queue. After flush1 is finished, flush2
2695 * will be dispatched. Since disk cache is already clean,
2696 * flush2 will be finished very soon, so looks like flush2 is
2697 * folded to flush1.
2698 * Since the queue is hold, a flag is set to indicate the queue
2699 * should be restarted later. Please see flush_end_io() for
2700 * details.
2701 */
2702 if (fq->flush_pending_idx != fq->flush_running_idx &&
2703 !queue_flush_queueable(q)) {
2704 fq->flush_queue_delayed = 1;
2705 return NULL;
2706 }
2707 if (unlikely(blk_queue_bypass(q)) ||
2708 !q->elevator->type->ops.sq.elevator_dispatch_fn(q, 0))
2709 return NULL;
2710 }
2711 }
2712
2713 /**
2714 * blk_peek_request - peek at the top of a request queue
2715 * @q: request queue to peek at
2716 *
2717 * Description:
2718 * Return the request at the top of @q. The returned request
2719 * should be started using blk_start_request() before LLD starts
2720 * processing it.
2721 *
2722 * Return:
2723 * Pointer to the request at the top of @q if available. Null
2724 * otherwise.
2725 */
2726 struct request *blk_peek_request(struct request_queue *q)
2727 {
2728 struct request *rq;
2729 int ret;
2730
2731 lockdep_assert_held(q->queue_lock);
2732 WARN_ON_ONCE(q->mq_ops);
2733
2734 while ((rq = elv_next_request(q)) != NULL) {
2735 if (!(rq->rq_flags & RQF_STARTED)) {
2736 /*
2737 * This is the first time the device driver
2738 * sees this request (possibly after
2739 * requeueing). Notify IO scheduler.
2740 */
2741 if (rq->rq_flags & RQF_SORTED)
2742 elv_activate_rq(q, rq);
2743
2744 /*
2745 * just mark as started even if we don't start
2746 * it, a request that has been delayed should
2747 * not be passed by new incoming requests
2748 */
2749 rq->rq_flags |= RQF_STARTED;
2750 trace_block_rq_issue(q, rq);
2751 }
2752
2753 if (!q->boundary_rq || q->boundary_rq == rq) {
2754 q->end_sector = rq_end_sector(rq);
2755 q->boundary_rq = NULL;
2756 }
2757
2758 if (rq->rq_flags & RQF_DONTPREP)
2759 break;
2760
2761 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2762 /*
2763 * make sure space for the drain appears we
2764 * know we can do this because max_hw_segments
2765 * has been adjusted to be one fewer than the
2766 * device can handle
2767 */
2768 rq->nr_phys_segments++;
2769 }
2770
2771 if (!q->prep_rq_fn)
2772 break;
2773
2774 ret = q->prep_rq_fn(q, rq);
2775 if (ret == BLKPREP_OK) {
2776 break;
2777 } else if (ret == BLKPREP_DEFER) {
2778 /*
2779 * the request may have been (partially) prepped.
2780 * we need to keep this request in the front to
2781 * avoid resource deadlock. RQF_STARTED will
2782 * prevent other fs requests from passing this one.
2783 */
2784 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2785 !(rq->rq_flags & RQF_DONTPREP)) {
2786 /*
2787 * remove the space for the drain we added
2788 * so that we don't add it again
2789 */
2790 --rq->nr_phys_segments;
2791 }
2792
2793 rq = NULL;
2794 break;
2795 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2796 rq->rq_flags |= RQF_QUIET;
2797 /*
2798 * Mark this request as started so we don't trigger
2799 * any debug logic in the end I/O path.
2800 */
2801 blk_start_request(rq);
2802 __blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2803 BLK_STS_TARGET : BLK_STS_IOERR);
2804 } else {
2805 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2806 break;
2807 }
2808 }
2809
2810 return rq;
2811 }
2812 EXPORT_SYMBOL(blk_peek_request);
2813
2814 static void blk_dequeue_request(struct request *rq)
2815 {
2816 struct request_queue *q = rq->q;
2817
2818 BUG_ON(list_empty(&rq->queuelist));
2819 BUG_ON(ELV_ON_HASH(rq));
2820
2821 list_del_init(&rq->queuelist);
2822
2823 /*
2824 * the time frame between a request being removed from the lists
2825 * and to it is freed is accounted as io that is in progress at
2826 * the driver side.
2827 */
2828 if (blk_account_rq(rq)) {
2829 q->in_flight[rq_is_sync(rq)]++;
2830 set_io_start_time_ns(rq);
2831 }
2832 }
2833
2834 /**
2835 * blk_start_request - start request processing on the driver
2836 * @req: request to dequeue
2837 *
2838 * Description:
2839 * Dequeue @req and start timeout timer on it. This hands off the
2840 * request to the driver.
2841 */
2842 void blk_start_request(struct request *req)
2843 {
2844 lockdep_assert_held(req->q->queue_lock);
2845 WARN_ON_ONCE(req->q->mq_ops);
2846
2847 blk_dequeue_request(req);
2848
2849 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2850 blk_stat_set_issue(&req->issue_stat, blk_rq_sectors(req));
2851 req->rq_flags |= RQF_STATS;
2852 wbt_issue(req->q->rq_wb, &req->issue_stat);
2853 }
2854
2855 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2856 blk_add_timer(req);
2857 }
2858 EXPORT_SYMBOL(blk_start_request);
2859
2860 /**
2861 * blk_fetch_request - fetch a request from a request queue
2862 * @q: request queue to fetch a request from
2863 *
2864 * Description:
2865 * Return the request at the top of @q. The request is started on
2866 * return and LLD can start processing it immediately.
2867 *
2868 * Return:
2869 * Pointer to the request at the top of @q if available. Null
2870 * otherwise.
2871 */
2872 struct request *blk_fetch_request(struct request_queue *q)
2873 {
2874 struct request *rq;
2875
2876 lockdep_assert_held(q->queue_lock);
2877 WARN_ON_ONCE(q->mq_ops);
2878
2879 rq = blk_peek_request(q);
2880 if (rq)
2881 blk_start_request(rq);
2882 return rq;
2883 }
2884 EXPORT_SYMBOL(blk_fetch_request);
2885
2886 /*
2887 * Steal bios from a request and add them to a bio list.
2888 * The request must not have been partially completed before.
2889 */
2890 void blk_steal_bios(struct bio_list *list, struct request *rq)
2891 {
2892 if (rq->bio) {
2893 if (list->tail)
2894 list->tail->bi_next = rq->bio;
2895 else
2896 list->head = rq->bio;
2897 list->tail = rq->biotail;
2898
2899 rq->bio = NULL;
2900 rq->biotail = NULL;
2901 }
2902
2903 rq->__data_len = 0;
2904 }
2905 EXPORT_SYMBOL_GPL(blk_steal_bios);
2906
2907 /**
2908 * blk_update_request - Special helper function for request stacking drivers
2909 * @req: the request being processed
2910 * @error: block status code
2911 * @nr_bytes: number of bytes to complete @req
2912 *
2913 * Description:
2914 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2915 * the request structure even if @req doesn't have leftover.
2916 * If @req has leftover, sets it up for the next range of segments.
2917 *
2918 * This special helper function is only for request stacking drivers
2919 * (e.g. request-based dm) so that they can handle partial completion.
2920 * Actual device drivers should use blk_end_request instead.
2921 *
2922 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2923 * %false return from this function.
2924 *
2925 * Return:
2926 * %false - this request doesn't have any more data
2927 * %true - this request has more data
2928 **/
2929 bool blk_update_request(struct request *req, blk_status_t error,
2930 unsigned int nr_bytes)
2931 {
2932 int total_bytes;
2933
2934 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
2935
2936 if (!req->bio)
2937 return false;
2938
2939 if (unlikely(error && !blk_rq_is_passthrough(req) &&
2940 !(req->rq_flags & RQF_QUIET)))
2941 print_req_error(req, error);
2942
2943 blk_account_io_completion(req, nr_bytes);
2944
2945 total_bytes = 0;
2946 while (req->bio) {
2947 struct bio *bio = req->bio;
2948 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2949
2950 if (bio_bytes == bio->bi_iter.bi_size)
2951 req->bio = bio->bi_next;
2952
2953 /* Completion has already been traced */
2954 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
2955 req_bio_endio(req, bio, bio_bytes, error);
2956
2957 total_bytes += bio_bytes;
2958 nr_bytes -= bio_bytes;
2959
2960 if (!nr_bytes)
2961 break;
2962 }
2963
2964 /*
2965 * completely done
2966 */
2967 if (!req->bio) {
2968 /*
2969 * Reset counters so that the request stacking driver
2970 * can find how many bytes remain in the request
2971 * later.
2972 */
2973 req->__data_len = 0;
2974 return false;
2975 }
2976
2977 req->__data_len -= total_bytes;
2978
2979 /* update sector only for requests with clear definition of sector */
2980 if (!blk_rq_is_passthrough(req))
2981 req->__sector += total_bytes >> 9;
2982
2983 /* mixed attributes always follow the first bio */
2984 if (req->rq_flags & RQF_MIXED_MERGE) {
2985 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2986 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
2987 }
2988
2989 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
2990 /*
2991 * If total number of sectors is less than the first segment
2992 * size, something has gone terribly wrong.
2993 */
2994 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2995 blk_dump_rq_flags(req, "request botched");
2996 req->__data_len = blk_rq_cur_bytes(req);
2997 }
2998
2999 /* recalculate the number of segments */
3000 blk_recalc_rq_segments(req);
3001 }
3002
3003 return true;
3004 }
3005 EXPORT_SYMBOL_GPL(blk_update_request);
3006
3007 static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
3008 unsigned int nr_bytes,
3009 unsigned int bidi_bytes)
3010 {
3011 if (blk_update_request(rq, error, nr_bytes))
3012 return true;
3013
3014 /* Bidi request must be completed as a whole */
3015 if (unlikely(blk_bidi_rq(rq)) &&
3016 blk_update_request(rq->next_rq, error, bidi_bytes))
3017 return true;
3018
3019 if (blk_queue_add_random(rq->q))
3020 add_disk_randomness(rq->rq_disk);
3021
3022 return false;
3023 }
3024
3025 /**
3026 * blk_unprep_request - unprepare a request
3027 * @req: the request
3028 *
3029 * This function makes a request ready for complete resubmission (or
3030 * completion). It happens only after all error handling is complete,
3031 * so represents the appropriate moment to deallocate any resources
3032 * that were allocated to the request in the prep_rq_fn. The queue
3033 * lock is held when calling this.
3034 */
3035 void blk_unprep_request(struct request *req)
3036 {
3037 struct request_queue *q = req->q;
3038
3039 req->rq_flags &= ~RQF_DONTPREP;
3040 if (q->unprep_rq_fn)
3041 q->unprep_rq_fn(q, req);
3042 }
3043 EXPORT_SYMBOL_GPL(blk_unprep_request);
3044
3045 void blk_finish_request(struct request *req, blk_status_t error)
3046 {
3047 struct request_queue *q = req->q;
3048
3049 lockdep_assert_held(req->q->queue_lock);
3050 WARN_ON_ONCE(q->mq_ops);
3051
3052 if (req->rq_flags & RQF_STATS)
3053 blk_stat_add(req);
3054
3055 if (req->rq_flags & RQF_QUEUED)
3056 blk_queue_end_tag(q, req);
3057
3058 BUG_ON(blk_queued_rq(req));
3059
3060 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
3061 laptop_io_completion(req->q->backing_dev_info);
3062
3063 blk_delete_timer(req);
3064
3065 if (req->rq_flags & RQF_DONTPREP)
3066 blk_unprep_request(req);
3067
3068 blk_account_io_done(req);
3069
3070 if (req->end_io) {
3071 wbt_done(req->q->rq_wb, &req->issue_stat);
3072 req->end_io(req, error);
3073 } else {
3074 if (blk_bidi_rq(req))
3075 __blk_put_request(req->next_rq->q, req->next_rq);
3076
3077 __blk_put_request(q, req);
3078 }
3079 }
3080 EXPORT_SYMBOL(blk_finish_request);
3081
3082 /**
3083 * blk_end_bidi_request - Complete a bidi request
3084 * @rq: the request to complete
3085 * @error: block status code
3086 * @nr_bytes: number of bytes to complete @rq
3087 * @bidi_bytes: number of bytes to complete @rq->next_rq
3088 *
3089 * Description:
3090 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
3091 * Drivers that supports bidi can safely call this member for any
3092 * type of request, bidi or uni. In the later case @bidi_bytes is
3093 * just ignored.
3094 *
3095 * Return:
3096 * %false - we are done with this request
3097 * %true - still buffers pending for this request
3098 **/
3099 static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
3100 unsigned int nr_bytes, unsigned int bidi_bytes)
3101 {
3102 struct request_queue *q = rq->q;
3103 unsigned long flags;
3104
3105 WARN_ON_ONCE(q->mq_ops);
3106
3107 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3108 return true;
3109
3110 spin_lock_irqsave(q->queue_lock, flags);
3111 blk_finish_request(rq, error);
3112 spin_unlock_irqrestore(q->queue_lock, flags);
3113
3114 return false;
3115 }
3116
3117 /**
3118 * __blk_end_bidi_request - Complete a bidi request with queue lock held
3119 * @rq: the request to complete
3120 * @error: block status code
3121 * @nr_bytes: number of bytes to complete @rq
3122 * @bidi_bytes: number of bytes to complete @rq->next_rq
3123 *
3124 * Description:
3125 * Identical to blk_end_bidi_request() except that queue lock is
3126 * assumed to be locked on entry and remains so on return.
3127 *
3128 * Return:
3129 * %false - we are done with this request
3130 * %true - still buffers pending for this request
3131 **/
3132 static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
3133 unsigned int nr_bytes, unsigned int bidi_bytes)
3134 {
3135 lockdep_assert_held(rq->q->queue_lock);
3136 WARN_ON_ONCE(rq->q->mq_ops);
3137
3138 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3139 return true;
3140
3141 blk_finish_request(rq, error);
3142
3143 return false;
3144 }
3145
3146 /**
3147 * blk_end_request - Helper function for drivers to complete the request.
3148 * @rq: the request being processed
3149 * @error: block status code
3150 * @nr_bytes: number of bytes to complete
3151 *
3152 * Description:
3153 * Ends I/O on a number of bytes attached to @rq.
3154 * If @rq has leftover, sets it up for the next range of segments.
3155 *
3156 * Return:
3157 * %false - we are done with this request
3158 * %true - still buffers pending for this request
3159 **/
3160 bool blk_end_request(struct request *rq, blk_status_t error,
3161 unsigned int nr_bytes)
3162 {
3163 WARN_ON_ONCE(rq->q->mq_ops);
3164 return blk_end_bidi_request(rq, error, nr_bytes, 0);
3165 }
3166 EXPORT_SYMBOL(blk_end_request);
3167
3168 /**
3169 * blk_end_request_all - Helper function for drives to finish the request.
3170 * @rq: the request to finish
3171 * @error: block status code
3172 *
3173 * Description:
3174 * Completely finish @rq.
3175 */
3176 void blk_end_request_all(struct request *rq, blk_status_t error)
3177 {
3178 bool pending;
3179 unsigned int bidi_bytes = 0;
3180
3181 if (unlikely(blk_bidi_rq(rq)))
3182 bidi_bytes = blk_rq_bytes(rq->next_rq);
3183
3184 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3185 BUG_ON(pending);
3186 }
3187 EXPORT_SYMBOL(blk_end_request_all);
3188
3189 /**
3190 * __blk_end_request - Helper function for drivers to complete the request.
3191 * @rq: the request being processed
3192 * @error: block status code
3193 * @nr_bytes: number of bytes to complete
3194 *
3195 * Description:
3196 * Must be called with queue lock held unlike blk_end_request().
3197 *
3198 * Return:
3199 * %false - we are done with this request
3200 * %true - still buffers pending for this request
3201 **/
3202 bool __blk_end_request(struct request *rq, blk_status_t error,
3203 unsigned int nr_bytes)
3204 {
3205 lockdep_assert_held(rq->q->queue_lock);
3206 WARN_ON_ONCE(rq->q->mq_ops);
3207
3208 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
3209 }
3210 EXPORT_SYMBOL(__blk_end_request);
3211
3212 /**
3213 * __blk_end_request_all - Helper function for drives to finish the request.
3214 * @rq: the request to finish
3215 * @error: block status code
3216 *
3217 * Description:
3218 * Completely finish @rq. Must be called with queue lock held.
3219 */
3220 void __blk_end_request_all(struct request *rq, blk_status_t error)
3221 {
3222 bool pending;
3223 unsigned int bidi_bytes = 0;
3224
3225 lockdep_assert_held(rq->q->queue_lock);
3226 WARN_ON_ONCE(rq->q->mq_ops);
3227
3228 if (unlikely(blk_bidi_rq(rq)))
3229 bidi_bytes = blk_rq_bytes(rq->next_rq);
3230
3231 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3232 BUG_ON(pending);
3233 }
3234 EXPORT_SYMBOL(__blk_end_request_all);
3235
3236 /**
3237 * __blk_end_request_cur - Helper function to finish the current request chunk.
3238 * @rq: the request to finish the current chunk for
3239 * @error: block status code
3240 *
3241 * Description:
3242 * Complete the current consecutively mapped chunk from @rq. Must
3243 * be called with queue lock held.
3244 *
3245 * Return:
3246 * %false - we are done with this request
3247 * %true - still buffers pending for this request
3248 */
3249 bool __blk_end_request_cur(struct request *rq, blk_status_t error)
3250 {
3251 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
3252 }
3253 EXPORT_SYMBOL(__blk_end_request_cur);
3254
3255 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3256 struct bio *bio)
3257 {
3258 if (bio_has_data(bio))
3259 rq->nr_phys_segments = bio_phys_segments(q, bio);
3260 else if (bio_op(bio) == REQ_OP_DISCARD)
3261 rq->nr_phys_segments = 1;
3262
3263 rq->__data_len = bio->bi_iter.bi_size;
3264 rq->bio = rq->biotail = bio;
3265
3266 if (bio->bi_disk)
3267 rq->rq_disk = bio->bi_disk;
3268 }
3269
3270 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3271 /**
3272 * rq_flush_dcache_pages - Helper function to flush all pages in a request
3273 * @rq: the request to be flushed
3274 *
3275 * Description:
3276 * Flush all pages in @rq.
3277 */
3278 void rq_flush_dcache_pages(struct request *rq)
3279 {
3280 struct req_iterator iter;
3281 struct bio_vec bvec;
3282
3283 rq_for_each_segment(bvec, rq, iter)
3284 flush_dcache_page(bvec.bv_page);
3285 }
3286 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3287 #endif
3288
3289 /**
3290 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3291 * @q : the queue of the device being checked
3292 *
3293 * Description:
3294 * Check if underlying low-level drivers of a device are busy.
3295 * If the drivers want to export their busy state, they must set own
3296 * exporting function using blk_queue_lld_busy() first.
3297 *
3298 * Basically, this function is used only by request stacking drivers
3299 * to stop dispatching requests to underlying devices when underlying
3300 * devices are busy. This behavior helps more I/O merging on the queue
3301 * of the request stacking driver and prevents I/O throughput regression
3302 * on burst I/O load.
3303 *
3304 * Return:
3305 * 0 - Not busy (The request stacking driver should dispatch request)
3306 * 1 - Busy (The request stacking driver should stop dispatching request)
3307 */
3308 int blk_lld_busy(struct request_queue *q)
3309 {
3310 if (q->lld_busy_fn)
3311 return q->lld_busy_fn(q);
3312
3313 return 0;
3314 }
3315 EXPORT_SYMBOL_GPL(blk_lld_busy);
3316
3317 /**
3318 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3319 * @rq: the clone request to be cleaned up
3320 *
3321 * Description:
3322 * Free all bios in @rq for a cloned request.
3323 */
3324 void blk_rq_unprep_clone(struct request *rq)
3325 {
3326 struct bio *bio;
3327
3328 while ((bio = rq->bio) != NULL) {
3329 rq->bio = bio->bi_next;
3330
3331 bio_put(bio);
3332 }
3333 }
3334 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3335
3336 /*
3337 * Copy attributes of the original request to the clone request.
3338 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3339 */
3340 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3341 {
3342 dst->cpu = src->cpu;
3343 dst->__sector = blk_rq_pos(src);
3344 dst->__data_len = blk_rq_bytes(src);
3345 dst->nr_phys_segments = src->nr_phys_segments;
3346 dst->ioprio = src->ioprio;
3347 dst->extra_len = src->extra_len;
3348 }
3349
3350 /**
3351 * blk_rq_prep_clone - Helper function to setup clone request
3352 * @rq: the request to be setup
3353 * @rq_src: original request to be cloned
3354 * @bs: bio_set that bios for clone are allocated from
3355 * @gfp_mask: memory allocation mask for bio
3356 * @bio_ctr: setup function to be called for each clone bio.
3357 * Returns %0 for success, non %0 for failure.
3358 * @data: private data to be passed to @bio_ctr
3359 *
3360 * Description:
3361 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3362 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3363 * are not copied, and copying such parts is the caller's responsibility.
3364 * Also, pages which the original bios are pointing to are not copied
3365 * and the cloned bios just point same pages.
3366 * So cloned bios must be completed before original bios, which means
3367 * the caller must complete @rq before @rq_src.
3368 */
3369 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3370 struct bio_set *bs, gfp_t gfp_mask,
3371 int (*bio_ctr)(struct bio *, struct bio *, void *),
3372 void *data)
3373 {
3374 struct bio *bio, *bio_src;
3375
3376 if (!bs)
3377 bs = fs_bio_set;
3378
3379 __rq_for_each_bio(bio_src, rq_src) {
3380 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3381 if (!bio)
3382 goto free_and_out;
3383
3384 if (bio_ctr && bio_ctr(bio, bio_src, data))
3385 goto free_and_out;
3386
3387 if (rq->bio) {
3388 rq->biotail->bi_next = bio;
3389 rq->biotail = bio;
3390 } else
3391 rq->bio = rq->biotail = bio;
3392 }
3393
3394 __blk_rq_prep_clone(rq, rq_src);
3395
3396 return 0;
3397
3398 free_and_out:
3399 if (bio)
3400 bio_put(bio);
3401 blk_rq_unprep_clone(rq);
3402
3403 return -ENOMEM;
3404 }
3405 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3406
3407 int kblockd_schedule_work(struct work_struct *work)
3408 {
3409 return queue_work(kblockd_workqueue, work);
3410 }
3411 EXPORT_SYMBOL(kblockd_schedule_work);
3412
3413 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3414 {
3415 return queue_work_on(cpu, kblockd_workqueue, work);
3416 }
3417 EXPORT_SYMBOL(kblockd_schedule_work_on);
3418
3419 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3420 unsigned long delay)
3421 {
3422 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3423 }
3424 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3425
3426 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3427 unsigned long delay)
3428 {
3429 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3430 }
3431 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3432
3433 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3434 unsigned long delay)
3435 {
3436 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3437 }
3438 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3439
3440 /**
3441 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3442 * @plug: The &struct blk_plug that needs to be initialized
3443 *
3444 * Description:
3445 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3446 * pending I/O should the task end up blocking between blk_start_plug() and
3447 * blk_finish_plug(). This is important from a performance perspective, but
3448 * also ensures that we don't deadlock. For instance, if the task is blocking
3449 * for a memory allocation, memory reclaim could end up wanting to free a
3450 * page belonging to that request that is currently residing in our private
3451 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3452 * this kind of deadlock.
3453 */
3454 void blk_start_plug(struct blk_plug *plug)
3455 {
3456 struct task_struct *tsk = current;
3457
3458 /*
3459 * If this is a nested plug, don't actually assign it.
3460 */
3461 if (tsk->plug)
3462 return;
3463
3464 INIT_LIST_HEAD(&plug->list);
3465 INIT_LIST_HEAD(&plug->mq_list);
3466 INIT_LIST_HEAD(&plug->cb_list);
3467 /*
3468 * Store ordering should not be needed here, since a potential
3469 * preempt will imply a full memory barrier
3470 */
3471 tsk->plug = plug;
3472 }
3473 EXPORT_SYMBOL(blk_start_plug);
3474
3475 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3476 {
3477 struct request *rqa = container_of(a, struct request, queuelist);
3478 struct request *rqb = container_of(b, struct request, queuelist);
3479
3480 return !(rqa->q < rqb->q ||
3481 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3482 }
3483
3484 /*
3485 * If 'from_schedule' is true, then postpone the dispatch of requests
3486 * until a safe kblockd context. We due this to avoid accidental big
3487 * additional stack usage in driver dispatch, in places where the originally
3488 * plugger did not intend it.
3489 */
3490 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3491 bool from_schedule)
3492 __releases(q->queue_lock)
3493 {
3494 lockdep_assert_held(q->queue_lock);
3495
3496 trace_block_unplug(q, depth, !from_schedule);
3497
3498 if (from_schedule)
3499 blk_run_queue_async(q);
3500 else
3501 __blk_run_queue(q);
3502 spin_unlock(q->queue_lock);
3503 }
3504
3505 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3506 {
3507 LIST_HEAD(callbacks);
3508
3509 while (!list_empty(&plug->cb_list)) {
3510 list_splice_init(&plug->cb_list, &callbacks);
3511
3512 while (!list_empty(&callbacks)) {
3513 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3514 struct blk_plug_cb,
3515 list);
3516 list_del(&cb->list);
3517 cb->callback(cb, from_schedule);
3518 }
3519 }
3520 }
3521
3522 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3523 int size)
3524 {
3525 struct blk_plug *plug = current->plug;
3526 struct blk_plug_cb *cb;
3527
3528 if (!plug)
3529 return NULL;
3530
3531 list_for_each_entry(cb, &plug->cb_list, list)
3532 if (cb->callback == unplug && cb->data == data)
3533 return cb;
3534
3535 /* Not currently on the callback list */
3536 BUG_ON(size < sizeof(*cb));
3537 cb = kzalloc(size, GFP_ATOMIC);
3538 if (cb) {
3539 cb->data = data;
3540 cb->callback = unplug;
3541 list_add(&cb->list, &plug->cb_list);
3542 }
3543 return cb;
3544 }
3545 EXPORT_SYMBOL(blk_check_plugged);
3546
3547 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3548 {
3549 struct request_queue *q;
3550 unsigned long flags;
3551 struct request *rq;
3552 LIST_HEAD(list);
3553 unsigned int depth;
3554
3555 flush_plug_callbacks(plug, from_schedule);
3556
3557 if (!list_empty(&plug->mq_list))
3558 blk_mq_flush_plug_list(plug, from_schedule);
3559
3560 if (list_empty(&plug->list))
3561 return;
3562
3563 list_splice_init(&plug->list, &list);
3564
3565 list_sort(NULL, &list, plug_rq_cmp);
3566
3567 q = NULL;
3568 depth = 0;
3569
3570 /*
3571 * Save and disable interrupts here, to avoid doing it for every
3572 * queue lock we have to take.
3573 */
3574 local_irq_save(flags);
3575 while (!list_empty(&list)) {
3576 rq = list_entry_rq(list.next);
3577 list_del_init(&rq->queuelist);
3578 BUG_ON(!rq->q);
3579 if (rq->q != q) {
3580 /*
3581 * This drops the queue lock
3582 */
3583 if (q)
3584 queue_unplugged(q, depth, from_schedule);
3585 q = rq->q;
3586 depth = 0;
3587 spin_lock(q->queue_lock);
3588 }
3589
3590 /*
3591 * Short-circuit if @q is dead
3592 */
3593 if (unlikely(blk_queue_dying(q))) {
3594 __blk_end_request_all(rq, BLK_STS_IOERR);
3595 continue;
3596 }
3597
3598 /*
3599 * rq is already accounted, so use raw insert
3600 */
3601 if (op_is_flush(rq->cmd_flags))
3602 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3603 else
3604 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3605
3606 depth++;
3607 }
3608
3609 /*
3610 * This drops the queue lock
3611 */
3612 if (q)
3613 queue_unplugged(q, depth, from_schedule);
3614
3615 local_irq_restore(flags);
3616 }
3617
3618 void blk_finish_plug(struct blk_plug *plug)
3619 {
3620 if (plug != current->plug)
3621 return;
3622 blk_flush_plug_list(plug, false);
3623
3624 current->plug = NULL;
3625 }
3626 EXPORT_SYMBOL(blk_finish_plug);
3627
3628 #ifdef CONFIG_PM
3629 /**
3630 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3631 * @q: the queue of the device
3632 * @dev: the device the queue belongs to
3633 *
3634 * Description:
3635 * Initialize runtime-PM-related fields for @q and start auto suspend for
3636 * @dev. Drivers that want to take advantage of request-based runtime PM
3637 * should call this function after @dev has been initialized, and its
3638 * request queue @q has been allocated, and runtime PM for it can not happen
3639 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3640 * cases, driver should call this function before any I/O has taken place.
3641 *
3642 * This function takes care of setting up using auto suspend for the device,
3643 * the autosuspend delay is set to -1 to make runtime suspend impossible
3644 * until an updated value is either set by user or by driver. Drivers do
3645 * not need to touch other autosuspend settings.
3646 *
3647 * The block layer runtime PM is request based, so only works for drivers
3648 * that use request as their IO unit instead of those directly use bio's.
3649 */
3650 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3651 {
3652 /* not support for RQF_PM and ->rpm_status in blk-mq yet */
3653 if (q->mq_ops)
3654 return;
3655
3656 q->dev = dev;
3657 q->rpm_status = RPM_ACTIVE;
3658 pm_runtime_set_autosuspend_delay(q->dev, -1);
3659 pm_runtime_use_autosuspend(q->dev);
3660 }
3661 EXPORT_SYMBOL(blk_pm_runtime_init);
3662
3663 /**
3664 * blk_pre_runtime_suspend - Pre runtime suspend check
3665 * @q: the queue of the device
3666 *
3667 * Description:
3668 * This function will check if runtime suspend is allowed for the device
3669 * by examining if there are any requests pending in the queue. If there
3670 * are requests pending, the device can not be runtime suspended; otherwise,
3671 * the queue's status will be updated to SUSPENDING and the driver can
3672 * proceed to suspend the device.
3673 *
3674 * For the not allowed case, we mark last busy for the device so that
3675 * runtime PM core will try to autosuspend it some time later.
3676 *
3677 * This function should be called near the start of the device's
3678 * runtime_suspend callback.
3679 *
3680 * Return:
3681 * 0 - OK to runtime suspend the device
3682 * -EBUSY - Device should not be runtime suspended
3683 */
3684 int blk_pre_runtime_suspend(struct request_queue *q)
3685 {
3686 int ret = 0;
3687
3688 if (!q->dev)
3689 return ret;
3690
3691 spin_lock_irq(q->queue_lock);
3692 if (q->nr_pending) {
3693 ret = -EBUSY;
3694 pm_runtime_mark_last_busy(q->dev);
3695 } else {
3696 q->rpm_status = RPM_SUSPENDING;
3697 }
3698 spin_unlock_irq(q->queue_lock);
3699 return ret;
3700 }
3701 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3702
3703 /**
3704 * blk_post_runtime_suspend - Post runtime suspend processing
3705 * @q: the queue of the device
3706 * @err: return value of the device's runtime_suspend function
3707 *
3708 * Description:
3709 * Update the queue's runtime status according to the return value of the
3710 * device's runtime suspend function and mark last busy for the device so
3711 * that PM core will try to auto suspend the device at a later time.
3712 *
3713 * This function should be called near the end of the device's
3714 * runtime_suspend callback.
3715 */
3716 void blk_post_runtime_suspend(struct request_queue *q, int err)
3717 {
3718 if (!q->dev)
3719 return;
3720
3721 spin_lock_irq(q->queue_lock);
3722 if (!err) {
3723 q->rpm_status = RPM_SUSPENDED;
3724 } else {
3725 q->rpm_status = RPM_ACTIVE;
3726 pm_runtime_mark_last_busy(q->dev);
3727 }
3728 spin_unlock_irq(q->queue_lock);
3729 }
3730 EXPORT_SYMBOL(blk_post_runtime_suspend);
3731
3732 /**
3733 * blk_pre_runtime_resume - Pre runtime resume processing
3734 * @q: the queue of the device
3735 *
3736 * Description:
3737 * Update the queue's runtime status to RESUMING in preparation for the
3738 * runtime resume of the device.
3739 *
3740 * This function should be called near the start of the device's
3741 * runtime_resume callback.
3742 */
3743 void blk_pre_runtime_resume(struct request_queue *q)
3744 {
3745 if (!q->dev)
3746 return;
3747
3748 spin_lock_irq(q->queue_lock);
3749 q->rpm_status = RPM_RESUMING;
3750 spin_unlock_irq(q->queue_lock);
3751 }
3752 EXPORT_SYMBOL(blk_pre_runtime_resume);
3753
3754 /**
3755 * blk_post_runtime_resume - Post runtime resume processing
3756 * @q: the queue of the device
3757 * @err: return value of the device's runtime_resume function
3758 *
3759 * Description:
3760 * Update the queue's runtime status according to the return value of the
3761 * device's runtime_resume function. If it is successfully resumed, process
3762 * the requests that are queued into the device's queue when it is resuming
3763 * and then mark last busy and initiate autosuspend for it.
3764 *
3765 * This function should be called near the end of the device's
3766 * runtime_resume callback.
3767 */
3768 void blk_post_runtime_resume(struct request_queue *q, int err)
3769 {
3770 if (!q->dev)
3771 return;
3772
3773 spin_lock_irq(q->queue_lock);
3774 if (!err) {
3775 q->rpm_status = RPM_ACTIVE;
3776 __blk_run_queue(q);
3777 pm_runtime_mark_last_busy(q->dev);
3778 pm_request_autosuspend(q->dev);
3779 } else {
3780 q->rpm_status = RPM_SUSPENDED;
3781 }
3782 spin_unlock_irq(q->queue_lock);
3783 }
3784 EXPORT_SYMBOL(blk_post_runtime_resume);
3785
3786 /**
3787 * blk_set_runtime_active - Force runtime status of the queue to be active
3788 * @q: the queue of the device
3789 *
3790 * If the device is left runtime suspended during system suspend the resume
3791 * hook typically resumes the device and corrects runtime status
3792 * accordingly. However, that does not affect the queue runtime PM status
3793 * which is still "suspended". This prevents processing requests from the
3794 * queue.
3795 *
3796 * This function can be used in driver's resume hook to correct queue
3797 * runtime PM status and re-enable peeking requests from the queue. It
3798 * should be called before first request is added to the queue.
3799 */
3800 void blk_set_runtime_active(struct request_queue *q)
3801 {
3802 spin_lock_irq(q->queue_lock);
3803 q->rpm_status = RPM_ACTIVE;
3804 pm_runtime_mark_last_busy(q->dev);
3805 pm_request_autosuspend(q->dev);
3806 spin_unlock_irq(q->queue_lock);
3807 }
3808 EXPORT_SYMBOL(blk_set_runtime_active);
3809 #endif
3810
3811 int __init blk_dev_init(void)
3812 {
3813 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3814 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3815 FIELD_SIZEOF(struct request, cmd_flags));
3816 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3817 FIELD_SIZEOF(struct bio, bi_opf));
3818
3819 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3820 kblockd_workqueue = alloc_workqueue("kblockd",
3821 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3822 if (!kblockd_workqueue)
3823 panic("Failed to create kblockd\n");
3824
3825 request_cachep = kmem_cache_create("blkdev_requests",
3826 sizeof(struct request), 0, SLAB_PANIC, NULL);
3827
3828 blk_requestq_cachep = kmem_cache_create("request_queue",
3829 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3830
3831 #ifdef CONFIG_DEBUG_FS
3832 blk_debugfs_root = debugfs_create_dir("block", NULL);
3833 #endif
3834
3835 return 0;
3836 }