]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-core.c
blk-mq: only attempt to merge bio if there is rq in sw queue
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 #include <linux/debugfs.h>
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/block.h>
40
41 #include "blk.h"
42 #include "blk-mq.h"
43 #include "blk-mq-sched.h"
44 #include "blk-wbt.h"
45
46 #ifdef CONFIG_DEBUG_FS
47 struct dentry *blk_debugfs_root;
48 #endif
49
50 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
55
56 DEFINE_IDA(blk_queue_ida);
57
58 /*
59 * For the allocated request tables
60 */
61 struct kmem_cache *request_cachep;
62
63 /*
64 * For queue allocation
65 */
66 struct kmem_cache *blk_requestq_cachep;
67
68 /*
69 * Controlling structure to kblockd
70 */
71 static struct workqueue_struct *kblockd_workqueue;
72
73 static void blk_clear_congested(struct request_list *rl, int sync)
74 {
75 #ifdef CONFIG_CGROUP_WRITEBACK
76 clear_wb_congested(rl->blkg->wb_congested, sync);
77 #else
78 /*
79 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
80 * flip its congestion state for events on other blkcgs.
81 */
82 if (rl == &rl->q->root_rl)
83 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
84 #endif
85 }
86
87 static void blk_set_congested(struct request_list *rl, int sync)
88 {
89 #ifdef CONFIG_CGROUP_WRITEBACK
90 set_wb_congested(rl->blkg->wb_congested, sync);
91 #else
92 /* see blk_clear_congested() */
93 if (rl == &rl->q->root_rl)
94 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
95 #endif
96 }
97
98 void blk_queue_congestion_threshold(struct request_queue *q)
99 {
100 int nr;
101
102 nr = q->nr_requests - (q->nr_requests / 8) + 1;
103 if (nr > q->nr_requests)
104 nr = q->nr_requests;
105 q->nr_congestion_on = nr;
106
107 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
108 if (nr < 1)
109 nr = 1;
110 q->nr_congestion_off = nr;
111 }
112
113 void blk_rq_init(struct request_queue *q, struct request *rq)
114 {
115 memset(rq, 0, sizeof(*rq));
116
117 INIT_LIST_HEAD(&rq->queuelist);
118 INIT_LIST_HEAD(&rq->timeout_list);
119 rq->cpu = -1;
120 rq->q = q;
121 rq->__sector = (sector_t) -1;
122 INIT_HLIST_NODE(&rq->hash);
123 RB_CLEAR_NODE(&rq->rb_node);
124 rq->tag = -1;
125 rq->internal_tag = -1;
126 rq->start_time = jiffies;
127 set_start_time_ns(rq);
128 rq->part = NULL;
129 }
130 EXPORT_SYMBOL(blk_rq_init);
131
132 static const struct {
133 int errno;
134 const char *name;
135 } blk_errors[] = {
136 [BLK_STS_OK] = { 0, "" },
137 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
138 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
139 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
140 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
141 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
142 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
143 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
144 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
145 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
146 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
147
148 /* device mapper special case, should not leak out: */
149 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
150
151 /* everything else not covered above: */
152 [BLK_STS_IOERR] = { -EIO, "I/O" },
153 };
154
155 blk_status_t errno_to_blk_status(int errno)
156 {
157 int i;
158
159 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
160 if (blk_errors[i].errno == errno)
161 return (__force blk_status_t)i;
162 }
163
164 return BLK_STS_IOERR;
165 }
166 EXPORT_SYMBOL_GPL(errno_to_blk_status);
167
168 int blk_status_to_errno(blk_status_t status)
169 {
170 int idx = (__force int)status;
171
172 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
173 return -EIO;
174 return blk_errors[idx].errno;
175 }
176 EXPORT_SYMBOL_GPL(blk_status_to_errno);
177
178 static void print_req_error(struct request *req, blk_status_t status)
179 {
180 int idx = (__force int)status;
181
182 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
183 return;
184
185 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
186 __func__, blk_errors[idx].name, req->rq_disk ?
187 req->rq_disk->disk_name : "?",
188 (unsigned long long)blk_rq_pos(req));
189 }
190
191 static void req_bio_endio(struct request *rq, struct bio *bio,
192 unsigned int nbytes, blk_status_t error)
193 {
194 if (error)
195 bio->bi_status = error;
196
197 if (unlikely(rq->rq_flags & RQF_QUIET))
198 bio_set_flag(bio, BIO_QUIET);
199
200 bio_advance(bio, nbytes);
201
202 /* don't actually finish bio if it's part of flush sequence */
203 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
204 bio_endio(bio);
205 }
206
207 void blk_dump_rq_flags(struct request *rq, char *msg)
208 {
209 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
210 rq->rq_disk ? rq->rq_disk->disk_name : "?",
211 (unsigned long long) rq->cmd_flags);
212
213 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
214 (unsigned long long)blk_rq_pos(rq),
215 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
216 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
217 rq->bio, rq->biotail, blk_rq_bytes(rq));
218 }
219 EXPORT_SYMBOL(blk_dump_rq_flags);
220
221 static void blk_delay_work(struct work_struct *work)
222 {
223 struct request_queue *q;
224
225 q = container_of(work, struct request_queue, delay_work.work);
226 spin_lock_irq(q->queue_lock);
227 __blk_run_queue(q);
228 spin_unlock_irq(q->queue_lock);
229 }
230
231 /**
232 * blk_delay_queue - restart queueing after defined interval
233 * @q: The &struct request_queue in question
234 * @msecs: Delay in msecs
235 *
236 * Description:
237 * Sometimes queueing needs to be postponed for a little while, to allow
238 * resources to come back. This function will make sure that queueing is
239 * restarted around the specified time.
240 */
241 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
242 {
243 lockdep_assert_held(q->queue_lock);
244 WARN_ON_ONCE(q->mq_ops);
245
246 if (likely(!blk_queue_dead(q)))
247 queue_delayed_work(kblockd_workqueue, &q->delay_work,
248 msecs_to_jiffies(msecs));
249 }
250 EXPORT_SYMBOL(blk_delay_queue);
251
252 /**
253 * blk_start_queue_async - asynchronously restart a previously stopped queue
254 * @q: The &struct request_queue in question
255 *
256 * Description:
257 * blk_start_queue_async() will clear the stop flag on the queue, and
258 * ensure that the request_fn for the queue is run from an async
259 * context.
260 **/
261 void blk_start_queue_async(struct request_queue *q)
262 {
263 lockdep_assert_held(q->queue_lock);
264 WARN_ON_ONCE(q->mq_ops);
265
266 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
267 blk_run_queue_async(q);
268 }
269 EXPORT_SYMBOL(blk_start_queue_async);
270
271 /**
272 * blk_start_queue - restart a previously stopped queue
273 * @q: The &struct request_queue in question
274 *
275 * Description:
276 * blk_start_queue() will clear the stop flag on the queue, and call
277 * the request_fn for the queue if it was in a stopped state when
278 * entered. Also see blk_stop_queue().
279 **/
280 void blk_start_queue(struct request_queue *q)
281 {
282 lockdep_assert_held(q->queue_lock);
283 WARN_ON(!in_interrupt() && !irqs_disabled());
284 WARN_ON_ONCE(q->mq_ops);
285
286 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
287 __blk_run_queue(q);
288 }
289 EXPORT_SYMBOL(blk_start_queue);
290
291 /**
292 * blk_stop_queue - stop a queue
293 * @q: The &struct request_queue in question
294 *
295 * Description:
296 * The Linux block layer assumes that a block driver will consume all
297 * entries on the request queue when the request_fn strategy is called.
298 * Often this will not happen, because of hardware limitations (queue
299 * depth settings). If a device driver gets a 'queue full' response,
300 * or if it simply chooses not to queue more I/O at one point, it can
301 * call this function to prevent the request_fn from being called until
302 * the driver has signalled it's ready to go again. This happens by calling
303 * blk_start_queue() to restart queue operations.
304 **/
305 void blk_stop_queue(struct request_queue *q)
306 {
307 lockdep_assert_held(q->queue_lock);
308 WARN_ON_ONCE(q->mq_ops);
309
310 cancel_delayed_work(&q->delay_work);
311 queue_flag_set(QUEUE_FLAG_STOPPED, q);
312 }
313 EXPORT_SYMBOL(blk_stop_queue);
314
315 /**
316 * blk_sync_queue - cancel any pending callbacks on a queue
317 * @q: the queue
318 *
319 * Description:
320 * The block layer may perform asynchronous callback activity
321 * on a queue, such as calling the unplug function after a timeout.
322 * A block device may call blk_sync_queue to ensure that any
323 * such activity is cancelled, thus allowing it to release resources
324 * that the callbacks might use. The caller must already have made sure
325 * that its ->make_request_fn will not re-add plugging prior to calling
326 * this function.
327 *
328 * This function does not cancel any asynchronous activity arising
329 * out of elevator or throttling code. That would require elevator_exit()
330 * and blkcg_exit_queue() to be called with queue lock initialized.
331 *
332 */
333 void blk_sync_queue(struct request_queue *q)
334 {
335 del_timer_sync(&q->timeout);
336 cancel_work_sync(&q->timeout_work);
337
338 if (q->mq_ops) {
339 struct blk_mq_hw_ctx *hctx;
340 int i;
341
342 cancel_delayed_work_sync(&q->requeue_work);
343 queue_for_each_hw_ctx(q, hctx, i)
344 cancel_delayed_work_sync(&hctx->run_work);
345 } else {
346 cancel_delayed_work_sync(&q->delay_work);
347 }
348 }
349 EXPORT_SYMBOL(blk_sync_queue);
350
351 /**
352 * blk_set_preempt_only - set QUEUE_FLAG_PREEMPT_ONLY
353 * @q: request queue pointer
354 *
355 * Returns the previous value of the PREEMPT_ONLY flag - 0 if the flag was not
356 * set and 1 if the flag was already set.
357 */
358 int blk_set_preempt_only(struct request_queue *q)
359 {
360 unsigned long flags;
361 int res;
362
363 spin_lock_irqsave(q->queue_lock, flags);
364 res = queue_flag_test_and_set(QUEUE_FLAG_PREEMPT_ONLY, q);
365 spin_unlock_irqrestore(q->queue_lock, flags);
366
367 return res;
368 }
369 EXPORT_SYMBOL_GPL(blk_set_preempt_only);
370
371 void blk_clear_preempt_only(struct request_queue *q)
372 {
373 unsigned long flags;
374
375 spin_lock_irqsave(q->queue_lock, flags);
376 queue_flag_clear(QUEUE_FLAG_PREEMPT_ONLY, q);
377 wake_up_all(&q->mq_freeze_wq);
378 spin_unlock_irqrestore(q->queue_lock, flags);
379 }
380 EXPORT_SYMBOL_GPL(blk_clear_preempt_only);
381
382 /**
383 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
384 * @q: The queue to run
385 *
386 * Description:
387 * Invoke request handling on a queue if there are any pending requests.
388 * May be used to restart request handling after a request has completed.
389 * This variant runs the queue whether or not the queue has been
390 * stopped. Must be called with the queue lock held and interrupts
391 * disabled. See also @blk_run_queue.
392 */
393 inline void __blk_run_queue_uncond(struct request_queue *q)
394 {
395 lockdep_assert_held(q->queue_lock);
396 WARN_ON_ONCE(q->mq_ops);
397
398 if (unlikely(blk_queue_dead(q)))
399 return;
400
401 /*
402 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
403 * the queue lock internally. As a result multiple threads may be
404 * running such a request function concurrently. Keep track of the
405 * number of active request_fn invocations such that blk_drain_queue()
406 * can wait until all these request_fn calls have finished.
407 */
408 q->request_fn_active++;
409 q->request_fn(q);
410 q->request_fn_active--;
411 }
412 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
413
414 /**
415 * __blk_run_queue - run a single device queue
416 * @q: The queue to run
417 *
418 * Description:
419 * See @blk_run_queue.
420 */
421 void __blk_run_queue(struct request_queue *q)
422 {
423 lockdep_assert_held(q->queue_lock);
424 WARN_ON_ONCE(q->mq_ops);
425
426 if (unlikely(blk_queue_stopped(q)))
427 return;
428
429 __blk_run_queue_uncond(q);
430 }
431 EXPORT_SYMBOL(__blk_run_queue);
432
433 /**
434 * blk_run_queue_async - run a single device queue in workqueue context
435 * @q: The queue to run
436 *
437 * Description:
438 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
439 * of us.
440 *
441 * Note:
442 * Since it is not allowed to run q->delay_work after blk_cleanup_queue()
443 * has canceled q->delay_work, callers must hold the queue lock to avoid
444 * race conditions between blk_cleanup_queue() and blk_run_queue_async().
445 */
446 void blk_run_queue_async(struct request_queue *q)
447 {
448 lockdep_assert_held(q->queue_lock);
449 WARN_ON_ONCE(q->mq_ops);
450
451 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
452 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
453 }
454 EXPORT_SYMBOL(blk_run_queue_async);
455
456 /**
457 * blk_run_queue - run a single device queue
458 * @q: The queue to run
459 *
460 * Description:
461 * Invoke request handling on this queue, if it has pending work to do.
462 * May be used to restart queueing when a request has completed.
463 */
464 void blk_run_queue(struct request_queue *q)
465 {
466 unsigned long flags;
467
468 WARN_ON_ONCE(q->mq_ops);
469
470 spin_lock_irqsave(q->queue_lock, flags);
471 __blk_run_queue(q);
472 spin_unlock_irqrestore(q->queue_lock, flags);
473 }
474 EXPORT_SYMBOL(blk_run_queue);
475
476 void blk_put_queue(struct request_queue *q)
477 {
478 kobject_put(&q->kobj);
479 }
480 EXPORT_SYMBOL(blk_put_queue);
481
482 /**
483 * __blk_drain_queue - drain requests from request_queue
484 * @q: queue to drain
485 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
486 *
487 * Drain requests from @q. If @drain_all is set, all requests are drained.
488 * If not, only ELVPRIV requests are drained. The caller is responsible
489 * for ensuring that no new requests which need to be drained are queued.
490 */
491 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
492 __releases(q->queue_lock)
493 __acquires(q->queue_lock)
494 {
495 int i;
496
497 lockdep_assert_held(q->queue_lock);
498 WARN_ON_ONCE(q->mq_ops);
499
500 while (true) {
501 bool drain = false;
502
503 /*
504 * The caller might be trying to drain @q before its
505 * elevator is initialized.
506 */
507 if (q->elevator)
508 elv_drain_elevator(q);
509
510 blkcg_drain_queue(q);
511
512 /*
513 * This function might be called on a queue which failed
514 * driver init after queue creation or is not yet fully
515 * active yet. Some drivers (e.g. fd and loop) get unhappy
516 * in such cases. Kick queue iff dispatch queue has
517 * something on it and @q has request_fn set.
518 */
519 if (!list_empty(&q->queue_head) && q->request_fn)
520 __blk_run_queue(q);
521
522 drain |= q->nr_rqs_elvpriv;
523 drain |= q->request_fn_active;
524
525 /*
526 * Unfortunately, requests are queued at and tracked from
527 * multiple places and there's no single counter which can
528 * be drained. Check all the queues and counters.
529 */
530 if (drain_all) {
531 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
532 drain |= !list_empty(&q->queue_head);
533 for (i = 0; i < 2; i++) {
534 drain |= q->nr_rqs[i];
535 drain |= q->in_flight[i];
536 if (fq)
537 drain |= !list_empty(&fq->flush_queue[i]);
538 }
539 }
540
541 if (!drain)
542 break;
543
544 spin_unlock_irq(q->queue_lock);
545
546 msleep(10);
547
548 spin_lock_irq(q->queue_lock);
549 }
550
551 /*
552 * With queue marked dead, any woken up waiter will fail the
553 * allocation path, so the wakeup chaining is lost and we're
554 * left with hung waiters. We need to wake up those waiters.
555 */
556 if (q->request_fn) {
557 struct request_list *rl;
558
559 blk_queue_for_each_rl(rl, q)
560 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
561 wake_up_all(&rl->wait[i]);
562 }
563 }
564
565 void blk_drain_queue(struct request_queue *q)
566 {
567 spin_lock_irq(q->queue_lock);
568 __blk_drain_queue(q, true);
569 spin_unlock_irq(q->queue_lock);
570 }
571
572 /**
573 * blk_queue_bypass_start - enter queue bypass mode
574 * @q: queue of interest
575 *
576 * In bypass mode, only the dispatch FIFO queue of @q is used. This
577 * function makes @q enter bypass mode and drains all requests which were
578 * throttled or issued before. On return, it's guaranteed that no request
579 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
580 * inside queue or RCU read lock.
581 */
582 void blk_queue_bypass_start(struct request_queue *q)
583 {
584 WARN_ON_ONCE(q->mq_ops);
585
586 spin_lock_irq(q->queue_lock);
587 q->bypass_depth++;
588 queue_flag_set(QUEUE_FLAG_BYPASS, q);
589 spin_unlock_irq(q->queue_lock);
590
591 /*
592 * Queues start drained. Skip actual draining till init is
593 * complete. This avoids lenghty delays during queue init which
594 * can happen many times during boot.
595 */
596 if (blk_queue_init_done(q)) {
597 spin_lock_irq(q->queue_lock);
598 __blk_drain_queue(q, false);
599 spin_unlock_irq(q->queue_lock);
600
601 /* ensure blk_queue_bypass() is %true inside RCU read lock */
602 synchronize_rcu();
603 }
604 }
605 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
606
607 /**
608 * blk_queue_bypass_end - leave queue bypass mode
609 * @q: queue of interest
610 *
611 * Leave bypass mode and restore the normal queueing behavior.
612 *
613 * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
614 * this function is called for both blk-sq and blk-mq queues.
615 */
616 void blk_queue_bypass_end(struct request_queue *q)
617 {
618 spin_lock_irq(q->queue_lock);
619 if (!--q->bypass_depth)
620 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
621 WARN_ON_ONCE(q->bypass_depth < 0);
622 spin_unlock_irq(q->queue_lock);
623 }
624 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
625
626 void blk_set_queue_dying(struct request_queue *q)
627 {
628 spin_lock_irq(q->queue_lock);
629 queue_flag_set(QUEUE_FLAG_DYING, q);
630 spin_unlock_irq(q->queue_lock);
631
632 /*
633 * When queue DYING flag is set, we need to block new req
634 * entering queue, so we call blk_freeze_queue_start() to
635 * prevent I/O from crossing blk_queue_enter().
636 */
637 blk_freeze_queue_start(q);
638
639 if (q->mq_ops)
640 blk_mq_wake_waiters(q);
641 else {
642 struct request_list *rl;
643
644 spin_lock_irq(q->queue_lock);
645 blk_queue_for_each_rl(rl, q) {
646 if (rl->rq_pool) {
647 wake_up_all(&rl->wait[BLK_RW_SYNC]);
648 wake_up_all(&rl->wait[BLK_RW_ASYNC]);
649 }
650 }
651 spin_unlock_irq(q->queue_lock);
652 }
653
654 /* Make blk_queue_enter() reexamine the DYING flag. */
655 wake_up_all(&q->mq_freeze_wq);
656 }
657 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
658
659 /**
660 * blk_cleanup_queue - shutdown a request queue
661 * @q: request queue to shutdown
662 *
663 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
664 * put it. All future requests will be failed immediately with -ENODEV.
665 */
666 void blk_cleanup_queue(struct request_queue *q)
667 {
668 spinlock_t *lock = q->queue_lock;
669
670 /* mark @q DYING, no new request or merges will be allowed afterwards */
671 mutex_lock(&q->sysfs_lock);
672 blk_set_queue_dying(q);
673 spin_lock_irq(lock);
674
675 /*
676 * A dying queue is permanently in bypass mode till released. Note
677 * that, unlike blk_queue_bypass_start(), we aren't performing
678 * synchronize_rcu() after entering bypass mode to avoid the delay
679 * as some drivers create and destroy a lot of queues while
680 * probing. This is still safe because blk_release_queue() will be
681 * called only after the queue refcnt drops to zero and nothing,
682 * RCU or not, would be traversing the queue by then.
683 */
684 q->bypass_depth++;
685 queue_flag_set(QUEUE_FLAG_BYPASS, q);
686
687 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
688 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
689 queue_flag_set(QUEUE_FLAG_DYING, q);
690 spin_unlock_irq(lock);
691 mutex_unlock(&q->sysfs_lock);
692
693 /*
694 * Drain all requests queued before DYING marking. Set DEAD flag to
695 * prevent that q->request_fn() gets invoked after draining finished.
696 */
697 blk_freeze_queue(q);
698 spin_lock_irq(lock);
699 queue_flag_set(QUEUE_FLAG_DEAD, q);
700 spin_unlock_irq(lock);
701
702 /*
703 * make sure all in-progress dispatch are completed because
704 * blk_freeze_queue() can only complete all requests, and
705 * dispatch may still be in-progress since we dispatch requests
706 * from more than one contexts
707 */
708 if (q->mq_ops)
709 blk_mq_quiesce_queue(q);
710
711 /* for synchronous bio-based driver finish in-flight integrity i/o */
712 blk_flush_integrity();
713
714 /* @q won't process any more request, flush async actions */
715 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
716 blk_sync_queue(q);
717
718 if (q->mq_ops)
719 blk_mq_free_queue(q);
720 percpu_ref_exit(&q->q_usage_counter);
721
722 spin_lock_irq(lock);
723 if (q->queue_lock != &q->__queue_lock)
724 q->queue_lock = &q->__queue_lock;
725 spin_unlock_irq(lock);
726
727 /* @q is and will stay empty, shutdown and put */
728 blk_put_queue(q);
729 }
730 EXPORT_SYMBOL(blk_cleanup_queue);
731
732 /* Allocate memory local to the request queue */
733 static void *alloc_request_simple(gfp_t gfp_mask, void *data)
734 {
735 struct request_queue *q = data;
736
737 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
738 }
739
740 static void free_request_simple(void *element, void *data)
741 {
742 kmem_cache_free(request_cachep, element);
743 }
744
745 static void *alloc_request_size(gfp_t gfp_mask, void *data)
746 {
747 struct request_queue *q = data;
748 struct request *rq;
749
750 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
751 q->node);
752 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
753 kfree(rq);
754 rq = NULL;
755 }
756 return rq;
757 }
758
759 static void free_request_size(void *element, void *data)
760 {
761 struct request_queue *q = data;
762
763 if (q->exit_rq_fn)
764 q->exit_rq_fn(q, element);
765 kfree(element);
766 }
767
768 int blk_init_rl(struct request_list *rl, struct request_queue *q,
769 gfp_t gfp_mask)
770 {
771 if (unlikely(rl->rq_pool) || q->mq_ops)
772 return 0;
773
774 rl->q = q;
775 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
776 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
777 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
778 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
779
780 if (q->cmd_size) {
781 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
782 alloc_request_size, free_request_size,
783 q, gfp_mask, q->node);
784 } else {
785 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
786 alloc_request_simple, free_request_simple,
787 q, gfp_mask, q->node);
788 }
789 if (!rl->rq_pool)
790 return -ENOMEM;
791
792 if (rl != &q->root_rl)
793 WARN_ON_ONCE(!blk_get_queue(q));
794
795 return 0;
796 }
797
798 void blk_exit_rl(struct request_queue *q, struct request_list *rl)
799 {
800 if (rl->rq_pool) {
801 mempool_destroy(rl->rq_pool);
802 if (rl != &q->root_rl)
803 blk_put_queue(q);
804 }
805 }
806
807 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
808 {
809 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
810 }
811 EXPORT_SYMBOL(blk_alloc_queue);
812
813 /**
814 * blk_queue_enter() - try to increase q->q_usage_counter
815 * @q: request queue pointer
816 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
817 */
818 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
819 {
820 const bool preempt = flags & BLK_MQ_REQ_PREEMPT;
821
822 while (true) {
823 bool success = false;
824
825 rcu_read_lock();
826 if (percpu_ref_tryget_live(&q->q_usage_counter)) {
827 /*
828 * The code that sets the PREEMPT_ONLY flag is
829 * responsible for ensuring that that flag is globally
830 * visible before the queue is unfrozen.
831 */
832 if (preempt || !blk_queue_preempt_only(q)) {
833 success = true;
834 } else {
835 percpu_ref_put(&q->q_usage_counter);
836 }
837 }
838 rcu_read_unlock();
839
840 if (success)
841 return 0;
842
843 if (flags & BLK_MQ_REQ_NOWAIT)
844 return -EBUSY;
845
846 /*
847 * read pair of barrier in blk_freeze_queue_start(),
848 * we need to order reading __PERCPU_REF_DEAD flag of
849 * .q_usage_counter and reading .mq_freeze_depth or
850 * queue dying flag, otherwise the following wait may
851 * never return if the two reads are reordered.
852 */
853 smp_rmb();
854
855 wait_event(q->mq_freeze_wq,
856 (atomic_read(&q->mq_freeze_depth) == 0 &&
857 (preempt || !blk_queue_preempt_only(q))) ||
858 blk_queue_dying(q));
859 if (blk_queue_dying(q))
860 return -ENODEV;
861 }
862 }
863
864 void blk_queue_exit(struct request_queue *q)
865 {
866 percpu_ref_put(&q->q_usage_counter);
867 }
868
869 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
870 {
871 struct request_queue *q =
872 container_of(ref, struct request_queue, q_usage_counter);
873
874 wake_up_all(&q->mq_freeze_wq);
875 }
876
877 static void blk_rq_timed_out_timer(struct timer_list *t)
878 {
879 struct request_queue *q = from_timer(q, t, timeout);
880
881 kblockd_schedule_work(&q->timeout_work);
882 }
883
884 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
885 {
886 struct request_queue *q;
887
888 q = kmem_cache_alloc_node(blk_requestq_cachep,
889 gfp_mask | __GFP_ZERO, node_id);
890 if (!q)
891 return NULL;
892
893 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
894 if (q->id < 0)
895 goto fail_q;
896
897 q->bio_split = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
898 if (!q->bio_split)
899 goto fail_id;
900
901 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
902 if (!q->backing_dev_info)
903 goto fail_split;
904
905 q->stats = blk_alloc_queue_stats();
906 if (!q->stats)
907 goto fail_stats;
908
909 q->backing_dev_info->ra_pages =
910 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
911 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
912 q->backing_dev_info->name = "block";
913 q->node = node_id;
914
915 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
916 laptop_mode_timer_fn, 0);
917 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
918 INIT_WORK(&q->timeout_work, NULL);
919 INIT_LIST_HEAD(&q->queue_head);
920 INIT_LIST_HEAD(&q->timeout_list);
921 INIT_LIST_HEAD(&q->icq_list);
922 #ifdef CONFIG_BLK_CGROUP
923 INIT_LIST_HEAD(&q->blkg_list);
924 #endif
925 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
926
927 kobject_init(&q->kobj, &blk_queue_ktype);
928
929 #ifdef CONFIG_BLK_DEV_IO_TRACE
930 mutex_init(&q->blk_trace_mutex);
931 #endif
932 mutex_init(&q->sysfs_lock);
933 spin_lock_init(&q->__queue_lock);
934
935 /*
936 * By default initialize queue_lock to internal lock and driver can
937 * override it later if need be.
938 */
939 q->queue_lock = &q->__queue_lock;
940
941 /*
942 * A queue starts its life with bypass turned on to avoid
943 * unnecessary bypass on/off overhead and nasty surprises during
944 * init. The initial bypass will be finished when the queue is
945 * registered by blk_register_queue().
946 */
947 q->bypass_depth = 1;
948 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
949
950 init_waitqueue_head(&q->mq_freeze_wq);
951
952 /*
953 * Init percpu_ref in atomic mode so that it's faster to shutdown.
954 * See blk_register_queue() for details.
955 */
956 if (percpu_ref_init(&q->q_usage_counter,
957 blk_queue_usage_counter_release,
958 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
959 goto fail_bdi;
960
961 if (blkcg_init_queue(q))
962 goto fail_ref;
963
964 return q;
965
966 fail_ref:
967 percpu_ref_exit(&q->q_usage_counter);
968 fail_bdi:
969 blk_free_queue_stats(q->stats);
970 fail_stats:
971 bdi_put(q->backing_dev_info);
972 fail_split:
973 bioset_free(q->bio_split);
974 fail_id:
975 ida_simple_remove(&blk_queue_ida, q->id);
976 fail_q:
977 kmem_cache_free(blk_requestq_cachep, q);
978 return NULL;
979 }
980 EXPORT_SYMBOL(blk_alloc_queue_node);
981
982 /**
983 * blk_init_queue - prepare a request queue for use with a block device
984 * @rfn: The function to be called to process requests that have been
985 * placed on the queue.
986 * @lock: Request queue spin lock
987 *
988 * Description:
989 * If a block device wishes to use the standard request handling procedures,
990 * which sorts requests and coalesces adjacent requests, then it must
991 * call blk_init_queue(). The function @rfn will be called when there
992 * are requests on the queue that need to be processed. If the device
993 * supports plugging, then @rfn may not be called immediately when requests
994 * are available on the queue, but may be called at some time later instead.
995 * Plugged queues are generally unplugged when a buffer belonging to one
996 * of the requests on the queue is needed, or due to memory pressure.
997 *
998 * @rfn is not required, or even expected, to remove all requests off the
999 * queue, but only as many as it can handle at a time. If it does leave
1000 * requests on the queue, it is responsible for arranging that the requests
1001 * get dealt with eventually.
1002 *
1003 * The queue spin lock must be held while manipulating the requests on the
1004 * request queue; this lock will be taken also from interrupt context, so irq
1005 * disabling is needed for it.
1006 *
1007 * Function returns a pointer to the initialized request queue, or %NULL if
1008 * it didn't succeed.
1009 *
1010 * Note:
1011 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1012 * when the block device is deactivated (such as at module unload).
1013 **/
1014
1015 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1016 {
1017 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1018 }
1019 EXPORT_SYMBOL(blk_init_queue);
1020
1021 struct request_queue *
1022 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1023 {
1024 struct request_queue *q;
1025
1026 q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1027 if (!q)
1028 return NULL;
1029
1030 q->request_fn = rfn;
1031 if (lock)
1032 q->queue_lock = lock;
1033 if (blk_init_allocated_queue(q) < 0) {
1034 blk_cleanup_queue(q);
1035 return NULL;
1036 }
1037
1038 return q;
1039 }
1040 EXPORT_SYMBOL(blk_init_queue_node);
1041
1042 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
1043
1044
1045 int blk_init_allocated_queue(struct request_queue *q)
1046 {
1047 WARN_ON_ONCE(q->mq_ops);
1048
1049 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
1050 if (!q->fq)
1051 return -ENOMEM;
1052
1053 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
1054 goto out_free_flush_queue;
1055
1056 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
1057 goto out_exit_flush_rq;
1058
1059 INIT_WORK(&q->timeout_work, blk_timeout_work);
1060 q->queue_flags |= QUEUE_FLAG_DEFAULT;
1061
1062 /*
1063 * This also sets hw/phys segments, boundary and size
1064 */
1065 blk_queue_make_request(q, blk_queue_bio);
1066
1067 q->sg_reserved_size = INT_MAX;
1068
1069 /* Protect q->elevator from elevator_change */
1070 mutex_lock(&q->sysfs_lock);
1071
1072 /* init elevator */
1073 if (elevator_init(q, NULL)) {
1074 mutex_unlock(&q->sysfs_lock);
1075 goto out_exit_flush_rq;
1076 }
1077
1078 mutex_unlock(&q->sysfs_lock);
1079 return 0;
1080
1081 out_exit_flush_rq:
1082 if (q->exit_rq_fn)
1083 q->exit_rq_fn(q, q->fq->flush_rq);
1084 out_free_flush_queue:
1085 blk_free_flush_queue(q->fq);
1086 q->fq = NULL;
1087 return -ENOMEM;
1088 }
1089 EXPORT_SYMBOL(blk_init_allocated_queue);
1090
1091 bool blk_get_queue(struct request_queue *q)
1092 {
1093 if (likely(!blk_queue_dying(q))) {
1094 __blk_get_queue(q);
1095 return true;
1096 }
1097
1098 return false;
1099 }
1100 EXPORT_SYMBOL(blk_get_queue);
1101
1102 static inline void blk_free_request(struct request_list *rl, struct request *rq)
1103 {
1104 if (rq->rq_flags & RQF_ELVPRIV) {
1105 elv_put_request(rl->q, rq);
1106 if (rq->elv.icq)
1107 put_io_context(rq->elv.icq->ioc);
1108 }
1109
1110 mempool_free(rq, rl->rq_pool);
1111 }
1112
1113 /*
1114 * ioc_batching returns true if the ioc is a valid batching request and
1115 * should be given priority access to a request.
1116 */
1117 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1118 {
1119 if (!ioc)
1120 return 0;
1121
1122 /*
1123 * Make sure the process is able to allocate at least 1 request
1124 * even if the batch times out, otherwise we could theoretically
1125 * lose wakeups.
1126 */
1127 return ioc->nr_batch_requests == q->nr_batching ||
1128 (ioc->nr_batch_requests > 0
1129 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1130 }
1131
1132 /*
1133 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1134 * will cause the process to be a "batcher" on all queues in the system. This
1135 * is the behaviour we want though - once it gets a wakeup it should be given
1136 * a nice run.
1137 */
1138 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1139 {
1140 if (!ioc || ioc_batching(q, ioc))
1141 return;
1142
1143 ioc->nr_batch_requests = q->nr_batching;
1144 ioc->last_waited = jiffies;
1145 }
1146
1147 static void __freed_request(struct request_list *rl, int sync)
1148 {
1149 struct request_queue *q = rl->q;
1150
1151 if (rl->count[sync] < queue_congestion_off_threshold(q))
1152 blk_clear_congested(rl, sync);
1153
1154 if (rl->count[sync] + 1 <= q->nr_requests) {
1155 if (waitqueue_active(&rl->wait[sync]))
1156 wake_up(&rl->wait[sync]);
1157
1158 blk_clear_rl_full(rl, sync);
1159 }
1160 }
1161
1162 /*
1163 * A request has just been released. Account for it, update the full and
1164 * congestion status, wake up any waiters. Called under q->queue_lock.
1165 */
1166 static void freed_request(struct request_list *rl, bool sync,
1167 req_flags_t rq_flags)
1168 {
1169 struct request_queue *q = rl->q;
1170
1171 q->nr_rqs[sync]--;
1172 rl->count[sync]--;
1173 if (rq_flags & RQF_ELVPRIV)
1174 q->nr_rqs_elvpriv--;
1175
1176 __freed_request(rl, sync);
1177
1178 if (unlikely(rl->starved[sync ^ 1]))
1179 __freed_request(rl, sync ^ 1);
1180 }
1181
1182 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1183 {
1184 struct request_list *rl;
1185 int on_thresh, off_thresh;
1186
1187 WARN_ON_ONCE(q->mq_ops);
1188
1189 spin_lock_irq(q->queue_lock);
1190 q->nr_requests = nr;
1191 blk_queue_congestion_threshold(q);
1192 on_thresh = queue_congestion_on_threshold(q);
1193 off_thresh = queue_congestion_off_threshold(q);
1194
1195 blk_queue_for_each_rl(rl, q) {
1196 if (rl->count[BLK_RW_SYNC] >= on_thresh)
1197 blk_set_congested(rl, BLK_RW_SYNC);
1198 else if (rl->count[BLK_RW_SYNC] < off_thresh)
1199 blk_clear_congested(rl, BLK_RW_SYNC);
1200
1201 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1202 blk_set_congested(rl, BLK_RW_ASYNC);
1203 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1204 blk_clear_congested(rl, BLK_RW_ASYNC);
1205
1206 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1207 blk_set_rl_full(rl, BLK_RW_SYNC);
1208 } else {
1209 blk_clear_rl_full(rl, BLK_RW_SYNC);
1210 wake_up(&rl->wait[BLK_RW_SYNC]);
1211 }
1212
1213 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1214 blk_set_rl_full(rl, BLK_RW_ASYNC);
1215 } else {
1216 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1217 wake_up(&rl->wait[BLK_RW_ASYNC]);
1218 }
1219 }
1220
1221 spin_unlock_irq(q->queue_lock);
1222 return 0;
1223 }
1224
1225 /**
1226 * __get_request - get a free request
1227 * @rl: request list to allocate from
1228 * @op: operation and flags
1229 * @bio: bio to allocate request for (can be %NULL)
1230 * @flags: BLQ_MQ_REQ_* flags
1231 *
1232 * Get a free request from @q. This function may fail under memory
1233 * pressure or if @q is dead.
1234 *
1235 * Must be called with @q->queue_lock held and,
1236 * Returns ERR_PTR on failure, with @q->queue_lock held.
1237 * Returns request pointer on success, with @q->queue_lock *not held*.
1238 */
1239 static struct request *__get_request(struct request_list *rl, unsigned int op,
1240 struct bio *bio, blk_mq_req_flags_t flags)
1241 {
1242 struct request_queue *q = rl->q;
1243 struct request *rq;
1244 struct elevator_type *et = q->elevator->type;
1245 struct io_context *ioc = rq_ioc(bio);
1246 struct io_cq *icq = NULL;
1247 const bool is_sync = op_is_sync(op);
1248 int may_queue;
1249 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC :
1250 __GFP_DIRECT_RECLAIM;
1251 req_flags_t rq_flags = RQF_ALLOCED;
1252
1253 lockdep_assert_held(q->queue_lock);
1254
1255 if (unlikely(blk_queue_dying(q)))
1256 return ERR_PTR(-ENODEV);
1257
1258 may_queue = elv_may_queue(q, op);
1259 if (may_queue == ELV_MQUEUE_NO)
1260 goto rq_starved;
1261
1262 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1263 if (rl->count[is_sync]+1 >= q->nr_requests) {
1264 /*
1265 * The queue will fill after this allocation, so set
1266 * it as full, and mark this process as "batching".
1267 * This process will be allowed to complete a batch of
1268 * requests, others will be blocked.
1269 */
1270 if (!blk_rl_full(rl, is_sync)) {
1271 ioc_set_batching(q, ioc);
1272 blk_set_rl_full(rl, is_sync);
1273 } else {
1274 if (may_queue != ELV_MQUEUE_MUST
1275 && !ioc_batching(q, ioc)) {
1276 /*
1277 * The queue is full and the allocating
1278 * process is not a "batcher", and not
1279 * exempted by the IO scheduler
1280 */
1281 return ERR_PTR(-ENOMEM);
1282 }
1283 }
1284 }
1285 blk_set_congested(rl, is_sync);
1286 }
1287
1288 /*
1289 * Only allow batching queuers to allocate up to 50% over the defined
1290 * limit of requests, otherwise we could have thousands of requests
1291 * allocated with any setting of ->nr_requests
1292 */
1293 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1294 return ERR_PTR(-ENOMEM);
1295
1296 q->nr_rqs[is_sync]++;
1297 rl->count[is_sync]++;
1298 rl->starved[is_sync] = 0;
1299
1300 /*
1301 * Decide whether the new request will be managed by elevator. If
1302 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
1303 * prevent the current elevator from being destroyed until the new
1304 * request is freed. This guarantees icq's won't be destroyed and
1305 * makes creating new ones safe.
1306 *
1307 * Flush requests do not use the elevator so skip initialization.
1308 * This allows a request to share the flush and elevator data.
1309 *
1310 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1311 * it will be created after releasing queue_lock.
1312 */
1313 if (!op_is_flush(op) && !blk_queue_bypass(q)) {
1314 rq_flags |= RQF_ELVPRIV;
1315 q->nr_rqs_elvpriv++;
1316 if (et->icq_cache && ioc)
1317 icq = ioc_lookup_icq(ioc, q);
1318 }
1319
1320 if (blk_queue_io_stat(q))
1321 rq_flags |= RQF_IO_STAT;
1322 spin_unlock_irq(q->queue_lock);
1323
1324 /* allocate and init request */
1325 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1326 if (!rq)
1327 goto fail_alloc;
1328
1329 blk_rq_init(q, rq);
1330 blk_rq_set_rl(rq, rl);
1331 rq->cmd_flags = op;
1332 rq->rq_flags = rq_flags;
1333 if (flags & BLK_MQ_REQ_PREEMPT)
1334 rq->rq_flags |= RQF_PREEMPT;
1335
1336 /* init elvpriv */
1337 if (rq_flags & RQF_ELVPRIV) {
1338 if (unlikely(et->icq_cache && !icq)) {
1339 if (ioc)
1340 icq = ioc_create_icq(ioc, q, gfp_mask);
1341 if (!icq)
1342 goto fail_elvpriv;
1343 }
1344
1345 rq->elv.icq = icq;
1346 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1347 goto fail_elvpriv;
1348
1349 /* @rq->elv.icq holds io_context until @rq is freed */
1350 if (icq)
1351 get_io_context(icq->ioc);
1352 }
1353 out:
1354 /*
1355 * ioc may be NULL here, and ioc_batching will be false. That's
1356 * OK, if the queue is under the request limit then requests need
1357 * not count toward the nr_batch_requests limit. There will always
1358 * be some limit enforced by BLK_BATCH_TIME.
1359 */
1360 if (ioc_batching(q, ioc))
1361 ioc->nr_batch_requests--;
1362
1363 trace_block_getrq(q, bio, op);
1364 return rq;
1365
1366 fail_elvpriv:
1367 /*
1368 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1369 * and may fail indefinitely under memory pressure and thus
1370 * shouldn't stall IO. Treat this request as !elvpriv. This will
1371 * disturb iosched and blkcg but weird is bettern than dead.
1372 */
1373 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1374 __func__, dev_name(q->backing_dev_info->dev));
1375
1376 rq->rq_flags &= ~RQF_ELVPRIV;
1377 rq->elv.icq = NULL;
1378
1379 spin_lock_irq(q->queue_lock);
1380 q->nr_rqs_elvpriv--;
1381 spin_unlock_irq(q->queue_lock);
1382 goto out;
1383
1384 fail_alloc:
1385 /*
1386 * Allocation failed presumably due to memory. Undo anything we
1387 * might have messed up.
1388 *
1389 * Allocating task should really be put onto the front of the wait
1390 * queue, but this is pretty rare.
1391 */
1392 spin_lock_irq(q->queue_lock);
1393 freed_request(rl, is_sync, rq_flags);
1394
1395 /*
1396 * in the very unlikely event that allocation failed and no
1397 * requests for this direction was pending, mark us starved so that
1398 * freeing of a request in the other direction will notice
1399 * us. another possible fix would be to split the rq mempool into
1400 * READ and WRITE
1401 */
1402 rq_starved:
1403 if (unlikely(rl->count[is_sync] == 0))
1404 rl->starved[is_sync] = 1;
1405 return ERR_PTR(-ENOMEM);
1406 }
1407
1408 /**
1409 * get_request - get a free request
1410 * @q: request_queue to allocate request from
1411 * @op: operation and flags
1412 * @bio: bio to allocate request for (can be %NULL)
1413 * @flags: BLK_MQ_REQ_* flags.
1414 *
1415 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1416 * this function keeps retrying under memory pressure and fails iff @q is dead.
1417 *
1418 * Must be called with @q->queue_lock held and,
1419 * Returns ERR_PTR on failure, with @q->queue_lock held.
1420 * Returns request pointer on success, with @q->queue_lock *not held*.
1421 */
1422 static struct request *get_request(struct request_queue *q, unsigned int op,
1423 struct bio *bio, blk_mq_req_flags_t flags)
1424 {
1425 const bool is_sync = op_is_sync(op);
1426 DEFINE_WAIT(wait);
1427 struct request_list *rl;
1428 struct request *rq;
1429
1430 lockdep_assert_held(q->queue_lock);
1431 WARN_ON_ONCE(q->mq_ops);
1432
1433 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1434 retry:
1435 rq = __get_request(rl, op, bio, flags);
1436 if (!IS_ERR(rq))
1437 return rq;
1438
1439 if (op & REQ_NOWAIT) {
1440 blk_put_rl(rl);
1441 return ERR_PTR(-EAGAIN);
1442 }
1443
1444 if ((flags & BLK_MQ_REQ_NOWAIT) || unlikely(blk_queue_dying(q))) {
1445 blk_put_rl(rl);
1446 return rq;
1447 }
1448
1449 /* wait on @rl and retry */
1450 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1451 TASK_UNINTERRUPTIBLE);
1452
1453 trace_block_sleeprq(q, bio, op);
1454
1455 spin_unlock_irq(q->queue_lock);
1456 io_schedule();
1457
1458 /*
1459 * After sleeping, we become a "batching" process and will be able
1460 * to allocate at least one request, and up to a big batch of them
1461 * for a small period time. See ioc_batching, ioc_set_batching
1462 */
1463 ioc_set_batching(q, current->io_context);
1464
1465 spin_lock_irq(q->queue_lock);
1466 finish_wait(&rl->wait[is_sync], &wait);
1467
1468 goto retry;
1469 }
1470
1471 /* flags: BLK_MQ_REQ_PREEMPT and/or BLK_MQ_REQ_NOWAIT. */
1472 static struct request *blk_old_get_request(struct request_queue *q,
1473 unsigned int op, blk_mq_req_flags_t flags)
1474 {
1475 struct request *rq;
1476 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC :
1477 __GFP_DIRECT_RECLAIM;
1478 int ret = 0;
1479
1480 WARN_ON_ONCE(q->mq_ops);
1481
1482 /* create ioc upfront */
1483 create_io_context(gfp_mask, q->node);
1484
1485 ret = blk_queue_enter(q, flags);
1486 if (ret)
1487 return ERR_PTR(ret);
1488 spin_lock_irq(q->queue_lock);
1489 rq = get_request(q, op, NULL, flags);
1490 if (IS_ERR(rq)) {
1491 spin_unlock_irq(q->queue_lock);
1492 blk_queue_exit(q);
1493 return rq;
1494 }
1495
1496 /* q->queue_lock is unlocked at this point */
1497 rq->__data_len = 0;
1498 rq->__sector = (sector_t) -1;
1499 rq->bio = rq->biotail = NULL;
1500 return rq;
1501 }
1502
1503 /**
1504 * blk_get_request_flags - allocate a request
1505 * @q: request queue to allocate a request for
1506 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
1507 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
1508 */
1509 struct request *blk_get_request_flags(struct request_queue *q, unsigned int op,
1510 blk_mq_req_flags_t flags)
1511 {
1512 struct request *req;
1513
1514 WARN_ON_ONCE(op & REQ_NOWAIT);
1515 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
1516
1517 if (q->mq_ops) {
1518 req = blk_mq_alloc_request(q, op, flags);
1519 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
1520 q->mq_ops->initialize_rq_fn(req);
1521 } else {
1522 req = blk_old_get_request(q, op, flags);
1523 if (!IS_ERR(req) && q->initialize_rq_fn)
1524 q->initialize_rq_fn(req);
1525 }
1526
1527 return req;
1528 }
1529 EXPORT_SYMBOL(blk_get_request_flags);
1530
1531 struct request *blk_get_request(struct request_queue *q, unsigned int op,
1532 gfp_t gfp_mask)
1533 {
1534 return blk_get_request_flags(q, op, gfp_mask & __GFP_DIRECT_RECLAIM ?
1535 0 : BLK_MQ_REQ_NOWAIT);
1536 }
1537 EXPORT_SYMBOL(blk_get_request);
1538
1539 /**
1540 * blk_requeue_request - put a request back on queue
1541 * @q: request queue where request should be inserted
1542 * @rq: request to be inserted
1543 *
1544 * Description:
1545 * Drivers often keep queueing requests until the hardware cannot accept
1546 * more, when that condition happens we need to put the request back
1547 * on the queue. Must be called with queue lock held.
1548 */
1549 void blk_requeue_request(struct request_queue *q, struct request *rq)
1550 {
1551 lockdep_assert_held(q->queue_lock);
1552 WARN_ON_ONCE(q->mq_ops);
1553
1554 blk_delete_timer(rq);
1555 blk_clear_rq_complete(rq);
1556 trace_block_rq_requeue(q, rq);
1557 wbt_requeue(q->rq_wb, &rq->issue_stat);
1558
1559 if (rq->rq_flags & RQF_QUEUED)
1560 blk_queue_end_tag(q, rq);
1561
1562 BUG_ON(blk_queued_rq(rq));
1563
1564 elv_requeue_request(q, rq);
1565 }
1566 EXPORT_SYMBOL(blk_requeue_request);
1567
1568 static void add_acct_request(struct request_queue *q, struct request *rq,
1569 int where)
1570 {
1571 blk_account_io_start(rq, true);
1572 __elv_add_request(q, rq, where);
1573 }
1574
1575 static void part_round_stats_single(struct request_queue *q, int cpu,
1576 struct hd_struct *part, unsigned long now,
1577 unsigned int inflight)
1578 {
1579 if (inflight) {
1580 __part_stat_add(cpu, part, time_in_queue,
1581 inflight * (now - part->stamp));
1582 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1583 }
1584 part->stamp = now;
1585 }
1586
1587 /**
1588 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1589 * @q: target block queue
1590 * @cpu: cpu number for stats access
1591 * @part: target partition
1592 *
1593 * The average IO queue length and utilisation statistics are maintained
1594 * by observing the current state of the queue length and the amount of
1595 * time it has been in this state for.
1596 *
1597 * Normally, that accounting is done on IO completion, but that can result
1598 * in more than a second's worth of IO being accounted for within any one
1599 * second, leading to >100% utilisation. To deal with that, we call this
1600 * function to do a round-off before returning the results when reading
1601 * /proc/diskstats. This accounts immediately for all queue usage up to
1602 * the current jiffies and restarts the counters again.
1603 */
1604 void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part)
1605 {
1606 struct hd_struct *part2 = NULL;
1607 unsigned long now = jiffies;
1608 unsigned int inflight[2];
1609 int stats = 0;
1610
1611 if (part->stamp != now)
1612 stats |= 1;
1613
1614 if (part->partno) {
1615 part2 = &part_to_disk(part)->part0;
1616 if (part2->stamp != now)
1617 stats |= 2;
1618 }
1619
1620 if (!stats)
1621 return;
1622
1623 part_in_flight(q, part, inflight);
1624
1625 if (stats & 2)
1626 part_round_stats_single(q, cpu, part2, now, inflight[1]);
1627 if (stats & 1)
1628 part_round_stats_single(q, cpu, part, now, inflight[0]);
1629 }
1630 EXPORT_SYMBOL_GPL(part_round_stats);
1631
1632 #ifdef CONFIG_PM
1633 static void blk_pm_put_request(struct request *rq)
1634 {
1635 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
1636 pm_runtime_mark_last_busy(rq->q->dev);
1637 }
1638 #else
1639 static inline void blk_pm_put_request(struct request *rq) {}
1640 #endif
1641
1642 void __blk_put_request(struct request_queue *q, struct request *req)
1643 {
1644 req_flags_t rq_flags = req->rq_flags;
1645
1646 if (unlikely(!q))
1647 return;
1648
1649 if (q->mq_ops) {
1650 blk_mq_free_request(req);
1651 return;
1652 }
1653
1654 lockdep_assert_held(q->queue_lock);
1655
1656 blk_pm_put_request(req);
1657
1658 elv_completed_request(q, req);
1659
1660 /* this is a bio leak */
1661 WARN_ON(req->bio != NULL);
1662
1663 wbt_done(q->rq_wb, &req->issue_stat);
1664
1665 /*
1666 * Request may not have originated from ll_rw_blk. if not,
1667 * it didn't come out of our reserved rq pools
1668 */
1669 if (rq_flags & RQF_ALLOCED) {
1670 struct request_list *rl = blk_rq_rl(req);
1671 bool sync = op_is_sync(req->cmd_flags);
1672
1673 BUG_ON(!list_empty(&req->queuelist));
1674 BUG_ON(ELV_ON_HASH(req));
1675
1676 blk_free_request(rl, req);
1677 freed_request(rl, sync, rq_flags);
1678 blk_put_rl(rl);
1679 blk_queue_exit(q);
1680 }
1681 }
1682 EXPORT_SYMBOL_GPL(__blk_put_request);
1683
1684 void blk_put_request(struct request *req)
1685 {
1686 struct request_queue *q = req->q;
1687
1688 if (q->mq_ops)
1689 blk_mq_free_request(req);
1690 else {
1691 unsigned long flags;
1692
1693 spin_lock_irqsave(q->queue_lock, flags);
1694 __blk_put_request(q, req);
1695 spin_unlock_irqrestore(q->queue_lock, flags);
1696 }
1697 }
1698 EXPORT_SYMBOL(blk_put_request);
1699
1700 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1701 struct bio *bio)
1702 {
1703 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1704
1705 if (!ll_back_merge_fn(q, req, bio))
1706 return false;
1707
1708 trace_block_bio_backmerge(q, req, bio);
1709
1710 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1711 blk_rq_set_mixed_merge(req);
1712
1713 req->biotail->bi_next = bio;
1714 req->biotail = bio;
1715 req->__data_len += bio->bi_iter.bi_size;
1716 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1717
1718 blk_account_io_start(req, false);
1719 return true;
1720 }
1721
1722 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1723 struct bio *bio)
1724 {
1725 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1726
1727 if (!ll_front_merge_fn(q, req, bio))
1728 return false;
1729
1730 trace_block_bio_frontmerge(q, req, bio);
1731
1732 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1733 blk_rq_set_mixed_merge(req);
1734
1735 bio->bi_next = req->bio;
1736 req->bio = bio;
1737
1738 req->__sector = bio->bi_iter.bi_sector;
1739 req->__data_len += bio->bi_iter.bi_size;
1740 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1741
1742 blk_account_io_start(req, false);
1743 return true;
1744 }
1745
1746 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1747 struct bio *bio)
1748 {
1749 unsigned short segments = blk_rq_nr_discard_segments(req);
1750
1751 if (segments >= queue_max_discard_segments(q))
1752 goto no_merge;
1753 if (blk_rq_sectors(req) + bio_sectors(bio) >
1754 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1755 goto no_merge;
1756
1757 req->biotail->bi_next = bio;
1758 req->biotail = bio;
1759 req->__data_len += bio->bi_iter.bi_size;
1760 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1761 req->nr_phys_segments = segments + 1;
1762
1763 blk_account_io_start(req, false);
1764 return true;
1765 no_merge:
1766 req_set_nomerge(q, req);
1767 return false;
1768 }
1769
1770 /**
1771 * blk_attempt_plug_merge - try to merge with %current's plugged list
1772 * @q: request_queue new bio is being queued at
1773 * @bio: new bio being queued
1774 * @request_count: out parameter for number of traversed plugged requests
1775 * @same_queue_rq: pointer to &struct request that gets filled in when
1776 * another request associated with @q is found on the plug list
1777 * (optional, may be %NULL)
1778 *
1779 * Determine whether @bio being queued on @q can be merged with a request
1780 * on %current's plugged list. Returns %true if merge was successful,
1781 * otherwise %false.
1782 *
1783 * Plugging coalesces IOs from the same issuer for the same purpose without
1784 * going through @q->queue_lock. As such it's more of an issuing mechanism
1785 * than scheduling, and the request, while may have elvpriv data, is not
1786 * added on the elevator at this point. In addition, we don't have
1787 * reliable access to the elevator outside queue lock. Only check basic
1788 * merging parameters without querying the elevator.
1789 *
1790 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1791 */
1792 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1793 unsigned int *request_count,
1794 struct request **same_queue_rq)
1795 {
1796 struct blk_plug *plug;
1797 struct request *rq;
1798 struct list_head *plug_list;
1799
1800 plug = current->plug;
1801 if (!plug)
1802 return false;
1803 *request_count = 0;
1804
1805 if (q->mq_ops)
1806 plug_list = &plug->mq_list;
1807 else
1808 plug_list = &plug->list;
1809
1810 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1811 bool merged = false;
1812
1813 if (rq->q == q) {
1814 (*request_count)++;
1815 /*
1816 * Only blk-mq multiple hardware queues case checks the
1817 * rq in the same queue, there should be only one such
1818 * rq in a queue
1819 **/
1820 if (same_queue_rq)
1821 *same_queue_rq = rq;
1822 }
1823
1824 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1825 continue;
1826
1827 switch (blk_try_merge(rq, bio)) {
1828 case ELEVATOR_BACK_MERGE:
1829 merged = bio_attempt_back_merge(q, rq, bio);
1830 break;
1831 case ELEVATOR_FRONT_MERGE:
1832 merged = bio_attempt_front_merge(q, rq, bio);
1833 break;
1834 case ELEVATOR_DISCARD_MERGE:
1835 merged = bio_attempt_discard_merge(q, rq, bio);
1836 break;
1837 default:
1838 break;
1839 }
1840
1841 if (merged)
1842 return true;
1843 }
1844
1845 return false;
1846 }
1847
1848 unsigned int blk_plug_queued_count(struct request_queue *q)
1849 {
1850 struct blk_plug *plug;
1851 struct request *rq;
1852 struct list_head *plug_list;
1853 unsigned int ret = 0;
1854
1855 plug = current->plug;
1856 if (!plug)
1857 goto out;
1858
1859 if (q->mq_ops)
1860 plug_list = &plug->mq_list;
1861 else
1862 plug_list = &plug->list;
1863
1864 list_for_each_entry(rq, plug_list, queuelist) {
1865 if (rq->q == q)
1866 ret++;
1867 }
1868 out:
1869 return ret;
1870 }
1871
1872 void blk_init_request_from_bio(struct request *req, struct bio *bio)
1873 {
1874 struct io_context *ioc = rq_ioc(bio);
1875
1876 if (bio->bi_opf & REQ_RAHEAD)
1877 req->cmd_flags |= REQ_FAILFAST_MASK;
1878
1879 req->__sector = bio->bi_iter.bi_sector;
1880 if (ioprio_valid(bio_prio(bio)))
1881 req->ioprio = bio_prio(bio);
1882 else if (ioc)
1883 req->ioprio = ioc->ioprio;
1884 else
1885 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
1886 req->write_hint = bio->bi_write_hint;
1887 blk_rq_bio_prep(req->q, req, bio);
1888 }
1889 EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
1890
1891 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1892 {
1893 struct blk_plug *plug;
1894 int where = ELEVATOR_INSERT_SORT;
1895 struct request *req, *free;
1896 unsigned int request_count = 0;
1897 unsigned int wb_acct;
1898
1899 /*
1900 * low level driver can indicate that it wants pages above a
1901 * certain limit bounced to low memory (ie for highmem, or even
1902 * ISA dma in theory)
1903 */
1904 blk_queue_bounce(q, &bio);
1905
1906 blk_queue_split(q, &bio);
1907
1908 if (!bio_integrity_prep(bio))
1909 return BLK_QC_T_NONE;
1910
1911 if (op_is_flush(bio->bi_opf)) {
1912 spin_lock_irq(q->queue_lock);
1913 where = ELEVATOR_INSERT_FLUSH;
1914 goto get_rq;
1915 }
1916
1917 /*
1918 * Check if we can merge with the plugged list before grabbing
1919 * any locks.
1920 */
1921 if (!blk_queue_nomerges(q)) {
1922 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1923 return BLK_QC_T_NONE;
1924 } else
1925 request_count = blk_plug_queued_count(q);
1926
1927 spin_lock_irq(q->queue_lock);
1928
1929 switch (elv_merge(q, &req, bio)) {
1930 case ELEVATOR_BACK_MERGE:
1931 if (!bio_attempt_back_merge(q, req, bio))
1932 break;
1933 elv_bio_merged(q, req, bio);
1934 free = attempt_back_merge(q, req);
1935 if (free)
1936 __blk_put_request(q, free);
1937 else
1938 elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
1939 goto out_unlock;
1940 case ELEVATOR_FRONT_MERGE:
1941 if (!bio_attempt_front_merge(q, req, bio))
1942 break;
1943 elv_bio_merged(q, req, bio);
1944 free = attempt_front_merge(q, req);
1945 if (free)
1946 __blk_put_request(q, free);
1947 else
1948 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
1949 goto out_unlock;
1950 default:
1951 break;
1952 }
1953
1954 get_rq:
1955 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1956
1957 /*
1958 * Grab a free request. This is might sleep but can not fail.
1959 * Returns with the queue unlocked.
1960 */
1961 blk_queue_enter_live(q);
1962 req = get_request(q, bio->bi_opf, bio, 0);
1963 if (IS_ERR(req)) {
1964 blk_queue_exit(q);
1965 __wbt_done(q->rq_wb, wb_acct);
1966 if (PTR_ERR(req) == -ENOMEM)
1967 bio->bi_status = BLK_STS_RESOURCE;
1968 else
1969 bio->bi_status = BLK_STS_IOERR;
1970 bio_endio(bio);
1971 goto out_unlock;
1972 }
1973
1974 wbt_track(&req->issue_stat, wb_acct);
1975
1976 /*
1977 * After dropping the lock and possibly sleeping here, our request
1978 * may now be mergeable after it had proven unmergeable (above).
1979 * We don't worry about that case for efficiency. It won't happen
1980 * often, and the elevators are able to handle it.
1981 */
1982 blk_init_request_from_bio(req, bio);
1983
1984 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1985 req->cpu = raw_smp_processor_id();
1986
1987 plug = current->plug;
1988 if (plug) {
1989 /*
1990 * If this is the first request added after a plug, fire
1991 * of a plug trace.
1992 *
1993 * @request_count may become stale because of schedule
1994 * out, so check plug list again.
1995 */
1996 if (!request_count || list_empty(&plug->list))
1997 trace_block_plug(q);
1998 else {
1999 struct request *last = list_entry_rq(plug->list.prev);
2000 if (request_count >= BLK_MAX_REQUEST_COUNT ||
2001 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
2002 blk_flush_plug_list(plug, false);
2003 trace_block_plug(q);
2004 }
2005 }
2006 list_add_tail(&req->queuelist, &plug->list);
2007 blk_account_io_start(req, true);
2008 } else {
2009 spin_lock_irq(q->queue_lock);
2010 add_acct_request(q, req, where);
2011 __blk_run_queue(q);
2012 out_unlock:
2013 spin_unlock_irq(q->queue_lock);
2014 }
2015
2016 return BLK_QC_T_NONE;
2017 }
2018
2019 static void handle_bad_sector(struct bio *bio)
2020 {
2021 char b[BDEVNAME_SIZE];
2022
2023 printk(KERN_INFO "attempt to access beyond end of device\n");
2024 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
2025 bio_devname(bio, b), bio->bi_opf,
2026 (unsigned long long)bio_end_sector(bio),
2027 (long long)get_capacity(bio->bi_disk));
2028 }
2029
2030 #ifdef CONFIG_FAIL_MAKE_REQUEST
2031
2032 static DECLARE_FAULT_ATTR(fail_make_request);
2033
2034 static int __init setup_fail_make_request(char *str)
2035 {
2036 return setup_fault_attr(&fail_make_request, str);
2037 }
2038 __setup("fail_make_request=", setup_fail_make_request);
2039
2040 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
2041 {
2042 return part->make_it_fail && should_fail(&fail_make_request, bytes);
2043 }
2044
2045 static int __init fail_make_request_debugfs(void)
2046 {
2047 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
2048 NULL, &fail_make_request);
2049
2050 return PTR_ERR_OR_ZERO(dir);
2051 }
2052
2053 late_initcall(fail_make_request_debugfs);
2054
2055 #else /* CONFIG_FAIL_MAKE_REQUEST */
2056
2057 static inline bool should_fail_request(struct hd_struct *part,
2058 unsigned int bytes)
2059 {
2060 return false;
2061 }
2062
2063 #endif /* CONFIG_FAIL_MAKE_REQUEST */
2064
2065 /*
2066 * Remap block n of partition p to block n+start(p) of the disk.
2067 */
2068 static inline int blk_partition_remap(struct bio *bio)
2069 {
2070 struct hd_struct *p;
2071 int ret = 0;
2072
2073 /*
2074 * Zone reset does not include bi_size so bio_sectors() is always 0.
2075 * Include a test for the reset op code and perform the remap if needed.
2076 */
2077 if (!bio->bi_partno ||
2078 (!bio_sectors(bio) && bio_op(bio) != REQ_OP_ZONE_RESET))
2079 return 0;
2080
2081 rcu_read_lock();
2082 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
2083 if (likely(p && !should_fail_request(p, bio->bi_iter.bi_size))) {
2084 bio->bi_iter.bi_sector += p->start_sect;
2085 bio->bi_partno = 0;
2086 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
2087 bio->bi_iter.bi_sector - p->start_sect);
2088 } else {
2089 printk("%s: fail for partition %d\n", __func__, bio->bi_partno);
2090 ret = -EIO;
2091 }
2092 rcu_read_unlock();
2093
2094 return ret;
2095 }
2096
2097 /*
2098 * Check whether this bio extends beyond the end of the device.
2099 */
2100 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
2101 {
2102 sector_t maxsector;
2103
2104 if (!nr_sectors)
2105 return 0;
2106
2107 /* Test device or partition size, when known. */
2108 maxsector = get_capacity(bio->bi_disk);
2109 if (maxsector) {
2110 sector_t sector = bio->bi_iter.bi_sector;
2111
2112 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
2113 /*
2114 * This may well happen - the kernel calls bread()
2115 * without checking the size of the device, e.g., when
2116 * mounting a device.
2117 */
2118 handle_bad_sector(bio);
2119 return 1;
2120 }
2121 }
2122
2123 return 0;
2124 }
2125
2126 static noinline_for_stack bool
2127 generic_make_request_checks(struct bio *bio)
2128 {
2129 struct request_queue *q;
2130 int nr_sectors = bio_sectors(bio);
2131 blk_status_t status = BLK_STS_IOERR;
2132 char b[BDEVNAME_SIZE];
2133
2134 might_sleep();
2135
2136 if (bio_check_eod(bio, nr_sectors))
2137 goto end_io;
2138
2139 q = bio->bi_disk->queue;
2140 if (unlikely(!q)) {
2141 printk(KERN_ERR
2142 "generic_make_request: Trying to access "
2143 "nonexistent block-device %s (%Lu)\n",
2144 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
2145 goto end_io;
2146 }
2147
2148 /*
2149 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2150 * if queue is not a request based queue.
2151 */
2152
2153 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
2154 goto not_supported;
2155
2156 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
2157 goto end_io;
2158
2159 if (blk_partition_remap(bio))
2160 goto end_io;
2161
2162 if (bio_check_eod(bio, nr_sectors))
2163 goto end_io;
2164
2165 /*
2166 * Filter flush bio's early so that make_request based
2167 * drivers without flush support don't have to worry
2168 * about them.
2169 */
2170 if (op_is_flush(bio->bi_opf) &&
2171 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
2172 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
2173 if (!nr_sectors) {
2174 status = BLK_STS_OK;
2175 goto end_io;
2176 }
2177 }
2178
2179 switch (bio_op(bio)) {
2180 case REQ_OP_DISCARD:
2181 if (!blk_queue_discard(q))
2182 goto not_supported;
2183 break;
2184 case REQ_OP_SECURE_ERASE:
2185 if (!blk_queue_secure_erase(q))
2186 goto not_supported;
2187 break;
2188 case REQ_OP_WRITE_SAME:
2189 if (!q->limits.max_write_same_sectors)
2190 goto not_supported;
2191 break;
2192 case REQ_OP_ZONE_REPORT:
2193 case REQ_OP_ZONE_RESET:
2194 if (!blk_queue_is_zoned(q))
2195 goto not_supported;
2196 break;
2197 case REQ_OP_WRITE_ZEROES:
2198 if (!q->limits.max_write_zeroes_sectors)
2199 goto not_supported;
2200 break;
2201 default:
2202 break;
2203 }
2204
2205 /*
2206 * Various block parts want %current->io_context and lazy ioc
2207 * allocation ends up trading a lot of pain for a small amount of
2208 * memory. Just allocate it upfront. This may fail and block
2209 * layer knows how to live with it.
2210 */
2211 create_io_context(GFP_ATOMIC, q->node);
2212
2213 if (!blkcg_bio_issue_check(q, bio))
2214 return false;
2215
2216 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2217 trace_block_bio_queue(q, bio);
2218 /* Now that enqueuing has been traced, we need to trace
2219 * completion as well.
2220 */
2221 bio_set_flag(bio, BIO_TRACE_COMPLETION);
2222 }
2223 return true;
2224
2225 not_supported:
2226 status = BLK_STS_NOTSUPP;
2227 end_io:
2228 bio->bi_status = status;
2229 bio_endio(bio);
2230 return false;
2231 }
2232
2233 /**
2234 * generic_make_request - hand a buffer to its device driver for I/O
2235 * @bio: The bio describing the location in memory and on the device.
2236 *
2237 * generic_make_request() is used to make I/O requests of block
2238 * devices. It is passed a &struct bio, which describes the I/O that needs
2239 * to be done.
2240 *
2241 * generic_make_request() does not return any status. The
2242 * success/failure status of the request, along with notification of
2243 * completion, is delivered asynchronously through the bio->bi_end_io
2244 * function described (one day) else where.
2245 *
2246 * The caller of generic_make_request must make sure that bi_io_vec
2247 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2248 * set to describe the device address, and the
2249 * bi_end_io and optionally bi_private are set to describe how
2250 * completion notification should be signaled.
2251 *
2252 * generic_make_request and the drivers it calls may use bi_next if this
2253 * bio happens to be merged with someone else, and may resubmit the bio to
2254 * a lower device by calling into generic_make_request recursively, which
2255 * means the bio should NOT be touched after the call to ->make_request_fn.
2256 */
2257 blk_qc_t generic_make_request(struct bio *bio)
2258 {
2259 /*
2260 * bio_list_on_stack[0] contains bios submitted by the current
2261 * make_request_fn.
2262 * bio_list_on_stack[1] contains bios that were submitted before
2263 * the current make_request_fn, but that haven't been processed
2264 * yet.
2265 */
2266 struct bio_list bio_list_on_stack[2];
2267 blk_qc_t ret = BLK_QC_T_NONE;
2268
2269 if (!generic_make_request_checks(bio))
2270 goto out;
2271
2272 /*
2273 * We only want one ->make_request_fn to be active at a time, else
2274 * stack usage with stacked devices could be a problem. So use
2275 * current->bio_list to keep a list of requests submited by a
2276 * make_request_fn function. current->bio_list is also used as a
2277 * flag to say if generic_make_request is currently active in this
2278 * task or not. If it is NULL, then no make_request is active. If
2279 * it is non-NULL, then a make_request is active, and new requests
2280 * should be added at the tail
2281 */
2282 if (current->bio_list) {
2283 bio_list_add(&current->bio_list[0], bio);
2284 goto out;
2285 }
2286
2287 /* following loop may be a bit non-obvious, and so deserves some
2288 * explanation.
2289 * Before entering the loop, bio->bi_next is NULL (as all callers
2290 * ensure that) so we have a list with a single bio.
2291 * We pretend that we have just taken it off a longer list, so
2292 * we assign bio_list to a pointer to the bio_list_on_stack,
2293 * thus initialising the bio_list of new bios to be
2294 * added. ->make_request() may indeed add some more bios
2295 * through a recursive call to generic_make_request. If it
2296 * did, we find a non-NULL value in bio_list and re-enter the loop
2297 * from the top. In this case we really did just take the bio
2298 * of the top of the list (no pretending) and so remove it from
2299 * bio_list, and call into ->make_request() again.
2300 */
2301 BUG_ON(bio->bi_next);
2302 bio_list_init(&bio_list_on_stack[0]);
2303 current->bio_list = bio_list_on_stack;
2304 do {
2305 struct request_queue *q = bio->bi_disk->queue;
2306 blk_mq_req_flags_t flags = bio->bi_opf & REQ_NOWAIT ?
2307 BLK_MQ_REQ_NOWAIT : 0;
2308
2309 if (likely(blk_queue_enter(q, flags) == 0)) {
2310 struct bio_list lower, same;
2311
2312 /* Create a fresh bio_list for all subordinate requests */
2313 bio_list_on_stack[1] = bio_list_on_stack[0];
2314 bio_list_init(&bio_list_on_stack[0]);
2315 ret = q->make_request_fn(q, bio);
2316
2317 blk_queue_exit(q);
2318
2319 /* sort new bios into those for a lower level
2320 * and those for the same level
2321 */
2322 bio_list_init(&lower);
2323 bio_list_init(&same);
2324 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
2325 if (q == bio->bi_disk->queue)
2326 bio_list_add(&same, bio);
2327 else
2328 bio_list_add(&lower, bio);
2329 /* now assemble so we handle the lowest level first */
2330 bio_list_merge(&bio_list_on_stack[0], &lower);
2331 bio_list_merge(&bio_list_on_stack[0], &same);
2332 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
2333 } else {
2334 if (unlikely(!blk_queue_dying(q) &&
2335 (bio->bi_opf & REQ_NOWAIT)))
2336 bio_wouldblock_error(bio);
2337 else
2338 bio_io_error(bio);
2339 }
2340 bio = bio_list_pop(&bio_list_on_stack[0]);
2341 } while (bio);
2342 current->bio_list = NULL; /* deactivate */
2343
2344 out:
2345 return ret;
2346 }
2347 EXPORT_SYMBOL(generic_make_request);
2348
2349 /**
2350 * direct_make_request - hand a buffer directly to its device driver for I/O
2351 * @bio: The bio describing the location in memory and on the device.
2352 *
2353 * This function behaves like generic_make_request(), but does not protect
2354 * against recursion. Must only be used if the called driver is known
2355 * to not call generic_make_request (or direct_make_request) again from
2356 * its make_request function. (Calling direct_make_request again from
2357 * a workqueue is perfectly fine as that doesn't recurse).
2358 */
2359 blk_qc_t direct_make_request(struct bio *bio)
2360 {
2361 struct request_queue *q = bio->bi_disk->queue;
2362 bool nowait = bio->bi_opf & REQ_NOWAIT;
2363 blk_qc_t ret;
2364
2365 if (!generic_make_request_checks(bio))
2366 return BLK_QC_T_NONE;
2367
2368 if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
2369 if (nowait && !blk_queue_dying(q))
2370 bio->bi_status = BLK_STS_AGAIN;
2371 else
2372 bio->bi_status = BLK_STS_IOERR;
2373 bio_endio(bio);
2374 return BLK_QC_T_NONE;
2375 }
2376
2377 ret = q->make_request_fn(q, bio);
2378 blk_queue_exit(q);
2379 return ret;
2380 }
2381 EXPORT_SYMBOL_GPL(direct_make_request);
2382
2383 /**
2384 * submit_bio - submit a bio to the block device layer for I/O
2385 * @bio: The &struct bio which describes the I/O
2386 *
2387 * submit_bio() is very similar in purpose to generic_make_request(), and
2388 * uses that function to do most of the work. Both are fairly rough
2389 * interfaces; @bio must be presetup and ready for I/O.
2390 *
2391 */
2392 blk_qc_t submit_bio(struct bio *bio)
2393 {
2394 /*
2395 * If it's a regular read/write or a barrier with data attached,
2396 * go through the normal accounting stuff before submission.
2397 */
2398 if (bio_has_data(bio)) {
2399 unsigned int count;
2400
2401 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2402 count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
2403 else
2404 count = bio_sectors(bio);
2405
2406 if (op_is_write(bio_op(bio))) {
2407 count_vm_events(PGPGOUT, count);
2408 } else {
2409 task_io_account_read(bio->bi_iter.bi_size);
2410 count_vm_events(PGPGIN, count);
2411 }
2412
2413 if (unlikely(block_dump)) {
2414 char b[BDEVNAME_SIZE];
2415 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2416 current->comm, task_pid_nr(current),
2417 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2418 (unsigned long long)bio->bi_iter.bi_sector,
2419 bio_devname(bio, b), count);
2420 }
2421 }
2422
2423 return generic_make_request(bio);
2424 }
2425 EXPORT_SYMBOL(submit_bio);
2426
2427 bool blk_poll(struct request_queue *q, blk_qc_t cookie)
2428 {
2429 if (!q->poll_fn || !blk_qc_t_valid(cookie))
2430 return false;
2431
2432 if (current->plug)
2433 blk_flush_plug_list(current->plug, false);
2434 return q->poll_fn(q, cookie);
2435 }
2436 EXPORT_SYMBOL_GPL(blk_poll);
2437
2438 /**
2439 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2440 * for new the queue limits
2441 * @q: the queue
2442 * @rq: the request being checked
2443 *
2444 * Description:
2445 * @rq may have been made based on weaker limitations of upper-level queues
2446 * in request stacking drivers, and it may violate the limitation of @q.
2447 * Since the block layer and the underlying device driver trust @rq
2448 * after it is inserted to @q, it should be checked against @q before
2449 * the insertion using this generic function.
2450 *
2451 * Request stacking drivers like request-based dm may change the queue
2452 * limits when retrying requests on other queues. Those requests need
2453 * to be checked against the new queue limits again during dispatch.
2454 */
2455 static int blk_cloned_rq_check_limits(struct request_queue *q,
2456 struct request *rq)
2457 {
2458 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2459 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2460 return -EIO;
2461 }
2462
2463 /*
2464 * queue's settings related to segment counting like q->bounce_pfn
2465 * may differ from that of other stacking queues.
2466 * Recalculate it to check the request correctly on this queue's
2467 * limitation.
2468 */
2469 blk_recalc_rq_segments(rq);
2470 if (rq->nr_phys_segments > queue_max_segments(q)) {
2471 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2472 return -EIO;
2473 }
2474
2475 return 0;
2476 }
2477
2478 /**
2479 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2480 * @q: the queue to submit the request
2481 * @rq: the request being queued
2482 */
2483 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2484 {
2485 unsigned long flags;
2486 int where = ELEVATOR_INSERT_BACK;
2487
2488 if (blk_cloned_rq_check_limits(q, rq))
2489 return BLK_STS_IOERR;
2490
2491 if (rq->rq_disk &&
2492 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2493 return BLK_STS_IOERR;
2494
2495 if (q->mq_ops) {
2496 if (blk_queue_io_stat(q))
2497 blk_account_io_start(rq, true);
2498 /*
2499 * Since we have a scheduler attached on the top device,
2500 * bypass a potential scheduler on the bottom device for
2501 * insert.
2502 */
2503 blk_mq_request_bypass_insert(rq, true);
2504 return BLK_STS_OK;
2505 }
2506
2507 spin_lock_irqsave(q->queue_lock, flags);
2508 if (unlikely(blk_queue_dying(q))) {
2509 spin_unlock_irqrestore(q->queue_lock, flags);
2510 return BLK_STS_IOERR;
2511 }
2512
2513 /*
2514 * Submitting request must be dequeued before calling this function
2515 * because it will be linked to another request_queue
2516 */
2517 BUG_ON(blk_queued_rq(rq));
2518
2519 if (op_is_flush(rq->cmd_flags))
2520 where = ELEVATOR_INSERT_FLUSH;
2521
2522 add_acct_request(q, rq, where);
2523 if (where == ELEVATOR_INSERT_FLUSH)
2524 __blk_run_queue(q);
2525 spin_unlock_irqrestore(q->queue_lock, flags);
2526
2527 return BLK_STS_OK;
2528 }
2529 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2530
2531 /**
2532 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2533 * @rq: request to examine
2534 *
2535 * Description:
2536 * A request could be merge of IOs which require different failure
2537 * handling. This function determines the number of bytes which
2538 * can be failed from the beginning of the request without
2539 * crossing into area which need to be retried further.
2540 *
2541 * Return:
2542 * The number of bytes to fail.
2543 */
2544 unsigned int blk_rq_err_bytes(const struct request *rq)
2545 {
2546 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2547 unsigned int bytes = 0;
2548 struct bio *bio;
2549
2550 if (!(rq->rq_flags & RQF_MIXED_MERGE))
2551 return blk_rq_bytes(rq);
2552
2553 /*
2554 * Currently the only 'mixing' which can happen is between
2555 * different fastfail types. We can safely fail portions
2556 * which have all the failfast bits that the first one has -
2557 * the ones which are at least as eager to fail as the first
2558 * one.
2559 */
2560 for (bio = rq->bio; bio; bio = bio->bi_next) {
2561 if ((bio->bi_opf & ff) != ff)
2562 break;
2563 bytes += bio->bi_iter.bi_size;
2564 }
2565
2566 /* this could lead to infinite loop */
2567 BUG_ON(blk_rq_bytes(rq) && !bytes);
2568 return bytes;
2569 }
2570 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2571
2572 void blk_account_io_completion(struct request *req, unsigned int bytes)
2573 {
2574 if (blk_do_io_stat(req)) {
2575 const int rw = rq_data_dir(req);
2576 struct hd_struct *part;
2577 int cpu;
2578
2579 cpu = part_stat_lock();
2580 part = req->part;
2581 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2582 part_stat_unlock();
2583 }
2584 }
2585
2586 void blk_account_io_done(struct request *req)
2587 {
2588 /*
2589 * Account IO completion. flush_rq isn't accounted as a
2590 * normal IO on queueing nor completion. Accounting the
2591 * containing request is enough.
2592 */
2593 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2594 unsigned long duration = jiffies - req->start_time;
2595 const int rw = rq_data_dir(req);
2596 struct hd_struct *part;
2597 int cpu;
2598
2599 cpu = part_stat_lock();
2600 part = req->part;
2601
2602 part_stat_inc(cpu, part, ios[rw]);
2603 part_stat_add(cpu, part, ticks[rw], duration);
2604 part_round_stats(req->q, cpu, part);
2605 part_dec_in_flight(req->q, part, rw);
2606
2607 hd_struct_put(part);
2608 part_stat_unlock();
2609 }
2610 }
2611
2612 #ifdef CONFIG_PM
2613 /*
2614 * Don't process normal requests when queue is suspended
2615 * or in the process of suspending/resuming
2616 */
2617 static bool blk_pm_allow_request(struct request *rq)
2618 {
2619 switch (rq->q->rpm_status) {
2620 case RPM_RESUMING:
2621 case RPM_SUSPENDING:
2622 return rq->rq_flags & RQF_PM;
2623 case RPM_SUSPENDED:
2624 return false;
2625 }
2626
2627 return true;
2628 }
2629 #else
2630 static bool blk_pm_allow_request(struct request *rq)
2631 {
2632 return true;
2633 }
2634 #endif
2635
2636 void blk_account_io_start(struct request *rq, bool new_io)
2637 {
2638 struct hd_struct *part;
2639 int rw = rq_data_dir(rq);
2640 int cpu;
2641
2642 if (!blk_do_io_stat(rq))
2643 return;
2644
2645 cpu = part_stat_lock();
2646
2647 if (!new_io) {
2648 part = rq->part;
2649 part_stat_inc(cpu, part, merges[rw]);
2650 } else {
2651 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2652 if (!hd_struct_try_get(part)) {
2653 /*
2654 * The partition is already being removed,
2655 * the request will be accounted on the disk only
2656 *
2657 * We take a reference on disk->part0 although that
2658 * partition will never be deleted, so we can treat
2659 * it as any other partition.
2660 */
2661 part = &rq->rq_disk->part0;
2662 hd_struct_get(part);
2663 }
2664 part_round_stats(rq->q, cpu, part);
2665 part_inc_in_flight(rq->q, part, rw);
2666 rq->part = part;
2667 }
2668
2669 part_stat_unlock();
2670 }
2671
2672 static struct request *elv_next_request(struct request_queue *q)
2673 {
2674 struct request *rq;
2675 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
2676
2677 WARN_ON_ONCE(q->mq_ops);
2678
2679 while (1) {
2680 list_for_each_entry(rq, &q->queue_head, queuelist) {
2681 if (blk_pm_allow_request(rq))
2682 return rq;
2683
2684 if (rq->rq_flags & RQF_SOFTBARRIER)
2685 break;
2686 }
2687
2688 /*
2689 * Flush request is running and flush request isn't queueable
2690 * in the drive, we can hold the queue till flush request is
2691 * finished. Even we don't do this, driver can't dispatch next
2692 * requests and will requeue them. And this can improve
2693 * throughput too. For example, we have request flush1, write1,
2694 * flush 2. flush1 is dispatched, then queue is hold, write1
2695 * isn't inserted to queue. After flush1 is finished, flush2
2696 * will be dispatched. Since disk cache is already clean,
2697 * flush2 will be finished very soon, so looks like flush2 is
2698 * folded to flush1.
2699 * Since the queue is hold, a flag is set to indicate the queue
2700 * should be restarted later. Please see flush_end_io() for
2701 * details.
2702 */
2703 if (fq->flush_pending_idx != fq->flush_running_idx &&
2704 !queue_flush_queueable(q)) {
2705 fq->flush_queue_delayed = 1;
2706 return NULL;
2707 }
2708 if (unlikely(blk_queue_bypass(q)) ||
2709 !q->elevator->type->ops.sq.elevator_dispatch_fn(q, 0))
2710 return NULL;
2711 }
2712 }
2713
2714 /**
2715 * blk_peek_request - peek at the top of a request queue
2716 * @q: request queue to peek at
2717 *
2718 * Description:
2719 * Return the request at the top of @q. The returned request
2720 * should be started using blk_start_request() before LLD starts
2721 * processing it.
2722 *
2723 * Return:
2724 * Pointer to the request at the top of @q if available. Null
2725 * otherwise.
2726 */
2727 struct request *blk_peek_request(struct request_queue *q)
2728 {
2729 struct request *rq;
2730 int ret;
2731
2732 lockdep_assert_held(q->queue_lock);
2733 WARN_ON_ONCE(q->mq_ops);
2734
2735 while ((rq = elv_next_request(q)) != NULL) {
2736 if (!(rq->rq_flags & RQF_STARTED)) {
2737 /*
2738 * This is the first time the device driver
2739 * sees this request (possibly after
2740 * requeueing). Notify IO scheduler.
2741 */
2742 if (rq->rq_flags & RQF_SORTED)
2743 elv_activate_rq(q, rq);
2744
2745 /*
2746 * just mark as started even if we don't start
2747 * it, a request that has been delayed should
2748 * not be passed by new incoming requests
2749 */
2750 rq->rq_flags |= RQF_STARTED;
2751 trace_block_rq_issue(q, rq);
2752 }
2753
2754 if (!q->boundary_rq || q->boundary_rq == rq) {
2755 q->end_sector = rq_end_sector(rq);
2756 q->boundary_rq = NULL;
2757 }
2758
2759 if (rq->rq_flags & RQF_DONTPREP)
2760 break;
2761
2762 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2763 /*
2764 * make sure space for the drain appears we
2765 * know we can do this because max_hw_segments
2766 * has been adjusted to be one fewer than the
2767 * device can handle
2768 */
2769 rq->nr_phys_segments++;
2770 }
2771
2772 if (!q->prep_rq_fn)
2773 break;
2774
2775 ret = q->prep_rq_fn(q, rq);
2776 if (ret == BLKPREP_OK) {
2777 break;
2778 } else if (ret == BLKPREP_DEFER) {
2779 /*
2780 * the request may have been (partially) prepped.
2781 * we need to keep this request in the front to
2782 * avoid resource deadlock. RQF_STARTED will
2783 * prevent other fs requests from passing this one.
2784 */
2785 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2786 !(rq->rq_flags & RQF_DONTPREP)) {
2787 /*
2788 * remove the space for the drain we added
2789 * so that we don't add it again
2790 */
2791 --rq->nr_phys_segments;
2792 }
2793
2794 rq = NULL;
2795 break;
2796 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2797 rq->rq_flags |= RQF_QUIET;
2798 /*
2799 * Mark this request as started so we don't trigger
2800 * any debug logic in the end I/O path.
2801 */
2802 blk_start_request(rq);
2803 __blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2804 BLK_STS_TARGET : BLK_STS_IOERR);
2805 } else {
2806 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2807 break;
2808 }
2809 }
2810
2811 return rq;
2812 }
2813 EXPORT_SYMBOL(blk_peek_request);
2814
2815 static void blk_dequeue_request(struct request *rq)
2816 {
2817 struct request_queue *q = rq->q;
2818
2819 BUG_ON(list_empty(&rq->queuelist));
2820 BUG_ON(ELV_ON_HASH(rq));
2821
2822 list_del_init(&rq->queuelist);
2823
2824 /*
2825 * the time frame between a request being removed from the lists
2826 * and to it is freed is accounted as io that is in progress at
2827 * the driver side.
2828 */
2829 if (blk_account_rq(rq)) {
2830 q->in_flight[rq_is_sync(rq)]++;
2831 set_io_start_time_ns(rq);
2832 }
2833 }
2834
2835 /**
2836 * blk_start_request - start request processing on the driver
2837 * @req: request to dequeue
2838 *
2839 * Description:
2840 * Dequeue @req and start timeout timer on it. This hands off the
2841 * request to the driver.
2842 */
2843 void blk_start_request(struct request *req)
2844 {
2845 lockdep_assert_held(req->q->queue_lock);
2846 WARN_ON_ONCE(req->q->mq_ops);
2847
2848 blk_dequeue_request(req);
2849
2850 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2851 blk_stat_set_issue(&req->issue_stat, blk_rq_sectors(req));
2852 req->rq_flags |= RQF_STATS;
2853 wbt_issue(req->q->rq_wb, &req->issue_stat);
2854 }
2855
2856 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2857 blk_add_timer(req);
2858 }
2859 EXPORT_SYMBOL(blk_start_request);
2860
2861 /**
2862 * blk_fetch_request - fetch a request from a request queue
2863 * @q: request queue to fetch a request from
2864 *
2865 * Description:
2866 * Return the request at the top of @q. The request is started on
2867 * return and LLD can start processing it immediately.
2868 *
2869 * Return:
2870 * Pointer to the request at the top of @q if available. Null
2871 * otherwise.
2872 */
2873 struct request *blk_fetch_request(struct request_queue *q)
2874 {
2875 struct request *rq;
2876
2877 lockdep_assert_held(q->queue_lock);
2878 WARN_ON_ONCE(q->mq_ops);
2879
2880 rq = blk_peek_request(q);
2881 if (rq)
2882 blk_start_request(rq);
2883 return rq;
2884 }
2885 EXPORT_SYMBOL(blk_fetch_request);
2886
2887 /*
2888 * Steal bios from a request and add them to a bio list.
2889 * The request must not have been partially completed before.
2890 */
2891 void blk_steal_bios(struct bio_list *list, struct request *rq)
2892 {
2893 if (rq->bio) {
2894 if (list->tail)
2895 list->tail->bi_next = rq->bio;
2896 else
2897 list->head = rq->bio;
2898 list->tail = rq->biotail;
2899
2900 rq->bio = NULL;
2901 rq->biotail = NULL;
2902 }
2903
2904 rq->__data_len = 0;
2905 }
2906 EXPORT_SYMBOL_GPL(blk_steal_bios);
2907
2908 /**
2909 * blk_update_request - Special helper function for request stacking drivers
2910 * @req: the request being processed
2911 * @error: block status code
2912 * @nr_bytes: number of bytes to complete @req
2913 *
2914 * Description:
2915 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2916 * the request structure even if @req doesn't have leftover.
2917 * If @req has leftover, sets it up for the next range of segments.
2918 *
2919 * This special helper function is only for request stacking drivers
2920 * (e.g. request-based dm) so that they can handle partial completion.
2921 * Actual device drivers should use blk_end_request instead.
2922 *
2923 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2924 * %false return from this function.
2925 *
2926 * Return:
2927 * %false - this request doesn't have any more data
2928 * %true - this request has more data
2929 **/
2930 bool blk_update_request(struct request *req, blk_status_t error,
2931 unsigned int nr_bytes)
2932 {
2933 int total_bytes;
2934
2935 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
2936
2937 if (!req->bio)
2938 return false;
2939
2940 if (unlikely(error && !blk_rq_is_passthrough(req) &&
2941 !(req->rq_flags & RQF_QUIET)))
2942 print_req_error(req, error);
2943
2944 blk_account_io_completion(req, nr_bytes);
2945
2946 total_bytes = 0;
2947 while (req->bio) {
2948 struct bio *bio = req->bio;
2949 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2950
2951 if (bio_bytes == bio->bi_iter.bi_size)
2952 req->bio = bio->bi_next;
2953
2954 /* Completion has already been traced */
2955 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
2956 req_bio_endio(req, bio, bio_bytes, error);
2957
2958 total_bytes += bio_bytes;
2959 nr_bytes -= bio_bytes;
2960
2961 if (!nr_bytes)
2962 break;
2963 }
2964
2965 /*
2966 * completely done
2967 */
2968 if (!req->bio) {
2969 /*
2970 * Reset counters so that the request stacking driver
2971 * can find how many bytes remain in the request
2972 * later.
2973 */
2974 req->__data_len = 0;
2975 return false;
2976 }
2977
2978 req->__data_len -= total_bytes;
2979
2980 /* update sector only for requests with clear definition of sector */
2981 if (!blk_rq_is_passthrough(req))
2982 req->__sector += total_bytes >> 9;
2983
2984 /* mixed attributes always follow the first bio */
2985 if (req->rq_flags & RQF_MIXED_MERGE) {
2986 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2987 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
2988 }
2989
2990 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
2991 /*
2992 * If total number of sectors is less than the first segment
2993 * size, something has gone terribly wrong.
2994 */
2995 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2996 blk_dump_rq_flags(req, "request botched");
2997 req->__data_len = blk_rq_cur_bytes(req);
2998 }
2999
3000 /* recalculate the number of segments */
3001 blk_recalc_rq_segments(req);
3002 }
3003
3004 return true;
3005 }
3006 EXPORT_SYMBOL_GPL(blk_update_request);
3007
3008 static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
3009 unsigned int nr_bytes,
3010 unsigned int bidi_bytes)
3011 {
3012 if (blk_update_request(rq, error, nr_bytes))
3013 return true;
3014
3015 /* Bidi request must be completed as a whole */
3016 if (unlikely(blk_bidi_rq(rq)) &&
3017 blk_update_request(rq->next_rq, error, bidi_bytes))
3018 return true;
3019
3020 if (blk_queue_add_random(rq->q))
3021 add_disk_randomness(rq->rq_disk);
3022
3023 return false;
3024 }
3025
3026 /**
3027 * blk_unprep_request - unprepare a request
3028 * @req: the request
3029 *
3030 * This function makes a request ready for complete resubmission (or
3031 * completion). It happens only after all error handling is complete,
3032 * so represents the appropriate moment to deallocate any resources
3033 * that were allocated to the request in the prep_rq_fn. The queue
3034 * lock is held when calling this.
3035 */
3036 void blk_unprep_request(struct request *req)
3037 {
3038 struct request_queue *q = req->q;
3039
3040 req->rq_flags &= ~RQF_DONTPREP;
3041 if (q->unprep_rq_fn)
3042 q->unprep_rq_fn(q, req);
3043 }
3044 EXPORT_SYMBOL_GPL(blk_unprep_request);
3045
3046 void blk_finish_request(struct request *req, blk_status_t error)
3047 {
3048 struct request_queue *q = req->q;
3049
3050 lockdep_assert_held(req->q->queue_lock);
3051 WARN_ON_ONCE(q->mq_ops);
3052
3053 if (req->rq_flags & RQF_STATS)
3054 blk_stat_add(req);
3055
3056 if (req->rq_flags & RQF_QUEUED)
3057 blk_queue_end_tag(q, req);
3058
3059 BUG_ON(blk_queued_rq(req));
3060
3061 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
3062 laptop_io_completion(req->q->backing_dev_info);
3063
3064 blk_delete_timer(req);
3065
3066 if (req->rq_flags & RQF_DONTPREP)
3067 blk_unprep_request(req);
3068
3069 blk_account_io_done(req);
3070
3071 if (req->end_io) {
3072 wbt_done(req->q->rq_wb, &req->issue_stat);
3073 req->end_io(req, error);
3074 } else {
3075 if (blk_bidi_rq(req))
3076 __blk_put_request(req->next_rq->q, req->next_rq);
3077
3078 __blk_put_request(q, req);
3079 }
3080 }
3081 EXPORT_SYMBOL(blk_finish_request);
3082
3083 /**
3084 * blk_end_bidi_request - Complete a bidi request
3085 * @rq: the request to complete
3086 * @error: block status code
3087 * @nr_bytes: number of bytes to complete @rq
3088 * @bidi_bytes: number of bytes to complete @rq->next_rq
3089 *
3090 * Description:
3091 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
3092 * Drivers that supports bidi can safely call this member for any
3093 * type of request, bidi or uni. In the later case @bidi_bytes is
3094 * just ignored.
3095 *
3096 * Return:
3097 * %false - we are done with this request
3098 * %true - still buffers pending for this request
3099 **/
3100 static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
3101 unsigned int nr_bytes, unsigned int bidi_bytes)
3102 {
3103 struct request_queue *q = rq->q;
3104 unsigned long flags;
3105
3106 WARN_ON_ONCE(q->mq_ops);
3107
3108 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3109 return true;
3110
3111 spin_lock_irqsave(q->queue_lock, flags);
3112 blk_finish_request(rq, error);
3113 spin_unlock_irqrestore(q->queue_lock, flags);
3114
3115 return false;
3116 }
3117
3118 /**
3119 * __blk_end_bidi_request - Complete a bidi request with queue lock held
3120 * @rq: the request to complete
3121 * @error: block status code
3122 * @nr_bytes: number of bytes to complete @rq
3123 * @bidi_bytes: number of bytes to complete @rq->next_rq
3124 *
3125 * Description:
3126 * Identical to blk_end_bidi_request() except that queue lock is
3127 * assumed to be locked on entry and remains so on return.
3128 *
3129 * Return:
3130 * %false - we are done with this request
3131 * %true - still buffers pending for this request
3132 **/
3133 static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
3134 unsigned int nr_bytes, unsigned int bidi_bytes)
3135 {
3136 lockdep_assert_held(rq->q->queue_lock);
3137 WARN_ON_ONCE(rq->q->mq_ops);
3138
3139 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3140 return true;
3141
3142 blk_finish_request(rq, error);
3143
3144 return false;
3145 }
3146
3147 /**
3148 * blk_end_request - Helper function for drivers to complete the request.
3149 * @rq: the request being processed
3150 * @error: block status code
3151 * @nr_bytes: number of bytes to complete
3152 *
3153 * Description:
3154 * Ends I/O on a number of bytes attached to @rq.
3155 * If @rq has leftover, sets it up for the next range of segments.
3156 *
3157 * Return:
3158 * %false - we are done with this request
3159 * %true - still buffers pending for this request
3160 **/
3161 bool blk_end_request(struct request *rq, blk_status_t error,
3162 unsigned int nr_bytes)
3163 {
3164 WARN_ON_ONCE(rq->q->mq_ops);
3165 return blk_end_bidi_request(rq, error, nr_bytes, 0);
3166 }
3167 EXPORT_SYMBOL(blk_end_request);
3168
3169 /**
3170 * blk_end_request_all - Helper function for drives to finish the request.
3171 * @rq: the request to finish
3172 * @error: block status code
3173 *
3174 * Description:
3175 * Completely finish @rq.
3176 */
3177 void blk_end_request_all(struct request *rq, blk_status_t error)
3178 {
3179 bool pending;
3180 unsigned int bidi_bytes = 0;
3181
3182 if (unlikely(blk_bidi_rq(rq)))
3183 bidi_bytes = blk_rq_bytes(rq->next_rq);
3184
3185 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3186 BUG_ON(pending);
3187 }
3188 EXPORT_SYMBOL(blk_end_request_all);
3189
3190 /**
3191 * __blk_end_request - Helper function for drivers to complete the request.
3192 * @rq: the request being processed
3193 * @error: block status code
3194 * @nr_bytes: number of bytes to complete
3195 *
3196 * Description:
3197 * Must be called with queue lock held unlike blk_end_request().
3198 *
3199 * Return:
3200 * %false - we are done with this request
3201 * %true - still buffers pending for this request
3202 **/
3203 bool __blk_end_request(struct request *rq, blk_status_t error,
3204 unsigned int nr_bytes)
3205 {
3206 lockdep_assert_held(rq->q->queue_lock);
3207 WARN_ON_ONCE(rq->q->mq_ops);
3208
3209 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
3210 }
3211 EXPORT_SYMBOL(__blk_end_request);
3212
3213 /**
3214 * __blk_end_request_all - Helper function for drives to finish the request.
3215 * @rq: the request to finish
3216 * @error: block status code
3217 *
3218 * Description:
3219 * Completely finish @rq. Must be called with queue lock held.
3220 */
3221 void __blk_end_request_all(struct request *rq, blk_status_t error)
3222 {
3223 bool pending;
3224 unsigned int bidi_bytes = 0;
3225
3226 lockdep_assert_held(rq->q->queue_lock);
3227 WARN_ON_ONCE(rq->q->mq_ops);
3228
3229 if (unlikely(blk_bidi_rq(rq)))
3230 bidi_bytes = blk_rq_bytes(rq->next_rq);
3231
3232 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3233 BUG_ON(pending);
3234 }
3235 EXPORT_SYMBOL(__blk_end_request_all);
3236
3237 /**
3238 * __blk_end_request_cur - Helper function to finish the current request chunk.
3239 * @rq: the request to finish the current chunk for
3240 * @error: block status code
3241 *
3242 * Description:
3243 * Complete the current consecutively mapped chunk from @rq. Must
3244 * be called with queue lock held.
3245 *
3246 * Return:
3247 * %false - we are done with this request
3248 * %true - still buffers pending for this request
3249 */
3250 bool __blk_end_request_cur(struct request *rq, blk_status_t error)
3251 {
3252 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
3253 }
3254 EXPORT_SYMBOL(__blk_end_request_cur);
3255
3256 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3257 struct bio *bio)
3258 {
3259 if (bio_has_data(bio))
3260 rq->nr_phys_segments = bio_phys_segments(q, bio);
3261 else if (bio_op(bio) == REQ_OP_DISCARD)
3262 rq->nr_phys_segments = 1;
3263
3264 rq->__data_len = bio->bi_iter.bi_size;
3265 rq->bio = rq->biotail = bio;
3266
3267 if (bio->bi_disk)
3268 rq->rq_disk = bio->bi_disk;
3269 }
3270
3271 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3272 /**
3273 * rq_flush_dcache_pages - Helper function to flush all pages in a request
3274 * @rq: the request to be flushed
3275 *
3276 * Description:
3277 * Flush all pages in @rq.
3278 */
3279 void rq_flush_dcache_pages(struct request *rq)
3280 {
3281 struct req_iterator iter;
3282 struct bio_vec bvec;
3283
3284 rq_for_each_segment(bvec, rq, iter)
3285 flush_dcache_page(bvec.bv_page);
3286 }
3287 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3288 #endif
3289
3290 /**
3291 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3292 * @q : the queue of the device being checked
3293 *
3294 * Description:
3295 * Check if underlying low-level drivers of a device are busy.
3296 * If the drivers want to export their busy state, they must set own
3297 * exporting function using blk_queue_lld_busy() first.
3298 *
3299 * Basically, this function is used only by request stacking drivers
3300 * to stop dispatching requests to underlying devices when underlying
3301 * devices are busy. This behavior helps more I/O merging on the queue
3302 * of the request stacking driver and prevents I/O throughput regression
3303 * on burst I/O load.
3304 *
3305 * Return:
3306 * 0 - Not busy (The request stacking driver should dispatch request)
3307 * 1 - Busy (The request stacking driver should stop dispatching request)
3308 */
3309 int blk_lld_busy(struct request_queue *q)
3310 {
3311 if (q->lld_busy_fn)
3312 return q->lld_busy_fn(q);
3313
3314 return 0;
3315 }
3316 EXPORT_SYMBOL_GPL(blk_lld_busy);
3317
3318 /**
3319 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3320 * @rq: the clone request to be cleaned up
3321 *
3322 * Description:
3323 * Free all bios in @rq for a cloned request.
3324 */
3325 void blk_rq_unprep_clone(struct request *rq)
3326 {
3327 struct bio *bio;
3328
3329 while ((bio = rq->bio) != NULL) {
3330 rq->bio = bio->bi_next;
3331
3332 bio_put(bio);
3333 }
3334 }
3335 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3336
3337 /*
3338 * Copy attributes of the original request to the clone request.
3339 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3340 */
3341 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3342 {
3343 dst->cpu = src->cpu;
3344 dst->__sector = blk_rq_pos(src);
3345 dst->__data_len = blk_rq_bytes(src);
3346 if (src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3347 dst->rq_flags |= RQF_SPECIAL_PAYLOAD;
3348 dst->special_vec = src->special_vec;
3349 }
3350 dst->nr_phys_segments = src->nr_phys_segments;
3351 dst->ioprio = src->ioprio;
3352 dst->extra_len = src->extra_len;
3353 }
3354
3355 /**
3356 * blk_rq_prep_clone - Helper function to setup clone request
3357 * @rq: the request to be setup
3358 * @rq_src: original request to be cloned
3359 * @bs: bio_set that bios for clone are allocated from
3360 * @gfp_mask: memory allocation mask for bio
3361 * @bio_ctr: setup function to be called for each clone bio.
3362 * Returns %0 for success, non %0 for failure.
3363 * @data: private data to be passed to @bio_ctr
3364 *
3365 * Description:
3366 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3367 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3368 * are not copied, and copying such parts is the caller's responsibility.
3369 * Also, pages which the original bios are pointing to are not copied
3370 * and the cloned bios just point same pages.
3371 * So cloned bios must be completed before original bios, which means
3372 * the caller must complete @rq before @rq_src.
3373 */
3374 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3375 struct bio_set *bs, gfp_t gfp_mask,
3376 int (*bio_ctr)(struct bio *, struct bio *, void *),
3377 void *data)
3378 {
3379 struct bio *bio, *bio_src;
3380
3381 if (!bs)
3382 bs = fs_bio_set;
3383
3384 __rq_for_each_bio(bio_src, rq_src) {
3385 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3386 if (!bio)
3387 goto free_and_out;
3388
3389 if (bio_ctr && bio_ctr(bio, bio_src, data))
3390 goto free_and_out;
3391
3392 if (rq->bio) {
3393 rq->biotail->bi_next = bio;
3394 rq->biotail = bio;
3395 } else
3396 rq->bio = rq->biotail = bio;
3397 }
3398
3399 __blk_rq_prep_clone(rq, rq_src);
3400
3401 return 0;
3402
3403 free_and_out:
3404 if (bio)
3405 bio_put(bio);
3406 blk_rq_unprep_clone(rq);
3407
3408 return -ENOMEM;
3409 }
3410 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3411
3412 int kblockd_schedule_work(struct work_struct *work)
3413 {
3414 return queue_work(kblockd_workqueue, work);
3415 }
3416 EXPORT_SYMBOL(kblockd_schedule_work);
3417
3418 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3419 {
3420 return queue_work_on(cpu, kblockd_workqueue, work);
3421 }
3422 EXPORT_SYMBOL(kblockd_schedule_work_on);
3423
3424 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3425 unsigned long delay)
3426 {
3427 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3428 }
3429 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3430
3431 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3432 unsigned long delay)
3433 {
3434 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3435 }
3436 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3437
3438 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3439 unsigned long delay)
3440 {
3441 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3442 }
3443 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3444
3445 /**
3446 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3447 * @plug: The &struct blk_plug that needs to be initialized
3448 *
3449 * Description:
3450 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3451 * pending I/O should the task end up blocking between blk_start_plug() and
3452 * blk_finish_plug(). This is important from a performance perspective, but
3453 * also ensures that we don't deadlock. For instance, if the task is blocking
3454 * for a memory allocation, memory reclaim could end up wanting to free a
3455 * page belonging to that request that is currently residing in our private
3456 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3457 * this kind of deadlock.
3458 */
3459 void blk_start_plug(struct blk_plug *plug)
3460 {
3461 struct task_struct *tsk = current;
3462
3463 /*
3464 * If this is a nested plug, don't actually assign it.
3465 */
3466 if (tsk->plug)
3467 return;
3468
3469 INIT_LIST_HEAD(&plug->list);
3470 INIT_LIST_HEAD(&plug->mq_list);
3471 INIT_LIST_HEAD(&plug->cb_list);
3472 /*
3473 * Store ordering should not be needed here, since a potential
3474 * preempt will imply a full memory barrier
3475 */
3476 tsk->plug = plug;
3477 }
3478 EXPORT_SYMBOL(blk_start_plug);
3479
3480 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3481 {
3482 struct request *rqa = container_of(a, struct request, queuelist);
3483 struct request *rqb = container_of(b, struct request, queuelist);
3484
3485 return !(rqa->q < rqb->q ||
3486 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3487 }
3488
3489 /*
3490 * If 'from_schedule' is true, then postpone the dispatch of requests
3491 * until a safe kblockd context. We due this to avoid accidental big
3492 * additional stack usage in driver dispatch, in places where the originally
3493 * plugger did not intend it.
3494 */
3495 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3496 bool from_schedule)
3497 __releases(q->queue_lock)
3498 {
3499 lockdep_assert_held(q->queue_lock);
3500
3501 trace_block_unplug(q, depth, !from_schedule);
3502
3503 if (from_schedule)
3504 blk_run_queue_async(q);
3505 else
3506 __blk_run_queue(q);
3507 spin_unlock(q->queue_lock);
3508 }
3509
3510 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3511 {
3512 LIST_HEAD(callbacks);
3513
3514 while (!list_empty(&plug->cb_list)) {
3515 list_splice_init(&plug->cb_list, &callbacks);
3516
3517 while (!list_empty(&callbacks)) {
3518 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3519 struct blk_plug_cb,
3520 list);
3521 list_del(&cb->list);
3522 cb->callback(cb, from_schedule);
3523 }
3524 }
3525 }
3526
3527 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3528 int size)
3529 {
3530 struct blk_plug *plug = current->plug;
3531 struct blk_plug_cb *cb;
3532
3533 if (!plug)
3534 return NULL;
3535
3536 list_for_each_entry(cb, &plug->cb_list, list)
3537 if (cb->callback == unplug && cb->data == data)
3538 return cb;
3539
3540 /* Not currently on the callback list */
3541 BUG_ON(size < sizeof(*cb));
3542 cb = kzalloc(size, GFP_ATOMIC);
3543 if (cb) {
3544 cb->data = data;
3545 cb->callback = unplug;
3546 list_add(&cb->list, &plug->cb_list);
3547 }
3548 return cb;
3549 }
3550 EXPORT_SYMBOL(blk_check_plugged);
3551
3552 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3553 {
3554 struct request_queue *q;
3555 unsigned long flags;
3556 struct request *rq;
3557 LIST_HEAD(list);
3558 unsigned int depth;
3559
3560 flush_plug_callbacks(plug, from_schedule);
3561
3562 if (!list_empty(&plug->mq_list))
3563 blk_mq_flush_plug_list(plug, from_schedule);
3564
3565 if (list_empty(&plug->list))
3566 return;
3567
3568 list_splice_init(&plug->list, &list);
3569
3570 list_sort(NULL, &list, plug_rq_cmp);
3571
3572 q = NULL;
3573 depth = 0;
3574
3575 /*
3576 * Save and disable interrupts here, to avoid doing it for every
3577 * queue lock we have to take.
3578 */
3579 local_irq_save(flags);
3580 while (!list_empty(&list)) {
3581 rq = list_entry_rq(list.next);
3582 list_del_init(&rq->queuelist);
3583 BUG_ON(!rq->q);
3584 if (rq->q != q) {
3585 /*
3586 * This drops the queue lock
3587 */
3588 if (q)
3589 queue_unplugged(q, depth, from_schedule);
3590 q = rq->q;
3591 depth = 0;
3592 spin_lock(q->queue_lock);
3593 }
3594
3595 /*
3596 * Short-circuit if @q is dead
3597 */
3598 if (unlikely(blk_queue_dying(q))) {
3599 __blk_end_request_all(rq, BLK_STS_IOERR);
3600 continue;
3601 }
3602
3603 /*
3604 * rq is already accounted, so use raw insert
3605 */
3606 if (op_is_flush(rq->cmd_flags))
3607 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3608 else
3609 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3610
3611 depth++;
3612 }
3613
3614 /*
3615 * This drops the queue lock
3616 */
3617 if (q)
3618 queue_unplugged(q, depth, from_schedule);
3619
3620 local_irq_restore(flags);
3621 }
3622
3623 void blk_finish_plug(struct blk_plug *plug)
3624 {
3625 if (plug != current->plug)
3626 return;
3627 blk_flush_plug_list(plug, false);
3628
3629 current->plug = NULL;
3630 }
3631 EXPORT_SYMBOL(blk_finish_plug);
3632
3633 #ifdef CONFIG_PM
3634 /**
3635 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3636 * @q: the queue of the device
3637 * @dev: the device the queue belongs to
3638 *
3639 * Description:
3640 * Initialize runtime-PM-related fields for @q and start auto suspend for
3641 * @dev. Drivers that want to take advantage of request-based runtime PM
3642 * should call this function after @dev has been initialized, and its
3643 * request queue @q has been allocated, and runtime PM for it can not happen
3644 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3645 * cases, driver should call this function before any I/O has taken place.
3646 *
3647 * This function takes care of setting up using auto suspend for the device,
3648 * the autosuspend delay is set to -1 to make runtime suspend impossible
3649 * until an updated value is either set by user or by driver. Drivers do
3650 * not need to touch other autosuspend settings.
3651 *
3652 * The block layer runtime PM is request based, so only works for drivers
3653 * that use request as their IO unit instead of those directly use bio's.
3654 */
3655 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3656 {
3657 /* Don't enable runtime PM for blk-mq until it is ready */
3658 if (q->mq_ops) {
3659 pm_runtime_disable(dev);
3660 return;
3661 }
3662
3663 q->dev = dev;
3664 q->rpm_status = RPM_ACTIVE;
3665 pm_runtime_set_autosuspend_delay(q->dev, -1);
3666 pm_runtime_use_autosuspend(q->dev);
3667 }
3668 EXPORT_SYMBOL(blk_pm_runtime_init);
3669
3670 /**
3671 * blk_pre_runtime_suspend - Pre runtime suspend check
3672 * @q: the queue of the device
3673 *
3674 * Description:
3675 * This function will check if runtime suspend is allowed for the device
3676 * by examining if there are any requests pending in the queue. If there
3677 * are requests pending, the device can not be runtime suspended; otherwise,
3678 * the queue's status will be updated to SUSPENDING and the driver can
3679 * proceed to suspend the device.
3680 *
3681 * For the not allowed case, we mark last busy for the device so that
3682 * runtime PM core will try to autosuspend it some time later.
3683 *
3684 * This function should be called near the start of the device's
3685 * runtime_suspend callback.
3686 *
3687 * Return:
3688 * 0 - OK to runtime suspend the device
3689 * -EBUSY - Device should not be runtime suspended
3690 */
3691 int blk_pre_runtime_suspend(struct request_queue *q)
3692 {
3693 int ret = 0;
3694
3695 if (!q->dev)
3696 return ret;
3697
3698 spin_lock_irq(q->queue_lock);
3699 if (q->nr_pending) {
3700 ret = -EBUSY;
3701 pm_runtime_mark_last_busy(q->dev);
3702 } else {
3703 q->rpm_status = RPM_SUSPENDING;
3704 }
3705 spin_unlock_irq(q->queue_lock);
3706 return ret;
3707 }
3708 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3709
3710 /**
3711 * blk_post_runtime_suspend - Post runtime suspend processing
3712 * @q: the queue of the device
3713 * @err: return value of the device's runtime_suspend function
3714 *
3715 * Description:
3716 * Update the queue's runtime status according to the return value of the
3717 * device's runtime suspend function and mark last busy for the device so
3718 * that PM core will try to auto suspend the device at a later time.
3719 *
3720 * This function should be called near the end of the device's
3721 * runtime_suspend callback.
3722 */
3723 void blk_post_runtime_suspend(struct request_queue *q, int err)
3724 {
3725 if (!q->dev)
3726 return;
3727
3728 spin_lock_irq(q->queue_lock);
3729 if (!err) {
3730 q->rpm_status = RPM_SUSPENDED;
3731 } else {
3732 q->rpm_status = RPM_ACTIVE;
3733 pm_runtime_mark_last_busy(q->dev);
3734 }
3735 spin_unlock_irq(q->queue_lock);
3736 }
3737 EXPORT_SYMBOL(blk_post_runtime_suspend);
3738
3739 /**
3740 * blk_pre_runtime_resume - Pre runtime resume processing
3741 * @q: the queue of the device
3742 *
3743 * Description:
3744 * Update the queue's runtime status to RESUMING in preparation for the
3745 * runtime resume of the device.
3746 *
3747 * This function should be called near the start of the device's
3748 * runtime_resume callback.
3749 */
3750 void blk_pre_runtime_resume(struct request_queue *q)
3751 {
3752 if (!q->dev)
3753 return;
3754
3755 spin_lock_irq(q->queue_lock);
3756 q->rpm_status = RPM_RESUMING;
3757 spin_unlock_irq(q->queue_lock);
3758 }
3759 EXPORT_SYMBOL(blk_pre_runtime_resume);
3760
3761 /**
3762 * blk_post_runtime_resume - Post runtime resume processing
3763 * @q: the queue of the device
3764 * @err: return value of the device's runtime_resume function
3765 *
3766 * Description:
3767 * Update the queue's runtime status according to the return value of the
3768 * device's runtime_resume function. If it is successfully resumed, process
3769 * the requests that are queued into the device's queue when it is resuming
3770 * and then mark last busy and initiate autosuspend for it.
3771 *
3772 * This function should be called near the end of the device's
3773 * runtime_resume callback.
3774 */
3775 void blk_post_runtime_resume(struct request_queue *q, int err)
3776 {
3777 if (!q->dev)
3778 return;
3779
3780 spin_lock_irq(q->queue_lock);
3781 if (!err) {
3782 q->rpm_status = RPM_ACTIVE;
3783 __blk_run_queue(q);
3784 pm_runtime_mark_last_busy(q->dev);
3785 pm_request_autosuspend(q->dev);
3786 } else {
3787 q->rpm_status = RPM_SUSPENDED;
3788 }
3789 spin_unlock_irq(q->queue_lock);
3790 }
3791 EXPORT_SYMBOL(blk_post_runtime_resume);
3792
3793 /**
3794 * blk_set_runtime_active - Force runtime status of the queue to be active
3795 * @q: the queue of the device
3796 *
3797 * If the device is left runtime suspended during system suspend the resume
3798 * hook typically resumes the device and corrects runtime status
3799 * accordingly. However, that does not affect the queue runtime PM status
3800 * which is still "suspended". This prevents processing requests from the
3801 * queue.
3802 *
3803 * This function can be used in driver's resume hook to correct queue
3804 * runtime PM status and re-enable peeking requests from the queue. It
3805 * should be called before first request is added to the queue.
3806 */
3807 void blk_set_runtime_active(struct request_queue *q)
3808 {
3809 spin_lock_irq(q->queue_lock);
3810 q->rpm_status = RPM_ACTIVE;
3811 pm_runtime_mark_last_busy(q->dev);
3812 pm_request_autosuspend(q->dev);
3813 spin_unlock_irq(q->queue_lock);
3814 }
3815 EXPORT_SYMBOL(blk_set_runtime_active);
3816 #endif
3817
3818 int __init blk_dev_init(void)
3819 {
3820 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3821 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3822 FIELD_SIZEOF(struct request, cmd_flags));
3823 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3824 FIELD_SIZEOF(struct bio, bi_opf));
3825
3826 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3827 kblockd_workqueue = alloc_workqueue("kblockd",
3828 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3829 if (!kblockd_workqueue)
3830 panic("Failed to create kblockd\n");
3831
3832 request_cachep = kmem_cache_create("blkdev_requests",
3833 sizeof(struct request), 0, SLAB_PANIC, NULL);
3834
3835 blk_requestq_cachep = kmem_cache_create("request_queue",
3836 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3837
3838 #ifdef CONFIG_DEBUG_FS
3839 blk_debugfs_root = debugfs_create_dir("block", NULL);
3840 #endif
3841
3842 return 0;
3843 }