]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-mq.c
block: do not use interruptible wait anywhere
[mirror_ubuntu-bionic-kernel.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
39
40 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 static void blk_mq_poll_stats_start(struct request_queue *q);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43
44 static int blk_mq_poll_stats_bkt(const struct request *rq)
45 {
46 int ddir, bytes, bucket;
47
48 ddir = rq_data_dir(rq);
49 bytes = blk_rq_bytes(rq);
50
51 bucket = ddir + 2*(ilog2(bytes) - 9);
52
53 if (bucket < 0)
54 return -1;
55 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57
58 return bucket;
59 }
60
61 /*
62 * Check if any of the ctx's have pending work in this hardware queue
63 */
64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65 {
66 return !list_empty_careful(&hctx->dispatch) ||
67 sbitmap_any_bit_set(&hctx->ctx_map) ||
68 blk_mq_sched_has_work(hctx);
69 }
70
71 /*
72 * Mark this ctx as having pending work in this hardware queue
73 */
74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75 struct blk_mq_ctx *ctx)
76 {
77 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
78 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 }
80
81 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
82 struct blk_mq_ctx *ctx)
83 {
84 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 }
86
87 struct mq_inflight {
88 struct hd_struct *part;
89 unsigned int *inflight;
90 };
91
92 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
93 struct request *rq, void *priv,
94 bool reserved)
95 {
96 struct mq_inflight *mi = priv;
97
98 if (test_bit(REQ_ATOM_STARTED, &rq->atomic_flags) &&
99 !test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
100 /*
101 * index[0] counts the specific partition that was asked
102 * for. index[1] counts the ones that are active on the
103 * whole device, so increment that if mi->part is indeed
104 * a partition, and not a whole device.
105 */
106 if (rq->part == mi->part)
107 mi->inflight[0]++;
108 if (mi->part->partno)
109 mi->inflight[1]++;
110 }
111 }
112
113 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
114 unsigned int inflight[2])
115 {
116 struct mq_inflight mi = { .part = part, .inflight = inflight, };
117
118 inflight[0] = inflight[1] = 0;
119 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
120 }
121
122 void blk_freeze_queue_start(struct request_queue *q)
123 {
124 int freeze_depth;
125
126 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
127 if (freeze_depth == 1) {
128 percpu_ref_kill(&q->q_usage_counter);
129 if (q->mq_ops)
130 blk_mq_run_hw_queues(q, false);
131 }
132 }
133 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
134
135 void blk_mq_freeze_queue_wait(struct request_queue *q)
136 {
137 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
138 }
139 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
140
141 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
142 unsigned long timeout)
143 {
144 return wait_event_timeout(q->mq_freeze_wq,
145 percpu_ref_is_zero(&q->q_usage_counter),
146 timeout);
147 }
148 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
149
150 /*
151 * Guarantee no request is in use, so we can change any data structure of
152 * the queue afterward.
153 */
154 void blk_freeze_queue(struct request_queue *q)
155 {
156 /*
157 * In the !blk_mq case we are only calling this to kill the
158 * q_usage_counter, otherwise this increases the freeze depth
159 * and waits for it to return to zero. For this reason there is
160 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
161 * exported to drivers as the only user for unfreeze is blk_mq.
162 */
163 blk_freeze_queue_start(q);
164 if (!q->mq_ops)
165 blk_drain_queue(q);
166 blk_mq_freeze_queue_wait(q);
167 }
168
169 void blk_mq_freeze_queue(struct request_queue *q)
170 {
171 /*
172 * ...just an alias to keep freeze and unfreeze actions balanced
173 * in the blk_mq_* namespace
174 */
175 blk_freeze_queue(q);
176 }
177 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
178
179 void blk_mq_unfreeze_queue(struct request_queue *q)
180 {
181 int freeze_depth;
182
183 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
184 WARN_ON_ONCE(freeze_depth < 0);
185 if (!freeze_depth) {
186 percpu_ref_reinit(&q->q_usage_counter);
187 wake_up_all(&q->mq_freeze_wq);
188 }
189 }
190 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
191
192 /*
193 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
194 * mpt3sas driver such that this function can be removed.
195 */
196 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
197 {
198 unsigned long flags;
199
200 spin_lock_irqsave(q->queue_lock, flags);
201 queue_flag_set(QUEUE_FLAG_QUIESCED, q);
202 spin_unlock_irqrestore(q->queue_lock, flags);
203 }
204 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
205
206 /**
207 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
208 * @q: request queue.
209 *
210 * Note: this function does not prevent that the struct request end_io()
211 * callback function is invoked. Once this function is returned, we make
212 * sure no dispatch can happen until the queue is unquiesced via
213 * blk_mq_unquiesce_queue().
214 */
215 void blk_mq_quiesce_queue(struct request_queue *q)
216 {
217 struct blk_mq_hw_ctx *hctx;
218 unsigned int i;
219 bool rcu = false;
220
221 blk_mq_quiesce_queue_nowait(q);
222
223 queue_for_each_hw_ctx(q, hctx, i) {
224 if (hctx->flags & BLK_MQ_F_BLOCKING)
225 synchronize_srcu(hctx->queue_rq_srcu);
226 else
227 rcu = true;
228 }
229 if (rcu)
230 synchronize_rcu();
231 }
232 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
233
234 /*
235 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
236 * @q: request queue.
237 *
238 * This function recovers queue into the state before quiescing
239 * which is done by blk_mq_quiesce_queue.
240 */
241 void blk_mq_unquiesce_queue(struct request_queue *q)
242 {
243 unsigned long flags;
244
245 spin_lock_irqsave(q->queue_lock, flags);
246 queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
247 spin_unlock_irqrestore(q->queue_lock, flags);
248
249 /* dispatch requests which are inserted during quiescing */
250 blk_mq_run_hw_queues(q, true);
251 }
252 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
253
254 void blk_mq_wake_waiters(struct request_queue *q)
255 {
256 struct blk_mq_hw_ctx *hctx;
257 unsigned int i;
258
259 queue_for_each_hw_ctx(q, hctx, i)
260 if (blk_mq_hw_queue_mapped(hctx))
261 blk_mq_tag_wakeup_all(hctx->tags, true);
262 }
263
264 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
265 {
266 return blk_mq_has_free_tags(hctx->tags);
267 }
268 EXPORT_SYMBOL(blk_mq_can_queue);
269
270 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
271 unsigned int tag, unsigned int op)
272 {
273 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
274 struct request *rq = tags->static_rqs[tag];
275
276 rq->rq_flags = 0;
277
278 if (data->flags & BLK_MQ_REQ_INTERNAL) {
279 rq->tag = -1;
280 rq->internal_tag = tag;
281 } else {
282 if (blk_mq_tag_busy(data->hctx)) {
283 rq->rq_flags = RQF_MQ_INFLIGHT;
284 atomic_inc(&data->hctx->nr_active);
285 }
286 rq->tag = tag;
287 rq->internal_tag = -1;
288 data->hctx->tags->rqs[rq->tag] = rq;
289 }
290
291 INIT_LIST_HEAD(&rq->queuelist);
292 /* csd/requeue_work/fifo_time is initialized before use */
293 rq->q = data->q;
294 rq->mq_ctx = data->ctx;
295 rq->cmd_flags = op;
296 if (data->flags & BLK_MQ_REQ_PREEMPT)
297 rq->rq_flags |= RQF_PREEMPT;
298 if (blk_queue_io_stat(data->q))
299 rq->rq_flags |= RQF_IO_STAT;
300 /* do not touch atomic flags, it needs atomic ops against the timer */
301 rq->cpu = -1;
302 INIT_HLIST_NODE(&rq->hash);
303 RB_CLEAR_NODE(&rq->rb_node);
304 rq->rq_disk = NULL;
305 rq->part = NULL;
306 rq->start_time = jiffies;
307 #ifdef CONFIG_BLK_CGROUP
308 rq->rl = NULL;
309 set_start_time_ns(rq);
310 rq->io_start_time_ns = 0;
311 #endif
312 rq->nr_phys_segments = 0;
313 #if defined(CONFIG_BLK_DEV_INTEGRITY)
314 rq->nr_integrity_segments = 0;
315 #endif
316 rq->special = NULL;
317 /* tag was already set */
318 rq->extra_len = 0;
319
320 INIT_LIST_HEAD(&rq->timeout_list);
321 rq->timeout = 0;
322
323 rq->end_io = NULL;
324 rq->end_io_data = NULL;
325 rq->next_rq = NULL;
326
327 data->ctx->rq_dispatched[op_is_sync(op)]++;
328 return rq;
329 }
330
331 static struct request *blk_mq_get_request(struct request_queue *q,
332 struct bio *bio, unsigned int op,
333 struct blk_mq_alloc_data *data)
334 {
335 struct elevator_queue *e = q->elevator;
336 struct request *rq;
337 unsigned int tag;
338 bool put_ctx_on_error = false;
339
340 blk_queue_enter_live(q);
341 data->q = q;
342 if (likely(!data->ctx)) {
343 data->ctx = blk_mq_get_ctx(q);
344 put_ctx_on_error = true;
345 }
346 if (likely(!data->hctx))
347 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
348 if (op & REQ_NOWAIT)
349 data->flags |= BLK_MQ_REQ_NOWAIT;
350
351 if (e) {
352 data->flags |= BLK_MQ_REQ_INTERNAL;
353
354 /*
355 * Flush requests are special and go directly to the
356 * dispatch list.
357 */
358 if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
359 e->type->ops.mq.limit_depth(op, data);
360 }
361
362 tag = blk_mq_get_tag(data);
363 if (tag == BLK_MQ_TAG_FAIL) {
364 if (put_ctx_on_error) {
365 blk_mq_put_ctx(data->ctx);
366 data->ctx = NULL;
367 }
368 blk_queue_exit(q);
369 return NULL;
370 }
371
372 rq = blk_mq_rq_ctx_init(data, tag, op);
373 if (!op_is_flush(op)) {
374 rq->elv.icq = NULL;
375 if (e && e->type->ops.mq.prepare_request) {
376 if (e->type->icq_cache && rq_ioc(bio))
377 blk_mq_sched_assign_ioc(rq, bio);
378
379 e->type->ops.mq.prepare_request(rq, bio);
380 rq->rq_flags |= RQF_ELVPRIV;
381 }
382 }
383 data->hctx->queued++;
384 return rq;
385 }
386
387 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
388 blk_mq_req_flags_t flags)
389 {
390 struct blk_mq_alloc_data alloc_data = { .flags = flags };
391 struct request *rq;
392 int ret;
393
394 ret = blk_queue_enter(q, flags);
395 if (ret)
396 return ERR_PTR(ret);
397
398 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
399 blk_queue_exit(q);
400
401 if (!rq)
402 return ERR_PTR(-EWOULDBLOCK);
403
404 blk_mq_put_ctx(alloc_data.ctx);
405
406 rq->__data_len = 0;
407 rq->__sector = (sector_t) -1;
408 rq->bio = rq->biotail = NULL;
409 return rq;
410 }
411 EXPORT_SYMBOL(blk_mq_alloc_request);
412
413 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
414 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
415 {
416 struct blk_mq_alloc_data alloc_data = { .flags = flags };
417 struct request *rq;
418 unsigned int cpu;
419 int ret;
420
421 /*
422 * If the tag allocator sleeps we could get an allocation for a
423 * different hardware context. No need to complicate the low level
424 * allocator for this for the rare use case of a command tied to
425 * a specific queue.
426 */
427 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
428 return ERR_PTR(-EINVAL);
429
430 if (hctx_idx >= q->nr_hw_queues)
431 return ERR_PTR(-EIO);
432
433 ret = blk_queue_enter(q, flags);
434 if (ret)
435 return ERR_PTR(ret);
436
437 /*
438 * Check if the hardware context is actually mapped to anything.
439 * If not tell the caller that it should skip this queue.
440 */
441 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
442 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
443 blk_queue_exit(q);
444 return ERR_PTR(-EXDEV);
445 }
446 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
447 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
448
449 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
450 blk_queue_exit(q);
451
452 if (!rq)
453 return ERR_PTR(-EWOULDBLOCK);
454
455 return rq;
456 }
457 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
458
459 void blk_mq_free_request(struct request *rq)
460 {
461 struct request_queue *q = rq->q;
462 struct elevator_queue *e = q->elevator;
463 struct blk_mq_ctx *ctx = rq->mq_ctx;
464 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
465 const int sched_tag = rq->internal_tag;
466
467 if (rq->rq_flags & RQF_ELVPRIV) {
468 if (e && e->type->ops.mq.finish_request)
469 e->type->ops.mq.finish_request(rq);
470 if (rq->elv.icq) {
471 put_io_context(rq->elv.icq->ioc);
472 rq->elv.icq = NULL;
473 }
474 }
475
476 ctx->rq_completed[rq_is_sync(rq)]++;
477 if (rq->rq_flags & RQF_MQ_INFLIGHT)
478 atomic_dec(&hctx->nr_active);
479
480 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
481 laptop_io_completion(q->backing_dev_info);
482
483 wbt_done(q->rq_wb, &rq->issue_stat);
484
485 if (blk_rq_rl(rq))
486 blk_put_rl(blk_rq_rl(rq));
487
488 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
489 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
490 if (rq->tag != -1)
491 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
492 if (sched_tag != -1)
493 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
494 blk_mq_sched_restart(hctx);
495 blk_queue_exit(q);
496 }
497 EXPORT_SYMBOL_GPL(blk_mq_free_request);
498
499 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
500 {
501 blk_account_io_done(rq);
502
503 if (rq->end_io) {
504 wbt_done(rq->q->rq_wb, &rq->issue_stat);
505 rq->end_io(rq, error);
506 } else {
507 if (unlikely(blk_bidi_rq(rq)))
508 blk_mq_free_request(rq->next_rq);
509 blk_mq_free_request(rq);
510 }
511 }
512 EXPORT_SYMBOL(__blk_mq_end_request);
513
514 void blk_mq_end_request(struct request *rq, blk_status_t error)
515 {
516 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
517 BUG();
518 __blk_mq_end_request(rq, error);
519 }
520 EXPORT_SYMBOL(blk_mq_end_request);
521
522 static void __blk_mq_complete_request_remote(void *data)
523 {
524 struct request *rq = data;
525
526 rq->q->softirq_done_fn(rq);
527 }
528
529 static void __blk_mq_complete_request(struct request *rq)
530 {
531 struct blk_mq_ctx *ctx = rq->mq_ctx;
532 bool shared = false;
533 int cpu;
534
535 if (rq->internal_tag != -1)
536 blk_mq_sched_completed_request(rq);
537 if (rq->rq_flags & RQF_STATS) {
538 blk_mq_poll_stats_start(rq->q);
539 blk_stat_add(rq);
540 }
541
542 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
543 rq->q->softirq_done_fn(rq);
544 return;
545 }
546
547 cpu = get_cpu();
548 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
549 shared = cpus_share_cache(cpu, ctx->cpu);
550
551 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
552 rq->csd.func = __blk_mq_complete_request_remote;
553 rq->csd.info = rq;
554 rq->csd.flags = 0;
555 smp_call_function_single_async(ctx->cpu, &rq->csd);
556 } else {
557 rq->q->softirq_done_fn(rq);
558 }
559 put_cpu();
560 }
561
562 /**
563 * blk_mq_complete_request - end I/O on a request
564 * @rq: the request being processed
565 *
566 * Description:
567 * Ends all I/O on a request. It does not handle partial completions.
568 * The actual completion happens out-of-order, through a IPI handler.
569 **/
570 void blk_mq_complete_request(struct request *rq)
571 {
572 struct request_queue *q = rq->q;
573
574 if (unlikely(blk_should_fake_timeout(q)))
575 return;
576 if (!blk_mark_rq_complete(rq))
577 __blk_mq_complete_request(rq);
578 }
579 EXPORT_SYMBOL(blk_mq_complete_request);
580
581 int blk_mq_request_started(struct request *rq)
582 {
583 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
584 }
585 EXPORT_SYMBOL_GPL(blk_mq_request_started);
586
587 void blk_mq_start_request(struct request *rq)
588 {
589 struct request_queue *q = rq->q;
590
591 blk_mq_sched_started_request(rq);
592
593 trace_block_rq_issue(q, rq);
594
595 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
596 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
597 rq->rq_flags |= RQF_STATS;
598 wbt_issue(q->rq_wb, &rq->issue_stat);
599 }
600
601 blk_add_timer(rq);
602
603 WARN_ON_ONCE(test_bit(REQ_ATOM_STARTED, &rq->atomic_flags));
604
605 /*
606 * Mark us as started and clear complete. Complete might have been
607 * set if requeue raced with timeout, which then marked it as
608 * complete. So be sure to clear complete again when we start
609 * the request, otherwise we'll ignore the completion event.
610 *
611 * Ensure that ->deadline is visible before we set STARTED, such that
612 * blk_mq_check_expired() is guaranteed to observe our ->deadline when
613 * it observes STARTED.
614 */
615 smp_wmb();
616 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
617 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
618 /*
619 * Coherence order guarantees these consecutive stores to a
620 * single variable propagate in the specified order. Thus the
621 * clear_bit() is ordered _after_ the set bit. See
622 * blk_mq_check_expired().
623 *
624 * (the bits must be part of the same byte for this to be
625 * true).
626 */
627 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
628 }
629
630 if (q->dma_drain_size && blk_rq_bytes(rq)) {
631 /*
632 * Make sure space for the drain appears. We know we can do
633 * this because max_hw_segments has been adjusted to be one
634 * fewer than the device can handle.
635 */
636 rq->nr_phys_segments++;
637 }
638 }
639 EXPORT_SYMBOL(blk_mq_start_request);
640
641 /*
642 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
643 * flag isn't set yet, so there may be race with timeout handler,
644 * but given rq->deadline is just set in .queue_rq() under
645 * this situation, the race won't be possible in reality because
646 * rq->timeout should be set as big enough to cover the window
647 * between blk_mq_start_request() called from .queue_rq() and
648 * clearing REQ_ATOM_STARTED here.
649 */
650 static void __blk_mq_requeue_request(struct request *rq)
651 {
652 struct request_queue *q = rq->q;
653
654 blk_mq_put_driver_tag(rq);
655
656 trace_block_rq_requeue(q, rq);
657 wbt_requeue(q->rq_wb, &rq->issue_stat);
658
659 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
660 if (q->dma_drain_size && blk_rq_bytes(rq))
661 rq->nr_phys_segments--;
662 }
663 }
664
665 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
666 {
667 __blk_mq_requeue_request(rq);
668
669 /* this request will be re-inserted to io scheduler queue */
670 blk_mq_sched_requeue_request(rq);
671
672 BUG_ON(blk_queued_rq(rq));
673 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
674 }
675 EXPORT_SYMBOL(blk_mq_requeue_request);
676
677 static void blk_mq_requeue_work(struct work_struct *work)
678 {
679 struct request_queue *q =
680 container_of(work, struct request_queue, requeue_work.work);
681 LIST_HEAD(rq_list);
682 struct request *rq, *next;
683
684 spin_lock_irq(&q->requeue_lock);
685 list_splice_init(&q->requeue_list, &rq_list);
686 spin_unlock_irq(&q->requeue_lock);
687
688 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
689 if (!(rq->rq_flags & RQF_SOFTBARRIER))
690 continue;
691
692 rq->rq_flags &= ~RQF_SOFTBARRIER;
693 list_del_init(&rq->queuelist);
694 blk_mq_sched_insert_request(rq, true, false, false, true);
695 }
696
697 while (!list_empty(&rq_list)) {
698 rq = list_entry(rq_list.next, struct request, queuelist);
699 list_del_init(&rq->queuelist);
700 blk_mq_sched_insert_request(rq, false, false, false, true);
701 }
702
703 blk_mq_run_hw_queues(q, false);
704 }
705
706 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
707 bool kick_requeue_list)
708 {
709 struct request_queue *q = rq->q;
710 unsigned long flags;
711
712 /*
713 * We abuse this flag that is otherwise used by the I/O scheduler to
714 * request head insertion from the workqueue.
715 */
716 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
717
718 spin_lock_irqsave(&q->requeue_lock, flags);
719 if (at_head) {
720 rq->rq_flags |= RQF_SOFTBARRIER;
721 list_add(&rq->queuelist, &q->requeue_list);
722 } else {
723 list_add_tail(&rq->queuelist, &q->requeue_list);
724 }
725 spin_unlock_irqrestore(&q->requeue_lock, flags);
726
727 if (kick_requeue_list)
728 blk_mq_kick_requeue_list(q);
729 }
730 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
731
732 void blk_mq_kick_requeue_list(struct request_queue *q)
733 {
734 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
735 }
736 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
737
738 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
739 unsigned long msecs)
740 {
741 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
742 msecs_to_jiffies(msecs));
743 }
744 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
745
746 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
747 {
748 if (tag < tags->nr_tags) {
749 prefetch(tags->rqs[tag]);
750 return tags->rqs[tag];
751 }
752
753 return NULL;
754 }
755 EXPORT_SYMBOL(blk_mq_tag_to_rq);
756
757 struct blk_mq_timeout_data {
758 unsigned long next;
759 unsigned int next_set;
760 };
761
762 void blk_mq_rq_timed_out(struct request *req, bool reserved)
763 {
764 const struct blk_mq_ops *ops = req->q->mq_ops;
765 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
766
767 /*
768 * We know that complete is set at this point. If STARTED isn't set
769 * anymore, then the request isn't active and the "timeout" should
770 * just be ignored. This can happen due to the bitflag ordering.
771 * Timeout first checks if STARTED is set, and if it is, assumes
772 * the request is active. But if we race with completion, then
773 * both flags will get cleared. So check here again, and ignore
774 * a timeout event with a request that isn't active.
775 */
776 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
777 return;
778
779 if (ops->timeout)
780 ret = ops->timeout(req, reserved);
781
782 switch (ret) {
783 case BLK_EH_HANDLED:
784 __blk_mq_complete_request(req);
785 break;
786 case BLK_EH_RESET_TIMER:
787 blk_add_timer(req);
788 blk_clear_rq_complete(req);
789 break;
790 case BLK_EH_NOT_HANDLED:
791 break;
792 default:
793 printk(KERN_ERR "block: bad eh return: %d\n", ret);
794 break;
795 }
796 }
797
798 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
799 struct request *rq, void *priv, bool reserved)
800 {
801 struct blk_mq_timeout_data *data = priv;
802 unsigned long deadline;
803
804 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
805 return;
806
807 /*
808 * Ensures that if we see STARTED we must also see our
809 * up-to-date deadline, see blk_mq_start_request().
810 */
811 smp_rmb();
812
813 deadline = READ_ONCE(rq->deadline);
814
815 /*
816 * The rq being checked may have been freed and reallocated
817 * out already here, we avoid this race by checking rq->deadline
818 * and REQ_ATOM_COMPLETE flag together:
819 *
820 * - if rq->deadline is observed as new value because of
821 * reusing, the rq won't be timed out because of timing.
822 * - if rq->deadline is observed as previous value,
823 * REQ_ATOM_COMPLETE flag won't be cleared in reuse path
824 * because we put a barrier between setting rq->deadline
825 * and clearing the flag in blk_mq_start_request(), so
826 * this rq won't be timed out too.
827 */
828 if (time_after_eq(jiffies, deadline)) {
829 if (!blk_mark_rq_complete(rq)) {
830 /*
831 * Again coherence order ensures that consecutive reads
832 * from the same variable must be in that order. This
833 * ensures that if we see COMPLETE clear, we must then
834 * see STARTED set and we'll ignore this timeout.
835 *
836 * (There's also the MB implied by the test_and_clear())
837 */
838 blk_mq_rq_timed_out(rq, reserved);
839 }
840 } else if (!data->next_set || time_after(data->next, deadline)) {
841 data->next = deadline;
842 data->next_set = 1;
843 }
844 }
845
846 static void blk_mq_timeout_work(struct work_struct *work)
847 {
848 struct request_queue *q =
849 container_of(work, struct request_queue, timeout_work);
850 struct blk_mq_timeout_data data = {
851 .next = 0,
852 .next_set = 0,
853 };
854 int i;
855
856 /* A deadlock might occur if a request is stuck requiring a
857 * timeout at the same time a queue freeze is waiting
858 * completion, since the timeout code would not be able to
859 * acquire the queue reference here.
860 *
861 * That's why we don't use blk_queue_enter here; instead, we use
862 * percpu_ref_tryget directly, because we need to be able to
863 * obtain a reference even in the short window between the queue
864 * starting to freeze, by dropping the first reference in
865 * blk_freeze_queue_start, and the moment the last request is
866 * consumed, marked by the instant q_usage_counter reaches
867 * zero.
868 */
869 if (!percpu_ref_tryget(&q->q_usage_counter))
870 return;
871
872 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
873
874 if (data.next_set) {
875 data.next = blk_rq_timeout(round_jiffies_up(data.next));
876 mod_timer(&q->timeout, data.next);
877 } else {
878 struct blk_mq_hw_ctx *hctx;
879
880 queue_for_each_hw_ctx(q, hctx, i) {
881 /* the hctx may be unmapped, so check it here */
882 if (blk_mq_hw_queue_mapped(hctx))
883 blk_mq_tag_idle(hctx);
884 }
885 }
886 blk_queue_exit(q);
887 }
888
889 struct flush_busy_ctx_data {
890 struct blk_mq_hw_ctx *hctx;
891 struct list_head *list;
892 };
893
894 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
895 {
896 struct flush_busy_ctx_data *flush_data = data;
897 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
898 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
899
900 sbitmap_clear_bit(sb, bitnr);
901 spin_lock(&ctx->lock);
902 list_splice_tail_init(&ctx->rq_list, flush_data->list);
903 spin_unlock(&ctx->lock);
904 return true;
905 }
906
907 /*
908 * Process software queues that have been marked busy, splicing them
909 * to the for-dispatch
910 */
911 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
912 {
913 struct flush_busy_ctx_data data = {
914 .hctx = hctx,
915 .list = list,
916 };
917
918 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
919 }
920 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
921
922 struct dispatch_rq_data {
923 struct blk_mq_hw_ctx *hctx;
924 struct request *rq;
925 };
926
927 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
928 void *data)
929 {
930 struct dispatch_rq_data *dispatch_data = data;
931 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
932 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
933
934 spin_lock(&ctx->lock);
935 if (unlikely(!list_empty(&ctx->rq_list))) {
936 dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
937 list_del_init(&dispatch_data->rq->queuelist);
938 if (list_empty(&ctx->rq_list))
939 sbitmap_clear_bit(sb, bitnr);
940 }
941 spin_unlock(&ctx->lock);
942
943 return !dispatch_data->rq;
944 }
945
946 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
947 struct blk_mq_ctx *start)
948 {
949 unsigned off = start ? start->index_hw : 0;
950 struct dispatch_rq_data data = {
951 .hctx = hctx,
952 .rq = NULL,
953 };
954
955 __sbitmap_for_each_set(&hctx->ctx_map, off,
956 dispatch_rq_from_ctx, &data);
957
958 return data.rq;
959 }
960
961 static inline unsigned int queued_to_index(unsigned int queued)
962 {
963 if (!queued)
964 return 0;
965
966 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
967 }
968
969 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
970 bool wait)
971 {
972 struct blk_mq_alloc_data data = {
973 .q = rq->q,
974 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
975 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
976 };
977
978 might_sleep_if(wait);
979
980 if (rq->tag != -1)
981 goto done;
982
983 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
984 data.flags |= BLK_MQ_REQ_RESERVED;
985
986 rq->tag = blk_mq_get_tag(&data);
987 if (rq->tag >= 0) {
988 if (blk_mq_tag_busy(data.hctx)) {
989 rq->rq_flags |= RQF_MQ_INFLIGHT;
990 atomic_inc(&data.hctx->nr_active);
991 }
992 data.hctx->tags->rqs[rq->tag] = rq;
993 }
994
995 done:
996 if (hctx)
997 *hctx = data.hctx;
998 return rq->tag != -1;
999 }
1000
1001 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1002 int flags, void *key)
1003 {
1004 struct blk_mq_hw_ctx *hctx;
1005
1006 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1007
1008 list_del_init(&wait->entry);
1009 blk_mq_run_hw_queue(hctx, true);
1010 return 1;
1011 }
1012
1013 /*
1014 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1015 * the tag wakeups. For non-shared tags, we can simply mark us nedeing a
1016 * restart. For both caes, take care to check the condition again after
1017 * marking us as waiting.
1018 */
1019 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx,
1020 struct request *rq)
1021 {
1022 struct blk_mq_hw_ctx *this_hctx = *hctx;
1023 bool shared_tags = (this_hctx->flags & BLK_MQ_F_TAG_SHARED) != 0;
1024 struct sbq_wait_state *ws;
1025 wait_queue_entry_t *wait;
1026 bool ret;
1027
1028 if (!shared_tags) {
1029 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state))
1030 set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state);
1031 } else {
1032 wait = &this_hctx->dispatch_wait;
1033 if (!list_empty_careful(&wait->entry))
1034 return false;
1035
1036 spin_lock(&this_hctx->lock);
1037 if (!list_empty(&wait->entry)) {
1038 spin_unlock(&this_hctx->lock);
1039 return false;
1040 }
1041
1042 ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
1043 add_wait_queue(&ws->wait, wait);
1044 }
1045
1046 /*
1047 * It's possible that a tag was freed in the window between the
1048 * allocation failure and adding the hardware queue to the wait
1049 * queue.
1050 */
1051 ret = blk_mq_get_driver_tag(rq, hctx, false);
1052
1053 if (!shared_tags) {
1054 /*
1055 * Don't clear RESTART here, someone else could have set it.
1056 * At most this will cost an extra queue run.
1057 */
1058 return ret;
1059 } else {
1060 if (!ret) {
1061 spin_unlock(&this_hctx->lock);
1062 return false;
1063 }
1064
1065 /*
1066 * We got a tag, remove ourselves from the wait queue to ensure
1067 * someone else gets the wakeup.
1068 */
1069 spin_lock_irq(&ws->wait.lock);
1070 list_del_init(&wait->entry);
1071 spin_unlock_irq(&ws->wait.lock);
1072 spin_unlock(&this_hctx->lock);
1073 return true;
1074 }
1075 }
1076
1077 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1078 bool got_budget)
1079 {
1080 struct blk_mq_hw_ctx *hctx;
1081 struct request *rq, *nxt;
1082 bool no_tag = false;
1083 int errors, queued;
1084
1085 if (list_empty(list))
1086 return false;
1087
1088 WARN_ON(!list_is_singular(list) && got_budget);
1089
1090 /*
1091 * Now process all the entries, sending them to the driver.
1092 */
1093 errors = queued = 0;
1094 do {
1095 struct blk_mq_queue_data bd;
1096 blk_status_t ret;
1097
1098 rq = list_first_entry(list, struct request, queuelist);
1099
1100 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
1101 if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1102 break;
1103
1104 if (!blk_mq_get_driver_tag(rq, NULL, false)) {
1105 /*
1106 * The initial allocation attempt failed, so we need to
1107 * rerun the hardware queue when a tag is freed. The
1108 * waitqueue takes care of that. If the queue is run
1109 * before we add this entry back on the dispatch list,
1110 * we'll re-run it below.
1111 */
1112 if (!blk_mq_mark_tag_wait(&hctx, rq)) {
1113 blk_mq_put_dispatch_budget(hctx);
1114 /*
1115 * For non-shared tags, the RESTART check
1116 * will suffice.
1117 */
1118 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1119 no_tag = true;
1120 break;
1121 }
1122 }
1123
1124 list_del_init(&rq->queuelist);
1125
1126 bd.rq = rq;
1127
1128 /*
1129 * Flag last if we have no more requests, or if we have more
1130 * but can't assign a driver tag to it.
1131 */
1132 if (list_empty(list))
1133 bd.last = true;
1134 else {
1135 nxt = list_first_entry(list, struct request, queuelist);
1136 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1137 }
1138
1139 ret = q->mq_ops->queue_rq(hctx, &bd);
1140 if (ret == BLK_STS_RESOURCE) {
1141 /*
1142 * If an I/O scheduler has been configured and we got a
1143 * driver tag for the next request already, free it
1144 * again.
1145 */
1146 if (!list_empty(list)) {
1147 nxt = list_first_entry(list, struct request, queuelist);
1148 blk_mq_put_driver_tag(nxt);
1149 }
1150 list_add(&rq->queuelist, list);
1151 __blk_mq_requeue_request(rq);
1152 break;
1153 }
1154
1155 if (unlikely(ret != BLK_STS_OK)) {
1156 errors++;
1157 blk_mq_end_request(rq, BLK_STS_IOERR);
1158 continue;
1159 }
1160
1161 queued++;
1162 } while (!list_empty(list));
1163
1164 hctx->dispatched[queued_to_index(queued)]++;
1165
1166 /*
1167 * Any items that need requeuing? Stuff them into hctx->dispatch,
1168 * that is where we will continue on next queue run.
1169 */
1170 if (!list_empty(list)) {
1171 spin_lock(&hctx->lock);
1172 list_splice_init(list, &hctx->dispatch);
1173 spin_unlock(&hctx->lock);
1174
1175 /*
1176 * If SCHED_RESTART was set by the caller of this function and
1177 * it is no longer set that means that it was cleared by another
1178 * thread and hence that a queue rerun is needed.
1179 *
1180 * If 'no_tag' is set, that means that we failed getting
1181 * a driver tag with an I/O scheduler attached. If our dispatch
1182 * waitqueue is no longer active, ensure that we run the queue
1183 * AFTER adding our entries back to the list.
1184 *
1185 * If no I/O scheduler has been configured it is possible that
1186 * the hardware queue got stopped and restarted before requests
1187 * were pushed back onto the dispatch list. Rerun the queue to
1188 * avoid starvation. Notes:
1189 * - blk_mq_run_hw_queue() checks whether or not a queue has
1190 * been stopped before rerunning a queue.
1191 * - Some but not all block drivers stop a queue before
1192 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1193 * and dm-rq.
1194 */
1195 if (!blk_mq_sched_needs_restart(hctx) ||
1196 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1197 blk_mq_run_hw_queue(hctx, true);
1198 }
1199
1200 return (queued + errors) != 0;
1201 }
1202
1203 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1204 {
1205 int srcu_idx;
1206
1207 /*
1208 * We should be running this queue from one of the CPUs that
1209 * are mapped to it.
1210 *
1211 * There are at least two related races now between setting
1212 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1213 * __blk_mq_run_hw_queue():
1214 *
1215 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1216 * but later it becomes online, then this warning is harmless
1217 * at all
1218 *
1219 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1220 * but later it becomes offline, then the warning can't be
1221 * triggered, and we depend on blk-mq timeout handler to
1222 * handle dispatched requests to this hctx
1223 */
1224 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1225 cpu_online(hctx->next_cpu)) {
1226 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1227 raw_smp_processor_id(),
1228 cpumask_empty(hctx->cpumask) ? "inactive": "active");
1229 dump_stack();
1230 }
1231
1232 /*
1233 * We can't run the queue inline with ints disabled. Ensure that
1234 * we catch bad users of this early.
1235 */
1236 WARN_ON_ONCE(in_interrupt());
1237
1238 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1239 rcu_read_lock();
1240 blk_mq_sched_dispatch_requests(hctx);
1241 rcu_read_unlock();
1242 } else {
1243 might_sleep();
1244
1245 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1246 blk_mq_sched_dispatch_requests(hctx);
1247 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1248 }
1249 }
1250
1251 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1252 {
1253 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1254
1255 if (cpu >= nr_cpu_ids)
1256 cpu = cpumask_first(hctx->cpumask);
1257 return cpu;
1258 }
1259
1260 /*
1261 * It'd be great if the workqueue API had a way to pass
1262 * in a mask and had some smarts for more clever placement.
1263 * For now we just round-robin here, switching for every
1264 * BLK_MQ_CPU_WORK_BATCH queued items.
1265 */
1266 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1267 {
1268 bool tried = false;
1269 int next_cpu = hctx->next_cpu;
1270
1271 if (hctx->queue->nr_hw_queues == 1)
1272 return WORK_CPU_UNBOUND;
1273
1274 if (--hctx->next_cpu_batch <= 0) {
1275 select_cpu:
1276 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1277 cpu_online_mask);
1278 if (next_cpu >= nr_cpu_ids)
1279 next_cpu = blk_mq_first_mapped_cpu(hctx);
1280 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1281 }
1282
1283 /*
1284 * Do unbound schedule if we can't find a online CPU for this hctx,
1285 * and it should only happen in the path of handling CPU DEAD.
1286 */
1287 if (!cpu_online(next_cpu)) {
1288 if (!tried) {
1289 tried = true;
1290 goto select_cpu;
1291 }
1292
1293 /*
1294 * Make sure to re-select CPU next time once after CPUs
1295 * in hctx->cpumask become online again.
1296 */
1297 hctx->next_cpu = next_cpu;
1298 hctx->next_cpu_batch = 1;
1299 return WORK_CPU_UNBOUND;
1300 }
1301
1302 hctx->next_cpu = next_cpu;
1303 return next_cpu;
1304 }
1305
1306 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1307 unsigned long msecs)
1308 {
1309 if (unlikely(blk_mq_hctx_stopped(hctx)))
1310 return;
1311
1312 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1313 int cpu = get_cpu();
1314 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1315 __blk_mq_run_hw_queue(hctx);
1316 put_cpu();
1317 return;
1318 }
1319
1320 put_cpu();
1321 }
1322
1323 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1324 msecs_to_jiffies(msecs));
1325 }
1326
1327 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1328 {
1329 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1330 }
1331 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1332
1333 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1334 {
1335 if (blk_mq_hctx_has_pending(hctx)) {
1336 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1337 return true;
1338 }
1339
1340 return false;
1341 }
1342 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1343
1344 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1345 {
1346 struct blk_mq_hw_ctx *hctx;
1347 int i;
1348
1349 queue_for_each_hw_ctx(q, hctx, i) {
1350 if (blk_mq_hctx_stopped(hctx))
1351 continue;
1352
1353 blk_mq_run_hw_queue(hctx, async);
1354 }
1355 }
1356 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1357
1358 /**
1359 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1360 * @q: request queue.
1361 *
1362 * The caller is responsible for serializing this function against
1363 * blk_mq_{start,stop}_hw_queue().
1364 */
1365 bool blk_mq_queue_stopped(struct request_queue *q)
1366 {
1367 struct blk_mq_hw_ctx *hctx;
1368 int i;
1369
1370 queue_for_each_hw_ctx(q, hctx, i)
1371 if (blk_mq_hctx_stopped(hctx))
1372 return true;
1373
1374 return false;
1375 }
1376 EXPORT_SYMBOL(blk_mq_queue_stopped);
1377
1378 /*
1379 * This function is often used for pausing .queue_rq() by driver when
1380 * there isn't enough resource or some conditions aren't satisfied, and
1381 * BLK_STS_RESOURCE is usually returned.
1382 *
1383 * We do not guarantee that dispatch can be drained or blocked
1384 * after blk_mq_stop_hw_queue() returns. Please use
1385 * blk_mq_quiesce_queue() for that requirement.
1386 */
1387 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1388 {
1389 cancel_delayed_work(&hctx->run_work);
1390
1391 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1392 }
1393 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1394
1395 /*
1396 * This function is often used for pausing .queue_rq() by driver when
1397 * there isn't enough resource or some conditions aren't satisfied, and
1398 * BLK_STS_RESOURCE is usually returned.
1399 *
1400 * We do not guarantee that dispatch can be drained or blocked
1401 * after blk_mq_stop_hw_queues() returns. Please use
1402 * blk_mq_quiesce_queue() for that requirement.
1403 */
1404 void blk_mq_stop_hw_queues(struct request_queue *q)
1405 {
1406 struct blk_mq_hw_ctx *hctx;
1407 int i;
1408
1409 queue_for_each_hw_ctx(q, hctx, i)
1410 blk_mq_stop_hw_queue(hctx);
1411 }
1412 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1413
1414 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1415 {
1416 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1417
1418 blk_mq_run_hw_queue(hctx, false);
1419 }
1420 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1421
1422 void blk_mq_start_hw_queues(struct request_queue *q)
1423 {
1424 struct blk_mq_hw_ctx *hctx;
1425 int i;
1426
1427 queue_for_each_hw_ctx(q, hctx, i)
1428 blk_mq_start_hw_queue(hctx);
1429 }
1430 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1431
1432 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1433 {
1434 if (!blk_mq_hctx_stopped(hctx))
1435 return;
1436
1437 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1438 blk_mq_run_hw_queue(hctx, async);
1439 }
1440 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1441
1442 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1443 {
1444 struct blk_mq_hw_ctx *hctx;
1445 int i;
1446
1447 queue_for_each_hw_ctx(q, hctx, i)
1448 blk_mq_start_stopped_hw_queue(hctx, async);
1449 }
1450 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1451
1452 static void blk_mq_run_work_fn(struct work_struct *work)
1453 {
1454 struct blk_mq_hw_ctx *hctx;
1455
1456 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1457
1458 /*
1459 * If we are stopped, don't run the queue. The exception is if
1460 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1461 * the STOPPED bit and run it.
1462 */
1463 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1464 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1465 return;
1466
1467 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1468 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1469 }
1470
1471 __blk_mq_run_hw_queue(hctx);
1472 }
1473
1474
1475 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1476 {
1477 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1478 return;
1479
1480 /*
1481 * Stop the hw queue, then modify currently delayed work.
1482 * This should prevent us from running the queue prematurely.
1483 * Mark the queue as auto-clearing STOPPED when it runs.
1484 */
1485 blk_mq_stop_hw_queue(hctx);
1486 set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1487 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1488 &hctx->run_work,
1489 msecs_to_jiffies(msecs));
1490 }
1491 EXPORT_SYMBOL(blk_mq_delay_queue);
1492
1493 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1494 struct request *rq,
1495 bool at_head)
1496 {
1497 struct blk_mq_ctx *ctx = rq->mq_ctx;
1498
1499 lockdep_assert_held(&ctx->lock);
1500
1501 trace_block_rq_insert(hctx->queue, rq);
1502
1503 if (at_head)
1504 list_add(&rq->queuelist, &ctx->rq_list);
1505 else
1506 list_add_tail(&rq->queuelist, &ctx->rq_list);
1507 }
1508
1509 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1510 bool at_head)
1511 {
1512 struct blk_mq_ctx *ctx = rq->mq_ctx;
1513
1514 lockdep_assert_held(&ctx->lock);
1515
1516 __blk_mq_insert_req_list(hctx, rq, at_head);
1517 blk_mq_hctx_mark_pending(hctx, ctx);
1518 }
1519
1520 /*
1521 * Should only be used carefully, when the caller knows we want to
1522 * bypass a potential IO scheduler on the target device.
1523 */
1524 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1525 {
1526 struct blk_mq_ctx *ctx = rq->mq_ctx;
1527 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1528
1529 spin_lock(&hctx->lock);
1530 list_add_tail(&rq->queuelist, &hctx->dispatch);
1531 spin_unlock(&hctx->lock);
1532
1533 if (run_queue)
1534 blk_mq_run_hw_queue(hctx, false);
1535 }
1536
1537 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1538 struct list_head *list)
1539
1540 {
1541 /*
1542 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1543 * offline now
1544 */
1545 spin_lock(&ctx->lock);
1546 while (!list_empty(list)) {
1547 struct request *rq;
1548
1549 rq = list_first_entry(list, struct request, queuelist);
1550 BUG_ON(rq->mq_ctx != ctx);
1551 list_del_init(&rq->queuelist);
1552 __blk_mq_insert_req_list(hctx, rq, false);
1553 }
1554 blk_mq_hctx_mark_pending(hctx, ctx);
1555 spin_unlock(&ctx->lock);
1556 }
1557
1558 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1559 {
1560 struct request *rqa = container_of(a, struct request, queuelist);
1561 struct request *rqb = container_of(b, struct request, queuelist);
1562
1563 return !(rqa->mq_ctx < rqb->mq_ctx ||
1564 (rqa->mq_ctx == rqb->mq_ctx &&
1565 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1566 }
1567
1568 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1569 {
1570 struct blk_mq_ctx *this_ctx;
1571 struct request_queue *this_q;
1572 struct request *rq;
1573 LIST_HEAD(list);
1574 LIST_HEAD(ctx_list);
1575 unsigned int depth;
1576
1577 list_splice_init(&plug->mq_list, &list);
1578
1579 list_sort(NULL, &list, plug_ctx_cmp);
1580
1581 this_q = NULL;
1582 this_ctx = NULL;
1583 depth = 0;
1584
1585 while (!list_empty(&list)) {
1586 rq = list_entry_rq(list.next);
1587 list_del_init(&rq->queuelist);
1588 BUG_ON(!rq->q);
1589 if (rq->mq_ctx != this_ctx) {
1590 if (this_ctx) {
1591 trace_block_unplug(this_q, depth, from_schedule);
1592 blk_mq_sched_insert_requests(this_q, this_ctx,
1593 &ctx_list,
1594 from_schedule);
1595 }
1596
1597 this_ctx = rq->mq_ctx;
1598 this_q = rq->q;
1599 depth = 0;
1600 }
1601
1602 depth++;
1603 list_add_tail(&rq->queuelist, &ctx_list);
1604 }
1605
1606 /*
1607 * If 'this_ctx' is set, we know we have entries to complete
1608 * on 'ctx_list'. Do those.
1609 */
1610 if (this_ctx) {
1611 trace_block_unplug(this_q, depth, from_schedule);
1612 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1613 from_schedule);
1614 }
1615 }
1616
1617 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1618 {
1619 blk_init_request_from_bio(rq, bio);
1620
1621 blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1622
1623 blk_account_io_start(rq, true);
1624 }
1625
1626 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1627 struct blk_mq_ctx *ctx,
1628 struct request *rq)
1629 {
1630 spin_lock(&ctx->lock);
1631 __blk_mq_insert_request(hctx, rq, false);
1632 spin_unlock(&ctx->lock);
1633 }
1634
1635 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1636 {
1637 if (rq->tag != -1)
1638 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1639
1640 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1641 }
1642
1643 static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1644 struct request *rq,
1645 blk_qc_t *cookie, bool may_sleep)
1646 {
1647 struct request_queue *q = rq->q;
1648 struct blk_mq_queue_data bd = {
1649 .rq = rq,
1650 .last = true,
1651 };
1652 blk_qc_t new_cookie;
1653 blk_status_t ret;
1654 bool run_queue = true;
1655
1656 /* RCU or SRCU read lock is needed before checking quiesced flag */
1657 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1658 run_queue = false;
1659 goto insert;
1660 }
1661
1662 if (q->elevator)
1663 goto insert;
1664
1665 if (!blk_mq_get_dispatch_budget(hctx))
1666 goto insert;
1667
1668 if (!blk_mq_get_driver_tag(rq, NULL, false)) {
1669 blk_mq_put_dispatch_budget(hctx);
1670 goto insert;
1671 }
1672
1673 new_cookie = request_to_qc_t(hctx, rq);
1674
1675 /*
1676 * For OK queue, we are done. For error, kill it. Any other
1677 * error (busy), just add it to our list as we previously
1678 * would have done
1679 */
1680 ret = q->mq_ops->queue_rq(hctx, &bd);
1681 switch (ret) {
1682 case BLK_STS_OK:
1683 *cookie = new_cookie;
1684 return;
1685 case BLK_STS_RESOURCE:
1686 __blk_mq_requeue_request(rq);
1687 goto insert;
1688 default:
1689 *cookie = BLK_QC_T_NONE;
1690 blk_mq_end_request(rq, ret);
1691 return;
1692 }
1693
1694 insert:
1695 blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1696 }
1697
1698 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1699 struct request *rq, blk_qc_t *cookie)
1700 {
1701 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1702 rcu_read_lock();
1703 __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1704 rcu_read_unlock();
1705 } else {
1706 unsigned int srcu_idx;
1707
1708 might_sleep();
1709
1710 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1711 __blk_mq_try_issue_directly(hctx, rq, cookie, true);
1712 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1713 }
1714 }
1715
1716 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1717 {
1718 const int is_sync = op_is_sync(bio->bi_opf);
1719 const int is_flush_fua = op_is_flush(bio->bi_opf);
1720 struct blk_mq_alloc_data data = { .flags = 0 };
1721 struct request *rq;
1722 unsigned int request_count = 0;
1723 struct blk_plug *plug;
1724 struct request *same_queue_rq = NULL;
1725 blk_qc_t cookie;
1726 unsigned int wb_acct;
1727
1728 blk_queue_bounce(q, &bio);
1729
1730 blk_queue_split(q, &bio);
1731
1732 if (!bio_integrity_prep(bio))
1733 return BLK_QC_T_NONE;
1734
1735 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1736 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1737 return BLK_QC_T_NONE;
1738
1739 if (blk_mq_sched_bio_merge(q, bio))
1740 return BLK_QC_T_NONE;
1741
1742 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1743
1744 trace_block_getrq(q, bio, bio->bi_opf);
1745
1746 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1747 if (unlikely(!rq)) {
1748 __wbt_done(q->rq_wb, wb_acct);
1749 if (bio->bi_opf & REQ_NOWAIT)
1750 bio_wouldblock_error(bio);
1751 return BLK_QC_T_NONE;
1752 }
1753
1754 wbt_track(&rq->issue_stat, wb_acct);
1755
1756 cookie = request_to_qc_t(data.hctx, rq);
1757
1758 plug = current->plug;
1759 if (unlikely(is_flush_fua)) {
1760 blk_mq_put_ctx(data.ctx);
1761 blk_mq_bio_to_request(rq, bio);
1762
1763 /* bypass scheduler for flush rq */
1764 blk_insert_flush(rq);
1765 blk_mq_run_hw_queue(data.hctx, true);
1766 } else if (plug && q->nr_hw_queues == 1) {
1767 struct request *last = NULL;
1768
1769 blk_mq_put_ctx(data.ctx);
1770 blk_mq_bio_to_request(rq, bio);
1771
1772 /*
1773 * @request_count may become stale because of schedule
1774 * out, so check the list again.
1775 */
1776 if (list_empty(&plug->mq_list))
1777 request_count = 0;
1778 else if (blk_queue_nomerges(q))
1779 request_count = blk_plug_queued_count(q);
1780
1781 if (!request_count)
1782 trace_block_plug(q);
1783 else
1784 last = list_entry_rq(plug->mq_list.prev);
1785
1786 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1787 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1788 blk_flush_plug_list(plug, false);
1789 trace_block_plug(q);
1790 }
1791
1792 list_add_tail(&rq->queuelist, &plug->mq_list);
1793 } else if (plug && !blk_queue_nomerges(q)) {
1794 blk_mq_bio_to_request(rq, bio);
1795
1796 /*
1797 * We do limited plugging. If the bio can be merged, do that.
1798 * Otherwise the existing request in the plug list will be
1799 * issued. So the plug list will have one request at most
1800 * The plug list might get flushed before this. If that happens,
1801 * the plug list is empty, and same_queue_rq is invalid.
1802 */
1803 if (list_empty(&plug->mq_list))
1804 same_queue_rq = NULL;
1805 if (same_queue_rq)
1806 list_del_init(&same_queue_rq->queuelist);
1807 list_add_tail(&rq->queuelist, &plug->mq_list);
1808
1809 blk_mq_put_ctx(data.ctx);
1810
1811 if (same_queue_rq) {
1812 data.hctx = blk_mq_map_queue(q,
1813 same_queue_rq->mq_ctx->cpu);
1814 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1815 &cookie);
1816 }
1817 } else if (q->nr_hw_queues > 1 && is_sync) {
1818 blk_mq_put_ctx(data.ctx);
1819 blk_mq_bio_to_request(rq, bio);
1820 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1821 } else if (q->elevator) {
1822 blk_mq_put_ctx(data.ctx);
1823 blk_mq_bio_to_request(rq, bio);
1824 blk_mq_sched_insert_request(rq, false, true, true, true);
1825 } else {
1826 blk_mq_put_ctx(data.ctx);
1827 blk_mq_bio_to_request(rq, bio);
1828 blk_mq_queue_io(data.hctx, data.ctx, rq);
1829 blk_mq_run_hw_queue(data.hctx, true);
1830 }
1831
1832 return cookie;
1833 }
1834
1835 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1836 unsigned int hctx_idx)
1837 {
1838 struct page *page;
1839
1840 if (tags->rqs && set->ops->exit_request) {
1841 int i;
1842
1843 for (i = 0; i < tags->nr_tags; i++) {
1844 struct request *rq = tags->static_rqs[i];
1845
1846 if (!rq)
1847 continue;
1848 set->ops->exit_request(set, rq, hctx_idx);
1849 tags->static_rqs[i] = NULL;
1850 }
1851 }
1852
1853 while (!list_empty(&tags->page_list)) {
1854 page = list_first_entry(&tags->page_list, struct page, lru);
1855 list_del_init(&page->lru);
1856 /*
1857 * Remove kmemleak object previously allocated in
1858 * blk_mq_init_rq_map().
1859 */
1860 kmemleak_free(page_address(page));
1861 __free_pages(page, page->private);
1862 }
1863 }
1864
1865 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1866 {
1867 kfree(tags->rqs);
1868 tags->rqs = NULL;
1869 kfree(tags->static_rqs);
1870 tags->static_rqs = NULL;
1871
1872 blk_mq_free_tags(tags);
1873 }
1874
1875 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1876 unsigned int hctx_idx,
1877 unsigned int nr_tags,
1878 unsigned int reserved_tags)
1879 {
1880 struct blk_mq_tags *tags;
1881 int node;
1882
1883 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1884 if (node == NUMA_NO_NODE)
1885 node = set->numa_node;
1886
1887 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1888 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1889 if (!tags)
1890 return NULL;
1891
1892 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1893 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1894 node);
1895 if (!tags->rqs) {
1896 blk_mq_free_tags(tags);
1897 return NULL;
1898 }
1899
1900 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1901 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1902 node);
1903 if (!tags->static_rqs) {
1904 kfree(tags->rqs);
1905 blk_mq_free_tags(tags);
1906 return NULL;
1907 }
1908
1909 return tags;
1910 }
1911
1912 static size_t order_to_size(unsigned int order)
1913 {
1914 return (size_t)PAGE_SIZE << order;
1915 }
1916
1917 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1918 unsigned int hctx_idx, unsigned int depth)
1919 {
1920 unsigned int i, j, entries_per_page, max_order = 4;
1921 size_t rq_size, left;
1922 int node;
1923
1924 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1925 if (node == NUMA_NO_NODE)
1926 node = set->numa_node;
1927
1928 INIT_LIST_HEAD(&tags->page_list);
1929
1930 /*
1931 * rq_size is the size of the request plus driver payload, rounded
1932 * to the cacheline size
1933 */
1934 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1935 cache_line_size());
1936 left = rq_size * depth;
1937
1938 for (i = 0; i < depth; ) {
1939 int this_order = max_order;
1940 struct page *page;
1941 int to_do;
1942 void *p;
1943
1944 while (this_order && left < order_to_size(this_order - 1))
1945 this_order--;
1946
1947 do {
1948 page = alloc_pages_node(node,
1949 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1950 this_order);
1951 if (page)
1952 break;
1953 if (!this_order--)
1954 break;
1955 if (order_to_size(this_order) < rq_size)
1956 break;
1957 } while (1);
1958
1959 if (!page)
1960 goto fail;
1961
1962 page->private = this_order;
1963 list_add_tail(&page->lru, &tags->page_list);
1964
1965 p = page_address(page);
1966 /*
1967 * Allow kmemleak to scan these pages as they contain pointers
1968 * to additional allocations like via ops->init_request().
1969 */
1970 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1971 entries_per_page = order_to_size(this_order) / rq_size;
1972 to_do = min(entries_per_page, depth - i);
1973 left -= to_do * rq_size;
1974 for (j = 0; j < to_do; j++) {
1975 struct request *rq = p;
1976
1977 tags->static_rqs[i] = rq;
1978 if (set->ops->init_request) {
1979 if (set->ops->init_request(set, rq, hctx_idx,
1980 node)) {
1981 tags->static_rqs[i] = NULL;
1982 goto fail;
1983 }
1984 }
1985
1986 p += rq_size;
1987 i++;
1988 }
1989 }
1990 return 0;
1991
1992 fail:
1993 blk_mq_free_rqs(set, tags, hctx_idx);
1994 return -ENOMEM;
1995 }
1996
1997 /*
1998 * 'cpu' is going away. splice any existing rq_list entries from this
1999 * software queue to the hw queue dispatch list, and ensure that it
2000 * gets run.
2001 */
2002 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2003 {
2004 struct blk_mq_hw_ctx *hctx;
2005 struct blk_mq_ctx *ctx;
2006 LIST_HEAD(tmp);
2007
2008 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2009 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2010
2011 spin_lock(&ctx->lock);
2012 if (!list_empty(&ctx->rq_list)) {
2013 list_splice_init(&ctx->rq_list, &tmp);
2014 blk_mq_hctx_clear_pending(hctx, ctx);
2015 }
2016 spin_unlock(&ctx->lock);
2017
2018 if (list_empty(&tmp))
2019 return 0;
2020
2021 spin_lock(&hctx->lock);
2022 list_splice_tail_init(&tmp, &hctx->dispatch);
2023 spin_unlock(&hctx->lock);
2024
2025 blk_mq_run_hw_queue(hctx, true);
2026 return 0;
2027 }
2028
2029 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2030 {
2031 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2032 &hctx->cpuhp_dead);
2033 }
2034
2035 /* hctx->ctxs will be freed in queue's release handler */
2036 static void blk_mq_exit_hctx(struct request_queue *q,
2037 struct blk_mq_tag_set *set,
2038 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2039 {
2040 blk_mq_debugfs_unregister_hctx(hctx);
2041
2042 if (blk_mq_hw_queue_mapped(hctx))
2043 blk_mq_tag_idle(hctx);
2044
2045 if (set->ops->exit_request)
2046 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2047
2048 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2049
2050 if (set->ops->exit_hctx)
2051 set->ops->exit_hctx(hctx, hctx_idx);
2052
2053 if (hctx->flags & BLK_MQ_F_BLOCKING)
2054 cleanup_srcu_struct(hctx->queue_rq_srcu);
2055
2056 blk_mq_remove_cpuhp(hctx);
2057 blk_free_flush_queue(hctx->fq);
2058 sbitmap_free(&hctx->ctx_map);
2059 }
2060
2061 static void blk_mq_exit_hw_queues(struct request_queue *q,
2062 struct blk_mq_tag_set *set, int nr_queue)
2063 {
2064 struct blk_mq_hw_ctx *hctx;
2065 unsigned int i;
2066
2067 queue_for_each_hw_ctx(q, hctx, i) {
2068 if (i == nr_queue)
2069 break;
2070 blk_mq_exit_hctx(q, set, hctx, i);
2071 }
2072 }
2073
2074 static int blk_mq_init_hctx(struct request_queue *q,
2075 struct blk_mq_tag_set *set,
2076 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2077 {
2078 int node;
2079
2080 node = hctx->numa_node;
2081 if (node == NUMA_NO_NODE)
2082 node = hctx->numa_node = set->numa_node;
2083
2084 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2085 spin_lock_init(&hctx->lock);
2086 INIT_LIST_HEAD(&hctx->dispatch);
2087 hctx->queue = q;
2088 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2089
2090 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2091
2092 hctx->tags = set->tags[hctx_idx];
2093
2094 /*
2095 * Allocate space for all possible cpus to avoid allocation at
2096 * runtime
2097 */
2098 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2099 GFP_KERNEL, node);
2100 if (!hctx->ctxs)
2101 goto unregister_cpu_notifier;
2102
2103 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
2104 node))
2105 goto free_ctxs;
2106
2107 hctx->nr_ctx = 0;
2108
2109 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2110 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2111
2112 if (set->ops->init_hctx &&
2113 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2114 goto free_bitmap;
2115
2116 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
2117 goto exit_hctx;
2118
2119 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
2120 if (!hctx->fq)
2121 goto sched_exit_hctx;
2122
2123 if (set->ops->init_request &&
2124 set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
2125 node))
2126 goto free_fq;
2127
2128 if (hctx->flags & BLK_MQ_F_BLOCKING)
2129 init_srcu_struct(hctx->queue_rq_srcu);
2130
2131 blk_mq_debugfs_register_hctx(q, hctx);
2132
2133 return 0;
2134
2135 free_fq:
2136 kfree(hctx->fq);
2137 sched_exit_hctx:
2138 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2139 exit_hctx:
2140 if (set->ops->exit_hctx)
2141 set->ops->exit_hctx(hctx, hctx_idx);
2142 free_bitmap:
2143 sbitmap_free(&hctx->ctx_map);
2144 free_ctxs:
2145 kfree(hctx->ctxs);
2146 unregister_cpu_notifier:
2147 blk_mq_remove_cpuhp(hctx);
2148 return -1;
2149 }
2150
2151 static void blk_mq_init_cpu_queues(struct request_queue *q,
2152 unsigned int nr_hw_queues)
2153 {
2154 unsigned int i;
2155
2156 for_each_possible_cpu(i) {
2157 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2158 struct blk_mq_hw_ctx *hctx;
2159
2160 __ctx->cpu = i;
2161 spin_lock_init(&__ctx->lock);
2162 INIT_LIST_HEAD(&__ctx->rq_list);
2163 __ctx->queue = q;
2164
2165 /*
2166 * Set local node, IFF we have more than one hw queue. If
2167 * not, we remain on the home node of the device
2168 */
2169 hctx = blk_mq_map_queue(q, i);
2170 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2171 hctx->numa_node = local_memory_node(cpu_to_node(i));
2172 }
2173 }
2174
2175 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2176 {
2177 int ret = 0;
2178
2179 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2180 set->queue_depth, set->reserved_tags);
2181 if (!set->tags[hctx_idx])
2182 return false;
2183
2184 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2185 set->queue_depth);
2186 if (!ret)
2187 return true;
2188
2189 blk_mq_free_rq_map(set->tags[hctx_idx]);
2190 set->tags[hctx_idx] = NULL;
2191 return false;
2192 }
2193
2194 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2195 unsigned int hctx_idx)
2196 {
2197 if (set->tags[hctx_idx]) {
2198 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2199 blk_mq_free_rq_map(set->tags[hctx_idx]);
2200 set->tags[hctx_idx] = NULL;
2201 }
2202 }
2203
2204 static void blk_mq_map_swqueue(struct request_queue *q)
2205 {
2206 unsigned int i, hctx_idx;
2207 struct blk_mq_hw_ctx *hctx;
2208 struct blk_mq_ctx *ctx;
2209 struct blk_mq_tag_set *set = q->tag_set;
2210
2211 /*
2212 * Avoid others reading imcomplete hctx->cpumask through sysfs
2213 */
2214 mutex_lock(&q->sysfs_lock);
2215
2216 queue_for_each_hw_ctx(q, hctx, i) {
2217 cpumask_clear(hctx->cpumask);
2218 hctx->nr_ctx = 0;
2219 }
2220
2221 /*
2222 * Map software to hardware queues.
2223 *
2224 * If the cpu isn't present, the cpu is mapped to first hctx.
2225 */
2226 for_each_possible_cpu(i) {
2227 hctx_idx = q->mq_map[i];
2228 /* unmapped hw queue can be remapped after CPU topo changed */
2229 if (!set->tags[hctx_idx] &&
2230 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2231 /*
2232 * If tags initialization fail for some hctx,
2233 * that hctx won't be brought online. In this
2234 * case, remap the current ctx to hctx[0] which
2235 * is guaranteed to always have tags allocated
2236 */
2237 q->mq_map[i] = 0;
2238 }
2239
2240 ctx = per_cpu_ptr(q->queue_ctx, i);
2241 hctx = blk_mq_map_queue(q, i);
2242
2243 cpumask_set_cpu(i, hctx->cpumask);
2244 ctx->index_hw = hctx->nr_ctx;
2245 hctx->ctxs[hctx->nr_ctx++] = ctx;
2246 }
2247
2248 mutex_unlock(&q->sysfs_lock);
2249
2250 queue_for_each_hw_ctx(q, hctx, i) {
2251 /*
2252 * If no software queues are mapped to this hardware queue,
2253 * disable it and free the request entries.
2254 */
2255 if (!hctx->nr_ctx) {
2256 /* Never unmap queue 0. We need it as a
2257 * fallback in case of a new remap fails
2258 * allocation
2259 */
2260 if (i && set->tags[i])
2261 blk_mq_free_map_and_requests(set, i);
2262
2263 hctx->tags = NULL;
2264 continue;
2265 }
2266
2267 hctx->tags = set->tags[i];
2268 WARN_ON(!hctx->tags);
2269
2270 /*
2271 * Set the map size to the number of mapped software queues.
2272 * This is more accurate and more efficient than looping
2273 * over all possibly mapped software queues.
2274 */
2275 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2276
2277 /*
2278 * Initialize batch roundrobin counts
2279 */
2280 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2281 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2282 }
2283 }
2284
2285 /*
2286 * Caller needs to ensure that we're either frozen/quiesced, or that
2287 * the queue isn't live yet.
2288 */
2289 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2290 {
2291 struct blk_mq_hw_ctx *hctx;
2292 int i;
2293
2294 queue_for_each_hw_ctx(q, hctx, i) {
2295 if (shared) {
2296 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2297 atomic_inc(&q->shared_hctx_restart);
2298 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2299 } else {
2300 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2301 atomic_dec(&q->shared_hctx_restart);
2302 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2303 }
2304 }
2305 }
2306
2307 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2308 bool shared)
2309 {
2310 struct request_queue *q;
2311
2312 lockdep_assert_held(&set->tag_list_lock);
2313
2314 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2315 blk_mq_freeze_queue(q);
2316 queue_set_hctx_shared(q, shared);
2317 blk_mq_unfreeze_queue(q);
2318 }
2319 }
2320
2321 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2322 {
2323 struct blk_mq_tag_set *set = q->tag_set;
2324
2325 mutex_lock(&set->tag_list_lock);
2326 list_del_rcu(&q->tag_set_list);
2327 INIT_LIST_HEAD(&q->tag_set_list);
2328 if (list_is_singular(&set->tag_list)) {
2329 /* just transitioned to unshared */
2330 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2331 /* update existing queue */
2332 blk_mq_update_tag_set_depth(set, false);
2333 }
2334 mutex_unlock(&set->tag_list_lock);
2335
2336 synchronize_rcu();
2337 }
2338
2339 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2340 struct request_queue *q)
2341 {
2342 q->tag_set = set;
2343
2344 mutex_lock(&set->tag_list_lock);
2345
2346 /*
2347 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2348 */
2349 if (!list_empty(&set->tag_list) &&
2350 !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2351 set->flags |= BLK_MQ_F_TAG_SHARED;
2352 /* update existing queue */
2353 blk_mq_update_tag_set_depth(set, true);
2354 }
2355 if (set->flags & BLK_MQ_F_TAG_SHARED)
2356 queue_set_hctx_shared(q, true);
2357 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2358
2359 mutex_unlock(&set->tag_list_lock);
2360 }
2361
2362 /*
2363 * It is the actual release handler for mq, but we do it from
2364 * request queue's release handler for avoiding use-after-free
2365 * and headache because q->mq_kobj shouldn't have been introduced,
2366 * but we can't group ctx/kctx kobj without it.
2367 */
2368 void blk_mq_release(struct request_queue *q)
2369 {
2370 struct blk_mq_hw_ctx *hctx;
2371 unsigned int i;
2372
2373 /* hctx kobj stays in hctx */
2374 queue_for_each_hw_ctx(q, hctx, i) {
2375 if (!hctx)
2376 continue;
2377 kobject_put(&hctx->kobj);
2378 }
2379
2380 q->mq_map = NULL;
2381
2382 kfree(q->queue_hw_ctx);
2383
2384 /*
2385 * release .mq_kobj and sw queue's kobject now because
2386 * both share lifetime with request queue.
2387 */
2388 blk_mq_sysfs_deinit(q);
2389
2390 free_percpu(q->queue_ctx);
2391 }
2392
2393 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2394 {
2395 struct request_queue *uninit_q, *q;
2396
2397 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2398 if (!uninit_q)
2399 return ERR_PTR(-ENOMEM);
2400
2401 q = blk_mq_init_allocated_queue(set, uninit_q);
2402 if (IS_ERR(q))
2403 blk_cleanup_queue(uninit_q);
2404
2405 return q;
2406 }
2407 EXPORT_SYMBOL(blk_mq_init_queue);
2408
2409 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2410 {
2411 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2412
2413 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
2414 __alignof__(struct blk_mq_hw_ctx)) !=
2415 sizeof(struct blk_mq_hw_ctx));
2416
2417 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2418 hw_ctx_size += sizeof(struct srcu_struct);
2419
2420 return hw_ctx_size;
2421 }
2422
2423 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2424 struct request_queue *q)
2425 {
2426 int i, j;
2427 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2428
2429 blk_mq_sysfs_unregister(q);
2430
2431 /* protect against switching io scheduler */
2432 mutex_lock(&q->sysfs_lock);
2433 for (i = 0; i < set->nr_hw_queues; i++) {
2434 int node;
2435
2436 if (hctxs[i])
2437 continue;
2438
2439 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2440 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2441 GFP_KERNEL, node);
2442 if (!hctxs[i])
2443 break;
2444
2445 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2446 node)) {
2447 kfree(hctxs[i]);
2448 hctxs[i] = NULL;
2449 break;
2450 }
2451
2452 atomic_set(&hctxs[i]->nr_active, 0);
2453 hctxs[i]->numa_node = node;
2454 hctxs[i]->queue_num = i;
2455
2456 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2457 free_cpumask_var(hctxs[i]->cpumask);
2458 kfree(hctxs[i]);
2459 hctxs[i] = NULL;
2460 break;
2461 }
2462 blk_mq_hctx_kobj_init(hctxs[i]);
2463 }
2464 for (j = i; j < q->nr_hw_queues; j++) {
2465 struct blk_mq_hw_ctx *hctx = hctxs[j];
2466
2467 if (hctx) {
2468 if (hctx->tags)
2469 blk_mq_free_map_and_requests(set, j);
2470 blk_mq_exit_hctx(q, set, hctx, j);
2471 kobject_put(&hctx->kobj);
2472 hctxs[j] = NULL;
2473
2474 }
2475 }
2476 q->nr_hw_queues = i;
2477 mutex_unlock(&q->sysfs_lock);
2478 blk_mq_sysfs_register(q);
2479 }
2480
2481 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2482 struct request_queue *q)
2483 {
2484 /* mark the queue as mq asap */
2485 q->mq_ops = set->ops;
2486
2487 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2488 blk_mq_poll_stats_bkt,
2489 BLK_MQ_POLL_STATS_BKTS, q);
2490 if (!q->poll_cb)
2491 goto err_exit;
2492
2493 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2494 if (!q->queue_ctx)
2495 goto err_exit;
2496
2497 /* init q->mq_kobj and sw queues' kobjects */
2498 blk_mq_sysfs_init(q);
2499
2500 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2501 GFP_KERNEL, set->numa_node);
2502 if (!q->queue_hw_ctx)
2503 goto err_percpu;
2504
2505 q->mq_map = set->mq_map;
2506
2507 blk_mq_realloc_hw_ctxs(set, q);
2508 if (!q->nr_hw_queues)
2509 goto err_hctxs;
2510
2511 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2512 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2513
2514 q->nr_queues = nr_cpu_ids;
2515
2516 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2517
2518 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2519 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2520
2521 q->sg_reserved_size = INT_MAX;
2522
2523 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2524 INIT_LIST_HEAD(&q->requeue_list);
2525 spin_lock_init(&q->requeue_lock);
2526
2527 blk_queue_make_request(q, blk_mq_make_request);
2528 if (q->mq_ops->poll)
2529 q->poll_fn = blk_mq_poll;
2530
2531 /*
2532 * Do this after blk_queue_make_request() overrides it...
2533 */
2534 q->nr_requests = set->queue_depth;
2535
2536 /*
2537 * Default to classic polling
2538 */
2539 q->poll_nsec = -1;
2540
2541 if (set->ops->complete)
2542 blk_queue_softirq_done(q, set->ops->complete);
2543
2544 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2545 blk_mq_add_queue_tag_set(set, q);
2546 blk_mq_map_swqueue(q);
2547
2548 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2549 int ret;
2550
2551 ret = blk_mq_sched_init(q);
2552 if (ret)
2553 return ERR_PTR(ret);
2554 }
2555
2556 return q;
2557
2558 err_hctxs:
2559 kfree(q->queue_hw_ctx);
2560 err_percpu:
2561 free_percpu(q->queue_ctx);
2562 err_exit:
2563 q->mq_ops = NULL;
2564 return ERR_PTR(-ENOMEM);
2565 }
2566 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2567
2568 void blk_mq_free_queue(struct request_queue *q)
2569 {
2570 struct blk_mq_tag_set *set = q->tag_set;
2571
2572 blk_mq_del_queue_tag_set(q);
2573 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2574 }
2575
2576 /* Basically redo blk_mq_init_queue with queue frozen */
2577 static void blk_mq_queue_reinit(struct request_queue *q)
2578 {
2579 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2580
2581 blk_mq_debugfs_unregister_hctxs(q);
2582 blk_mq_sysfs_unregister(q);
2583
2584 /*
2585 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2586 * we should change hctx numa_node according to the new topology (this
2587 * involves freeing and re-allocating memory, worth doing?)
2588 */
2589 blk_mq_map_swqueue(q);
2590
2591 blk_mq_sysfs_register(q);
2592 blk_mq_debugfs_register_hctxs(q);
2593 }
2594
2595 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2596 {
2597 int i;
2598
2599 for (i = 0; i < set->nr_hw_queues; i++)
2600 if (!__blk_mq_alloc_rq_map(set, i))
2601 goto out_unwind;
2602
2603 return 0;
2604
2605 out_unwind:
2606 while (--i >= 0)
2607 blk_mq_free_rq_map(set->tags[i]);
2608
2609 return -ENOMEM;
2610 }
2611
2612 /*
2613 * Allocate the request maps associated with this tag_set. Note that this
2614 * may reduce the depth asked for, if memory is tight. set->queue_depth
2615 * will be updated to reflect the allocated depth.
2616 */
2617 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2618 {
2619 unsigned int depth;
2620 int err;
2621
2622 depth = set->queue_depth;
2623 do {
2624 err = __blk_mq_alloc_rq_maps(set);
2625 if (!err)
2626 break;
2627
2628 set->queue_depth >>= 1;
2629 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2630 err = -ENOMEM;
2631 break;
2632 }
2633 } while (set->queue_depth);
2634
2635 if (!set->queue_depth || err) {
2636 pr_err("blk-mq: failed to allocate request map\n");
2637 return -ENOMEM;
2638 }
2639
2640 if (depth != set->queue_depth)
2641 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2642 depth, set->queue_depth);
2643
2644 return 0;
2645 }
2646
2647 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2648 {
2649 if (set->ops->map_queues) {
2650 int cpu;
2651 /*
2652 * transport .map_queues is usually done in the following
2653 * way:
2654 *
2655 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2656 * mask = get_cpu_mask(queue)
2657 * for_each_cpu(cpu, mask)
2658 * set->mq_map[cpu] = queue;
2659 * }
2660 *
2661 * When we need to remap, the table has to be cleared for
2662 * killing stale mapping since one CPU may not be mapped
2663 * to any hw queue.
2664 */
2665 for_each_possible_cpu(cpu)
2666 set->mq_map[cpu] = 0;
2667
2668 return set->ops->map_queues(set);
2669 } else
2670 return blk_mq_map_queues(set);
2671 }
2672
2673 /*
2674 * Alloc a tag set to be associated with one or more request queues.
2675 * May fail with EINVAL for various error conditions. May adjust the
2676 * requested depth down, if if it too large. In that case, the set
2677 * value will be stored in set->queue_depth.
2678 */
2679 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2680 {
2681 int ret;
2682
2683 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2684
2685 if (!set->nr_hw_queues)
2686 return -EINVAL;
2687 if (!set->queue_depth)
2688 return -EINVAL;
2689 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2690 return -EINVAL;
2691
2692 if (!set->ops->queue_rq)
2693 return -EINVAL;
2694
2695 if (!set->ops->get_budget ^ !set->ops->put_budget)
2696 return -EINVAL;
2697
2698 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2699 pr_info("blk-mq: reduced tag depth to %u\n",
2700 BLK_MQ_MAX_DEPTH);
2701 set->queue_depth = BLK_MQ_MAX_DEPTH;
2702 }
2703
2704 /*
2705 * If a crashdump is active, then we are potentially in a very
2706 * memory constrained environment. Limit us to 1 queue and
2707 * 64 tags to prevent using too much memory.
2708 */
2709 if (is_kdump_kernel()) {
2710 set->nr_hw_queues = 1;
2711 set->queue_depth = min(64U, set->queue_depth);
2712 }
2713 /*
2714 * There is no use for more h/w queues than cpus.
2715 */
2716 if (set->nr_hw_queues > nr_cpu_ids)
2717 set->nr_hw_queues = nr_cpu_ids;
2718
2719 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2720 GFP_KERNEL, set->numa_node);
2721 if (!set->tags)
2722 return -ENOMEM;
2723
2724 ret = -ENOMEM;
2725 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2726 GFP_KERNEL, set->numa_node);
2727 if (!set->mq_map)
2728 goto out_free_tags;
2729
2730 ret = blk_mq_update_queue_map(set);
2731 if (ret)
2732 goto out_free_mq_map;
2733
2734 ret = blk_mq_alloc_rq_maps(set);
2735 if (ret)
2736 goto out_free_mq_map;
2737
2738 mutex_init(&set->tag_list_lock);
2739 INIT_LIST_HEAD(&set->tag_list);
2740
2741 return 0;
2742
2743 out_free_mq_map:
2744 kfree(set->mq_map);
2745 set->mq_map = NULL;
2746 out_free_tags:
2747 kfree(set->tags);
2748 set->tags = NULL;
2749 return ret;
2750 }
2751 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2752
2753 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2754 {
2755 int i;
2756
2757 for (i = 0; i < nr_cpu_ids; i++)
2758 blk_mq_free_map_and_requests(set, i);
2759
2760 kfree(set->mq_map);
2761 set->mq_map = NULL;
2762
2763 kfree(set->tags);
2764 set->tags = NULL;
2765 }
2766 EXPORT_SYMBOL(blk_mq_free_tag_set);
2767
2768 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2769 {
2770 struct blk_mq_tag_set *set = q->tag_set;
2771 struct blk_mq_hw_ctx *hctx;
2772 int i, ret;
2773
2774 if (!set)
2775 return -EINVAL;
2776
2777 blk_mq_freeze_queue(q);
2778
2779 ret = 0;
2780 queue_for_each_hw_ctx(q, hctx, i) {
2781 if (!hctx->tags)
2782 continue;
2783 /*
2784 * If we're using an MQ scheduler, just update the scheduler
2785 * queue depth. This is similar to what the old code would do.
2786 */
2787 if (!hctx->sched_tags) {
2788 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2789 false);
2790 } else {
2791 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2792 nr, true);
2793 }
2794 if (ret)
2795 break;
2796 }
2797
2798 if (!ret)
2799 q->nr_requests = nr;
2800
2801 blk_mq_unfreeze_queue(q);
2802
2803 return ret;
2804 }
2805
2806 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2807 int nr_hw_queues)
2808 {
2809 struct request_queue *q;
2810
2811 lockdep_assert_held(&set->tag_list_lock);
2812
2813 if (nr_hw_queues > nr_cpu_ids)
2814 nr_hw_queues = nr_cpu_ids;
2815 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2816 return;
2817
2818 list_for_each_entry(q, &set->tag_list, tag_set_list)
2819 blk_mq_freeze_queue(q);
2820
2821 set->nr_hw_queues = nr_hw_queues;
2822 blk_mq_update_queue_map(set);
2823 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2824 blk_mq_realloc_hw_ctxs(set, q);
2825 blk_mq_queue_reinit(q);
2826 }
2827
2828 list_for_each_entry(q, &set->tag_list, tag_set_list)
2829 blk_mq_unfreeze_queue(q);
2830 }
2831
2832 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2833 {
2834 mutex_lock(&set->tag_list_lock);
2835 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2836 mutex_unlock(&set->tag_list_lock);
2837 }
2838 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2839
2840 /* Enable polling stats and return whether they were already enabled. */
2841 static bool blk_poll_stats_enable(struct request_queue *q)
2842 {
2843 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2844 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2845 return true;
2846 blk_stat_add_callback(q, q->poll_cb);
2847 return false;
2848 }
2849
2850 static void blk_mq_poll_stats_start(struct request_queue *q)
2851 {
2852 /*
2853 * We don't arm the callback if polling stats are not enabled or the
2854 * callback is already active.
2855 */
2856 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2857 blk_stat_is_active(q->poll_cb))
2858 return;
2859
2860 blk_stat_activate_msecs(q->poll_cb, 100);
2861 }
2862
2863 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2864 {
2865 struct request_queue *q = cb->data;
2866 int bucket;
2867
2868 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2869 if (cb->stat[bucket].nr_samples)
2870 q->poll_stat[bucket] = cb->stat[bucket];
2871 }
2872 }
2873
2874 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2875 struct blk_mq_hw_ctx *hctx,
2876 struct request *rq)
2877 {
2878 unsigned long ret = 0;
2879 int bucket;
2880
2881 /*
2882 * If stats collection isn't on, don't sleep but turn it on for
2883 * future users
2884 */
2885 if (!blk_poll_stats_enable(q))
2886 return 0;
2887
2888 /*
2889 * As an optimistic guess, use half of the mean service time
2890 * for this type of request. We can (and should) make this smarter.
2891 * For instance, if the completion latencies are tight, we can
2892 * get closer than just half the mean. This is especially
2893 * important on devices where the completion latencies are longer
2894 * than ~10 usec. We do use the stats for the relevant IO size
2895 * if available which does lead to better estimates.
2896 */
2897 bucket = blk_mq_poll_stats_bkt(rq);
2898 if (bucket < 0)
2899 return ret;
2900
2901 if (q->poll_stat[bucket].nr_samples)
2902 ret = (q->poll_stat[bucket].mean + 1) / 2;
2903
2904 return ret;
2905 }
2906
2907 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2908 struct blk_mq_hw_ctx *hctx,
2909 struct request *rq)
2910 {
2911 struct hrtimer_sleeper hs;
2912 enum hrtimer_mode mode;
2913 unsigned int nsecs;
2914 ktime_t kt;
2915
2916 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2917 return false;
2918
2919 /*
2920 * poll_nsec can be:
2921 *
2922 * -1: don't ever hybrid sleep
2923 * 0: use half of prev avg
2924 * >0: use this specific value
2925 */
2926 if (q->poll_nsec == -1)
2927 return false;
2928 else if (q->poll_nsec > 0)
2929 nsecs = q->poll_nsec;
2930 else
2931 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2932
2933 if (!nsecs)
2934 return false;
2935
2936 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2937
2938 /*
2939 * This will be replaced with the stats tracking code, using
2940 * 'avg_completion_time / 2' as the pre-sleep target.
2941 */
2942 kt = nsecs;
2943
2944 mode = HRTIMER_MODE_REL;
2945 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2946 hrtimer_set_expires(&hs.timer, kt);
2947
2948 hrtimer_init_sleeper(&hs, current);
2949 do {
2950 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2951 break;
2952 set_current_state(TASK_UNINTERRUPTIBLE);
2953 hrtimer_start_expires(&hs.timer, mode);
2954 if (hs.task)
2955 io_schedule();
2956 hrtimer_cancel(&hs.timer);
2957 mode = HRTIMER_MODE_ABS;
2958 } while (hs.task && !signal_pending(current));
2959
2960 __set_current_state(TASK_RUNNING);
2961 destroy_hrtimer_on_stack(&hs.timer);
2962 return true;
2963 }
2964
2965 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2966 {
2967 struct request_queue *q = hctx->queue;
2968 long state;
2969
2970 /*
2971 * If we sleep, have the caller restart the poll loop to reset
2972 * the state. Like for the other success return cases, the
2973 * caller is responsible for checking if the IO completed. If
2974 * the IO isn't complete, we'll get called again and will go
2975 * straight to the busy poll loop.
2976 */
2977 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2978 return true;
2979
2980 hctx->poll_considered++;
2981
2982 state = current->state;
2983 while (!need_resched()) {
2984 int ret;
2985
2986 hctx->poll_invoked++;
2987
2988 ret = q->mq_ops->poll(hctx, rq->tag);
2989 if (ret > 0) {
2990 hctx->poll_success++;
2991 set_current_state(TASK_RUNNING);
2992 return true;
2993 }
2994
2995 if (signal_pending_state(state, current))
2996 set_current_state(TASK_RUNNING);
2997
2998 if (current->state == TASK_RUNNING)
2999 return true;
3000 if (ret < 0)
3001 break;
3002 cpu_relax();
3003 }
3004
3005 return false;
3006 }
3007
3008 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
3009 {
3010 struct blk_mq_hw_ctx *hctx;
3011 struct request *rq;
3012
3013 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3014 return false;
3015
3016 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3017 if (!blk_qc_t_is_internal(cookie))
3018 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3019 else {
3020 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3021 /*
3022 * With scheduling, if the request has completed, we'll
3023 * get a NULL return here, as we clear the sched tag when
3024 * that happens. The request still remains valid, like always,
3025 * so we should be safe with just the NULL check.
3026 */
3027 if (!rq)
3028 return false;
3029 }
3030
3031 return __blk_mq_poll(hctx, rq);
3032 }
3033
3034 static int __init blk_mq_init(void)
3035 {
3036 /*
3037 * See comment in block/blk.h rq_atomic_flags enum
3038 */
3039 BUILD_BUG_ON((REQ_ATOM_STARTED / BITS_PER_BYTE) !=
3040 (REQ_ATOM_COMPLETE / BITS_PER_BYTE));
3041
3042 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3043 blk_mq_hctx_notify_dead);
3044 return 0;
3045 }
3046 subsys_initcall(blk_mq_init);