]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-mq.c
block: fix an integer overflow in logical block size
[mirror_ubuntu-bionic-kernel.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
39
40 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 static void blk_mq_poll_stats_start(struct request_queue *q);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43
44 static int blk_mq_poll_stats_bkt(const struct request *rq)
45 {
46 int ddir, bytes, bucket;
47
48 ddir = rq_data_dir(rq);
49 bytes = blk_rq_bytes(rq);
50
51 bucket = ddir + 2*(ilog2(bytes) - 9);
52
53 if (bucket < 0)
54 return -1;
55 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57
58 return bucket;
59 }
60
61 /*
62 * Check if any of the ctx's have pending work in this hardware queue
63 */
64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65 {
66 return !list_empty_careful(&hctx->dispatch) ||
67 sbitmap_any_bit_set(&hctx->ctx_map) ||
68 blk_mq_sched_has_work(hctx);
69 }
70
71 /*
72 * Mark this ctx as having pending work in this hardware queue
73 */
74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75 struct blk_mq_ctx *ctx)
76 {
77 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
78 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 }
80
81 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
82 struct blk_mq_ctx *ctx)
83 {
84 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 }
86
87 struct mq_inflight {
88 struct hd_struct *part;
89 unsigned int *inflight;
90 };
91
92 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
93 struct request *rq, void *priv,
94 bool reserved)
95 {
96 struct mq_inflight *mi = priv;
97
98 if (test_bit(REQ_ATOM_STARTED, &rq->atomic_flags) &&
99 !test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
100 /*
101 * index[0] counts the specific partition that was asked
102 * for. index[1] counts the ones that are active on the
103 * whole device, so increment that if mi->part is indeed
104 * a partition, and not a whole device.
105 */
106 if (rq->part == mi->part)
107 mi->inflight[0]++;
108 if (mi->part->partno)
109 mi->inflight[1]++;
110 }
111 }
112
113 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
114 unsigned int inflight[2])
115 {
116 struct mq_inflight mi = { .part = part, .inflight = inflight, };
117
118 inflight[0] = inflight[1] = 0;
119 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
120 }
121
122 static void blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
123 struct request *rq, void *priv,
124 bool reserved)
125 {
126 struct mq_inflight *mi = priv;
127
128 if (rq->part == mi->part)
129 mi->inflight[rq_data_dir(rq)]++;
130 }
131
132 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
133 unsigned int inflight[2])
134 {
135 struct mq_inflight mi = { .part = part, .inflight = inflight, };
136
137 inflight[0] = inflight[1] = 0;
138 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
139 }
140
141 void blk_freeze_queue_start(struct request_queue *q)
142 {
143 int freeze_depth;
144
145 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
146 if (freeze_depth == 1) {
147 percpu_ref_kill(&q->q_usage_counter);
148 if (q->mq_ops)
149 blk_mq_run_hw_queues(q, false);
150 }
151 }
152 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
153
154 void blk_mq_freeze_queue_wait(struct request_queue *q)
155 {
156 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
157 }
158 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
159
160 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
161 unsigned long timeout)
162 {
163 return wait_event_timeout(q->mq_freeze_wq,
164 percpu_ref_is_zero(&q->q_usage_counter),
165 timeout);
166 }
167 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
168
169 /*
170 * Guarantee no request is in use, so we can change any data structure of
171 * the queue afterward.
172 */
173 void blk_freeze_queue(struct request_queue *q)
174 {
175 /*
176 * In the !blk_mq case we are only calling this to kill the
177 * q_usage_counter, otherwise this increases the freeze depth
178 * and waits for it to return to zero. For this reason there is
179 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
180 * exported to drivers as the only user for unfreeze is blk_mq.
181 */
182 blk_freeze_queue_start(q);
183 if (!q->mq_ops)
184 blk_drain_queue(q);
185 blk_mq_freeze_queue_wait(q);
186 }
187
188 void blk_mq_freeze_queue(struct request_queue *q)
189 {
190 /*
191 * ...just an alias to keep freeze and unfreeze actions balanced
192 * in the blk_mq_* namespace
193 */
194 blk_freeze_queue(q);
195 }
196 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
197
198 void blk_mq_unfreeze_queue(struct request_queue *q)
199 {
200 int freeze_depth;
201
202 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
203 WARN_ON_ONCE(freeze_depth < 0);
204 if (!freeze_depth) {
205 percpu_ref_reinit(&q->q_usage_counter);
206 wake_up_all(&q->mq_freeze_wq);
207 }
208 }
209 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
210
211 /*
212 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
213 * mpt3sas driver such that this function can be removed.
214 */
215 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
216 {
217 unsigned long flags;
218
219 spin_lock_irqsave(q->queue_lock, flags);
220 queue_flag_set(QUEUE_FLAG_QUIESCED, q);
221 spin_unlock_irqrestore(q->queue_lock, flags);
222 }
223 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
224
225 /**
226 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
227 * @q: request queue.
228 *
229 * Note: this function does not prevent that the struct request end_io()
230 * callback function is invoked. Once this function is returned, we make
231 * sure no dispatch can happen until the queue is unquiesced via
232 * blk_mq_unquiesce_queue().
233 */
234 void blk_mq_quiesce_queue(struct request_queue *q)
235 {
236 struct blk_mq_hw_ctx *hctx;
237 unsigned int i;
238 bool rcu = false;
239
240 blk_mq_quiesce_queue_nowait(q);
241
242 queue_for_each_hw_ctx(q, hctx, i) {
243 if (hctx->flags & BLK_MQ_F_BLOCKING)
244 synchronize_srcu(hctx->queue_rq_srcu);
245 else
246 rcu = true;
247 }
248 if (rcu)
249 synchronize_rcu();
250 }
251 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
252
253 /*
254 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
255 * @q: request queue.
256 *
257 * This function recovers queue into the state before quiescing
258 * which is done by blk_mq_quiesce_queue.
259 */
260 void blk_mq_unquiesce_queue(struct request_queue *q)
261 {
262 unsigned long flags;
263
264 spin_lock_irqsave(q->queue_lock, flags);
265 queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
266 spin_unlock_irqrestore(q->queue_lock, flags);
267
268 /* dispatch requests which are inserted during quiescing */
269 blk_mq_run_hw_queues(q, true);
270 }
271 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
272
273 void blk_mq_wake_waiters(struct request_queue *q)
274 {
275 struct blk_mq_hw_ctx *hctx;
276 unsigned int i;
277
278 queue_for_each_hw_ctx(q, hctx, i)
279 if (blk_mq_hw_queue_mapped(hctx))
280 blk_mq_tag_wakeup_all(hctx->tags, true);
281 }
282
283 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
284 {
285 return blk_mq_has_free_tags(hctx->tags);
286 }
287 EXPORT_SYMBOL(blk_mq_can_queue);
288
289 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
290 unsigned int tag, unsigned int op)
291 {
292 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
293 struct request *rq = tags->static_rqs[tag];
294
295 rq->rq_flags = 0;
296
297 if (data->flags & BLK_MQ_REQ_INTERNAL) {
298 rq->tag = -1;
299 rq->internal_tag = tag;
300 } else {
301 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
302 rq->rq_flags = RQF_MQ_INFLIGHT;
303 atomic_inc(&data->hctx->nr_active);
304 }
305 rq->tag = tag;
306 rq->internal_tag = -1;
307 data->hctx->tags->rqs[rq->tag] = rq;
308 }
309
310 INIT_LIST_HEAD(&rq->queuelist);
311 /* csd/requeue_work/fifo_time is initialized before use */
312 rq->q = data->q;
313 rq->mq_ctx = data->ctx;
314 rq->cmd_flags = op;
315 if (data->flags & BLK_MQ_REQ_PREEMPT)
316 rq->rq_flags |= RQF_PREEMPT;
317 if (blk_queue_io_stat(data->q))
318 rq->rq_flags |= RQF_IO_STAT;
319 /* do not touch atomic flags, it needs atomic ops against the timer */
320 rq->cpu = -1;
321 INIT_HLIST_NODE(&rq->hash);
322 RB_CLEAR_NODE(&rq->rb_node);
323 rq->rq_disk = NULL;
324 rq->part = NULL;
325 rq->start_time = jiffies;
326 #ifdef CONFIG_BLK_CGROUP
327 rq->rl = NULL;
328 set_start_time_ns(rq);
329 rq->io_start_time_ns = 0;
330 #endif
331 rq->nr_phys_segments = 0;
332 #if defined(CONFIG_BLK_DEV_INTEGRITY)
333 rq->nr_integrity_segments = 0;
334 #endif
335 rq->special = NULL;
336 /* tag was already set */
337 rq->extra_len = 0;
338
339 INIT_LIST_HEAD(&rq->timeout_list);
340 rq->timeout = 0;
341
342 rq->end_io = NULL;
343 rq->end_io_data = NULL;
344 rq->next_rq = NULL;
345
346 data->ctx->rq_dispatched[op_is_sync(op)]++;
347 return rq;
348 }
349
350 static struct request *blk_mq_get_request(struct request_queue *q,
351 struct bio *bio, unsigned int op,
352 struct blk_mq_alloc_data *data)
353 {
354 struct elevator_queue *e = q->elevator;
355 struct request *rq;
356 unsigned int tag;
357 bool put_ctx_on_error = false;
358
359 blk_queue_enter_live(q);
360 data->q = q;
361 if (likely(!data->ctx)) {
362 data->ctx = blk_mq_get_ctx(q);
363 put_ctx_on_error = true;
364 }
365 if (likely(!data->hctx))
366 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
367 if (op & REQ_NOWAIT)
368 data->flags |= BLK_MQ_REQ_NOWAIT;
369
370 if (e) {
371 data->flags |= BLK_MQ_REQ_INTERNAL;
372
373 /*
374 * Flush requests are special and go directly to the
375 * dispatch list.
376 */
377 if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
378 e->type->ops.mq.limit_depth(op, data);
379 } else {
380 blk_mq_tag_busy(data->hctx);
381 }
382
383 tag = blk_mq_get_tag(data);
384 if (tag == BLK_MQ_TAG_FAIL) {
385 if (put_ctx_on_error) {
386 blk_mq_put_ctx(data->ctx);
387 data->ctx = NULL;
388 }
389 blk_queue_exit(q);
390 return NULL;
391 }
392
393 rq = blk_mq_rq_ctx_init(data, tag, op);
394 if (!op_is_flush(op)) {
395 rq->elv.icq = NULL;
396 if (e && e->type->ops.mq.prepare_request) {
397 if (e->type->icq_cache && rq_ioc(bio))
398 blk_mq_sched_assign_ioc(rq, bio);
399
400 e->type->ops.mq.prepare_request(rq, bio);
401 rq->rq_flags |= RQF_ELVPRIV;
402 }
403 }
404 data->hctx->queued++;
405 return rq;
406 }
407
408 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
409 blk_mq_req_flags_t flags)
410 {
411 struct blk_mq_alloc_data alloc_data = { .flags = flags };
412 struct request *rq;
413 int ret;
414
415 ret = blk_queue_enter(q, flags);
416 if (ret)
417 return ERR_PTR(ret);
418
419 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
420 blk_queue_exit(q);
421
422 if (!rq)
423 return ERR_PTR(-EWOULDBLOCK);
424
425 blk_mq_put_ctx(alloc_data.ctx);
426
427 rq->__data_len = 0;
428 rq->__sector = (sector_t) -1;
429 rq->bio = rq->biotail = NULL;
430 return rq;
431 }
432 EXPORT_SYMBOL(blk_mq_alloc_request);
433
434 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
435 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
436 {
437 struct blk_mq_alloc_data alloc_data = { .flags = flags };
438 struct request *rq;
439 unsigned int cpu;
440 int ret;
441
442 /*
443 * If the tag allocator sleeps we could get an allocation for a
444 * different hardware context. No need to complicate the low level
445 * allocator for this for the rare use case of a command tied to
446 * a specific queue.
447 */
448 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
449 return ERR_PTR(-EINVAL);
450
451 if (hctx_idx >= q->nr_hw_queues)
452 return ERR_PTR(-EIO);
453
454 ret = blk_queue_enter(q, flags);
455 if (ret)
456 return ERR_PTR(ret);
457
458 /*
459 * Check if the hardware context is actually mapped to anything.
460 * If not tell the caller that it should skip this queue.
461 */
462 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
463 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
464 blk_queue_exit(q);
465 return ERR_PTR(-EXDEV);
466 }
467 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
468 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
469
470 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
471 blk_queue_exit(q);
472
473 if (!rq)
474 return ERR_PTR(-EWOULDBLOCK);
475
476 return rq;
477 }
478 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
479
480 void blk_mq_free_request(struct request *rq)
481 {
482 struct request_queue *q = rq->q;
483 struct elevator_queue *e = q->elevator;
484 struct blk_mq_ctx *ctx = rq->mq_ctx;
485 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
486 const int sched_tag = rq->internal_tag;
487
488 if (rq->rq_flags & RQF_ELVPRIV) {
489 if (e && e->type->ops.mq.finish_request)
490 e->type->ops.mq.finish_request(rq);
491 if (rq->elv.icq) {
492 put_io_context(rq->elv.icq->ioc);
493 rq->elv.icq = NULL;
494 }
495 }
496
497 ctx->rq_completed[rq_is_sync(rq)]++;
498 if (rq->rq_flags & RQF_MQ_INFLIGHT)
499 atomic_dec(&hctx->nr_active);
500
501 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
502 laptop_io_completion(q->backing_dev_info);
503
504 wbt_done(q->rq_wb, &rq->issue_stat);
505
506 if (blk_rq_rl(rq))
507 blk_put_rl(blk_rq_rl(rq));
508
509 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
510 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
511 if (rq->tag != -1)
512 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
513 if (sched_tag != -1)
514 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
515 blk_mq_sched_restart(hctx);
516 blk_queue_exit(q);
517 }
518 EXPORT_SYMBOL_GPL(blk_mq_free_request);
519
520 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
521 {
522 blk_account_io_done(rq);
523
524 if (rq->end_io) {
525 wbt_done(rq->q->rq_wb, &rq->issue_stat);
526 rq->end_io(rq, error);
527 } else {
528 if (unlikely(blk_bidi_rq(rq)))
529 blk_mq_free_request(rq->next_rq);
530 blk_mq_free_request(rq);
531 }
532 }
533 EXPORT_SYMBOL(__blk_mq_end_request);
534
535 void blk_mq_end_request(struct request *rq, blk_status_t error)
536 {
537 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
538 BUG();
539 __blk_mq_end_request(rq, error);
540 }
541 EXPORT_SYMBOL(blk_mq_end_request);
542
543 static void __blk_mq_complete_request_remote(void *data)
544 {
545 struct request *rq = data;
546
547 rq->q->softirq_done_fn(rq);
548 }
549
550 static void __blk_mq_complete_request(struct request *rq)
551 {
552 struct blk_mq_ctx *ctx = rq->mq_ctx;
553 bool shared = false;
554 int cpu;
555
556 if (rq->internal_tag != -1)
557 blk_mq_sched_completed_request(rq);
558 if (rq->rq_flags & RQF_STATS) {
559 blk_mq_poll_stats_start(rq->q);
560 blk_stat_add(rq);
561 }
562
563 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
564 rq->q->softirq_done_fn(rq);
565 return;
566 }
567
568 cpu = get_cpu();
569 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
570 shared = cpus_share_cache(cpu, ctx->cpu);
571
572 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
573 rq->csd.func = __blk_mq_complete_request_remote;
574 rq->csd.info = rq;
575 rq->csd.flags = 0;
576 smp_call_function_single_async(ctx->cpu, &rq->csd);
577 } else {
578 rq->q->softirq_done_fn(rq);
579 }
580 put_cpu();
581 }
582
583 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
584 {
585 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
586 rcu_read_unlock();
587 else
588 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
589 }
590
591 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
592 {
593 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
594 rcu_read_lock();
595 else
596 *srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
597 }
598
599 /**
600 * blk_mq_complete_request - end I/O on a request
601 * @rq: the request being processed
602 *
603 * Description:
604 * Ends all I/O on a request. It does not handle partial completions.
605 * The actual completion happens out-of-order, through a IPI handler.
606 **/
607 void blk_mq_complete_request(struct request *rq)
608 {
609 struct request_queue *q = rq->q;
610
611 if (unlikely(blk_should_fake_timeout(q)))
612 return;
613 if (!blk_mark_rq_complete(rq))
614 __blk_mq_complete_request(rq);
615 }
616 EXPORT_SYMBOL(blk_mq_complete_request);
617
618 int blk_mq_request_started(struct request *rq)
619 {
620 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
621 }
622 EXPORT_SYMBOL_GPL(blk_mq_request_started);
623
624 void blk_mq_start_request(struct request *rq)
625 {
626 struct request_queue *q = rq->q;
627
628 blk_mq_sched_started_request(rq);
629
630 trace_block_rq_issue(q, rq);
631
632 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
633 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
634 rq->rq_flags |= RQF_STATS;
635 wbt_issue(q->rq_wb, &rq->issue_stat);
636 }
637
638 blk_add_timer(rq);
639
640 WARN_ON_ONCE(test_bit(REQ_ATOM_STARTED, &rq->atomic_flags));
641
642 /*
643 * Mark us as started and clear complete. Complete might have been
644 * set if requeue raced with timeout, which then marked it as
645 * complete. So be sure to clear complete again when we start
646 * the request, otherwise we'll ignore the completion event.
647 *
648 * Ensure that ->deadline is visible before we set STARTED, such that
649 * blk_mq_check_expired() is guaranteed to observe our ->deadline when
650 * it observes STARTED.
651 */
652 smp_wmb();
653 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
654 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
655 /*
656 * Coherence order guarantees these consecutive stores to a
657 * single variable propagate in the specified order. Thus the
658 * clear_bit() is ordered _after_ the set bit. See
659 * blk_mq_check_expired().
660 *
661 * (the bits must be part of the same byte for this to be
662 * true).
663 */
664 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
665 }
666
667 if (q->dma_drain_size && blk_rq_bytes(rq)) {
668 /*
669 * Make sure space for the drain appears. We know we can do
670 * this because max_hw_segments has been adjusted to be one
671 * fewer than the device can handle.
672 */
673 rq->nr_phys_segments++;
674 }
675 }
676 EXPORT_SYMBOL(blk_mq_start_request);
677
678 /*
679 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
680 * flag isn't set yet, so there may be race with timeout handler,
681 * but given rq->deadline is just set in .queue_rq() under
682 * this situation, the race won't be possible in reality because
683 * rq->timeout should be set as big enough to cover the window
684 * between blk_mq_start_request() called from .queue_rq() and
685 * clearing REQ_ATOM_STARTED here.
686 */
687 static void __blk_mq_requeue_request(struct request *rq)
688 {
689 struct request_queue *q = rq->q;
690
691 blk_mq_put_driver_tag(rq);
692
693 trace_block_rq_requeue(q, rq);
694 wbt_requeue(q->rq_wb, &rq->issue_stat);
695
696 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
697 if (q->dma_drain_size && blk_rq_bytes(rq))
698 rq->nr_phys_segments--;
699 }
700 }
701
702 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
703 {
704 __blk_mq_requeue_request(rq);
705
706 /* this request will be re-inserted to io scheduler queue */
707 blk_mq_sched_requeue_request(rq);
708
709 BUG_ON(blk_queued_rq(rq));
710 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
711 }
712 EXPORT_SYMBOL(blk_mq_requeue_request);
713
714 static void blk_mq_requeue_work(struct work_struct *work)
715 {
716 struct request_queue *q =
717 container_of(work, struct request_queue, requeue_work.work);
718 LIST_HEAD(rq_list);
719 struct request *rq, *next;
720
721 spin_lock_irq(&q->requeue_lock);
722 list_splice_init(&q->requeue_list, &rq_list);
723 spin_unlock_irq(&q->requeue_lock);
724
725 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
726 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
727 continue;
728
729 rq->rq_flags &= ~RQF_SOFTBARRIER;
730 list_del_init(&rq->queuelist);
731 /*
732 * If RQF_DONTPREP, rq has contained some driver specific
733 * data, so insert it to hctx dispatch list to avoid any
734 * merge.
735 */
736 if (rq->rq_flags & RQF_DONTPREP)
737 blk_mq_request_bypass_insert(rq, false);
738 else
739 blk_mq_sched_insert_request(rq, true, false, false);
740 }
741
742 while (!list_empty(&rq_list)) {
743 rq = list_entry(rq_list.next, struct request, queuelist);
744 list_del_init(&rq->queuelist);
745 blk_mq_sched_insert_request(rq, false, false, false);
746 }
747
748 blk_mq_run_hw_queues(q, false);
749 }
750
751 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
752 bool kick_requeue_list)
753 {
754 struct request_queue *q = rq->q;
755 unsigned long flags;
756
757 /*
758 * We abuse this flag that is otherwise used by the I/O scheduler to
759 * request head insertion from the workqueue.
760 */
761 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
762
763 spin_lock_irqsave(&q->requeue_lock, flags);
764 if (at_head) {
765 rq->rq_flags |= RQF_SOFTBARRIER;
766 list_add(&rq->queuelist, &q->requeue_list);
767 } else {
768 list_add_tail(&rq->queuelist, &q->requeue_list);
769 }
770 spin_unlock_irqrestore(&q->requeue_lock, flags);
771
772 if (kick_requeue_list)
773 blk_mq_kick_requeue_list(q);
774 }
775 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
776
777 void blk_mq_kick_requeue_list(struct request_queue *q)
778 {
779 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
780 }
781 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
782
783 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
784 unsigned long msecs)
785 {
786 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
787 msecs_to_jiffies(msecs));
788 }
789 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
790
791 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
792 {
793 if (tag < tags->nr_tags) {
794 prefetch(tags->rqs[tag]);
795 return tags->rqs[tag];
796 }
797
798 return NULL;
799 }
800 EXPORT_SYMBOL(blk_mq_tag_to_rq);
801
802 struct blk_mq_timeout_data {
803 unsigned long next;
804 unsigned int next_set;
805 };
806
807 void blk_mq_rq_timed_out(struct request *req, bool reserved)
808 {
809 const struct blk_mq_ops *ops = req->q->mq_ops;
810 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
811
812 /*
813 * We know that complete is set at this point. If STARTED isn't set
814 * anymore, then the request isn't active and the "timeout" should
815 * just be ignored. This can happen due to the bitflag ordering.
816 * Timeout first checks if STARTED is set, and if it is, assumes
817 * the request is active. But if we race with completion, then
818 * both flags will get cleared. So check here again, and ignore
819 * a timeout event with a request that isn't active.
820 */
821 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
822 return;
823
824 if (ops->timeout)
825 ret = ops->timeout(req, reserved);
826
827 switch (ret) {
828 case BLK_EH_HANDLED:
829 __blk_mq_complete_request(req);
830 break;
831 case BLK_EH_RESET_TIMER:
832 blk_add_timer(req);
833 blk_clear_rq_complete(req);
834 break;
835 case BLK_EH_NOT_HANDLED:
836 break;
837 default:
838 printk(KERN_ERR "block: bad eh return: %d\n", ret);
839 break;
840 }
841 }
842
843 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
844 struct request *rq, void *priv, bool reserved)
845 {
846 struct blk_mq_timeout_data *data = priv;
847 unsigned long deadline;
848
849 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
850 return;
851
852 /*
853 * Ensures that if we see STARTED we must also see our
854 * up-to-date deadline, see blk_mq_start_request().
855 */
856 smp_rmb();
857
858 deadline = READ_ONCE(rq->deadline);
859
860 /*
861 * The rq being checked may have been freed and reallocated
862 * out already here, we avoid this race by checking rq->deadline
863 * and REQ_ATOM_COMPLETE flag together:
864 *
865 * - if rq->deadline is observed as new value because of
866 * reusing, the rq won't be timed out because of timing.
867 * - if rq->deadline is observed as previous value,
868 * REQ_ATOM_COMPLETE flag won't be cleared in reuse path
869 * because we put a barrier between setting rq->deadline
870 * and clearing the flag in blk_mq_start_request(), so
871 * this rq won't be timed out too.
872 */
873 if (time_after_eq(jiffies, deadline)) {
874 if (!blk_mark_rq_complete(rq)) {
875 /*
876 * Again coherence order ensures that consecutive reads
877 * from the same variable must be in that order. This
878 * ensures that if we see COMPLETE clear, we must then
879 * see STARTED set and we'll ignore this timeout.
880 *
881 * (There's also the MB implied by the test_and_clear())
882 */
883 blk_mq_rq_timed_out(rq, reserved);
884 }
885 } else if (!data->next_set || time_after(data->next, deadline)) {
886 data->next = deadline;
887 data->next_set = 1;
888 }
889 }
890
891 static void blk_mq_timeout_work(struct work_struct *work)
892 {
893 struct request_queue *q =
894 container_of(work, struct request_queue, timeout_work);
895 struct blk_mq_timeout_data data = {
896 .next = 0,
897 .next_set = 0,
898 };
899 int i;
900
901 /* A deadlock might occur if a request is stuck requiring a
902 * timeout at the same time a queue freeze is waiting
903 * completion, since the timeout code would not be able to
904 * acquire the queue reference here.
905 *
906 * That's why we don't use blk_queue_enter here; instead, we use
907 * percpu_ref_tryget directly, because we need to be able to
908 * obtain a reference even in the short window between the queue
909 * starting to freeze, by dropping the first reference in
910 * blk_freeze_queue_start, and the moment the last request is
911 * consumed, marked by the instant q_usage_counter reaches
912 * zero.
913 */
914 if (!percpu_ref_tryget(&q->q_usage_counter))
915 return;
916
917 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
918
919 if (data.next_set) {
920 data.next = blk_rq_timeout(round_jiffies_up(data.next));
921 mod_timer(&q->timeout, data.next);
922 } else {
923 struct blk_mq_hw_ctx *hctx;
924
925 queue_for_each_hw_ctx(q, hctx, i) {
926 /* the hctx may be unmapped, so check it here */
927 if (blk_mq_hw_queue_mapped(hctx))
928 blk_mq_tag_idle(hctx);
929 }
930 }
931 blk_queue_exit(q);
932 }
933
934 struct flush_busy_ctx_data {
935 struct blk_mq_hw_ctx *hctx;
936 struct list_head *list;
937 };
938
939 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
940 {
941 struct flush_busy_ctx_data *flush_data = data;
942 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
943 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
944
945 sbitmap_clear_bit(sb, bitnr);
946 spin_lock(&ctx->lock);
947 list_splice_tail_init(&ctx->rq_list, flush_data->list);
948 spin_unlock(&ctx->lock);
949 return true;
950 }
951
952 /*
953 * Process software queues that have been marked busy, splicing them
954 * to the for-dispatch
955 */
956 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
957 {
958 struct flush_busy_ctx_data data = {
959 .hctx = hctx,
960 .list = list,
961 };
962
963 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
964 }
965 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
966
967 struct dispatch_rq_data {
968 struct blk_mq_hw_ctx *hctx;
969 struct request *rq;
970 };
971
972 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
973 void *data)
974 {
975 struct dispatch_rq_data *dispatch_data = data;
976 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
977 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
978
979 spin_lock(&ctx->lock);
980 if (unlikely(!list_empty(&ctx->rq_list))) {
981 dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
982 list_del_init(&dispatch_data->rq->queuelist);
983 if (list_empty(&ctx->rq_list))
984 sbitmap_clear_bit(sb, bitnr);
985 }
986 spin_unlock(&ctx->lock);
987
988 return !dispatch_data->rq;
989 }
990
991 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
992 struct blk_mq_ctx *start)
993 {
994 unsigned off = start ? start->index_hw : 0;
995 struct dispatch_rq_data data = {
996 .hctx = hctx,
997 .rq = NULL,
998 };
999
1000 __sbitmap_for_each_set(&hctx->ctx_map, off,
1001 dispatch_rq_from_ctx, &data);
1002
1003 return data.rq;
1004 }
1005
1006 static inline unsigned int queued_to_index(unsigned int queued)
1007 {
1008 if (!queued)
1009 return 0;
1010
1011 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1012 }
1013
1014 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
1015 bool wait)
1016 {
1017 struct blk_mq_alloc_data data = {
1018 .q = rq->q,
1019 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
1020 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
1021 };
1022 bool shared;
1023
1024 might_sleep_if(wait);
1025
1026 if (rq->tag != -1)
1027 goto done;
1028
1029 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1030 data.flags |= BLK_MQ_REQ_RESERVED;
1031
1032 shared = blk_mq_tag_busy(data.hctx);
1033 rq->tag = blk_mq_get_tag(&data);
1034 if (rq->tag >= 0) {
1035 if (shared) {
1036 rq->rq_flags |= RQF_MQ_INFLIGHT;
1037 atomic_inc(&data.hctx->nr_active);
1038 }
1039 data.hctx->tags->rqs[rq->tag] = rq;
1040 }
1041
1042 done:
1043 if (hctx)
1044 *hctx = data.hctx;
1045 return rq->tag != -1;
1046 }
1047
1048 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1049 int flags, void *key)
1050 {
1051 struct blk_mq_hw_ctx *hctx;
1052
1053 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1054
1055 list_del_init(&wait->entry);
1056 blk_mq_run_hw_queue(hctx, true);
1057 return 1;
1058 }
1059
1060 /*
1061 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1062 * the tag wakeups. For non-shared tags, we can simply mark us nedeing a
1063 * restart. For both caes, take care to check the condition again after
1064 * marking us as waiting.
1065 */
1066 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx,
1067 struct request *rq)
1068 {
1069 struct blk_mq_hw_ctx *this_hctx = *hctx;
1070 bool shared_tags = (this_hctx->flags & BLK_MQ_F_TAG_SHARED) != 0;
1071 struct sbq_wait_state *ws;
1072 wait_queue_entry_t *wait;
1073 bool ret;
1074
1075 if (!shared_tags) {
1076 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state))
1077 set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state);
1078 } else {
1079 wait = &this_hctx->dispatch_wait;
1080 if (!list_empty_careful(&wait->entry))
1081 return false;
1082
1083 spin_lock(&this_hctx->lock);
1084 if (!list_empty(&wait->entry)) {
1085 spin_unlock(&this_hctx->lock);
1086 return false;
1087 }
1088
1089 ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
1090 add_wait_queue(&ws->wait, wait);
1091 }
1092
1093 /*
1094 * It's possible that a tag was freed in the window between the
1095 * allocation failure and adding the hardware queue to the wait
1096 * queue.
1097 */
1098 ret = blk_mq_get_driver_tag(rq, hctx, false);
1099
1100 if (!shared_tags) {
1101 /*
1102 * Don't clear RESTART here, someone else could have set it.
1103 * At most this will cost an extra queue run.
1104 */
1105 return ret;
1106 } else {
1107 if (!ret) {
1108 spin_unlock(&this_hctx->lock);
1109 return false;
1110 }
1111
1112 /*
1113 * We got a tag, remove ourselves from the wait queue to ensure
1114 * someone else gets the wakeup.
1115 */
1116 spin_lock_irq(&ws->wait.lock);
1117 list_del_init(&wait->entry);
1118 spin_unlock_irq(&ws->wait.lock);
1119 spin_unlock(&this_hctx->lock);
1120 return true;
1121 }
1122 }
1123
1124 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1125 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1126 /*
1127 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1128 * - EWMA is one simple way to compute running average value
1129 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1130 * - take 4 as factor for avoiding to get too small(0) result, and this
1131 * factor doesn't matter because EWMA decreases exponentially
1132 */
1133 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1134 {
1135 unsigned int ewma;
1136
1137 if (hctx->queue->elevator)
1138 return;
1139
1140 ewma = hctx->dispatch_busy;
1141
1142 if (!ewma && !busy)
1143 return;
1144
1145 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1146 if (busy)
1147 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1148 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1149
1150 hctx->dispatch_busy = ewma;
1151 }
1152
1153 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1154
1155 /*
1156 * Returns true if we did some work AND can potentially do more.
1157 */
1158 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1159 bool got_budget)
1160 {
1161 struct blk_mq_hw_ctx *hctx;
1162 struct request *rq, *nxt;
1163 bool no_tag = false;
1164 int errors, queued;
1165 blk_status_t ret = BLK_STS_OK;
1166
1167 if (list_empty(list))
1168 return false;
1169
1170 WARN_ON(!list_is_singular(list) && got_budget);
1171
1172 /*
1173 * Now process all the entries, sending them to the driver.
1174 */
1175 errors = queued = 0;
1176 do {
1177 struct blk_mq_queue_data bd;
1178
1179 rq = list_first_entry(list, struct request, queuelist);
1180
1181 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
1182 if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1183 break;
1184
1185 if (!blk_mq_get_driver_tag(rq, NULL, false)) {
1186 /*
1187 * The initial allocation attempt failed, so we need to
1188 * rerun the hardware queue when a tag is freed. The
1189 * waitqueue takes care of that. If the queue is run
1190 * before we add this entry back on the dispatch list,
1191 * we'll re-run it below.
1192 */
1193 if (!blk_mq_mark_tag_wait(&hctx, rq)) {
1194 blk_mq_put_dispatch_budget(hctx);
1195 /*
1196 * For non-shared tags, the RESTART check
1197 * will suffice.
1198 */
1199 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1200 no_tag = true;
1201 break;
1202 }
1203 }
1204
1205 list_del_init(&rq->queuelist);
1206
1207 bd.rq = rq;
1208
1209 /*
1210 * Flag last if we have no more requests, or if we have more
1211 * but can't assign a driver tag to it.
1212 */
1213 if (list_empty(list))
1214 bd.last = true;
1215 else {
1216 nxt = list_first_entry(list, struct request, queuelist);
1217 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1218 }
1219
1220 ret = q->mq_ops->queue_rq(hctx, &bd);
1221 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1222 /*
1223 * If an I/O scheduler has been configured and we got a
1224 * driver tag for the next request already, free it
1225 * again.
1226 */
1227 if (!list_empty(list)) {
1228 nxt = list_first_entry(list, struct request, queuelist);
1229 blk_mq_put_driver_tag(nxt);
1230 }
1231 list_add(&rq->queuelist, list);
1232 __blk_mq_requeue_request(rq);
1233 break;
1234 }
1235
1236 if (unlikely(ret != BLK_STS_OK)) {
1237 errors++;
1238 blk_mq_end_request(rq, BLK_STS_IOERR);
1239 continue;
1240 }
1241
1242 queued++;
1243 } while (!list_empty(list));
1244
1245 hctx->dispatched[queued_to_index(queued)]++;
1246
1247 /*
1248 * Any items that need requeuing? Stuff them into hctx->dispatch,
1249 * that is where we will continue on next queue run.
1250 */
1251 if (!list_empty(list)) {
1252 bool needs_restart;
1253
1254 spin_lock(&hctx->lock);
1255 list_splice_init(list, &hctx->dispatch);
1256 spin_unlock(&hctx->lock);
1257
1258 /*
1259 * If SCHED_RESTART was set by the caller of this function and
1260 * it is no longer set that means that it was cleared by another
1261 * thread and hence that a queue rerun is needed.
1262 *
1263 * If 'no_tag' is set, that means that we failed getting
1264 * a driver tag with an I/O scheduler attached. If our dispatch
1265 * waitqueue is no longer active, ensure that we run the queue
1266 * AFTER adding our entries back to the list.
1267 *
1268 * If no I/O scheduler has been configured it is possible that
1269 * the hardware queue got stopped and restarted before requests
1270 * were pushed back onto the dispatch list. Rerun the queue to
1271 * avoid starvation. Notes:
1272 * - blk_mq_run_hw_queue() checks whether or not a queue has
1273 * been stopped before rerunning a queue.
1274 * - Some but not all block drivers stop a queue before
1275 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1276 * and dm-rq.
1277 *
1278 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1279 * bit is set, run queue after a delay to avoid IO stalls
1280 * that could otherwise occur if the queue is idle.
1281 */
1282 needs_restart = blk_mq_sched_needs_restart(hctx);
1283 if (!needs_restart ||
1284 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1285 blk_mq_run_hw_queue(hctx, true);
1286 else if (needs_restart && (ret == BLK_STS_RESOURCE))
1287 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1288
1289 blk_mq_update_dispatch_busy(hctx, true);
1290 return false;
1291 } else
1292 blk_mq_update_dispatch_busy(hctx, false);
1293
1294 /*
1295 * If the host/device is unable to accept more work, inform the
1296 * caller of that.
1297 */
1298 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1299 return false;
1300
1301 return (queued + errors) != 0;
1302 }
1303
1304 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1305 {
1306 int srcu_idx;
1307
1308 /*
1309 * We should be running this queue from one of the CPUs that
1310 * are mapped to it.
1311 *
1312 * There are at least two related races now between setting
1313 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1314 * __blk_mq_run_hw_queue():
1315 *
1316 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1317 * but later it becomes online, then this warning is harmless
1318 * at all
1319 *
1320 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1321 * but later it becomes offline, then the warning can't be
1322 * triggered, and we depend on blk-mq timeout handler to
1323 * handle dispatched requests to this hctx
1324 */
1325 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1326 cpu_online(hctx->next_cpu)) {
1327 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1328 raw_smp_processor_id(),
1329 cpumask_empty(hctx->cpumask) ? "inactive": "active");
1330 dump_stack();
1331 }
1332
1333 /*
1334 * We can't run the queue inline with ints disabled. Ensure that
1335 * we catch bad users of this early.
1336 */
1337 WARN_ON_ONCE(in_interrupt());
1338
1339 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1340
1341 hctx_lock(hctx, &srcu_idx);
1342 blk_mq_sched_dispatch_requests(hctx);
1343 hctx_unlock(hctx, srcu_idx);
1344 }
1345
1346 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1347 {
1348 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1349
1350 if (cpu >= nr_cpu_ids)
1351 cpu = cpumask_first(hctx->cpumask);
1352 return cpu;
1353 }
1354
1355 /*
1356 * It'd be great if the workqueue API had a way to pass
1357 * in a mask and had some smarts for more clever placement.
1358 * For now we just round-robin here, switching for every
1359 * BLK_MQ_CPU_WORK_BATCH queued items.
1360 */
1361 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1362 {
1363 bool tried = false;
1364 int next_cpu = hctx->next_cpu;
1365
1366 if (hctx->queue->nr_hw_queues == 1)
1367 return WORK_CPU_UNBOUND;
1368
1369 if (--hctx->next_cpu_batch <= 0) {
1370 select_cpu:
1371 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1372 cpu_online_mask);
1373 if (next_cpu >= nr_cpu_ids)
1374 next_cpu = blk_mq_first_mapped_cpu(hctx);
1375 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1376 }
1377
1378 /*
1379 * Do unbound schedule if we can't find a online CPU for this hctx,
1380 * and it should only happen in the path of handling CPU DEAD.
1381 */
1382 if (!cpu_online(next_cpu)) {
1383 if (!tried) {
1384 tried = true;
1385 goto select_cpu;
1386 }
1387
1388 /*
1389 * Make sure to re-select CPU next time once after CPUs
1390 * in hctx->cpumask become online again.
1391 */
1392 hctx->next_cpu = next_cpu;
1393 hctx->next_cpu_batch = 1;
1394 return WORK_CPU_UNBOUND;
1395 }
1396
1397 hctx->next_cpu = next_cpu;
1398 return next_cpu;
1399 }
1400
1401 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1402 unsigned long msecs)
1403 {
1404 if (unlikely(blk_mq_hctx_stopped(hctx)))
1405 return;
1406
1407 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1408 int cpu = get_cpu();
1409 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1410 __blk_mq_run_hw_queue(hctx);
1411 put_cpu();
1412 return;
1413 }
1414
1415 put_cpu();
1416 }
1417
1418 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1419 msecs_to_jiffies(msecs));
1420 }
1421
1422 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1423 {
1424 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1425 }
1426 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1427
1428 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1429 {
1430 int srcu_idx;
1431 bool need_run;
1432
1433 /*
1434 * When queue is quiesced, we may be switching io scheduler, or
1435 * updating nr_hw_queues, or other things, and we can't run queue
1436 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1437 *
1438 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1439 * quiesced.
1440 */
1441 hctx_lock(hctx, &srcu_idx);
1442 need_run = !blk_queue_quiesced(hctx->queue) &&
1443 blk_mq_hctx_has_pending(hctx);
1444 hctx_unlock(hctx, srcu_idx);
1445
1446 if (need_run) {
1447 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1448 return true;
1449 }
1450
1451 return false;
1452 }
1453 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1454
1455 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1456 {
1457 struct blk_mq_hw_ctx *hctx;
1458 int i;
1459
1460 queue_for_each_hw_ctx(q, hctx, i) {
1461 if (blk_mq_hctx_stopped(hctx))
1462 continue;
1463
1464 blk_mq_run_hw_queue(hctx, async);
1465 }
1466 }
1467 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1468
1469 /**
1470 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1471 * @q: request queue.
1472 *
1473 * The caller is responsible for serializing this function against
1474 * blk_mq_{start,stop}_hw_queue().
1475 */
1476 bool blk_mq_queue_stopped(struct request_queue *q)
1477 {
1478 struct blk_mq_hw_ctx *hctx;
1479 int i;
1480
1481 queue_for_each_hw_ctx(q, hctx, i)
1482 if (blk_mq_hctx_stopped(hctx))
1483 return true;
1484
1485 return false;
1486 }
1487 EXPORT_SYMBOL(blk_mq_queue_stopped);
1488
1489 /*
1490 * This function is often used for pausing .queue_rq() by driver when
1491 * there isn't enough resource or some conditions aren't satisfied, and
1492 * BLK_STS_RESOURCE is usually returned.
1493 *
1494 * We do not guarantee that dispatch can be drained or blocked
1495 * after blk_mq_stop_hw_queue() returns. Please use
1496 * blk_mq_quiesce_queue() for that requirement.
1497 */
1498 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1499 {
1500 cancel_delayed_work(&hctx->run_work);
1501
1502 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1503 }
1504 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1505
1506 /*
1507 * This function is often used for pausing .queue_rq() by driver when
1508 * there isn't enough resource or some conditions aren't satisfied, and
1509 * BLK_STS_RESOURCE is usually returned.
1510 *
1511 * We do not guarantee that dispatch can be drained or blocked
1512 * after blk_mq_stop_hw_queues() returns. Please use
1513 * blk_mq_quiesce_queue() for that requirement.
1514 */
1515 void blk_mq_stop_hw_queues(struct request_queue *q)
1516 {
1517 struct blk_mq_hw_ctx *hctx;
1518 int i;
1519
1520 queue_for_each_hw_ctx(q, hctx, i)
1521 blk_mq_stop_hw_queue(hctx);
1522 }
1523 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1524
1525 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1526 {
1527 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1528
1529 blk_mq_run_hw_queue(hctx, false);
1530 }
1531 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1532
1533 void blk_mq_start_hw_queues(struct request_queue *q)
1534 {
1535 struct blk_mq_hw_ctx *hctx;
1536 int i;
1537
1538 queue_for_each_hw_ctx(q, hctx, i)
1539 blk_mq_start_hw_queue(hctx);
1540 }
1541 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1542
1543 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1544 {
1545 if (!blk_mq_hctx_stopped(hctx))
1546 return;
1547
1548 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1549 blk_mq_run_hw_queue(hctx, async);
1550 }
1551 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1552
1553 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1554 {
1555 struct blk_mq_hw_ctx *hctx;
1556 int i;
1557
1558 queue_for_each_hw_ctx(q, hctx, i)
1559 blk_mq_start_stopped_hw_queue(hctx, async);
1560 }
1561 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1562
1563 static void blk_mq_run_work_fn(struct work_struct *work)
1564 {
1565 struct blk_mq_hw_ctx *hctx;
1566
1567 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1568
1569 /*
1570 * If we are stopped, don't run the queue. The exception is if
1571 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1572 * the STOPPED bit and run it.
1573 */
1574 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1575 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1576 return;
1577
1578 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1579 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1580 }
1581
1582 __blk_mq_run_hw_queue(hctx);
1583 }
1584
1585
1586 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1587 {
1588 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1589 return;
1590
1591 /*
1592 * Stop the hw queue, then modify currently delayed work.
1593 * This should prevent us from running the queue prematurely.
1594 * Mark the queue as auto-clearing STOPPED when it runs.
1595 */
1596 blk_mq_stop_hw_queue(hctx);
1597 set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1598 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1599 &hctx->run_work,
1600 msecs_to_jiffies(msecs));
1601 }
1602 EXPORT_SYMBOL(blk_mq_delay_queue);
1603
1604 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1605 struct request *rq,
1606 bool at_head)
1607 {
1608 struct blk_mq_ctx *ctx = rq->mq_ctx;
1609
1610 lockdep_assert_held(&ctx->lock);
1611
1612 trace_block_rq_insert(hctx->queue, rq);
1613
1614 if (at_head)
1615 list_add(&rq->queuelist, &ctx->rq_list);
1616 else
1617 list_add_tail(&rq->queuelist, &ctx->rq_list);
1618 }
1619
1620 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1621 bool at_head)
1622 {
1623 struct blk_mq_ctx *ctx = rq->mq_ctx;
1624
1625 lockdep_assert_held(&ctx->lock);
1626
1627 __blk_mq_insert_req_list(hctx, rq, at_head);
1628 blk_mq_hctx_mark_pending(hctx, ctx);
1629 }
1630
1631 /*
1632 * Should only be used carefully, when the caller knows we want to
1633 * bypass a potential IO scheduler on the target device.
1634 */
1635 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1636 {
1637 struct blk_mq_ctx *ctx = rq->mq_ctx;
1638 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1639
1640 spin_lock(&hctx->lock);
1641 list_add_tail(&rq->queuelist, &hctx->dispatch);
1642 spin_unlock(&hctx->lock);
1643
1644 if (run_queue)
1645 blk_mq_run_hw_queue(hctx, false);
1646 }
1647
1648 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1649 struct list_head *list)
1650
1651 {
1652 /*
1653 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1654 * offline now
1655 */
1656 spin_lock(&ctx->lock);
1657 while (!list_empty(list)) {
1658 struct request *rq;
1659
1660 rq = list_first_entry(list, struct request, queuelist);
1661 BUG_ON(rq->mq_ctx != ctx);
1662 list_del_init(&rq->queuelist);
1663 __blk_mq_insert_req_list(hctx, rq, false);
1664 }
1665 blk_mq_hctx_mark_pending(hctx, ctx);
1666 spin_unlock(&ctx->lock);
1667 }
1668
1669 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1670 {
1671 struct request *rqa = container_of(a, struct request, queuelist);
1672 struct request *rqb = container_of(b, struct request, queuelist);
1673
1674 return !(rqa->mq_ctx < rqb->mq_ctx ||
1675 (rqa->mq_ctx == rqb->mq_ctx &&
1676 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1677 }
1678
1679 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1680 {
1681 struct blk_mq_ctx *this_ctx;
1682 struct request_queue *this_q;
1683 struct request *rq;
1684 LIST_HEAD(list);
1685 LIST_HEAD(ctx_list);
1686 unsigned int depth;
1687
1688 list_splice_init(&plug->mq_list, &list);
1689
1690 list_sort(NULL, &list, plug_ctx_cmp);
1691
1692 this_q = NULL;
1693 this_ctx = NULL;
1694 depth = 0;
1695
1696 while (!list_empty(&list)) {
1697 rq = list_entry_rq(list.next);
1698 list_del_init(&rq->queuelist);
1699 BUG_ON(!rq->q);
1700 if (rq->mq_ctx != this_ctx) {
1701 if (this_ctx) {
1702 trace_block_unplug(this_q, depth, !from_schedule);
1703 blk_mq_sched_insert_requests(this_q, this_ctx,
1704 &ctx_list,
1705 from_schedule);
1706 }
1707
1708 this_ctx = rq->mq_ctx;
1709 this_q = rq->q;
1710 depth = 0;
1711 }
1712
1713 depth++;
1714 list_add_tail(&rq->queuelist, &ctx_list);
1715 }
1716
1717 /*
1718 * If 'this_ctx' is set, we know we have entries to complete
1719 * on 'ctx_list'. Do those.
1720 */
1721 if (this_ctx) {
1722 trace_block_unplug(this_q, depth, !from_schedule);
1723 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1724 from_schedule);
1725 }
1726 }
1727
1728 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1729 {
1730 blk_init_request_from_bio(rq, bio);
1731
1732 blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1733
1734 blk_account_io_start(rq, true);
1735 }
1736
1737 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1738 struct blk_mq_ctx *ctx,
1739 struct request *rq)
1740 {
1741 spin_lock(&ctx->lock);
1742 __blk_mq_insert_request(hctx, rq, false);
1743 spin_unlock(&ctx->lock);
1744 }
1745
1746 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1747 {
1748 if (rq->tag != -1)
1749 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1750
1751 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1752 }
1753
1754 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1755 struct request *rq,
1756 blk_qc_t *cookie)
1757 {
1758 struct request_queue *q = rq->q;
1759 struct blk_mq_queue_data bd = {
1760 .rq = rq,
1761 .last = true,
1762 };
1763 blk_qc_t new_cookie;
1764 blk_status_t ret;
1765
1766 new_cookie = request_to_qc_t(hctx, rq);
1767
1768 /*
1769 * For OK queue, we are done. For error, caller may kill it.
1770 * Any other error (busy), just add it to our list as we
1771 * previously would have done.
1772 */
1773 ret = q->mq_ops->queue_rq(hctx, &bd);
1774 switch (ret) {
1775 case BLK_STS_OK:
1776 blk_mq_update_dispatch_busy(hctx, false);
1777 *cookie = new_cookie;
1778 break;
1779 case BLK_STS_RESOURCE:
1780 case BLK_STS_DEV_RESOURCE:
1781 blk_mq_update_dispatch_busy(hctx, true);
1782 __blk_mq_requeue_request(rq);
1783 break;
1784 default:
1785 blk_mq_update_dispatch_busy(hctx, false);
1786 *cookie = BLK_QC_T_NONE;
1787 break;
1788 }
1789
1790 return ret;
1791 }
1792
1793 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1794 struct request *rq,
1795 blk_qc_t *cookie,
1796 bool bypass_insert)
1797 {
1798 struct request_queue *q = rq->q;
1799 bool run_queue = true;
1800
1801 /*
1802 * RCU or SRCU read lock is needed before checking quiesced flag.
1803 *
1804 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1805 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1806 * and avoid driver to try to dispatch again.
1807 */
1808 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1809 run_queue = false;
1810 bypass_insert = false;
1811 goto insert;
1812 }
1813
1814 if (q->elevator && !bypass_insert)
1815 goto insert;
1816
1817 if (!blk_mq_get_dispatch_budget(hctx))
1818 goto insert;
1819
1820 if (!blk_mq_get_driver_tag(rq, NULL, false)) {
1821 blk_mq_put_dispatch_budget(hctx);
1822 goto insert;
1823 }
1824
1825 return __blk_mq_issue_directly(hctx, rq, cookie);
1826 insert:
1827 if (bypass_insert)
1828 return BLK_STS_RESOURCE;
1829
1830 blk_mq_request_bypass_insert(rq, run_queue);
1831 return BLK_STS_OK;
1832 }
1833
1834 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1835 struct request *rq, blk_qc_t *cookie)
1836 {
1837 blk_status_t ret;
1838 int srcu_idx;
1839
1840 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1841
1842 hctx_lock(hctx, &srcu_idx);
1843
1844 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1845 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1846 blk_mq_request_bypass_insert(rq, true);
1847 else if (ret != BLK_STS_OK)
1848 blk_mq_end_request(rq, ret);
1849
1850 hctx_unlock(hctx, srcu_idx);
1851 }
1852
1853 blk_status_t blk_mq_request_issue_directly(struct request *rq)
1854 {
1855 blk_status_t ret;
1856 int srcu_idx;
1857 blk_qc_t unused_cookie;
1858 struct blk_mq_ctx *ctx = rq->mq_ctx;
1859 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1860
1861 hctx_lock(hctx, &srcu_idx);
1862 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true);
1863 hctx_unlock(hctx, srcu_idx);
1864
1865 return ret;
1866 }
1867
1868 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1869 struct list_head *list)
1870 {
1871 while (!list_empty(list)) {
1872 blk_status_t ret;
1873 struct request *rq = list_first_entry(list, struct request,
1874 queuelist);
1875
1876 list_del_init(&rq->queuelist);
1877 ret = blk_mq_request_issue_directly(rq);
1878 if (ret != BLK_STS_OK) {
1879 if (ret == BLK_STS_RESOURCE ||
1880 ret == BLK_STS_DEV_RESOURCE) {
1881 blk_mq_request_bypass_insert(rq,
1882 list_empty(list));
1883 break;
1884 }
1885 blk_mq_end_request(rq, ret);
1886 }
1887 }
1888 }
1889
1890 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1891 {
1892 const int is_sync = op_is_sync(bio->bi_opf);
1893 const int is_flush_fua = op_is_flush(bio->bi_opf);
1894 struct blk_mq_alloc_data data = { .flags = 0 };
1895 struct request *rq;
1896 unsigned int request_count = 0;
1897 struct blk_plug *plug;
1898 struct request *same_queue_rq = NULL;
1899 blk_qc_t cookie;
1900 unsigned int wb_acct;
1901
1902 blk_queue_bounce(q, &bio);
1903
1904 blk_queue_split(q, &bio);
1905
1906 if (!bio_integrity_prep(bio))
1907 return BLK_QC_T_NONE;
1908
1909 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1910 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1911 return BLK_QC_T_NONE;
1912
1913 if (blk_mq_sched_bio_merge(q, bio))
1914 return BLK_QC_T_NONE;
1915
1916 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1917
1918 trace_block_getrq(q, bio, bio->bi_opf);
1919
1920 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1921 if (unlikely(!rq)) {
1922 __wbt_done(q->rq_wb, wb_acct);
1923 if (bio->bi_opf & REQ_NOWAIT)
1924 bio_wouldblock_error(bio);
1925 return BLK_QC_T_NONE;
1926 }
1927
1928 wbt_track(&rq->issue_stat, wb_acct);
1929
1930 cookie = request_to_qc_t(data.hctx, rq);
1931
1932 plug = current->plug;
1933 if (unlikely(is_flush_fua)) {
1934 blk_mq_put_ctx(data.ctx);
1935 blk_mq_bio_to_request(rq, bio);
1936
1937 /* bypass scheduler for flush rq */
1938 blk_insert_flush(rq);
1939 blk_mq_run_hw_queue(data.hctx, true);
1940 } else if (plug && q->nr_hw_queues == 1) {
1941 struct request *last = NULL;
1942
1943 blk_mq_put_ctx(data.ctx);
1944 blk_mq_bio_to_request(rq, bio);
1945
1946 /*
1947 * @request_count may become stale because of schedule
1948 * out, so check the list again.
1949 */
1950 if (list_empty(&plug->mq_list))
1951 request_count = 0;
1952 else if (blk_queue_nomerges(q))
1953 request_count = blk_plug_queued_count(q);
1954
1955 if (!request_count)
1956 trace_block_plug(q);
1957 else
1958 last = list_entry_rq(plug->mq_list.prev);
1959
1960 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1961 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1962 blk_flush_plug_list(plug, false);
1963 trace_block_plug(q);
1964 }
1965
1966 list_add_tail(&rq->queuelist, &plug->mq_list);
1967 } else if (plug && !blk_queue_nomerges(q)) {
1968 blk_mq_bio_to_request(rq, bio);
1969
1970 /*
1971 * We do limited plugging. If the bio can be merged, do that.
1972 * Otherwise the existing request in the plug list will be
1973 * issued. So the plug list will have one request at most
1974 * The plug list might get flushed before this. If that happens,
1975 * the plug list is empty, and same_queue_rq is invalid.
1976 */
1977 if (list_empty(&plug->mq_list))
1978 same_queue_rq = NULL;
1979 if (same_queue_rq)
1980 list_del_init(&same_queue_rq->queuelist);
1981 list_add_tail(&rq->queuelist, &plug->mq_list);
1982
1983 blk_mq_put_ctx(data.ctx);
1984
1985 if (same_queue_rq) {
1986 data.hctx = blk_mq_map_queue(q,
1987 same_queue_rq->mq_ctx->cpu);
1988 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1989 &cookie);
1990 }
1991 } else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator &&
1992 !data.hctx->dispatch_busy)) {
1993 blk_mq_put_ctx(data.ctx);
1994 blk_mq_bio_to_request(rq, bio);
1995 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1996 } else if (q->elevator) {
1997 blk_mq_put_ctx(data.ctx);
1998 blk_mq_bio_to_request(rq, bio);
1999 blk_mq_sched_insert_request(rq, false, true, true);
2000 } else {
2001 blk_mq_put_ctx(data.ctx);
2002 blk_mq_bio_to_request(rq, bio);
2003 blk_mq_queue_io(data.hctx, data.ctx, rq);
2004 blk_mq_run_hw_queue(data.hctx, true);
2005 }
2006
2007 return cookie;
2008 }
2009
2010 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2011 unsigned int hctx_idx)
2012 {
2013 struct page *page;
2014
2015 if (tags->rqs && set->ops->exit_request) {
2016 int i;
2017
2018 for (i = 0; i < tags->nr_tags; i++) {
2019 struct request *rq = tags->static_rqs[i];
2020
2021 if (!rq)
2022 continue;
2023 set->ops->exit_request(set, rq, hctx_idx);
2024 tags->static_rqs[i] = NULL;
2025 }
2026 }
2027
2028 while (!list_empty(&tags->page_list)) {
2029 page = list_first_entry(&tags->page_list, struct page, lru);
2030 list_del_init(&page->lru);
2031 /*
2032 * Remove kmemleak object previously allocated in
2033 * blk_mq_init_rq_map().
2034 */
2035 kmemleak_free(page_address(page));
2036 __free_pages(page, page->private);
2037 }
2038 }
2039
2040 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2041 {
2042 kfree(tags->rqs);
2043 tags->rqs = NULL;
2044 kfree(tags->static_rqs);
2045 tags->static_rqs = NULL;
2046
2047 blk_mq_free_tags(tags);
2048 }
2049
2050 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2051 unsigned int hctx_idx,
2052 unsigned int nr_tags,
2053 unsigned int reserved_tags)
2054 {
2055 struct blk_mq_tags *tags;
2056 int node;
2057
2058 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
2059 if (node == NUMA_NO_NODE)
2060 node = set->numa_node;
2061
2062 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2063 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2064 if (!tags)
2065 return NULL;
2066
2067 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
2068 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2069 node);
2070 if (!tags->rqs) {
2071 blk_mq_free_tags(tags);
2072 return NULL;
2073 }
2074
2075 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
2076 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2077 node);
2078 if (!tags->static_rqs) {
2079 kfree(tags->rqs);
2080 blk_mq_free_tags(tags);
2081 return NULL;
2082 }
2083
2084 return tags;
2085 }
2086
2087 static size_t order_to_size(unsigned int order)
2088 {
2089 return (size_t)PAGE_SIZE << order;
2090 }
2091
2092 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2093 unsigned int hctx_idx, unsigned int depth)
2094 {
2095 unsigned int i, j, entries_per_page, max_order = 4;
2096 size_t rq_size, left;
2097 int node;
2098
2099 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
2100 if (node == NUMA_NO_NODE)
2101 node = set->numa_node;
2102
2103 INIT_LIST_HEAD(&tags->page_list);
2104
2105 /*
2106 * rq_size is the size of the request plus driver payload, rounded
2107 * to the cacheline size
2108 */
2109 rq_size = round_up(sizeof(struct request) + set->cmd_size,
2110 cache_line_size());
2111 left = rq_size * depth;
2112
2113 for (i = 0; i < depth; ) {
2114 int this_order = max_order;
2115 struct page *page;
2116 int to_do;
2117 void *p;
2118
2119 while (this_order && left < order_to_size(this_order - 1))
2120 this_order--;
2121
2122 do {
2123 page = alloc_pages_node(node,
2124 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2125 this_order);
2126 if (page)
2127 break;
2128 if (!this_order--)
2129 break;
2130 if (order_to_size(this_order) < rq_size)
2131 break;
2132 } while (1);
2133
2134 if (!page)
2135 goto fail;
2136
2137 page->private = this_order;
2138 list_add_tail(&page->lru, &tags->page_list);
2139
2140 p = page_address(page);
2141 /*
2142 * Allow kmemleak to scan these pages as they contain pointers
2143 * to additional allocations like via ops->init_request().
2144 */
2145 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2146 entries_per_page = order_to_size(this_order) / rq_size;
2147 to_do = min(entries_per_page, depth - i);
2148 left -= to_do * rq_size;
2149 for (j = 0; j < to_do; j++) {
2150 struct request *rq = p;
2151
2152 tags->static_rqs[i] = rq;
2153 if (set->ops->init_request) {
2154 if (set->ops->init_request(set, rq, hctx_idx,
2155 node)) {
2156 tags->static_rqs[i] = NULL;
2157 goto fail;
2158 }
2159 }
2160
2161 p += rq_size;
2162 i++;
2163 }
2164 }
2165 return 0;
2166
2167 fail:
2168 blk_mq_free_rqs(set, tags, hctx_idx);
2169 return -ENOMEM;
2170 }
2171
2172 /*
2173 * 'cpu' is going away. splice any existing rq_list entries from this
2174 * software queue to the hw queue dispatch list, and ensure that it
2175 * gets run.
2176 */
2177 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2178 {
2179 struct blk_mq_hw_ctx *hctx;
2180 struct blk_mq_ctx *ctx;
2181 LIST_HEAD(tmp);
2182
2183 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2184 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2185
2186 spin_lock(&ctx->lock);
2187 if (!list_empty(&ctx->rq_list)) {
2188 list_splice_init(&ctx->rq_list, &tmp);
2189 blk_mq_hctx_clear_pending(hctx, ctx);
2190 }
2191 spin_unlock(&ctx->lock);
2192
2193 if (list_empty(&tmp))
2194 return 0;
2195
2196 spin_lock(&hctx->lock);
2197 list_splice_tail_init(&tmp, &hctx->dispatch);
2198 spin_unlock(&hctx->lock);
2199
2200 blk_mq_run_hw_queue(hctx, true);
2201 return 0;
2202 }
2203
2204 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2205 {
2206 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2207 &hctx->cpuhp_dead);
2208 }
2209
2210 /* hctx->ctxs will be freed in queue's release handler */
2211 static void blk_mq_exit_hctx(struct request_queue *q,
2212 struct blk_mq_tag_set *set,
2213 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2214 {
2215 blk_mq_debugfs_unregister_hctx(hctx);
2216
2217 if (blk_mq_hw_queue_mapped(hctx))
2218 blk_mq_tag_idle(hctx);
2219
2220 if (set->ops->exit_request)
2221 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2222
2223 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2224
2225 if (set->ops->exit_hctx)
2226 set->ops->exit_hctx(hctx, hctx_idx);
2227
2228 blk_mq_remove_cpuhp(hctx);
2229 }
2230
2231 static void blk_mq_exit_hw_queues(struct request_queue *q,
2232 struct blk_mq_tag_set *set, int nr_queue)
2233 {
2234 struct blk_mq_hw_ctx *hctx;
2235 unsigned int i;
2236
2237 queue_for_each_hw_ctx(q, hctx, i) {
2238 if (i == nr_queue)
2239 break;
2240 blk_mq_exit_hctx(q, set, hctx, i);
2241 }
2242 }
2243
2244 static int blk_mq_init_hctx(struct request_queue *q,
2245 struct blk_mq_tag_set *set,
2246 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2247 {
2248 int node;
2249
2250 node = hctx->numa_node;
2251 if (node == NUMA_NO_NODE)
2252 node = hctx->numa_node = set->numa_node;
2253
2254 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2255 spin_lock_init(&hctx->lock);
2256 INIT_LIST_HEAD(&hctx->dispatch);
2257 hctx->queue = q;
2258 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2259
2260 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2261
2262 hctx->tags = set->tags[hctx_idx];
2263
2264 /*
2265 * Allocate space for all possible cpus to avoid allocation at
2266 * runtime
2267 */
2268 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2269 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node);
2270 if (!hctx->ctxs)
2271 goto unregister_cpu_notifier;
2272
2273 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2274 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node))
2275 goto free_ctxs;
2276
2277 hctx->nr_ctx = 0;
2278
2279 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2280 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2281
2282 if (set->ops->init_hctx &&
2283 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2284 goto free_bitmap;
2285
2286 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
2287 goto exit_hctx;
2288
2289 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size,
2290 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
2291 if (!hctx->fq)
2292 goto sched_exit_hctx;
2293
2294 if (set->ops->init_request &&
2295 set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
2296 node))
2297 goto free_fq;
2298
2299 if (hctx->flags & BLK_MQ_F_BLOCKING)
2300 init_srcu_struct(hctx->queue_rq_srcu);
2301
2302 blk_mq_debugfs_register_hctx(q, hctx);
2303
2304 return 0;
2305
2306 free_fq:
2307 blk_free_flush_queue(hctx->fq);
2308 sched_exit_hctx:
2309 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2310 exit_hctx:
2311 if (set->ops->exit_hctx)
2312 set->ops->exit_hctx(hctx, hctx_idx);
2313 free_bitmap:
2314 sbitmap_free(&hctx->ctx_map);
2315 free_ctxs:
2316 kfree(hctx->ctxs);
2317 unregister_cpu_notifier:
2318 blk_mq_remove_cpuhp(hctx);
2319 return -1;
2320 }
2321
2322 static void blk_mq_init_cpu_queues(struct request_queue *q,
2323 unsigned int nr_hw_queues)
2324 {
2325 unsigned int i;
2326
2327 for_each_possible_cpu(i) {
2328 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2329 struct blk_mq_hw_ctx *hctx;
2330
2331 __ctx->cpu = i;
2332 spin_lock_init(&__ctx->lock);
2333 INIT_LIST_HEAD(&__ctx->rq_list);
2334 __ctx->queue = q;
2335
2336 /*
2337 * Set local node, IFF we have more than one hw queue. If
2338 * not, we remain on the home node of the device
2339 */
2340 hctx = blk_mq_map_queue(q, i);
2341 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2342 hctx->numa_node = local_memory_node(cpu_to_node(i));
2343 }
2344 }
2345
2346 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2347 {
2348 int ret = 0;
2349
2350 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2351 set->queue_depth, set->reserved_tags);
2352 if (!set->tags[hctx_idx])
2353 return false;
2354
2355 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2356 set->queue_depth);
2357 if (!ret)
2358 return true;
2359
2360 blk_mq_free_rq_map(set->tags[hctx_idx]);
2361 set->tags[hctx_idx] = NULL;
2362 return false;
2363 }
2364
2365 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2366 unsigned int hctx_idx)
2367 {
2368 if (set->tags[hctx_idx]) {
2369 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2370 blk_mq_free_rq_map(set->tags[hctx_idx]);
2371 set->tags[hctx_idx] = NULL;
2372 }
2373 }
2374
2375 static void blk_mq_map_swqueue(struct request_queue *q)
2376 {
2377 unsigned int i, hctx_idx;
2378 struct blk_mq_hw_ctx *hctx;
2379 struct blk_mq_ctx *ctx;
2380 struct blk_mq_tag_set *set = q->tag_set;
2381
2382 /*
2383 * Avoid others reading imcomplete hctx->cpumask through sysfs
2384 */
2385 mutex_lock(&q->sysfs_lock);
2386
2387 queue_for_each_hw_ctx(q, hctx, i) {
2388 cpumask_clear(hctx->cpumask);
2389 hctx->nr_ctx = 0;
2390 }
2391
2392 /*
2393 * Map software to hardware queues.
2394 *
2395 * If the cpu isn't present, the cpu is mapped to first hctx.
2396 */
2397 for_each_possible_cpu(i) {
2398 hctx_idx = q->mq_map[i];
2399 /* unmapped hw queue can be remapped after CPU topo changed */
2400 if (!set->tags[hctx_idx] &&
2401 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2402 /*
2403 * If tags initialization fail for some hctx,
2404 * that hctx won't be brought online. In this
2405 * case, remap the current ctx to hctx[0] which
2406 * is guaranteed to always have tags allocated
2407 */
2408 q->mq_map[i] = 0;
2409 }
2410
2411 ctx = per_cpu_ptr(q->queue_ctx, i);
2412 hctx = blk_mq_map_queue(q, i);
2413
2414 cpumask_set_cpu(i, hctx->cpumask);
2415 ctx->index_hw = hctx->nr_ctx;
2416 hctx->ctxs[hctx->nr_ctx++] = ctx;
2417 }
2418
2419 mutex_unlock(&q->sysfs_lock);
2420
2421 queue_for_each_hw_ctx(q, hctx, i) {
2422 /*
2423 * If no software queues are mapped to this hardware queue,
2424 * disable it and free the request entries.
2425 */
2426 if (!hctx->nr_ctx) {
2427 /* Never unmap queue 0. We need it as a
2428 * fallback in case of a new remap fails
2429 * allocation
2430 */
2431 if (i && set->tags[i])
2432 blk_mq_free_map_and_requests(set, i);
2433
2434 hctx->tags = NULL;
2435 continue;
2436 }
2437
2438 hctx->tags = set->tags[i];
2439 WARN_ON(!hctx->tags);
2440
2441 /*
2442 * Set the map size to the number of mapped software queues.
2443 * This is more accurate and more efficient than looping
2444 * over all possibly mapped software queues.
2445 */
2446 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2447
2448 /*
2449 * Initialize batch roundrobin counts
2450 */
2451 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2452 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2453 }
2454 }
2455
2456 /*
2457 * Caller needs to ensure that we're either frozen/quiesced, or that
2458 * the queue isn't live yet.
2459 */
2460 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2461 {
2462 struct blk_mq_hw_ctx *hctx;
2463 int i;
2464
2465 queue_for_each_hw_ctx(q, hctx, i) {
2466 if (shared) {
2467 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2468 atomic_inc(&q->shared_hctx_restart);
2469 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2470 } else {
2471 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2472 atomic_dec(&q->shared_hctx_restart);
2473 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2474 }
2475 }
2476 }
2477
2478 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2479 bool shared)
2480 {
2481 struct request_queue *q;
2482
2483 lockdep_assert_held(&set->tag_list_lock);
2484
2485 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2486 blk_mq_freeze_queue(q);
2487 queue_set_hctx_shared(q, shared);
2488 blk_mq_unfreeze_queue(q);
2489 }
2490 }
2491
2492 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2493 {
2494 struct blk_mq_tag_set *set = q->tag_set;
2495
2496 mutex_lock(&set->tag_list_lock);
2497 list_del_rcu(&q->tag_set_list);
2498 if (list_is_singular(&set->tag_list)) {
2499 /* just transitioned to unshared */
2500 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2501 /* update existing queue */
2502 blk_mq_update_tag_set_depth(set, false);
2503 }
2504 mutex_unlock(&set->tag_list_lock);
2505 synchronize_rcu();
2506 INIT_LIST_HEAD(&q->tag_set_list);
2507 }
2508
2509 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2510 struct request_queue *q)
2511 {
2512 q->tag_set = set;
2513
2514 mutex_lock(&set->tag_list_lock);
2515
2516 /*
2517 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2518 */
2519 if (!list_empty(&set->tag_list) &&
2520 !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2521 set->flags |= BLK_MQ_F_TAG_SHARED;
2522 /* update existing queue */
2523 blk_mq_update_tag_set_depth(set, true);
2524 }
2525 if (set->flags & BLK_MQ_F_TAG_SHARED)
2526 queue_set_hctx_shared(q, true);
2527 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2528
2529 mutex_unlock(&set->tag_list_lock);
2530 }
2531
2532 /*
2533 * It is the actual release handler for mq, but we do it from
2534 * request queue's release handler for avoiding use-after-free
2535 * and headache because q->mq_kobj shouldn't have been introduced,
2536 * but we can't group ctx/kctx kobj without it.
2537 */
2538 void blk_mq_release(struct request_queue *q)
2539 {
2540 struct blk_mq_hw_ctx *hctx;
2541 unsigned int i;
2542
2543 /* hctx kobj stays in hctx */
2544 queue_for_each_hw_ctx(q, hctx, i) {
2545 if (!hctx)
2546 continue;
2547 kobject_put(&hctx->kobj);
2548 }
2549
2550 q->mq_map = NULL;
2551
2552 kfree(q->queue_hw_ctx);
2553
2554 /*
2555 * release .mq_kobj and sw queue's kobject now because
2556 * both share lifetime with request queue.
2557 */
2558 blk_mq_sysfs_deinit(q);
2559
2560 free_percpu(q->queue_ctx);
2561 }
2562
2563 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2564 {
2565 struct request_queue *uninit_q, *q;
2566
2567 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2568 if (!uninit_q)
2569 return ERR_PTR(-ENOMEM);
2570
2571 q = blk_mq_init_allocated_queue(set, uninit_q);
2572 if (IS_ERR(q))
2573 blk_cleanup_queue(uninit_q);
2574
2575 return q;
2576 }
2577 EXPORT_SYMBOL(blk_mq_init_queue);
2578
2579 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2580 {
2581 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2582
2583 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
2584 __alignof__(struct blk_mq_hw_ctx)) !=
2585 sizeof(struct blk_mq_hw_ctx));
2586
2587 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2588 hw_ctx_size += sizeof(struct srcu_struct);
2589
2590 return hw_ctx_size;
2591 }
2592
2593 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2594 struct request_queue *q)
2595 {
2596 int i, j;
2597 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2598
2599 blk_mq_sysfs_unregister(q);
2600
2601 /* protect against switching io scheduler */
2602 mutex_lock(&q->sysfs_lock);
2603 for (i = 0; i < set->nr_hw_queues; i++) {
2604 int node;
2605
2606 if (hctxs[i])
2607 continue;
2608
2609 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2610 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2611 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2612 node);
2613 if (!hctxs[i])
2614 break;
2615
2616 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask,
2617 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2618 node)) {
2619 kfree(hctxs[i]);
2620 hctxs[i] = NULL;
2621 break;
2622 }
2623
2624 atomic_set(&hctxs[i]->nr_active, 0);
2625 hctxs[i]->numa_node = node;
2626 hctxs[i]->queue_num = i;
2627
2628 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2629 free_cpumask_var(hctxs[i]->cpumask);
2630 kfree(hctxs[i]);
2631 hctxs[i] = NULL;
2632 break;
2633 }
2634 blk_mq_hctx_kobj_init(hctxs[i]);
2635 }
2636 for (j = i; j < q->nr_hw_queues; j++) {
2637 struct blk_mq_hw_ctx *hctx = hctxs[j];
2638
2639 if (hctx) {
2640 if (hctx->tags)
2641 blk_mq_free_map_and_requests(set, j);
2642 blk_mq_exit_hctx(q, set, hctx, j);
2643 kobject_put(&hctx->kobj);
2644 hctxs[j] = NULL;
2645
2646 }
2647 }
2648 q->nr_hw_queues = i;
2649 mutex_unlock(&q->sysfs_lock);
2650 blk_mq_sysfs_register(q);
2651 }
2652
2653 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2654 struct request_queue *q)
2655 {
2656 /* mark the queue as mq asap */
2657 q->mq_ops = set->ops;
2658
2659 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2660 blk_mq_poll_stats_bkt,
2661 BLK_MQ_POLL_STATS_BKTS, q);
2662 if (!q->poll_cb)
2663 goto err_exit;
2664
2665 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2666 if (!q->queue_ctx)
2667 goto err_exit;
2668
2669 /* init q->mq_kobj and sw queues' kobjects */
2670 blk_mq_sysfs_init(q);
2671
2672 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2673 GFP_KERNEL, set->numa_node);
2674 if (!q->queue_hw_ctx)
2675 goto err_percpu;
2676
2677 q->mq_map = set->mq_map;
2678
2679 blk_mq_realloc_hw_ctxs(set, q);
2680 if (!q->nr_hw_queues)
2681 goto err_hctxs;
2682
2683 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2684 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2685
2686 q->nr_queues = nr_cpu_ids;
2687
2688 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2689
2690 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2691 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2692
2693 q->sg_reserved_size = INT_MAX;
2694
2695 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2696 INIT_LIST_HEAD(&q->requeue_list);
2697 spin_lock_init(&q->requeue_lock);
2698
2699 blk_queue_make_request(q, blk_mq_make_request);
2700 if (q->mq_ops->poll)
2701 q->poll_fn = blk_mq_poll;
2702
2703 /*
2704 * Do this after blk_queue_make_request() overrides it...
2705 */
2706 q->nr_requests = set->queue_depth;
2707
2708 /*
2709 * Default to classic polling
2710 */
2711 q->poll_nsec = -1;
2712
2713 if (set->ops->complete)
2714 blk_queue_softirq_done(q, set->ops->complete);
2715
2716 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2717 blk_mq_add_queue_tag_set(set, q);
2718 blk_mq_map_swqueue(q);
2719
2720 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2721 int ret;
2722
2723 ret = blk_mq_sched_init(q);
2724 if (ret)
2725 return ERR_PTR(ret);
2726 }
2727
2728 return q;
2729
2730 err_hctxs:
2731 kfree(q->queue_hw_ctx);
2732 err_percpu:
2733 free_percpu(q->queue_ctx);
2734 err_exit:
2735 q->mq_ops = NULL;
2736 return ERR_PTR(-ENOMEM);
2737 }
2738 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2739
2740 /* tags can _not_ be used after returning from blk_mq_exit_queue */
2741 void blk_mq_exit_queue(struct request_queue *q)
2742 {
2743 struct blk_mq_tag_set *set = q->tag_set;
2744
2745 blk_mq_del_queue_tag_set(q);
2746 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2747 }
2748
2749 /* Basically redo blk_mq_init_queue with queue frozen */
2750 static void blk_mq_queue_reinit(struct request_queue *q)
2751 {
2752 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2753
2754 blk_mq_debugfs_unregister_hctxs(q);
2755 blk_mq_sysfs_unregister(q);
2756
2757 /*
2758 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2759 * we should change hctx numa_node according to the new topology (this
2760 * involves freeing and re-allocating memory, worth doing?)
2761 */
2762 blk_mq_map_swqueue(q);
2763
2764 blk_mq_sysfs_register(q);
2765 blk_mq_debugfs_register_hctxs(q);
2766 }
2767
2768 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2769 {
2770 int i;
2771
2772 for (i = 0; i < set->nr_hw_queues; i++)
2773 if (!__blk_mq_alloc_rq_map(set, i))
2774 goto out_unwind;
2775
2776 return 0;
2777
2778 out_unwind:
2779 while (--i >= 0)
2780 blk_mq_free_rq_map(set->tags[i]);
2781
2782 return -ENOMEM;
2783 }
2784
2785 /*
2786 * Allocate the request maps associated with this tag_set. Note that this
2787 * may reduce the depth asked for, if memory is tight. set->queue_depth
2788 * will be updated to reflect the allocated depth.
2789 */
2790 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2791 {
2792 unsigned int depth;
2793 int err;
2794
2795 depth = set->queue_depth;
2796 do {
2797 err = __blk_mq_alloc_rq_maps(set);
2798 if (!err)
2799 break;
2800
2801 set->queue_depth >>= 1;
2802 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2803 err = -ENOMEM;
2804 break;
2805 }
2806 } while (set->queue_depth);
2807
2808 if (!set->queue_depth || err) {
2809 pr_err("blk-mq: failed to allocate request map\n");
2810 return -ENOMEM;
2811 }
2812
2813 if (depth != set->queue_depth)
2814 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2815 depth, set->queue_depth);
2816
2817 return 0;
2818 }
2819
2820 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2821 {
2822 if (set->ops->map_queues) {
2823 int cpu;
2824 /*
2825 * transport .map_queues is usually done in the following
2826 * way:
2827 *
2828 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2829 * mask = get_cpu_mask(queue)
2830 * for_each_cpu(cpu, mask)
2831 * set->mq_map[cpu] = queue;
2832 * }
2833 *
2834 * When we need to remap, the table has to be cleared for
2835 * killing stale mapping since one CPU may not be mapped
2836 * to any hw queue.
2837 */
2838 for_each_possible_cpu(cpu)
2839 set->mq_map[cpu] = 0;
2840
2841 return set->ops->map_queues(set);
2842 } else
2843 return blk_mq_map_queues(set);
2844 }
2845
2846 /*
2847 * Alloc a tag set to be associated with one or more request queues.
2848 * May fail with EINVAL for various error conditions. May adjust the
2849 * requested depth down, if if it too large. In that case, the set
2850 * value will be stored in set->queue_depth.
2851 */
2852 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2853 {
2854 int ret;
2855
2856 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2857
2858 if (!set->nr_hw_queues)
2859 return -EINVAL;
2860 if (!set->queue_depth)
2861 return -EINVAL;
2862 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2863 return -EINVAL;
2864
2865 if (!set->ops->queue_rq)
2866 return -EINVAL;
2867
2868 if (!set->ops->get_budget ^ !set->ops->put_budget)
2869 return -EINVAL;
2870
2871 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2872 pr_info("blk-mq: reduced tag depth to %u\n",
2873 BLK_MQ_MAX_DEPTH);
2874 set->queue_depth = BLK_MQ_MAX_DEPTH;
2875 }
2876
2877 /*
2878 * If a crashdump is active, then we are potentially in a very
2879 * memory constrained environment. Limit us to 1 queue and
2880 * 64 tags to prevent using too much memory.
2881 */
2882 if (is_kdump_kernel()) {
2883 set->nr_hw_queues = 1;
2884 set->queue_depth = min(64U, set->queue_depth);
2885 }
2886 /*
2887 * There is no use for more h/w queues than cpus.
2888 */
2889 if (set->nr_hw_queues > nr_cpu_ids)
2890 set->nr_hw_queues = nr_cpu_ids;
2891
2892 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2893 GFP_KERNEL, set->numa_node);
2894 if (!set->tags)
2895 return -ENOMEM;
2896
2897 ret = -ENOMEM;
2898 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2899 GFP_KERNEL, set->numa_node);
2900 if (!set->mq_map)
2901 goto out_free_tags;
2902
2903 ret = blk_mq_update_queue_map(set);
2904 if (ret)
2905 goto out_free_mq_map;
2906
2907 ret = blk_mq_alloc_rq_maps(set);
2908 if (ret)
2909 goto out_free_mq_map;
2910
2911 mutex_init(&set->tag_list_lock);
2912 INIT_LIST_HEAD(&set->tag_list);
2913
2914 return 0;
2915
2916 out_free_mq_map:
2917 kfree(set->mq_map);
2918 set->mq_map = NULL;
2919 out_free_tags:
2920 kfree(set->tags);
2921 set->tags = NULL;
2922 return ret;
2923 }
2924 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2925
2926 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2927 {
2928 int i;
2929
2930 for (i = 0; i < nr_cpu_ids; i++)
2931 blk_mq_free_map_and_requests(set, i);
2932
2933 kfree(set->mq_map);
2934 set->mq_map = NULL;
2935
2936 kfree(set->tags);
2937 set->tags = NULL;
2938 }
2939 EXPORT_SYMBOL(blk_mq_free_tag_set);
2940
2941 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2942 {
2943 struct blk_mq_tag_set *set = q->tag_set;
2944 struct blk_mq_hw_ctx *hctx;
2945 int i, ret;
2946
2947 if (!set)
2948 return -EINVAL;
2949
2950 if (q->nr_requests == nr)
2951 return 0;
2952
2953 blk_mq_freeze_queue(q);
2954 blk_mq_quiesce_queue(q);
2955
2956 ret = 0;
2957 queue_for_each_hw_ctx(q, hctx, i) {
2958 if (!hctx->tags)
2959 continue;
2960 /*
2961 * If we're using an MQ scheduler, just update the scheduler
2962 * queue depth. This is similar to what the old code would do.
2963 */
2964 if (!hctx->sched_tags) {
2965 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2966 false);
2967 } else {
2968 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2969 nr, true);
2970 }
2971 if (ret)
2972 break;
2973 }
2974
2975 if (!ret)
2976 q->nr_requests = nr;
2977
2978 blk_mq_unquiesce_queue(q);
2979 blk_mq_unfreeze_queue(q);
2980
2981 return ret;
2982 }
2983
2984 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2985 int nr_hw_queues)
2986 {
2987 struct request_queue *q;
2988
2989 lockdep_assert_held(&set->tag_list_lock);
2990
2991 if (nr_hw_queues > nr_cpu_ids)
2992 nr_hw_queues = nr_cpu_ids;
2993 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2994 return;
2995
2996 list_for_each_entry(q, &set->tag_list, tag_set_list)
2997 blk_mq_freeze_queue(q);
2998
2999 set->nr_hw_queues = nr_hw_queues;
3000 blk_mq_update_queue_map(set);
3001 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3002 blk_mq_realloc_hw_ctxs(set, q);
3003 blk_mq_queue_reinit(q);
3004 }
3005
3006 list_for_each_entry(q, &set->tag_list, tag_set_list)
3007 blk_mq_unfreeze_queue(q);
3008 }
3009
3010 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3011 {
3012 mutex_lock(&set->tag_list_lock);
3013 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3014 mutex_unlock(&set->tag_list_lock);
3015 }
3016 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3017
3018 /* Enable polling stats and return whether they were already enabled. */
3019 static bool blk_poll_stats_enable(struct request_queue *q)
3020 {
3021 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3022 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
3023 return true;
3024 blk_stat_add_callback(q, q->poll_cb);
3025 return false;
3026 }
3027
3028 static void blk_mq_poll_stats_start(struct request_queue *q)
3029 {
3030 /*
3031 * We don't arm the callback if polling stats are not enabled or the
3032 * callback is already active.
3033 */
3034 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3035 blk_stat_is_active(q->poll_cb))
3036 return;
3037
3038 blk_stat_activate_msecs(q->poll_cb, 100);
3039 }
3040
3041 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3042 {
3043 struct request_queue *q = cb->data;
3044 int bucket;
3045
3046 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3047 if (cb->stat[bucket].nr_samples)
3048 q->poll_stat[bucket] = cb->stat[bucket];
3049 }
3050 }
3051
3052 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3053 struct blk_mq_hw_ctx *hctx,
3054 struct request *rq)
3055 {
3056 unsigned long ret = 0;
3057 int bucket;
3058
3059 /*
3060 * If stats collection isn't on, don't sleep but turn it on for
3061 * future users
3062 */
3063 if (!blk_poll_stats_enable(q))
3064 return 0;
3065
3066 /*
3067 * As an optimistic guess, use half of the mean service time
3068 * for this type of request. We can (and should) make this smarter.
3069 * For instance, if the completion latencies are tight, we can
3070 * get closer than just half the mean. This is especially
3071 * important on devices where the completion latencies are longer
3072 * than ~10 usec. We do use the stats for the relevant IO size
3073 * if available which does lead to better estimates.
3074 */
3075 bucket = blk_mq_poll_stats_bkt(rq);
3076 if (bucket < 0)
3077 return ret;
3078
3079 if (q->poll_stat[bucket].nr_samples)
3080 ret = (q->poll_stat[bucket].mean + 1) / 2;
3081
3082 return ret;
3083 }
3084
3085 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3086 struct blk_mq_hw_ctx *hctx,
3087 struct request *rq)
3088 {
3089 struct hrtimer_sleeper hs;
3090 enum hrtimer_mode mode;
3091 unsigned int nsecs;
3092 ktime_t kt;
3093
3094 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
3095 return false;
3096
3097 /*
3098 * poll_nsec can be:
3099 *
3100 * -1: don't ever hybrid sleep
3101 * 0: use half of prev avg
3102 * >0: use this specific value
3103 */
3104 if (q->poll_nsec == -1)
3105 return false;
3106 else if (q->poll_nsec > 0)
3107 nsecs = q->poll_nsec;
3108 else
3109 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3110
3111 if (!nsecs)
3112 return false;
3113
3114 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
3115
3116 /*
3117 * This will be replaced with the stats tracking code, using
3118 * 'avg_completion_time / 2' as the pre-sleep target.
3119 */
3120 kt = nsecs;
3121
3122 mode = HRTIMER_MODE_REL;
3123 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3124 hrtimer_set_expires(&hs.timer, kt);
3125
3126 hrtimer_init_sleeper(&hs, current);
3127 do {
3128 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
3129 break;
3130 set_current_state(TASK_UNINTERRUPTIBLE);
3131 hrtimer_start_expires(&hs.timer, mode);
3132 if (hs.task)
3133 io_schedule();
3134 hrtimer_cancel(&hs.timer);
3135 mode = HRTIMER_MODE_ABS;
3136 } while (hs.task && !signal_pending(current));
3137
3138 __set_current_state(TASK_RUNNING);
3139 destroy_hrtimer_on_stack(&hs.timer);
3140 return true;
3141 }
3142
3143 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
3144 {
3145 struct request_queue *q = hctx->queue;
3146 long state;
3147
3148 /*
3149 * If we sleep, have the caller restart the poll loop to reset
3150 * the state. Like for the other success return cases, the
3151 * caller is responsible for checking if the IO completed. If
3152 * the IO isn't complete, we'll get called again and will go
3153 * straight to the busy poll loop.
3154 */
3155 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3156 return true;
3157
3158 hctx->poll_considered++;
3159
3160 state = current->state;
3161 while (!need_resched()) {
3162 int ret;
3163
3164 hctx->poll_invoked++;
3165
3166 ret = q->mq_ops->poll(hctx, rq->tag);
3167 if (ret > 0) {
3168 hctx->poll_success++;
3169 set_current_state(TASK_RUNNING);
3170 return true;
3171 }
3172
3173 if (signal_pending_state(state, current))
3174 set_current_state(TASK_RUNNING);
3175
3176 if (current->state == TASK_RUNNING)
3177 return true;
3178 if (ret < 0)
3179 break;
3180 cpu_relax();
3181 }
3182
3183 return false;
3184 }
3185
3186 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
3187 {
3188 struct blk_mq_hw_ctx *hctx;
3189 struct request *rq;
3190
3191 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3192 return false;
3193
3194 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3195 if (!blk_qc_t_is_internal(cookie))
3196 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3197 else {
3198 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3199 /*
3200 * With scheduling, if the request has completed, we'll
3201 * get a NULL return here, as we clear the sched tag when
3202 * that happens. The request still remains valid, like always,
3203 * so we should be safe with just the NULL check.
3204 */
3205 if (!rq)
3206 return false;
3207 }
3208
3209 return __blk_mq_poll(hctx, rq);
3210 }
3211
3212 static int __init blk_mq_init(void)
3213 {
3214 /*
3215 * See comment in block/blk.h rq_atomic_flags enum
3216 */
3217 BUILD_BUG_ON((REQ_ATOM_STARTED / BITS_PER_BYTE) !=
3218 (REQ_ATOM_COMPLETE / BITS_PER_BYTE));
3219
3220 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3221 blk_mq_hctx_notify_dead);
3222 return 0;
3223 }
3224 subsys_initcall(blk_mq_init);