]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-mq.c
block: bvec_nr_vecs() returns value for wrong slab
[mirror_ubuntu-bionic-kernel.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
39
40 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 static void blk_mq_poll_stats_start(struct request_queue *q);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43
44 static int blk_mq_poll_stats_bkt(const struct request *rq)
45 {
46 int ddir, bytes, bucket;
47
48 ddir = rq_data_dir(rq);
49 bytes = blk_rq_bytes(rq);
50
51 bucket = ddir + 2*(ilog2(bytes) - 9);
52
53 if (bucket < 0)
54 return -1;
55 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57
58 return bucket;
59 }
60
61 /*
62 * Check if any of the ctx's have pending work in this hardware queue
63 */
64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65 {
66 return !list_empty_careful(&hctx->dispatch) ||
67 sbitmap_any_bit_set(&hctx->ctx_map) ||
68 blk_mq_sched_has_work(hctx);
69 }
70
71 /*
72 * Mark this ctx as having pending work in this hardware queue
73 */
74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75 struct blk_mq_ctx *ctx)
76 {
77 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
78 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 }
80
81 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
82 struct blk_mq_ctx *ctx)
83 {
84 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 }
86
87 struct mq_inflight {
88 struct hd_struct *part;
89 unsigned int *inflight;
90 };
91
92 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
93 struct request *rq, void *priv,
94 bool reserved)
95 {
96 struct mq_inflight *mi = priv;
97
98 if (test_bit(REQ_ATOM_STARTED, &rq->atomic_flags) &&
99 !test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
100 /*
101 * index[0] counts the specific partition that was asked
102 * for. index[1] counts the ones that are active on the
103 * whole device, so increment that if mi->part is indeed
104 * a partition, and not a whole device.
105 */
106 if (rq->part == mi->part)
107 mi->inflight[0]++;
108 if (mi->part->partno)
109 mi->inflight[1]++;
110 }
111 }
112
113 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
114 unsigned int inflight[2])
115 {
116 struct mq_inflight mi = { .part = part, .inflight = inflight, };
117
118 inflight[0] = inflight[1] = 0;
119 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
120 }
121
122 static void blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
123 struct request *rq, void *priv,
124 bool reserved)
125 {
126 struct mq_inflight *mi = priv;
127
128 if (rq->part == mi->part)
129 mi->inflight[rq_data_dir(rq)]++;
130 }
131
132 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
133 unsigned int inflight[2])
134 {
135 struct mq_inflight mi = { .part = part, .inflight = inflight, };
136
137 inflight[0] = inflight[1] = 0;
138 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
139 }
140
141 void blk_freeze_queue_start(struct request_queue *q)
142 {
143 int freeze_depth;
144
145 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
146 if (freeze_depth == 1) {
147 percpu_ref_kill(&q->q_usage_counter);
148 if (q->mq_ops)
149 blk_mq_run_hw_queues(q, false);
150 }
151 }
152 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
153
154 void blk_mq_freeze_queue_wait(struct request_queue *q)
155 {
156 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
157 }
158 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
159
160 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
161 unsigned long timeout)
162 {
163 return wait_event_timeout(q->mq_freeze_wq,
164 percpu_ref_is_zero(&q->q_usage_counter),
165 timeout);
166 }
167 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
168
169 /*
170 * Guarantee no request is in use, so we can change any data structure of
171 * the queue afterward.
172 */
173 void blk_freeze_queue(struct request_queue *q)
174 {
175 /*
176 * In the !blk_mq case we are only calling this to kill the
177 * q_usage_counter, otherwise this increases the freeze depth
178 * and waits for it to return to zero. For this reason there is
179 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
180 * exported to drivers as the only user for unfreeze is blk_mq.
181 */
182 blk_freeze_queue_start(q);
183 if (!q->mq_ops)
184 blk_drain_queue(q);
185 blk_mq_freeze_queue_wait(q);
186 }
187
188 void blk_mq_freeze_queue(struct request_queue *q)
189 {
190 /*
191 * ...just an alias to keep freeze and unfreeze actions balanced
192 * in the blk_mq_* namespace
193 */
194 blk_freeze_queue(q);
195 }
196 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
197
198 void blk_mq_unfreeze_queue(struct request_queue *q)
199 {
200 int freeze_depth;
201
202 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
203 WARN_ON_ONCE(freeze_depth < 0);
204 if (!freeze_depth) {
205 percpu_ref_reinit(&q->q_usage_counter);
206 wake_up_all(&q->mq_freeze_wq);
207 }
208 }
209 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
210
211 /*
212 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
213 * mpt3sas driver such that this function can be removed.
214 */
215 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
216 {
217 unsigned long flags;
218
219 spin_lock_irqsave(q->queue_lock, flags);
220 queue_flag_set(QUEUE_FLAG_QUIESCED, q);
221 spin_unlock_irqrestore(q->queue_lock, flags);
222 }
223 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
224
225 /**
226 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
227 * @q: request queue.
228 *
229 * Note: this function does not prevent that the struct request end_io()
230 * callback function is invoked. Once this function is returned, we make
231 * sure no dispatch can happen until the queue is unquiesced via
232 * blk_mq_unquiesce_queue().
233 */
234 void blk_mq_quiesce_queue(struct request_queue *q)
235 {
236 struct blk_mq_hw_ctx *hctx;
237 unsigned int i;
238 bool rcu = false;
239
240 blk_mq_quiesce_queue_nowait(q);
241
242 queue_for_each_hw_ctx(q, hctx, i) {
243 if (hctx->flags & BLK_MQ_F_BLOCKING)
244 synchronize_srcu(hctx->queue_rq_srcu);
245 else
246 rcu = true;
247 }
248 if (rcu)
249 synchronize_rcu();
250 }
251 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
252
253 /*
254 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
255 * @q: request queue.
256 *
257 * This function recovers queue into the state before quiescing
258 * which is done by blk_mq_quiesce_queue.
259 */
260 void blk_mq_unquiesce_queue(struct request_queue *q)
261 {
262 unsigned long flags;
263
264 spin_lock_irqsave(q->queue_lock, flags);
265 queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
266 spin_unlock_irqrestore(q->queue_lock, flags);
267
268 /* dispatch requests which are inserted during quiescing */
269 blk_mq_run_hw_queues(q, true);
270 }
271 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
272
273 void blk_mq_wake_waiters(struct request_queue *q)
274 {
275 struct blk_mq_hw_ctx *hctx;
276 unsigned int i;
277
278 queue_for_each_hw_ctx(q, hctx, i)
279 if (blk_mq_hw_queue_mapped(hctx))
280 blk_mq_tag_wakeup_all(hctx->tags, true);
281 }
282
283 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
284 {
285 return blk_mq_has_free_tags(hctx->tags);
286 }
287 EXPORT_SYMBOL(blk_mq_can_queue);
288
289 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
290 unsigned int tag, unsigned int op)
291 {
292 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
293 struct request *rq = tags->static_rqs[tag];
294
295 rq->rq_flags = 0;
296
297 if (data->flags & BLK_MQ_REQ_INTERNAL) {
298 rq->tag = -1;
299 rq->internal_tag = tag;
300 } else {
301 if (blk_mq_tag_busy(data->hctx)) {
302 rq->rq_flags = RQF_MQ_INFLIGHT;
303 atomic_inc(&data->hctx->nr_active);
304 }
305 rq->tag = tag;
306 rq->internal_tag = -1;
307 data->hctx->tags->rqs[rq->tag] = rq;
308 }
309
310 INIT_LIST_HEAD(&rq->queuelist);
311 /* csd/requeue_work/fifo_time is initialized before use */
312 rq->q = data->q;
313 rq->mq_ctx = data->ctx;
314 rq->cmd_flags = op;
315 if (data->flags & BLK_MQ_REQ_PREEMPT)
316 rq->rq_flags |= RQF_PREEMPT;
317 if (blk_queue_io_stat(data->q))
318 rq->rq_flags |= RQF_IO_STAT;
319 /* do not touch atomic flags, it needs atomic ops against the timer */
320 rq->cpu = -1;
321 INIT_HLIST_NODE(&rq->hash);
322 RB_CLEAR_NODE(&rq->rb_node);
323 rq->rq_disk = NULL;
324 rq->part = NULL;
325 rq->start_time = jiffies;
326 #ifdef CONFIG_BLK_CGROUP
327 rq->rl = NULL;
328 set_start_time_ns(rq);
329 rq->io_start_time_ns = 0;
330 #endif
331 rq->nr_phys_segments = 0;
332 #if defined(CONFIG_BLK_DEV_INTEGRITY)
333 rq->nr_integrity_segments = 0;
334 #endif
335 rq->special = NULL;
336 /* tag was already set */
337 rq->extra_len = 0;
338
339 INIT_LIST_HEAD(&rq->timeout_list);
340 rq->timeout = 0;
341
342 rq->end_io = NULL;
343 rq->end_io_data = NULL;
344 rq->next_rq = NULL;
345
346 data->ctx->rq_dispatched[op_is_sync(op)]++;
347 return rq;
348 }
349
350 static struct request *blk_mq_get_request(struct request_queue *q,
351 struct bio *bio, unsigned int op,
352 struct blk_mq_alloc_data *data)
353 {
354 struct elevator_queue *e = q->elevator;
355 struct request *rq;
356 unsigned int tag;
357 bool put_ctx_on_error = false;
358
359 blk_queue_enter_live(q);
360 data->q = q;
361 if (likely(!data->ctx)) {
362 data->ctx = blk_mq_get_ctx(q);
363 put_ctx_on_error = true;
364 }
365 if (likely(!data->hctx))
366 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
367 if (op & REQ_NOWAIT)
368 data->flags |= BLK_MQ_REQ_NOWAIT;
369
370 if (e) {
371 data->flags |= BLK_MQ_REQ_INTERNAL;
372
373 /*
374 * Flush requests are special and go directly to the
375 * dispatch list.
376 */
377 if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
378 e->type->ops.mq.limit_depth(op, data);
379 }
380
381 tag = blk_mq_get_tag(data);
382 if (tag == BLK_MQ_TAG_FAIL) {
383 if (put_ctx_on_error) {
384 blk_mq_put_ctx(data->ctx);
385 data->ctx = NULL;
386 }
387 blk_queue_exit(q);
388 return NULL;
389 }
390
391 rq = blk_mq_rq_ctx_init(data, tag, op);
392 if (!op_is_flush(op)) {
393 rq->elv.icq = NULL;
394 if (e && e->type->ops.mq.prepare_request) {
395 if (e->type->icq_cache && rq_ioc(bio))
396 blk_mq_sched_assign_ioc(rq, bio);
397
398 e->type->ops.mq.prepare_request(rq, bio);
399 rq->rq_flags |= RQF_ELVPRIV;
400 }
401 }
402 data->hctx->queued++;
403 return rq;
404 }
405
406 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
407 blk_mq_req_flags_t flags)
408 {
409 struct blk_mq_alloc_data alloc_data = { .flags = flags };
410 struct request *rq;
411 int ret;
412
413 ret = blk_queue_enter(q, flags);
414 if (ret)
415 return ERR_PTR(ret);
416
417 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
418 blk_queue_exit(q);
419
420 if (!rq)
421 return ERR_PTR(-EWOULDBLOCK);
422
423 blk_mq_put_ctx(alloc_data.ctx);
424
425 rq->__data_len = 0;
426 rq->__sector = (sector_t) -1;
427 rq->bio = rq->biotail = NULL;
428 return rq;
429 }
430 EXPORT_SYMBOL(blk_mq_alloc_request);
431
432 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
433 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
434 {
435 struct blk_mq_alloc_data alloc_data = { .flags = flags };
436 struct request *rq;
437 unsigned int cpu;
438 int ret;
439
440 /*
441 * If the tag allocator sleeps we could get an allocation for a
442 * different hardware context. No need to complicate the low level
443 * allocator for this for the rare use case of a command tied to
444 * a specific queue.
445 */
446 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
447 return ERR_PTR(-EINVAL);
448
449 if (hctx_idx >= q->nr_hw_queues)
450 return ERR_PTR(-EIO);
451
452 ret = blk_queue_enter(q, flags);
453 if (ret)
454 return ERR_PTR(ret);
455
456 /*
457 * Check if the hardware context is actually mapped to anything.
458 * If not tell the caller that it should skip this queue.
459 */
460 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
461 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
462 blk_queue_exit(q);
463 return ERR_PTR(-EXDEV);
464 }
465 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
466 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
467
468 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
469 blk_queue_exit(q);
470
471 if (!rq)
472 return ERR_PTR(-EWOULDBLOCK);
473
474 return rq;
475 }
476 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
477
478 void blk_mq_free_request(struct request *rq)
479 {
480 struct request_queue *q = rq->q;
481 struct elevator_queue *e = q->elevator;
482 struct blk_mq_ctx *ctx = rq->mq_ctx;
483 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
484 const int sched_tag = rq->internal_tag;
485
486 if (rq->rq_flags & RQF_ELVPRIV) {
487 if (e && e->type->ops.mq.finish_request)
488 e->type->ops.mq.finish_request(rq);
489 if (rq->elv.icq) {
490 put_io_context(rq->elv.icq->ioc);
491 rq->elv.icq = NULL;
492 }
493 }
494
495 ctx->rq_completed[rq_is_sync(rq)]++;
496 if (rq->rq_flags & RQF_MQ_INFLIGHT)
497 atomic_dec(&hctx->nr_active);
498
499 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
500 laptop_io_completion(q->backing_dev_info);
501
502 wbt_done(q->rq_wb, &rq->issue_stat);
503
504 if (blk_rq_rl(rq))
505 blk_put_rl(blk_rq_rl(rq));
506
507 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
508 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
509 if (rq->tag != -1)
510 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
511 if (sched_tag != -1)
512 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
513 blk_mq_sched_restart(hctx);
514 blk_queue_exit(q);
515 }
516 EXPORT_SYMBOL_GPL(blk_mq_free_request);
517
518 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
519 {
520 blk_account_io_done(rq);
521
522 if (rq->end_io) {
523 wbt_done(rq->q->rq_wb, &rq->issue_stat);
524 rq->end_io(rq, error);
525 } else {
526 if (unlikely(blk_bidi_rq(rq)))
527 blk_mq_free_request(rq->next_rq);
528 blk_mq_free_request(rq);
529 }
530 }
531 EXPORT_SYMBOL(__blk_mq_end_request);
532
533 void blk_mq_end_request(struct request *rq, blk_status_t error)
534 {
535 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
536 BUG();
537 __blk_mq_end_request(rq, error);
538 }
539 EXPORT_SYMBOL(blk_mq_end_request);
540
541 static void __blk_mq_complete_request_remote(void *data)
542 {
543 struct request *rq = data;
544
545 rq->q->softirq_done_fn(rq);
546 }
547
548 static void __blk_mq_complete_request(struct request *rq)
549 {
550 struct blk_mq_ctx *ctx = rq->mq_ctx;
551 bool shared = false;
552 int cpu;
553
554 if (rq->internal_tag != -1)
555 blk_mq_sched_completed_request(rq);
556 if (rq->rq_flags & RQF_STATS) {
557 blk_mq_poll_stats_start(rq->q);
558 blk_stat_add(rq);
559 }
560
561 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
562 rq->q->softirq_done_fn(rq);
563 return;
564 }
565
566 cpu = get_cpu();
567 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
568 shared = cpus_share_cache(cpu, ctx->cpu);
569
570 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
571 rq->csd.func = __blk_mq_complete_request_remote;
572 rq->csd.info = rq;
573 rq->csd.flags = 0;
574 smp_call_function_single_async(ctx->cpu, &rq->csd);
575 } else {
576 rq->q->softirq_done_fn(rq);
577 }
578 put_cpu();
579 }
580
581 /**
582 * blk_mq_complete_request - end I/O on a request
583 * @rq: the request being processed
584 *
585 * Description:
586 * Ends all I/O on a request. It does not handle partial completions.
587 * The actual completion happens out-of-order, through a IPI handler.
588 **/
589 void blk_mq_complete_request(struct request *rq)
590 {
591 struct request_queue *q = rq->q;
592
593 if (unlikely(blk_should_fake_timeout(q)))
594 return;
595 if (!blk_mark_rq_complete(rq))
596 __blk_mq_complete_request(rq);
597 }
598 EXPORT_SYMBOL(blk_mq_complete_request);
599
600 int blk_mq_request_started(struct request *rq)
601 {
602 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
603 }
604 EXPORT_SYMBOL_GPL(blk_mq_request_started);
605
606 void blk_mq_start_request(struct request *rq)
607 {
608 struct request_queue *q = rq->q;
609
610 blk_mq_sched_started_request(rq);
611
612 trace_block_rq_issue(q, rq);
613
614 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
615 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
616 rq->rq_flags |= RQF_STATS;
617 wbt_issue(q->rq_wb, &rq->issue_stat);
618 }
619
620 blk_add_timer(rq);
621
622 WARN_ON_ONCE(test_bit(REQ_ATOM_STARTED, &rq->atomic_flags));
623
624 /*
625 * Mark us as started and clear complete. Complete might have been
626 * set if requeue raced with timeout, which then marked it as
627 * complete. So be sure to clear complete again when we start
628 * the request, otherwise we'll ignore the completion event.
629 *
630 * Ensure that ->deadline is visible before we set STARTED, such that
631 * blk_mq_check_expired() is guaranteed to observe our ->deadline when
632 * it observes STARTED.
633 */
634 smp_wmb();
635 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
636 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
637 /*
638 * Coherence order guarantees these consecutive stores to a
639 * single variable propagate in the specified order. Thus the
640 * clear_bit() is ordered _after_ the set bit. See
641 * blk_mq_check_expired().
642 *
643 * (the bits must be part of the same byte for this to be
644 * true).
645 */
646 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
647 }
648
649 if (q->dma_drain_size && blk_rq_bytes(rq)) {
650 /*
651 * Make sure space for the drain appears. We know we can do
652 * this because max_hw_segments has been adjusted to be one
653 * fewer than the device can handle.
654 */
655 rq->nr_phys_segments++;
656 }
657 }
658 EXPORT_SYMBOL(blk_mq_start_request);
659
660 /*
661 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
662 * flag isn't set yet, so there may be race with timeout handler,
663 * but given rq->deadline is just set in .queue_rq() under
664 * this situation, the race won't be possible in reality because
665 * rq->timeout should be set as big enough to cover the window
666 * between blk_mq_start_request() called from .queue_rq() and
667 * clearing REQ_ATOM_STARTED here.
668 */
669 static void __blk_mq_requeue_request(struct request *rq)
670 {
671 struct request_queue *q = rq->q;
672
673 blk_mq_put_driver_tag(rq);
674
675 trace_block_rq_requeue(q, rq);
676 wbt_requeue(q->rq_wb, &rq->issue_stat);
677
678 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
679 if (q->dma_drain_size && blk_rq_bytes(rq))
680 rq->nr_phys_segments--;
681 }
682 }
683
684 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
685 {
686 __blk_mq_requeue_request(rq);
687
688 /* this request will be re-inserted to io scheduler queue */
689 blk_mq_sched_requeue_request(rq);
690
691 BUG_ON(blk_queued_rq(rq));
692 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
693 }
694 EXPORT_SYMBOL(blk_mq_requeue_request);
695
696 static void blk_mq_requeue_work(struct work_struct *work)
697 {
698 struct request_queue *q =
699 container_of(work, struct request_queue, requeue_work.work);
700 LIST_HEAD(rq_list);
701 struct request *rq, *next;
702
703 spin_lock_irq(&q->requeue_lock);
704 list_splice_init(&q->requeue_list, &rq_list);
705 spin_unlock_irq(&q->requeue_lock);
706
707 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
708 if (!(rq->rq_flags & RQF_SOFTBARRIER))
709 continue;
710
711 rq->rq_flags &= ~RQF_SOFTBARRIER;
712 list_del_init(&rq->queuelist);
713 blk_mq_sched_insert_request(rq, true, false, false, true);
714 }
715
716 while (!list_empty(&rq_list)) {
717 rq = list_entry(rq_list.next, struct request, queuelist);
718 list_del_init(&rq->queuelist);
719 blk_mq_sched_insert_request(rq, false, false, false, true);
720 }
721
722 blk_mq_run_hw_queues(q, false);
723 }
724
725 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
726 bool kick_requeue_list)
727 {
728 struct request_queue *q = rq->q;
729 unsigned long flags;
730
731 /*
732 * We abuse this flag that is otherwise used by the I/O scheduler to
733 * request head insertion from the workqueue.
734 */
735 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
736
737 spin_lock_irqsave(&q->requeue_lock, flags);
738 if (at_head) {
739 rq->rq_flags |= RQF_SOFTBARRIER;
740 list_add(&rq->queuelist, &q->requeue_list);
741 } else {
742 list_add_tail(&rq->queuelist, &q->requeue_list);
743 }
744 spin_unlock_irqrestore(&q->requeue_lock, flags);
745
746 if (kick_requeue_list)
747 blk_mq_kick_requeue_list(q);
748 }
749 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
750
751 void blk_mq_kick_requeue_list(struct request_queue *q)
752 {
753 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
754 }
755 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
756
757 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
758 unsigned long msecs)
759 {
760 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
761 msecs_to_jiffies(msecs));
762 }
763 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
764
765 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
766 {
767 if (tag < tags->nr_tags) {
768 prefetch(tags->rqs[tag]);
769 return tags->rqs[tag];
770 }
771
772 return NULL;
773 }
774 EXPORT_SYMBOL(blk_mq_tag_to_rq);
775
776 struct blk_mq_timeout_data {
777 unsigned long next;
778 unsigned int next_set;
779 };
780
781 void blk_mq_rq_timed_out(struct request *req, bool reserved)
782 {
783 const struct blk_mq_ops *ops = req->q->mq_ops;
784 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
785
786 /*
787 * We know that complete is set at this point. If STARTED isn't set
788 * anymore, then the request isn't active and the "timeout" should
789 * just be ignored. This can happen due to the bitflag ordering.
790 * Timeout first checks if STARTED is set, and if it is, assumes
791 * the request is active. But if we race with completion, then
792 * both flags will get cleared. So check here again, and ignore
793 * a timeout event with a request that isn't active.
794 */
795 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
796 return;
797
798 if (ops->timeout)
799 ret = ops->timeout(req, reserved);
800
801 switch (ret) {
802 case BLK_EH_HANDLED:
803 __blk_mq_complete_request(req);
804 break;
805 case BLK_EH_RESET_TIMER:
806 blk_add_timer(req);
807 blk_clear_rq_complete(req);
808 break;
809 case BLK_EH_NOT_HANDLED:
810 break;
811 default:
812 printk(KERN_ERR "block: bad eh return: %d\n", ret);
813 break;
814 }
815 }
816
817 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
818 struct request *rq, void *priv, bool reserved)
819 {
820 struct blk_mq_timeout_data *data = priv;
821 unsigned long deadline;
822
823 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
824 return;
825
826 /*
827 * Ensures that if we see STARTED we must also see our
828 * up-to-date deadline, see blk_mq_start_request().
829 */
830 smp_rmb();
831
832 deadline = READ_ONCE(rq->deadline);
833
834 /*
835 * The rq being checked may have been freed and reallocated
836 * out already here, we avoid this race by checking rq->deadline
837 * and REQ_ATOM_COMPLETE flag together:
838 *
839 * - if rq->deadline is observed as new value because of
840 * reusing, the rq won't be timed out because of timing.
841 * - if rq->deadline is observed as previous value,
842 * REQ_ATOM_COMPLETE flag won't be cleared in reuse path
843 * because we put a barrier between setting rq->deadline
844 * and clearing the flag in blk_mq_start_request(), so
845 * this rq won't be timed out too.
846 */
847 if (time_after_eq(jiffies, deadline)) {
848 if (!blk_mark_rq_complete(rq)) {
849 /*
850 * Again coherence order ensures that consecutive reads
851 * from the same variable must be in that order. This
852 * ensures that if we see COMPLETE clear, we must then
853 * see STARTED set and we'll ignore this timeout.
854 *
855 * (There's also the MB implied by the test_and_clear())
856 */
857 blk_mq_rq_timed_out(rq, reserved);
858 }
859 } else if (!data->next_set || time_after(data->next, deadline)) {
860 data->next = deadline;
861 data->next_set = 1;
862 }
863 }
864
865 static void blk_mq_timeout_work(struct work_struct *work)
866 {
867 struct request_queue *q =
868 container_of(work, struct request_queue, timeout_work);
869 struct blk_mq_timeout_data data = {
870 .next = 0,
871 .next_set = 0,
872 };
873 int i;
874
875 /* A deadlock might occur if a request is stuck requiring a
876 * timeout at the same time a queue freeze is waiting
877 * completion, since the timeout code would not be able to
878 * acquire the queue reference here.
879 *
880 * That's why we don't use blk_queue_enter here; instead, we use
881 * percpu_ref_tryget directly, because we need to be able to
882 * obtain a reference even in the short window between the queue
883 * starting to freeze, by dropping the first reference in
884 * blk_freeze_queue_start, and the moment the last request is
885 * consumed, marked by the instant q_usage_counter reaches
886 * zero.
887 */
888 if (!percpu_ref_tryget(&q->q_usage_counter))
889 return;
890
891 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
892
893 if (data.next_set) {
894 data.next = blk_rq_timeout(round_jiffies_up(data.next));
895 mod_timer(&q->timeout, data.next);
896 } else {
897 struct blk_mq_hw_ctx *hctx;
898
899 queue_for_each_hw_ctx(q, hctx, i) {
900 /* the hctx may be unmapped, so check it here */
901 if (blk_mq_hw_queue_mapped(hctx))
902 blk_mq_tag_idle(hctx);
903 }
904 }
905 blk_queue_exit(q);
906 }
907
908 struct flush_busy_ctx_data {
909 struct blk_mq_hw_ctx *hctx;
910 struct list_head *list;
911 };
912
913 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
914 {
915 struct flush_busy_ctx_data *flush_data = data;
916 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
917 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
918
919 sbitmap_clear_bit(sb, bitnr);
920 spin_lock(&ctx->lock);
921 list_splice_tail_init(&ctx->rq_list, flush_data->list);
922 spin_unlock(&ctx->lock);
923 return true;
924 }
925
926 /*
927 * Process software queues that have been marked busy, splicing them
928 * to the for-dispatch
929 */
930 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
931 {
932 struct flush_busy_ctx_data data = {
933 .hctx = hctx,
934 .list = list,
935 };
936
937 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
938 }
939 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
940
941 struct dispatch_rq_data {
942 struct blk_mq_hw_ctx *hctx;
943 struct request *rq;
944 };
945
946 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
947 void *data)
948 {
949 struct dispatch_rq_data *dispatch_data = data;
950 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
951 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
952
953 spin_lock(&ctx->lock);
954 if (unlikely(!list_empty(&ctx->rq_list))) {
955 dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
956 list_del_init(&dispatch_data->rq->queuelist);
957 if (list_empty(&ctx->rq_list))
958 sbitmap_clear_bit(sb, bitnr);
959 }
960 spin_unlock(&ctx->lock);
961
962 return !dispatch_data->rq;
963 }
964
965 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
966 struct blk_mq_ctx *start)
967 {
968 unsigned off = start ? start->index_hw : 0;
969 struct dispatch_rq_data data = {
970 .hctx = hctx,
971 .rq = NULL,
972 };
973
974 __sbitmap_for_each_set(&hctx->ctx_map, off,
975 dispatch_rq_from_ctx, &data);
976
977 return data.rq;
978 }
979
980 static inline unsigned int queued_to_index(unsigned int queued)
981 {
982 if (!queued)
983 return 0;
984
985 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
986 }
987
988 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
989 bool wait)
990 {
991 struct blk_mq_alloc_data data = {
992 .q = rq->q,
993 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
994 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
995 };
996
997 might_sleep_if(wait);
998
999 if (rq->tag != -1)
1000 goto done;
1001
1002 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1003 data.flags |= BLK_MQ_REQ_RESERVED;
1004
1005 rq->tag = blk_mq_get_tag(&data);
1006 if (rq->tag >= 0) {
1007 if (blk_mq_tag_busy(data.hctx)) {
1008 rq->rq_flags |= RQF_MQ_INFLIGHT;
1009 atomic_inc(&data.hctx->nr_active);
1010 }
1011 data.hctx->tags->rqs[rq->tag] = rq;
1012 }
1013
1014 done:
1015 if (hctx)
1016 *hctx = data.hctx;
1017 return rq->tag != -1;
1018 }
1019
1020 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1021 int flags, void *key)
1022 {
1023 struct blk_mq_hw_ctx *hctx;
1024
1025 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1026
1027 list_del_init(&wait->entry);
1028 blk_mq_run_hw_queue(hctx, true);
1029 return 1;
1030 }
1031
1032 /*
1033 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1034 * the tag wakeups. For non-shared tags, we can simply mark us nedeing a
1035 * restart. For both caes, take care to check the condition again after
1036 * marking us as waiting.
1037 */
1038 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx,
1039 struct request *rq)
1040 {
1041 struct blk_mq_hw_ctx *this_hctx = *hctx;
1042 bool shared_tags = (this_hctx->flags & BLK_MQ_F_TAG_SHARED) != 0;
1043 struct sbq_wait_state *ws;
1044 wait_queue_entry_t *wait;
1045 bool ret;
1046
1047 if (!shared_tags) {
1048 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state))
1049 set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state);
1050 } else {
1051 wait = &this_hctx->dispatch_wait;
1052 if (!list_empty_careful(&wait->entry))
1053 return false;
1054
1055 spin_lock(&this_hctx->lock);
1056 if (!list_empty(&wait->entry)) {
1057 spin_unlock(&this_hctx->lock);
1058 return false;
1059 }
1060
1061 ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
1062 add_wait_queue(&ws->wait, wait);
1063 }
1064
1065 /*
1066 * It's possible that a tag was freed in the window between the
1067 * allocation failure and adding the hardware queue to the wait
1068 * queue.
1069 */
1070 ret = blk_mq_get_driver_tag(rq, hctx, false);
1071
1072 if (!shared_tags) {
1073 /*
1074 * Don't clear RESTART here, someone else could have set it.
1075 * At most this will cost an extra queue run.
1076 */
1077 return ret;
1078 } else {
1079 if (!ret) {
1080 spin_unlock(&this_hctx->lock);
1081 return false;
1082 }
1083
1084 /*
1085 * We got a tag, remove ourselves from the wait queue to ensure
1086 * someone else gets the wakeup.
1087 */
1088 spin_lock_irq(&ws->wait.lock);
1089 list_del_init(&wait->entry);
1090 spin_unlock_irq(&ws->wait.lock);
1091 spin_unlock(&this_hctx->lock);
1092 return true;
1093 }
1094 }
1095
1096 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1097 bool got_budget)
1098 {
1099 struct blk_mq_hw_ctx *hctx;
1100 struct request *rq, *nxt;
1101 bool no_tag = false;
1102 int errors, queued;
1103
1104 if (list_empty(list))
1105 return false;
1106
1107 WARN_ON(!list_is_singular(list) && got_budget);
1108
1109 /*
1110 * Now process all the entries, sending them to the driver.
1111 */
1112 errors = queued = 0;
1113 do {
1114 struct blk_mq_queue_data bd;
1115 blk_status_t ret;
1116
1117 rq = list_first_entry(list, struct request, queuelist);
1118
1119 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
1120 if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1121 break;
1122
1123 if (!blk_mq_get_driver_tag(rq, NULL, false)) {
1124 /*
1125 * The initial allocation attempt failed, so we need to
1126 * rerun the hardware queue when a tag is freed. The
1127 * waitqueue takes care of that. If the queue is run
1128 * before we add this entry back on the dispatch list,
1129 * we'll re-run it below.
1130 */
1131 if (!blk_mq_mark_tag_wait(&hctx, rq)) {
1132 blk_mq_put_dispatch_budget(hctx);
1133 /*
1134 * For non-shared tags, the RESTART check
1135 * will suffice.
1136 */
1137 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1138 no_tag = true;
1139 break;
1140 }
1141 }
1142
1143 list_del_init(&rq->queuelist);
1144
1145 bd.rq = rq;
1146
1147 /*
1148 * Flag last if we have no more requests, or if we have more
1149 * but can't assign a driver tag to it.
1150 */
1151 if (list_empty(list))
1152 bd.last = true;
1153 else {
1154 nxt = list_first_entry(list, struct request, queuelist);
1155 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1156 }
1157
1158 ret = q->mq_ops->queue_rq(hctx, &bd);
1159 if (ret == BLK_STS_RESOURCE) {
1160 /*
1161 * If an I/O scheduler has been configured and we got a
1162 * driver tag for the next request already, free it
1163 * again.
1164 */
1165 if (!list_empty(list)) {
1166 nxt = list_first_entry(list, struct request, queuelist);
1167 blk_mq_put_driver_tag(nxt);
1168 }
1169 list_add(&rq->queuelist, list);
1170 __blk_mq_requeue_request(rq);
1171 break;
1172 }
1173
1174 if (unlikely(ret != BLK_STS_OK)) {
1175 errors++;
1176 blk_mq_end_request(rq, BLK_STS_IOERR);
1177 continue;
1178 }
1179
1180 queued++;
1181 } while (!list_empty(list));
1182
1183 hctx->dispatched[queued_to_index(queued)]++;
1184
1185 /*
1186 * Any items that need requeuing? Stuff them into hctx->dispatch,
1187 * that is where we will continue on next queue run.
1188 */
1189 if (!list_empty(list)) {
1190 spin_lock(&hctx->lock);
1191 list_splice_init(list, &hctx->dispatch);
1192 spin_unlock(&hctx->lock);
1193
1194 /*
1195 * If SCHED_RESTART was set by the caller of this function and
1196 * it is no longer set that means that it was cleared by another
1197 * thread and hence that a queue rerun is needed.
1198 *
1199 * If 'no_tag' is set, that means that we failed getting
1200 * a driver tag with an I/O scheduler attached. If our dispatch
1201 * waitqueue is no longer active, ensure that we run the queue
1202 * AFTER adding our entries back to the list.
1203 *
1204 * If no I/O scheduler has been configured it is possible that
1205 * the hardware queue got stopped and restarted before requests
1206 * were pushed back onto the dispatch list. Rerun the queue to
1207 * avoid starvation. Notes:
1208 * - blk_mq_run_hw_queue() checks whether or not a queue has
1209 * been stopped before rerunning a queue.
1210 * - Some but not all block drivers stop a queue before
1211 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1212 * and dm-rq.
1213 */
1214 if (!blk_mq_sched_needs_restart(hctx) ||
1215 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1216 blk_mq_run_hw_queue(hctx, true);
1217 }
1218
1219 return (queued + errors) != 0;
1220 }
1221
1222 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1223 {
1224 int srcu_idx;
1225
1226 /*
1227 * We should be running this queue from one of the CPUs that
1228 * are mapped to it.
1229 *
1230 * There are at least two related races now between setting
1231 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1232 * __blk_mq_run_hw_queue():
1233 *
1234 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1235 * but later it becomes online, then this warning is harmless
1236 * at all
1237 *
1238 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1239 * but later it becomes offline, then the warning can't be
1240 * triggered, and we depend on blk-mq timeout handler to
1241 * handle dispatched requests to this hctx
1242 */
1243 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1244 cpu_online(hctx->next_cpu)) {
1245 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1246 raw_smp_processor_id(),
1247 cpumask_empty(hctx->cpumask) ? "inactive": "active");
1248 dump_stack();
1249 }
1250
1251 /*
1252 * We can't run the queue inline with ints disabled. Ensure that
1253 * we catch bad users of this early.
1254 */
1255 WARN_ON_ONCE(in_interrupt());
1256
1257 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1258 rcu_read_lock();
1259 blk_mq_sched_dispatch_requests(hctx);
1260 rcu_read_unlock();
1261 } else {
1262 might_sleep();
1263
1264 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1265 blk_mq_sched_dispatch_requests(hctx);
1266 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1267 }
1268 }
1269
1270 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1271 {
1272 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1273
1274 if (cpu >= nr_cpu_ids)
1275 cpu = cpumask_first(hctx->cpumask);
1276 return cpu;
1277 }
1278
1279 /*
1280 * It'd be great if the workqueue API had a way to pass
1281 * in a mask and had some smarts for more clever placement.
1282 * For now we just round-robin here, switching for every
1283 * BLK_MQ_CPU_WORK_BATCH queued items.
1284 */
1285 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1286 {
1287 bool tried = false;
1288 int next_cpu = hctx->next_cpu;
1289
1290 if (hctx->queue->nr_hw_queues == 1)
1291 return WORK_CPU_UNBOUND;
1292
1293 if (--hctx->next_cpu_batch <= 0) {
1294 select_cpu:
1295 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1296 cpu_online_mask);
1297 if (next_cpu >= nr_cpu_ids)
1298 next_cpu = blk_mq_first_mapped_cpu(hctx);
1299 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1300 }
1301
1302 /*
1303 * Do unbound schedule if we can't find a online CPU for this hctx,
1304 * and it should only happen in the path of handling CPU DEAD.
1305 */
1306 if (!cpu_online(next_cpu)) {
1307 if (!tried) {
1308 tried = true;
1309 goto select_cpu;
1310 }
1311
1312 /*
1313 * Make sure to re-select CPU next time once after CPUs
1314 * in hctx->cpumask become online again.
1315 */
1316 hctx->next_cpu = next_cpu;
1317 hctx->next_cpu_batch = 1;
1318 return WORK_CPU_UNBOUND;
1319 }
1320
1321 hctx->next_cpu = next_cpu;
1322 return next_cpu;
1323 }
1324
1325 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1326 unsigned long msecs)
1327 {
1328 if (unlikely(blk_mq_hctx_stopped(hctx)))
1329 return;
1330
1331 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1332 int cpu = get_cpu();
1333 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1334 __blk_mq_run_hw_queue(hctx);
1335 put_cpu();
1336 return;
1337 }
1338
1339 put_cpu();
1340 }
1341
1342 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1343 msecs_to_jiffies(msecs));
1344 }
1345
1346 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1347 {
1348 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1349 }
1350 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1351
1352 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1353 {
1354 if (blk_mq_hctx_has_pending(hctx)) {
1355 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1356 return true;
1357 }
1358
1359 return false;
1360 }
1361 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1362
1363 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1364 {
1365 struct blk_mq_hw_ctx *hctx;
1366 int i;
1367
1368 queue_for_each_hw_ctx(q, hctx, i) {
1369 if (blk_mq_hctx_stopped(hctx))
1370 continue;
1371
1372 blk_mq_run_hw_queue(hctx, async);
1373 }
1374 }
1375 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1376
1377 /**
1378 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1379 * @q: request queue.
1380 *
1381 * The caller is responsible for serializing this function against
1382 * blk_mq_{start,stop}_hw_queue().
1383 */
1384 bool blk_mq_queue_stopped(struct request_queue *q)
1385 {
1386 struct blk_mq_hw_ctx *hctx;
1387 int i;
1388
1389 queue_for_each_hw_ctx(q, hctx, i)
1390 if (blk_mq_hctx_stopped(hctx))
1391 return true;
1392
1393 return false;
1394 }
1395 EXPORT_SYMBOL(blk_mq_queue_stopped);
1396
1397 /*
1398 * This function is often used for pausing .queue_rq() by driver when
1399 * there isn't enough resource or some conditions aren't satisfied, and
1400 * BLK_STS_RESOURCE is usually returned.
1401 *
1402 * We do not guarantee that dispatch can be drained or blocked
1403 * after blk_mq_stop_hw_queue() returns. Please use
1404 * blk_mq_quiesce_queue() for that requirement.
1405 */
1406 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1407 {
1408 cancel_delayed_work(&hctx->run_work);
1409
1410 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1411 }
1412 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1413
1414 /*
1415 * This function is often used for pausing .queue_rq() by driver when
1416 * there isn't enough resource or some conditions aren't satisfied, and
1417 * BLK_STS_RESOURCE is usually returned.
1418 *
1419 * We do not guarantee that dispatch can be drained or blocked
1420 * after blk_mq_stop_hw_queues() returns. Please use
1421 * blk_mq_quiesce_queue() for that requirement.
1422 */
1423 void blk_mq_stop_hw_queues(struct request_queue *q)
1424 {
1425 struct blk_mq_hw_ctx *hctx;
1426 int i;
1427
1428 queue_for_each_hw_ctx(q, hctx, i)
1429 blk_mq_stop_hw_queue(hctx);
1430 }
1431 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1432
1433 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1434 {
1435 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1436
1437 blk_mq_run_hw_queue(hctx, false);
1438 }
1439 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1440
1441 void blk_mq_start_hw_queues(struct request_queue *q)
1442 {
1443 struct blk_mq_hw_ctx *hctx;
1444 int i;
1445
1446 queue_for_each_hw_ctx(q, hctx, i)
1447 blk_mq_start_hw_queue(hctx);
1448 }
1449 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1450
1451 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1452 {
1453 if (!blk_mq_hctx_stopped(hctx))
1454 return;
1455
1456 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1457 blk_mq_run_hw_queue(hctx, async);
1458 }
1459 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1460
1461 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1462 {
1463 struct blk_mq_hw_ctx *hctx;
1464 int i;
1465
1466 queue_for_each_hw_ctx(q, hctx, i)
1467 blk_mq_start_stopped_hw_queue(hctx, async);
1468 }
1469 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1470
1471 static void blk_mq_run_work_fn(struct work_struct *work)
1472 {
1473 struct blk_mq_hw_ctx *hctx;
1474
1475 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1476
1477 /*
1478 * If we are stopped, don't run the queue. The exception is if
1479 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1480 * the STOPPED bit and run it.
1481 */
1482 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1483 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1484 return;
1485
1486 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1487 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1488 }
1489
1490 __blk_mq_run_hw_queue(hctx);
1491 }
1492
1493
1494 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1495 {
1496 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1497 return;
1498
1499 /*
1500 * Stop the hw queue, then modify currently delayed work.
1501 * This should prevent us from running the queue prematurely.
1502 * Mark the queue as auto-clearing STOPPED when it runs.
1503 */
1504 blk_mq_stop_hw_queue(hctx);
1505 set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1506 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1507 &hctx->run_work,
1508 msecs_to_jiffies(msecs));
1509 }
1510 EXPORT_SYMBOL(blk_mq_delay_queue);
1511
1512 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1513 struct request *rq,
1514 bool at_head)
1515 {
1516 struct blk_mq_ctx *ctx = rq->mq_ctx;
1517
1518 lockdep_assert_held(&ctx->lock);
1519
1520 trace_block_rq_insert(hctx->queue, rq);
1521
1522 if (at_head)
1523 list_add(&rq->queuelist, &ctx->rq_list);
1524 else
1525 list_add_tail(&rq->queuelist, &ctx->rq_list);
1526 }
1527
1528 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1529 bool at_head)
1530 {
1531 struct blk_mq_ctx *ctx = rq->mq_ctx;
1532
1533 lockdep_assert_held(&ctx->lock);
1534
1535 __blk_mq_insert_req_list(hctx, rq, at_head);
1536 blk_mq_hctx_mark_pending(hctx, ctx);
1537 }
1538
1539 /*
1540 * Should only be used carefully, when the caller knows we want to
1541 * bypass a potential IO scheduler on the target device.
1542 */
1543 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1544 {
1545 struct blk_mq_ctx *ctx = rq->mq_ctx;
1546 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1547
1548 spin_lock(&hctx->lock);
1549 list_add_tail(&rq->queuelist, &hctx->dispatch);
1550 spin_unlock(&hctx->lock);
1551
1552 if (run_queue)
1553 blk_mq_run_hw_queue(hctx, false);
1554 }
1555
1556 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1557 struct list_head *list)
1558
1559 {
1560 /*
1561 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1562 * offline now
1563 */
1564 spin_lock(&ctx->lock);
1565 while (!list_empty(list)) {
1566 struct request *rq;
1567
1568 rq = list_first_entry(list, struct request, queuelist);
1569 BUG_ON(rq->mq_ctx != ctx);
1570 list_del_init(&rq->queuelist);
1571 __blk_mq_insert_req_list(hctx, rq, false);
1572 }
1573 blk_mq_hctx_mark_pending(hctx, ctx);
1574 spin_unlock(&ctx->lock);
1575 }
1576
1577 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1578 {
1579 struct request *rqa = container_of(a, struct request, queuelist);
1580 struct request *rqb = container_of(b, struct request, queuelist);
1581
1582 return !(rqa->mq_ctx < rqb->mq_ctx ||
1583 (rqa->mq_ctx == rqb->mq_ctx &&
1584 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1585 }
1586
1587 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1588 {
1589 struct blk_mq_ctx *this_ctx;
1590 struct request_queue *this_q;
1591 struct request *rq;
1592 LIST_HEAD(list);
1593 LIST_HEAD(ctx_list);
1594 unsigned int depth;
1595
1596 list_splice_init(&plug->mq_list, &list);
1597
1598 list_sort(NULL, &list, plug_ctx_cmp);
1599
1600 this_q = NULL;
1601 this_ctx = NULL;
1602 depth = 0;
1603
1604 while (!list_empty(&list)) {
1605 rq = list_entry_rq(list.next);
1606 list_del_init(&rq->queuelist);
1607 BUG_ON(!rq->q);
1608 if (rq->mq_ctx != this_ctx) {
1609 if (this_ctx) {
1610 trace_block_unplug(this_q, depth, from_schedule);
1611 blk_mq_sched_insert_requests(this_q, this_ctx,
1612 &ctx_list,
1613 from_schedule);
1614 }
1615
1616 this_ctx = rq->mq_ctx;
1617 this_q = rq->q;
1618 depth = 0;
1619 }
1620
1621 depth++;
1622 list_add_tail(&rq->queuelist, &ctx_list);
1623 }
1624
1625 /*
1626 * If 'this_ctx' is set, we know we have entries to complete
1627 * on 'ctx_list'. Do those.
1628 */
1629 if (this_ctx) {
1630 trace_block_unplug(this_q, depth, from_schedule);
1631 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1632 from_schedule);
1633 }
1634 }
1635
1636 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1637 {
1638 blk_init_request_from_bio(rq, bio);
1639
1640 blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1641
1642 blk_account_io_start(rq, true);
1643 }
1644
1645 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1646 struct blk_mq_ctx *ctx,
1647 struct request *rq)
1648 {
1649 spin_lock(&ctx->lock);
1650 __blk_mq_insert_request(hctx, rq, false);
1651 spin_unlock(&ctx->lock);
1652 }
1653
1654 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1655 {
1656 if (rq->tag != -1)
1657 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1658
1659 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1660 }
1661
1662 static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1663 struct request *rq,
1664 blk_qc_t *cookie, bool may_sleep)
1665 {
1666 struct request_queue *q = rq->q;
1667 struct blk_mq_queue_data bd = {
1668 .rq = rq,
1669 .last = true,
1670 };
1671 blk_qc_t new_cookie;
1672 blk_status_t ret;
1673 bool run_queue = true;
1674
1675 /* RCU or SRCU read lock is needed before checking quiesced flag */
1676 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1677 run_queue = false;
1678 goto insert;
1679 }
1680
1681 if (q->elevator)
1682 goto insert;
1683
1684 if (!blk_mq_get_dispatch_budget(hctx))
1685 goto insert;
1686
1687 if (!blk_mq_get_driver_tag(rq, NULL, false)) {
1688 blk_mq_put_dispatch_budget(hctx);
1689 goto insert;
1690 }
1691
1692 new_cookie = request_to_qc_t(hctx, rq);
1693
1694 /*
1695 * For OK queue, we are done. For error, kill it. Any other
1696 * error (busy), just add it to our list as we previously
1697 * would have done
1698 */
1699 ret = q->mq_ops->queue_rq(hctx, &bd);
1700 switch (ret) {
1701 case BLK_STS_OK:
1702 *cookie = new_cookie;
1703 return;
1704 case BLK_STS_RESOURCE:
1705 __blk_mq_requeue_request(rq);
1706 goto insert;
1707 default:
1708 *cookie = BLK_QC_T_NONE;
1709 blk_mq_end_request(rq, ret);
1710 return;
1711 }
1712
1713 insert:
1714 blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1715 }
1716
1717 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1718 struct request *rq, blk_qc_t *cookie)
1719 {
1720 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1721 rcu_read_lock();
1722 __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1723 rcu_read_unlock();
1724 } else {
1725 unsigned int srcu_idx;
1726
1727 might_sleep();
1728
1729 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1730 __blk_mq_try_issue_directly(hctx, rq, cookie, true);
1731 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1732 }
1733 }
1734
1735 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1736 {
1737 const int is_sync = op_is_sync(bio->bi_opf);
1738 const int is_flush_fua = op_is_flush(bio->bi_opf);
1739 struct blk_mq_alloc_data data = { .flags = 0 };
1740 struct request *rq;
1741 unsigned int request_count = 0;
1742 struct blk_plug *plug;
1743 struct request *same_queue_rq = NULL;
1744 blk_qc_t cookie;
1745 unsigned int wb_acct;
1746
1747 blk_queue_bounce(q, &bio);
1748
1749 blk_queue_split(q, &bio);
1750
1751 if (!bio_integrity_prep(bio))
1752 return BLK_QC_T_NONE;
1753
1754 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1755 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1756 return BLK_QC_T_NONE;
1757
1758 if (blk_mq_sched_bio_merge(q, bio))
1759 return BLK_QC_T_NONE;
1760
1761 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1762
1763 trace_block_getrq(q, bio, bio->bi_opf);
1764
1765 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1766 if (unlikely(!rq)) {
1767 __wbt_done(q->rq_wb, wb_acct);
1768 if (bio->bi_opf & REQ_NOWAIT)
1769 bio_wouldblock_error(bio);
1770 return BLK_QC_T_NONE;
1771 }
1772
1773 wbt_track(&rq->issue_stat, wb_acct);
1774
1775 cookie = request_to_qc_t(data.hctx, rq);
1776
1777 plug = current->plug;
1778 if (unlikely(is_flush_fua)) {
1779 blk_mq_put_ctx(data.ctx);
1780 blk_mq_bio_to_request(rq, bio);
1781
1782 /* bypass scheduler for flush rq */
1783 blk_insert_flush(rq);
1784 blk_mq_run_hw_queue(data.hctx, true);
1785 } else if (plug && q->nr_hw_queues == 1) {
1786 struct request *last = NULL;
1787
1788 blk_mq_put_ctx(data.ctx);
1789 blk_mq_bio_to_request(rq, bio);
1790
1791 /*
1792 * @request_count may become stale because of schedule
1793 * out, so check the list again.
1794 */
1795 if (list_empty(&plug->mq_list))
1796 request_count = 0;
1797 else if (blk_queue_nomerges(q))
1798 request_count = blk_plug_queued_count(q);
1799
1800 if (!request_count)
1801 trace_block_plug(q);
1802 else
1803 last = list_entry_rq(plug->mq_list.prev);
1804
1805 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1806 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1807 blk_flush_plug_list(plug, false);
1808 trace_block_plug(q);
1809 }
1810
1811 list_add_tail(&rq->queuelist, &plug->mq_list);
1812 } else if (plug && !blk_queue_nomerges(q)) {
1813 blk_mq_bio_to_request(rq, bio);
1814
1815 /*
1816 * We do limited plugging. If the bio can be merged, do that.
1817 * Otherwise the existing request in the plug list will be
1818 * issued. So the plug list will have one request at most
1819 * The plug list might get flushed before this. If that happens,
1820 * the plug list is empty, and same_queue_rq is invalid.
1821 */
1822 if (list_empty(&plug->mq_list))
1823 same_queue_rq = NULL;
1824 if (same_queue_rq)
1825 list_del_init(&same_queue_rq->queuelist);
1826 list_add_tail(&rq->queuelist, &plug->mq_list);
1827
1828 blk_mq_put_ctx(data.ctx);
1829
1830 if (same_queue_rq) {
1831 data.hctx = blk_mq_map_queue(q,
1832 same_queue_rq->mq_ctx->cpu);
1833 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1834 &cookie);
1835 }
1836 } else if (q->nr_hw_queues > 1 && is_sync) {
1837 blk_mq_put_ctx(data.ctx);
1838 blk_mq_bio_to_request(rq, bio);
1839 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1840 } else if (q->elevator) {
1841 blk_mq_put_ctx(data.ctx);
1842 blk_mq_bio_to_request(rq, bio);
1843 blk_mq_sched_insert_request(rq, false, true, true, true);
1844 } else {
1845 blk_mq_put_ctx(data.ctx);
1846 blk_mq_bio_to_request(rq, bio);
1847 blk_mq_queue_io(data.hctx, data.ctx, rq);
1848 blk_mq_run_hw_queue(data.hctx, true);
1849 }
1850
1851 return cookie;
1852 }
1853
1854 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1855 unsigned int hctx_idx)
1856 {
1857 struct page *page;
1858
1859 if (tags->rqs && set->ops->exit_request) {
1860 int i;
1861
1862 for (i = 0; i < tags->nr_tags; i++) {
1863 struct request *rq = tags->static_rqs[i];
1864
1865 if (!rq)
1866 continue;
1867 set->ops->exit_request(set, rq, hctx_idx);
1868 tags->static_rqs[i] = NULL;
1869 }
1870 }
1871
1872 while (!list_empty(&tags->page_list)) {
1873 page = list_first_entry(&tags->page_list, struct page, lru);
1874 list_del_init(&page->lru);
1875 /*
1876 * Remove kmemleak object previously allocated in
1877 * blk_mq_init_rq_map().
1878 */
1879 kmemleak_free(page_address(page));
1880 __free_pages(page, page->private);
1881 }
1882 }
1883
1884 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1885 {
1886 kfree(tags->rqs);
1887 tags->rqs = NULL;
1888 kfree(tags->static_rqs);
1889 tags->static_rqs = NULL;
1890
1891 blk_mq_free_tags(tags);
1892 }
1893
1894 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1895 unsigned int hctx_idx,
1896 unsigned int nr_tags,
1897 unsigned int reserved_tags)
1898 {
1899 struct blk_mq_tags *tags;
1900 int node;
1901
1902 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1903 if (node == NUMA_NO_NODE)
1904 node = set->numa_node;
1905
1906 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1907 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1908 if (!tags)
1909 return NULL;
1910
1911 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1912 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1913 node);
1914 if (!tags->rqs) {
1915 blk_mq_free_tags(tags);
1916 return NULL;
1917 }
1918
1919 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1920 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1921 node);
1922 if (!tags->static_rqs) {
1923 kfree(tags->rqs);
1924 blk_mq_free_tags(tags);
1925 return NULL;
1926 }
1927
1928 return tags;
1929 }
1930
1931 static size_t order_to_size(unsigned int order)
1932 {
1933 return (size_t)PAGE_SIZE << order;
1934 }
1935
1936 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1937 unsigned int hctx_idx, unsigned int depth)
1938 {
1939 unsigned int i, j, entries_per_page, max_order = 4;
1940 size_t rq_size, left;
1941 int node;
1942
1943 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1944 if (node == NUMA_NO_NODE)
1945 node = set->numa_node;
1946
1947 INIT_LIST_HEAD(&tags->page_list);
1948
1949 /*
1950 * rq_size is the size of the request plus driver payload, rounded
1951 * to the cacheline size
1952 */
1953 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1954 cache_line_size());
1955 left = rq_size * depth;
1956
1957 for (i = 0; i < depth; ) {
1958 int this_order = max_order;
1959 struct page *page;
1960 int to_do;
1961 void *p;
1962
1963 while (this_order && left < order_to_size(this_order - 1))
1964 this_order--;
1965
1966 do {
1967 page = alloc_pages_node(node,
1968 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1969 this_order);
1970 if (page)
1971 break;
1972 if (!this_order--)
1973 break;
1974 if (order_to_size(this_order) < rq_size)
1975 break;
1976 } while (1);
1977
1978 if (!page)
1979 goto fail;
1980
1981 page->private = this_order;
1982 list_add_tail(&page->lru, &tags->page_list);
1983
1984 p = page_address(page);
1985 /*
1986 * Allow kmemleak to scan these pages as they contain pointers
1987 * to additional allocations like via ops->init_request().
1988 */
1989 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1990 entries_per_page = order_to_size(this_order) / rq_size;
1991 to_do = min(entries_per_page, depth - i);
1992 left -= to_do * rq_size;
1993 for (j = 0; j < to_do; j++) {
1994 struct request *rq = p;
1995
1996 tags->static_rqs[i] = rq;
1997 if (set->ops->init_request) {
1998 if (set->ops->init_request(set, rq, hctx_idx,
1999 node)) {
2000 tags->static_rqs[i] = NULL;
2001 goto fail;
2002 }
2003 }
2004
2005 p += rq_size;
2006 i++;
2007 }
2008 }
2009 return 0;
2010
2011 fail:
2012 blk_mq_free_rqs(set, tags, hctx_idx);
2013 return -ENOMEM;
2014 }
2015
2016 /*
2017 * 'cpu' is going away. splice any existing rq_list entries from this
2018 * software queue to the hw queue dispatch list, and ensure that it
2019 * gets run.
2020 */
2021 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2022 {
2023 struct blk_mq_hw_ctx *hctx;
2024 struct blk_mq_ctx *ctx;
2025 LIST_HEAD(tmp);
2026
2027 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2028 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2029
2030 spin_lock(&ctx->lock);
2031 if (!list_empty(&ctx->rq_list)) {
2032 list_splice_init(&ctx->rq_list, &tmp);
2033 blk_mq_hctx_clear_pending(hctx, ctx);
2034 }
2035 spin_unlock(&ctx->lock);
2036
2037 if (list_empty(&tmp))
2038 return 0;
2039
2040 spin_lock(&hctx->lock);
2041 list_splice_tail_init(&tmp, &hctx->dispatch);
2042 spin_unlock(&hctx->lock);
2043
2044 blk_mq_run_hw_queue(hctx, true);
2045 return 0;
2046 }
2047
2048 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2049 {
2050 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2051 &hctx->cpuhp_dead);
2052 }
2053
2054 /* hctx->ctxs will be freed in queue's release handler */
2055 static void blk_mq_exit_hctx(struct request_queue *q,
2056 struct blk_mq_tag_set *set,
2057 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2058 {
2059 blk_mq_debugfs_unregister_hctx(hctx);
2060
2061 if (blk_mq_hw_queue_mapped(hctx))
2062 blk_mq_tag_idle(hctx);
2063
2064 if (set->ops->exit_request)
2065 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2066
2067 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2068
2069 if (set->ops->exit_hctx)
2070 set->ops->exit_hctx(hctx, hctx_idx);
2071
2072 if (hctx->flags & BLK_MQ_F_BLOCKING)
2073 cleanup_srcu_struct(hctx->queue_rq_srcu);
2074
2075 blk_mq_remove_cpuhp(hctx);
2076 blk_free_flush_queue(hctx->fq);
2077 sbitmap_free(&hctx->ctx_map);
2078 }
2079
2080 static void blk_mq_exit_hw_queues(struct request_queue *q,
2081 struct blk_mq_tag_set *set, int nr_queue)
2082 {
2083 struct blk_mq_hw_ctx *hctx;
2084 unsigned int i;
2085
2086 queue_for_each_hw_ctx(q, hctx, i) {
2087 if (i == nr_queue)
2088 break;
2089 blk_mq_exit_hctx(q, set, hctx, i);
2090 }
2091 }
2092
2093 static int blk_mq_init_hctx(struct request_queue *q,
2094 struct blk_mq_tag_set *set,
2095 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2096 {
2097 int node;
2098
2099 node = hctx->numa_node;
2100 if (node == NUMA_NO_NODE)
2101 node = hctx->numa_node = set->numa_node;
2102
2103 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2104 spin_lock_init(&hctx->lock);
2105 INIT_LIST_HEAD(&hctx->dispatch);
2106 hctx->queue = q;
2107 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2108
2109 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2110
2111 hctx->tags = set->tags[hctx_idx];
2112
2113 /*
2114 * Allocate space for all possible cpus to avoid allocation at
2115 * runtime
2116 */
2117 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2118 GFP_KERNEL, node);
2119 if (!hctx->ctxs)
2120 goto unregister_cpu_notifier;
2121
2122 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
2123 node))
2124 goto free_ctxs;
2125
2126 hctx->nr_ctx = 0;
2127
2128 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2129 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2130
2131 if (set->ops->init_hctx &&
2132 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2133 goto free_bitmap;
2134
2135 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
2136 goto exit_hctx;
2137
2138 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
2139 if (!hctx->fq)
2140 goto sched_exit_hctx;
2141
2142 if (set->ops->init_request &&
2143 set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
2144 node))
2145 goto free_fq;
2146
2147 if (hctx->flags & BLK_MQ_F_BLOCKING)
2148 init_srcu_struct(hctx->queue_rq_srcu);
2149
2150 blk_mq_debugfs_register_hctx(q, hctx);
2151
2152 return 0;
2153
2154 free_fq:
2155 kfree(hctx->fq);
2156 sched_exit_hctx:
2157 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2158 exit_hctx:
2159 if (set->ops->exit_hctx)
2160 set->ops->exit_hctx(hctx, hctx_idx);
2161 free_bitmap:
2162 sbitmap_free(&hctx->ctx_map);
2163 free_ctxs:
2164 kfree(hctx->ctxs);
2165 unregister_cpu_notifier:
2166 blk_mq_remove_cpuhp(hctx);
2167 return -1;
2168 }
2169
2170 static void blk_mq_init_cpu_queues(struct request_queue *q,
2171 unsigned int nr_hw_queues)
2172 {
2173 unsigned int i;
2174
2175 for_each_possible_cpu(i) {
2176 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2177 struct blk_mq_hw_ctx *hctx;
2178
2179 __ctx->cpu = i;
2180 spin_lock_init(&__ctx->lock);
2181 INIT_LIST_HEAD(&__ctx->rq_list);
2182 __ctx->queue = q;
2183
2184 /*
2185 * Set local node, IFF we have more than one hw queue. If
2186 * not, we remain on the home node of the device
2187 */
2188 hctx = blk_mq_map_queue(q, i);
2189 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2190 hctx->numa_node = local_memory_node(cpu_to_node(i));
2191 }
2192 }
2193
2194 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2195 {
2196 int ret = 0;
2197
2198 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2199 set->queue_depth, set->reserved_tags);
2200 if (!set->tags[hctx_idx])
2201 return false;
2202
2203 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2204 set->queue_depth);
2205 if (!ret)
2206 return true;
2207
2208 blk_mq_free_rq_map(set->tags[hctx_idx]);
2209 set->tags[hctx_idx] = NULL;
2210 return false;
2211 }
2212
2213 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2214 unsigned int hctx_idx)
2215 {
2216 if (set->tags[hctx_idx]) {
2217 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2218 blk_mq_free_rq_map(set->tags[hctx_idx]);
2219 set->tags[hctx_idx] = NULL;
2220 }
2221 }
2222
2223 static void blk_mq_map_swqueue(struct request_queue *q)
2224 {
2225 unsigned int i, hctx_idx;
2226 struct blk_mq_hw_ctx *hctx;
2227 struct blk_mq_ctx *ctx;
2228 struct blk_mq_tag_set *set = q->tag_set;
2229
2230 /*
2231 * Avoid others reading imcomplete hctx->cpumask through sysfs
2232 */
2233 mutex_lock(&q->sysfs_lock);
2234
2235 queue_for_each_hw_ctx(q, hctx, i) {
2236 cpumask_clear(hctx->cpumask);
2237 hctx->nr_ctx = 0;
2238 }
2239
2240 /*
2241 * Map software to hardware queues.
2242 *
2243 * If the cpu isn't present, the cpu is mapped to first hctx.
2244 */
2245 for_each_possible_cpu(i) {
2246 hctx_idx = q->mq_map[i];
2247 /* unmapped hw queue can be remapped after CPU topo changed */
2248 if (!set->tags[hctx_idx] &&
2249 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2250 /*
2251 * If tags initialization fail for some hctx,
2252 * that hctx won't be brought online. In this
2253 * case, remap the current ctx to hctx[0] which
2254 * is guaranteed to always have tags allocated
2255 */
2256 q->mq_map[i] = 0;
2257 }
2258
2259 ctx = per_cpu_ptr(q->queue_ctx, i);
2260 hctx = blk_mq_map_queue(q, i);
2261
2262 cpumask_set_cpu(i, hctx->cpumask);
2263 ctx->index_hw = hctx->nr_ctx;
2264 hctx->ctxs[hctx->nr_ctx++] = ctx;
2265 }
2266
2267 mutex_unlock(&q->sysfs_lock);
2268
2269 queue_for_each_hw_ctx(q, hctx, i) {
2270 /*
2271 * If no software queues are mapped to this hardware queue,
2272 * disable it and free the request entries.
2273 */
2274 if (!hctx->nr_ctx) {
2275 /* Never unmap queue 0. We need it as a
2276 * fallback in case of a new remap fails
2277 * allocation
2278 */
2279 if (i && set->tags[i])
2280 blk_mq_free_map_and_requests(set, i);
2281
2282 hctx->tags = NULL;
2283 continue;
2284 }
2285
2286 hctx->tags = set->tags[i];
2287 WARN_ON(!hctx->tags);
2288
2289 /*
2290 * Set the map size to the number of mapped software queues.
2291 * This is more accurate and more efficient than looping
2292 * over all possibly mapped software queues.
2293 */
2294 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2295
2296 /*
2297 * Initialize batch roundrobin counts
2298 */
2299 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2300 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2301 }
2302 }
2303
2304 /*
2305 * Caller needs to ensure that we're either frozen/quiesced, or that
2306 * the queue isn't live yet.
2307 */
2308 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2309 {
2310 struct blk_mq_hw_ctx *hctx;
2311 int i;
2312
2313 queue_for_each_hw_ctx(q, hctx, i) {
2314 if (shared) {
2315 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2316 atomic_inc(&q->shared_hctx_restart);
2317 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2318 } else {
2319 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2320 atomic_dec(&q->shared_hctx_restart);
2321 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2322 }
2323 }
2324 }
2325
2326 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2327 bool shared)
2328 {
2329 struct request_queue *q;
2330
2331 lockdep_assert_held(&set->tag_list_lock);
2332
2333 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2334 blk_mq_freeze_queue(q);
2335 queue_set_hctx_shared(q, shared);
2336 blk_mq_unfreeze_queue(q);
2337 }
2338 }
2339
2340 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2341 {
2342 struct blk_mq_tag_set *set = q->tag_set;
2343
2344 mutex_lock(&set->tag_list_lock);
2345 list_del_rcu(&q->tag_set_list);
2346 if (list_is_singular(&set->tag_list)) {
2347 /* just transitioned to unshared */
2348 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2349 /* update existing queue */
2350 blk_mq_update_tag_set_depth(set, false);
2351 }
2352 mutex_unlock(&set->tag_list_lock);
2353 synchronize_rcu();
2354 INIT_LIST_HEAD(&q->tag_set_list);
2355 }
2356
2357 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2358 struct request_queue *q)
2359 {
2360 q->tag_set = set;
2361
2362 mutex_lock(&set->tag_list_lock);
2363
2364 /*
2365 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2366 */
2367 if (!list_empty(&set->tag_list) &&
2368 !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2369 set->flags |= BLK_MQ_F_TAG_SHARED;
2370 /* update existing queue */
2371 blk_mq_update_tag_set_depth(set, true);
2372 }
2373 if (set->flags & BLK_MQ_F_TAG_SHARED)
2374 queue_set_hctx_shared(q, true);
2375 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2376
2377 mutex_unlock(&set->tag_list_lock);
2378 }
2379
2380 /*
2381 * It is the actual release handler for mq, but we do it from
2382 * request queue's release handler for avoiding use-after-free
2383 * and headache because q->mq_kobj shouldn't have been introduced,
2384 * but we can't group ctx/kctx kobj without it.
2385 */
2386 void blk_mq_release(struct request_queue *q)
2387 {
2388 struct blk_mq_hw_ctx *hctx;
2389 unsigned int i;
2390
2391 /* hctx kobj stays in hctx */
2392 queue_for_each_hw_ctx(q, hctx, i) {
2393 if (!hctx)
2394 continue;
2395 kobject_put(&hctx->kobj);
2396 }
2397
2398 q->mq_map = NULL;
2399
2400 kfree(q->queue_hw_ctx);
2401
2402 /*
2403 * release .mq_kobj and sw queue's kobject now because
2404 * both share lifetime with request queue.
2405 */
2406 blk_mq_sysfs_deinit(q);
2407
2408 free_percpu(q->queue_ctx);
2409 }
2410
2411 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2412 {
2413 struct request_queue *uninit_q, *q;
2414
2415 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2416 if (!uninit_q)
2417 return ERR_PTR(-ENOMEM);
2418
2419 q = blk_mq_init_allocated_queue(set, uninit_q);
2420 if (IS_ERR(q))
2421 blk_cleanup_queue(uninit_q);
2422
2423 return q;
2424 }
2425 EXPORT_SYMBOL(blk_mq_init_queue);
2426
2427 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2428 {
2429 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2430
2431 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
2432 __alignof__(struct blk_mq_hw_ctx)) !=
2433 sizeof(struct blk_mq_hw_ctx));
2434
2435 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2436 hw_ctx_size += sizeof(struct srcu_struct);
2437
2438 return hw_ctx_size;
2439 }
2440
2441 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2442 struct request_queue *q)
2443 {
2444 int i, j;
2445 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2446
2447 blk_mq_sysfs_unregister(q);
2448
2449 /* protect against switching io scheduler */
2450 mutex_lock(&q->sysfs_lock);
2451 for (i = 0; i < set->nr_hw_queues; i++) {
2452 int node;
2453
2454 if (hctxs[i])
2455 continue;
2456
2457 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2458 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2459 GFP_KERNEL, node);
2460 if (!hctxs[i])
2461 break;
2462
2463 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2464 node)) {
2465 kfree(hctxs[i]);
2466 hctxs[i] = NULL;
2467 break;
2468 }
2469
2470 atomic_set(&hctxs[i]->nr_active, 0);
2471 hctxs[i]->numa_node = node;
2472 hctxs[i]->queue_num = i;
2473
2474 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2475 free_cpumask_var(hctxs[i]->cpumask);
2476 kfree(hctxs[i]);
2477 hctxs[i] = NULL;
2478 break;
2479 }
2480 blk_mq_hctx_kobj_init(hctxs[i]);
2481 }
2482 for (j = i; j < q->nr_hw_queues; j++) {
2483 struct blk_mq_hw_ctx *hctx = hctxs[j];
2484
2485 if (hctx) {
2486 if (hctx->tags)
2487 blk_mq_free_map_and_requests(set, j);
2488 blk_mq_exit_hctx(q, set, hctx, j);
2489 kobject_put(&hctx->kobj);
2490 hctxs[j] = NULL;
2491
2492 }
2493 }
2494 q->nr_hw_queues = i;
2495 mutex_unlock(&q->sysfs_lock);
2496 blk_mq_sysfs_register(q);
2497 }
2498
2499 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2500 struct request_queue *q)
2501 {
2502 /* mark the queue as mq asap */
2503 q->mq_ops = set->ops;
2504
2505 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2506 blk_mq_poll_stats_bkt,
2507 BLK_MQ_POLL_STATS_BKTS, q);
2508 if (!q->poll_cb)
2509 goto err_exit;
2510
2511 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2512 if (!q->queue_ctx)
2513 goto err_exit;
2514
2515 /* init q->mq_kobj and sw queues' kobjects */
2516 blk_mq_sysfs_init(q);
2517
2518 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2519 GFP_KERNEL, set->numa_node);
2520 if (!q->queue_hw_ctx)
2521 goto err_percpu;
2522
2523 q->mq_map = set->mq_map;
2524
2525 blk_mq_realloc_hw_ctxs(set, q);
2526 if (!q->nr_hw_queues)
2527 goto err_hctxs;
2528
2529 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2530 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2531
2532 q->nr_queues = nr_cpu_ids;
2533
2534 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2535
2536 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2537 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2538
2539 q->sg_reserved_size = INT_MAX;
2540
2541 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2542 INIT_LIST_HEAD(&q->requeue_list);
2543 spin_lock_init(&q->requeue_lock);
2544
2545 blk_queue_make_request(q, blk_mq_make_request);
2546 if (q->mq_ops->poll)
2547 q->poll_fn = blk_mq_poll;
2548
2549 /*
2550 * Do this after blk_queue_make_request() overrides it...
2551 */
2552 q->nr_requests = set->queue_depth;
2553
2554 /*
2555 * Default to classic polling
2556 */
2557 q->poll_nsec = -1;
2558
2559 if (set->ops->complete)
2560 blk_queue_softirq_done(q, set->ops->complete);
2561
2562 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2563 blk_mq_add_queue_tag_set(set, q);
2564 blk_mq_map_swqueue(q);
2565
2566 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2567 int ret;
2568
2569 ret = blk_mq_sched_init(q);
2570 if (ret)
2571 return ERR_PTR(ret);
2572 }
2573
2574 return q;
2575
2576 err_hctxs:
2577 kfree(q->queue_hw_ctx);
2578 err_percpu:
2579 free_percpu(q->queue_ctx);
2580 err_exit:
2581 q->mq_ops = NULL;
2582 return ERR_PTR(-ENOMEM);
2583 }
2584 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2585
2586 void blk_mq_free_queue(struct request_queue *q)
2587 {
2588 struct blk_mq_tag_set *set = q->tag_set;
2589
2590 blk_mq_del_queue_tag_set(q);
2591 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2592 }
2593
2594 /* Basically redo blk_mq_init_queue with queue frozen */
2595 static void blk_mq_queue_reinit(struct request_queue *q)
2596 {
2597 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2598
2599 blk_mq_debugfs_unregister_hctxs(q);
2600 blk_mq_sysfs_unregister(q);
2601
2602 /*
2603 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2604 * we should change hctx numa_node according to the new topology (this
2605 * involves freeing and re-allocating memory, worth doing?)
2606 */
2607 blk_mq_map_swqueue(q);
2608
2609 blk_mq_sysfs_register(q);
2610 blk_mq_debugfs_register_hctxs(q);
2611 }
2612
2613 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2614 {
2615 int i;
2616
2617 for (i = 0; i < set->nr_hw_queues; i++)
2618 if (!__blk_mq_alloc_rq_map(set, i))
2619 goto out_unwind;
2620
2621 return 0;
2622
2623 out_unwind:
2624 while (--i >= 0)
2625 blk_mq_free_rq_map(set->tags[i]);
2626
2627 return -ENOMEM;
2628 }
2629
2630 /*
2631 * Allocate the request maps associated with this tag_set. Note that this
2632 * may reduce the depth asked for, if memory is tight. set->queue_depth
2633 * will be updated to reflect the allocated depth.
2634 */
2635 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2636 {
2637 unsigned int depth;
2638 int err;
2639
2640 depth = set->queue_depth;
2641 do {
2642 err = __blk_mq_alloc_rq_maps(set);
2643 if (!err)
2644 break;
2645
2646 set->queue_depth >>= 1;
2647 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2648 err = -ENOMEM;
2649 break;
2650 }
2651 } while (set->queue_depth);
2652
2653 if (!set->queue_depth || err) {
2654 pr_err("blk-mq: failed to allocate request map\n");
2655 return -ENOMEM;
2656 }
2657
2658 if (depth != set->queue_depth)
2659 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2660 depth, set->queue_depth);
2661
2662 return 0;
2663 }
2664
2665 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2666 {
2667 if (set->ops->map_queues) {
2668 int cpu;
2669 /*
2670 * transport .map_queues is usually done in the following
2671 * way:
2672 *
2673 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2674 * mask = get_cpu_mask(queue)
2675 * for_each_cpu(cpu, mask)
2676 * set->mq_map[cpu] = queue;
2677 * }
2678 *
2679 * When we need to remap, the table has to be cleared for
2680 * killing stale mapping since one CPU may not be mapped
2681 * to any hw queue.
2682 */
2683 for_each_possible_cpu(cpu)
2684 set->mq_map[cpu] = 0;
2685
2686 return set->ops->map_queues(set);
2687 } else
2688 return blk_mq_map_queues(set);
2689 }
2690
2691 /*
2692 * Alloc a tag set to be associated with one or more request queues.
2693 * May fail with EINVAL for various error conditions. May adjust the
2694 * requested depth down, if if it too large. In that case, the set
2695 * value will be stored in set->queue_depth.
2696 */
2697 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2698 {
2699 int ret;
2700
2701 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2702
2703 if (!set->nr_hw_queues)
2704 return -EINVAL;
2705 if (!set->queue_depth)
2706 return -EINVAL;
2707 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2708 return -EINVAL;
2709
2710 if (!set->ops->queue_rq)
2711 return -EINVAL;
2712
2713 if (!set->ops->get_budget ^ !set->ops->put_budget)
2714 return -EINVAL;
2715
2716 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2717 pr_info("blk-mq: reduced tag depth to %u\n",
2718 BLK_MQ_MAX_DEPTH);
2719 set->queue_depth = BLK_MQ_MAX_DEPTH;
2720 }
2721
2722 /*
2723 * If a crashdump is active, then we are potentially in a very
2724 * memory constrained environment. Limit us to 1 queue and
2725 * 64 tags to prevent using too much memory.
2726 */
2727 if (is_kdump_kernel()) {
2728 set->nr_hw_queues = 1;
2729 set->queue_depth = min(64U, set->queue_depth);
2730 }
2731 /*
2732 * There is no use for more h/w queues than cpus.
2733 */
2734 if (set->nr_hw_queues > nr_cpu_ids)
2735 set->nr_hw_queues = nr_cpu_ids;
2736
2737 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2738 GFP_KERNEL, set->numa_node);
2739 if (!set->tags)
2740 return -ENOMEM;
2741
2742 ret = -ENOMEM;
2743 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2744 GFP_KERNEL, set->numa_node);
2745 if (!set->mq_map)
2746 goto out_free_tags;
2747
2748 ret = blk_mq_update_queue_map(set);
2749 if (ret)
2750 goto out_free_mq_map;
2751
2752 ret = blk_mq_alloc_rq_maps(set);
2753 if (ret)
2754 goto out_free_mq_map;
2755
2756 mutex_init(&set->tag_list_lock);
2757 INIT_LIST_HEAD(&set->tag_list);
2758
2759 return 0;
2760
2761 out_free_mq_map:
2762 kfree(set->mq_map);
2763 set->mq_map = NULL;
2764 out_free_tags:
2765 kfree(set->tags);
2766 set->tags = NULL;
2767 return ret;
2768 }
2769 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2770
2771 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2772 {
2773 int i;
2774
2775 for (i = 0; i < nr_cpu_ids; i++)
2776 blk_mq_free_map_and_requests(set, i);
2777
2778 kfree(set->mq_map);
2779 set->mq_map = NULL;
2780
2781 kfree(set->tags);
2782 set->tags = NULL;
2783 }
2784 EXPORT_SYMBOL(blk_mq_free_tag_set);
2785
2786 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2787 {
2788 struct blk_mq_tag_set *set = q->tag_set;
2789 struct blk_mq_hw_ctx *hctx;
2790 int i, ret;
2791
2792 if (!set)
2793 return -EINVAL;
2794
2795 if (q->nr_requests == nr)
2796 return 0;
2797
2798 blk_mq_freeze_queue(q);
2799
2800 ret = 0;
2801 queue_for_each_hw_ctx(q, hctx, i) {
2802 if (!hctx->tags)
2803 continue;
2804 /*
2805 * If we're using an MQ scheduler, just update the scheduler
2806 * queue depth. This is similar to what the old code would do.
2807 */
2808 if (!hctx->sched_tags) {
2809 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2810 false);
2811 } else {
2812 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2813 nr, true);
2814 }
2815 if (ret)
2816 break;
2817 }
2818
2819 if (!ret)
2820 q->nr_requests = nr;
2821
2822 blk_mq_unfreeze_queue(q);
2823
2824 return ret;
2825 }
2826
2827 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2828 int nr_hw_queues)
2829 {
2830 struct request_queue *q;
2831
2832 lockdep_assert_held(&set->tag_list_lock);
2833
2834 if (nr_hw_queues > nr_cpu_ids)
2835 nr_hw_queues = nr_cpu_ids;
2836 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2837 return;
2838
2839 list_for_each_entry(q, &set->tag_list, tag_set_list)
2840 blk_mq_freeze_queue(q);
2841
2842 set->nr_hw_queues = nr_hw_queues;
2843 blk_mq_update_queue_map(set);
2844 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2845 blk_mq_realloc_hw_ctxs(set, q);
2846 blk_mq_queue_reinit(q);
2847 }
2848
2849 list_for_each_entry(q, &set->tag_list, tag_set_list)
2850 blk_mq_unfreeze_queue(q);
2851 }
2852
2853 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2854 {
2855 mutex_lock(&set->tag_list_lock);
2856 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2857 mutex_unlock(&set->tag_list_lock);
2858 }
2859 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2860
2861 /* Enable polling stats and return whether they were already enabled. */
2862 static bool blk_poll_stats_enable(struct request_queue *q)
2863 {
2864 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2865 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2866 return true;
2867 blk_stat_add_callback(q, q->poll_cb);
2868 return false;
2869 }
2870
2871 static void blk_mq_poll_stats_start(struct request_queue *q)
2872 {
2873 /*
2874 * We don't arm the callback if polling stats are not enabled or the
2875 * callback is already active.
2876 */
2877 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2878 blk_stat_is_active(q->poll_cb))
2879 return;
2880
2881 blk_stat_activate_msecs(q->poll_cb, 100);
2882 }
2883
2884 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2885 {
2886 struct request_queue *q = cb->data;
2887 int bucket;
2888
2889 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2890 if (cb->stat[bucket].nr_samples)
2891 q->poll_stat[bucket] = cb->stat[bucket];
2892 }
2893 }
2894
2895 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2896 struct blk_mq_hw_ctx *hctx,
2897 struct request *rq)
2898 {
2899 unsigned long ret = 0;
2900 int bucket;
2901
2902 /*
2903 * If stats collection isn't on, don't sleep but turn it on for
2904 * future users
2905 */
2906 if (!blk_poll_stats_enable(q))
2907 return 0;
2908
2909 /*
2910 * As an optimistic guess, use half of the mean service time
2911 * for this type of request. We can (and should) make this smarter.
2912 * For instance, if the completion latencies are tight, we can
2913 * get closer than just half the mean. This is especially
2914 * important on devices where the completion latencies are longer
2915 * than ~10 usec. We do use the stats for the relevant IO size
2916 * if available which does lead to better estimates.
2917 */
2918 bucket = blk_mq_poll_stats_bkt(rq);
2919 if (bucket < 0)
2920 return ret;
2921
2922 if (q->poll_stat[bucket].nr_samples)
2923 ret = (q->poll_stat[bucket].mean + 1) / 2;
2924
2925 return ret;
2926 }
2927
2928 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2929 struct blk_mq_hw_ctx *hctx,
2930 struct request *rq)
2931 {
2932 struct hrtimer_sleeper hs;
2933 enum hrtimer_mode mode;
2934 unsigned int nsecs;
2935 ktime_t kt;
2936
2937 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2938 return false;
2939
2940 /*
2941 * poll_nsec can be:
2942 *
2943 * -1: don't ever hybrid sleep
2944 * 0: use half of prev avg
2945 * >0: use this specific value
2946 */
2947 if (q->poll_nsec == -1)
2948 return false;
2949 else if (q->poll_nsec > 0)
2950 nsecs = q->poll_nsec;
2951 else
2952 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2953
2954 if (!nsecs)
2955 return false;
2956
2957 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2958
2959 /*
2960 * This will be replaced with the stats tracking code, using
2961 * 'avg_completion_time / 2' as the pre-sleep target.
2962 */
2963 kt = nsecs;
2964
2965 mode = HRTIMER_MODE_REL;
2966 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2967 hrtimer_set_expires(&hs.timer, kt);
2968
2969 hrtimer_init_sleeper(&hs, current);
2970 do {
2971 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2972 break;
2973 set_current_state(TASK_UNINTERRUPTIBLE);
2974 hrtimer_start_expires(&hs.timer, mode);
2975 if (hs.task)
2976 io_schedule();
2977 hrtimer_cancel(&hs.timer);
2978 mode = HRTIMER_MODE_ABS;
2979 } while (hs.task && !signal_pending(current));
2980
2981 __set_current_state(TASK_RUNNING);
2982 destroy_hrtimer_on_stack(&hs.timer);
2983 return true;
2984 }
2985
2986 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2987 {
2988 struct request_queue *q = hctx->queue;
2989 long state;
2990
2991 /*
2992 * If we sleep, have the caller restart the poll loop to reset
2993 * the state. Like for the other success return cases, the
2994 * caller is responsible for checking if the IO completed. If
2995 * the IO isn't complete, we'll get called again and will go
2996 * straight to the busy poll loop.
2997 */
2998 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2999 return true;
3000
3001 hctx->poll_considered++;
3002
3003 state = current->state;
3004 while (!need_resched()) {
3005 int ret;
3006
3007 hctx->poll_invoked++;
3008
3009 ret = q->mq_ops->poll(hctx, rq->tag);
3010 if (ret > 0) {
3011 hctx->poll_success++;
3012 set_current_state(TASK_RUNNING);
3013 return true;
3014 }
3015
3016 if (signal_pending_state(state, current))
3017 set_current_state(TASK_RUNNING);
3018
3019 if (current->state == TASK_RUNNING)
3020 return true;
3021 if (ret < 0)
3022 break;
3023 cpu_relax();
3024 }
3025
3026 return false;
3027 }
3028
3029 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
3030 {
3031 struct blk_mq_hw_ctx *hctx;
3032 struct request *rq;
3033
3034 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3035 return false;
3036
3037 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3038 if (!blk_qc_t_is_internal(cookie))
3039 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3040 else {
3041 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3042 /*
3043 * With scheduling, if the request has completed, we'll
3044 * get a NULL return here, as we clear the sched tag when
3045 * that happens. The request still remains valid, like always,
3046 * so we should be safe with just the NULL check.
3047 */
3048 if (!rq)
3049 return false;
3050 }
3051
3052 return __blk_mq_poll(hctx, rq);
3053 }
3054
3055 static int __init blk_mq_init(void)
3056 {
3057 /*
3058 * See comment in block/blk.h rq_atomic_flags enum
3059 */
3060 BUILD_BUG_ON((REQ_ATOM_STARTED / BITS_PER_BYTE) !=
3061 (REQ_ATOM_COMPLETE / BITS_PER_BYTE));
3062
3063 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3064 blk_mq_hctx_notify_dead);
3065 return 0;
3066 }
3067 subsys_initcall(blk_mq_init);