]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-mq.c
a8d26b68c75224d41f9757db5e412846ab931c56
[mirror_ubuntu-bionic-kernel.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
39
40 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 static void blk_mq_poll_stats_start(struct request_queue *q);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43
44 static int blk_mq_poll_stats_bkt(const struct request *rq)
45 {
46 int ddir, bytes, bucket;
47
48 ddir = rq_data_dir(rq);
49 bytes = blk_rq_bytes(rq);
50
51 bucket = ddir + 2*(ilog2(bytes) - 9);
52
53 if (bucket < 0)
54 return -1;
55 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57
58 return bucket;
59 }
60
61 /*
62 * Check if any of the ctx's have pending work in this hardware queue
63 */
64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65 {
66 return !list_empty_careful(&hctx->dispatch) ||
67 sbitmap_any_bit_set(&hctx->ctx_map) ||
68 blk_mq_sched_has_work(hctx);
69 }
70
71 /*
72 * Mark this ctx as having pending work in this hardware queue
73 */
74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75 struct blk_mq_ctx *ctx)
76 {
77 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
78 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 }
80
81 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
82 struct blk_mq_ctx *ctx)
83 {
84 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 }
86
87 struct mq_inflight {
88 struct hd_struct *part;
89 unsigned int *inflight;
90 };
91
92 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
93 struct request *rq, void *priv,
94 bool reserved)
95 {
96 struct mq_inflight *mi = priv;
97
98 if (test_bit(REQ_ATOM_STARTED, &rq->atomic_flags) &&
99 !test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
100 /*
101 * index[0] counts the specific partition that was asked
102 * for. index[1] counts the ones that are active on the
103 * whole device, so increment that if mi->part is indeed
104 * a partition, and not a whole device.
105 */
106 if (rq->part == mi->part)
107 mi->inflight[0]++;
108 if (mi->part->partno)
109 mi->inflight[1]++;
110 }
111 }
112
113 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
114 unsigned int inflight[2])
115 {
116 struct mq_inflight mi = { .part = part, .inflight = inflight, };
117
118 inflight[0] = inflight[1] = 0;
119 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
120 }
121
122 static void blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
123 struct request *rq, void *priv,
124 bool reserved)
125 {
126 struct mq_inflight *mi = priv;
127
128 if (rq->part == mi->part)
129 mi->inflight[rq_data_dir(rq)]++;
130 }
131
132 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
133 unsigned int inflight[2])
134 {
135 struct mq_inflight mi = { .part = part, .inflight = inflight, };
136
137 inflight[0] = inflight[1] = 0;
138 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
139 }
140
141 void blk_freeze_queue_start(struct request_queue *q)
142 {
143 int freeze_depth;
144
145 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
146 if (freeze_depth == 1) {
147 percpu_ref_kill(&q->q_usage_counter);
148 if (q->mq_ops)
149 blk_mq_run_hw_queues(q, false);
150 }
151 }
152 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
153
154 void blk_mq_freeze_queue_wait(struct request_queue *q)
155 {
156 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
157 }
158 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
159
160 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
161 unsigned long timeout)
162 {
163 return wait_event_timeout(q->mq_freeze_wq,
164 percpu_ref_is_zero(&q->q_usage_counter),
165 timeout);
166 }
167 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
168
169 /*
170 * Guarantee no request is in use, so we can change any data structure of
171 * the queue afterward.
172 */
173 void blk_freeze_queue(struct request_queue *q)
174 {
175 /*
176 * In the !blk_mq case we are only calling this to kill the
177 * q_usage_counter, otherwise this increases the freeze depth
178 * and waits for it to return to zero. For this reason there is
179 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
180 * exported to drivers as the only user for unfreeze is blk_mq.
181 */
182 blk_freeze_queue_start(q);
183 if (!q->mq_ops)
184 blk_drain_queue(q);
185 blk_mq_freeze_queue_wait(q);
186 }
187
188 void blk_mq_freeze_queue(struct request_queue *q)
189 {
190 /*
191 * ...just an alias to keep freeze and unfreeze actions balanced
192 * in the blk_mq_* namespace
193 */
194 blk_freeze_queue(q);
195 }
196 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
197
198 void blk_mq_unfreeze_queue(struct request_queue *q)
199 {
200 int freeze_depth;
201
202 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
203 WARN_ON_ONCE(freeze_depth < 0);
204 if (!freeze_depth) {
205 percpu_ref_reinit(&q->q_usage_counter);
206 wake_up_all(&q->mq_freeze_wq);
207 }
208 }
209 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
210
211 /*
212 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
213 * mpt3sas driver such that this function can be removed.
214 */
215 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
216 {
217 unsigned long flags;
218
219 spin_lock_irqsave(q->queue_lock, flags);
220 queue_flag_set(QUEUE_FLAG_QUIESCED, q);
221 spin_unlock_irqrestore(q->queue_lock, flags);
222 }
223 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
224
225 /**
226 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
227 * @q: request queue.
228 *
229 * Note: this function does not prevent that the struct request end_io()
230 * callback function is invoked. Once this function is returned, we make
231 * sure no dispatch can happen until the queue is unquiesced via
232 * blk_mq_unquiesce_queue().
233 */
234 void blk_mq_quiesce_queue(struct request_queue *q)
235 {
236 struct blk_mq_hw_ctx *hctx;
237 unsigned int i;
238 bool rcu = false;
239
240 blk_mq_quiesce_queue_nowait(q);
241
242 queue_for_each_hw_ctx(q, hctx, i) {
243 if (hctx->flags & BLK_MQ_F_BLOCKING)
244 synchronize_srcu(hctx->queue_rq_srcu);
245 else
246 rcu = true;
247 }
248 if (rcu)
249 synchronize_rcu();
250 }
251 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
252
253 /*
254 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
255 * @q: request queue.
256 *
257 * This function recovers queue into the state before quiescing
258 * which is done by blk_mq_quiesce_queue.
259 */
260 void blk_mq_unquiesce_queue(struct request_queue *q)
261 {
262 unsigned long flags;
263
264 spin_lock_irqsave(q->queue_lock, flags);
265 queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
266 spin_unlock_irqrestore(q->queue_lock, flags);
267
268 /* dispatch requests which are inserted during quiescing */
269 blk_mq_run_hw_queues(q, true);
270 }
271 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
272
273 void blk_mq_wake_waiters(struct request_queue *q)
274 {
275 struct blk_mq_hw_ctx *hctx;
276 unsigned int i;
277
278 queue_for_each_hw_ctx(q, hctx, i)
279 if (blk_mq_hw_queue_mapped(hctx))
280 blk_mq_tag_wakeup_all(hctx->tags, true);
281 }
282
283 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
284 {
285 return blk_mq_has_free_tags(hctx->tags);
286 }
287 EXPORT_SYMBOL(blk_mq_can_queue);
288
289 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
290 unsigned int tag, unsigned int op)
291 {
292 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
293 struct request *rq = tags->static_rqs[tag];
294
295 rq->rq_flags = 0;
296
297 if (data->flags & BLK_MQ_REQ_INTERNAL) {
298 rq->tag = -1;
299 rq->internal_tag = tag;
300 } else {
301 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
302 rq->rq_flags = RQF_MQ_INFLIGHT;
303 atomic_inc(&data->hctx->nr_active);
304 }
305 rq->tag = tag;
306 rq->internal_tag = -1;
307 data->hctx->tags->rqs[rq->tag] = rq;
308 }
309
310 INIT_LIST_HEAD(&rq->queuelist);
311 /* csd/requeue_work/fifo_time is initialized before use */
312 rq->q = data->q;
313 rq->mq_ctx = data->ctx;
314 rq->cmd_flags = op;
315 if (data->flags & BLK_MQ_REQ_PREEMPT)
316 rq->rq_flags |= RQF_PREEMPT;
317 if (blk_queue_io_stat(data->q))
318 rq->rq_flags |= RQF_IO_STAT;
319 /* do not touch atomic flags, it needs atomic ops against the timer */
320 rq->cpu = -1;
321 INIT_HLIST_NODE(&rq->hash);
322 RB_CLEAR_NODE(&rq->rb_node);
323 rq->rq_disk = NULL;
324 rq->part = NULL;
325 rq->start_time = jiffies;
326 #ifdef CONFIG_BLK_CGROUP
327 rq->rl = NULL;
328 set_start_time_ns(rq);
329 rq->io_start_time_ns = 0;
330 #endif
331 rq->nr_phys_segments = 0;
332 #if defined(CONFIG_BLK_DEV_INTEGRITY)
333 rq->nr_integrity_segments = 0;
334 #endif
335 rq->special = NULL;
336 /* tag was already set */
337 rq->extra_len = 0;
338
339 INIT_LIST_HEAD(&rq->timeout_list);
340 rq->timeout = 0;
341
342 rq->end_io = NULL;
343 rq->end_io_data = NULL;
344 rq->next_rq = NULL;
345
346 data->ctx->rq_dispatched[op_is_sync(op)]++;
347 return rq;
348 }
349
350 static struct request *blk_mq_get_request(struct request_queue *q,
351 struct bio *bio, unsigned int op,
352 struct blk_mq_alloc_data *data)
353 {
354 struct elevator_queue *e = q->elevator;
355 struct request *rq;
356 unsigned int tag;
357 bool put_ctx_on_error = false;
358
359 blk_queue_enter_live(q);
360 data->q = q;
361 if (likely(!data->ctx)) {
362 data->ctx = blk_mq_get_ctx(q);
363 put_ctx_on_error = true;
364 }
365 if (likely(!data->hctx))
366 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
367 if (op & REQ_NOWAIT)
368 data->flags |= BLK_MQ_REQ_NOWAIT;
369
370 if (e) {
371 data->flags |= BLK_MQ_REQ_INTERNAL;
372
373 /*
374 * Flush requests are special and go directly to the
375 * dispatch list.
376 */
377 if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
378 e->type->ops.mq.limit_depth(op, data);
379 } else {
380 blk_mq_tag_busy(data->hctx);
381 }
382
383 tag = blk_mq_get_tag(data);
384 if (tag == BLK_MQ_TAG_FAIL) {
385 if (put_ctx_on_error) {
386 blk_mq_put_ctx(data->ctx);
387 data->ctx = NULL;
388 }
389 blk_queue_exit(q);
390 return NULL;
391 }
392
393 rq = blk_mq_rq_ctx_init(data, tag, op);
394 if (!op_is_flush(op)) {
395 rq->elv.icq = NULL;
396 if (e && e->type->ops.mq.prepare_request) {
397 if (e->type->icq_cache && rq_ioc(bio))
398 blk_mq_sched_assign_ioc(rq, bio);
399
400 e->type->ops.mq.prepare_request(rq, bio);
401 rq->rq_flags |= RQF_ELVPRIV;
402 }
403 }
404 data->hctx->queued++;
405 return rq;
406 }
407
408 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
409 blk_mq_req_flags_t flags)
410 {
411 struct blk_mq_alloc_data alloc_data = { .flags = flags };
412 struct request *rq;
413 int ret;
414
415 ret = blk_queue_enter(q, flags);
416 if (ret)
417 return ERR_PTR(ret);
418
419 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
420 blk_queue_exit(q);
421
422 if (!rq)
423 return ERR_PTR(-EWOULDBLOCK);
424
425 blk_mq_put_ctx(alloc_data.ctx);
426
427 rq->__data_len = 0;
428 rq->__sector = (sector_t) -1;
429 rq->bio = rq->biotail = NULL;
430 return rq;
431 }
432 EXPORT_SYMBOL(blk_mq_alloc_request);
433
434 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
435 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
436 {
437 struct blk_mq_alloc_data alloc_data = { .flags = flags };
438 struct request *rq;
439 unsigned int cpu;
440 int ret;
441
442 /*
443 * If the tag allocator sleeps we could get an allocation for a
444 * different hardware context. No need to complicate the low level
445 * allocator for this for the rare use case of a command tied to
446 * a specific queue.
447 */
448 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
449 return ERR_PTR(-EINVAL);
450
451 if (hctx_idx >= q->nr_hw_queues)
452 return ERR_PTR(-EIO);
453
454 ret = blk_queue_enter(q, flags);
455 if (ret)
456 return ERR_PTR(ret);
457
458 /*
459 * Check if the hardware context is actually mapped to anything.
460 * If not tell the caller that it should skip this queue.
461 */
462 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
463 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
464 blk_queue_exit(q);
465 return ERR_PTR(-EXDEV);
466 }
467 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
468 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
469
470 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
471 blk_queue_exit(q);
472
473 if (!rq)
474 return ERR_PTR(-EWOULDBLOCK);
475
476 return rq;
477 }
478 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
479
480 void blk_mq_free_request(struct request *rq)
481 {
482 struct request_queue *q = rq->q;
483 struct elevator_queue *e = q->elevator;
484 struct blk_mq_ctx *ctx = rq->mq_ctx;
485 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
486 const int sched_tag = rq->internal_tag;
487
488 if (rq->rq_flags & RQF_ELVPRIV) {
489 if (e && e->type->ops.mq.finish_request)
490 e->type->ops.mq.finish_request(rq);
491 if (rq->elv.icq) {
492 put_io_context(rq->elv.icq->ioc);
493 rq->elv.icq = NULL;
494 }
495 }
496
497 ctx->rq_completed[rq_is_sync(rq)]++;
498 if (rq->rq_flags & RQF_MQ_INFLIGHT)
499 atomic_dec(&hctx->nr_active);
500
501 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
502 laptop_io_completion(q->backing_dev_info);
503
504 wbt_done(q->rq_wb, &rq->issue_stat);
505
506 if (blk_rq_rl(rq))
507 blk_put_rl(blk_rq_rl(rq));
508
509 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
510 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
511 if (rq->tag != -1)
512 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
513 if (sched_tag != -1)
514 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
515 blk_mq_sched_restart(hctx);
516 blk_queue_exit(q);
517 }
518 EXPORT_SYMBOL_GPL(blk_mq_free_request);
519
520 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
521 {
522 blk_account_io_done(rq);
523
524 if (rq->end_io) {
525 wbt_done(rq->q->rq_wb, &rq->issue_stat);
526 rq->end_io(rq, error);
527 } else {
528 if (unlikely(blk_bidi_rq(rq)))
529 blk_mq_free_request(rq->next_rq);
530 blk_mq_free_request(rq);
531 }
532 }
533 EXPORT_SYMBOL(__blk_mq_end_request);
534
535 void blk_mq_end_request(struct request *rq, blk_status_t error)
536 {
537 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
538 BUG();
539 __blk_mq_end_request(rq, error);
540 }
541 EXPORT_SYMBOL(blk_mq_end_request);
542
543 static void __blk_mq_complete_request_remote(void *data)
544 {
545 struct request *rq = data;
546
547 rq->q->softirq_done_fn(rq);
548 }
549
550 static void __blk_mq_complete_request(struct request *rq)
551 {
552 struct blk_mq_ctx *ctx = rq->mq_ctx;
553 bool shared = false;
554 int cpu;
555
556 if (rq->internal_tag != -1)
557 blk_mq_sched_completed_request(rq);
558 if (rq->rq_flags & RQF_STATS) {
559 blk_mq_poll_stats_start(rq->q);
560 blk_stat_add(rq);
561 }
562
563 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
564 rq->q->softirq_done_fn(rq);
565 return;
566 }
567
568 cpu = get_cpu();
569 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
570 shared = cpus_share_cache(cpu, ctx->cpu);
571
572 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
573 rq->csd.func = __blk_mq_complete_request_remote;
574 rq->csd.info = rq;
575 rq->csd.flags = 0;
576 smp_call_function_single_async(ctx->cpu, &rq->csd);
577 } else {
578 rq->q->softirq_done_fn(rq);
579 }
580 put_cpu();
581 }
582
583 /**
584 * blk_mq_complete_request - end I/O on a request
585 * @rq: the request being processed
586 *
587 * Description:
588 * Ends all I/O on a request. It does not handle partial completions.
589 * The actual completion happens out-of-order, through a IPI handler.
590 **/
591 void blk_mq_complete_request(struct request *rq)
592 {
593 struct request_queue *q = rq->q;
594
595 if (unlikely(blk_should_fake_timeout(q)))
596 return;
597 if (!blk_mark_rq_complete(rq))
598 __blk_mq_complete_request(rq);
599 }
600 EXPORT_SYMBOL(blk_mq_complete_request);
601
602 int blk_mq_request_started(struct request *rq)
603 {
604 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
605 }
606 EXPORT_SYMBOL_GPL(blk_mq_request_started);
607
608 void blk_mq_start_request(struct request *rq)
609 {
610 struct request_queue *q = rq->q;
611
612 blk_mq_sched_started_request(rq);
613
614 trace_block_rq_issue(q, rq);
615
616 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
617 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
618 rq->rq_flags |= RQF_STATS;
619 wbt_issue(q->rq_wb, &rq->issue_stat);
620 }
621
622 blk_add_timer(rq);
623
624 WARN_ON_ONCE(test_bit(REQ_ATOM_STARTED, &rq->atomic_flags));
625
626 /*
627 * Mark us as started and clear complete. Complete might have been
628 * set if requeue raced with timeout, which then marked it as
629 * complete. So be sure to clear complete again when we start
630 * the request, otherwise we'll ignore the completion event.
631 *
632 * Ensure that ->deadline is visible before we set STARTED, such that
633 * blk_mq_check_expired() is guaranteed to observe our ->deadline when
634 * it observes STARTED.
635 */
636 smp_wmb();
637 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
638 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
639 /*
640 * Coherence order guarantees these consecutive stores to a
641 * single variable propagate in the specified order. Thus the
642 * clear_bit() is ordered _after_ the set bit. See
643 * blk_mq_check_expired().
644 *
645 * (the bits must be part of the same byte for this to be
646 * true).
647 */
648 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
649 }
650
651 if (q->dma_drain_size && blk_rq_bytes(rq)) {
652 /*
653 * Make sure space for the drain appears. We know we can do
654 * this because max_hw_segments has been adjusted to be one
655 * fewer than the device can handle.
656 */
657 rq->nr_phys_segments++;
658 }
659 }
660 EXPORT_SYMBOL(blk_mq_start_request);
661
662 /*
663 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
664 * flag isn't set yet, so there may be race with timeout handler,
665 * but given rq->deadline is just set in .queue_rq() under
666 * this situation, the race won't be possible in reality because
667 * rq->timeout should be set as big enough to cover the window
668 * between blk_mq_start_request() called from .queue_rq() and
669 * clearing REQ_ATOM_STARTED here.
670 */
671 static void __blk_mq_requeue_request(struct request *rq)
672 {
673 struct request_queue *q = rq->q;
674
675 blk_mq_put_driver_tag(rq);
676
677 trace_block_rq_requeue(q, rq);
678 wbt_requeue(q->rq_wb, &rq->issue_stat);
679
680 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
681 if (q->dma_drain_size && blk_rq_bytes(rq))
682 rq->nr_phys_segments--;
683 }
684 }
685
686 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
687 {
688 __blk_mq_requeue_request(rq);
689
690 /* this request will be re-inserted to io scheduler queue */
691 blk_mq_sched_requeue_request(rq);
692
693 BUG_ON(blk_queued_rq(rq));
694 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
695 }
696 EXPORT_SYMBOL(blk_mq_requeue_request);
697
698 static void blk_mq_requeue_work(struct work_struct *work)
699 {
700 struct request_queue *q =
701 container_of(work, struct request_queue, requeue_work.work);
702 LIST_HEAD(rq_list);
703 struct request *rq, *next;
704
705 spin_lock_irq(&q->requeue_lock);
706 list_splice_init(&q->requeue_list, &rq_list);
707 spin_unlock_irq(&q->requeue_lock);
708
709 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
710 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
711 continue;
712
713 rq->rq_flags &= ~RQF_SOFTBARRIER;
714 list_del_init(&rq->queuelist);
715 /*
716 * If RQF_DONTPREP, rq has contained some driver specific
717 * data, so insert it to hctx dispatch list to avoid any
718 * merge.
719 */
720 if (rq->rq_flags & RQF_DONTPREP)
721 blk_mq_request_bypass_insert(rq, false);
722 else
723 blk_mq_sched_insert_request(rq, true, false, false, true);
724 }
725
726 while (!list_empty(&rq_list)) {
727 rq = list_entry(rq_list.next, struct request, queuelist);
728 list_del_init(&rq->queuelist);
729 blk_mq_sched_insert_request(rq, false, false, false, true);
730 }
731
732 blk_mq_run_hw_queues(q, false);
733 }
734
735 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
736 bool kick_requeue_list)
737 {
738 struct request_queue *q = rq->q;
739 unsigned long flags;
740
741 /*
742 * We abuse this flag that is otherwise used by the I/O scheduler to
743 * request head insertion from the workqueue.
744 */
745 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
746
747 spin_lock_irqsave(&q->requeue_lock, flags);
748 if (at_head) {
749 rq->rq_flags |= RQF_SOFTBARRIER;
750 list_add(&rq->queuelist, &q->requeue_list);
751 } else {
752 list_add_tail(&rq->queuelist, &q->requeue_list);
753 }
754 spin_unlock_irqrestore(&q->requeue_lock, flags);
755
756 if (kick_requeue_list)
757 blk_mq_kick_requeue_list(q);
758 }
759 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
760
761 void blk_mq_kick_requeue_list(struct request_queue *q)
762 {
763 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
764 }
765 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
766
767 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
768 unsigned long msecs)
769 {
770 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
771 msecs_to_jiffies(msecs));
772 }
773 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
774
775 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
776 {
777 if (tag < tags->nr_tags) {
778 prefetch(tags->rqs[tag]);
779 return tags->rqs[tag];
780 }
781
782 return NULL;
783 }
784 EXPORT_SYMBOL(blk_mq_tag_to_rq);
785
786 struct blk_mq_timeout_data {
787 unsigned long next;
788 unsigned int next_set;
789 };
790
791 void blk_mq_rq_timed_out(struct request *req, bool reserved)
792 {
793 const struct blk_mq_ops *ops = req->q->mq_ops;
794 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
795
796 /*
797 * We know that complete is set at this point. If STARTED isn't set
798 * anymore, then the request isn't active and the "timeout" should
799 * just be ignored. This can happen due to the bitflag ordering.
800 * Timeout first checks if STARTED is set, and if it is, assumes
801 * the request is active. But if we race with completion, then
802 * both flags will get cleared. So check here again, and ignore
803 * a timeout event with a request that isn't active.
804 */
805 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
806 return;
807
808 if (ops->timeout)
809 ret = ops->timeout(req, reserved);
810
811 switch (ret) {
812 case BLK_EH_HANDLED:
813 __blk_mq_complete_request(req);
814 break;
815 case BLK_EH_RESET_TIMER:
816 blk_add_timer(req);
817 blk_clear_rq_complete(req);
818 break;
819 case BLK_EH_NOT_HANDLED:
820 break;
821 default:
822 printk(KERN_ERR "block: bad eh return: %d\n", ret);
823 break;
824 }
825 }
826
827 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
828 struct request *rq, void *priv, bool reserved)
829 {
830 struct blk_mq_timeout_data *data = priv;
831 unsigned long deadline;
832
833 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
834 return;
835
836 /*
837 * Ensures that if we see STARTED we must also see our
838 * up-to-date deadline, see blk_mq_start_request().
839 */
840 smp_rmb();
841
842 deadline = READ_ONCE(rq->deadline);
843
844 /*
845 * The rq being checked may have been freed and reallocated
846 * out already here, we avoid this race by checking rq->deadline
847 * and REQ_ATOM_COMPLETE flag together:
848 *
849 * - if rq->deadline is observed as new value because of
850 * reusing, the rq won't be timed out because of timing.
851 * - if rq->deadline is observed as previous value,
852 * REQ_ATOM_COMPLETE flag won't be cleared in reuse path
853 * because we put a barrier between setting rq->deadline
854 * and clearing the flag in blk_mq_start_request(), so
855 * this rq won't be timed out too.
856 */
857 if (time_after_eq(jiffies, deadline)) {
858 if (!blk_mark_rq_complete(rq)) {
859 /*
860 * Again coherence order ensures that consecutive reads
861 * from the same variable must be in that order. This
862 * ensures that if we see COMPLETE clear, we must then
863 * see STARTED set and we'll ignore this timeout.
864 *
865 * (There's also the MB implied by the test_and_clear())
866 */
867 blk_mq_rq_timed_out(rq, reserved);
868 }
869 } else if (!data->next_set || time_after(data->next, deadline)) {
870 data->next = deadline;
871 data->next_set = 1;
872 }
873 }
874
875 static void blk_mq_timeout_work(struct work_struct *work)
876 {
877 struct request_queue *q =
878 container_of(work, struct request_queue, timeout_work);
879 struct blk_mq_timeout_data data = {
880 .next = 0,
881 .next_set = 0,
882 };
883 int i;
884
885 /* A deadlock might occur if a request is stuck requiring a
886 * timeout at the same time a queue freeze is waiting
887 * completion, since the timeout code would not be able to
888 * acquire the queue reference here.
889 *
890 * That's why we don't use blk_queue_enter here; instead, we use
891 * percpu_ref_tryget directly, because we need to be able to
892 * obtain a reference even in the short window between the queue
893 * starting to freeze, by dropping the first reference in
894 * blk_freeze_queue_start, and the moment the last request is
895 * consumed, marked by the instant q_usage_counter reaches
896 * zero.
897 */
898 if (!percpu_ref_tryget(&q->q_usage_counter))
899 return;
900
901 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
902
903 if (data.next_set) {
904 data.next = blk_rq_timeout(round_jiffies_up(data.next));
905 mod_timer(&q->timeout, data.next);
906 } else {
907 struct blk_mq_hw_ctx *hctx;
908
909 queue_for_each_hw_ctx(q, hctx, i) {
910 /* the hctx may be unmapped, so check it here */
911 if (blk_mq_hw_queue_mapped(hctx))
912 blk_mq_tag_idle(hctx);
913 }
914 }
915 blk_queue_exit(q);
916 }
917
918 struct flush_busy_ctx_data {
919 struct blk_mq_hw_ctx *hctx;
920 struct list_head *list;
921 };
922
923 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
924 {
925 struct flush_busy_ctx_data *flush_data = data;
926 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
927 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
928
929 sbitmap_clear_bit(sb, bitnr);
930 spin_lock(&ctx->lock);
931 list_splice_tail_init(&ctx->rq_list, flush_data->list);
932 spin_unlock(&ctx->lock);
933 return true;
934 }
935
936 /*
937 * Process software queues that have been marked busy, splicing them
938 * to the for-dispatch
939 */
940 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
941 {
942 struct flush_busy_ctx_data data = {
943 .hctx = hctx,
944 .list = list,
945 };
946
947 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
948 }
949 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
950
951 struct dispatch_rq_data {
952 struct blk_mq_hw_ctx *hctx;
953 struct request *rq;
954 };
955
956 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
957 void *data)
958 {
959 struct dispatch_rq_data *dispatch_data = data;
960 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
961 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
962
963 spin_lock(&ctx->lock);
964 if (unlikely(!list_empty(&ctx->rq_list))) {
965 dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
966 list_del_init(&dispatch_data->rq->queuelist);
967 if (list_empty(&ctx->rq_list))
968 sbitmap_clear_bit(sb, bitnr);
969 }
970 spin_unlock(&ctx->lock);
971
972 return !dispatch_data->rq;
973 }
974
975 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
976 struct blk_mq_ctx *start)
977 {
978 unsigned off = start ? start->index_hw : 0;
979 struct dispatch_rq_data data = {
980 .hctx = hctx,
981 .rq = NULL,
982 };
983
984 __sbitmap_for_each_set(&hctx->ctx_map, off,
985 dispatch_rq_from_ctx, &data);
986
987 return data.rq;
988 }
989
990 static inline unsigned int queued_to_index(unsigned int queued)
991 {
992 if (!queued)
993 return 0;
994
995 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
996 }
997
998 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
999 bool wait)
1000 {
1001 struct blk_mq_alloc_data data = {
1002 .q = rq->q,
1003 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
1004 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
1005 };
1006 bool shared;
1007
1008 might_sleep_if(wait);
1009
1010 if (rq->tag != -1)
1011 goto done;
1012
1013 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1014 data.flags |= BLK_MQ_REQ_RESERVED;
1015
1016 shared = blk_mq_tag_busy(data.hctx);
1017 rq->tag = blk_mq_get_tag(&data);
1018 if (rq->tag >= 0) {
1019 if (shared) {
1020 rq->rq_flags |= RQF_MQ_INFLIGHT;
1021 atomic_inc(&data.hctx->nr_active);
1022 }
1023 data.hctx->tags->rqs[rq->tag] = rq;
1024 }
1025
1026 done:
1027 if (hctx)
1028 *hctx = data.hctx;
1029 return rq->tag != -1;
1030 }
1031
1032 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1033 int flags, void *key)
1034 {
1035 struct blk_mq_hw_ctx *hctx;
1036
1037 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1038
1039 list_del_init(&wait->entry);
1040 blk_mq_run_hw_queue(hctx, true);
1041 return 1;
1042 }
1043
1044 /*
1045 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1046 * the tag wakeups. For non-shared tags, we can simply mark us nedeing a
1047 * restart. For both caes, take care to check the condition again after
1048 * marking us as waiting.
1049 */
1050 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx,
1051 struct request *rq)
1052 {
1053 struct blk_mq_hw_ctx *this_hctx = *hctx;
1054 bool shared_tags = (this_hctx->flags & BLK_MQ_F_TAG_SHARED) != 0;
1055 struct sbq_wait_state *ws;
1056 wait_queue_entry_t *wait;
1057 bool ret;
1058
1059 if (!shared_tags) {
1060 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state))
1061 set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state);
1062 } else {
1063 wait = &this_hctx->dispatch_wait;
1064 if (!list_empty_careful(&wait->entry))
1065 return false;
1066
1067 spin_lock(&this_hctx->lock);
1068 if (!list_empty(&wait->entry)) {
1069 spin_unlock(&this_hctx->lock);
1070 return false;
1071 }
1072
1073 ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
1074 add_wait_queue(&ws->wait, wait);
1075 }
1076
1077 /*
1078 * It's possible that a tag was freed in the window between the
1079 * allocation failure and adding the hardware queue to the wait
1080 * queue.
1081 */
1082 ret = blk_mq_get_driver_tag(rq, hctx, false);
1083
1084 if (!shared_tags) {
1085 /*
1086 * Don't clear RESTART here, someone else could have set it.
1087 * At most this will cost an extra queue run.
1088 */
1089 return ret;
1090 } else {
1091 if (!ret) {
1092 spin_unlock(&this_hctx->lock);
1093 return false;
1094 }
1095
1096 /*
1097 * We got a tag, remove ourselves from the wait queue to ensure
1098 * someone else gets the wakeup.
1099 */
1100 spin_lock_irq(&ws->wait.lock);
1101 list_del_init(&wait->entry);
1102 spin_unlock_irq(&ws->wait.lock);
1103 spin_unlock(&this_hctx->lock);
1104 return true;
1105 }
1106 }
1107
1108 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1109 bool got_budget)
1110 {
1111 struct blk_mq_hw_ctx *hctx;
1112 struct request *rq, *nxt;
1113 bool no_tag = false;
1114 int errors, queued;
1115
1116 if (list_empty(list))
1117 return false;
1118
1119 WARN_ON(!list_is_singular(list) && got_budget);
1120
1121 /*
1122 * Now process all the entries, sending them to the driver.
1123 */
1124 errors = queued = 0;
1125 do {
1126 struct blk_mq_queue_data bd;
1127 blk_status_t ret;
1128
1129 rq = list_first_entry(list, struct request, queuelist);
1130
1131 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
1132 if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1133 break;
1134
1135 if (!blk_mq_get_driver_tag(rq, NULL, false)) {
1136 /*
1137 * The initial allocation attempt failed, so we need to
1138 * rerun the hardware queue when a tag is freed. The
1139 * waitqueue takes care of that. If the queue is run
1140 * before we add this entry back on the dispatch list,
1141 * we'll re-run it below.
1142 */
1143 if (!blk_mq_mark_tag_wait(&hctx, rq)) {
1144 blk_mq_put_dispatch_budget(hctx);
1145 /*
1146 * For non-shared tags, the RESTART check
1147 * will suffice.
1148 */
1149 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1150 no_tag = true;
1151 break;
1152 }
1153 }
1154
1155 list_del_init(&rq->queuelist);
1156
1157 bd.rq = rq;
1158
1159 /*
1160 * Flag last if we have no more requests, or if we have more
1161 * but can't assign a driver tag to it.
1162 */
1163 if (list_empty(list))
1164 bd.last = true;
1165 else {
1166 nxt = list_first_entry(list, struct request, queuelist);
1167 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1168 }
1169
1170 ret = q->mq_ops->queue_rq(hctx, &bd);
1171 if (ret == BLK_STS_RESOURCE) {
1172 /*
1173 * If an I/O scheduler has been configured and we got a
1174 * driver tag for the next request already, free it
1175 * again.
1176 */
1177 if (!list_empty(list)) {
1178 nxt = list_first_entry(list, struct request, queuelist);
1179 blk_mq_put_driver_tag(nxt);
1180 }
1181 list_add(&rq->queuelist, list);
1182 __blk_mq_requeue_request(rq);
1183 break;
1184 }
1185
1186 if (unlikely(ret != BLK_STS_OK)) {
1187 errors++;
1188 blk_mq_end_request(rq, BLK_STS_IOERR);
1189 continue;
1190 }
1191
1192 queued++;
1193 } while (!list_empty(list));
1194
1195 hctx->dispatched[queued_to_index(queued)]++;
1196
1197 /*
1198 * Any items that need requeuing? Stuff them into hctx->dispatch,
1199 * that is where we will continue on next queue run.
1200 */
1201 if (!list_empty(list)) {
1202 spin_lock(&hctx->lock);
1203 list_splice_init(list, &hctx->dispatch);
1204 spin_unlock(&hctx->lock);
1205
1206 /*
1207 * If SCHED_RESTART was set by the caller of this function and
1208 * it is no longer set that means that it was cleared by another
1209 * thread and hence that a queue rerun is needed.
1210 *
1211 * If 'no_tag' is set, that means that we failed getting
1212 * a driver tag with an I/O scheduler attached. If our dispatch
1213 * waitqueue is no longer active, ensure that we run the queue
1214 * AFTER adding our entries back to the list.
1215 *
1216 * If no I/O scheduler has been configured it is possible that
1217 * the hardware queue got stopped and restarted before requests
1218 * were pushed back onto the dispatch list. Rerun the queue to
1219 * avoid starvation. Notes:
1220 * - blk_mq_run_hw_queue() checks whether or not a queue has
1221 * been stopped before rerunning a queue.
1222 * - Some but not all block drivers stop a queue before
1223 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1224 * and dm-rq.
1225 */
1226 if (!blk_mq_sched_needs_restart(hctx) ||
1227 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1228 blk_mq_run_hw_queue(hctx, true);
1229 }
1230
1231 return (queued + errors) != 0;
1232 }
1233
1234 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1235 {
1236 int srcu_idx;
1237
1238 /*
1239 * We should be running this queue from one of the CPUs that
1240 * are mapped to it.
1241 *
1242 * There are at least two related races now between setting
1243 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1244 * __blk_mq_run_hw_queue():
1245 *
1246 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1247 * but later it becomes online, then this warning is harmless
1248 * at all
1249 *
1250 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1251 * but later it becomes offline, then the warning can't be
1252 * triggered, and we depend on blk-mq timeout handler to
1253 * handle dispatched requests to this hctx
1254 */
1255 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1256 cpu_online(hctx->next_cpu)) {
1257 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1258 raw_smp_processor_id(),
1259 cpumask_empty(hctx->cpumask) ? "inactive": "active");
1260 dump_stack();
1261 }
1262
1263 /*
1264 * We can't run the queue inline with ints disabled. Ensure that
1265 * we catch bad users of this early.
1266 */
1267 WARN_ON_ONCE(in_interrupt());
1268
1269 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1270 rcu_read_lock();
1271 blk_mq_sched_dispatch_requests(hctx);
1272 rcu_read_unlock();
1273 } else {
1274 might_sleep();
1275
1276 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1277 blk_mq_sched_dispatch_requests(hctx);
1278 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1279 }
1280 }
1281
1282 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1283 {
1284 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1285
1286 if (cpu >= nr_cpu_ids)
1287 cpu = cpumask_first(hctx->cpumask);
1288 return cpu;
1289 }
1290
1291 /*
1292 * It'd be great if the workqueue API had a way to pass
1293 * in a mask and had some smarts for more clever placement.
1294 * For now we just round-robin here, switching for every
1295 * BLK_MQ_CPU_WORK_BATCH queued items.
1296 */
1297 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1298 {
1299 bool tried = false;
1300 int next_cpu = hctx->next_cpu;
1301
1302 if (hctx->queue->nr_hw_queues == 1)
1303 return WORK_CPU_UNBOUND;
1304
1305 if (--hctx->next_cpu_batch <= 0) {
1306 select_cpu:
1307 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1308 cpu_online_mask);
1309 if (next_cpu >= nr_cpu_ids)
1310 next_cpu = blk_mq_first_mapped_cpu(hctx);
1311 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1312 }
1313
1314 /*
1315 * Do unbound schedule if we can't find a online CPU for this hctx,
1316 * and it should only happen in the path of handling CPU DEAD.
1317 */
1318 if (!cpu_online(next_cpu)) {
1319 if (!tried) {
1320 tried = true;
1321 goto select_cpu;
1322 }
1323
1324 /*
1325 * Make sure to re-select CPU next time once after CPUs
1326 * in hctx->cpumask become online again.
1327 */
1328 hctx->next_cpu = next_cpu;
1329 hctx->next_cpu_batch = 1;
1330 return WORK_CPU_UNBOUND;
1331 }
1332
1333 hctx->next_cpu = next_cpu;
1334 return next_cpu;
1335 }
1336
1337 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1338 unsigned long msecs)
1339 {
1340 if (unlikely(blk_mq_hctx_stopped(hctx)))
1341 return;
1342
1343 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1344 int cpu = get_cpu();
1345 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1346 __blk_mq_run_hw_queue(hctx);
1347 put_cpu();
1348 return;
1349 }
1350
1351 put_cpu();
1352 }
1353
1354 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1355 msecs_to_jiffies(msecs));
1356 }
1357
1358 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1359 {
1360 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1361 }
1362 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1363
1364 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1365 {
1366 if (blk_mq_hctx_has_pending(hctx)) {
1367 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1368 return true;
1369 }
1370
1371 return false;
1372 }
1373 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1374
1375 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1376 {
1377 struct blk_mq_hw_ctx *hctx;
1378 int i;
1379
1380 queue_for_each_hw_ctx(q, hctx, i) {
1381 if (blk_mq_hctx_stopped(hctx))
1382 continue;
1383
1384 blk_mq_run_hw_queue(hctx, async);
1385 }
1386 }
1387 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1388
1389 /**
1390 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1391 * @q: request queue.
1392 *
1393 * The caller is responsible for serializing this function against
1394 * blk_mq_{start,stop}_hw_queue().
1395 */
1396 bool blk_mq_queue_stopped(struct request_queue *q)
1397 {
1398 struct blk_mq_hw_ctx *hctx;
1399 int i;
1400
1401 queue_for_each_hw_ctx(q, hctx, i)
1402 if (blk_mq_hctx_stopped(hctx))
1403 return true;
1404
1405 return false;
1406 }
1407 EXPORT_SYMBOL(blk_mq_queue_stopped);
1408
1409 /*
1410 * This function is often used for pausing .queue_rq() by driver when
1411 * there isn't enough resource or some conditions aren't satisfied, and
1412 * BLK_STS_RESOURCE is usually returned.
1413 *
1414 * We do not guarantee that dispatch can be drained or blocked
1415 * after blk_mq_stop_hw_queue() returns. Please use
1416 * blk_mq_quiesce_queue() for that requirement.
1417 */
1418 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1419 {
1420 cancel_delayed_work(&hctx->run_work);
1421
1422 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1423 }
1424 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1425
1426 /*
1427 * This function is often used for pausing .queue_rq() by driver when
1428 * there isn't enough resource or some conditions aren't satisfied, and
1429 * BLK_STS_RESOURCE is usually returned.
1430 *
1431 * We do not guarantee that dispatch can be drained or blocked
1432 * after blk_mq_stop_hw_queues() returns. Please use
1433 * blk_mq_quiesce_queue() for that requirement.
1434 */
1435 void blk_mq_stop_hw_queues(struct request_queue *q)
1436 {
1437 struct blk_mq_hw_ctx *hctx;
1438 int i;
1439
1440 queue_for_each_hw_ctx(q, hctx, i)
1441 blk_mq_stop_hw_queue(hctx);
1442 }
1443 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1444
1445 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1446 {
1447 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1448
1449 blk_mq_run_hw_queue(hctx, false);
1450 }
1451 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1452
1453 void blk_mq_start_hw_queues(struct request_queue *q)
1454 {
1455 struct blk_mq_hw_ctx *hctx;
1456 int i;
1457
1458 queue_for_each_hw_ctx(q, hctx, i)
1459 blk_mq_start_hw_queue(hctx);
1460 }
1461 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1462
1463 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1464 {
1465 if (!blk_mq_hctx_stopped(hctx))
1466 return;
1467
1468 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1469 blk_mq_run_hw_queue(hctx, async);
1470 }
1471 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1472
1473 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1474 {
1475 struct blk_mq_hw_ctx *hctx;
1476 int i;
1477
1478 queue_for_each_hw_ctx(q, hctx, i)
1479 blk_mq_start_stopped_hw_queue(hctx, async);
1480 }
1481 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1482
1483 static void blk_mq_run_work_fn(struct work_struct *work)
1484 {
1485 struct blk_mq_hw_ctx *hctx;
1486
1487 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1488
1489 /*
1490 * If we are stopped, don't run the queue. The exception is if
1491 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1492 * the STOPPED bit and run it.
1493 */
1494 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1495 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1496 return;
1497
1498 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1499 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1500 }
1501
1502 __blk_mq_run_hw_queue(hctx);
1503 }
1504
1505
1506 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1507 {
1508 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1509 return;
1510
1511 /*
1512 * Stop the hw queue, then modify currently delayed work.
1513 * This should prevent us from running the queue prematurely.
1514 * Mark the queue as auto-clearing STOPPED when it runs.
1515 */
1516 blk_mq_stop_hw_queue(hctx);
1517 set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1518 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1519 &hctx->run_work,
1520 msecs_to_jiffies(msecs));
1521 }
1522 EXPORT_SYMBOL(blk_mq_delay_queue);
1523
1524 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1525 struct request *rq,
1526 bool at_head)
1527 {
1528 struct blk_mq_ctx *ctx = rq->mq_ctx;
1529
1530 lockdep_assert_held(&ctx->lock);
1531
1532 trace_block_rq_insert(hctx->queue, rq);
1533
1534 if (at_head)
1535 list_add(&rq->queuelist, &ctx->rq_list);
1536 else
1537 list_add_tail(&rq->queuelist, &ctx->rq_list);
1538 }
1539
1540 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1541 bool at_head)
1542 {
1543 struct blk_mq_ctx *ctx = rq->mq_ctx;
1544
1545 lockdep_assert_held(&ctx->lock);
1546
1547 __blk_mq_insert_req_list(hctx, rq, at_head);
1548 blk_mq_hctx_mark_pending(hctx, ctx);
1549 }
1550
1551 /*
1552 * Should only be used carefully, when the caller knows we want to
1553 * bypass a potential IO scheduler on the target device.
1554 */
1555 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1556 {
1557 struct blk_mq_ctx *ctx = rq->mq_ctx;
1558 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1559
1560 spin_lock(&hctx->lock);
1561 list_add_tail(&rq->queuelist, &hctx->dispatch);
1562 spin_unlock(&hctx->lock);
1563
1564 if (run_queue)
1565 blk_mq_run_hw_queue(hctx, false);
1566 }
1567
1568 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1569 struct list_head *list)
1570
1571 {
1572 /*
1573 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1574 * offline now
1575 */
1576 spin_lock(&ctx->lock);
1577 while (!list_empty(list)) {
1578 struct request *rq;
1579
1580 rq = list_first_entry(list, struct request, queuelist);
1581 BUG_ON(rq->mq_ctx != ctx);
1582 list_del_init(&rq->queuelist);
1583 __blk_mq_insert_req_list(hctx, rq, false);
1584 }
1585 blk_mq_hctx_mark_pending(hctx, ctx);
1586 spin_unlock(&ctx->lock);
1587 }
1588
1589 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1590 {
1591 struct request *rqa = container_of(a, struct request, queuelist);
1592 struct request *rqb = container_of(b, struct request, queuelist);
1593
1594 return !(rqa->mq_ctx < rqb->mq_ctx ||
1595 (rqa->mq_ctx == rqb->mq_ctx &&
1596 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1597 }
1598
1599 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1600 {
1601 struct blk_mq_ctx *this_ctx;
1602 struct request_queue *this_q;
1603 struct request *rq;
1604 LIST_HEAD(list);
1605 LIST_HEAD(ctx_list);
1606 unsigned int depth;
1607
1608 list_splice_init(&plug->mq_list, &list);
1609
1610 list_sort(NULL, &list, plug_ctx_cmp);
1611
1612 this_q = NULL;
1613 this_ctx = NULL;
1614 depth = 0;
1615
1616 while (!list_empty(&list)) {
1617 rq = list_entry_rq(list.next);
1618 list_del_init(&rq->queuelist);
1619 BUG_ON(!rq->q);
1620 if (rq->mq_ctx != this_ctx) {
1621 if (this_ctx) {
1622 trace_block_unplug(this_q, depth, !from_schedule);
1623 blk_mq_sched_insert_requests(this_q, this_ctx,
1624 &ctx_list,
1625 from_schedule);
1626 }
1627
1628 this_ctx = rq->mq_ctx;
1629 this_q = rq->q;
1630 depth = 0;
1631 }
1632
1633 depth++;
1634 list_add_tail(&rq->queuelist, &ctx_list);
1635 }
1636
1637 /*
1638 * If 'this_ctx' is set, we know we have entries to complete
1639 * on 'ctx_list'. Do those.
1640 */
1641 if (this_ctx) {
1642 trace_block_unplug(this_q, depth, !from_schedule);
1643 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1644 from_schedule);
1645 }
1646 }
1647
1648 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1649 {
1650 blk_init_request_from_bio(rq, bio);
1651
1652 blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1653
1654 blk_account_io_start(rq, true);
1655 }
1656
1657 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1658 struct blk_mq_ctx *ctx,
1659 struct request *rq)
1660 {
1661 spin_lock(&ctx->lock);
1662 __blk_mq_insert_request(hctx, rq, false);
1663 spin_unlock(&ctx->lock);
1664 }
1665
1666 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1667 {
1668 if (rq->tag != -1)
1669 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1670
1671 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1672 }
1673
1674 static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1675 struct request *rq,
1676 blk_qc_t *cookie, bool may_sleep)
1677 {
1678 struct request_queue *q = rq->q;
1679 struct blk_mq_queue_data bd = {
1680 .rq = rq,
1681 .last = true,
1682 };
1683 blk_qc_t new_cookie;
1684 blk_status_t ret;
1685 bool run_queue = true;
1686
1687 /* RCU or SRCU read lock is needed before checking quiesced flag */
1688 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1689 run_queue = false;
1690 goto insert;
1691 }
1692
1693 if (q->elevator)
1694 goto insert;
1695
1696 if (!blk_mq_get_dispatch_budget(hctx))
1697 goto insert;
1698
1699 if (!blk_mq_get_driver_tag(rq, NULL, false)) {
1700 blk_mq_put_dispatch_budget(hctx);
1701 goto insert;
1702 }
1703
1704 new_cookie = request_to_qc_t(hctx, rq);
1705
1706 /*
1707 * For OK queue, we are done. For error, kill it. Any other
1708 * error (busy), just add it to our list as we previously
1709 * would have done
1710 */
1711 ret = q->mq_ops->queue_rq(hctx, &bd);
1712 switch (ret) {
1713 case BLK_STS_OK:
1714 *cookie = new_cookie;
1715 return;
1716 case BLK_STS_RESOURCE:
1717 __blk_mq_requeue_request(rq);
1718 goto insert;
1719 default:
1720 *cookie = BLK_QC_T_NONE;
1721 blk_mq_end_request(rq, ret);
1722 return;
1723 }
1724
1725 insert:
1726 blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1727 }
1728
1729 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1730 struct request *rq, blk_qc_t *cookie)
1731 {
1732 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1733 rcu_read_lock();
1734 __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1735 rcu_read_unlock();
1736 } else {
1737 unsigned int srcu_idx;
1738
1739 might_sleep();
1740
1741 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1742 __blk_mq_try_issue_directly(hctx, rq, cookie, true);
1743 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1744 }
1745 }
1746
1747 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1748 {
1749 const int is_sync = op_is_sync(bio->bi_opf);
1750 const int is_flush_fua = op_is_flush(bio->bi_opf);
1751 struct blk_mq_alloc_data data = { .flags = 0 };
1752 struct request *rq;
1753 unsigned int request_count = 0;
1754 struct blk_plug *plug;
1755 struct request *same_queue_rq = NULL;
1756 blk_qc_t cookie;
1757 unsigned int wb_acct;
1758
1759 blk_queue_bounce(q, &bio);
1760
1761 blk_queue_split(q, &bio);
1762
1763 if (!bio_integrity_prep(bio))
1764 return BLK_QC_T_NONE;
1765
1766 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1767 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1768 return BLK_QC_T_NONE;
1769
1770 if (blk_mq_sched_bio_merge(q, bio))
1771 return BLK_QC_T_NONE;
1772
1773 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1774
1775 trace_block_getrq(q, bio, bio->bi_opf);
1776
1777 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1778 if (unlikely(!rq)) {
1779 __wbt_done(q->rq_wb, wb_acct);
1780 if (bio->bi_opf & REQ_NOWAIT)
1781 bio_wouldblock_error(bio);
1782 return BLK_QC_T_NONE;
1783 }
1784
1785 wbt_track(&rq->issue_stat, wb_acct);
1786
1787 cookie = request_to_qc_t(data.hctx, rq);
1788
1789 plug = current->plug;
1790 if (unlikely(is_flush_fua)) {
1791 blk_mq_put_ctx(data.ctx);
1792 blk_mq_bio_to_request(rq, bio);
1793
1794 /* bypass scheduler for flush rq */
1795 blk_insert_flush(rq);
1796 blk_mq_run_hw_queue(data.hctx, true);
1797 } else if (plug && q->nr_hw_queues == 1) {
1798 struct request *last = NULL;
1799
1800 blk_mq_put_ctx(data.ctx);
1801 blk_mq_bio_to_request(rq, bio);
1802
1803 /*
1804 * @request_count may become stale because of schedule
1805 * out, so check the list again.
1806 */
1807 if (list_empty(&plug->mq_list))
1808 request_count = 0;
1809 else if (blk_queue_nomerges(q))
1810 request_count = blk_plug_queued_count(q);
1811
1812 if (!request_count)
1813 trace_block_plug(q);
1814 else
1815 last = list_entry_rq(plug->mq_list.prev);
1816
1817 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1818 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1819 blk_flush_plug_list(plug, false);
1820 trace_block_plug(q);
1821 }
1822
1823 list_add_tail(&rq->queuelist, &plug->mq_list);
1824 } else if (plug && !blk_queue_nomerges(q)) {
1825 blk_mq_bio_to_request(rq, bio);
1826
1827 /*
1828 * We do limited plugging. If the bio can be merged, do that.
1829 * Otherwise the existing request in the plug list will be
1830 * issued. So the plug list will have one request at most
1831 * The plug list might get flushed before this. If that happens,
1832 * the plug list is empty, and same_queue_rq is invalid.
1833 */
1834 if (list_empty(&plug->mq_list))
1835 same_queue_rq = NULL;
1836 if (same_queue_rq)
1837 list_del_init(&same_queue_rq->queuelist);
1838 list_add_tail(&rq->queuelist, &plug->mq_list);
1839
1840 blk_mq_put_ctx(data.ctx);
1841
1842 if (same_queue_rq) {
1843 data.hctx = blk_mq_map_queue(q,
1844 same_queue_rq->mq_ctx->cpu);
1845 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1846 &cookie);
1847 }
1848 } else if (q->nr_hw_queues > 1 && is_sync) {
1849 blk_mq_put_ctx(data.ctx);
1850 blk_mq_bio_to_request(rq, bio);
1851 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1852 } else if (q->elevator) {
1853 blk_mq_put_ctx(data.ctx);
1854 blk_mq_bio_to_request(rq, bio);
1855 blk_mq_sched_insert_request(rq, false, true, true, true);
1856 } else {
1857 blk_mq_put_ctx(data.ctx);
1858 blk_mq_bio_to_request(rq, bio);
1859 blk_mq_queue_io(data.hctx, data.ctx, rq);
1860 blk_mq_run_hw_queue(data.hctx, true);
1861 }
1862
1863 return cookie;
1864 }
1865
1866 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1867 unsigned int hctx_idx)
1868 {
1869 struct page *page;
1870
1871 if (tags->rqs && set->ops->exit_request) {
1872 int i;
1873
1874 for (i = 0; i < tags->nr_tags; i++) {
1875 struct request *rq = tags->static_rqs[i];
1876
1877 if (!rq)
1878 continue;
1879 set->ops->exit_request(set, rq, hctx_idx);
1880 tags->static_rqs[i] = NULL;
1881 }
1882 }
1883
1884 while (!list_empty(&tags->page_list)) {
1885 page = list_first_entry(&tags->page_list, struct page, lru);
1886 list_del_init(&page->lru);
1887 /*
1888 * Remove kmemleak object previously allocated in
1889 * blk_mq_init_rq_map().
1890 */
1891 kmemleak_free(page_address(page));
1892 __free_pages(page, page->private);
1893 }
1894 }
1895
1896 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1897 {
1898 kfree(tags->rqs);
1899 tags->rqs = NULL;
1900 kfree(tags->static_rqs);
1901 tags->static_rqs = NULL;
1902
1903 blk_mq_free_tags(tags);
1904 }
1905
1906 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1907 unsigned int hctx_idx,
1908 unsigned int nr_tags,
1909 unsigned int reserved_tags)
1910 {
1911 struct blk_mq_tags *tags;
1912 int node;
1913
1914 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1915 if (node == NUMA_NO_NODE)
1916 node = set->numa_node;
1917
1918 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1919 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1920 if (!tags)
1921 return NULL;
1922
1923 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1924 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1925 node);
1926 if (!tags->rqs) {
1927 blk_mq_free_tags(tags);
1928 return NULL;
1929 }
1930
1931 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1932 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1933 node);
1934 if (!tags->static_rqs) {
1935 kfree(tags->rqs);
1936 blk_mq_free_tags(tags);
1937 return NULL;
1938 }
1939
1940 return tags;
1941 }
1942
1943 static size_t order_to_size(unsigned int order)
1944 {
1945 return (size_t)PAGE_SIZE << order;
1946 }
1947
1948 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1949 unsigned int hctx_idx, unsigned int depth)
1950 {
1951 unsigned int i, j, entries_per_page, max_order = 4;
1952 size_t rq_size, left;
1953 int node;
1954
1955 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1956 if (node == NUMA_NO_NODE)
1957 node = set->numa_node;
1958
1959 INIT_LIST_HEAD(&tags->page_list);
1960
1961 /*
1962 * rq_size is the size of the request plus driver payload, rounded
1963 * to the cacheline size
1964 */
1965 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1966 cache_line_size());
1967 left = rq_size * depth;
1968
1969 for (i = 0; i < depth; ) {
1970 int this_order = max_order;
1971 struct page *page;
1972 int to_do;
1973 void *p;
1974
1975 while (this_order && left < order_to_size(this_order - 1))
1976 this_order--;
1977
1978 do {
1979 page = alloc_pages_node(node,
1980 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1981 this_order);
1982 if (page)
1983 break;
1984 if (!this_order--)
1985 break;
1986 if (order_to_size(this_order) < rq_size)
1987 break;
1988 } while (1);
1989
1990 if (!page)
1991 goto fail;
1992
1993 page->private = this_order;
1994 list_add_tail(&page->lru, &tags->page_list);
1995
1996 p = page_address(page);
1997 /*
1998 * Allow kmemleak to scan these pages as they contain pointers
1999 * to additional allocations like via ops->init_request().
2000 */
2001 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2002 entries_per_page = order_to_size(this_order) / rq_size;
2003 to_do = min(entries_per_page, depth - i);
2004 left -= to_do * rq_size;
2005 for (j = 0; j < to_do; j++) {
2006 struct request *rq = p;
2007
2008 tags->static_rqs[i] = rq;
2009 if (set->ops->init_request) {
2010 if (set->ops->init_request(set, rq, hctx_idx,
2011 node)) {
2012 tags->static_rqs[i] = NULL;
2013 goto fail;
2014 }
2015 }
2016
2017 p += rq_size;
2018 i++;
2019 }
2020 }
2021 return 0;
2022
2023 fail:
2024 blk_mq_free_rqs(set, tags, hctx_idx);
2025 return -ENOMEM;
2026 }
2027
2028 /*
2029 * 'cpu' is going away. splice any existing rq_list entries from this
2030 * software queue to the hw queue dispatch list, and ensure that it
2031 * gets run.
2032 */
2033 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2034 {
2035 struct blk_mq_hw_ctx *hctx;
2036 struct blk_mq_ctx *ctx;
2037 LIST_HEAD(tmp);
2038
2039 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2040 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2041
2042 spin_lock(&ctx->lock);
2043 if (!list_empty(&ctx->rq_list)) {
2044 list_splice_init(&ctx->rq_list, &tmp);
2045 blk_mq_hctx_clear_pending(hctx, ctx);
2046 }
2047 spin_unlock(&ctx->lock);
2048
2049 if (list_empty(&tmp))
2050 return 0;
2051
2052 spin_lock(&hctx->lock);
2053 list_splice_tail_init(&tmp, &hctx->dispatch);
2054 spin_unlock(&hctx->lock);
2055
2056 blk_mq_run_hw_queue(hctx, true);
2057 return 0;
2058 }
2059
2060 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2061 {
2062 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2063 &hctx->cpuhp_dead);
2064 }
2065
2066 /* hctx->ctxs will be freed in queue's release handler */
2067 static void blk_mq_exit_hctx(struct request_queue *q,
2068 struct blk_mq_tag_set *set,
2069 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2070 {
2071 blk_mq_debugfs_unregister_hctx(hctx);
2072
2073 if (blk_mq_hw_queue_mapped(hctx))
2074 blk_mq_tag_idle(hctx);
2075
2076 if (set->ops->exit_request)
2077 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2078
2079 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2080
2081 if (set->ops->exit_hctx)
2082 set->ops->exit_hctx(hctx, hctx_idx);
2083
2084 blk_mq_remove_cpuhp(hctx);
2085 }
2086
2087 static void blk_mq_exit_hw_queues(struct request_queue *q,
2088 struct blk_mq_tag_set *set, int nr_queue)
2089 {
2090 struct blk_mq_hw_ctx *hctx;
2091 unsigned int i;
2092
2093 queue_for_each_hw_ctx(q, hctx, i) {
2094 if (i == nr_queue)
2095 break;
2096 blk_mq_exit_hctx(q, set, hctx, i);
2097 }
2098 }
2099
2100 static int blk_mq_init_hctx(struct request_queue *q,
2101 struct blk_mq_tag_set *set,
2102 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2103 {
2104 int node;
2105
2106 node = hctx->numa_node;
2107 if (node == NUMA_NO_NODE)
2108 node = hctx->numa_node = set->numa_node;
2109
2110 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2111 spin_lock_init(&hctx->lock);
2112 INIT_LIST_HEAD(&hctx->dispatch);
2113 hctx->queue = q;
2114 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2115
2116 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2117
2118 hctx->tags = set->tags[hctx_idx];
2119
2120 /*
2121 * Allocate space for all possible cpus to avoid allocation at
2122 * runtime
2123 */
2124 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2125 GFP_KERNEL, node);
2126 if (!hctx->ctxs)
2127 goto unregister_cpu_notifier;
2128
2129 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
2130 node))
2131 goto free_ctxs;
2132
2133 hctx->nr_ctx = 0;
2134
2135 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2136 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2137
2138 if (set->ops->init_hctx &&
2139 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2140 goto free_bitmap;
2141
2142 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
2143 goto exit_hctx;
2144
2145 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
2146 if (!hctx->fq)
2147 goto sched_exit_hctx;
2148
2149 if (set->ops->init_request &&
2150 set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
2151 node))
2152 goto free_fq;
2153
2154 if (hctx->flags & BLK_MQ_F_BLOCKING)
2155 init_srcu_struct(hctx->queue_rq_srcu);
2156
2157 blk_mq_debugfs_register_hctx(q, hctx);
2158
2159 return 0;
2160
2161 free_fq:
2162 blk_free_flush_queue(hctx->fq);
2163 sched_exit_hctx:
2164 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2165 exit_hctx:
2166 if (set->ops->exit_hctx)
2167 set->ops->exit_hctx(hctx, hctx_idx);
2168 free_bitmap:
2169 sbitmap_free(&hctx->ctx_map);
2170 free_ctxs:
2171 kfree(hctx->ctxs);
2172 unregister_cpu_notifier:
2173 blk_mq_remove_cpuhp(hctx);
2174 return -1;
2175 }
2176
2177 static void blk_mq_init_cpu_queues(struct request_queue *q,
2178 unsigned int nr_hw_queues)
2179 {
2180 unsigned int i;
2181
2182 for_each_possible_cpu(i) {
2183 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2184 struct blk_mq_hw_ctx *hctx;
2185
2186 __ctx->cpu = i;
2187 spin_lock_init(&__ctx->lock);
2188 INIT_LIST_HEAD(&__ctx->rq_list);
2189 __ctx->queue = q;
2190
2191 /*
2192 * Set local node, IFF we have more than one hw queue. If
2193 * not, we remain on the home node of the device
2194 */
2195 hctx = blk_mq_map_queue(q, i);
2196 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2197 hctx->numa_node = local_memory_node(cpu_to_node(i));
2198 }
2199 }
2200
2201 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2202 {
2203 int ret = 0;
2204
2205 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2206 set->queue_depth, set->reserved_tags);
2207 if (!set->tags[hctx_idx])
2208 return false;
2209
2210 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2211 set->queue_depth);
2212 if (!ret)
2213 return true;
2214
2215 blk_mq_free_rq_map(set->tags[hctx_idx]);
2216 set->tags[hctx_idx] = NULL;
2217 return false;
2218 }
2219
2220 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2221 unsigned int hctx_idx)
2222 {
2223 if (set->tags[hctx_idx]) {
2224 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2225 blk_mq_free_rq_map(set->tags[hctx_idx]);
2226 set->tags[hctx_idx] = NULL;
2227 }
2228 }
2229
2230 static void blk_mq_map_swqueue(struct request_queue *q)
2231 {
2232 unsigned int i, hctx_idx;
2233 struct blk_mq_hw_ctx *hctx;
2234 struct blk_mq_ctx *ctx;
2235 struct blk_mq_tag_set *set = q->tag_set;
2236
2237 /*
2238 * Avoid others reading imcomplete hctx->cpumask through sysfs
2239 */
2240 mutex_lock(&q->sysfs_lock);
2241
2242 queue_for_each_hw_ctx(q, hctx, i) {
2243 cpumask_clear(hctx->cpumask);
2244 hctx->nr_ctx = 0;
2245 }
2246
2247 /*
2248 * Map software to hardware queues.
2249 *
2250 * If the cpu isn't present, the cpu is mapped to first hctx.
2251 */
2252 for_each_possible_cpu(i) {
2253 hctx_idx = q->mq_map[i];
2254 /* unmapped hw queue can be remapped after CPU topo changed */
2255 if (!set->tags[hctx_idx] &&
2256 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2257 /*
2258 * If tags initialization fail for some hctx,
2259 * that hctx won't be brought online. In this
2260 * case, remap the current ctx to hctx[0] which
2261 * is guaranteed to always have tags allocated
2262 */
2263 q->mq_map[i] = 0;
2264 }
2265
2266 ctx = per_cpu_ptr(q->queue_ctx, i);
2267 hctx = blk_mq_map_queue(q, i);
2268
2269 cpumask_set_cpu(i, hctx->cpumask);
2270 ctx->index_hw = hctx->nr_ctx;
2271 hctx->ctxs[hctx->nr_ctx++] = ctx;
2272 }
2273
2274 mutex_unlock(&q->sysfs_lock);
2275
2276 queue_for_each_hw_ctx(q, hctx, i) {
2277 /*
2278 * If no software queues are mapped to this hardware queue,
2279 * disable it and free the request entries.
2280 */
2281 if (!hctx->nr_ctx) {
2282 /* Never unmap queue 0. We need it as a
2283 * fallback in case of a new remap fails
2284 * allocation
2285 */
2286 if (i && set->tags[i])
2287 blk_mq_free_map_and_requests(set, i);
2288
2289 hctx->tags = NULL;
2290 continue;
2291 }
2292
2293 hctx->tags = set->tags[i];
2294 WARN_ON(!hctx->tags);
2295
2296 /*
2297 * Set the map size to the number of mapped software queues.
2298 * This is more accurate and more efficient than looping
2299 * over all possibly mapped software queues.
2300 */
2301 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2302
2303 /*
2304 * Initialize batch roundrobin counts
2305 */
2306 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2307 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2308 }
2309 }
2310
2311 /*
2312 * Caller needs to ensure that we're either frozen/quiesced, or that
2313 * the queue isn't live yet.
2314 */
2315 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2316 {
2317 struct blk_mq_hw_ctx *hctx;
2318 int i;
2319
2320 queue_for_each_hw_ctx(q, hctx, i) {
2321 if (shared) {
2322 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2323 atomic_inc(&q->shared_hctx_restart);
2324 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2325 } else {
2326 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2327 atomic_dec(&q->shared_hctx_restart);
2328 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2329 }
2330 }
2331 }
2332
2333 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2334 bool shared)
2335 {
2336 struct request_queue *q;
2337
2338 lockdep_assert_held(&set->tag_list_lock);
2339
2340 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2341 blk_mq_freeze_queue(q);
2342 queue_set_hctx_shared(q, shared);
2343 blk_mq_unfreeze_queue(q);
2344 }
2345 }
2346
2347 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2348 {
2349 struct blk_mq_tag_set *set = q->tag_set;
2350
2351 mutex_lock(&set->tag_list_lock);
2352 list_del_rcu(&q->tag_set_list);
2353 if (list_is_singular(&set->tag_list)) {
2354 /* just transitioned to unshared */
2355 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2356 /* update existing queue */
2357 blk_mq_update_tag_set_depth(set, false);
2358 }
2359 mutex_unlock(&set->tag_list_lock);
2360 synchronize_rcu();
2361 INIT_LIST_HEAD(&q->tag_set_list);
2362 }
2363
2364 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2365 struct request_queue *q)
2366 {
2367 q->tag_set = set;
2368
2369 mutex_lock(&set->tag_list_lock);
2370
2371 /*
2372 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2373 */
2374 if (!list_empty(&set->tag_list) &&
2375 !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2376 set->flags |= BLK_MQ_F_TAG_SHARED;
2377 /* update existing queue */
2378 blk_mq_update_tag_set_depth(set, true);
2379 }
2380 if (set->flags & BLK_MQ_F_TAG_SHARED)
2381 queue_set_hctx_shared(q, true);
2382 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2383
2384 mutex_unlock(&set->tag_list_lock);
2385 }
2386
2387 /*
2388 * It is the actual release handler for mq, but we do it from
2389 * request queue's release handler for avoiding use-after-free
2390 * and headache because q->mq_kobj shouldn't have been introduced,
2391 * but we can't group ctx/kctx kobj without it.
2392 */
2393 void blk_mq_release(struct request_queue *q)
2394 {
2395 struct blk_mq_hw_ctx *hctx;
2396 unsigned int i;
2397
2398 /* hctx kobj stays in hctx */
2399 queue_for_each_hw_ctx(q, hctx, i) {
2400 if (!hctx)
2401 continue;
2402 kobject_put(&hctx->kobj);
2403 }
2404
2405 q->mq_map = NULL;
2406
2407 kfree(q->queue_hw_ctx);
2408
2409 /*
2410 * release .mq_kobj and sw queue's kobject now because
2411 * both share lifetime with request queue.
2412 */
2413 blk_mq_sysfs_deinit(q);
2414
2415 free_percpu(q->queue_ctx);
2416 }
2417
2418 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2419 {
2420 struct request_queue *uninit_q, *q;
2421
2422 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2423 if (!uninit_q)
2424 return ERR_PTR(-ENOMEM);
2425
2426 q = blk_mq_init_allocated_queue(set, uninit_q);
2427 if (IS_ERR(q))
2428 blk_cleanup_queue(uninit_q);
2429
2430 return q;
2431 }
2432 EXPORT_SYMBOL(blk_mq_init_queue);
2433
2434 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2435 {
2436 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2437
2438 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
2439 __alignof__(struct blk_mq_hw_ctx)) !=
2440 sizeof(struct blk_mq_hw_ctx));
2441
2442 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2443 hw_ctx_size += sizeof(struct srcu_struct);
2444
2445 return hw_ctx_size;
2446 }
2447
2448 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2449 struct request_queue *q)
2450 {
2451 int i, j;
2452 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2453
2454 blk_mq_sysfs_unregister(q);
2455
2456 /* protect against switching io scheduler */
2457 mutex_lock(&q->sysfs_lock);
2458 for (i = 0; i < set->nr_hw_queues; i++) {
2459 int node;
2460
2461 if (hctxs[i])
2462 continue;
2463
2464 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2465 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2466 GFP_KERNEL, node);
2467 if (!hctxs[i])
2468 break;
2469
2470 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2471 node)) {
2472 kfree(hctxs[i]);
2473 hctxs[i] = NULL;
2474 break;
2475 }
2476
2477 atomic_set(&hctxs[i]->nr_active, 0);
2478 hctxs[i]->numa_node = node;
2479 hctxs[i]->queue_num = i;
2480
2481 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2482 free_cpumask_var(hctxs[i]->cpumask);
2483 kfree(hctxs[i]);
2484 hctxs[i] = NULL;
2485 break;
2486 }
2487 blk_mq_hctx_kobj_init(hctxs[i]);
2488 }
2489 for (j = i; j < q->nr_hw_queues; j++) {
2490 struct blk_mq_hw_ctx *hctx = hctxs[j];
2491
2492 if (hctx) {
2493 if (hctx->tags)
2494 blk_mq_free_map_and_requests(set, j);
2495 blk_mq_exit_hctx(q, set, hctx, j);
2496 kobject_put(&hctx->kobj);
2497 hctxs[j] = NULL;
2498
2499 }
2500 }
2501 q->nr_hw_queues = i;
2502 mutex_unlock(&q->sysfs_lock);
2503 blk_mq_sysfs_register(q);
2504 }
2505
2506 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2507 struct request_queue *q)
2508 {
2509 /* mark the queue as mq asap */
2510 q->mq_ops = set->ops;
2511
2512 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2513 blk_mq_poll_stats_bkt,
2514 BLK_MQ_POLL_STATS_BKTS, q);
2515 if (!q->poll_cb)
2516 goto err_exit;
2517
2518 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2519 if (!q->queue_ctx)
2520 goto err_exit;
2521
2522 /* init q->mq_kobj and sw queues' kobjects */
2523 blk_mq_sysfs_init(q);
2524
2525 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2526 GFP_KERNEL, set->numa_node);
2527 if (!q->queue_hw_ctx)
2528 goto err_percpu;
2529
2530 q->mq_map = set->mq_map;
2531
2532 blk_mq_realloc_hw_ctxs(set, q);
2533 if (!q->nr_hw_queues)
2534 goto err_hctxs;
2535
2536 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2537 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2538
2539 q->nr_queues = nr_cpu_ids;
2540
2541 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2542
2543 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2544 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2545
2546 q->sg_reserved_size = INT_MAX;
2547
2548 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2549 INIT_LIST_HEAD(&q->requeue_list);
2550 spin_lock_init(&q->requeue_lock);
2551
2552 blk_queue_make_request(q, blk_mq_make_request);
2553 if (q->mq_ops->poll)
2554 q->poll_fn = blk_mq_poll;
2555
2556 /*
2557 * Do this after blk_queue_make_request() overrides it...
2558 */
2559 q->nr_requests = set->queue_depth;
2560
2561 /*
2562 * Default to classic polling
2563 */
2564 q->poll_nsec = -1;
2565
2566 if (set->ops->complete)
2567 blk_queue_softirq_done(q, set->ops->complete);
2568
2569 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2570 blk_mq_add_queue_tag_set(set, q);
2571 blk_mq_map_swqueue(q);
2572
2573 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2574 int ret;
2575
2576 ret = blk_mq_sched_init(q);
2577 if (ret)
2578 return ERR_PTR(ret);
2579 }
2580
2581 return q;
2582
2583 err_hctxs:
2584 kfree(q->queue_hw_ctx);
2585 err_percpu:
2586 free_percpu(q->queue_ctx);
2587 err_exit:
2588 q->mq_ops = NULL;
2589 return ERR_PTR(-ENOMEM);
2590 }
2591 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2592
2593 /* tags can _not_ be used after returning from blk_mq_exit_queue */
2594 void blk_mq_exit_queue(struct request_queue *q)
2595 {
2596 struct blk_mq_tag_set *set = q->tag_set;
2597
2598 blk_mq_del_queue_tag_set(q);
2599 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2600 }
2601
2602 /* Basically redo blk_mq_init_queue with queue frozen */
2603 static void blk_mq_queue_reinit(struct request_queue *q)
2604 {
2605 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2606
2607 blk_mq_debugfs_unregister_hctxs(q);
2608 blk_mq_sysfs_unregister(q);
2609
2610 /*
2611 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2612 * we should change hctx numa_node according to the new topology (this
2613 * involves freeing and re-allocating memory, worth doing?)
2614 */
2615 blk_mq_map_swqueue(q);
2616
2617 blk_mq_sysfs_register(q);
2618 blk_mq_debugfs_register_hctxs(q);
2619 }
2620
2621 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2622 {
2623 int i;
2624
2625 for (i = 0; i < set->nr_hw_queues; i++)
2626 if (!__blk_mq_alloc_rq_map(set, i))
2627 goto out_unwind;
2628
2629 return 0;
2630
2631 out_unwind:
2632 while (--i >= 0)
2633 blk_mq_free_rq_map(set->tags[i]);
2634
2635 return -ENOMEM;
2636 }
2637
2638 /*
2639 * Allocate the request maps associated with this tag_set. Note that this
2640 * may reduce the depth asked for, if memory is tight. set->queue_depth
2641 * will be updated to reflect the allocated depth.
2642 */
2643 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2644 {
2645 unsigned int depth;
2646 int err;
2647
2648 depth = set->queue_depth;
2649 do {
2650 err = __blk_mq_alloc_rq_maps(set);
2651 if (!err)
2652 break;
2653
2654 set->queue_depth >>= 1;
2655 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2656 err = -ENOMEM;
2657 break;
2658 }
2659 } while (set->queue_depth);
2660
2661 if (!set->queue_depth || err) {
2662 pr_err("blk-mq: failed to allocate request map\n");
2663 return -ENOMEM;
2664 }
2665
2666 if (depth != set->queue_depth)
2667 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2668 depth, set->queue_depth);
2669
2670 return 0;
2671 }
2672
2673 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2674 {
2675 if (set->ops->map_queues) {
2676 int cpu;
2677 /*
2678 * transport .map_queues is usually done in the following
2679 * way:
2680 *
2681 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2682 * mask = get_cpu_mask(queue)
2683 * for_each_cpu(cpu, mask)
2684 * set->mq_map[cpu] = queue;
2685 * }
2686 *
2687 * When we need to remap, the table has to be cleared for
2688 * killing stale mapping since one CPU may not be mapped
2689 * to any hw queue.
2690 */
2691 for_each_possible_cpu(cpu)
2692 set->mq_map[cpu] = 0;
2693
2694 return set->ops->map_queues(set);
2695 } else
2696 return blk_mq_map_queues(set);
2697 }
2698
2699 /*
2700 * Alloc a tag set to be associated with one or more request queues.
2701 * May fail with EINVAL for various error conditions. May adjust the
2702 * requested depth down, if if it too large. In that case, the set
2703 * value will be stored in set->queue_depth.
2704 */
2705 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2706 {
2707 int ret;
2708
2709 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2710
2711 if (!set->nr_hw_queues)
2712 return -EINVAL;
2713 if (!set->queue_depth)
2714 return -EINVAL;
2715 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2716 return -EINVAL;
2717
2718 if (!set->ops->queue_rq)
2719 return -EINVAL;
2720
2721 if (!set->ops->get_budget ^ !set->ops->put_budget)
2722 return -EINVAL;
2723
2724 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2725 pr_info("blk-mq: reduced tag depth to %u\n",
2726 BLK_MQ_MAX_DEPTH);
2727 set->queue_depth = BLK_MQ_MAX_DEPTH;
2728 }
2729
2730 /*
2731 * If a crashdump is active, then we are potentially in a very
2732 * memory constrained environment. Limit us to 1 queue and
2733 * 64 tags to prevent using too much memory.
2734 */
2735 if (is_kdump_kernel()) {
2736 set->nr_hw_queues = 1;
2737 set->queue_depth = min(64U, set->queue_depth);
2738 }
2739 /*
2740 * There is no use for more h/w queues than cpus.
2741 */
2742 if (set->nr_hw_queues > nr_cpu_ids)
2743 set->nr_hw_queues = nr_cpu_ids;
2744
2745 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2746 GFP_KERNEL, set->numa_node);
2747 if (!set->tags)
2748 return -ENOMEM;
2749
2750 ret = -ENOMEM;
2751 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2752 GFP_KERNEL, set->numa_node);
2753 if (!set->mq_map)
2754 goto out_free_tags;
2755
2756 ret = blk_mq_update_queue_map(set);
2757 if (ret)
2758 goto out_free_mq_map;
2759
2760 ret = blk_mq_alloc_rq_maps(set);
2761 if (ret)
2762 goto out_free_mq_map;
2763
2764 mutex_init(&set->tag_list_lock);
2765 INIT_LIST_HEAD(&set->tag_list);
2766
2767 return 0;
2768
2769 out_free_mq_map:
2770 kfree(set->mq_map);
2771 set->mq_map = NULL;
2772 out_free_tags:
2773 kfree(set->tags);
2774 set->tags = NULL;
2775 return ret;
2776 }
2777 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2778
2779 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2780 {
2781 int i;
2782
2783 for (i = 0; i < nr_cpu_ids; i++)
2784 blk_mq_free_map_and_requests(set, i);
2785
2786 kfree(set->mq_map);
2787 set->mq_map = NULL;
2788
2789 kfree(set->tags);
2790 set->tags = NULL;
2791 }
2792 EXPORT_SYMBOL(blk_mq_free_tag_set);
2793
2794 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2795 {
2796 struct blk_mq_tag_set *set = q->tag_set;
2797 struct blk_mq_hw_ctx *hctx;
2798 int i, ret;
2799
2800 if (!set)
2801 return -EINVAL;
2802
2803 if (q->nr_requests == nr)
2804 return 0;
2805
2806 blk_mq_freeze_queue(q);
2807
2808 ret = 0;
2809 queue_for_each_hw_ctx(q, hctx, i) {
2810 if (!hctx->tags)
2811 continue;
2812 /*
2813 * If we're using an MQ scheduler, just update the scheduler
2814 * queue depth. This is similar to what the old code would do.
2815 */
2816 if (!hctx->sched_tags) {
2817 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2818 false);
2819 } else {
2820 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2821 nr, true);
2822 }
2823 if (ret)
2824 break;
2825 }
2826
2827 if (!ret)
2828 q->nr_requests = nr;
2829
2830 blk_mq_unfreeze_queue(q);
2831
2832 return ret;
2833 }
2834
2835 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2836 int nr_hw_queues)
2837 {
2838 struct request_queue *q;
2839
2840 lockdep_assert_held(&set->tag_list_lock);
2841
2842 if (nr_hw_queues > nr_cpu_ids)
2843 nr_hw_queues = nr_cpu_ids;
2844 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2845 return;
2846
2847 list_for_each_entry(q, &set->tag_list, tag_set_list)
2848 blk_mq_freeze_queue(q);
2849
2850 set->nr_hw_queues = nr_hw_queues;
2851 blk_mq_update_queue_map(set);
2852 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2853 blk_mq_realloc_hw_ctxs(set, q);
2854 blk_mq_queue_reinit(q);
2855 }
2856
2857 list_for_each_entry(q, &set->tag_list, tag_set_list)
2858 blk_mq_unfreeze_queue(q);
2859 }
2860
2861 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2862 {
2863 mutex_lock(&set->tag_list_lock);
2864 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2865 mutex_unlock(&set->tag_list_lock);
2866 }
2867 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2868
2869 /* Enable polling stats and return whether they were already enabled. */
2870 static bool blk_poll_stats_enable(struct request_queue *q)
2871 {
2872 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2873 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2874 return true;
2875 blk_stat_add_callback(q, q->poll_cb);
2876 return false;
2877 }
2878
2879 static void blk_mq_poll_stats_start(struct request_queue *q)
2880 {
2881 /*
2882 * We don't arm the callback if polling stats are not enabled or the
2883 * callback is already active.
2884 */
2885 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2886 blk_stat_is_active(q->poll_cb))
2887 return;
2888
2889 blk_stat_activate_msecs(q->poll_cb, 100);
2890 }
2891
2892 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2893 {
2894 struct request_queue *q = cb->data;
2895 int bucket;
2896
2897 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2898 if (cb->stat[bucket].nr_samples)
2899 q->poll_stat[bucket] = cb->stat[bucket];
2900 }
2901 }
2902
2903 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2904 struct blk_mq_hw_ctx *hctx,
2905 struct request *rq)
2906 {
2907 unsigned long ret = 0;
2908 int bucket;
2909
2910 /*
2911 * If stats collection isn't on, don't sleep but turn it on for
2912 * future users
2913 */
2914 if (!blk_poll_stats_enable(q))
2915 return 0;
2916
2917 /*
2918 * As an optimistic guess, use half of the mean service time
2919 * for this type of request. We can (and should) make this smarter.
2920 * For instance, if the completion latencies are tight, we can
2921 * get closer than just half the mean. This is especially
2922 * important on devices where the completion latencies are longer
2923 * than ~10 usec. We do use the stats for the relevant IO size
2924 * if available which does lead to better estimates.
2925 */
2926 bucket = blk_mq_poll_stats_bkt(rq);
2927 if (bucket < 0)
2928 return ret;
2929
2930 if (q->poll_stat[bucket].nr_samples)
2931 ret = (q->poll_stat[bucket].mean + 1) / 2;
2932
2933 return ret;
2934 }
2935
2936 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2937 struct blk_mq_hw_ctx *hctx,
2938 struct request *rq)
2939 {
2940 struct hrtimer_sleeper hs;
2941 enum hrtimer_mode mode;
2942 unsigned int nsecs;
2943 ktime_t kt;
2944
2945 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2946 return false;
2947
2948 /*
2949 * poll_nsec can be:
2950 *
2951 * -1: don't ever hybrid sleep
2952 * 0: use half of prev avg
2953 * >0: use this specific value
2954 */
2955 if (q->poll_nsec == -1)
2956 return false;
2957 else if (q->poll_nsec > 0)
2958 nsecs = q->poll_nsec;
2959 else
2960 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2961
2962 if (!nsecs)
2963 return false;
2964
2965 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2966
2967 /*
2968 * This will be replaced with the stats tracking code, using
2969 * 'avg_completion_time / 2' as the pre-sleep target.
2970 */
2971 kt = nsecs;
2972
2973 mode = HRTIMER_MODE_REL;
2974 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2975 hrtimer_set_expires(&hs.timer, kt);
2976
2977 hrtimer_init_sleeper(&hs, current);
2978 do {
2979 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2980 break;
2981 set_current_state(TASK_UNINTERRUPTIBLE);
2982 hrtimer_start_expires(&hs.timer, mode);
2983 if (hs.task)
2984 io_schedule();
2985 hrtimer_cancel(&hs.timer);
2986 mode = HRTIMER_MODE_ABS;
2987 } while (hs.task && !signal_pending(current));
2988
2989 __set_current_state(TASK_RUNNING);
2990 destroy_hrtimer_on_stack(&hs.timer);
2991 return true;
2992 }
2993
2994 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2995 {
2996 struct request_queue *q = hctx->queue;
2997 long state;
2998
2999 /*
3000 * If we sleep, have the caller restart the poll loop to reset
3001 * the state. Like for the other success return cases, the
3002 * caller is responsible for checking if the IO completed. If
3003 * the IO isn't complete, we'll get called again and will go
3004 * straight to the busy poll loop.
3005 */
3006 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3007 return true;
3008
3009 hctx->poll_considered++;
3010
3011 state = current->state;
3012 while (!need_resched()) {
3013 int ret;
3014
3015 hctx->poll_invoked++;
3016
3017 ret = q->mq_ops->poll(hctx, rq->tag);
3018 if (ret > 0) {
3019 hctx->poll_success++;
3020 set_current_state(TASK_RUNNING);
3021 return true;
3022 }
3023
3024 if (signal_pending_state(state, current))
3025 set_current_state(TASK_RUNNING);
3026
3027 if (current->state == TASK_RUNNING)
3028 return true;
3029 if (ret < 0)
3030 break;
3031 cpu_relax();
3032 }
3033
3034 return false;
3035 }
3036
3037 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
3038 {
3039 struct blk_mq_hw_ctx *hctx;
3040 struct request *rq;
3041
3042 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3043 return false;
3044
3045 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3046 if (!blk_qc_t_is_internal(cookie))
3047 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3048 else {
3049 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3050 /*
3051 * With scheduling, if the request has completed, we'll
3052 * get a NULL return here, as we clear the sched tag when
3053 * that happens. The request still remains valid, like always,
3054 * so we should be safe with just the NULL check.
3055 */
3056 if (!rq)
3057 return false;
3058 }
3059
3060 return __blk_mq_poll(hctx, rq);
3061 }
3062
3063 static int __init blk_mq_init(void)
3064 {
3065 /*
3066 * See comment in block/blk.h rq_atomic_flags enum
3067 */
3068 BUILD_BUG_ON((REQ_ATOM_STARTED / BITS_PER_BYTE) !=
3069 (REQ_ATOM_COMPLETE / BITS_PER_BYTE));
3070
3071 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3072 blk_mq_hctx_notify_dead);
3073 return 0;
3074 }
3075 subsys_initcall(blk_mq_init);