]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-mq.c
blk-mq: make sure hctx->next_cpu is set correctly
[mirror_ubuntu-bionic-kernel.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
39
40 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 static void blk_mq_poll_stats_start(struct request_queue *q);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43
44 static int blk_mq_poll_stats_bkt(const struct request *rq)
45 {
46 int ddir, bytes, bucket;
47
48 ddir = rq_data_dir(rq);
49 bytes = blk_rq_bytes(rq);
50
51 bucket = ddir + 2*(ilog2(bytes) - 9);
52
53 if (bucket < 0)
54 return -1;
55 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57
58 return bucket;
59 }
60
61 /*
62 * Check if any of the ctx's have pending work in this hardware queue
63 */
64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65 {
66 return !list_empty_careful(&hctx->dispatch) ||
67 sbitmap_any_bit_set(&hctx->ctx_map) ||
68 blk_mq_sched_has_work(hctx);
69 }
70
71 /*
72 * Mark this ctx as having pending work in this hardware queue
73 */
74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75 struct blk_mq_ctx *ctx)
76 {
77 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
78 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 }
80
81 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
82 struct blk_mq_ctx *ctx)
83 {
84 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 }
86
87 struct mq_inflight {
88 struct hd_struct *part;
89 unsigned int *inflight;
90 };
91
92 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
93 struct request *rq, void *priv,
94 bool reserved)
95 {
96 struct mq_inflight *mi = priv;
97
98 if (test_bit(REQ_ATOM_STARTED, &rq->atomic_flags) &&
99 !test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
100 /*
101 * index[0] counts the specific partition that was asked
102 * for. index[1] counts the ones that are active on the
103 * whole device, so increment that if mi->part is indeed
104 * a partition, and not a whole device.
105 */
106 if (rq->part == mi->part)
107 mi->inflight[0]++;
108 if (mi->part->partno)
109 mi->inflight[1]++;
110 }
111 }
112
113 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
114 unsigned int inflight[2])
115 {
116 struct mq_inflight mi = { .part = part, .inflight = inflight, };
117
118 inflight[0] = inflight[1] = 0;
119 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
120 }
121
122 void blk_freeze_queue_start(struct request_queue *q)
123 {
124 int freeze_depth;
125
126 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
127 if (freeze_depth == 1) {
128 percpu_ref_kill(&q->q_usage_counter);
129 if (q->mq_ops)
130 blk_mq_run_hw_queues(q, false);
131 }
132 }
133 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
134
135 void blk_mq_freeze_queue_wait(struct request_queue *q)
136 {
137 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
138 }
139 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
140
141 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
142 unsigned long timeout)
143 {
144 return wait_event_timeout(q->mq_freeze_wq,
145 percpu_ref_is_zero(&q->q_usage_counter),
146 timeout);
147 }
148 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
149
150 /*
151 * Guarantee no request is in use, so we can change any data structure of
152 * the queue afterward.
153 */
154 void blk_freeze_queue(struct request_queue *q)
155 {
156 /*
157 * In the !blk_mq case we are only calling this to kill the
158 * q_usage_counter, otherwise this increases the freeze depth
159 * and waits for it to return to zero. For this reason there is
160 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
161 * exported to drivers as the only user for unfreeze is blk_mq.
162 */
163 blk_freeze_queue_start(q);
164 if (!q->mq_ops)
165 blk_drain_queue(q);
166 blk_mq_freeze_queue_wait(q);
167 }
168
169 void blk_mq_freeze_queue(struct request_queue *q)
170 {
171 /*
172 * ...just an alias to keep freeze and unfreeze actions balanced
173 * in the blk_mq_* namespace
174 */
175 blk_freeze_queue(q);
176 }
177 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
178
179 void blk_mq_unfreeze_queue(struct request_queue *q)
180 {
181 int freeze_depth;
182
183 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
184 WARN_ON_ONCE(freeze_depth < 0);
185 if (!freeze_depth) {
186 percpu_ref_reinit(&q->q_usage_counter);
187 wake_up_all(&q->mq_freeze_wq);
188 }
189 }
190 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
191
192 /*
193 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
194 * mpt3sas driver such that this function can be removed.
195 */
196 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
197 {
198 unsigned long flags;
199
200 spin_lock_irqsave(q->queue_lock, flags);
201 queue_flag_set(QUEUE_FLAG_QUIESCED, q);
202 spin_unlock_irqrestore(q->queue_lock, flags);
203 }
204 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
205
206 /**
207 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
208 * @q: request queue.
209 *
210 * Note: this function does not prevent that the struct request end_io()
211 * callback function is invoked. Once this function is returned, we make
212 * sure no dispatch can happen until the queue is unquiesced via
213 * blk_mq_unquiesce_queue().
214 */
215 void blk_mq_quiesce_queue(struct request_queue *q)
216 {
217 struct blk_mq_hw_ctx *hctx;
218 unsigned int i;
219 bool rcu = false;
220
221 blk_mq_quiesce_queue_nowait(q);
222
223 queue_for_each_hw_ctx(q, hctx, i) {
224 if (hctx->flags & BLK_MQ_F_BLOCKING)
225 synchronize_srcu(hctx->queue_rq_srcu);
226 else
227 rcu = true;
228 }
229 if (rcu)
230 synchronize_rcu();
231 }
232 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
233
234 /*
235 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
236 * @q: request queue.
237 *
238 * This function recovers queue into the state before quiescing
239 * which is done by blk_mq_quiesce_queue.
240 */
241 void blk_mq_unquiesce_queue(struct request_queue *q)
242 {
243 unsigned long flags;
244
245 spin_lock_irqsave(q->queue_lock, flags);
246 queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
247 spin_unlock_irqrestore(q->queue_lock, flags);
248
249 /* dispatch requests which are inserted during quiescing */
250 blk_mq_run_hw_queues(q, true);
251 }
252 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
253
254 void blk_mq_wake_waiters(struct request_queue *q)
255 {
256 struct blk_mq_hw_ctx *hctx;
257 unsigned int i;
258
259 queue_for_each_hw_ctx(q, hctx, i)
260 if (blk_mq_hw_queue_mapped(hctx))
261 blk_mq_tag_wakeup_all(hctx->tags, true);
262 }
263
264 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
265 {
266 return blk_mq_has_free_tags(hctx->tags);
267 }
268 EXPORT_SYMBOL(blk_mq_can_queue);
269
270 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
271 unsigned int tag, unsigned int op)
272 {
273 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
274 struct request *rq = tags->static_rqs[tag];
275
276 rq->rq_flags = 0;
277
278 if (data->flags & BLK_MQ_REQ_INTERNAL) {
279 rq->tag = -1;
280 rq->internal_tag = tag;
281 } else {
282 if (blk_mq_tag_busy(data->hctx)) {
283 rq->rq_flags = RQF_MQ_INFLIGHT;
284 atomic_inc(&data->hctx->nr_active);
285 }
286 rq->tag = tag;
287 rq->internal_tag = -1;
288 data->hctx->tags->rqs[rq->tag] = rq;
289 }
290
291 INIT_LIST_HEAD(&rq->queuelist);
292 /* csd/requeue_work/fifo_time is initialized before use */
293 rq->q = data->q;
294 rq->mq_ctx = data->ctx;
295 rq->cmd_flags = op;
296 if (data->flags & BLK_MQ_REQ_PREEMPT)
297 rq->rq_flags |= RQF_PREEMPT;
298 if (blk_queue_io_stat(data->q))
299 rq->rq_flags |= RQF_IO_STAT;
300 /* do not touch atomic flags, it needs atomic ops against the timer */
301 rq->cpu = -1;
302 INIT_HLIST_NODE(&rq->hash);
303 RB_CLEAR_NODE(&rq->rb_node);
304 rq->rq_disk = NULL;
305 rq->part = NULL;
306 rq->start_time = jiffies;
307 #ifdef CONFIG_BLK_CGROUP
308 rq->rl = NULL;
309 set_start_time_ns(rq);
310 rq->io_start_time_ns = 0;
311 #endif
312 rq->nr_phys_segments = 0;
313 #if defined(CONFIG_BLK_DEV_INTEGRITY)
314 rq->nr_integrity_segments = 0;
315 #endif
316 rq->special = NULL;
317 /* tag was already set */
318 rq->extra_len = 0;
319
320 INIT_LIST_HEAD(&rq->timeout_list);
321 rq->timeout = 0;
322
323 rq->end_io = NULL;
324 rq->end_io_data = NULL;
325 rq->next_rq = NULL;
326
327 data->ctx->rq_dispatched[op_is_sync(op)]++;
328 return rq;
329 }
330
331 static struct request *blk_mq_get_request(struct request_queue *q,
332 struct bio *bio, unsigned int op,
333 struct blk_mq_alloc_data *data)
334 {
335 struct elevator_queue *e = q->elevator;
336 struct request *rq;
337 unsigned int tag;
338 bool put_ctx_on_error = false;
339
340 blk_queue_enter_live(q);
341 data->q = q;
342 if (likely(!data->ctx)) {
343 data->ctx = blk_mq_get_ctx(q);
344 put_ctx_on_error = true;
345 }
346 if (likely(!data->hctx))
347 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
348 if (op & REQ_NOWAIT)
349 data->flags |= BLK_MQ_REQ_NOWAIT;
350
351 if (e) {
352 data->flags |= BLK_MQ_REQ_INTERNAL;
353
354 /*
355 * Flush requests are special and go directly to the
356 * dispatch list.
357 */
358 if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
359 e->type->ops.mq.limit_depth(op, data);
360 }
361
362 tag = blk_mq_get_tag(data);
363 if (tag == BLK_MQ_TAG_FAIL) {
364 if (put_ctx_on_error) {
365 blk_mq_put_ctx(data->ctx);
366 data->ctx = NULL;
367 }
368 blk_queue_exit(q);
369 return NULL;
370 }
371
372 rq = blk_mq_rq_ctx_init(data, tag, op);
373 if (!op_is_flush(op)) {
374 rq->elv.icq = NULL;
375 if (e && e->type->ops.mq.prepare_request) {
376 if (e->type->icq_cache && rq_ioc(bio))
377 blk_mq_sched_assign_ioc(rq, bio);
378
379 e->type->ops.mq.prepare_request(rq, bio);
380 rq->rq_flags |= RQF_ELVPRIV;
381 }
382 }
383 data->hctx->queued++;
384 return rq;
385 }
386
387 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
388 blk_mq_req_flags_t flags)
389 {
390 struct blk_mq_alloc_data alloc_data = { .flags = flags };
391 struct request *rq;
392 int ret;
393
394 ret = blk_queue_enter(q, flags);
395 if (ret)
396 return ERR_PTR(ret);
397
398 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
399 blk_queue_exit(q);
400
401 if (!rq)
402 return ERR_PTR(-EWOULDBLOCK);
403
404 blk_mq_put_ctx(alloc_data.ctx);
405
406 rq->__data_len = 0;
407 rq->__sector = (sector_t) -1;
408 rq->bio = rq->biotail = NULL;
409 return rq;
410 }
411 EXPORT_SYMBOL(blk_mq_alloc_request);
412
413 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
414 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
415 {
416 struct blk_mq_alloc_data alloc_data = { .flags = flags };
417 struct request *rq;
418 unsigned int cpu;
419 int ret;
420
421 /*
422 * If the tag allocator sleeps we could get an allocation for a
423 * different hardware context. No need to complicate the low level
424 * allocator for this for the rare use case of a command tied to
425 * a specific queue.
426 */
427 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
428 return ERR_PTR(-EINVAL);
429
430 if (hctx_idx >= q->nr_hw_queues)
431 return ERR_PTR(-EIO);
432
433 ret = blk_queue_enter(q, flags);
434 if (ret)
435 return ERR_PTR(ret);
436
437 /*
438 * Check if the hardware context is actually mapped to anything.
439 * If not tell the caller that it should skip this queue.
440 */
441 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
442 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
443 blk_queue_exit(q);
444 return ERR_PTR(-EXDEV);
445 }
446 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
447 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
448
449 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
450 blk_queue_exit(q);
451
452 if (!rq)
453 return ERR_PTR(-EWOULDBLOCK);
454
455 return rq;
456 }
457 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
458
459 void blk_mq_free_request(struct request *rq)
460 {
461 struct request_queue *q = rq->q;
462 struct elevator_queue *e = q->elevator;
463 struct blk_mq_ctx *ctx = rq->mq_ctx;
464 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
465 const int sched_tag = rq->internal_tag;
466
467 if (rq->rq_flags & RQF_ELVPRIV) {
468 if (e && e->type->ops.mq.finish_request)
469 e->type->ops.mq.finish_request(rq);
470 if (rq->elv.icq) {
471 put_io_context(rq->elv.icq->ioc);
472 rq->elv.icq = NULL;
473 }
474 }
475
476 ctx->rq_completed[rq_is_sync(rq)]++;
477 if (rq->rq_flags & RQF_MQ_INFLIGHT)
478 atomic_dec(&hctx->nr_active);
479
480 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
481 laptop_io_completion(q->backing_dev_info);
482
483 wbt_done(q->rq_wb, &rq->issue_stat);
484
485 if (blk_rq_rl(rq))
486 blk_put_rl(blk_rq_rl(rq));
487
488 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
489 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
490 if (rq->tag != -1)
491 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
492 if (sched_tag != -1)
493 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
494 blk_mq_sched_restart(hctx);
495 blk_queue_exit(q);
496 }
497 EXPORT_SYMBOL_GPL(blk_mq_free_request);
498
499 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
500 {
501 blk_account_io_done(rq);
502
503 if (rq->end_io) {
504 wbt_done(rq->q->rq_wb, &rq->issue_stat);
505 rq->end_io(rq, error);
506 } else {
507 if (unlikely(blk_bidi_rq(rq)))
508 blk_mq_free_request(rq->next_rq);
509 blk_mq_free_request(rq);
510 }
511 }
512 EXPORT_SYMBOL(__blk_mq_end_request);
513
514 void blk_mq_end_request(struct request *rq, blk_status_t error)
515 {
516 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
517 BUG();
518 __blk_mq_end_request(rq, error);
519 }
520 EXPORT_SYMBOL(blk_mq_end_request);
521
522 static void __blk_mq_complete_request_remote(void *data)
523 {
524 struct request *rq = data;
525
526 rq->q->softirq_done_fn(rq);
527 }
528
529 static void __blk_mq_complete_request(struct request *rq)
530 {
531 struct blk_mq_ctx *ctx = rq->mq_ctx;
532 bool shared = false;
533 int cpu;
534
535 if (rq->internal_tag != -1)
536 blk_mq_sched_completed_request(rq);
537 if (rq->rq_flags & RQF_STATS) {
538 blk_mq_poll_stats_start(rq->q);
539 blk_stat_add(rq);
540 }
541
542 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
543 rq->q->softirq_done_fn(rq);
544 return;
545 }
546
547 cpu = get_cpu();
548 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
549 shared = cpus_share_cache(cpu, ctx->cpu);
550
551 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
552 rq->csd.func = __blk_mq_complete_request_remote;
553 rq->csd.info = rq;
554 rq->csd.flags = 0;
555 smp_call_function_single_async(ctx->cpu, &rq->csd);
556 } else {
557 rq->q->softirq_done_fn(rq);
558 }
559 put_cpu();
560 }
561
562 /**
563 * blk_mq_complete_request - end I/O on a request
564 * @rq: the request being processed
565 *
566 * Description:
567 * Ends all I/O on a request. It does not handle partial completions.
568 * The actual completion happens out-of-order, through a IPI handler.
569 **/
570 void blk_mq_complete_request(struct request *rq)
571 {
572 struct request_queue *q = rq->q;
573
574 if (unlikely(blk_should_fake_timeout(q)))
575 return;
576 if (!blk_mark_rq_complete(rq))
577 __blk_mq_complete_request(rq);
578 }
579 EXPORT_SYMBOL(blk_mq_complete_request);
580
581 int blk_mq_request_started(struct request *rq)
582 {
583 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
584 }
585 EXPORT_SYMBOL_GPL(blk_mq_request_started);
586
587 void blk_mq_start_request(struct request *rq)
588 {
589 struct request_queue *q = rq->q;
590
591 blk_mq_sched_started_request(rq);
592
593 trace_block_rq_issue(q, rq);
594
595 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
596 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
597 rq->rq_flags |= RQF_STATS;
598 wbt_issue(q->rq_wb, &rq->issue_stat);
599 }
600
601 blk_add_timer(rq);
602
603 WARN_ON_ONCE(test_bit(REQ_ATOM_STARTED, &rq->atomic_flags));
604
605 /*
606 * Mark us as started and clear complete. Complete might have been
607 * set if requeue raced with timeout, which then marked it as
608 * complete. So be sure to clear complete again when we start
609 * the request, otherwise we'll ignore the completion event.
610 *
611 * Ensure that ->deadline is visible before we set STARTED, such that
612 * blk_mq_check_expired() is guaranteed to observe our ->deadline when
613 * it observes STARTED.
614 */
615 smp_wmb();
616 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
617 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
618 /*
619 * Coherence order guarantees these consecutive stores to a
620 * single variable propagate in the specified order. Thus the
621 * clear_bit() is ordered _after_ the set bit. See
622 * blk_mq_check_expired().
623 *
624 * (the bits must be part of the same byte for this to be
625 * true).
626 */
627 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
628 }
629
630 if (q->dma_drain_size && blk_rq_bytes(rq)) {
631 /*
632 * Make sure space for the drain appears. We know we can do
633 * this because max_hw_segments has been adjusted to be one
634 * fewer than the device can handle.
635 */
636 rq->nr_phys_segments++;
637 }
638 }
639 EXPORT_SYMBOL(blk_mq_start_request);
640
641 /*
642 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
643 * flag isn't set yet, so there may be race with timeout handler,
644 * but given rq->deadline is just set in .queue_rq() under
645 * this situation, the race won't be possible in reality because
646 * rq->timeout should be set as big enough to cover the window
647 * between blk_mq_start_request() called from .queue_rq() and
648 * clearing REQ_ATOM_STARTED here.
649 */
650 static void __blk_mq_requeue_request(struct request *rq)
651 {
652 struct request_queue *q = rq->q;
653
654 blk_mq_put_driver_tag(rq);
655
656 trace_block_rq_requeue(q, rq);
657 wbt_requeue(q->rq_wb, &rq->issue_stat);
658
659 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
660 if (q->dma_drain_size && blk_rq_bytes(rq))
661 rq->nr_phys_segments--;
662 }
663 }
664
665 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
666 {
667 __blk_mq_requeue_request(rq);
668
669 /* this request will be re-inserted to io scheduler queue */
670 blk_mq_sched_requeue_request(rq);
671
672 BUG_ON(blk_queued_rq(rq));
673 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
674 }
675 EXPORT_SYMBOL(blk_mq_requeue_request);
676
677 static void blk_mq_requeue_work(struct work_struct *work)
678 {
679 struct request_queue *q =
680 container_of(work, struct request_queue, requeue_work.work);
681 LIST_HEAD(rq_list);
682 struct request *rq, *next;
683
684 spin_lock_irq(&q->requeue_lock);
685 list_splice_init(&q->requeue_list, &rq_list);
686 spin_unlock_irq(&q->requeue_lock);
687
688 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
689 if (!(rq->rq_flags & RQF_SOFTBARRIER))
690 continue;
691
692 rq->rq_flags &= ~RQF_SOFTBARRIER;
693 list_del_init(&rq->queuelist);
694 blk_mq_sched_insert_request(rq, true, false, false, true);
695 }
696
697 while (!list_empty(&rq_list)) {
698 rq = list_entry(rq_list.next, struct request, queuelist);
699 list_del_init(&rq->queuelist);
700 blk_mq_sched_insert_request(rq, false, false, false, true);
701 }
702
703 blk_mq_run_hw_queues(q, false);
704 }
705
706 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
707 bool kick_requeue_list)
708 {
709 struct request_queue *q = rq->q;
710 unsigned long flags;
711
712 /*
713 * We abuse this flag that is otherwise used by the I/O scheduler to
714 * request head insertion from the workqueue.
715 */
716 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
717
718 spin_lock_irqsave(&q->requeue_lock, flags);
719 if (at_head) {
720 rq->rq_flags |= RQF_SOFTBARRIER;
721 list_add(&rq->queuelist, &q->requeue_list);
722 } else {
723 list_add_tail(&rq->queuelist, &q->requeue_list);
724 }
725 spin_unlock_irqrestore(&q->requeue_lock, flags);
726
727 if (kick_requeue_list)
728 blk_mq_kick_requeue_list(q);
729 }
730 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
731
732 void blk_mq_kick_requeue_list(struct request_queue *q)
733 {
734 kblockd_schedule_delayed_work(&q->requeue_work, 0);
735 }
736 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
737
738 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
739 unsigned long msecs)
740 {
741 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
742 msecs_to_jiffies(msecs));
743 }
744 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
745
746 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
747 {
748 if (tag < tags->nr_tags) {
749 prefetch(tags->rqs[tag]);
750 return tags->rqs[tag];
751 }
752
753 return NULL;
754 }
755 EXPORT_SYMBOL(blk_mq_tag_to_rq);
756
757 struct blk_mq_timeout_data {
758 unsigned long next;
759 unsigned int next_set;
760 };
761
762 void blk_mq_rq_timed_out(struct request *req, bool reserved)
763 {
764 const struct blk_mq_ops *ops = req->q->mq_ops;
765 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
766
767 /*
768 * We know that complete is set at this point. If STARTED isn't set
769 * anymore, then the request isn't active and the "timeout" should
770 * just be ignored. This can happen due to the bitflag ordering.
771 * Timeout first checks if STARTED is set, and if it is, assumes
772 * the request is active. But if we race with completion, then
773 * both flags will get cleared. So check here again, and ignore
774 * a timeout event with a request that isn't active.
775 */
776 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
777 return;
778
779 if (ops->timeout)
780 ret = ops->timeout(req, reserved);
781
782 switch (ret) {
783 case BLK_EH_HANDLED:
784 __blk_mq_complete_request(req);
785 break;
786 case BLK_EH_RESET_TIMER:
787 blk_add_timer(req);
788 blk_clear_rq_complete(req);
789 break;
790 case BLK_EH_NOT_HANDLED:
791 break;
792 default:
793 printk(KERN_ERR "block: bad eh return: %d\n", ret);
794 break;
795 }
796 }
797
798 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
799 struct request *rq, void *priv, bool reserved)
800 {
801 struct blk_mq_timeout_data *data = priv;
802 unsigned long deadline;
803
804 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
805 return;
806
807 /*
808 * Ensures that if we see STARTED we must also see our
809 * up-to-date deadline, see blk_mq_start_request().
810 */
811 smp_rmb();
812
813 deadline = READ_ONCE(rq->deadline);
814
815 /*
816 * The rq being checked may have been freed and reallocated
817 * out already here, we avoid this race by checking rq->deadline
818 * and REQ_ATOM_COMPLETE flag together:
819 *
820 * - if rq->deadline is observed as new value because of
821 * reusing, the rq won't be timed out because of timing.
822 * - if rq->deadline is observed as previous value,
823 * REQ_ATOM_COMPLETE flag won't be cleared in reuse path
824 * because we put a barrier between setting rq->deadline
825 * and clearing the flag in blk_mq_start_request(), so
826 * this rq won't be timed out too.
827 */
828 if (time_after_eq(jiffies, deadline)) {
829 if (!blk_mark_rq_complete(rq)) {
830 /*
831 * Again coherence order ensures that consecutive reads
832 * from the same variable must be in that order. This
833 * ensures that if we see COMPLETE clear, we must then
834 * see STARTED set and we'll ignore this timeout.
835 *
836 * (There's also the MB implied by the test_and_clear())
837 */
838 blk_mq_rq_timed_out(rq, reserved);
839 }
840 } else if (!data->next_set || time_after(data->next, deadline)) {
841 data->next = deadline;
842 data->next_set = 1;
843 }
844 }
845
846 static void blk_mq_timeout_work(struct work_struct *work)
847 {
848 struct request_queue *q =
849 container_of(work, struct request_queue, timeout_work);
850 struct blk_mq_timeout_data data = {
851 .next = 0,
852 .next_set = 0,
853 };
854 int i;
855
856 /* A deadlock might occur if a request is stuck requiring a
857 * timeout at the same time a queue freeze is waiting
858 * completion, since the timeout code would not be able to
859 * acquire the queue reference here.
860 *
861 * That's why we don't use blk_queue_enter here; instead, we use
862 * percpu_ref_tryget directly, because we need to be able to
863 * obtain a reference even in the short window between the queue
864 * starting to freeze, by dropping the first reference in
865 * blk_freeze_queue_start, and the moment the last request is
866 * consumed, marked by the instant q_usage_counter reaches
867 * zero.
868 */
869 if (!percpu_ref_tryget(&q->q_usage_counter))
870 return;
871
872 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
873
874 if (data.next_set) {
875 data.next = blk_rq_timeout(round_jiffies_up(data.next));
876 mod_timer(&q->timeout, data.next);
877 } else {
878 struct blk_mq_hw_ctx *hctx;
879
880 queue_for_each_hw_ctx(q, hctx, i) {
881 /* the hctx may be unmapped, so check it here */
882 if (blk_mq_hw_queue_mapped(hctx))
883 blk_mq_tag_idle(hctx);
884 }
885 }
886 blk_queue_exit(q);
887 }
888
889 struct flush_busy_ctx_data {
890 struct blk_mq_hw_ctx *hctx;
891 struct list_head *list;
892 };
893
894 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
895 {
896 struct flush_busy_ctx_data *flush_data = data;
897 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
898 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
899
900 sbitmap_clear_bit(sb, bitnr);
901 spin_lock(&ctx->lock);
902 list_splice_tail_init(&ctx->rq_list, flush_data->list);
903 spin_unlock(&ctx->lock);
904 return true;
905 }
906
907 /*
908 * Process software queues that have been marked busy, splicing them
909 * to the for-dispatch
910 */
911 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
912 {
913 struct flush_busy_ctx_data data = {
914 .hctx = hctx,
915 .list = list,
916 };
917
918 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
919 }
920 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
921
922 struct dispatch_rq_data {
923 struct blk_mq_hw_ctx *hctx;
924 struct request *rq;
925 };
926
927 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
928 void *data)
929 {
930 struct dispatch_rq_data *dispatch_data = data;
931 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
932 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
933
934 spin_lock(&ctx->lock);
935 if (unlikely(!list_empty(&ctx->rq_list))) {
936 dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
937 list_del_init(&dispatch_data->rq->queuelist);
938 if (list_empty(&ctx->rq_list))
939 sbitmap_clear_bit(sb, bitnr);
940 }
941 spin_unlock(&ctx->lock);
942
943 return !dispatch_data->rq;
944 }
945
946 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
947 struct blk_mq_ctx *start)
948 {
949 unsigned off = start ? start->index_hw : 0;
950 struct dispatch_rq_data data = {
951 .hctx = hctx,
952 .rq = NULL,
953 };
954
955 __sbitmap_for_each_set(&hctx->ctx_map, off,
956 dispatch_rq_from_ctx, &data);
957
958 return data.rq;
959 }
960
961 static inline unsigned int queued_to_index(unsigned int queued)
962 {
963 if (!queued)
964 return 0;
965
966 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
967 }
968
969 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
970 bool wait)
971 {
972 struct blk_mq_alloc_data data = {
973 .q = rq->q,
974 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
975 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
976 };
977
978 might_sleep_if(wait);
979
980 if (rq->tag != -1)
981 goto done;
982
983 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
984 data.flags |= BLK_MQ_REQ_RESERVED;
985
986 rq->tag = blk_mq_get_tag(&data);
987 if (rq->tag >= 0) {
988 if (blk_mq_tag_busy(data.hctx)) {
989 rq->rq_flags |= RQF_MQ_INFLIGHT;
990 atomic_inc(&data.hctx->nr_active);
991 }
992 data.hctx->tags->rqs[rq->tag] = rq;
993 }
994
995 done:
996 if (hctx)
997 *hctx = data.hctx;
998 return rq->tag != -1;
999 }
1000
1001 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1002 int flags, void *key)
1003 {
1004 struct blk_mq_hw_ctx *hctx;
1005
1006 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1007
1008 list_del_init(&wait->entry);
1009 blk_mq_run_hw_queue(hctx, true);
1010 return 1;
1011 }
1012
1013 /*
1014 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1015 * the tag wakeups. For non-shared tags, we can simply mark us nedeing a
1016 * restart. For both caes, take care to check the condition again after
1017 * marking us as waiting.
1018 */
1019 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx,
1020 struct request *rq)
1021 {
1022 struct blk_mq_hw_ctx *this_hctx = *hctx;
1023 bool shared_tags = (this_hctx->flags & BLK_MQ_F_TAG_SHARED) != 0;
1024 struct sbq_wait_state *ws;
1025 wait_queue_entry_t *wait;
1026 bool ret;
1027
1028 if (!shared_tags) {
1029 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state))
1030 set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state);
1031 } else {
1032 wait = &this_hctx->dispatch_wait;
1033 if (!list_empty_careful(&wait->entry))
1034 return false;
1035
1036 spin_lock(&this_hctx->lock);
1037 if (!list_empty(&wait->entry)) {
1038 spin_unlock(&this_hctx->lock);
1039 return false;
1040 }
1041
1042 ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
1043 add_wait_queue(&ws->wait, wait);
1044 }
1045
1046 /*
1047 * It's possible that a tag was freed in the window between the
1048 * allocation failure and adding the hardware queue to the wait
1049 * queue.
1050 */
1051 ret = blk_mq_get_driver_tag(rq, hctx, false);
1052
1053 if (!shared_tags) {
1054 /*
1055 * Don't clear RESTART here, someone else could have set it.
1056 * At most this will cost an extra queue run.
1057 */
1058 return ret;
1059 } else {
1060 if (!ret) {
1061 spin_unlock(&this_hctx->lock);
1062 return false;
1063 }
1064
1065 /*
1066 * We got a tag, remove ourselves from the wait queue to ensure
1067 * someone else gets the wakeup.
1068 */
1069 spin_lock_irq(&ws->wait.lock);
1070 list_del_init(&wait->entry);
1071 spin_unlock_irq(&ws->wait.lock);
1072 spin_unlock(&this_hctx->lock);
1073 return true;
1074 }
1075 }
1076
1077 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1078 bool got_budget)
1079 {
1080 struct blk_mq_hw_ctx *hctx;
1081 struct request *rq, *nxt;
1082 bool no_tag = false;
1083 int errors, queued;
1084
1085 if (list_empty(list))
1086 return false;
1087
1088 WARN_ON(!list_is_singular(list) && got_budget);
1089
1090 /*
1091 * Now process all the entries, sending them to the driver.
1092 */
1093 errors = queued = 0;
1094 do {
1095 struct blk_mq_queue_data bd;
1096 blk_status_t ret;
1097
1098 rq = list_first_entry(list, struct request, queuelist);
1099
1100 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
1101 if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1102 break;
1103
1104 if (!blk_mq_get_driver_tag(rq, NULL, false)) {
1105 /*
1106 * The initial allocation attempt failed, so we need to
1107 * rerun the hardware queue when a tag is freed. The
1108 * waitqueue takes care of that. If the queue is run
1109 * before we add this entry back on the dispatch list,
1110 * we'll re-run it below.
1111 */
1112 if (!blk_mq_mark_tag_wait(&hctx, rq)) {
1113 blk_mq_put_dispatch_budget(hctx);
1114 /*
1115 * For non-shared tags, the RESTART check
1116 * will suffice.
1117 */
1118 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1119 no_tag = true;
1120 break;
1121 }
1122 }
1123
1124 list_del_init(&rq->queuelist);
1125
1126 bd.rq = rq;
1127
1128 /*
1129 * Flag last if we have no more requests, or if we have more
1130 * but can't assign a driver tag to it.
1131 */
1132 if (list_empty(list))
1133 bd.last = true;
1134 else {
1135 nxt = list_first_entry(list, struct request, queuelist);
1136 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1137 }
1138
1139 ret = q->mq_ops->queue_rq(hctx, &bd);
1140 if (ret == BLK_STS_RESOURCE) {
1141 /*
1142 * If an I/O scheduler has been configured and we got a
1143 * driver tag for the next request already, free it
1144 * again.
1145 */
1146 if (!list_empty(list)) {
1147 nxt = list_first_entry(list, struct request, queuelist);
1148 blk_mq_put_driver_tag(nxt);
1149 }
1150 list_add(&rq->queuelist, list);
1151 __blk_mq_requeue_request(rq);
1152 break;
1153 }
1154
1155 if (unlikely(ret != BLK_STS_OK)) {
1156 errors++;
1157 blk_mq_end_request(rq, BLK_STS_IOERR);
1158 continue;
1159 }
1160
1161 queued++;
1162 } while (!list_empty(list));
1163
1164 hctx->dispatched[queued_to_index(queued)]++;
1165
1166 /*
1167 * Any items that need requeuing? Stuff them into hctx->dispatch,
1168 * that is where we will continue on next queue run.
1169 */
1170 if (!list_empty(list)) {
1171 spin_lock(&hctx->lock);
1172 list_splice_init(list, &hctx->dispatch);
1173 spin_unlock(&hctx->lock);
1174
1175 /*
1176 * If SCHED_RESTART was set by the caller of this function and
1177 * it is no longer set that means that it was cleared by another
1178 * thread and hence that a queue rerun is needed.
1179 *
1180 * If 'no_tag' is set, that means that we failed getting
1181 * a driver tag with an I/O scheduler attached. If our dispatch
1182 * waitqueue is no longer active, ensure that we run the queue
1183 * AFTER adding our entries back to the list.
1184 *
1185 * If no I/O scheduler has been configured it is possible that
1186 * the hardware queue got stopped and restarted before requests
1187 * were pushed back onto the dispatch list. Rerun the queue to
1188 * avoid starvation. Notes:
1189 * - blk_mq_run_hw_queue() checks whether or not a queue has
1190 * been stopped before rerunning a queue.
1191 * - Some but not all block drivers stop a queue before
1192 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1193 * and dm-rq.
1194 */
1195 if (!blk_mq_sched_needs_restart(hctx) ||
1196 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1197 blk_mq_run_hw_queue(hctx, true);
1198 }
1199
1200 return (queued + errors) != 0;
1201 }
1202
1203 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1204 {
1205 int srcu_idx;
1206
1207 /*
1208 * We should be running this queue from one of the CPUs that
1209 * are mapped to it.
1210 *
1211 * There are at least two related races now between setting
1212 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1213 * __blk_mq_run_hw_queue():
1214 *
1215 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1216 * but later it becomes online, then this warning is harmless
1217 * at all
1218 *
1219 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1220 * but later it becomes offline, then the warning can't be
1221 * triggered, and we depend on blk-mq timeout handler to
1222 * handle dispatched requests to this hctx
1223 */
1224 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1225 cpu_online(hctx->next_cpu)) {
1226 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1227 raw_smp_processor_id(),
1228 cpumask_empty(hctx->cpumask) ? "inactive": "active");
1229 dump_stack();
1230 }
1231
1232 /*
1233 * We can't run the queue inline with ints disabled. Ensure that
1234 * we catch bad users of this early.
1235 */
1236 WARN_ON_ONCE(in_interrupt());
1237
1238 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1239 rcu_read_lock();
1240 blk_mq_sched_dispatch_requests(hctx);
1241 rcu_read_unlock();
1242 } else {
1243 might_sleep();
1244
1245 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1246 blk_mq_sched_dispatch_requests(hctx);
1247 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1248 }
1249 }
1250
1251 /*
1252 * It'd be great if the workqueue API had a way to pass
1253 * in a mask and had some smarts for more clever placement.
1254 * For now we just round-robin here, switching for every
1255 * BLK_MQ_CPU_WORK_BATCH queued items.
1256 */
1257 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1258 {
1259 bool tried = false;
1260
1261 if (hctx->queue->nr_hw_queues == 1)
1262 return WORK_CPU_UNBOUND;
1263
1264 if (--hctx->next_cpu_batch <= 0) {
1265 int next_cpu;
1266 select_cpu:
1267 next_cpu = cpumask_next_and(hctx->next_cpu, hctx->cpumask,
1268 cpu_online_mask);
1269 if (next_cpu >= nr_cpu_ids)
1270 next_cpu = cpumask_first_and(hctx->cpumask,cpu_online_mask);
1271
1272 /*
1273 * No online CPU is found, so have to make sure hctx->next_cpu
1274 * is set correctly for not breaking workqueue.
1275 */
1276 if (next_cpu >= nr_cpu_ids)
1277 hctx->next_cpu = cpumask_first(hctx->cpumask);
1278 else
1279 hctx->next_cpu = next_cpu;
1280 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1281 }
1282
1283 /*
1284 * Do unbound schedule if we can't find a online CPU for this hctx,
1285 * and it should only happen in the path of handling CPU DEAD.
1286 */
1287 if (!cpu_online(hctx->next_cpu)) {
1288 if (!tried) {
1289 tried = true;
1290 goto select_cpu;
1291 }
1292
1293 /*
1294 * Make sure to re-select CPU next time once after CPUs
1295 * in hctx->cpumask become online again.
1296 */
1297 hctx->next_cpu_batch = 1;
1298 return WORK_CPU_UNBOUND;
1299 }
1300 return hctx->next_cpu;
1301 }
1302
1303 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1304 unsigned long msecs)
1305 {
1306 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1307 return;
1308
1309 if (unlikely(blk_mq_hctx_stopped(hctx)))
1310 return;
1311
1312 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1313 int cpu = get_cpu();
1314 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1315 __blk_mq_run_hw_queue(hctx);
1316 put_cpu();
1317 return;
1318 }
1319
1320 put_cpu();
1321 }
1322
1323 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1324 &hctx->run_work,
1325 msecs_to_jiffies(msecs));
1326 }
1327
1328 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1329 {
1330 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1331 }
1332 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1333
1334 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1335 {
1336 if (blk_mq_hctx_has_pending(hctx)) {
1337 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1338 return true;
1339 }
1340
1341 return false;
1342 }
1343 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1344
1345 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1346 {
1347 struct blk_mq_hw_ctx *hctx;
1348 int i;
1349
1350 queue_for_each_hw_ctx(q, hctx, i) {
1351 if (blk_mq_hctx_stopped(hctx))
1352 continue;
1353
1354 blk_mq_run_hw_queue(hctx, async);
1355 }
1356 }
1357 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1358
1359 /**
1360 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1361 * @q: request queue.
1362 *
1363 * The caller is responsible for serializing this function against
1364 * blk_mq_{start,stop}_hw_queue().
1365 */
1366 bool blk_mq_queue_stopped(struct request_queue *q)
1367 {
1368 struct blk_mq_hw_ctx *hctx;
1369 int i;
1370
1371 queue_for_each_hw_ctx(q, hctx, i)
1372 if (blk_mq_hctx_stopped(hctx))
1373 return true;
1374
1375 return false;
1376 }
1377 EXPORT_SYMBOL(blk_mq_queue_stopped);
1378
1379 /*
1380 * This function is often used for pausing .queue_rq() by driver when
1381 * there isn't enough resource or some conditions aren't satisfied, and
1382 * BLK_STS_RESOURCE is usually returned.
1383 *
1384 * We do not guarantee that dispatch can be drained or blocked
1385 * after blk_mq_stop_hw_queue() returns. Please use
1386 * blk_mq_quiesce_queue() for that requirement.
1387 */
1388 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1389 {
1390 cancel_delayed_work(&hctx->run_work);
1391
1392 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1393 }
1394 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1395
1396 /*
1397 * This function is often used for pausing .queue_rq() by driver when
1398 * there isn't enough resource or some conditions aren't satisfied, and
1399 * BLK_STS_RESOURCE is usually returned.
1400 *
1401 * We do not guarantee that dispatch can be drained or blocked
1402 * after blk_mq_stop_hw_queues() returns. Please use
1403 * blk_mq_quiesce_queue() for that requirement.
1404 */
1405 void blk_mq_stop_hw_queues(struct request_queue *q)
1406 {
1407 struct blk_mq_hw_ctx *hctx;
1408 int i;
1409
1410 queue_for_each_hw_ctx(q, hctx, i)
1411 blk_mq_stop_hw_queue(hctx);
1412 }
1413 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1414
1415 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1416 {
1417 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1418
1419 blk_mq_run_hw_queue(hctx, false);
1420 }
1421 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1422
1423 void blk_mq_start_hw_queues(struct request_queue *q)
1424 {
1425 struct blk_mq_hw_ctx *hctx;
1426 int i;
1427
1428 queue_for_each_hw_ctx(q, hctx, i)
1429 blk_mq_start_hw_queue(hctx);
1430 }
1431 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1432
1433 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1434 {
1435 if (!blk_mq_hctx_stopped(hctx))
1436 return;
1437
1438 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1439 blk_mq_run_hw_queue(hctx, async);
1440 }
1441 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1442
1443 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1444 {
1445 struct blk_mq_hw_ctx *hctx;
1446 int i;
1447
1448 queue_for_each_hw_ctx(q, hctx, i)
1449 blk_mq_start_stopped_hw_queue(hctx, async);
1450 }
1451 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1452
1453 static void blk_mq_run_work_fn(struct work_struct *work)
1454 {
1455 struct blk_mq_hw_ctx *hctx;
1456
1457 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1458
1459 /*
1460 * If we are stopped, don't run the queue. The exception is if
1461 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1462 * the STOPPED bit and run it.
1463 */
1464 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1465 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1466 return;
1467
1468 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1469 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1470 }
1471
1472 __blk_mq_run_hw_queue(hctx);
1473 }
1474
1475
1476 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1477 {
1478 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1479 return;
1480
1481 /*
1482 * Stop the hw queue, then modify currently delayed work.
1483 * This should prevent us from running the queue prematurely.
1484 * Mark the queue as auto-clearing STOPPED when it runs.
1485 */
1486 blk_mq_stop_hw_queue(hctx);
1487 set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1488 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1489 &hctx->run_work,
1490 msecs_to_jiffies(msecs));
1491 }
1492 EXPORT_SYMBOL(blk_mq_delay_queue);
1493
1494 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1495 struct request *rq,
1496 bool at_head)
1497 {
1498 struct blk_mq_ctx *ctx = rq->mq_ctx;
1499
1500 lockdep_assert_held(&ctx->lock);
1501
1502 trace_block_rq_insert(hctx->queue, rq);
1503
1504 if (at_head)
1505 list_add(&rq->queuelist, &ctx->rq_list);
1506 else
1507 list_add_tail(&rq->queuelist, &ctx->rq_list);
1508 }
1509
1510 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1511 bool at_head)
1512 {
1513 struct blk_mq_ctx *ctx = rq->mq_ctx;
1514
1515 lockdep_assert_held(&ctx->lock);
1516
1517 __blk_mq_insert_req_list(hctx, rq, at_head);
1518 blk_mq_hctx_mark_pending(hctx, ctx);
1519 }
1520
1521 /*
1522 * Should only be used carefully, when the caller knows we want to
1523 * bypass a potential IO scheduler on the target device.
1524 */
1525 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1526 {
1527 struct blk_mq_ctx *ctx = rq->mq_ctx;
1528 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1529
1530 spin_lock(&hctx->lock);
1531 list_add_tail(&rq->queuelist, &hctx->dispatch);
1532 spin_unlock(&hctx->lock);
1533
1534 if (run_queue)
1535 blk_mq_run_hw_queue(hctx, false);
1536 }
1537
1538 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1539 struct list_head *list)
1540
1541 {
1542 /*
1543 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1544 * offline now
1545 */
1546 spin_lock(&ctx->lock);
1547 while (!list_empty(list)) {
1548 struct request *rq;
1549
1550 rq = list_first_entry(list, struct request, queuelist);
1551 BUG_ON(rq->mq_ctx != ctx);
1552 list_del_init(&rq->queuelist);
1553 __blk_mq_insert_req_list(hctx, rq, false);
1554 }
1555 blk_mq_hctx_mark_pending(hctx, ctx);
1556 spin_unlock(&ctx->lock);
1557 }
1558
1559 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1560 {
1561 struct request *rqa = container_of(a, struct request, queuelist);
1562 struct request *rqb = container_of(b, struct request, queuelist);
1563
1564 return !(rqa->mq_ctx < rqb->mq_ctx ||
1565 (rqa->mq_ctx == rqb->mq_ctx &&
1566 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1567 }
1568
1569 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1570 {
1571 struct blk_mq_ctx *this_ctx;
1572 struct request_queue *this_q;
1573 struct request *rq;
1574 LIST_HEAD(list);
1575 LIST_HEAD(ctx_list);
1576 unsigned int depth;
1577
1578 list_splice_init(&plug->mq_list, &list);
1579
1580 list_sort(NULL, &list, plug_ctx_cmp);
1581
1582 this_q = NULL;
1583 this_ctx = NULL;
1584 depth = 0;
1585
1586 while (!list_empty(&list)) {
1587 rq = list_entry_rq(list.next);
1588 list_del_init(&rq->queuelist);
1589 BUG_ON(!rq->q);
1590 if (rq->mq_ctx != this_ctx) {
1591 if (this_ctx) {
1592 trace_block_unplug(this_q, depth, from_schedule);
1593 blk_mq_sched_insert_requests(this_q, this_ctx,
1594 &ctx_list,
1595 from_schedule);
1596 }
1597
1598 this_ctx = rq->mq_ctx;
1599 this_q = rq->q;
1600 depth = 0;
1601 }
1602
1603 depth++;
1604 list_add_tail(&rq->queuelist, &ctx_list);
1605 }
1606
1607 /*
1608 * If 'this_ctx' is set, we know we have entries to complete
1609 * on 'ctx_list'. Do those.
1610 */
1611 if (this_ctx) {
1612 trace_block_unplug(this_q, depth, from_schedule);
1613 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1614 from_schedule);
1615 }
1616 }
1617
1618 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1619 {
1620 blk_init_request_from_bio(rq, bio);
1621
1622 blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1623
1624 blk_account_io_start(rq, true);
1625 }
1626
1627 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1628 struct blk_mq_ctx *ctx,
1629 struct request *rq)
1630 {
1631 spin_lock(&ctx->lock);
1632 __blk_mq_insert_request(hctx, rq, false);
1633 spin_unlock(&ctx->lock);
1634 }
1635
1636 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1637 {
1638 if (rq->tag != -1)
1639 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1640
1641 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1642 }
1643
1644 static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1645 struct request *rq,
1646 blk_qc_t *cookie, bool may_sleep)
1647 {
1648 struct request_queue *q = rq->q;
1649 struct blk_mq_queue_data bd = {
1650 .rq = rq,
1651 .last = true,
1652 };
1653 blk_qc_t new_cookie;
1654 blk_status_t ret;
1655 bool run_queue = true;
1656
1657 /* RCU or SRCU read lock is needed before checking quiesced flag */
1658 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1659 run_queue = false;
1660 goto insert;
1661 }
1662
1663 if (q->elevator)
1664 goto insert;
1665
1666 if (!blk_mq_get_dispatch_budget(hctx))
1667 goto insert;
1668
1669 if (!blk_mq_get_driver_tag(rq, NULL, false)) {
1670 blk_mq_put_dispatch_budget(hctx);
1671 goto insert;
1672 }
1673
1674 new_cookie = request_to_qc_t(hctx, rq);
1675
1676 /*
1677 * For OK queue, we are done. For error, kill it. Any other
1678 * error (busy), just add it to our list as we previously
1679 * would have done
1680 */
1681 ret = q->mq_ops->queue_rq(hctx, &bd);
1682 switch (ret) {
1683 case BLK_STS_OK:
1684 *cookie = new_cookie;
1685 return;
1686 case BLK_STS_RESOURCE:
1687 __blk_mq_requeue_request(rq);
1688 goto insert;
1689 default:
1690 *cookie = BLK_QC_T_NONE;
1691 blk_mq_end_request(rq, ret);
1692 return;
1693 }
1694
1695 insert:
1696 blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1697 }
1698
1699 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1700 struct request *rq, blk_qc_t *cookie)
1701 {
1702 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1703 rcu_read_lock();
1704 __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1705 rcu_read_unlock();
1706 } else {
1707 unsigned int srcu_idx;
1708
1709 might_sleep();
1710
1711 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1712 __blk_mq_try_issue_directly(hctx, rq, cookie, true);
1713 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1714 }
1715 }
1716
1717 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1718 {
1719 const int is_sync = op_is_sync(bio->bi_opf);
1720 const int is_flush_fua = op_is_flush(bio->bi_opf);
1721 struct blk_mq_alloc_data data = { .flags = 0 };
1722 struct request *rq;
1723 unsigned int request_count = 0;
1724 struct blk_plug *plug;
1725 struct request *same_queue_rq = NULL;
1726 blk_qc_t cookie;
1727 unsigned int wb_acct;
1728
1729 blk_queue_bounce(q, &bio);
1730
1731 blk_queue_split(q, &bio);
1732
1733 if (!bio_integrity_prep(bio))
1734 return BLK_QC_T_NONE;
1735
1736 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1737 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1738 return BLK_QC_T_NONE;
1739
1740 if (blk_mq_sched_bio_merge(q, bio))
1741 return BLK_QC_T_NONE;
1742
1743 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1744
1745 trace_block_getrq(q, bio, bio->bi_opf);
1746
1747 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1748 if (unlikely(!rq)) {
1749 __wbt_done(q->rq_wb, wb_acct);
1750 if (bio->bi_opf & REQ_NOWAIT)
1751 bio_wouldblock_error(bio);
1752 return BLK_QC_T_NONE;
1753 }
1754
1755 wbt_track(&rq->issue_stat, wb_acct);
1756
1757 cookie = request_to_qc_t(data.hctx, rq);
1758
1759 plug = current->plug;
1760 if (unlikely(is_flush_fua)) {
1761 blk_mq_put_ctx(data.ctx);
1762 blk_mq_bio_to_request(rq, bio);
1763
1764 /* bypass scheduler for flush rq */
1765 blk_insert_flush(rq);
1766 blk_mq_run_hw_queue(data.hctx, true);
1767 } else if (plug && q->nr_hw_queues == 1) {
1768 struct request *last = NULL;
1769
1770 blk_mq_put_ctx(data.ctx);
1771 blk_mq_bio_to_request(rq, bio);
1772
1773 /*
1774 * @request_count may become stale because of schedule
1775 * out, so check the list again.
1776 */
1777 if (list_empty(&plug->mq_list))
1778 request_count = 0;
1779 else if (blk_queue_nomerges(q))
1780 request_count = blk_plug_queued_count(q);
1781
1782 if (!request_count)
1783 trace_block_plug(q);
1784 else
1785 last = list_entry_rq(plug->mq_list.prev);
1786
1787 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1788 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1789 blk_flush_plug_list(plug, false);
1790 trace_block_plug(q);
1791 }
1792
1793 list_add_tail(&rq->queuelist, &plug->mq_list);
1794 } else if (plug && !blk_queue_nomerges(q)) {
1795 blk_mq_bio_to_request(rq, bio);
1796
1797 /*
1798 * We do limited plugging. If the bio can be merged, do that.
1799 * Otherwise the existing request in the plug list will be
1800 * issued. So the plug list will have one request at most
1801 * The plug list might get flushed before this. If that happens,
1802 * the plug list is empty, and same_queue_rq is invalid.
1803 */
1804 if (list_empty(&plug->mq_list))
1805 same_queue_rq = NULL;
1806 if (same_queue_rq)
1807 list_del_init(&same_queue_rq->queuelist);
1808 list_add_tail(&rq->queuelist, &plug->mq_list);
1809
1810 blk_mq_put_ctx(data.ctx);
1811
1812 if (same_queue_rq) {
1813 data.hctx = blk_mq_map_queue(q,
1814 same_queue_rq->mq_ctx->cpu);
1815 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1816 &cookie);
1817 }
1818 } else if (q->nr_hw_queues > 1 && is_sync) {
1819 blk_mq_put_ctx(data.ctx);
1820 blk_mq_bio_to_request(rq, bio);
1821 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1822 } else if (q->elevator) {
1823 blk_mq_put_ctx(data.ctx);
1824 blk_mq_bio_to_request(rq, bio);
1825 blk_mq_sched_insert_request(rq, false, true, true, true);
1826 } else {
1827 blk_mq_put_ctx(data.ctx);
1828 blk_mq_bio_to_request(rq, bio);
1829 blk_mq_queue_io(data.hctx, data.ctx, rq);
1830 blk_mq_run_hw_queue(data.hctx, true);
1831 }
1832
1833 return cookie;
1834 }
1835
1836 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1837 unsigned int hctx_idx)
1838 {
1839 struct page *page;
1840
1841 if (tags->rqs && set->ops->exit_request) {
1842 int i;
1843
1844 for (i = 0; i < tags->nr_tags; i++) {
1845 struct request *rq = tags->static_rqs[i];
1846
1847 if (!rq)
1848 continue;
1849 set->ops->exit_request(set, rq, hctx_idx);
1850 tags->static_rqs[i] = NULL;
1851 }
1852 }
1853
1854 while (!list_empty(&tags->page_list)) {
1855 page = list_first_entry(&tags->page_list, struct page, lru);
1856 list_del_init(&page->lru);
1857 /*
1858 * Remove kmemleak object previously allocated in
1859 * blk_mq_init_rq_map().
1860 */
1861 kmemleak_free(page_address(page));
1862 __free_pages(page, page->private);
1863 }
1864 }
1865
1866 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1867 {
1868 kfree(tags->rqs);
1869 tags->rqs = NULL;
1870 kfree(tags->static_rqs);
1871 tags->static_rqs = NULL;
1872
1873 blk_mq_free_tags(tags);
1874 }
1875
1876 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1877 unsigned int hctx_idx,
1878 unsigned int nr_tags,
1879 unsigned int reserved_tags)
1880 {
1881 struct blk_mq_tags *tags;
1882 int node;
1883
1884 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1885 if (node == NUMA_NO_NODE)
1886 node = set->numa_node;
1887
1888 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1889 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1890 if (!tags)
1891 return NULL;
1892
1893 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1894 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1895 node);
1896 if (!tags->rqs) {
1897 blk_mq_free_tags(tags);
1898 return NULL;
1899 }
1900
1901 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1902 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1903 node);
1904 if (!tags->static_rqs) {
1905 kfree(tags->rqs);
1906 blk_mq_free_tags(tags);
1907 return NULL;
1908 }
1909
1910 return tags;
1911 }
1912
1913 static size_t order_to_size(unsigned int order)
1914 {
1915 return (size_t)PAGE_SIZE << order;
1916 }
1917
1918 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1919 unsigned int hctx_idx, unsigned int depth)
1920 {
1921 unsigned int i, j, entries_per_page, max_order = 4;
1922 size_t rq_size, left;
1923 int node;
1924
1925 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1926 if (node == NUMA_NO_NODE)
1927 node = set->numa_node;
1928
1929 INIT_LIST_HEAD(&tags->page_list);
1930
1931 /*
1932 * rq_size is the size of the request plus driver payload, rounded
1933 * to the cacheline size
1934 */
1935 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1936 cache_line_size());
1937 left = rq_size * depth;
1938
1939 for (i = 0; i < depth; ) {
1940 int this_order = max_order;
1941 struct page *page;
1942 int to_do;
1943 void *p;
1944
1945 while (this_order && left < order_to_size(this_order - 1))
1946 this_order--;
1947
1948 do {
1949 page = alloc_pages_node(node,
1950 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1951 this_order);
1952 if (page)
1953 break;
1954 if (!this_order--)
1955 break;
1956 if (order_to_size(this_order) < rq_size)
1957 break;
1958 } while (1);
1959
1960 if (!page)
1961 goto fail;
1962
1963 page->private = this_order;
1964 list_add_tail(&page->lru, &tags->page_list);
1965
1966 p = page_address(page);
1967 /*
1968 * Allow kmemleak to scan these pages as they contain pointers
1969 * to additional allocations like via ops->init_request().
1970 */
1971 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1972 entries_per_page = order_to_size(this_order) / rq_size;
1973 to_do = min(entries_per_page, depth - i);
1974 left -= to_do * rq_size;
1975 for (j = 0; j < to_do; j++) {
1976 struct request *rq = p;
1977
1978 tags->static_rqs[i] = rq;
1979 if (set->ops->init_request) {
1980 if (set->ops->init_request(set, rq, hctx_idx,
1981 node)) {
1982 tags->static_rqs[i] = NULL;
1983 goto fail;
1984 }
1985 }
1986
1987 p += rq_size;
1988 i++;
1989 }
1990 }
1991 return 0;
1992
1993 fail:
1994 blk_mq_free_rqs(set, tags, hctx_idx);
1995 return -ENOMEM;
1996 }
1997
1998 /*
1999 * 'cpu' is going away. splice any existing rq_list entries from this
2000 * software queue to the hw queue dispatch list, and ensure that it
2001 * gets run.
2002 */
2003 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2004 {
2005 struct blk_mq_hw_ctx *hctx;
2006 struct blk_mq_ctx *ctx;
2007 LIST_HEAD(tmp);
2008
2009 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2010 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2011
2012 spin_lock(&ctx->lock);
2013 if (!list_empty(&ctx->rq_list)) {
2014 list_splice_init(&ctx->rq_list, &tmp);
2015 blk_mq_hctx_clear_pending(hctx, ctx);
2016 }
2017 spin_unlock(&ctx->lock);
2018
2019 if (list_empty(&tmp))
2020 return 0;
2021
2022 spin_lock(&hctx->lock);
2023 list_splice_tail_init(&tmp, &hctx->dispatch);
2024 spin_unlock(&hctx->lock);
2025
2026 blk_mq_run_hw_queue(hctx, true);
2027 return 0;
2028 }
2029
2030 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2031 {
2032 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2033 &hctx->cpuhp_dead);
2034 }
2035
2036 /* hctx->ctxs will be freed in queue's release handler */
2037 static void blk_mq_exit_hctx(struct request_queue *q,
2038 struct blk_mq_tag_set *set,
2039 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2040 {
2041 blk_mq_debugfs_unregister_hctx(hctx);
2042
2043 if (blk_mq_hw_queue_mapped(hctx))
2044 blk_mq_tag_idle(hctx);
2045
2046 if (set->ops->exit_request)
2047 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2048
2049 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2050
2051 if (set->ops->exit_hctx)
2052 set->ops->exit_hctx(hctx, hctx_idx);
2053
2054 if (hctx->flags & BLK_MQ_F_BLOCKING)
2055 cleanup_srcu_struct(hctx->queue_rq_srcu);
2056
2057 blk_mq_remove_cpuhp(hctx);
2058 blk_free_flush_queue(hctx->fq);
2059 sbitmap_free(&hctx->ctx_map);
2060 }
2061
2062 static void blk_mq_exit_hw_queues(struct request_queue *q,
2063 struct blk_mq_tag_set *set, int nr_queue)
2064 {
2065 struct blk_mq_hw_ctx *hctx;
2066 unsigned int i;
2067
2068 queue_for_each_hw_ctx(q, hctx, i) {
2069 if (i == nr_queue)
2070 break;
2071 blk_mq_exit_hctx(q, set, hctx, i);
2072 }
2073 }
2074
2075 static int blk_mq_init_hctx(struct request_queue *q,
2076 struct blk_mq_tag_set *set,
2077 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2078 {
2079 int node;
2080
2081 node = hctx->numa_node;
2082 if (node == NUMA_NO_NODE)
2083 node = hctx->numa_node = set->numa_node;
2084
2085 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2086 spin_lock_init(&hctx->lock);
2087 INIT_LIST_HEAD(&hctx->dispatch);
2088 hctx->queue = q;
2089 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2090
2091 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2092
2093 hctx->tags = set->tags[hctx_idx];
2094
2095 /*
2096 * Allocate space for all possible cpus to avoid allocation at
2097 * runtime
2098 */
2099 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2100 GFP_KERNEL, node);
2101 if (!hctx->ctxs)
2102 goto unregister_cpu_notifier;
2103
2104 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
2105 node))
2106 goto free_ctxs;
2107
2108 hctx->nr_ctx = 0;
2109
2110 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2111 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2112
2113 if (set->ops->init_hctx &&
2114 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2115 goto free_bitmap;
2116
2117 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
2118 goto exit_hctx;
2119
2120 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
2121 if (!hctx->fq)
2122 goto sched_exit_hctx;
2123
2124 if (set->ops->init_request &&
2125 set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
2126 node))
2127 goto free_fq;
2128
2129 if (hctx->flags & BLK_MQ_F_BLOCKING)
2130 init_srcu_struct(hctx->queue_rq_srcu);
2131
2132 blk_mq_debugfs_register_hctx(q, hctx);
2133
2134 return 0;
2135
2136 free_fq:
2137 kfree(hctx->fq);
2138 sched_exit_hctx:
2139 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2140 exit_hctx:
2141 if (set->ops->exit_hctx)
2142 set->ops->exit_hctx(hctx, hctx_idx);
2143 free_bitmap:
2144 sbitmap_free(&hctx->ctx_map);
2145 free_ctxs:
2146 kfree(hctx->ctxs);
2147 unregister_cpu_notifier:
2148 blk_mq_remove_cpuhp(hctx);
2149 return -1;
2150 }
2151
2152 static void blk_mq_init_cpu_queues(struct request_queue *q,
2153 unsigned int nr_hw_queues)
2154 {
2155 unsigned int i;
2156
2157 for_each_possible_cpu(i) {
2158 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2159 struct blk_mq_hw_ctx *hctx;
2160
2161 __ctx->cpu = i;
2162 spin_lock_init(&__ctx->lock);
2163 INIT_LIST_HEAD(&__ctx->rq_list);
2164 __ctx->queue = q;
2165
2166 /*
2167 * Set local node, IFF we have more than one hw queue. If
2168 * not, we remain on the home node of the device
2169 */
2170 hctx = blk_mq_map_queue(q, i);
2171 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2172 hctx->numa_node = local_memory_node(cpu_to_node(i));
2173 }
2174 }
2175
2176 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2177 {
2178 int ret = 0;
2179
2180 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2181 set->queue_depth, set->reserved_tags);
2182 if (!set->tags[hctx_idx])
2183 return false;
2184
2185 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2186 set->queue_depth);
2187 if (!ret)
2188 return true;
2189
2190 blk_mq_free_rq_map(set->tags[hctx_idx]);
2191 set->tags[hctx_idx] = NULL;
2192 return false;
2193 }
2194
2195 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2196 unsigned int hctx_idx)
2197 {
2198 if (set->tags[hctx_idx]) {
2199 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2200 blk_mq_free_rq_map(set->tags[hctx_idx]);
2201 set->tags[hctx_idx] = NULL;
2202 }
2203 }
2204
2205 static void blk_mq_map_swqueue(struct request_queue *q)
2206 {
2207 unsigned int i, hctx_idx;
2208 struct blk_mq_hw_ctx *hctx;
2209 struct blk_mq_ctx *ctx;
2210 struct blk_mq_tag_set *set = q->tag_set;
2211
2212 /*
2213 * Avoid others reading imcomplete hctx->cpumask through sysfs
2214 */
2215 mutex_lock(&q->sysfs_lock);
2216
2217 queue_for_each_hw_ctx(q, hctx, i) {
2218 cpumask_clear(hctx->cpumask);
2219 hctx->nr_ctx = 0;
2220 }
2221
2222 /*
2223 * Map software to hardware queues.
2224 *
2225 * If the cpu isn't present, the cpu is mapped to first hctx.
2226 */
2227 for_each_possible_cpu(i) {
2228 hctx_idx = q->mq_map[i];
2229 /* unmapped hw queue can be remapped after CPU topo changed */
2230 if (!set->tags[hctx_idx] &&
2231 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2232 /*
2233 * If tags initialization fail for some hctx,
2234 * that hctx won't be brought online. In this
2235 * case, remap the current ctx to hctx[0] which
2236 * is guaranteed to always have tags allocated
2237 */
2238 q->mq_map[i] = 0;
2239 }
2240
2241 ctx = per_cpu_ptr(q->queue_ctx, i);
2242 hctx = blk_mq_map_queue(q, i);
2243
2244 cpumask_set_cpu(i, hctx->cpumask);
2245 ctx->index_hw = hctx->nr_ctx;
2246 hctx->ctxs[hctx->nr_ctx++] = ctx;
2247 }
2248
2249 mutex_unlock(&q->sysfs_lock);
2250
2251 queue_for_each_hw_ctx(q, hctx, i) {
2252 /*
2253 * If no software queues are mapped to this hardware queue,
2254 * disable it and free the request entries.
2255 */
2256 if (!hctx->nr_ctx) {
2257 /* Never unmap queue 0. We need it as a
2258 * fallback in case of a new remap fails
2259 * allocation
2260 */
2261 if (i && set->tags[i])
2262 blk_mq_free_map_and_requests(set, i);
2263
2264 hctx->tags = NULL;
2265 continue;
2266 }
2267
2268 hctx->tags = set->tags[i];
2269 WARN_ON(!hctx->tags);
2270
2271 /*
2272 * Set the map size to the number of mapped software queues.
2273 * This is more accurate and more efficient than looping
2274 * over all possibly mapped software queues.
2275 */
2276 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2277
2278 /*
2279 * Initialize batch roundrobin counts
2280 */
2281 hctx->next_cpu = cpumask_first_and(hctx->cpumask,
2282 cpu_online_mask);
2283 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2284 }
2285 }
2286
2287 /*
2288 * Caller needs to ensure that we're either frozen/quiesced, or that
2289 * the queue isn't live yet.
2290 */
2291 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2292 {
2293 struct blk_mq_hw_ctx *hctx;
2294 int i;
2295
2296 queue_for_each_hw_ctx(q, hctx, i) {
2297 if (shared) {
2298 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2299 atomic_inc(&q->shared_hctx_restart);
2300 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2301 } else {
2302 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2303 atomic_dec(&q->shared_hctx_restart);
2304 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2305 }
2306 }
2307 }
2308
2309 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2310 bool shared)
2311 {
2312 struct request_queue *q;
2313
2314 lockdep_assert_held(&set->tag_list_lock);
2315
2316 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2317 blk_mq_freeze_queue(q);
2318 queue_set_hctx_shared(q, shared);
2319 blk_mq_unfreeze_queue(q);
2320 }
2321 }
2322
2323 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2324 {
2325 struct blk_mq_tag_set *set = q->tag_set;
2326
2327 mutex_lock(&set->tag_list_lock);
2328 list_del_rcu(&q->tag_set_list);
2329 INIT_LIST_HEAD(&q->tag_set_list);
2330 if (list_is_singular(&set->tag_list)) {
2331 /* just transitioned to unshared */
2332 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2333 /* update existing queue */
2334 blk_mq_update_tag_set_depth(set, false);
2335 }
2336 mutex_unlock(&set->tag_list_lock);
2337
2338 synchronize_rcu();
2339 }
2340
2341 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2342 struct request_queue *q)
2343 {
2344 q->tag_set = set;
2345
2346 mutex_lock(&set->tag_list_lock);
2347
2348 /*
2349 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2350 */
2351 if (!list_empty(&set->tag_list) &&
2352 !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2353 set->flags |= BLK_MQ_F_TAG_SHARED;
2354 /* update existing queue */
2355 blk_mq_update_tag_set_depth(set, true);
2356 }
2357 if (set->flags & BLK_MQ_F_TAG_SHARED)
2358 queue_set_hctx_shared(q, true);
2359 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2360
2361 mutex_unlock(&set->tag_list_lock);
2362 }
2363
2364 /*
2365 * It is the actual release handler for mq, but we do it from
2366 * request queue's release handler for avoiding use-after-free
2367 * and headache because q->mq_kobj shouldn't have been introduced,
2368 * but we can't group ctx/kctx kobj without it.
2369 */
2370 void blk_mq_release(struct request_queue *q)
2371 {
2372 struct blk_mq_hw_ctx *hctx;
2373 unsigned int i;
2374
2375 /* hctx kobj stays in hctx */
2376 queue_for_each_hw_ctx(q, hctx, i) {
2377 if (!hctx)
2378 continue;
2379 kobject_put(&hctx->kobj);
2380 }
2381
2382 q->mq_map = NULL;
2383
2384 kfree(q->queue_hw_ctx);
2385
2386 /*
2387 * release .mq_kobj and sw queue's kobject now because
2388 * both share lifetime with request queue.
2389 */
2390 blk_mq_sysfs_deinit(q);
2391
2392 free_percpu(q->queue_ctx);
2393 }
2394
2395 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2396 {
2397 struct request_queue *uninit_q, *q;
2398
2399 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2400 if (!uninit_q)
2401 return ERR_PTR(-ENOMEM);
2402
2403 q = blk_mq_init_allocated_queue(set, uninit_q);
2404 if (IS_ERR(q))
2405 blk_cleanup_queue(uninit_q);
2406
2407 return q;
2408 }
2409 EXPORT_SYMBOL(blk_mq_init_queue);
2410
2411 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2412 {
2413 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2414
2415 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
2416 __alignof__(struct blk_mq_hw_ctx)) !=
2417 sizeof(struct blk_mq_hw_ctx));
2418
2419 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2420 hw_ctx_size += sizeof(struct srcu_struct);
2421
2422 return hw_ctx_size;
2423 }
2424
2425 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2426 struct request_queue *q)
2427 {
2428 int i, j;
2429 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2430
2431 blk_mq_sysfs_unregister(q);
2432
2433 /* protect against switching io scheduler */
2434 mutex_lock(&q->sysfs_lock);
2435 for (i = 0; i < set->nr_hw_queues; i++) {
2436 int node;
2437
2438 if (hctxs[i])
2439 continue;
2440
2441 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2442 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2443 GFP_KERNEL, node);
2444 if (!hctxs[i])
2445 break;
2446
2447 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2448 node)) {
2449 kfree(hctxs[i]);
2450 hctxs[i] = NULL;
2451 break;
2452 }
2453
2454 atomic_set(&hctxs[i]->nr_active, 0);
2455 hctxs[i]->numa_node = node;
2456 hctxs[i]->queue_num = i;
2457
2458 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2459 free_cpumask_var(hctxs[i]->cpumask);
2460 kfree(hctxs[i]);
2461 hctxs[i] = NULL;
2462 break;
2463 }
2464 blk_mq_hctx_kobj_init(hctxs[i]);
2465 }
2466 for (j = i; j < q->nr_hw_queues; j++) {
2467 struct blk_mq_hw_ctx *hctx = hctxs[j];
2468
2469 if (hctx) {
2470 if (hctx->tags)
2471 blk_mq_free_map_and_requests(set, j);
2472 blk_mq_exit_hctx(q, set, hctx, j);
2473 kobject_put(&hctx->kobj);
2474 hctxs[j] = NULL;
2475
2476 }
2477 }
2478 q->nr_hw_queues = i;
2479 mutex_unlock(&q->sysfs_lock);
2480 blk_mq_sysfs_register(q);
2481 }
2482
2483 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2484 struct request_queue *q)
2485 {
2486 /* mark the queue as mq asap */
2487 q->mq_ops = set->ops;
2488
2489 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2490 blk_mq_poll_stats_bkt,
2491 BLK_MQ_POLL_STATS_BKTS, q);
2492 if (!q->poll_cb)
2493 goto err_exit;
2494
2495 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2496 if (!q->queue_ctx)
2497 goto err_exit;
2498
2499 /* init q->mq_kobj and sw queues' kobjects */
2500 blk_mq_sysfs_init(q);
2501
2502 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2503 GFP_KERNEL, set->numa_node);
2504 if (!q->queue_hw_ctx)
2505 goto err_percpu;
2506
2507 q->mq_map = set->mq_map;
2508
2509 blk_mq_realloc_hw_ctxs(set, q);
2510 if (!q->nr_hw_queues)
2511 goto err_hctxs;
2512
2513 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2514 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2515
2516 q->nr_queues = nr_cpu_ids;
2517
2518 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2519
2520 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2521 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2522
2523 q->sg_reserved_size = INT_MAX;
2524
2525 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2526 INIT_LIST_HEAD(&q->requeue_list);
2527 spin_lock_init(&q->requeue_lock);
2528
2529 blk_queue_make_request(q, blk_mq_make_request);
2530 if (q->mq_ops->poll)
2531 q->poll_fn = blk_mq_poll;
2532
2533 /*
2534 * Do this after blk_queue_make_request() overrides it...
2535 */
2536 q->nr_requests = set->queue_depth;
2537
2538 /*
2539 * Default to classic polling
2540 */
2541 q->poll_nsec = -1;
2542
2543 if (set->ops->complete)
2544 blk_queue_softirq_done(q, set->ops->complete);
2545
2546 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2547 blk_mq_add_queue_tag_set(set, q);
2548 blk_mq_map_swqueue(q);
2549
2550 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2551 int ret;
2552
2553 ret = blk_mq_sched_init(q);
2554 if (ret)
2555 return ERR_PTR(ret);
2556 }
2557
2558 return q;
2559
2560 err_hctxs:
2561 kfree(q->queue_hw_ctx);
2562 err_percpu:
2563 free_percpu(q->queue_ctx);
2564 err_exit:
2565 q->mq_ops = NULL;
2566 return ERR_PTR(-ENOMEM);
2567 }
2568 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2569
2570 void blk_mq_free_queue(struct request_queue *q)
2571 {
2572 struct blk_mq_tag_set *set = q->tag_set;
2573
2574 blk_mq_del_queue_tag_set(q);
2575 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2576 }
2577
2578 /* Basically redo blk_mq_init_queue with queue frozen */
2579 static void blk_mq_queue_reinit(struct request_queue *q)
2580 {
2581 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2582
2583 blk_mq_debugfs_unregister_hctxs(q);
2584 blk_mq_sysfs_unregister(q);
2585
2586 /*
2587 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2588 * we should change hctx numa_node according to the new topology (this
2589 * involves freeing and re-allocating memory, worth doing?)
2590 */
2591 blk_mq_map_swqueue(q);
2592
2593 blk_mq_sysfs_register(q);
2594 blk_mq_debugfs_register_hctxs(q);
2595 }
2596
2597 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2598 {
2599 int i;
2600
2601 for (i = 0; i < set->nr_hw_queues; i++)
2602 if (!__blk_mq_alloc_rq_map(set, i))
2603 goto out_unwind;
2604
2605 return 0;
2606
2607 out_unwind:
2608 while (--i >= 0)
2609 blk_mq_free_rq_map(set->tags[i]);
2610
2611 return -ENOMEM;
2612 }
2613
2614 /*
2615 * Allocate the request maps associated with this tag_set. Note that this
2616 * may reduce the depth asked for, if memory is tight. set->queue_depth
2617 * will be updated to reflect the allocated depth.
2618 */
2619 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2620 {
2621 unsigned int depth;
2622 int err;
2623
2624 depth = set->queue_depth;
2625 do {
2626 err = __blk_mq_alloc_rq_maps(set);
2627 if (!err)
2628 break;
2629
2630 set->queue_depth >>= 1;
2631 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2632 err = -ENOMEM;
2633 break;
2634 }
2635 } while (set->queue_depth);
2636
2637 if (!set->queue_depth || err) {
2638 pr_err("blk-mq: failed to allocate request map\n");
2639 return -ENOMEM;
2640 }
2641
2642 if (depth != set->queue_depth)
2643 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2644 depth, set->queue_depth);
2645
2646 return 0;
2647 }
2648
2649 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2650 {
2651 if (set->ops->map_queues) {
2652 int cpu;
2653 /*
2654 * transport .map_queues is usually done in the following
2655 * way:
2656 *
2657 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2658 * mask = get_cpu_mask(queue)
2659 * for_each_cpu(cpu, mask)
2660 * set->mq_map[cpu] = queue;
2661 * }
2662 *
2663 * When we need to remap, the table has to be cleared for
2664 * killing stale mapping since one CPU may not be mapped
2665 * to any hw queue.
2666 */
2667 for_each_possible_cpu(cpu)
2668 set->mq_map[cpu] = 0;
2669
2670 return set->ops->map_queues(set);
2671 } else
2672 return blk_mq_map_queues(set);
2673 }
2674
2675 /*
2676 * Alloc a tag set to be associated with one or more request queues.
2677 * May fail with EINVAL for various error conditions. May adjust the
2678 * requested depth down, if if it too large. In that case, the set
2679 * value will be stored in set->queue_depth.
2680 */
2681 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2682 {
2683 int ret;
2684
2685 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2686
2687 if (!set->nr_hw_queues)
2688 return -EINVAL;
2689 if (!set->queue_depth)
2690 return -EINVAL;
2691 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2692 return -EINVAL;
2693
2694 if (!set->ops->queue_rq)
2695 return -EINVAL;
2696
2697 if (!set->ops->get_budget ^ !set->ops->put_budget)
2698 return -EINVAL;
2699
2700 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2701 pr_info("blk-mq: reduced tag depth to %u\n",
2702 BLK_MQ_MAX_DEPTH);
2703 set->queue_depth = BLK_MQ_MAX_DEPTH;
2704 }
2705
2706 /*
2707 * If a crashdump is active, then we are potentially in a very
2708 * memory constrained environment. Limit us to 1 queue and
2709 * 64 tags to prevent using too much memory.
2710 */
2711 if (is_kdump_kernel()) {
2712 set->nr_hw_queues = 1;
2713 set->queue_depth = min(64U, set->queue_depth);
2714 }
2715 /*
2716 * There is no use for more h/w queues than cpus.
2717 */
2718 if (set->nr_hw_queues > nr_cpu_ids)
2719 set->nr_hw_queues = nr_cpu_ids;
2720
2721 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2722 GFP_KERNEL, set->numa_node);
2723 if (!set->tags)
2724 return -ENOMEM;
2725
2726 ret = -ENOMEM;
2727 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2728 GFP_KERNEL, set->numa_node);
2729 if (!set->mq_map)
2730 goto out_free_tags;
2731
2732 ret = blk_mq_update_queue_map(set);
2733 if (ret)
2734 goto out_free_mq_map;
2735
2736 ret = blk_mq_alloc_rq_maps(set);
2737 if (ret)
2738 goto out_free_mq_map;
2739
2740 mutex_init(&set->tag_list_lock);
2741 INIT_LIST_HEAD(&set->tag_list);
2742
2743 return 0;
2744
2745 out_free_mq_map:
2746 kfree(set->mq_map);
2747 set->mq_map = NULL;
2748 out_free_tags:
2749 kfree(set->tags);
2750 set->tags = NULL;
2751 return ret;
2752 }
2753 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2754
2755 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2756 {
2757 int i;
2758
2759 for (i = 0; i < nr_cpu_ids; i++)
2760 blk_mq_free_map_and_requests(set, i);
2761
2762 kfree(set->mq_map);
2763 set->mq_map = NULL;
2764
2765 kfree(set->tags);
2766 set->tags = NULL;
2767 }
2768 EXPORT_SYMBOL(blk_mq_free_tag_set);
2769
2770 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2771 {
2772 struct blk_mq_tag_set *set = q->tag_set;
2773 struct blk_mq_hw_ctx *hctx;
2774 int i, ret;
2775
2776 if (!set)
2777 return -EINVAL;
2778
2779 blk_mq_freeze_queue(q);
2780
2781 ret = 0;
2782 queue_for_each_hw_ctx(q, hctx, i) {
2783 if (!hctx->tags)
2784 continue;
2785 /*
2786 * If we're using an MQ scheduler, just update the scheduler
2787 * queue depth. This is similar to what the old code would do.
2788 */
2789 if (!hctx->sched_tags) {
2790 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2791 false);
2792 } else {
2793 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2794 nr, true);
2795 }
2796 if (ret)
2797 break;
2798 }
2799
2800 if (!ret)
2801 q->nr_requests = nr;
2802
2803 blk_mq_unfreeze_queue(q);
2804
2805 return ret;
2806 }
2807
2808 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2809 int nr_hw_queues)
2810 {
2811 struct request_queue *q;
2812
2813 lockdep_assert_held(&set->tag_list_lock);
2814
2815 if (nr_hw_queues > nr_cpu_ids)
2816 nr_hw_queues = nr_cpu_ids;
2817 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2818 return;
2819
2820 list_for_each_entry(q, &set->tag_list, tag_set_list)
2821 blk_mq_freeze_queue(q);
2822
2823 set->nr_hw_queues = nr_hw_queues;
2824 blk_mq_update_queue_map(set);
2825 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2826 blk_mq_realloc_hw_ctxs(set, q);
2827 blk_mq_queue_reinit(q);
2828 }
2829
2830 list_for_each_entry(q, &set->tag_list, tag_set_list)
2831 blk_mq_unfreeze_queue(q);
2832 }
2833
2834 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2835 {
2836 mutex_lock(&set->tag_list_lock);
2837 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2838 mutex_unlock(&set->tag_list_lock);
2839 }
2840 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2841
2842 /* Enable polling stats and return whether they were already enabled. */
2843 static bool blk_poll_stats_enable(struct request_queue *q)
2844 {
2845 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2846 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2847 return true;
2848 blk_stat_add_callback(q, q->poll_cb);
2849 return false;
2850 }
2851
2852 static void blk_mq_poll_stats_start(struct request_queue *q)
2853 {
2854 /*
2855 * We don't arm the callback if polling stats are not enabled or the
2856 * callback is already active.
2857 */
2858 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2859 blk_stat_is_active(q->poll_cb))
2860 return;
2861
2862 blk_stat_activate_msecs(q->poll_cb, 100);
2863 }
2864
2865 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2866 {
2867 struct request_queue *q = cb->data;
2868 int bucket;
2869
2870 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2871 if (cb->stat[bucket].nr_samples)
2872 q->poll_stat[bucket] = cb->stat[bucket];
2873 }
2874 }
2875
2876 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2877 struct blk_mq_hw_ctx *hctx,
2878 struct request *rq)
2879 {
2880 unsigned long ret = 0;
2881 int bucket;
2882
2883 /*
2884 * If stats collection isn't on, don't sleep but turn it on for
2885 * future users
2886 */
2887 if (!blk_poll_stats_enable(q))
2888 return 0;
2889
2890 /*
2891 * As an optimistic guess, use half of the mean service time
2892 * for this type of request. We can (and should) make this smarter.
2893 * For instance, if the completion latencies are tight, we can
2894 * get closer than just half the mean. This is especially
2895 * important on devices where the completion latencies are longer
2896 * than ~10 usec. We do use the stats for the relevant IO size
2897 * if available which does lead to better estimates.
2898 */
2899 bucket = blk_mq_poll_stats_bkt(rq);
2900 if (bucket < 0)
2901 return ret;
2902
2903 if (q->poll_stat[bucket].nr_samples)
2904 ret = (q->poll_stat[bucket].mean + 1) / 2;
2905
2906 return ret;
2907 }
2908
2909 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2910 struct blk_mq_hw_ctx *hctx,
2911 struct request *rq)
2912 {
2913 struct hrtimer_sleeper hs;
2914 enum hrtimer_mode mode;
2915 unsigned int nsecs;
2916 ktime_t kt;
2917
2918 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2919 return false;
2920
2921 /*
2922 * poll_nsec can be:
2923 *
2924 * -1: don't ever hybrid sleep
2925 * 0: use half of prev avg
2926 * >0: use this specific value
2927 */
2928 if (q->poll_nsec == -1)
2929 return false;
2930 else if (q->poll_nsec > 0)
2931 nsecs = q->poll_nsec;
2932 else
2933 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2934
2935 if (!nsecs)
2936 return false;
2937
2938 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2939
2940 /*
2941 * This will be replaced with the stats tracking code, using
2942 * 'avg_completion_time / 2' as the pre-sleep target.
2943 */
2944 kt = nsecs;
2945
2946 mode = HRTIMER_MODE_REL;
2947 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2948 hrtimer_set_expires(&hs.timer, kt);
2949
2950 hrtimer_init_sleeper(&hs, current);
2951 do {
2952 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2953 break;
2954 set_current_state(TASK_UNINTERRUPTIBLE);
2955 hrtimer_start_expires(&hs.timer, mode);
2956 if (hs.task)
2957 io_schedule();
2958 hrtimer_cancel(&hs.timer);
2959 mode = HRTIMER_MODE_ABS;
2960 } while (hs.task && !signal_pending(current));
2961
2962 __set_current_state(TASK_RUNNING);
2963 destroy_hrtimer_on_stack(&hs.timer);
2964 return true;
2965 }
2966
2967 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2968 {
2969 struct request_queue *q = hctx->queue;
2970 long state;
2971
2972 /*
2973 * If we sleep, have the caller restart the poll loop to reset
2974 * the state. Like for the other success return cases, the
2975 * caller is responsible for checking if the IO completed. If
2976 * the IO isn't complete, we'll get called again and will go
2977 * straight to the busy poll loop.
2978 */
2979 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2980 return true;
2981
2982 hctx->poll_considered++;
2983
2984 state = current->state;
2985 while (!need_resched()) {
2986 int ret;
2987
2988 hctx->poll_invoked++;
2989
2990 ret = q->mq_ops->poll(hctx, rq->tag);
2991 if (ret > 0) {
2992 hctx->poll_success++;
2993 set_current_state(TASK_RUNNING);
2994 return true;
2995 }
2996
2997 if (signal_pending_state(state, current))
2998 set_current_state(TASK_RUNNING);
2999
3000 if (current->state == TASK_RUNNING)
3001 return true;
3002 if (ret < 0)
3003 break;
3004 cpu_relax();
3005 }
3006
3007 return false;
3008 }
3009
3010 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
3011 {
3012 struct blk_mq_hw_ctx *hctx;
3013 struct request *rq;
3014
3015 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3016 return false;
3017
3018 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3019 if (!blk_qc_t_is_internal(cookie))
3020 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3021 else {
3022 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3023 /*
3024 * With scheduling, if the request has completed, we'll
3025 * get a NULL return here, as we clear the sched tag when
3026 * that happens. The request still remains valid, like always,
3027 * so we should be safe with just the NULL check.
3028 */
3029 if (!rq)
3030 return false;
3031 }
3032
3033 return __blk_mq_poll(hctx, rq);
3034 }
3035
3036 static int __init blk_mq_init(void)
3037 {
3038 /*
3039 * See comment in block/blk.h rq_atomic_flags enum
3040 */
3041 BUILD_BUG_ON((REQ_ATOM_STARTED / BITS_PER_BYTE) !=
3042 (REQ_ATOM_COMPLETE / BITS_PER_BYTE));
3043
3044 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3045 blk_mq_hctx_notify_dead);
3046 return 0;
3047 }
3048 subsys_initcall(blk_mq_init);