]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-mq.c
d417804b7f8ffa4959331c8c12c9a07b43188ec1
[mirror_ubuntu-bionic-kernel.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
39
40 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 static void blk_mq_poll_stats_start(struct request_queue *q);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43
44 static int blk_mq_poll_stats_bkt(const struct request *rq)
45 {
46 int ddir, bytes, bucket;
47
48 ddir = rq_data_dir(rq);
49 bytes = blk_rq_bytes(rq);
50
51 bucket = ddir + 2*(ilog2(bytes) - 9);
52
53 if (bucket < 0)
54 return -1;
55 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57
58 return bucket;
59 }
60
61 /*
62 * Check if any of the ctx's have pending work in this hardware queue
63 */
64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65 {
66 return !list_empty_careful(&hctx->dispatch) ||
67 sbitmap_any_bit_set(&hctx->ctx_map) ||
68 blk_mq_sched_has_work(hctx);
69 }
70
71 /*
72 * Mark this ctx as having pending work in this hardware queue
73 */
74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75 struct blk_mq_ctx *ctx)
76 {
77 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
78 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 }
80
81 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
82 struct blk_mq_ctx *ctx)
83 {
84 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 }
86
87 struct mq_inflight {
88 struct hd_struct *part;
89 unsigned int *inflight;
90 };
91
92 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
93 struct request *rq, void *priv,
94 bool reserved)
95 {
96 struct mq_inflight *mi = priv;
97
98 if (test_bit(REQ_ATOM_STARTED, &rq->atomic_flags) &&
99 !test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
100 /*
101 * index[0] counts the specific partition that was asked
102 * for. index[1] counts the ones that are active on the
103 * whole device, so increment that if mi->part is indeed
104 * a partition, and not a whole device.
105 */
106 if (rq->part == mi->part)
107 mi->inflight[0]++;
108 if (mi->part->partno)
109 mi->inflight[1]++;
110 }
111 }
112
113 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
114 unsigned int inflight[2])
115 {
116 struct mq_inflight mi = { .part = part, .inflight = inflight, };
117
118 inflight[0] = inflight[1] = 0;
119 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
120 }
121
122 static void blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
123 struct request *rq, void *priv,
124 bool reserved)
125 {
126 struct mq_inflight *mi = priv;
127
128 if (rq->part == mi->part)
129 mi->inflight[rq_data_dir(rq)]++;
130 }
131
132 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
133 unsigned int inflight[2])
134 {
135 struct mq_inflight mi = { .part = part, .inflight = inflight, };
136
137 inflight[0] = inflight[1] = 0;
138 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
139 }
140
141 void blk_freeze_queue_start(struct request_queue *q)
142 {
143 int freeze_depth;
144
145 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
146 if (freeze_depth == 1) {
147 percpu_ref_kill(&q->q_usage_counter);
148 if (q->mq_ops)
149 blk_mq_run_hw_queues(q, false);
150 }
151 }
152 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
153
154 void blk_mq_freeze_queue_wait(struct request_queue *q)
155 {
156 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
157 }
158 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
159
160 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
161 unsigned long timeout)
162 {
163 return wait_event_timeout(q->mq_freeze_wq,
164 percpu_ref_is_zero(&q->q_usage_counter),
165 timeout);
166 }
167 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
168
169 /*
170 * Guarantee no request is in use, so we can change any data structure of
171 * the queue afterward.
172 */
173 void blk_freeze_queue(struct request_queue *q)
174 {
175 /*
176 * In the !blk_mq case we are only calling this to kill the
177 * q_usage_counter, otherwise this increases the freeze depth
178 * and waits for it to return to zero. For this reason there is
179 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
180 * exported to drivers as the only user for unfreeze is blk_mq.
181 */
182 blk_freeze_queue_start(q);
183 if (!q->mq_ops)
184 blk_drain_queue(q);
185 blk_mq_freeze_queue_wait(q);
186 }
187
188 void blk_mq_freeze_queue(struct request_queue *q)
189 {
190 /*
191 * ...just an alias to keep freeze and unfreeze actions balanced
192 * in the blk_mq_* namespace
193 */
194 blk_freeze_queue(q);
195 }
196 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
197
198 void blk_mq_unfreeze_queue(struct request_queue *q)
199 {
200 int freeze_depth;
201
202 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
203 WARN_ON_ONCE(freeze_depth < 0);
204 if (!freeze_depth) {
205 percpu_ref_reinit(&q->q_usage_counter);
206 wake_up_all(&q->mq_freeze_wq);
207 }
208 }
209 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
210
211 /*
212 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
213 * mpt3sas driver such that this function can be removed.
214 */
215 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
216 {
217 unsigned long flags;
218
219 spin_lock_irqsave(q->queue_lock, flags);
220 queue_flag_set(QUEUE_FLAG_QUIESCED, q);
221 spin_unlock_irqrestore(q->queue_lock, flags);
222 }
223 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
224
225 /**
226 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
227 * @q: request queue.
228 *
229 * Note: this function does not prevent that the struct request end_io()
230 * callback function is invoked. Once this function is returned, we make
231 * sure no dispatch can happen until the queue is unquiesced via
232 * blk_mq_unquiesce_queue().
233 */
234 void blk_mq_quiesce_queue(struct request_queue *q)
235 {
236 struct blk_mq_hw_ctx *hctx;
237 unsigned int i;
238 bool rcu = false;
239
240 blk_mq_quiesce_queue_nowait(q);
241
242 queue_for_each_hw_ctx(q, hctx, i) {
243 if (hctx->flags & BLK_MQ_F_BLOCKING)
244 synchronize_srcu(hctx->queue_rq_srcu);
245 else
246 rcu = true;
247 }
248 if (rcu)
249 synchronize_rcu();
250 }
251 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
252
253 /*
254 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
255 * @q: request queue.
256 *
257 * This function recovers queue into the state before quiescing
258 * which is done by blk_mq_quiesce_queue.
259 */
260 void blk_mq_unquiesce_queue(struct request_queue *q)
261 {
262 unsigned long flags;
263
264 spin_lock_irqsave(q->queue_lock, flags);
265 queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
266 spin_unlock_irqrestore(q->queue_lock, flags);
267
268 /* dispatch requests which are inserted during quiescing */
269 blk_mq_run_hw_queues(q, true);
270 }
271 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
272
273 void blk_mq_wake_waiters(struct request_queue *q)
274 {
275 struct blk_mq_hw_ctx *hctx;
276 unsigned int i;
277
278 queue_for_each_hw_ctx(q, hctx, i)
279 if (blk_mq_hw_queue_mapped(hctx))
280 blk_mq_tag_wakeup_all(hctx->tags, true);
281 }
282
283 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
284 {
285 return blk_mq_has_free_tags(hctx->tags);
286 }
287 EXPORT_SYMBOL(blk_mq_can_queue);
288
289 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
290 unsigned int tag, unsigned int op)
291 {
292 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
293 struct request *rq = tags->static_rqs[tag];
294
295 rq->rq_flags = 0;
296
297 if (data->flags & BLK_MQ_REQ_INTERNAL) {
298 rq->tag = -1;
299 rq->internal_tag = tag;
300 } else {
301 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
302 rq->rq_flags = RQF_MQ_INFLIGHT;
303 atomic_inc(&data->hctx->nr_active);
304 }
305 rq->tag = tag;
306 rq->internal_tag = -1;
307 data->hctx->tags->rqs[rq->tag] = rq;
308 }
309
310 INIT_LIST_HEAD(&rq->queuelist);
311 /* csd/requeue_work/fifo_time is initialized before use */
312 rq->q = data->q;
313 rq->mq_ctx = data->ctx;
314 rq->cmd_flags = op;
315 if (data->flags & BLK_MQ_REQ_PREEMPT)
316 rq->rq_flags |= RQF_PREEMPT;
317 if (blk_queue_io_stat(data->q))
318 rq->rq_flags |= RQF_IO_STAT;
319 /* do not touch atomic flags, it needs atomic ops against the timer */
320 rq->cpu = -1;
321 INIT_HLIST_NODE(&rq->hash);
322 RB_CLEAR_NODE(&rq->rb_node);
323 rq->rq_disk = NULL;
324 rq->part = NULL;
325 rq->start_time = jiffies;
326 #ifdef CONFIG_BLK_CGROUP
327 rq->rl = NULL;
328 set_start_time_ns(rq);
329 rq->io_start_time_ns = 0;
330 #endif
331 rq->nr_phys_segments = 0;
332 #if defined(CONFIG_BLK_DEV_INTEGRITY)
333 rq->nr_integrity_segments = 0;
334 #endif
335 rq->special = NULL;
336 /* tag was already set */
337 rq->extra_len = 0;
338
339 INIT_LIST_HEAD(&rq->timeout_list);
340 rq->timeout = 0;
341
342 rq->end_io = NULL;
343 rq->end_io_data = NULL;
344 rq->next_rq = NULL;
345
346 data->ctx->rq_dispatched[op_is_sync(op)]++;
347 return rq;
348 }
349
350 static struct request *blk_mq_get_request(struct request_queue *q,
351 struct bio *bio, unsigned int op,
352 struct blk_mq_alloc_data *data)
353 {
354 struct elevator_queue *e = q->elevator;
355 struct request *rq;
356 unsigned int tag;
357 bool put_ctx_on_error = false;
358
359 blk_queue_enter_live(q);
360 data->q = q;
361 if (likely(!data->ctx)) {
362 data->ctx = blk_mq_get_ctx(q);
363 put_ctx_on_error = true;
364 }
365 if (likely(!data->hctx))
366 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
367 if (op & REQ_NOWAIT)
368 data->flags |= BLK_MQ_REQ_NOWAIT;
369
370 if (e) {
371 data->flags |= BLK_MQ_REQ_INTERNAL;
372
373 /*
374 * Flush requests are special and go directly to the
375 * dispatch list.
376 */
377 if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
378 e->type->ops.mq.limit_depth(op, data);
379 } else {
380 blk_mq_tag_busy(data->hctx);
381 }
382
383 tag = blk_mq_get_tag(data);
384 if (tag == BLK_MQ_TAG_FAIL) {
385 if (put_ctx_on_error) {
386 blk_mq_put_ctx(data->ctx);
387 data->ctx = NULL;
388 }
389 blk_queue_exit(q);
390 return NULL;
391 }
392
393 rq = blk_mq_rq_ctx_init(data, tag, op);
394 if (!op_is_flush(op)) {
395 rq->elv.icq = NULL;
396 if (e && e->type->ops.mq.prepare_request) {
397 if (e->type->icq_cache && rq_ioc(bio))
398 blk_mq_sched_assign_ioc(rq, bio);
399
400 e->type->ops.mq.prepare_request(rq, bio);
401 rq->rq_flags |= RQF_ELVPRIV;
402 }
403 }
404 data->hctx->queued++;
405 return rq;
406 }
407
408 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
409 blk_mq_req_flags_t flags)
410 {
411 struct blk_mq_alloc_data alloc_data = { .flags = flags };
412 struct request *rq;
413 int ret;
414
415 ret = blk_queue_enter(q, flags);
416 if (ret)
417 return ERR_PTR(ret);
418
419 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
420 blk_queue_exit(q);
421
422 if (!rq)
423 return ERR_PTR(-EWOULDBLOCK);
424
425 blk_mq_put_ctx(alloc_data.ctx);
426
427 rq->__data_len = 0;
428 rq->__sector = (sector_t) -1;
429 rq->bio = rq->biotail = NULL;
430 return rq;
431 }
432 EXPORT_SYMBOL(blk_mq_alloc_request);
433
434 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
435 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
436 {
437 struct blk_mq_alloc_data alloc_data = { .flags = flags };
438 struct request *rq;
439 unsigned int cpu;
440 int ret;
441
442 /*
443 * If the tag allocator sleeps we could get an allocation for a
444 * different hardware context. No need to complicate the low level
445 * allocator for this for the rare use case of a command tied to
446 * a specific queue.
447 */
448 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
449 return ERR_PTR(-EINVAL);
450
451 if (hctx_idx >= q->nr_hw_queues)
452 return ERR_PTR(-EIO);
453
454 ret = blk_queue_enter(q, flags);
455 if (ret)
456 return ERR_PTR(ret);
457
458 /*
459 * Check if the hardware context is actually mapped to anything.
460 * If not tell the caller that it should skip this queue.
461 */
462 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
463 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
464 blk_queue_exit(q);
465 return ERR_PTR(-EXDEV);
466 }
467 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
468 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
469
470 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
471 blk_queue_exit(q);
472
473 if (!rq)
474 return ERR_PTR(-EWOULDBLOCK);
475
476 return rq;
477 }
478 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
479
480 void blk_mq_free_request(struct request *rq)
481 {
482 struct request_queue *q = rq->q;
483 struct elevator_queue *e = q->elevator;
484 struct blk_mq_ctx *ctx = rq->mq_ctx;
485 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
486 const int sched_tag = rq->internal_tag;
487
488 if (rq->rq_flags & RQF_ELVPRIV) {
489 if (e && e->type->ops.mq.finish_request)
490 e->type->ops.mq.finish_request(rq);
491 if (rq->elv.icq) {
492 put_io_context(rq->elv.icq->ioc);
493 rq->elv.icq = NULL;
494 }
495 }
496
497 ctx->rq_completed[rq_is_sync(rq)]++;
498 if (rq->rq_flags & RQF_MQ_INFLIGHT)
499 atomic_dec(&hctx->nr_active);
500
501 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
502 laptop_io_completion(q->backing_dev_info);
503
504 wbt_done(q->rq_wb, &rq->issue_stat);
505
506 if (blk_rq_rl(rq))
507 blk_put_rl(blk_rq_rl(rq));
508
509 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
510 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
511 if (rq->tag != -1)
512 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
513 if (sched_tag != -1)
514 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
515 blk_mq_sched_restart(hctx);
516 blk_queue_exit(q);
517 }
518 EXPORT_SYMBOL_GPL(blk_mq_free_request);
519
520 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
521 {
522 blk_account_io_done(rq);
523
524 if (rq->end_io) {
525 wbt_done(rq->q->rq_wb, &rq->issue_stat);
526 rq->end_io(rq, error);
527 } else {
528 if (unlikely(blk_bidi_rq(rq)))
529 blk_mq_free_request(rq->next_rq);
530 blk_mq_free_request(rq);
531 }
532 }
533 EXPORT_SYMBOL(__blk_mq_end_request);
534
535 void blk_mq_end_request(struct request *rq, blk_status_t error)
536 {
537 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
538 BUG();
539 __blk_mq_end_request(rq, error);
540 }
541 EXPORT_SYMBOL(blk_mq_end_request);
542
543 static void __blk_mq_complete_request_remote(void *data)
544 {
545 struct request *rq = data;
546
547 rq->q->softirq_done_fn(rq);
548 }
549
550 static void __blk_mq_complete_request(struct request *rq)
551 {
552 struct blk_mq_ctx *ctx = rq->mq_ctx;
553 bool shared = false;
554 int cpu;
555
556 if (rq->internal_tag != -1)
557 blk_mq_sched_completed_request(rq);
558 if (rq->rq_flags & RQF_STATS) {
559 blk_mq_poll_stats_start(rq->q);
560 blk_stat_add(rq);
561 }
562
563 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
564 rq->q->softirq_done_fn(rq);
565 return;
566 }
567
568 cpu = get_cpu();
569 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
570 shared = cpus_share_cache(cpu, ctx->cpu);
571
572 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
573 rq->csd.func = __blk_mq_complete_request_remote;
574 rq->csd.info = rq;
575 rq->csd.flags = 0;
576 smp_call_function_single_async(ctx->cpu, &rq->csd);
577 } else {
578 rq->q->softirq_done_fn(rq);
579 }
580 put_cpu();
581 }
582
583 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
584 {
585 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
586 rcu_read_unlock();
587 else
588 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
589 }
590
591 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
592 {
593 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
594 rcu_read_lock();
595 else
596 *srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
597 }
598
599 /**
600 * blk_mq_complete_request - end I/O on a request
601 * @rq: the request being processed
602 *
603 * Description:
604 * Ends all I/O on a request. It does not handle partial completions.
605 * The actual completion happens out-of-order, through a IPI handler.
606 **/
607 void blk_mq_complete_request(struct request *rq)
608 {
609 struct request_queue *q = rq->q;
610
611 if (unlikely(blk_should_fake_timeout(q)))
612 return;
613 if (!blk_mark_rq_complete(rq))
614 __blk_mq_complete_request(rq);
615 }
616 EXPORT_SYMBOL(blk_mq_complete_request);
617
618 int blk_mq_request_started(struct request *rq)
619 {
620 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
621 }
622 EXPORT_SYMBOL_GPL(blk_mq_request_started);
623
624 void blk_mq_start_request(struct request *rq)
625 {
626 struct request_queue *q = rq->q;
627
628 blk_mq_sched_started_request(rq);
629
630 trace_block_rq_issue(q, rq);
631
632 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
633 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
634 rq->rq_flags |= RQF_STATS;
635 wbt_issue(q->rq_wb, &rq->issue_stat);
636 }
637
638 blk_add_timer(rq);
639
640 WARN_ON_ONCE(test_bit(REQ_ATOM_STARTED, &rq->atomic_flags));
641
642 /*
643 * Mark us as started and clear complete. Complete might have been
644 * set if requeue raced with timeout, which then marked it as
645 * complete. So be sure to clear complete again when we start
646 * the request, otherwise we'll ignore the completion event.
647 *
648 * Ensure that ->deadline is visible before we set STARTED, such that
649 * blk_mq_check_expired() is guaranteed to observe our ->deadline when
650 * it observes STARTED.
651 */
652 smp_wmb();
653 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
654 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
655 /*
656 * Coherence order guarantees these consecutive stores to a
657 * single variable propagate in the specified order. Thus the
658 * clear_bit() is ordered _after_ the set bit. See
659 * blk_mq_check_expired().
660 *
661 * (the bits must be part of the same byte for this to be
662 * true).
663 */
664 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
665 }
666
667 if (q->dma_drain_size && blk_rq_bytes(rq)) {
668 /*
669 * Make sure space for the drain appears. We know we can do
670 * this because max_hw_segments has been adjusted to be one
671 * fewer than the device can handle.
672 */
673 rq->nr_phys_segments++;
674 }
675 }
676 EXPORT_SYMBOL(blk_mq_start_request);
677
678 /*
679 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
680 * flag isn't set yet, so there may be race with timeout handler,
681 * but given rq->deadline is just set in .queue_rq() under
682 * this situation, the race won't be possible in reality because
683 * rq->timeout should be set as big enough to cover the window
684 * between blk_mq_start_request() called from .queue_rq() and
685 * clearing REQ_ATOM_STARTED here.
686 */
687 static void __blk_mq_requeue_request(struct request *rq)
688 {
689 struct request_queue *q = rq->q;
690
691 blk_mq_put_driver_tag(rq);
692
693 trace_block_rq_requeue(q, rq);
694 wbt_requeue(q->rq_wb, &rq->issue_stat);
695
696 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
697 if (q->dma_drain_size && blk_rq_bytes(rq))
698 rq->nr_phys_segments--;
699 }
700 }
701
702 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
703 {
704 __blk_mq_requeue_request(rq);
705
706 /* this request will be re-inserted to io scheduler queue */
707 blk_mq_sched_requeue_request(rq);
708
709 BUG_ON(blk_queued_rq(rq));
710 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
711 }
712 EXPORT_SYMBOL(blk_mq_requeue_request);
713
714 static void blk_mq_requeue_work(struct work_struct *work)
715 {
716 struct request_queue *q =
717 container_of(work, struct request_queue, requeue_work.work);
718 LIST_HEAD(rq_list);
719 struct request *rq, *next;
720
721 spin_lock_irq(&q->requeue_lock);
722 list_splice_init(&q->requeue_list, &rq_list);
723 spin_unlock_irq(&q->requeue_lock);
724
725 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
726 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
727 continue;
728
729 rq->rq_flags &= ~RQF_SOFTBARRIER;
730 list_del_init(&rq->queuelist);
731 /*
732 * If RQF_DONTPREP, rq has contained some driver specific
733 * data, so insert it to hctx dispatch list to avoid any
734 * merge.
735 */
736 if (rq->rq_flags & RQF_DONTPREP)
737 blk_mq_request_bypass_insert(rq, false);
738 else
739 blk_mq_sched_insert_request(rq, true, false, false, true);
740 }
741
742 while (!list_empty(&rq_list)) {
743 rq = list_entry(rq_list.next, struct request, queuelist);
744 list_del_init(&rq->queuelist);
745 blk_mq_sched_insert_request(rq, false, false, false, true);
746 }
747
748 blk_mq_run_hw_queues(q, false);
749 }
750
751 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
752 bool kick_requeue_list)
753 {
754 struct request_queue *q = rq->q;
755 unsigned long flags;
756
757 /*
758 * We abuse this flag that is otherwise used by the I/O scheduler to
759 * request head insertion from the workqueue.
760 */
761 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
762
763 spin_lock_irqsave(&q->requeue_lock, flags);
764 if (at_head) {
765 rq->rq_flags |= RQF_SOFTBARRIER;
766 list_add(&rq->queuelist, &q->requeue_list);
767 } else {
768 list_add_tail(&rq->queuelist, &q->requeue_list);
769 }
770 spin_unlock_irqrestore(&q->requeue_lock, flags);
771
772 if (kick_requeue_list)
773 blk_mq_kick_requeue_list(q);
774 }
775 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
776
777 void blk_mq_kick_requeue_list(struct request_queue *q)
778 {
779 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
780 }
781 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
782
783 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
784 unsigned long msecs)
785 {
786 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
787 msecs_to_jiffies(msecs));
788 }
789 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
790
791 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
792 {
793 if (tag < tags->nr_tags) {
794 prefetch(tags->rqs[tag]);
795 return tags->rqs[tag];
796 }
797
798 return NULL;
799 }
800 EXPORT_SYMBOL(blk_mq_tag_to_rq);
801
802 struct blk_mq_timeout_data {
803 unsigned long next;
804 unsigned int next_set;
805 };
806
807 void blk_mq_rq_timed_out(struct request *req, bool reserved)
808 {
809 const struct blk_mq_ops *ops = req->q->mq_ops;
810 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
811
812 /*
813 * We know that complete is set at this point. If STARTED isn't set
814 * anymore, then the request isn't active and the "timeout" should
815 * just be ignored. This can happen due to the bitflag ordering.
816 * Timeout first checks if STARTED is set, and if it is, assumes
817 * the request is active. But if we race with completion, then
818 * both flags will get cleared. So check here again, and ignore
819 * a timeout event with a request that isn't active.
820 */
821 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
822 return;
823
824 if (ops->timeout)
825 ret = ops->timeout(req, reserved);
826
827 switch (ret) {
828 case BLK_EH_HANDLED:
829 __blk_mq_complete_request(req);
830 break;
831 case BLK_EH_RESET_TIMER:
832 blk_add_timer(req);
833 blk_clear_rq_complete(req);
834 break;
835 case BLK_EH_NOT_HANDLED:
836 break;
837 default:
838 printk(KERN_ERR "block: bad eh return: %d\n", ret);
839 break;
840 }
841 }
842
843 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
844 struct request *rq, void *priv, bool reserved)
845 {
846 struct blk_mq_timeout_data *data = priv;
847 unsigned long deadline;
848
849 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
850 return;
851
852 /*
853 * Ensures that if we see STARTED we must also see our
854 * up-to-date deadline, see blk_mq_start_request().
855 */
856 smp_rmb();
857
858 deadline = READ_ONCE(rq->deadline);
859
860 /*
861 * The rq being checked may have been freed and reallocated
862 * out already here, we avoid this race by checking rq->deadline
863 * and REQ_ATOM_COMPLETE flag together:
864 *
865 * - if rq->deadline is observed as new value because of
866 * reusing, the rq won't be timed out because of timing.
867 * - if rq->deadline is observed as previous value,
868 * REQ_ATOM_COMPLETE flag won't be cleared in reuse path
869 * because we put a barrier between setting rq->deadline
870 * and clearing the flag in blk_mq_start_request(), so
871 * this rq won't be timed out too.
872 */
873 if (time_after_eq(jiffies, deadline)) {
874 if (!blk_mark_rq_complete(rq)) {
875 /*
876 * Again coherence order ensures that consecutive reads
877 * from the same variable must be in that order. This
878 * ensures that if we see COMPLETE clear, we must then
879 * see STARTED set and we'll ignore this timeout.
880 *
881 * (There's also the MB implied by the test_and_clear())
882 */
883 blk_mq_rq_timed_out(rq, reserved);
884 }
885 } else if (!data->next_set || time_after(data->next, deadline)) {
886 data->next = deadline;
887 data->next_set = 1;
888 }
889 }
890
891 static void blk_mq_timeout_work(struct work_struct *work)
892 {
893 struct request_queue *q =
894 container_of(work, struct request_queue, timeout_work);
895 struct blk_mq_timeout_data data = {
896 .next = 0,
897 .next_set = 0,
898 };
899 int i;
900
901 /* A deadlock might occur if a request is stuck requiring a
902 * timeout at the same time a queue freeze is waiting
903 * completion, since the timeout code would not be able to
904 * acquire the queue reference here.
905 *
906 * That's why we don't use blk_queue_enter here; instead, we use
907 * percpu_ref_tryget directly, because we need to be able to
908 * obtain a reference even in the short window between the queue
909 * starting to freeze, by dropping the first reference in
910 * blk_freeze_queue_start, and the moment the last request is
911 * consumed, marked by the instant q_usage_counter reaches
912 * zero.
913 */
914 if (!percpu_ref_tryget(&q->q_usage_counter))
915 return;
916
917 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
918
919 if (data.next_set) {
920 data.next = blk_rq_timeout(round_jiffies_up(data.next));
921 mod_timer(&q->timeout, data.next);
922 } else {
923 struct blk_mq_hw_ctx *hctx;
924
925 queue_for_each_hw_ctx(q, hctx, i) {
926 /* the hctx may be unmapped, so check it here */
927 if (blk_mq_hw_queue_mapped(hctx))
928 blk_mq_tag_idle(hctx);
929 }
930 }
931 blk_queue_exit(q);
932 }
933
934 struct flush_busy_ctx_data {
935 struct blk_mq_hw_ctx *hctx;
936 struct list_head *list;
937 };
938
939 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
940 {
941 struct flush_busy_ctx_data *flush_data = data;
942 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
943 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
944
945 sbitmap_clear_bit(sb, bitnr);
946 spin_lock(&ctx->lock);
947 list_splice_tail_init(&ctx->rq_list, flush_data->list);
948 spin_unlock(&ctx->lock);
949 return true;
950 }
951
952 /*
953 * Process software queues that have been marked busy, splicing them
954 * to the for-dispatch
955 */
956 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
957 {
958 struct flush_busy_ctx_data data = {
959 .hctx = hctx,
960 .list = list,
961 };
962
963 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
964 }
965 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
966
967 struct dispatch_rq_data {
968 struct blk_mq_hw_ctx *hctx;
969 struct request *rq;
970 };
971
972 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
973 void *data)
974 {
975 struct dispatch_rq_data *dispatch_data = data;
976 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
977 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
978
979 spin_lock(&ctx->lock);
980 if (unlikely(!list_empty(&ctx->rq_list))) {
981 dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
982 list_del_init(&dispatch_data->rq->queuelist);
983 if (list_empty(&ctx->rq_list))
984 sbitmap_clear_bit(sb, bitnr);
985 }
986 spin_unlock(&ctx->lock);
987
988 return !dispatch_data->rq;
989 }
990
991 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
992 struct blk_mq_ctx *start)
993 {
994 unsigned off = start ? start->index_hw : 0;
995 struct dispatch_rq_data data = {
996 .hctx = hctx,
997 .rq = NULL,
998 };
999
1000 __sbitmap_for_each_set(&hctx->ctx_map, off,
1001 dispatch_rq_from_ctx, &data);
1002
1003 return data.rq;
1004 }
1005
1006 static inline unsigned int queued_to_index(unsigned int queued)
1007 {
1008 if (!queued)
1009 return 0;
1010
1011 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1012 }
1013
1014 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
1015 bool wait)
1016 {
1017 struct blk_mq_alloc_data data = {
1018 .q = rq->q,
1019 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
1020 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
1021 };
1022 bool shared;
1023
1024 might_sleep_if(wait);
1025
1026 if (rq->tag != -1)
1027 goto done;
1028
1029 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1030 data.flags |= BLK_MQ_REQ_RESERVED;
1031
1032 shared = blk_mq_tag_busy(data.hctx);
1033 rq->tag = blk_mq_get_tag(&data);
1034 if (rq->tag >= 0) {
1035 if (shared) {
1036 rq->rq_flags |= RQF_MQ_INFLIGHT;
1037 atomic_inc(&data.hctx->nr_active);
1038 }
1039 data.hctx->tags->rqs[rq->tag] = rq;
1040 }
1041
1042 done:
1043 if (hctx)
1044 *hctx = data.hctx;
1045 return rq->tag != -1;
1046 }
1047
1048 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1049 int flags, void *key)
1050 {
1051 struct blk_mq_hw_ctx *hctx;
1052
1053 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1054
1055 list_del_init(&wait->entry);
1056 blk_mq_run_hw_queue(hctx, true);
1057 return 1;
1058 }
1059
1060 /*
1061 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1062 * the tag wakeups. For non-shared tags, we can simply mark us nedeing a
1063 * restart. For both caes, take care to check the condition again after
1064 * marking us as waiting.
1065 */
1066 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx,
1067 struct request *rq)
1068 {
1069 struct blk_mq_hw_ctx *this_hctx = *hctx;
1070 bool shared_tags = (this_hctx->flags & BLK_MQ_F_TAG_SHARED) != 0;
1071 struct sbq_wait_state *ws;
1072 wait_queue_entry_t *wait;
1073 bool ret;
1074
1075 if (!shared_tags) {
1076 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state))
1077 set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state);
1078 } else {
1079 wait = &this_hctx->dispatch_wait;
1080 if (!list_empty_careful(&wait->entry))
1081 return false;
1082
1083 spin_lock(&this_hctx->lock);
1084 if (!list_empty(&wait->entry)) {
1085 spin_unlock(&this_hctx->lock);
1086 return false;
1087 }
1088
1089 ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
1090 add_wait_queue(&ws->wait, wait);
1091 }
1092
1093 /*
1094 * It's possible that a tag was freed in the window between the
1095 * allocation failure and adding the hardware queue to the wait
1096 * queue.
1097 */
1098 ret = blk_mq_get_driver_tag(rq, hctx, false);
1099
1100 if (!shared_tags) {
1101 /*
1102 * Don't clear RESTART here, someone else could have set it.
1103 * At most this will cost an extra queue run.
1104 */
1105 return ret;
1106 } else {
1107 if (!ret) {
1108 spin_unlock(&this_hctx->lock);
1109 return false;
1110 }
1111
1112 /*
1113 * We got a tag, remove ourselves from the wait queue to ensure
1114 * someone else gets the wakeup.
1115 */
1116 spin_lock_irq(&ws->wait.lock);
1117 list_del_init(&wait->entry);
1118 spin_unlock_irq(&ws->wait.lock);
1119 spin_unlock(&this_hctx->lock);
1120 return true;
1121 }
1122 }
1123
1124 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1125 bool got_budget)
1126 {
1127 struct blk_mq_hw_ctx *hctx;
1128 struct request *rq, *nxt;
1129 bool no_tag = false;
1130 int errors, queued;
1131
1132 if (list_empty(list))
1133 return false;
1134
1135 WARN_ON(!list_is_singular(list) && got_budget);
1136
1137 /*
1138 * Now process all the entries, sending them to the driver.
1139 */
1140 errors = queued = 0;
1141 do {
1142 struct blk_mq_queue_data bd;
1143 blk_status_t ret;
1144
1145 rq = list_first_entry(list, struct request, queuelist);
1146
1147 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
1148 if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1149 break;
1150
1151 if (!blk_mq_get_driver_tag(rq, NULL, false)) {
1152 /*
1153 * The initial allocation attempt failed, so we need to
1154 * rerun the hardware queue when a tag is freed. The
1155 * waitqueue takes care of that. If the queue is run
1156 * before we add this entry back on the dispatch list,
1157 * we'll re-run it below.
1158 */
1159 if (!blk_mq_mark_tag_wait(&hctx, rq)) {
1160 blk_mq_put_dispatch_budget(hctx);
1161 /*
1162 * For non-shared tags, the RESTART check
1163 * will suffice.
1164 */
1165 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1166 no_tag = true;
1167 break;
1168 }
1169 }
1170
1171 list_del_init(&rq->queuelist);
1172
1173 bd.rq = rq;
1174
1175 /*
1176 * Flag last if we have no more requests, or if we have more
1177 * but can't assign a driver tag to it.
1178 */
1179 if (list_empty(list))
1180 bd.last = true;
1181 else {
1182 nxt = list_first_entry(list, struct request, queuelist);
1183 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1184 }
1185
1186 ret = q->mq_ops->queue_rq(hctx, &bd);
1187 if (ret == BLK_STS_RESOURCE) {
1188 /*
1189 * If an I/O scheduler has been configured and we got a
1190 * driver tag for the next request already, free it
1191 * again.
1192 */
1193 if (!list_empty(list)) {
1194 nxt = list_first_entry(list, struct request, queuelist);
1195 blk_mq_put_driver_tag(nxt);
1196 }
1197 list_add(&rq->queuelist, list);
1198 __blk_mq_requeue_request(rq);
1199 break;
1200 }
1201
1202 if (unlikely(ret != BLK_STS_OK)) {
1203 errors++;
1204 blk_mq_end_request(rq, BLK_STS_IOERR);
1205 continue;
1206 }
1207
1208 queued++;
1209 } while (!list_empty(list));
1210
1211 hctx->dispatched[queued_to_index(queued)]++;
1212
1213 /*
1214 * Any items that need requeuing? Stuff them into hctx->dispatch,
1215 * that is where we will continue on next queue run.
1216 */
1217 if (!list_empty(list)) {
1218 spin_lock(&hctx->lock);
1219 list_splice_init(list, &hctx->dispatch);
1220 spin_unlock(&hctx->lock);
1221
1222 /*
1223 * If SCHED_RESTART was set by the caller of this function and
1224 * it is no longer set that means that it was cleared by another
1225 * thread and hence that a queue rerun is needed.
1226 *
1227 * If 'no_tag' is set, that means that we failed getting
1228 * a driver tag with an I/O scheduler attached. If our dispatch
1229 * waitqueue is no longer active, ensure that we run the queue
1230 * AFTER adding our entries back to the list.
1231 *
1232 * If no I/O scheduler has been configured it is possible that
1233 * the hardware queue got stopped and restarted before requests
1234 * were pushed back onto the dispatch list. Rerun the queue to
1235 * avoid starvation. Notes:
1236 * - blk_mq_run_hw_queue() checks whether or not a queue has
1237 * been stopped before rerunning a queue.
1238 * - Some but not all block drivers stop a queue before
1239 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1240 * and dm-rq.
1241 */
1242 if (!blk_mq_sched_needs_restart(hctx) ||
1243 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1244 blk_mq_run_hw_queue(hctx, true);
1245 }
1246
1247 return (queued + errors) != 0;
1248 }
1249
1250 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1251 {
1252 int srcu_idx;
1253
1254 /*
1255 * We should be running this queue from one of the CPUs that
1256 * are mapped to it.
1257 *
1258 * There are at least two related races now between setting
1259 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1260 * __blk_mq_run_hw_queue():
1261 *
1262 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1263 * but later it becomes online, then this warning is harmless
1264 * at all
1265 *
1266 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1267 * but later it becomes offline, then the warning can't be
1268 * triggered, and we depend on blk-mq timeout handler to
1269 * handle dispatched requests to this hctx
1270 */
1271 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1272 cpu_online(hctx->next_cpu)) {
1273 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1274 raw_smp_processor_id(),
1275 cpumask_empty(hctx->cpumask) ? "inactive": "active");
1276 dump_stack();
1277 }
1278
1279 /*
1280 * We can't run the queue inline with ints disabled. Ensure that
1281 * we catch bad users of this early.
1282 */
1283 WARN_ON_ONCE(in_interrupt());
1284
1285 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1286
1287 hctx_lock(hctx, &srcu_idx);
1288 blk_mq_sched_dispatch_requests(hctx);
1289 hctx_unlock(hctx, srcu_idx);
1290 }
1291
1292 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1293 {
1294 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1295
1296 if (cpu >= nr_cpu_ids)
1297 cpu = cpumask_first(hctx->cpumask);
1298 return cpu;
1299 }
1300
1301 /*
1302 * It'd be great if the workqueue API had a way to pass
1303 * in a mask and had some smarts for more clever placement.
1304 * For now we just round-robin here, switching for every
1305 * BLK_MQ_CPU_WORK_BATCH queued items.
1306 */
1307 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1308 {
1309 bool tried = false;
1310 int next_cpu = hctx->next_cpu;
1311
1312 if (hctx->queue->nr_hw_queues == 1)
1313 return WORK_CPU_UNBOUND;
1314
1315 if (--hctx->next_cpu_batch <= 0) {
1316 select_cpu:
1317 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1318 cpu_online_mask);
1319 if (next_cpu >= nr_cpu_ids)
1320 next_cpu = blk_mq_first_mapped_cpu(hctx);
1321 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1322 }
1323
1324 /*
1325 * Do unbound schedule if we can't find a online CPU for this hctx,
1326 * and it should only happen in the path of handling CPU DEAD.
1327 */
1328 if (!cpu_online(next_cpu)) {
1329 if (!tried) {
1330 tried = true;
1331 goto select_cpu;
1332 }
1333
1334 /*
1335 * Make sure to re-select CPU next time once after CPUs
1336 * in hctx->cpumask become online again.
1337 */
1338 hctx->next_cpu = next_cpu;
1339 hctx->next_cpu_batch = 1;
1340 return WORK_CPU_UNBOUND;
1341 }
1342
1343 hctx->next_cpu = next_cpu;
1344 return next_cpu;
1345 }
1346
1347 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1348 unsigned long msecs)
1349 {
1350 if (unlikely(blk_mq_hctx_stopped(hctx)))
1351 return;
1352
1353 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1354 int cpu = get_cpu();
1355 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1356 __blk_mq_run_hw_queue(hctx);
1357 put_cpu();
1358 return;
1359 }
1360
1361 put_cpu();
1362 }
1363
1364 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1365 msecs_to_jiffies(msecs));
1366 }
1367
1368 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1369 {
1370 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1371 }
1372 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1373
1374 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1375 {
1376 int srcu_idx;
1377 bool need_run;
1378
1379 /*
1380 * When queue is quiesced, we may be switching io scheduler, or
1381 * updating nr_hw_queues, or other things, and we can't run queue
1382 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1383 *
1384 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1385 * quiesced.
1386 */
1387 hctx_lock(hctx, &srcu_idx);
1388 need_run = !blk_queue_quiesced(hctx->queue) &&
1389 blk_mq_hctx_has_pending(hctx);
1390 hctx_unlock(hctx, srcu_idx);
1391
1392 if (need_run) {
1393 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1394 return true;
1395 }
1396
1397 return false;
1398 }
1399 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1400
1401 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1402 {
1403 struct blk_mq_hw_ctx *hctx;
1404 int i;
1405
1406 queue_for_each_hw_ctx(q, hctx, i) {
1407 if (blk_mq_hctx_stopped(hctx))
1408 continue;
1409
1410 blk_mq_run_hw_queue(hctx, async);
1411 }
1412 }
1413 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1414
1415 /**
1416 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1417 * @q: request queue.
1418 *
1419 * The caller is responsible for serializing this function against
1420 * blk_mq_{start,stop}_hw_queue().
1421 */
1422 bool blk_mq_queue_stopped(struct request_queue *q)
1423 {
1424 struct blk_mq_hw_ctx *hctx;
1425 int i;
1426
1427 queue_for_each_hw_ctx(q, hctx, i)
1428 if (blk_mq_hctx_stopped(hctx))
1429 return true;
1430
1431 return false;
1432 }
1433 EXPORT_SYMBOL(blk_mq_queue_stopped);
1434
1435 /*
1436 * This function is often used for pausing .queue_rq() by driver when
1437 * there isn't enough resource or some conditions aren't satisfied, and
1438 * BLK_STS_RESOURCE is usually returned.
1439 *
1440 * We do not guarantee that dispatch can be drained or blocked
1441 * after blk_mq_stop_hw_queue() returns. Please use
1442 * blk_mq_quiesce_queue() for that requirement.
1443 */
1444 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1445 {
1446 cancel_delayed_work(&hctx->run_work);
1447
1448 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1449 }
1450 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1451
1452 /*
1453 * This function is often used for pausing .queue_rq() by driver when
1454 * there isn't enough resource or some conditions aren't satisfied, and
1455 * BLK_STS_RESOURCE is usually returned.
1456 *
1457 * We do not guarantee that dispatch can be drained or blocked
1458 * after blk_mq_stop_hw_queues() returns. Please use
1459 * blk_mq_quiesce_queue() for that requirement.
1460 */
1461 void blk_mq_stop_hw_queues(struct request_queue *q)
1462 {
1463 struct blk_mq_hw_ctx *hctx;
1464 int i;
1465
1466 queue_for_each_hw_ctx(q, hctx, i)
1467 blk_mq_stop_hw_queue(hctx);
1468 }
1469 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1470
1471 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1472 {
1473 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1474
1475 blk_mq_run_hw_queue(hctx, false);
1476 }
1477 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1478
1479 void blk_mq_start_hw_queues(struct request_queue *q)
1480 {
1481 struct blk_mq_hw_ctx *hctx;
1482 int i;
1483
1484 queue_for_each_hw_ctx(q, hctx, i)
1485 blk_mq_start_hw_queue(hctx);
1486 }
1487 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1488
1489 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1490 {
1491 if (!blk_mq_hctx_stopped(hctx))
1492 return;
1493
1494 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1495 blk_mq_run_hw_queue(hctx, async);
1496 }
1497 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1498
1499 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1500 {
1501 struct blk_mq_hw_ctx *hctx;
1502 int i;
1503
1504 queue_for_each_hw_ctx(q, hctx, i)
1505 blk_mq_start_stopped_hw_queue(hctx, async);
1506 }
1507 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1508
1509 static void blk_mq_run_work_fn(struct work_struct *work)
1510 {
1511 struct blk_mq_hw_ctx *hctx;
1512
1513 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1514
1515 /*
1516 * If we are stopped, don't run the queue. The exception is if
1517 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1518 * the STOPPED bit and run it.
1519 */
1520 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1521 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1522 return;
1523
1524 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1525 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1526 }
1527
1528 __blk_mq_run_hw_queue(hctx);
1529 }
1530
1531
1532 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1533 {
1534 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1535 return;
1536
1537 /*
1538 * Stop the hw queue, then modify currently delayed work.
1539 * This should prevent us from running the queue prematurely.
1540 * Mark the queue as auto-clearing STOPPED when it runs.
1541 */
1542 blk_mq_stop_hw_queue(hctx);
1543 set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1544 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1545 &hctx->run_work,
1546 msecs_to_jiffies(msecs));
1547 }
1548 EXPORT_SYMBOL(blk_mq_delay_queue);
1549
1550 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1551 struct request *rq,
1552 bool at_head)
1553 {
1554 struct blk_mq_ctx *ctx = rq->mq_ctx;
1555
1556 lockdep_assert_held(&ctx->lock);
1557
1558 trace_block_rq_insert(hctx->queue, rq);
1559
1560 if (at_head)
1561 list_add(&rq->queuelist, &ctx->rq_list);
1562 else
1563 list_add_tail(&rq->queuelist, &ctx->rq_list);
1564 }
1565
1566 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1567 bool at_head)
1568 {
1569 struct blk_mq_ctx *ctx = rq->mq_ctx;
1570
1571 lockdep_assert_held(&ctx->lock);
1572
1573 __blk_mq_insert_req_list(hctx, rq, at_head);
1574 blk_mq_hctx_mark_pending(hctx, ctx);
1575 }
1576
1577 /*
1578 * Should only be used carefully, when the caller knows we want to
1579 * bypass a potential IO scheduler on the target device.
1580 */
1581 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1582 {
1583 struct blk_mq_ctx *ctx = rq->mq_ctx;
1584 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1585
1586 spin_lock(&hctx->lock);
1587 list_add_tail(&rq->queuelist, &hctx->dispatch);
1588 spin_unlock(&hctx->lock);
1589
1590 if (run_queue)
1591 blk_mq_run_hw_queue(hctx, false);
1592 }
1593
1594 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1595 struct list_head *list)
1596
1597 {
1598 /*
1599 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1600 * offline now
1601 */
1602 spin_lock(&ctx->lock);
1603 while (!list_empty(list)) {
1604 struct request *rq;
1605
1606 rq = list_first_entry(list, struct request, queuelist);
1607 BUG_ON(rq->mq_ctx != ctx);
1608 list_del_init(&rq->queuelist);
1609 __blk_mq_insert_req_list(hctx, rq, false);
1610 }
1611 blk_mq_hctx_mark_pending(hctx, ctx);
1612 spin_unlock(&ctx->lock);
1613 }
1614
1615 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1616 {
1617 struct request *rqa = container_of(a, struct request, queuelist);
1618 struct request *rqb = container_of(b, struct request, queuelist);
1619
1620 return !(rqa->mq_ctx < rqb->mq_ctx ||
1621 (rqa->mq_ctx == rqb->mq_ctx &&
1622 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1623 }
1624
1625 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1626 {
1627 struct blk_mq_ctx *this_ctx;
1628 struct request_queue *this_q;
1629 struct request *rq;
1630 LIST_HEAD(list);
1631 LIST_HEAD(ctx_list);
1632 unsigned int depth;
1633
1634 list_splice_init(&plug->mq_list, &list);
1635
1636 list_sort(NULL, &list, plug_ctx_cmp);
1637
1638 this_q = NULL;
1639 this_ctx = NULL;
1640 depth = 0;
1641
1642 while (!list_empty(&list)) {
1643 rq = list_entry_rq(list.next);
1644 list_del_init(&rq->queuelist);
1645 BUG_ON(!rq->q);
1646 if (rq->mq_ctx != this_ctx) {
1647 if (this_ctx) {
1648 trace_block_unplug(this_q, depth, !from_schedule);
1649 blk_mq_sched_insert_requests(this_q, this_ctx,
1650 &ctx_list,
1651 from_schedule);
1652 }
1653
1654 this_ctx = rq->mq_ctx;
1655 this_q = rq->q;
1656 depth = 0;
1657 }
1658
1659 depth++;
1660 list_add_tail(&rq->queuelist, &ctx_list);
1661 }
1662
1663 /*
1664 * If 'this_ctx' is set, we know we have entries to complete
1665 * on 'ctx_list'. Do those.
1666 */
1667 if (this_ctx) {
1668 trace_block_unplug(this_q, depth, !from_schedule);
1669 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1670 from_schedule);
1671 }
1672 }
1673
1674 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1675 {
1676 blk_init_request_from_bio(rq, bio);
1677
1678 blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1679
1680 blk_account_io_start(rq, true);
1681 }
1682
1683 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1684 struct blk_mq_ctx *ctx,
1685 struct request *rq)
1686 {
1687 spin_lock(&ctx->lock);
1688 __blk_mq_insert_request(hctx, rq, false);
1689 spin_unlock(&ctx->lock);
1690 }
1691
1692 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1693 {
1694 if (rq->tag != -1)
1695 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1696
1697 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1698 }
1699
1700 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1701 struct request *rq,
1702 blk_qc_t *cookie)
1703 {
1704 struct request_queue *q = rq->q;
1705 struct blk_mq_queue_data bd = {
1706 .rq = rq,
1707 .last = true,
1708 };
1709 blk_qc_t new_cookie;
1710 blk_status_t ret;
1711
1712 new_cookie = request_to_qc_t(hctx, rq);
1713
1714 /*
1715 * For OK queue, we are done. For error, caller may kill it.
1716 * Any other error (busy), just add it to our list as we
1717 * previously would have done.
1718 */
1719 ret = q->mq_ops->queue_rq(hctx, &bd);
1720 switch (ret) {
1721 case BLK_STS_OK:
1722 *cookie = new_cookie;
1723 break;
1724 case BLK_STS_RESOURCE:
1725 __blk_mq_requeue_request(rq);
1726 break;
1727 default:
1728 *cookie = BLK_QC_T_NONE;
1729 break;
1730 }
1731
1732 return ret;
1733 }
1734
1735 static void __blk_mq_fallback_to_insert(struct blk_mq_hw_ctx *hctx,
1736 struct request *rq,
1737 bool run_queue, bool bypass_insert)
1738 {
1739 if (!bypass_insert)
1740 blk_mq_sched_insert_request(rq, false, run_queue, false,
1741 hctx->flags & BLK_MQ_F_BLOCKING);
1742 else
1743 blk_mq_request_bypass_insert(rq, run_queue);
1744 }
1745
1746 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1747 struct request *rq,
1748 blk_qc_t *cookie,
1749 bool bypass_insert)
1750 {
1751 struct request_queue *q = rq->q;
1752 bool run_queue = true;
1753
1754 /* RCU or SRCU read lock is needed before checking quiesced flag */
1755 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1756 run_queue = false;
1757 goto insert;
1758 }
1759
1760 if (q->elevator && !bypass_insert)
1761 goto insert;
1762
1763 if (!blk_mq_get_dispatch_budget(hctx))
1764 goto insert;
1765
1766 if (!blk_mq_get_driver_tag(rq, NULL, false)) {
1767 blk_mq_put_dispatch_budget(hctx);
1768 goto insert;
1769 }
1770
1771 return __blk_mq_issue_directly(hctx, rq, cookie);
1772 insert:
1773 __blk_mq_fallback_to_insert(hctx, rq, run_queue, bypass_insert);
1774 if (bypass_insert)
1775 return BLK_STS_RESOURCE;
1776
1777 return BLK_STS_OK;
1778 }
1779
1780 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1781 struct request *rq, blk_qc_t *cookie)
1782 {
1783 blk_status_t ret;
1784 int srcu_idx;
1785
1786 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1787
1788 hctx_lock(hctx, &srcu_idx);
1789
1790 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1791 if (ret == BLK_STS_RESOURCE)
1792 __blk_mq_fallback_to_insert(hctx, rq, true, false);
1793 else if (ret != BLK_STS_OK)
1794 blk_mq_end_request(rq, ret);
1795
1796 hctx_unlock(hctx, srcu_idx);
1797 }
1798
1799 blk_status_t blk_mq_request_direct_issue(struct request *rq)
1800 {
1801 blk_status_t ret;
1802 int srcu_idx;
1803 blk_qc_t unused_cookie;
1804 struct blk_mq_ctx *ctx = rq->mq_ctx;
1805 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1806
1807 hctx_lock(hctx, &srcu_idx);
1808 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true);
1809 hctx_unlock(hctx, srcu_idx);
1810
1811 return ret;
1812 }
1813
1814 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1815 {
1816 const int is_sync = op_is_sync(bio->bi_opf);
1817 const int is_flush_fua = op_is_flush(bio->bi_opf);
1818 struct blk_mq_alloc_data data = { .flags = 0 };
1819 struct request *rq;
1820 unsigned int request_count = 0;
1821 struct blk_plug *plug;
1822 struct request *same_queue_rq = NULL;
1823 blk_qc_t cookie;
1824 unsigned int wb_acct;
1825
1826 blk_queue_bounce(q, &bio);
1827
1828 blk_queue_split(q, &bio);
1829
1830 if (!bio_integrity_prep(bio))
1831 return BLK_QC_T_NONE;
1832
1833 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1834 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1835 return BLK_QC_T_NONE;
1836
1837 if (blk_mq_sched_bio_merge(q, bio))
1838 return BLK_QC_T_NONE;
1839
1840 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1841
1842 trace_block_getrq(q, bio, bio->bi_opf);
1843
1844 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1845 if (unlikely(!rq)) {
1846 __wbt_done(q->rq_wb, wb_acct);
1847 if (bio->bi_opf & REQ_NOWAIT)
1848 bio_wouldblock_error(bio);
1849 return BLK_QC_T_NONE;
1850 }
1851
1852 wbt_track(&rq->issue_stat, wb_acct);
1853
1854 cookie = request_to_qc_t(data.hctx, rq);
1855
1856 plug = current->plug;
1857 if (unlikely(is_flush_fua)) {
1858 blk_mq_put_ctx(data.ctx);
1859 blk_mq_bio_to_request(rq, bio);
1860
1861 /* bypass scheduler for flush rq */
1862 blk_insert_flush(rq);
1863 blk_mq_run_hw_queue(data.hctx, true);
1864 } else if (plug && q->nr_hw_queues == 1) {
1865 struct request *last = NULL;
1866
1867 blk_mq_put_ctx(data.ctx);
1868 blk_mq_bio_to_request(rq, bio);
1869
1870 /*
1871 * @request_count may become stale because of schedule
1872 * out, so check the list again.
1873 */
1874 if (list_empty(&plug->mq_list))
1875 request_count = 0;
1876 else if (blk_queue_nomerges(q))
1877 request_count = blk_plug_queued_count(q);
1878
1879 if (!request_count)
1880 trace_block_plug(q);
1881 else
1882 last = list_entry_rq(plug->mq_list.prev);
1883
1884 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1885 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1886 blk_flush_plug_list(plug, false);
1887 trace_block_plug(q);
1888 }
1889
1890 list_add_tail(&rq->queuelist, &plug->mq_list);
1891 } else if (plug && !blk_queue_nomerges(q)) {
1892 blk_mq_bio_to_request(rq, bio);
1893
1894 /*
1895 * We do limited plugging. If the bio can be merged, do that.
1896 * Otherwise the existing request in the plug list will be
1897 * issued. So the plug list will have one request at most
1898 * The plug list might get flushed before this. If that happens,
1899 * the plug list is empty, and same_queue_rq is invalid.
1900 */
1901 if (list_empty(&plug->mq_list))
1902 same_queue_rq = NULL;
1903 if (same_queue_rq)
1904 list_del_init(&same_queue_rq->queuelist);
1905 list_add_tail(&rq->queuelist, &plug->mq_list);
1906
1907 blk_mq_put_ctx(data.ctx);
1908
1909 if (same_queue_rq) {
1910 data.hctx = blk_mq_map_queue(q,
1911 same_queue_rq->mq_ctx->cpu);
1912 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1913 &cookie);
1914 }
1915 } else if (q->nr_hw_queues > 1 && is_sync) {
1916 blk_mq_put_ctx(data.ctx);
1917 blk_mq_bio_to_request(rq, bio);
1918 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1919 } else if (q->elevator) {
1920 blk_mq_put_ctx(data.ctx);
1921 blk_mq_bio_to_request(rq, bio);
1922 blk_mq_sched_insert_request(rq, false, true, true, true);
1923 } else {
1924 blk_mq_put_ctx(data.ctx);
1925 blk_mq_bio_to_request(rq, bio);
1926 blk_mq_queue_io(data.hctx, data.ctx, rq);
1927 blk_mq_run_hw_queue(data.hctx, true);
1928 }
1929
1930 return cookie;
1931 }
1932
1933 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1934 unsigned int hctx_idx)
1935 {
1936 struct page *page;
1937
1938 if (tags->rqs && set->ops->exit_request) {
1939 int i;
1940
1941 for (i = 0; i < tags->nr_tags; i++) {
1942 struct request *rq = tags->static_rqs[i];
1943
1944 if (!rq)
1945 continue;
1946 set->ops->exit_request(set, rq, hctx_idx);
1947 tags->static_rqs[i] = NULL;
1948 }
1949 }
1950
1951 while (!list_empty(&tags->page_list)) {
1952 page = list_first_entry(&tags->page_list, struct page, lru);
1953 list_del_init(&page->lru);
1954 /*
1955 * Remove kmemleak object previously allocated in
1956 * blk_mq_init_rq_map().
1957 */
1958 kmemleak_free(page_address(page));
1959 __free_pages(page, page->private);
1960 }
1961 }
1962
1963 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1964 {
1965 kfree(tags->rqs);
1966 tags->rqs = NULL;
1967 kfree(tags->static_rqs);
1968 tags->static_rqs = NULL;
1969
1970 blk_mq_free_tags(tags);
1971 }
1972
1973 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1974 unsigned int hctx_idx,
1975 unsigned int nr_tags,
1976 unsigned int reserved_tags)
1977 {
1978 struct blk_mq_tags *tags;
1979 int node;
1980
1981 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1982 if (node == NUMA_NO_NODE)
1983 node = set->numa_node;
1984
1985 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1986 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1987 if (!tags)
1988 return NULL;
1989
1990 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1991 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1992 node);
1993 if (!tags->rqs) {
1994 blk_mq_free_tags(tags);
1995 return NULL;
1996 }
1997
1998 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1999 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2000 node);
2001 if (!tags->static_rqs) {
2002 kfree(tags->rqs);
2003 blk_mq_free_tags(tags);
2004 return NULL;
2005 }
2006
2007 return tags;
2008 }
2009
2010 static size_t order_to_size(unsigned int order)
2011 {
2012 return (size_t)PAGE_SIZE << order;
2013 }
2014
2015 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2016 unsigned int hctx_idx, unsigned int depth)
2017 {
2018 unsigned int i, j, entries_per_page, max_order = 4;
2019 size_t rq_size, left;
2020 int node;
2021
2022 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
2023 if (node == NUMA_NO_NODE)
2024 node = set->numa_node;
2025
2026 INIT_LIST_HEAD(&tags->page_list);
2027
2028 /*
2029 * rq_size is the size of the request plus driver payload, rounded
2030 * to the cacheline size
2031 */
2032 rq_size = round_up(sizeof(struct request) + set->cmd_size,
2033 cache_line_size());
2034 left = rq_size * depth;
2035
2036 for (i = 0; i < depth; ) {
2037 int this_order = max_order;
2038 struct page *page;
2039 int to_do;
2040 void *p;
2041
2042 while (this_order && left < order_to_size(this_order - 1))
2043 this_order--;
2044
2045 do {
2046 page = alloc_pages_node(node,
2047 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2048 this_order);
2049 if (page)
2050 break;
2051 if (!this_order--)
2052 break;
2053 if (order_to_size(this_order) < rq_size)
2054 break;
2055 } while (1);
2056
2057 if (!page)
2058 goto fail;
2059
2060 page->private = this_order;
2061 list_add_tail(&page->lru, &tags->page_list);
2062
2063 p = page_address(page);
2064 /*
2065 * Allow kmemleak to scan these pages as they contain pointers
2066 * to additional allocations like via ops->init_request().
2067 */
2068 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2069 entries_per_page = order_to_size(this_order) / rq_size;
2070 to_do = min(entries_per_page, depth - i);
2071 left -= to_do * rq_size;
2072 for (j = 0; j < to_do; j++) {
2073 struct request *rq = p;
2074
2075 tags->static_rqs[i] = rq;
2076 if (set->ops->init_request) {
2077 if (set->ops->init_request(set, rq, hctx_idx,
2078 node)) {
2079 tags->static_rqs[i] = NULL;
2080 goto fail;
2081 }
2082 }
2083
2084 p += rq_size;
2085 i++;
2086 }
2087 }
2088 return 0;
2089
2090 fail:
2091 blk_mq_free_rqs(set, tags, hctx_idx);
2092 return -ENOMEM;
2093 }
2094
2095 /*
2096 * 'cpu' is going away. splice any existing rq_list entries from this
2097 * software queue to the hw queue dispatch list, and ensure that it
2098 * gets run.
2099 */
2100 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2101 {
2102 struct blk_mq_hw_ctx *hctx;
2103 struct blk_mq_ctx *ctx;
2104 LIST_HEAD(tmp);
2105
2106 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2107 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2108
2109 spin_lock(&ctx->lock);
2110 if (!list_empty(&ctx->rq_list)) {
2111 list_splice_init(&ctx->rq_list, &tmp);
2112 blk_mq_hctx_clear_pending(hctx, ctx);
2113 }
2114 spin_unlock(&ctx->lock);
2115
2116 if (list_empty(&tmp))
2117 return 0;
2118
2119 spin_lock(&hctx->lock);
2120 list_splice_tail_init(&tmp, &hctx->dispatch);
2121 spin_unlock(&hctx->lock);
2122
2123 blk_mq_run_hw_queue(hctx, true);
2124 return 0;
2125 }
2126
2127 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2128 {
2129 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2130 &hctx->cpuhp_dead);
2131 }
2132
2133 /* hctx->ctxs will be freed in queue's release handler */
2134 static void blk_mq_exit_hctx(struct request_queue *q,
2135 struct blk_mq_tag_set *set,
2136 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2137 {
2138 blk_mq_debugfs_unregister_hctx(hctx);
2139
2140 if (blk_mq_hw_queue_mapped(hctx))
2141 blk_mq_tag_idle(hctx);
2142
2143 if (set->ops->exit_request)
2144 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2145
2146 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2147
2148 if (set->ops->exit_hctx)
2149 set->ops->exit_hctx(hctx, hctx_idx);
2150
2151 blk_mq_remove_cpuhp(hctx);
2152 }
2153
2154 static void blk_mq_exit_hw_queues(struct request_queue *q,
2155 struct blk_mq_tag_set *set, int nr_queue)
2156 {
2157 struct blk_mq_hw_ctx *hctx;
2158 unsigned int i;
2159
2160 queue_for_each_hw_ctx(q, hctx, i) {
2161 if (i == nr_queue)
2162 break;
2163 blk_mq_exit_hctx(q, set, hctx, i);
2164 }
2165 }
2166
2167 static int blk_mq_init_hctx(struct request_queue *q,
2168 struct blk_mq_tag_set *set,
2169 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2170 {
2171 int node;
2172
2173 node = hctx->numa_node;
2174 if (node == NUMA_NO_NODE)
2175 node = hctx->numa_node = set->numa_node;
2176
2177 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2178 spin_lock_init(&hctx->lock);
2179 INIT_LIST_HEAD(&hctx->dispatch);
2180 hctx->queue = q;
2181 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2182
2183 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2184
2185 hctx->tags = set->tags[hctx_idx];
2186
2187 /*
2188 * Allocate space for all possible cpus to avoid allocation at
2189 * runtime
2190 */
2191 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2192 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node);
2193 if (!hctx->ctxs)
2194 goto unregister_cpu_notifier;
2195
2196 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2197 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node))
2198 goto free_ctxs;
2199
2200 hctx->nr_ctx = 0;
2201
2202 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2203 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2204
2205 if (set->ops->init_hctx &&
2206 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2207 goto free_bitmap;
2208
2209 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
2210 goto exit_hctx;
2211
2212 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size,
2213 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
2214 if (!hctx->fq)
2215 goto sched_exit_hctx;
2216
2217 if (set->ops->init_request &&
2218 set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
2219 node))
2220 goto free_fq;
2221
2222 if (hctx->flags & BLK_MQ_F_BLOCKING)
2223 init_srcu_struct(hctx->queue_rq_srcu);
2224
2225 blk_mq_debugfs_register_hctx(q, hctx);
2226
2227 return 0;
2228
2229 free_fq:
2230 blk_free_flush_queue(hctx->fq);
2231 sched_exit_hctx:
2232 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2233 exit_hctx:
2234 if (set->ops->exit_hctx)
2235 set->ops->exit_hctx(hctx, hctx_idx);
2236 free_bitmap:
2237 sbitmap_free(&hctx->ctx_map);
2238 free_ctxs:
2239 kfree(hctx->ctxs);
2240 unregister_cpu_notifier:
2241 blk_mq_remove_cpuhp(hctx);
2242 return -1;
2243 }
2244
2245 static void blk_mq_init_cpu_queues(struct request_queue *q,
2246 unsigned int nr_hw_queues)
2247 {
2248 unsigned int i;
2249
2250 for_each_possible_cpu(i) {
2251 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2252 struct blk_mq_hw_ctx *hctx;
2253
2254 __ctx->cpu = i;
2255 spin_lock_init(&__ctx->lock);
2256 INIT_LIST_HEAD(&__ctx->rq_list);
2257 __ctx->queue = q;
2258
2259 /*
2260 * Set local node, IFF we have more than one hw queue. If
2261 * not, we remain on the home node of the device
2262 */
2263 hctx = blk_mq_map_queue(q, i);
2264 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2265 hctx->numa_node = local_memory_node(cpu_to_node(i));
2266 }
2267 }
2268
2269 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2270 {
2271 int ret = 0;
2272
2273 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2274 set->queue_depth, set->reserved_tags);
2275 if (!set->tags[hctx_idx])
2276 return false;
2277
2278 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2279 set->queue_depth);
2280 if (!ret)
2281 return true;
2282
2283 blk_mq_free_rq_map(set->tags[hctx_idx]);
2284 set->tags[hctx_idx] = NULL;
2285 return false;
2286 }
2287
2288 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2289 unsigned int hctx_idx)
2290 {
2291 if (set->tags[hctx_idx]) {
2292 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2293 blk_mq_free_rq_map(set->tags[hctx_idx]);
2294 set->tags[hctx_idx] = NULL;
2295 }
2296 }
2297
2298 static void blk_mq_map_swqueue(struct request_queue *q)
2299 {
2300 unsigned int i, hctx_idx;
2301 struct blk_mq_hw_ctx *hctx;
2302 struct blk_mq_ctx *ctx;
2303 struct blk_mq_tag_set *set = q->tag_set;
2304
2305 /*
2306 * Avoid others reading imcomplete hctx->cpumask through sysfs
2307 */
2308 mutex_lock(&q->sysfs_lock);
2309
2310 queue_for_each_hw_ctx(q, hctx, i) {
2311 cpumask_clear(hctx->cpumask);
2312 hctx->nr_ctx = 0;
2313 }
2314
2315 /*
2316 * Map software to hardware queues.
2317 *
2318 * If the cpu isn't present, the cpu is mapped to first hctx.
2319 */
2320 for_each_possible_cpu(i) {
2321 hctx_idx = q->mq_map[i];
2322 /* unmapped hw queue can be remapped after CPU topo changed */
2323 if (!set->tags[hctx_idx] &&
2324 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2325 /*
2326 * If tags initialization fail for some hctx,
2327 * that hctx won't be brought online. In this
2328 * case, remap the current ctx to hctx[0] which
2329 * is guaranteed to always have tags allocated
2330 */
2331 q->mq_map[i] = 0;
2332 }
2333
2334 ctx = per_cpu_ptr(q->queue_ctx, i);
2335 hctx = blk_mq_map_queue(q, i);
2336
2337 cpumask_set_cpu(i, hctx->cpumask);
2338 ctx->index_hw = hctx->nr_ctx;
2339 hctx->ctxs[hctx->nr_ctx++] = ctx;
2340 }
2341
2342 mutex_unlock(&q->sysfs_lock);
2343
2344 queue_for_each_hw_ctx(q, hctx, i) {
2345 /*
2346 * If no software queues are mapped to this hardware queue,
2347 * disable it and free the request entries.
2348 */
2349 if (!hctx->nr_ctx) {
2350 /* Never unmap queue 0. We need it as a
2351 * fallback in case of a new remap fails
2352 * allocation
2353 */
2354 if (i && set->tags[i])
2355 blk_mq_free_map_and_requests(set, i);
2356
2357 hctx->tags = NULL;
2358 continue;
2359 }
2360
2361 hctx->tags = set->tags[i];
2362 WARN_ON(!hctx->tags);
2363
2364 /*
2365 * Set the map size to the number of mapped software queues.
2366 * This is more accurate and more efficient than looping
2367 * over all possibly mapped software queues.
2368 */
2369 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2370
2371 /*
2372 * Initialize batch roundrobin counts
2373 */
2374 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2375 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2376 }
2377 }
2378
2379 /*
2380 * Caller needs to ensure that we're either frozen/quiesced, or that
2381 * the queue isn't live yet.
2382 */
2383 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2384 {
2385 struct blk_mq_hw_ctx *hctx;
2386 int i;
2387
2388 queue_for_each_hw_ctx(q, hctx, i) {
2389 if (shared) {
2390 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2391 atomic_inc(&q->shared_hctx_restart);
2392 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2393 } else {
2394 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2395 atomic_dec(&q->shared_hctx_restart);
2396 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2397 }
2398 }
2399 }
2400
2401 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2402 bool shared)
2403 {
2404 struct request_queue *q;
2405
2406 lockdep_assert_held(&set->tag_list_lock);
2407
2408 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2409 blk_mq_freeze_queue(q);
2410 queue_set_hctx_shared(q, shared);
2411 blk_mq_unfreeze_queue(q);
2412 }
2413 }
2414
2415 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2416 {
2417 struct blk_mq_tag_set *set = q->tag_set;
2418
2419 mutex_lock(&set->tag_list_lock);
2420 list_del_rcu(&q->tag_set_list);
2421 if (list_is_singular(&set->tag_list)) {
2422 /* just transitioned to unshared */
2423 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2424 /* update existing queue */
2425 blk_mq_update_tag_set_depth(set, false);
2426 }
2427 mutex_unlock(&set->tag_list_lock);
2428 synchronize_rcu();
2429 INIT_LIST_HEAD(&q->tag_set_list);
2430 }
2431
2432 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2433 struct request_queue *q)
2434 {
2435 q->tag_set = set;
2436
2437 mutex_lock(&set->tag_list_lock);
2438
2439 /*
2440 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2441 */
2442 if (!list_empty(&set->tag_list) &&
2443 !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2444 set->flags |= BLK_MQ_F_TAG_SHARED;
2445 /* update existing queue */
2446 blk_mq_update_tag_set_depth(set, true);
2447 }
2448 if (set->flags & BLK_MQ_F_TAG_SHARED)
2449 queue_set_hctx_shared(q, true);
2450 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2451
2452 mutex_unlock(&set->tag_list_lock);
2453 }
2454
2455 /*
2456 * It is the actual release handler for mq, but we do it from
2457 * request queue's release handler for avoiding use-after-free
2458 * and headache because q->mq_kobj shouldn't have been introduced,
2459 * but we can't group ctx/kctx kobj without it.
2460 */
2461 void blk_mq_release(struct request_queue *q)
2462 {
2463 struct blk_mq_hw_ctx *hctx;
2464 unsigned int i;
2465
2466 /* hctx kobj stays in hctx */
2467 queue_for_each_hw_ctx(q, hctx, i) {
2468 if (!hctx)
2469 continue;
2470 kobject_put(&hctx->kobj);
2471 }
2472
2473 q->mq_map = NULL;
2474
2475 kfree(q->queue_hw_ctx);
2476
2477 /*
2478 * release .mq_kobj and sw queue's kobject now because
2479 * both share lifetime with request queue.
2480 */
2481 blk_mq_sysfs_deinit(q);
2482
2483 free_percpu(q->queue_ctx);
2484 }
2485
2486 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2487 {
2488 struct request_queue *uninit_q, *q;
2489
2490 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2491 if (!uninit_q)
2492 return ERR_PTR(-ENOMEM);
2493
2494 q = blk_mq_init_allocated_queue(set, uninit_q);
2495 if (IS_ERR(q))
2496 blk_cleanup_queue(uninit_q);
2497
2498 return q;
2499 }
2500 EXPORT_SYMBOL(blk_mq_init_queue);
2501
2502 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2503 {
2504 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2505
2506 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
2507 __alignof__(struct blk_mq_hw_ctx)) !=
2508 sizeof(struct blk_mq_hw_ctx));
2509
2510 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2511 hw_ctx_size += sizeof(struct srcu_struct);
2512
2513 return hw_ctx_size;
2514 }
2515
2516 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2517 struct request_queue *q)
2518 {
2519 int i, j;
2520 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2521
2522 blk_mq_sysfs_unregister(q);
2523
2524 /* protect against switching io scheduler */
2525 mutex_lock(&q->sysfs_lock);
2526 for (i = 0; i < set->nr_hw_queues; i++) {
2527 int node;
2528
2529 if (hctxs[i])
2530 continue;
2531
2532 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2533 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2534 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2535 node);
2536 if (!hctxs[i])
2537 break;
2538
2539 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask,
2540 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2541 node)) {
2542 kfree(hctxs[i]);
2543 hctxs[i] = NULL;
2544 break;
2545 }
2546
2547 atomic_set(&hctxs[i]->nr_active, 0);
2548 hctxs[i]->numa_node = node;
2549 hctxs[i]->queue_num = i;
2550
2551 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2552 free_cpumask_var(hctxs[i]->cpumask);
2553 kfree(hctxs[i]);
2554 hctxs[i] = NULL;
2555 break;
2556 }
2557 blk_mq_hctx_kobj_init(hctxs[i]);
2558 }
2559 for (j = i; j < q->nr_hw_queues; j++) {
2560 struct blk_mq_hw_ctx *hctx = hctxs[j];
2561
2562 if (hctx) {
2563 if (hctx->tags)
2564 blk_mq_free_map_and_requests(set, j);
2565 blk_mq_exit_hctx(q, set, hctx, j);
2566 kobject_put(&hctx->kobj);
2567 hctxs[j] = NULL;
2568
2569 }
2570 }
2571 q->nr_hw_queues = i;
2572 mutex_unlock(&q->sysfs_lock);
2573 blk_mq_sysfs_register(q);
2574 }
2575
2576 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2577 struct request_queue *q)
2578 {
2579 /* mark the queue as mq asap */
2580 q->mq_ops = set->ops;
2581
2582 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2583 blk_mq_poll_stats_bkt,
2584 BLK_MQ_POLL_STATS_BKTS, q);
2585 if (!q->poll_cb)
2586 goto err_exit;
2587
2588 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2589 if (!q->queue_ctx)
2590 goto err_exit;
2591
2592 /* init q->mq_kobj and sw queues' kobjects */
2593 blk_mq_sysfs_init(q);
2594
2595 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2596 GFP_KERNEL, set->numa_node);
2597 if (!q->queue_hw_ctx)
2598 goto err_percpu;
2599
2600 q->mq_map = set->mq_map;
2601
2602 blk_mq_realloc_hw_ctxs(set, q);
2603 if (!q->nr_hw_queues)
2604 goto err_hctxs;
2605
2606 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2607 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2608
2609 q->nr_queues = nr_cpu_ids;
2610
2611 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2612
2613 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2614 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2615
2616 q->sg_reserved_size = INT_MAX;
2617
2618 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2619 INIT_LIST_HEAD(&q->requeue_list);
2620 spin_lock_init(&q->requeue_lock);
2621
2622 blk_queue_make_request(q, blk_mq_make_request);
2623 if (q->mq_ops->poll)
2624 q->poll_fn = blk_mq_poll;
2625
2626 /*
2627 * Do this after blk_queue_make_request() overrides it...
2628 */
2629 q->nr_requests = set->queue_depth;
2630
2631 /*
2632 * Default to classic polling
2633 */
2634 q->poll_nsec = -1;
2635
2636 if (set->ops->complete)
2637 blk_queue_softirq_done(q, set->ops->complete);
2638
2639 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2640 blk_mq_add_queue_tag_set(set, q);
2641 blk_mq_map_swqueue(q);
2642
2643 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2644 int ret;
2645
2646 ret = blk_mq_sched_init(q);
2647 if (ret)
2648 return ERR_PTR(ret);
2649 }
2650
2651 return q;
2652
2653 err_hctxs:
2654 kfree(q->queue_hw_ctx);
2655 err_percpu:
2656 free_percpu(q->queue_ctx);
2657 err_exit:
2658 q->mq_ops = NULL;
2659 return ERR_PTR(-ENOMEM);
2660 }
2661 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2662
2663 /* tags can _not_ be used after returning from blk_mq_exit_queue */
2664 void blk_mq_exit_queue(struct request_queue *q)
2665 {
2666 struct blk_mq_tag_set *set = q->tag_set;
2667
2668 blk_mq_del_queue_tag_set(q);
2669 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2670 }
2671
2672 /* Basically redo blk_mq_init_queue with queue frozen */
2673 static void blk_mq_queue_reinit(struct request_queue *q)
2674 {
2675 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2676
2677 blk_mq_debugfs_unregister_hctxs(q);
2678 blk_mq_sysfs_unregister(q);
2679
2680 /*
2681 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2682 * we should change hctx numa_node according to the new topology (this
2683 * involves freeing and re-allocating memory, worth doing?)
2684 */
2685 blk_mq_map_swqueue(q);
2686
2687 blk_mq_sysfs_register(q);
2688 blk_mq_debugfs_register_hctxs(q);
2689 }
2690
2691 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2692 {
2693 int i;
2694
2695 for (i = 0; i < set->nr_hw_queues; i++)
2696 if (!__blk_mq_alloc_rq_map(set, i))
2697 goto out_unwind;
2698
2699 return 0;
2700
2701 out_unwind:
2702 while (--i >= 0)
2703 blk_mq_free_rq_map(set->tags[i]);
2704
2705 return -ENOMEM;
2706 }
2707
2708 /*
2709 * Allocate the request maps associated with this tag_set. Note that this
2710 * may reduce the depth asked for, if memory is tight. set->queue_depth
2711 * will be updated to reflect the allocated depth.
2712 */
2713 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2714 {
2715 unsigned int depth;
2716 int err;
2717
2718 depth = set->queue_depth;
2719 do {
2720 err = __blk_mq_alloc_rq_maps(set);
2721 if (!err)
2722 break;
2723
2724 set->queue_depth >>= 1;
2725 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2726 err = -ENOMEM;
2727 break;
2728 }
2729 } while (set->queue_depth);
2730
2731 if (!set->queue_depth || err) {
2732 pr_err("blk-mq: failed to allocate request map\n");
2733 return -ENOMEM;
2734 }
2735
2736 if (depth != set->queue_depth)
2737 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2738 depth, set->queue_depth);
2739
2740 return 0;
2741 }
2742
2743 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2744 {
2745 if (set->ops->map_queues) {
2746 int cpu;
2747 /*
2748 * transport .map_queues is usually done in the following
2749 * way:
2750 *
2751 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2752 * mask = get_cpu_mask(queue)
2753 * for_each_cpu(cpu, mask)
2754 * set->mq_map[cpu] = queue;
2755 * }
2756 *
2757 * When we need to remap, the table has to be cleared for
2758 * killing stale mapping since one CPU may not be mapped
2759 * to any hw queue.
2760 */
2761 for_each_possible_cpu(cpu)
2762 set->mq_map[cpu] = 0;
2763
2764 return set->ops->map_queues(set);
2765 } else
2766 return blk_mq_map_queues(set);
2767 }
2768
2769 /*
2770 * Alloc a tag set to be associated with one or more request queues.
2771 * May fail with EINVAL for various error conditions. May adjust the
2772 * requested depth down, if if it too large. In that case, the set
2773 * value will be stored in set->queue_depth.
2774 */
2775 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2776 {
2777 int ret;
2778
2779 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2780
2781 if (!set->nr_hw_queues)
2782 return -EINVAL;
2783 if (!set->queue_depth)
2784 return -EINVAL;
2785 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2786 return -EINVAL;
2787
2788 if (!set->ops->queue_rq)
2789 return -EINVAL;
2790
2791 if (!set->ops->get_budget ^ !set->ops->put_budget)
2792 return -EINVAL;
2793
2794 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2795 pr_info("blk-mq: reduced tag depth to %u\n",
2796 BLK_MQ_MAX_DEPTH);
2797 set->queue_depth = BLK_MQ_MAX_DEPTH;
2798 }
2799
2800 /*
2801 * If a crashdump is active, then we are potentially in a very
2802 * memory constrained environment. Limit us to 1 queue and
2803 * 64 tags to prevent using too much memory.
2804 */
2805 if (is_kdump_kernel()) {
2806 set->nr_hw_queues = 1;
2807 set->queue_depth = min(64U, set->queue_depth);
2808 }
2809 /*
2810 * There is no use for more h/w queues than cpus.
2811 */
2812 if (set->nr_hw_queues > nr_cpu_ids)
2813 set->nr_hw_queues = nr_cpu_ids;
2814
2815 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2816 GFP_KERNEL, set->numa_node);
2817 if (!set->tags)
2818 return -ENOMEM;
2819
2820 ret = -ENOMEM;
2821 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2822 GFP_KERNEL, set->numa_node);
2823 if (!set->mq_map)
2824 goto out_free_tags;
2825
2826 ret = blk_mq_update_queue_map(set);
2827 if (ret)
2828 goto out_free_mq_map;
2829
2830 ret = blk_mq_alloc_rq_maps(set);
2831 if (ret)
2832 goto out_free_mq_map;
2833
2834 mutex_init(&set->tag_list_lock);
2835 INIT_LIST_HEAD(&set->tag_list);
2836
2837 return 0;
2838
2839 out_free_mq_map:
2840 kfree(set->mq_map);
2841 set->mq_map = NULL;
2842 out_free_tags:
2843 kfree(set->tags);
2844 set->tags = NULL;
2845 return ret;
2846 }
2847 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2848
2849 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2850 {
2851 int i;
2852
2853 for (i = 0; i < nr_cpu_ids; i++)
2854 blk_mq_free_map_and_requests(set, i);
2855
2856 kfree(set->mq_map);
2857 set->mq_map = NULL;
2858
2859 kfree(set->tags);
2860 set->tags = NULL;
2861 }
2862 EXPORT_SYMBOL(blk_mq_free_tag_set);
2863
2864 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2865 {
2866 struct blk_mq_tag_set *set = q->tag_set;
2867 struct blk_mq_hw_ctx *hctx;
2868 int i, ret;
2869
2870 if (!set)
2871 return -EINVAL;
2872
2873 if (q->nr_requests == nr)
2874 return 0;
2875
2876 blk_mq_freeze_queue(q);
2877 blk_mq_quiesce_queue(q);
2878
2879 ret = 0;
2880 queue_for_each_hw_ctx(q, hctx, i) {
2881 if (!hctx->tags)
2882 continue;
2883 /*
2884 * If we're using an MQ scheduler, just update the scheduler
2885 * queue depth. This is similar to what the old code would do.
2886 */
2887 if (!hctx->sched_tags) {
2888 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2889 false);
2890 } else {
2891 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2892 nr, true);
2893 }
2894 if (ret)
2895 break;
2896 }
2897
2898 if (!ret)
2899 q->nr_requests = nr;
2900
2901 blk_mq_unquiesce_queue(q);
2902 blk_mq_unfreeze_queue(q);
2903
2904 return ret;
2905 }
2906
2907 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2908 int nr_hw_queues)
2909 {
2910 struct request_queue *q;
2911
2912 lockdep_assert_held(&set->tag_list_lock);
2913
2914 if (nr_hw_queues > nr_cpu_ids)
2915 nr_hw_queues = nr_cpu_ids;
2916 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2917 return;
2918
2919 list_for_each_entry(q, &set->tag_list, tag_set_list)
2920 blk_mq_freeze_queue(q);
2921
2922 set->nr_hw_queues = nr_hw_queues;
2923 blk_mq_update_queue_map(set);
2924 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2925 blk_mq_realloc_hw_ctxs(set, q);
2926 blk_mq_queue_reinit(q);
2927 }
2928
2929 list_for_each_entry(q, &set->tag_list, tag_set_list)
2930 blk_mq_unfreeze_queue(q);
2931 }
2932
2933 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2934 {
2935 mutex_lock(&set->tag_list_lock);
2936 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2937 mutex_unlock(&set->tag_list_lock);
2938 }
2939 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2940
2941 /* Enable polling stats and return whether they were already enabled. */
2942 static bool blk_poll_stats_enable(struct request_queue *q)
2943 {
2944 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2945 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2946 return true;
2947 blk_stat_add_callback(q, q->poll_cb);
2948 return false;
2949 }
2950
2951 static void blk_mq_poll_stats_start(struct request_queue *q)
2952 {
2953 /*
2954 * We don't arm the callback if polling stats are not enabled or the
2955 * callback is already active.
2956 */
2957 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2958 blk_stat_is_active(q->poll_cb))
2959 return;
2960
2961 blk_stat_activate_msecs(q->poll_cb, 100);
2962 }
2963
2964 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2965 {
2966 struct request_queue *q = cb->data;
2967 int bucket;
2968
2969 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2970 if (cb->stat[bucket].nr_samples)
2971 q->poll_stat[bucket] = cb->stat[bucket];
2972 }
2973 }
2974
2975 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2976 struct blk_mq_hw_ctx *hctx,
2977 struct request *rq)
2978 {
2979 unsigned long ret = 0;
2980 int bucket;
2981
2982 /*
2983 * If stats collection isn't on, don't sleep but turn it on for
2984 * future users
2985 */
2986 if (!blk_poll_stats_enable(q))
2987 return 0;
2988
2989 /*
2990 * As an optimistic guess, use half of the mean service time
2991 * for this type of request. We can (and should) make this smarter.
2992 * For instance, if the completion latencies are tight, we can
2993 * get closer than just half the mean. This is especially
2994 * important on devices where the completion latencies are longer
2995 * than ~10 usec. We do use the stats for the relevant IO size
2996 * if available which does lead to better estimates.
2997 */
2998 bucket = blk_mq_poll_stats_bkt(rq);
2999 if (bucket < 0)
3000 return ret;
3001
3002 if (q->poll_stat[bucket].nr_samples)
3003 ret = (q->poll_stat[bucket].mean + 1) / 2;
3004
3005 return ret;
3006 }
3007
3008 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3009 struct blk_mq_hw_ctx *hctx,
3010 struct request *rq)
3011 {
3012 struct hrtimer_sleeper hs;
3013 enum hrtimer_mode mode;
3014 unsigned int nsecs;
3015 ktime_t kt;
3016
3017 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
3018 return false;
3019
3020 /*
3021 * poll_nsec can be:
3022 *
3023 * -1: don't ever hybrid sleep
3024 * 0: use half of prev avg
3025 * >0: use this specific value
3026 */
3027 if (q->poll_nsec == -1)
3028 return false;
3029 else if (q->poll_nsec > 0)
3030 nsecs = q->poll_nsec;
3031 else
3032 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3033
3034 if (!nsecs)
3035 return false;
3036
3037 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
3038
3039 /*
3040 * This will be replaced with the stats tracking code, using
3041 * 'avg_completion_time / 2' as the pre-sleep target.
3042 */
3043 kt = nsecs;
3044
3045 mode = HRTIMER_MODE_REL;
3046 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3047 hrtimer_set_expires(&hs.timer, kt);
3048
3049 hrtimer_init_sleeper(&hs, current);
3050 do {
3051 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
3052 break;
3053 set_current_state(TASK_UNINTERRUPTIBLE);
3054 hrtimer_start_expires(&hs.timer, mode);
3055 if (hs.task)
3056 io_schedule();
3057 hrtimer_cancel(&hs.timer);
3058 mode = HRTIMER_MODE_ABS;
3059 } while (hs.task && !signal_pending(current));
3060
3061 __set_current_state(TASK_RUNNING);
3062 destroy_hrtimer_on_stack(&hs.timer);
3063 return true;
3064 }
3065
3066 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
3067 {
3068 struct request_queue *q = hctx->queue;
3069 long state;
3070
3071 /*
3072 * If we sleep, have the caller restart the poll loop to reset
3073 * the state. Like for the other success return cases, the
3074 * caller is responsible for checking if the IO completed. If
3075 * the IO isn't complete, we'll get called again and will go
3076 * straight to the busy poll loop.
3077 */
3078 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3079 return true;
3080
3081 hctx->poll_considered++;
3082
3083 state = current->state;
3084 while (!need_resched()) {
3085 int ret;
3086
3087 hctx->poll_invoked++;
3088
3089 ret = q->mq_ops->poll(hctx, rq->tag);
3090 if (ret > 0) {
3091 hctx->poll_success++;
3092 set_current_state(TASK_RUNNING);
3093 return true;
3094 }
3095
3096 if (signal_pending_state(state, current))
3097 set_current_state(TASK_RUNNING);
3098
3099 if (current->state == TASK_RUNNING)
3100 return true;
3101 if (ret < 0)
3102 break;
3103 cpu_relax();
3104 }
3105
3106 return false;
3107 }
3108
3109 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
3110 {
3111 struct blk_mq_hw_ctx *hctx;
3112 struct request *rq;
3113
3114 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3115 return false;
3116
3117 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3118 if (!blk_qc_t_is_internal(cookie))
3119 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3120 else {
3121 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3122 /*
3123 * With scheduling, if the request has completed, we'll
3124 * get a NULL return here, as we clear the sched tag when
3125 * that happens. The request still remains valid, like always,
3126 * so we should be safe with just the NULL check.
3127 */
3128 if (!rq)
3129 return false;
3130 }
3131
3132 return __blk_mq_poll(hctx, rq);
3133 }
3134
3135 static int __init blk_mq_init(void)
3136 {
3137 /*
3138 * See comment in block/blk.h rq_atomic_flags enum
3139 */
3140 BUILD_BUG_ON((REQ_ATOM_STARTED / BITS_PER_BYTE) !=
3141 (REQ_ATOM_COMPLETE / BITS_PER_BYTE));
3142
3143 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3144 blk_mq_hctx_notify_dead);
3145 return 0;
3146 }
3147 subsys_initcall(blk_mq_init);