]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-throttle.c
block: fix use-after-free on gendisk
[mirror_ubuntu-bionic-kernel.git] / block / blk-throttle.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Interface for controlling IO bandwidth on a request queue
4 *
5 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
6 */
7
8 #include <linux/module.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/bio.h>
12 #include <linux/blktrace_api.h>
13 #include <linux/blk-cgroup.h>
14 #include "blk.h"
15
16 /* Max dispatch from a group in 1 round */
17 static int throtl_grp_quantum = 8;
18
19 /* Total max dispatch from all groups in one round */
20 static int throtl_quantum = 32;
21
22 /* Throttling is performed over a slice and after that slice is renewed */
23 #define DFL_THROTL_SLICE_HD (HZ / 10)
24 #define DFL_THROTL_SLICE_SSD (HZ / 50)
25 #define MAX_THROTL_SLICE (HZ)
26 #define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
27 #define MIN_THROTL_BPS (320 * 1024)
28 #define MIN_THROTL_IOPS (10)
29 #define DFL_LATENCY_TARGET (-1L)
30 #define DFL_IDLE_THRESHOLD (0)
31 #define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
32 #define LATENCY_FILTERED_SSD (0)
33 /*
34 * For HD, very small latency comes from sequential IO. Such IO is helpless to
35 * help determine if its IO is impacted by others, hence we ignore the IO
36 */
37 #define LATENCY_FILTERED_HD (1000L) /* 1ms */
38
39 #define SKIP_LATENCY (((u64)1) << BLK_STAT_RES_SHIFT)
40
41 static struct blkcg_policy blkcg_policy_throtl;
42
43 /* A workqueue to queue throttle related work */
44 static struct workqueue_struct *kthrotld_workqueue;
45
46 /*
47 * To implement hierarchical throttling, throtl_grps form a tree and bios
48 * are dispatched upwards level by level until they reach the top and get
49 * issued. When dispatching bios from the children and local group at each
50 * level, if the bios are dispatched into a single bio_list, there's a risk
51 * of a local or child group which can queue many bios at once filling up
52 * the list starving others.
53 *
54 * To avoid such starvation, dispatched bios are queued separately
55 * according to where they came from. When they are again dispatched to
56 * the parent, they're popped in round-robin order so that no single source
57 * hogs the dispatch window.
58 *
59 * throtl_qnode is used to keep the queued bios separated by their sources.
60 * Bios are queued to throtl_qnode which in turn is queued to
61 * throtl_service_queue and then dispatched in round-robin order.
62 *
63 * It's also used to track the reference counts on blkg's. A qnode always
64 * belongs to a throtl_grp and gets queued on itself or the parent, so
65 * incrementing the reference of the associated throtl_grp when a qnode is
66 * queued and decrementing when dequeued is enough to keep the whole blkg
67 * tree pinned while bios are in flight.
68 */
69 struct throtl_qnode {
70 struct list_head node; /* service_queue->queued[] */
71 struct bio_list bios; /* queued bios */
72 struct throtl_grp *tg; /* tg this qnode belongs to */
73 };
74
75 struct throtl_service_queue {
76 struct throtl_service_queue *parent_sq; /* the parent service_queue */
77
78 /*
79 * Bios queued directly to this service_queue or dispatched from
80 * children throtl_grp's.
81 */
82 struct list_head queued[2]; /* throtl_qnode [READ/WRITE] */
83 unsigned int nr_queued[2]; /* number of queued bios */
84
85 /*
86 * RB tree of active children throtl_grp's, which are sorted by
87 * their ->disptime.
88 */
89 struct rb_root pending_tree; /* RB tree of active tgs */
90 struct rb_node *first_pending; /* first node in the tree */
91 unsigned int nr_pending; /* # queued in the tree */
92 unsigned long first_pending_disptime; /* disptime of the first tg */
93 struct timer_list pending_timer; /* fires on first_pending_disptime */
94 };
95
96 enum tg_state_flags {
97 THROTL_TG_PENDING = 1 << 0, /* on parent's pending tree */
98 THROTL_TG_WAS_EMPTY = 1 << 1, /* bio_lists[] became non-empty */
99 };
100
101 #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
102
103 enum {
104 LIMIT_LOW,
105 LIMIT_MAX,
106 LIMIT_CNT,
107 };
108
109 struct throtl_grp {
110 /* must be the first member */
111 struct blkg_policy_data pd;
112
113 /* active throtl group service_queue member */
114 struct rb_node rb_node;
115
116 /* throtl_data this group belongs to */
117 struct throtl_data *td;
118
119 /* this group's service queue */
120 struct throtl_service_queue service_queue;
121
122 /*
123 * qnode_on_self is used when bios are directly queued to this
124 * throtl_grp so that local bios compete fairly with bios
125 * dispatched from children. qnode_on_parent is used when bios are
126 * dispatched from this throtl_grp into its parent and will compete
127 * with the sibling qnode_on_parents and the parent's
128 * qnode_on_self.
129 */
130 struct throtl_qnode qnode_on_self[2];
131 struct throtl_qnode qnode_on_parent[2];
132
133 /*
134 * Dispatch time in jiffies. This is the estimated time when group
135 * will unthrottle and is ready to dispatch more bio. It is used as
136 * key to sort active groups in service tree.
137 */
138 unsigned long disptime;
139
140 unsigned int flags;
141
142 /* are there any throtl rules between this group and td? */
143 bool has_rules[2];
144
145 /* internally used bytes per second rate limits */
146 uint64_t bps[2][LIMIT_CNT];
147 /* user configured bps limits */
148 uint64_t bps_conf[2][LIMIT_CNT];
149
150 /* internally used IOPS limits */
151 unsigned int iops[2][LIMIT_CNT];
152 /* user configured IOPS limits */
153 unsigned int iops_conf[2][LIMIT_CNT];
154
155 /* Number of bytes disptached in current slice */
156 uint64_t bytes_disp[2];
157 /* Number of bio's dispatched in current slice */
158 unsigned int io_disp[2];
159
160 unsigned long last_low_overflow_time[2];
161
162 uint64_t last_bytes_disp[2];
163 unsigned int last_io_disp[2];
164
165 unsigned long last_check_time;
166
167 unsigned long latency_target; /* us */
168 unsigned long latency_target_conf; /* us */
169 /* When did we start a new slice */
170 unsigned long slice_start[2];
171 unsigned long slice_end[2];
172
173 unsigned long last_finish_time; /* ns / 1024 */
174 unsigned long checked_last_finish_time; /* ns / 1024 */
175 unsigned long avg_idletime; /* ns / 1024 */
176 unsigned long idletime_threshold; /* us */
177 unsigned long idletime_threshold_conf; /* us */
178
179 unsigned int bio_cnt; /* total bios */
180 unsigned int bad_bio_cnt; /* bios exceeding latency threshold */
181 unsigned long bio_cnt_reset_time;
182 };
183
184 /* We measure latency for request size from <= 4k to >= 1M */
185 #define LATENCY_BUCKET_SIZE 9
186
187 struct latency_bucket {
188 unsigned long total_latency; /* ns / 1024 */
189 int samples;
190 };
191
192 struct avg_latency_bucket {
193 unsigned long latency; /* ns / 1024 */
194 bool valid;
195 };
196
197 struct throtl_data
198 {
199 /* service tree for active throtl groups */
200 struct throtl_service_queue service_queue;
201
202 struct request_queue *queue;
203
204 /* Total Number of queued bios on READ and WRITE lists */
205 unsigned int nr_queued[2];
206
207 unsigned int throtl_slice;
208
209 /* Work for dispatching throttled bios */
210 struct work_struct dispatch_work;
211 unsigned int limit_index;
212 bool limit_valid[LIMIT_CNT];
213
214 unsigned long low_upgrade_time;
215 unsigned long low_downgrade_time;
216
217 unsigned int scale;
218
219 struct latency_bucket tmp_buckets[LATENCY_BUCKET_SIZE];
220 struct avg_latency_bucket avg_buckets[LATENCY_BUCKET_SIZE];
221 struct latency_bucket __percpu *latency_buckets;
222 unsigned long last_calculate_time;
223 unsigned long filtered_latency;
224
225 bool track_bio_latency;
226 };
227
228 static void throtl_pending_timer_fn(struct timer_list *t);
229
230 static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
231 {
232 return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
233 }
234
235 static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
236 {
237 return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
238 }
239
240 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
241 {
242 return pd_to_blkg(&tg->pd);
243 }
244
245 /**
246 * sq_to_tg - return the throl_grp the specified service queue belongs to
247 * @sq: the throtl_service_queue of interest
248 *
249 * Return the throtl_grp @sq belongs to. If @sq is the top-level one
250 * embedded in throtl_data, %NULL is returned.
251 */
252 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
253 {
254 if (sq && sq->parent_sq)
255 return container_of(sq, struct throtl_grp, service_queue);
256 else
257 return NULL;
258 }
259
260 /**
261 * sq_to_td - return throtl_data the specified service queue belongs to
262 * @sq: the throtl_service_queue of interest
263 *
264 * A service_queue can be embedded in either a throtl_grp or throtl_data.
265 * Determine the associated throtl_data accordingly and return it.
266 */
267 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
268 {
269 struct throtl_grp *tg = sq_to_tg(sq);
270
271 if (tg)
272 return tg->td;
273 else
274 return container_of(sq, struct throtl_data, service_queue);
275 }
276
277 /*
278 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
279 * make the IO dispatch more smooth.
280 * Scale up: linearly scale up according to lapsed time since upgrade. For
281 * every throtl_slice, the limit scales up 1/2 .low limit till the
282 * limit hits .max limit
283 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
284 */
285 static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
286 {
287 /* arbitrary value to avoid too big scale */
288 if (td->scale < 4096 && time_after_eq(jiffies,
289 td->low_upgrade_time + td->scale * td->throtl_slice))
290 td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;
291
292 return low + (low >> 1) * td->scale;
293 }
294
295 static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
296 {
297 struct blkcg_gq *blkg = tg_to_blkg(tg);
298 struct throtl_data *td;
299 uint64_t ret;
300
301 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
302 return U64_MAX;
303
304 td = tg->td;
305 ret = tg->bps[rw][td->limit_index];
306 if (ret == 0 && td->limit_index == LIMIT_LOW) {
307 /* intermediate node or iops isn't 0 */
308 if (!list_empty(&blkg->blkcg->css.children) ||
309 tg->iops[rw][td->limit_index])
310 return U64_MAX;
311 else
312 return MIN_THROTL_BPS;
313 }
314
315 if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
316 tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
317 uint64_t adjusted;
318
319 adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
320 ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
321 }
322 return ret;
323 }
324
325 static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
326 {
327 struct blkcg_gq *blkg = tg_to_blkg(tg);
328 struct throtl_data *td;
329 unsigned int ret;
330
331 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
332 return UINT_MAX;
333
334 td = tg->td;
335 ret = tg->iops[rw][td->limit_index];
336 if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
337 /* intermediate node or bps isn't 0 */
338 if (!list_empty(&blkg->blkcg->css.children) ||
339 tg->bps[rw][td->limit_index])
340 return UINT_MAX;
341 else
342 return MIN_THROTL_IOPS;
343 }
344
345 if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
346 tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
347 uint64_t adjusted;
348
349 adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
350 if (adjusted > UINT_MAX)
351 adjusted = UINT_MAX;
352 ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
353 }
354 return ret;
355 }
356
357 #define request_bucket_index(sectors) \
358 clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
359
360 /**
361 * throtl_log - log debug message via blktrace
362 * @sq: the service_queue being reported
363 * @fmt: printf format string
364 * @args: printf args
365 *
366 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
367 * throtl_grp; otherwise, just "throtl".
368 */
369 #define throtl_log(sq, fmt, args...) do { \
370 struct throtl_grp *__tg = sq_to_tg((sq)); \
371 struct throtl_data *__td = sq_to_td((sq)); \
372 \
373 (void)__td; \
374 if (likely(!blk_trace_note_message_enabled(__td->queue))) \
375 break; \
376 if ((__tg)) { \
377 blk_add_cgroup_trace_msg(__td->queue, \
378 tg_to_blkg(__tg)->blkcg, "throtl " fmt, ##args);\
379 } else { \
380 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \
381 } \
382 } while (0)
383
384 static inline unsigned int throtl_bio_data_size(struct bio *bio)
385 {
386 /* assume it's one sector */
387 if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
388 return 512;
389 return bio->bi_iter.bi_size;
390 }
391
392 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
393 {
394 INIT_LIST_HEAD(&qn->node);
395 bio_list_init(&qn->bios);
396 qn->tg = tg;
397 }
398
399 /**
400 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
401 * @bio: bio being added
402 * @qn: qnode to add bio to
403 * @queued: the service_queue->queued[] list @qn belongs to
404 *
405 * Add @bio to @qn and put @qn on @queued if it's not already on.
406 * @qn->tg's reference count is bumped when @qn is activated. See the
407 * comment on top of throtl_qnode definition for details.
408 */
409 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
410 struct list_head *queued)
411 {
412 bio_list_add(&qn->bios, bio);
413 if (list_empty(&qn->node)) {
414 list_add_tail(&qn->node, queued);
415 blkg_get(tg_to_blkg(qn->tg));
416 }
417 }
418
419 /**
420 * throtl_peek_queued - peek the first bio on a qnode list
421 * @queued: the qnode list to peek
422 */
423 static struct bio *throtl_peek_queued(struct list_head *queued)
424 {
425 struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
426 struct bio *bio;
427
428 if (list_empty(queued))
429 return NULL;
430
431 bio = bio_list_peek(&qn->bios);
432 WARN_ON_ONCE(!bio);
433 return bio;
434 }
435
436 /**
437 * throtl_pop_queued - pop the first bio form a qnode list
438 * @queued: the qnode list to pop a bio from
439 * @tg_to_put: optional out argument for throtl_grp to put
440 *
441 * Pop the first bio from the qnode list @queued. After popping, the first
442 * qnode is removed from @queued if empty or moved to the end of @queued so
443 * that the popping order is round-robin.
444 *
445 * When the first qnode is removed, its associated throtl_grp should be put
446 * too. If @tg_to_put is NULL, this function automatically puts it;
447 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
448 * responsible for putting it.
449 */
450 static struct bio *throtl_pop_queued(struct list_head *queued,
451 struct throtl_grp **tg_to_put)
452 {
453 struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
454 struct bio *bio;
455
456 if (list_empty(queued))
457 return NULL;
458
459 bio = bio_list_pop(&qn->bios);
460 WARN_ON_ONCE(!bio);
461
462 if (bio_list_empty(&qn->bios)) {
463 list_del_init(&qn->node);
464 if (tg_to_put)
465 *tg_to_put = qn->tg;
466 else
467 blkg_put(tg_to_blkg(qn->tg));
468 } else {
469 list_move_tail(&qn->node, queued);
470 }
471
472 return bio;
473 }
474
475 /* init a service_queue, assumes the caller zeroed it */
476 static void throtl_service_queue_init(struct throtl_service_queue *sq)
477 {
478 INIT_LIST_HEAD(&sq->queued[0]);
479 INIT_LIST_HEAD(&sq->queued[1]);
480 sq->pending_tree = RB_ROOT;
481 timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
482 }
483
484 static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, int node)
485 {
486 struct throtl_grp *tg;
487 int rw;
488
489 tg = kzalloc_node(sizeof(*tg), gfp, node);
490 if (!tg)
491 return NULL;
492
493 throtl_service_queue_init(&tg->service_queue);
494
495 for (rw = READ; rw <= WRITE; rw++) {
496 throtl_qnode_init(&tg->qnode_on_self[rw], tg);
497 throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
498 }
499
500 RB_CLEAR_NODE(&tg->rb_node);
501 tg->bps[READ][LIMIT_MAX] = U64_MAX;
502 tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
503 tg->iops[READ][LIMIT_MAX] = UINT_MAX;
504 tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
505 tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
506 tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
507 tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
508 tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
509 /* LIMIT_LOW will have default value 0 */
510
511 tg->latency_target = DFL_LATENCY_TARGET;
512 tg->latency_target_conf = DFL_LATENCY_TARGET;
513 tg->idletime_threshold = DFL_IDLE_THRESHOLD;
514 tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
515
516 return &tg->pd;
517 }
518
519 static void throtl_pd_init(struct blkg_policy_data *pd)
520 {
521 struct throtl_grp *tg = pd_to_tg(pd);
522 struct blkcg_gq *blkg = tg_to_blkg(tg);
523 struct throtl_data *td = blkg->q->td;
524 struct throtl_service_queue *sq = &tg->service_queue;
525
526 /*
527 * If on the default hierarchy, we switch to properly hierarchical
528 * behavior where limits on a given throtl_grp are applied to the
529 * whole subtree rather than just the group itself. e.g. If 16M
530 * read_bps limit is set on the root group, the whole system can't
531 * exceed 16M for the device.
532 *
533 * If not on the default hierarchy, the broken flat hierarchy
534 * behavior is retained where all throtl_grps are treated as if
535 * they're all separate root groups right below throtl_data.
536 * Limits of a group don't interact with limits of other groups
537 * regardless of the position of the group in the hierarchy.
538 */
539 sq->parent_sq = &td->service_queue;
540 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
541 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
542 tg->td = td;
543 }
544
545 /*
546 * Set has_rules[] if @tg or any of its parents have limits configured.
547 * This doesn't require walking up to the top of the hierarchy as the
548 * parent's has_rules[] is guaranteed to be correct.
549 */
550 static void tg_update_has_rules(struct throtl_grp *tg)
551 {
552 struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
553 struct throtl_data *td = tg->td;
554 int rw;
555
556 for (rw = READ; rw <= WRITE; rw++)
557 tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
558 (td->limit_valid[td->limit_index] &&
559 (tg_bps_limit(tg, rw) != U64_MAX ||
560 tg_iops_limit(tg, rw) != UINT_MAX));
561 }
562
563 static void throtl_pd_online(struct blkg_policy_data *pd)
564 {
565 struct throtl_grp *tg = pd_to_tg(pd);
566 /*
567 * We don't want new groups to escape the limits of its ancestors.
568 * Update has_rules[] after a new group is brought online.
569 */
570 tg_update_has_rules(tg);
571 }
572
573 static void blk_throtl_update_limit_valid(struct throtl_data *td)
574 {
575 struct cgroup_subsys_state *pos_css;
576 struct blkcg_gq *blkg;
577 bool low_valid = false;
578
579 rcu_read_lock();
580 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
581 struct throtl_grp *tg = blkg_to_tg(blkg);
582
583 if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
584 tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
585 low_valid = true;
586 }
587 rcu_read_unlock();
588
589 td->limit_valid[LIMIT_LOW] = low_valid;
590 }
591
592 static void throtl_upgrade_state(struct throtl_data *td);
593 static void throtl_pd_offline(struct blkg_policy_data *pd)
594 {
595 struct throtl_grp *tg = pd_to_tg(pd);
596
597 tg->bps[READ][LIMIT_LOW] = 0;
598 tg->bps[WRITE][LIMIT_LOW] = 0;
599 tg->iops[READ][LIMIT_LOW] = 0;
600 tg->iops[WRITE][LIMIT_LOW] = 0;
601
602 blk_throtl_update_limit_valid(tg->td);
603
604 if (!tg->td->limit_valid[tg->td->limit_index])
605 throtl_upgrade_state(tg->td);
606 }
607
608 static void throtl_pd_free(struct blkg_policy_data *pd)
609 {
610 struct throtl_grp *tg = pd_to_tg(pd);
611
612 del_timer_sync(&tg->service_queue.pending_timer);
613 kfree(tg);
614 }
615
616 static struct throtl_grp *
617 throtl_rb_first(struct throtl_service_queue *parent_sq)
618 {
619 /* Service tree is empty */
620 if (!parent_sq->nr_pending)
621 return NULL;
622
623 if (!parent_sq->first_pending)
624 parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
625
626 if (parent_sq->first_pending)
627 return rb_entry_tg(parent_sq->first_pending);
628
629 return NULL;
630 }
631
632 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
633 {
634 rb_erase(n, root);
635 RB_CLEAR_NODE(n);
636 }
637
638 static void throtl_rb_erase(struct rb_node *n,
639 struct throtl_service_queue *parent_sq)
640 {
641 if (parent_sq->first_pending == n)
642 parent_sq->first_pending = NULL;
643 rb_erase_init(n, &parent_sq->pending_tree);
644 --parent_sq->nr_pending;
645 }
646
647 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
648 {
649 struct throtl_grp *tg;
650
651 tg = throtl_rb_first(parent_sq);
652 if (!tg)
653 return;
654
655 parent_sq->first_pending_disptime = tg->disptime;
656 }
657
658 static void tg_service_queue_add(struct throtl_grp *tg)
659 {
660 struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
661 struct rb_node **node = &parent_sq->pending_tree.rb_node;
662 struct rb_node *parent = NULL;
663 struct throtl_grp *__tg;
664 unsigned long key = tg->disptime;
665 int left = 1;
666
667 while (*node != NULL) {
668 parent = *node;
669 __tg = rb_entry_tg(parent);
670
671 if (time_before(key, __tg->disptime))
672 node = &parent->rb_left;
673 else {
674 node = &parent->rb_right;
675 left = 0;
676 }
677 }
678
679 if (left)
680 parent_sq->first_pending = &tg->rb_node;
681
682 rb_link_node(&tg->rb_node, parent, node);
683 rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
684 }
685
686 static void __throtl_enqueue_tg(struct throtl_grp *tg)
687 {
688 tg_service_queue_add(tg);
689 tg->flags |= THROTL_TG_PENDING;
690 tg->service_queue.parent_sq->nr_pending++;
691 }
692
693 static void throtl_enqueue_tg(struct throtl_grp *tg)
694 {
695 if (!(tg->flags & THROTL_TG_PENDING))
696 __throtl_enqueue_tg(tg);
697 }
698
699 static void __throtl_dequeue_tg(struct throtl_grp *tg)
700 {
701 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
702 tg->flags &= ~THROTL_TG_PENDING;
703 }
704
705 static void throtl_dequeue_tg(struct throtl_grp *tg)
706 {
707 if (tg->flags & THROTL_TG_PENDING)
708 __throtl_dequeue_tg(tg);
709 }
710
711 /* Call with queue lock held */
712 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
713 unsigned long expires)
714 {
715 unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
716
717 /*
718 * Since we are adjusting the throttle limit dynamically, the sleep
719 * time calculated according to previous limit might be invalid. It's
720 * possible the cgroup sleep time is very long and no other cgroups
721 * have IO running so notify the limit changes. Make sure the cgroup
722 * doesn't sleep too long to avoid the missed notification.
723 */
724 if (time_after(expires, max_expire))
725 expires = max_expire;
726 mod_timer(&sq->pending_timer, expires);
727 throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
728 expires - jiffies, jiffies);
729 }
730
731 /**
732 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
733 * @sq: the service_queue to schedule dispatch for
734 * @force: force scheduling
735 *
736 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
737 * dispatch time of the first pending child. Returns %true if either timer
738 * is armed or there's no pending child left. %false if the current
739 * dispatch window is still open and the caller should continue
740 * dispatching.
741 *
742 * If @force is %true, the dispatch timer is always scheduled and this
743 * function is guaranteed to return %true. This is to be used when the
744 * caller can't dispatch itself and needs to invoke pending_timer
745 * unconditionally. Note that forced scheduling is likely to induce short
746 * delay before dispatch starts even if @sq->first_pending_disptime is not
747 * in the future and thus shouldn't be used in hot paths.
748 */
749 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
750 bool force)
751 {
752 /* any pending children left? */
753 if (!sq->nr_pending)
754 return true;
755
756 update_min_dispatch_time(sq);
757
758 /* is the next dispatch time in the future? */
759 if (force || time_after(sq->first_pending_disptime, jiffies)) {
760 throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
761 return true;
762 }
763
764 /* tell the caller to continue dispatching */
765 return false;
766 }
767
768 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
769 bool rw, unsigned long start)
770 {
771 tg->bytes_disp[rw] = 0;
772 tg->io_disp[rw] = 0;
773
774 /*
775 * Previous slice has expired. We must have trimmed it after last
776 * bio dispatch. That means since start of last slice, we never used
777 * that bandwidth. Do try to make use of that bandwidth while giving
778 * credit.
779 */
780 if (time_after_eq(start, tg->slice_start[rw]))
781 tg->slice_start[rw] = start;
782
783 tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
784 throtl_log(&tg->service_queue,
785 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
786 rw == READ ? 'R' : 'W', tg->slice_start[rw],
787 tg->slice_end[rw], jiffies);
788 }
789
790 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
791 {
792 tg->bytes_disp[rw] = 0;
793 tg->io_disp[rw] = 0;
794 tg->slice_start[rw] = jiffies;
795 tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
796 throtl_log(&tg->service_queue,
797 "[%c] new slice start=%lu end=%lu jiffies=%lu",
798 rw == READ ? 'R' : 'W', tg->slice_start[rw],
799 tg->slice_end[rw], jiffies);
800 }
801
802 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
803 unsigned long jiffy_end)
804 {
805 tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
806 }
807
808 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
809 unsigned long jiffy_end)
810 {
811 tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
812 throtl_log(&tg->service_queue,
813 "[%c] extend slice start=%lu end=%lu jiffies=%lu",
814 rw == READ ? 'R' : 'W', tg->slice_start[rw],
815 tg->slice_end[rw], jiffies);
816 }
817
818 /* Determine if previously allocated or extended slice is complete or not */
819 static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
820 {
821 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
822 return false;
823
824 return 1;
825 }
826
827 /* Trim the used slices and adjust slice start accordingly */
828 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
829 {
830 unsigned long nr_slices, time_elapsed, io_trim;
831 u64 bytes_trim, tmp;
832
833 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
834
835 /*
836 * If bps are unlimited (-1), then time slice don't get
837 * renewed. Don't try to trim the slice if slice is used. A new
838 * slice will start when appropriate.
839 */
840 if (throtl_slice_used(tg, rw))
841 return;
842
843 /*
844 * A bio has been dispatched. Also adjust slice_end. It might happen
845 * that initially cgroup limit was very low resulting in high
846 * slice_end, but later limit was bumped up and bio was dispached
847 * sooner, then we need to reduce slice_end. A high bogus slice_end
848 * is bad because it does not allow new slice to start.
849 */
850
851 throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
852
853 time_elapsed = jiffies - tg->slice_start[rw];
854
855 nr_slices = time_elapsed / tg->td->throtl_slice;
856
857 if (!nr_slices)
858 return;
859 tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
860 do_div(tmp, HZ);
861 bytes_trim = tmp;
862
863 io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
864 HZ;
865
866 if (!bytes_trim && !io_trim)
867 return;
868
869 if (tg->bytes_disp[rw] >= bytes_trim)
870 tg->bytes_disp[rw] -= bytes_trim;
871 else
872 tg->bytes_disp[rw] = 0;
873
874 if (tg->io_disp[rw] >= io_trim)
875 tg->io_disp[rw] -= io_trim;
876 else
877 tg->io_disp[rw] = 0;
878
879 tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
880
881 throtl_log(&tg->service_queue,
882 "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
883 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
884 tg->slice_start[rw], tg->slice_end[rw], jiffies);
885 }
886
887 static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
888 unsigned long *wait)
889 {
890 bool rw = bio_data_dir(bio);
891 unsigned int io_allowed;
892 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
893 u64 tmp;
894
895 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
896
897 /* Slice has just started. Consider one slice interval */
898 if (!jiffy_elapsed)
899 jiffy_elapsed_rnd = tg->td->throtl_slice;
900
901 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
902
903 /*
904 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
905 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
906 * will allow dispatch after 1 second and after that slice should
907 * have been trimmed.
908 */
909
910 tmp = (u64)tg_iops_limit(tg, rw) * jiffy_elapsed_rnd;
911 do_div(tmp, HZ);
912
913 if (tmp > UINT_MAX)
914 io_allowed = UINT_MAX;
915 else
916 io_allowed = tmp;
917
918 if (tg->io_disp[rw] + 1 <= io_allowed) {
919 if (wait)
920 *wait = 0;
921 return true;
922 }
923
924 /* Calc approx time to dispatch */
925 jiffy_wait = ((tg->io_disp[rw] + 1) * HZ) / tg_iops_limit(tg, rw) + 1;
926
927 if (jiffy_wait > jiffy_elapsed)
928 jiffy_wait = jiffy_wait - jiffy_elapsed;
929 else
930 jiffy_wait = 1;
931
932 if (wait)
933 *wait = jiffy_wait;
934 return 0;
935 }
936
937 static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
938 unsigned long *wait)
939 {
940 bool rw = bio_data_dir(bio);
941 u64 bytes_allowed, extra_bytes, tmp;
942 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
943 unsigned int bio_size = throtl_bio_data_size(bio);
944
945 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
946
947 /* Slice has just started. Consider one slice interval */
948 if (!jiffy_elapsed)
949 jiffy_elapsed_rnd = tg->td->throtl_slice;
950
951 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
952
953 tmp = tg_bps_limit(tg, rw) * jiffy_elapsed_rnd;
954 do_div(tmp, HZ);
955 bytes_allowed = tmp;
956
957 if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) {
958 if (wait)
959 *wait = 0;
960 return true;
961 }
962
963 /* Calc approx time to dispatch */
964 extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
965 jiffy_wait = div64_u64(extra_bytes * HZ, tg_bps_limit(tg, rw));
966
967 if (!jiffy_wait)
968 jiffy_wait = 1;
969
970 /*
971 * This wait time is without taking into consideration the rounding
972 * up we did. Add that time also.
973 */
974 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
975 if (wait)
976 *wait = jiffy_wait;
977 return 0;
978 }
979
980 /*
981 * Returns whether one can dispatch a bio or not. Also returns approx number
982 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
983 */
984 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
985 unsigned long *wait)
986 {
987 bool rw = bio_data_dir(bio);
988 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
989
990 /*
991 * Currently whole state machine of group depends on first bio
992 * queued in the group bio list. So one should not be calling
993 * this function with a different bio if there are other bios
994 * queued.
995 */
996 BUG_ON(tg->service_queue.nr_queued[rw] &&
997 bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
998
999 /* If tg->bps = -1, then BW is unlimited */
1000 if (tg_bps_limit(tg, rw) == U64_MAX &&
1001 tg_iops_limit(tg, rw) == UINT_MAX) {
1002 if (wait)
1003 *wait = 0;
1004 return true;
1005 }
1006
1007 /*
1008 * If previous slice expired, start a new one otherwise renew/extend
1009 * existing slice to make sure it is at least throtl_slice interval
1010 * long since now. New slice is started only for empty throttle group.
1011 * If there is queued bio, that means there should be an active
1012 * slice and it should be extended instead.
1013 */
1014 if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
1015 throtl_start_new_slice(tg, rw);
1016 else {
1017 if (time_before(tg->slice_end[rw],
1018 jiffies + tg->td->throtl_slice))
1019 throtl_extend_slice(tg, rw,
1020 jiffies + tg->td->throtl_slice);
1021 }
1022
1023 if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
1024 tg_with_in_iops_limit(tg, bio, &iops_wait)) {
1025 if (wait)
1026 *wait = 0;
1027 return 1;
1028 }
1029
1030 max_wait = max(bps_wait, iops_wait);
1031
1032 if (wait)
1033 *wait = max_wait;
1034
1035 if (time_before(tg->slice_end[rw], jiffies + max_wait))
1036 throtl_extend_slice(tg, rw, jiffies + max_wait);
1037
1038 return 0;
1039 }
1040
1041 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
1042 {
1043 bool rw = bio_data_dir(bio);
1044 unsigned int bio_size = throtl_bio_data_size(bio);
1045
1046 /* Charge the bio to the group */
1047 tg->bytes_disp[rw] += bio_size;
1048 tg->io_disp[rw]++;
1049 tg->last_bytes_disp[rw] += bio_size;
1050 tg->last_io_disp[rw]++;
1051
1052 /*
1053 * BIO_THROTTLED is used to prevent the same bio to be throttled
1054 * more than once as a throttled bio will go through blk-throtl the
1055 * second time when it eventually gets issued. Set it when a bio
1056 * is being charged to a tg.
1057 */
1058 if (!bio_flagged(bio, BIO_THROTTLED))
1059 bio_set_flag(bio, BIO_THROTTLED);
1060 }
1061
1062 /**
1063 * throtl_add_bio_tg - add a bio to the specified throtl_grp
1064 * @bio: bio to add
1065 * @qn: qnode to use
1066 * @tg: the target throtl_grp
1067 *
1068 * Add @bio to @tg's service_queue using @qn. If @qn is not specified,
1069 * tg->qnode_on_self[] is used.
1070 */
1071 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
1072 struct throtl_grp *tg)
1073 {
1074 struct throtl_service_queue *sq = &tg->service_queue;
1075 bool rw = bio_data_dir(bio);
1076
1077 if (!qn)
1078 qn = &tg->qnode_on_self[rw];
1079
1080 /*
1081 * If @tg doesn't currently have any bios queued in the same
1082 * direction, queueing @bio can change when @tg should be
1083 * dispatched. Mark that @tg was empty. This is automatically
1084 * cleaered on the next tg_update_disptime().
1085 */
1086 if (!sq->nr_queued[rw])
1087 tg->flags |= THROTL_TG_WAS_EMPTY;
1088
1089 throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
1090
1091 sq->nr_queued[rw]++;
1092 throtl_enqueue_tg(tg);
1093 }
1094
1095 static void tg_update_disptime(struct throtl_grp *tg)
1096 {
1097 struct throtl_service_queue *sq = &tg->service_queue;
1098 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
1099 struct bio *bio;
1100
1101 bio = throtl_peek_queued(&sq->queued[READ]);
1102 if (bio)
1103 tg_may_dispatch(tg, bio, &read_wait);
1104
1105 bio = throtl_peek_queued(&sq->queued[WRITE]);
1106 if (bio)
1107 tg_may_dispatch(tg, bio, &write_wait);
1108
1109 min_wait = min(read_wait, write_wait);
1110 disptime = jiffies + min_wait;
1111
1112 /* Update dispatch time */
1113 throtl_dequeue_tg(tg);
1114 tg->disptime = disptime;
1115 throtl_enqueue_tg(tg);
1116
1117 /* see throtl_add_bio_tg() */
1118 tg->flags &= ~THROTL_TG_WAS_EMPTY;
1119 }
1120
1121 static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1122 struct throtl_grp *parent_tg, bool rw)
1123 {
1124 if (throtl_slice_used(parent_tg, rw)) {
1125 throtl_start_new_slice_with_credit(parent_tg, rw,
1126 child_tg->slice_start[rw]);
1127 }
1128
1129 }
1130
1131 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1132 {
1133 struct throtl_service_queue *sq = &tg->service_queue;
1134 struct throtl_service_queue *parent_sq = sq->parent_sq;
1135 struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1136 struct throtl_grp *tg_to_put = NULL;
1137 struct bio *bio;
1138
1139 /*
1140 * @bio is being transferred from @tg to @parent_sq. Popping a bio
1141 * from @tg may put its reference and @parent_sq might end up
1142 * getting released prematurely. Remember the tg to put and put it
1143 * after @bio is transferred to @parent_sq.
1144 */
1145 bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1146 sq->nr_queued[rw]--;
1147
1148 throtl_charge_bio(tg, bio);
1149
1150 /*
1151 * If our parent is another tg, we just need to transfer @bio to
1152 * the parent using throtl_add_bio_tg(). If our parent is
1153 * @td->service_queue, @bio is ready to be issued. Put it on its
1154 * bio_lists[] and decrease total number queued. The caller is
1155 * responsible for issuing these bios.
1156 */
1157 if (parent_tg) {
1158 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1159 start_parent_slice_with_credit(tg, parent_tg, rw);
1160 } else {
1161 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1162 &parent_sq->queued[rw]);
1163 BUG_ON(tg->td->nr_queued[rw] <= 0);
1164 tg->td->nr_queued[rw]--;
1165 }
1166
1167 throtl_trim_slice(tg, rw);
1168
1169 if (tg_to_put)
1170 blkg_put(tg_to_blkg(tg_to_put));
1171 }
1172
1173 static int throtl_dispatch_tg(struct throtl_grp *tg)
1174 {
1175 struct throtl_service_queue *sq = &tg->service_queue;
1176 unsigned int nr_reads = 0, nr_writes = 0;
1177 unsigned int max_nr_reads = throtl_grp_quantum*3/4;
1178 unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
1179 struct bio *bio;
1180
1181 /* Try to dispatch 75% READS and 25% WRITES */
1182
1183 while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1184 tg_may_dispatch(tg, bio, NULL)) {
1185
1186 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1187 nr_reads++;
1188
1189 if (nr_reads >= max_nr_reads)
1190 break;
1191 }
1192
1193 while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1194 tg_may_dispatch(tg, bio, NULL)) {
1195
1196 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1197 nr_writes++;
1198
1199 if (nr_writes >= max_nr_writes)
1200 break;
1201 }
1202
1203 return nr_reads + nr_writes;
1204 }
1205
1206 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1207 {
1208 unsigned int nr_disp = 0;
1209
1210 while (1) {
1211 struct throtl_grp *tg = throtl_rb_first(parent_sq);
1212 struct throtl_service_queue *sq = &tg->service_queue;
1213
1214 if (!tg)
1215 break;
1216
1217 if (time_before(jiffies, tg->disptime))
1218 break;
1219
1220 throtl_dequeue_tg(tg);
1221
1222 nr_disp += throtl_dispatch_tg(tg);
1223
1224 if (sq->nr_queued[0] || sq->nr_queued[1])
1225 tg_update_disptime(tg);
1226
1227 if (nr_disp >= throtl_quantum)
1228 break;
1229 }
1230
1231 return nr_disp;
1232 }
1233
1234 static bool throtl_can_upgrade(struct throtl_data *td,
1235 struct throtl_grp *this_tg);
1236 /**
1237 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1238 * @arg: the throtl_service_queue being serviced
1239 *
1240 * This timer is armed when a child throtl_grp with active bio's become
1241 * pending and queued on the service_queue's pending_tree and expires when
1242 * the first child throtl_grp should be dispatched. This function
1243 * dispatches bio's from the children throtl_grps to the parent
1244 * service_queue.
1245 *
1246 * If the parent's parent is another throtl_grp, dispatching is propagated
1247 * by either arming its pending_timer or repeating dispatch directly. If
1248 * the top-level service_tree is reached, throtl_data->dispatch_work is
1249 * kicked so that the ready bio's are issued.
1250 */
1251 static void throtl_pending_timer_fn(struct timer_list *t)
1252 {
1253 struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
1254 struct throtl_grp *tg = sq_to_tg(sq);
1255 struct throtl_data *td = sq_to_td(sq);
1256 struct request_queue *q = td->queue;
1257 struct throtl_service_queue *parent_sq;
1258 bool dispatched;
1259 int ret;
1260
1261 spin_lock_irq(q->queue_lock);
1262 if (throtl_can_upgrade(td, NULL))
1263 throtl_upgrade_state(td);
1264
1265 again:
1266 parent_sq = sq->parent_sq;
1267 dispatched = false;
1268
1269 while (true) {
1270 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1271 sq->nr_queued[READ] + sq->nr_queued[WRITE],
1272 sq->nr_queued[READ], sq->nr_queued[WRITE]);
1273
1274 ret = throtl_select_dispatch(sq);
1275 if (ret) {
1276 throtl_log(sq, "bios disp=%u", ret);
1277 dispatched = true;
1278 }
1279
1280 if (throtl_schedule_next_dispatch(sq, false))
1281 break;
1282
1283 /* this dispatch windows is still open, relax and repeat */
1284 spin_unlock_irq(q->queue_lock);
1285 cpu_relax();
1286 spin_lock_irq(q->queue_lock);
1287 }
1288
1289 if (!dispatched)
1290 goto out_unlock;
1291
1292 if (parent_sq) {
1293 /* @parent_sq is another throl_grp, propagate dispatch */
1294 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1295 tg_update_disptime(tg);
1296 if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1297 /* window is already open, repeat dispatching */
1298 sq = parent_sq;
1299 tg = sq_to_tg(sq);
1300 goto again;
1301 }
1302 }
1303 } else {
1304 /* reached the top-level, queue issueing */
1305 queue_work(kthrotld_workqueue, &td->dispatch_work);
1306 }
1307 out_unlock:
1308 spin_unlock_irq(q->queue_lock);
1309 }
1310
1311 /**
1312 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1313 * @work: work item being executed
1314 *
1315 * This function is queued for execution when bio's reach the bio_lists[]
1316 * of throtl_data->service_queue. Those bio's are ready and issued by this
1317 * function.
1318 */
1319 static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1320 {
1321 struct throtl_data *td = container_of(work, struct throtl_data,
1322 dispatch_work);
1323 struct throtl_service_queue *td_sq = &td->service_queue;
1324 struct request_queue *q = td->queue;
1325 struct bio_list bio_list_on_stack;
1326 struct bio *bio;
1327 struct blk_plug plug;
1328 int rw;
1329
1330 bio_list_init(&bio_list_on_stack);
1331
1332 spin_lock_irq(q->queue_lock);
1333 for (rw = READ; rw <= WRITE; rw++)
1334 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1335 bio_list_add(&bio_list_on_stack, bio);
1336 spin_unlock_irq(q->queue_lock);
1337
1338 if (!bio_list_empty(&bio_list_on_stack)) {
1339 blk_start_plug(&plug);
1340 while((bio = bio_list_pop(&bio_list_on_stack)))
1341 generic_make_request(bio);
1342 blk_finish_plug(&plug);
1343 }
1344 }
1345
1346 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1347 int off)
1348 {
1349 struct throtl_grp *tg = pd_to_tg(pd);
1350 u64 v = *(u64 *)((void *)tg + off);
1351
1352 if (v == U64_MAX)
1353 return 0;
1354 return __blkg_prfill_u64(sf, pd, v);
1355 }
1356
1357 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1358 int off)
1359 {
1360 struct throtl_grp *tg = pd_to_tg(pd);
1361 unsigned int v = *(unsigned int *)((void *)tg + off);
1362
1363 if (v == UINT_MAX)
1364 return 0;
1365 return __blkg_prfill_u64(sf, pd, v);
1366 }
1367
1368 static int tg_print_conf_u64(struct seq_file *sf, void *v)
1369 {
1370 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1371 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1372 return 0;
1373 }
1374
1375 static int tg_print_conf_uint(struct seq_file *sf, void *v)
1376 {
1377 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1378 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1379 return 0;
1380 }
1381
1382 static void tg_conf_updated(struct throtl_grp *tg, bool global)
1383 {
1384 struct throtl_service_queue *sq = &tg->service_queue;
1385 struct cgroup_subsys_state *pos_css;
1386 struct blkcg_gq *blkg;
1387
1388 throtl_log(&tg->service_queue,
1389 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1390 tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1391 tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1392
1393 /*
1394 * Update has_rules[] flags for the updated tg's subtree. A tg is
1395 * considered to have rules if either the tg itself or any of its
1396 * ancestors has rules. This identifies groups without any
1397 * restrictions in the whole hierarchy and allows them to bypass
1398 * blk-throttle.
1399 */
1400 blkg_for_each_descendant_pre(blkg, pos_css,
1401 global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
1402 struct throtl_grp *this_tg = blkg_to_tg(blkg);
1403 struct throtl_grp *parent_tg;
1404
1405 tg_update_has_rules(this_tg);
1406 /* ignore root/second level */
1407 if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
1408 !blkg->parent->parent)
1409 continue;
1410 parent_tg = blkg_to_tg(blkg->parent);
1411 /*
1412 * make sure all children has lower idle time threshold and
1413 * higher latency target
1414 */
1415 this_tg->idletime_threshold = min(this_tg->idletime_threshold,
1416 parent_tg->idletime_threshold);
1417 this_tg->latency_target = max(this_tg->latency_target,
1418 parent_tg->latency_target);
1419 }
1420
1421 /*
1422 * We're already holding queue_lock and know @tg is valid. Let's
1423 * apply the new config directly.
1424 *
1425 * Restart the slices for both READ and WRITES. It might happen
1426 * that a group's limit are dropped suddenly and we don't want to
1427 * account recently dispatched IO with new low rate.
1428 */
1429 throtl_start_new_slice(tg, 0);
1430 throtl_start_new_slice(tg, 1);
1431
1432 if (tg->flags & THROTL_TG_PENDING) {
1433 tg_update_disptime(tg);
1434 throtl_schedule_next_dispatch(sq->parent_sq, true);
1435 }
1436 }
1437
1438 static ssize_t tg_set_conf(struct kernfs_open_file *of,
1439 char *buf, size_t nbytes, loff_t off, bool is_u64)
1440 {
1441 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1442 struct blkg_conf_ctx ctx;
1443 struct throtl_grp *tg;
1444 int ret;
1445 u64 v;
1446
1447 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1448 if (ret)
1449 return ret;
1450
1451 ret = -EINVAL;
1452 if (sscanf(ctx.body, "%llu", &v) != 1)
1453 goto out_finish;
1454 if (!v)
1455 v = U64_MAX;
1456
1457 tg = blkg_to_tg(ctx.blkg);
1458
1459 if (is_u64)
1460 *(u64 *)((void *)tg + of_cft(of)->private) = v;
1461 else
1462 *(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1463
1464 tg_conf_updated(tg, false);
1465 ret = 0;
1466 out_finish:
1467 blkg_conf_finish(&ctx);
1468 return ret ?: nbytes;
1469 }
1470
1471 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1472 char *buf, size_t nbytes, loff_t off)
1473 {
1474 return tg_set_conf(of, buf, nbytes, off, true);
1475 }
1476
1477 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1478 char *buf, size_t nbytes, loff_t off)
1479 {
1480 return tg_set_conf(of, buf, nbytes, off, false);
1481 }
1482
1483 static struct cftype throtl_legacy_files[] = {
1484 {
1485 .name = "throttle.read_bps_device",
1486 .private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1487 .seq_show = tg_print_conf_u64,
1488 .write = tg_set_conf_u64,
1489 },
1490 {
1491 .name = "throttle.write_bps_device",
1492 .private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1493 .seq_show = tg_print_conf_u64,
1494 .write = tg_set_conf_u64,
1495 },
1496 {
1497 .name = "throttle.read_iops_device",
1498 .private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1499 .seq_show = tg_print_conf_uint,
1500 .write = tg_set_conf_uint,
1501 },
1502 {
1503 .name = "throttle.write_iops_device",
1504 .private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1505 .seq_show = tg_print_conf_uint,
1506 .write = tg_set_conf_uint,
1507 },
1508 {
1509 .name = "throttle.io_service_bytes",
1510 .private = (unsigned long)&blkcg_policy_throtl,
1511 .seq_show = blkg_print_stat_bytes,
1512 },
1513 {
1514 .name = "throttle.io_serviced",
1515 .private = (unsigned long)&blkcg_policy_throtl,
1516 .seq_show = blkg_print_stat_ios,
1517 },
1518 { } /* terminate */
1519 };
1520
1521 static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1522 int off)
1523 {
1524 struct throtl_grp *tg = pd_to_tg(pd);
1525 const char *dname = blkg_dev_name(pd->blkg);
1526 char bufs[4][21] = { "max", "max", "max", "max" };
1527 u64 bps_dft;
1528 unsigned int iops_dft;
1529 char idle_time[26] = "";
1530 char latency_time[26] = "";
1531
1532 if (!dname)
1533 return 0;
1534
1535 if (off == LIMIT_LOW) {
1536 bps_dft = 0;
1537 iops_dft = 0;
1538 } else {
1539 bps_dft = U64_MAX;
1540 iops_dft = UINT_MAX;
1541 }
1542
1543 if (tg->bps_conf[READ][off] == bps_dft &&
1544 tg->bps_conf[WRITE][off] == bps_dft &&
1545 tg->iops_conf[READ][off] == iops_dft &&
1546 tg->iops_conf[WRITE][off] == iops_dft &&
1547 (off != LIMIT_LOW ||
1548 (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
1549 tg->latency_target_conf == DFL_LATENCY_TARGET)))
1550 return 0;
1551
1552 if (tg->bps_conf[READ][off] != U64_MAX)
1553 snprintf(bufs[0], sizeof(bufs[0]), "%llu",
1554 tg->bps_conf[READ][off]);
1555 if (tg->bps_conf[WRITE][off] != U64_MAX)
1556 snprintf(bufs[1], sizeof(bufs[1]), "%llu",
1557 tg->bps_conf[WRITE][off]);
1558 if (tg->iops_conf[READ][off] != UINT_MAX)
1559 snprintf(bufs[2], sizeof(bufs[2]), "%u",
1560 tg->iops_conf[READ][off]);
1561 if (tg->iops_conf[WRITE][off] != UINT_MAX)
1562 snprintf(bufs[3], sizeof(bufs[3]), "%u",
1563 tg->iops_conf[WRITE][off]);
1564 if (off == LIMIT_LOW) {
1565 if (tg->idletime_threshold_conf == ULONG_MAX)
1566 strcpy(idle_time, " idle=max");
1567 else
1568 snprintf(idle_time, sizeof(idle_time), " idle=%lu",
1569 tg->idletime_threshold_conf);
1570
1571 if (tg->latency_target_conf == ULONG_MAX)
1572 strcpy(latency_time, " latency=max");
1573 else
1574 snprintf(latency_time, sizeof(latency_time),
1575 " latency=%lu", tg->latency_target_conf);
1576 }
1577
1578 seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1579 dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
1580 latency_time);
1581 return 0;
1582 }
1583
1584 static int tg_print_limit(struct seq_file *sf, void *v)
1585 {
1586 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1587 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1588 return 0;
1589 }
1590
1591 static ssize_t tg_set_limit(struct kernfs_open_file *of,
1592 char *buf, size_t nbytes, loff_t off)
1593 {
1594 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1595 struct blkg_conf_ctx ctx;
1596 struct throtl_grp *tg;
1597 u64 v[4];
1598 unsigned long idle_time;
1599 unsigned long latency_time;
1600 int ret;
1601 int index = of_cft(of)->private;
1602
1603 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1604 if (ret)
1605 return ret;
1606
1607 tg = blkg_to_tg(ctx.blkg);
1608
1609 v[0] = tg->bps_conf[READ][index];
1610 v[1] = tg->bps_conf[WRITE][index];
1611 v[2] = tg->iops_conf[READ][index];
1612 v[3] = tg->iops_conf[WRITE][index];
1613
1614 idle_time = tg->idletime_threshold_conf;
1615 latency_time = tg->latency_target_conf;
1616 while (true) {
1617 char tok[27]; /* wiops=18446744073709551616 */
1618 char *p;
1619 u64 val = U64_MAX;
1620 int len;
1621
1622 if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1623 break;
1624 if (tok[0] == '\0')
1625 break;
1626 ctx.body += len;
1627
1628 ret = -EINVAL;
1629 p = tok;
1630 strsep(&p, "=");
1631 if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1632 goto out_finish;
1633
1634 ret = -ERANGE;
1635 if (!val)
1636 goto out_finish;
1637
1638 ret = -EINVAL;
1639 if (!strcmp(tok, "rbps"))
1640 v[0] = val;
1641 else if (!strcmp(tok, "wbps"))
1642 v[1] = val;
1643 else if (!strcmp(tok, "riops"))
1644 v[2] = min_t(u64, val, UINT_MAX);
1645 else if (!strcmp(tok, "wiops"))
1646 v[3] = min_t(u64, val, UINT_MAX);
1647 else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
1648 idle_time = val;
1649 else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
1650 latency_time = val;
1651 else
1652 goto out_finish;
1653 }
1654
1655 tg->bps_conf[READ][index] = v[0];
1656 tg->bps_conf[WRITE][index] = v[1];
1657 tg->iops_conf[READ][index] = v[2];
1658 tg->iops_conf[WRITE][index] = v[3];
1659
1660 if (index == LIMIT_MAX) {
1661 tg->bps[READ][index] = v[0];
1662 tg->bps[WRITE][index] = v[1];
1663 tg->iops[READ][index] = v[2];
1664 tg->iops[WRITE][index] = v[3];
1665 }
1666 tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1667 tg->bps_conf[READ][LIMIT_MAX]);
1668 tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1669 tg->bps_conf[WRITE][LIMIT_MAX]);
1670 tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1671 tg->iops_conf[READ][LIMIT_MAX]);
1672 tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1673 tg->iops_conf[WRITE][LIMIT_MAX]);
1674 tg->idletime_threshold_conf = idle_time;
1675 tg->latency_target_conf = latency_time;
1676
1677 /* force user to configure all settings for low limit */
1678 if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
1679 tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
1680 tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
1681 tg->latency_target_conf == DFL_LATENCY_TARGET) {
1682 tg->bps[READ][LIMIT_LOW] = 0;
1683 tg->bps[WRITE][LIMIT_LOW] = 0;
1684 tg->iops[READ][LIMIT_LOW] = 0;
1685 tg->iops[WRITE][LIMIT_LOW] = 0;
1686 tg->idletime_threshold = DFL_IDLE_THRESHOLD;
1687 tg->latency_target = DFL_LATENCY_TARGET;
1688 } else if (index == LIMIT_LOW) {
1689 tg->idletime_threshold = tg->idletime_threshold_conf;
1690 tg->latency_target = tg->latency_target_conf;
1691 }
1692
1693 blk_throtl_update_limit_valid(tg->td);
1694 if (tg->td->limit_valid[LIMIT_LOW]) {
1695 if (index == LIMIT_LOW)
1696 tg->td->limit_index = LIMIT_LOW;
1697 } else
1698 tg->td->limit_index = LIMIT_MAX;
1699 tg_conf_updated(tg, index == LIMIT_LOW &&
1700 tg->td->limit_valid[LIMIT_LOW]);
1701 ret = 0;
1702 out_finish:
1703 blkg_conf_finish(&ctx);
1704 return ret ?: nbytes;
1705 }
1706
1707 static struct cftype throtl_files[] = {
1708 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1709 {
1710 .name = "low",
1711 .flags = CFTYPE_NOT_ON_ROOT,
1712 .seq_show = tg_print_limit,
1713 .write = tg_set_limit,
1714 .private = LIMIT_LOW,
1715 },
1716 #endif
1717 {
1718 .name = "max",
1719 .flags = CFTYPE_NOT_ON_ROOT,
1720 .seq_show = tg_print_limit,
1721 .write = tg_set_limit,
1722 .private = LIMIT_MAX,
1723 },
1724 { } /* terminate */
1725 };
1726
1727 static void throtl_shutdown_wq(struct request_queue *q)
1728 {
1729 struct throtl_data *td = q->td;
1730
1731 cancel_work_sync(&td->dispatch_work);
1732 }
1733
1734 static struct blkcg_policy blkcg_policy_throtl = {
1735 .dfl_cftypes = throtl_files,
1736 .legacy_cftypes = throtl_legacy_files,
1737
1738 .pd_alloc_fn = throtl_pd_alloc,
1739 .pd_init_fn = throtl_pd_init,
1740 .pd_online_fn = throtl_pd_online,
1741 .pd_offline_fn = throtl_pd_offline,
1742 .pd_free_fn = throtl_pd_free,
1743 };
1744
1745 static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1746 {
1747 unsigned long rtime = jiffies, wtime = jiffies;
1748
1749 if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1750 rtime = tg->last_low_overflow_time[READ];
1751 if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1752 wtime = tg->last_low_overflow_time[WRITE];
1753 return min(rtime, wtime);
1754 }
1755
1756 /* tg should not be an intermediate node */
1757 static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1758 {
1759 struct throtl_service_queue *parent_sq;
1760 struct throtl_grp *parent = tg;
1761 unsigned long ret = __tg_last_low_overflow_time(tg);
1762
1763 while (true) {
1764 parent_sq = parent->service_queue.parent_sq;
1765 parent = sq_to_tg(parent_sq);
1766 if (!parent)
1767 break;
1768
1769 /*
1770 * The parent doesn't have low limit, it always reaches low
1771 * limit. Its overflow time is useless for children
1772 */
1773 if (!parent->bps[READ][LIMIT_LOW] &&
1774 !parent->iops[READ][LIMIT_LOW] &&
1775 !parent->bps[WRITE][LIMIT_LOW] &&
1776 !parent->iops[WRITE][LIMIT_LOW])
1777 continue;
1778 if (time_after(__tg_last_low_overflow_time(parent), ret))
1779 ret = __tg_last_low_overflow_time(parent);
1780 }
1781 return ret;
1782 }
1783
1784 static bool throtl_tg_is_idle(struct throtl_grp *tg)
1785 {
1786 /*
1787 * cgroup is idle if:
1788 * - single idle is too long, longer than a fixed value (in case user
1789 * configure a too big threshold) or 4 times of idletime threshold
1790 * - average think time is more than threshold
1791 * - IO latency is largely below threshold
1792 */
1793 unsigned long time;
1794 bool ret;
1795
1796 time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
1797 ret = tg->latency_target == DFL_LATENCY_TARGET ||
1798 tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
1799 (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
1800 tg->avg_idletime > tg->idletime_threshold ||
1801 (tg->latency_target && tg->bio_cnt &&
1802 tg->bad_bio_cnt * 5 < tg->bio_cnt);
1803 throtl_log(&tg->service_queue,
1804 "avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
1805 tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
1806 tg->bio_cnt, ret, tg->td->scale);
1807 return ret;
1808 }
1809
1810 static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1811 {
1812 struct throtl_service_queue *sq = &tg->service_queue;
1813 bool read_limit, write_limit;
1814
1815 /*
1816 * if cgroup reaches low limit (if low limit is 0, the cgroup always
1817 * reaches), it's ok to upgrade to next limit
1818 */
1819 read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
1820 write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
1821 if (!read_limit && !write_limit)
1822 return true;
1823 if (read_limit && sq->nr_queued[READ] &&
1824 (!write_limit || sq->nr_queued[WRITE]))
1825 return true;
1826 if (write_limit && sq->nr_queued[WRITE] &&
1827 (!read_limit || sq->nr_queued[READ]))
1828 return true;
1829
1830 if (time_after_eq(jiffies,
1831 tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
1832 throtl_tg_is_idle(tg))
1833 return true;
1834 return false;
1835 }
1836
1837 static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1838 {
1839 while (true) {
1840 if (throtl_tg_can_upgrade(tg))
1841 return true;
1842 tg = sq_to_tg(tg->service_queue.parent_sq);
1843 if (!tg || !tg_to_blkg(tg)->parent)
1844 return false;
1845 }
1846 return false;
1847 }
1848
1849 static bool throtl_can_upgrade(struct throtl_data *td,
1850 struct throtl_grp *this_tg)
1851 {
1852 struct cgroup_subsys_state *pos_css;
1853 struct blkcg_gq *blkg;
1854
1855 if (td->limit_index != LIMIT_LOW)
1856 return false;
1857
1858 if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
1859 return false;
1860
1861 rcu_read_lock();
1862 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1863 struct throtl_grp *tg = blkg_to_tg(blkg);
1864
1865 if (tg == this_tg)
1866 continue;
1867 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1868 continue;
1869 if (!throtl_hierarchy_can_upgrade(tg)) {
1870 rcu_read_unlock();
1871 return false;
1872 }
1873 }
1874 rcu_read_unlock();
1875 return true;
1876 }
1877
1878 static void throtl_upgrade_check(struct throtl_grp *tg)
1879 {
1880 unsigned long now = jiffies;
1881
1882 if (tg->td->limit_index != LIMIT_LOW)
1883 return;
1884
1885 if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1886 return;
1887
1888 tg->last_check_time = now;
1889
1890 if (!time_after_eq(now,
1891 __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
1892 return;
1893
1894 if (throtl_can_upgrade(tg->td, NULL))
1895 throtl_upgrade_state(tg->td);
1896 }
1897
1898 static void throtl_upgrade_state(struct throtl_data *td)
1899 {
1900 struct cgroup_subsys_state *pos_css;
1901 struct blkcg_gq *blkg;
1902
1903 throtl_log(&td->service_queue, "upgrade to max");
1904 td->limit_index = LIMIT_MAX;
1905 td->low_upgrade_time = jiffies;
1906 td->scale = 0;
1907 rcu_read_lock();
1908 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1909 struct throtl_grp *tg = blkg_to_tg(blkg);
1910 struct throtl_service_queue *sq = &tg->service_queue;
1911
1912 tg->disptime = jiffies - 1;
1913 throtl_select_dispatch(sq);
1914 throtl_schedule_next_dispatch(sq, true);
1915 }
1916 rcu_read_unlock();
1917 throtl_select_dispatch(&td->service_queue);
1918 throtl_schedule_next_dispatch(&td->service_queue, true);
1919 queue_work(kthrotld_workqueue, &td->dispatch_work);
1920 }
1921
1922 static void throtl_downgrade_state(struct throtl_data *td, int new)
1923 {
1924 td->scale /= 2;
1925
1926 throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
1927 if (td->scale) {
1928 td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
1929 return;
1930 }
1931
1932 td->limit_index = new;
1933 td->low_downgrade_time = jiffies;
1934 }
1935
1936 static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
1937 {
1938 struct throtl_data *td = tg->td;
1939 unsigned long now = jiffies;
1940
1941 /*
1942 * If cgroup is below low limit, consider downgrade and throttle other
1943 * cgroups
1944 */
1945 if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
1946 time_after_eq(now, tg_last_low_overflow_time(tg) +
1947 td->throtl_slice) &&
1948 (!throtl_tg_is_idle(tg) ||
1949 !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
1950 return true;
1951 return false;
1952 }
1953
1954 static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
1955 {
1956 while (true) {
1957 if (!throtl_tg_can_downgrade(tg))
1958 return false;
1959 tg = sq_to_tg(tg->service_queue.parent_sq);
1960 if (!tg || !tg_to_blkg(tg)->parent)
1961 break;
1962 }
1963 return true;
1964 }
1965
1966 static void throtl_downgrade_check(struct throtl_grp *tg)
1967 {
1968 uint64_t bps;
1969 unsigned int iops;
1970 unsigned long elapsed_time;
1971 unsigned long now = jiffies;
1972
1973 if (tg->td->limit_index != LIMIT_MAX ||
1974 !tg->td->limit_valid[LIMIT_LOW])
1975 return;
1976 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1977 return;
1978 if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1979 return;
1980
1981 elapsed_time = now - tg->last_check_time;
1982 tg->last_check_time = now;
1983
1984 if (time_before(now, tg_last_low_overflow_time(tg) +
1985 tg->td->throtl_slice))
1986 return;
1987
1988 if (tg->bps[READ][LIMIT_LOW]) {
1989 bps = tg->last_bytes_disp[READ] * HZ;
1990 do_div(bps, elapsed_time);
1991 if (bps >= tg->bps[READ][LIMIT_LOW])
1992 tg->last_low_overflow_time[READ] = now;
1993 }
1994
1995 if (tg->bps[WRITE][LIMIT_LOW]) {
1996 bps = tg->last_bytes_disp[WRITE] * HZ;
1997 do_div(bps, elapsed_time);
1998 if (bps >= tg->bps[WRITE][LIMIT_LOW])
1999 tg->last_low_overflow_time[WRITE] = now;
2000 }
2001
2002 if (tg->iops[READ][LIMIT_LOW]) {
2003 iops = tg->last_io_disp[READ] * HZ / elapsed_time;
2004 if (iops >= tg->iops[READ][LIMIT_LOW])
2005 tg->last_low_overflow_time[READ] = now;
2006 }
2007
2008 if (tg->iops[WRITE][LIMIT_LOW]) {
2009 iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
2010 if (iops >= tg->iops[WRITE][LIMIT_LOW])
2011 tg->last_low_overflow_time[WRITE] = now;
2012 }
2013
2014 /*
2015 * If cgroup is below low limit, consider downgrade and throttle other
2016 * cgroups
2017 */
2018 if (throtl_hierarchy_can_downgrade(tg))
2019 throtl_downgrade_state(tg->td, LIMIT_LOW);
2020
2021 tg->last_bytes_disp[READ] = 0;
2022 tg->last_bytes_disp[WRITE] = 0;
2023 tg->last_io_disp[READ] = 0;
2024 tg->last_io_disp[WRITE] = 0;
2025 }
2026
2027 static void blk_throtl_update_idletime(struct throtl_grp *tg)
2028 {
2029 unsigned long now = ktime_get_ns() >> 10;
2030 unsigned long last_finish_time = tg->last_finish_time;
2031
2032 if (now <= last_finish_time || last_finish_time == 0 ||
2033 last_finish_time == tg->checked_last_finish_time)
2034 return;
2035
2036 tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
2037 tg->checked_last_finish_time = last_finish_time;
2038 }
2039
2040 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2041 static void throtl_update_latency_buckets(struct throtl_data *td)
2042 {
2043 struct avg_latency_bucket avg_latency[LATENCY_BUCKET_SIZE];
2044 int i, cpu;
2045 unsigned long last_latency = 0;
2046 unsigned long latency;
2047
2048 if (!blk_queue_nonrot(td->queue))
2049 return;
2050 if (time_before(jiffies, td->last_calculate_time + HZ))
2051 return;
2052 td->last_calculate_time = jiffies;
2053
2054 memset(avg_latency, 0, sizeof(avg_latency));
2055 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2056 struct latency_bucket *tmp = &td->tmp_buckets[i];
2057
2058 for_each_possible_cpu(cpu) {
2059 struct latency_bucket *bucket;
2060
2061 /* this isn't race free, but ok in practice */
2062 bucket = per_cpu_ptr(td->latency_buckets, cpu);
2063 tmp->total_latency += bucket[i].total_latency;
2064 tmp->samples += bucket[i].samples;
2065 bucket[i].total_latency = 0;
2066 bucket[i].samples = 0;
2067 }
2068
2069 if (tmp->samples >= 32) {
2070 int samples = tmp->samples;
2071
2072 latency = tmp->total_latency;
2073
2074 tmp->total_latency = 0;
2075 tmp->samples = 0;
2076 latency /= samples;
2077 if (latency == 0)
2078 continue;
2079 avg_latency[i].latency = latency;
2080 }
2081 }
2082
2083 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2084 if (!avg_latency[i].latency) {
2085 if (td->avg_buckets[i].latency < last_latency)
2086 td->avg_buckets[i].latency = last_latency;
2087 continue;
2088 }
2089
2090 if (!td->avg_buckets[i].valid)
2091 latency = avg_latency[i].latency;
2092 else
2093 latency = (td->avg_buckets[i].latency * 7 +
2094 avg_latency[i].latency) >> 3;
2095
2096 td->avg_buckets[i].latency = max(latency, last_latency);
2097 td->avg_buckets[i].valid = true;
2098 last_latency = td->avg_buckets[i].latency;
2099 }
2100
2101 for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
2102 throtl_log(&td->service_queue,
2103 "Latency bucket %d: latency=%ld, valid=%d", i,
2104 td->avg_buckets[i].latency, td->avg_buckets[i].valid);
2105 }
2106 #else
2107 static inline void throtl_update_latency_buckets(struct throtl_data *td)
2108 {
2109 }
2110 #endif
2111
2112 static void blk_throtl_assoc_bio(struct throtl_grp *tg, struct bio *bio)
2113 {
2114 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2115 if (bio->bi_css) {
2116 if (bio->bi_cg_private)
2117 blkg_put(tg_to_blkg(bio->bi_cg_private));
2118 bio->bi_cg_private = tg;
2119 blkg_get(tg_to_blkg(tg));
2120 }
2121 blk_stat_set_issue(&bio->bi_issue_stat, bio_sectors(bio));
2122 #endif
2123 }
2124
2125 bool blk_throtl_bio(struct request_queue *q, struct blkcg_gq *blkg,
2126 struct bio *bio)
2127 {
2128 struct throtl_qnode *qn = NULL;
2129 struct throtl_grp *tg = blkg_to_tg(blkg ?: q->root_blkg);
2130 struct throtl_service_queue *sq;
2131 bool rw = bio_data_dir(bio);
2132 bool throttled = false;
2133 struct throtl_data *td = tg->td;
2134
2135 WARN_ON_ONCE(!rcu_read_lock_held());
2136
2137 /* see throtl_charge_bio() */
2138 if (bio_flagged(bio, BIO_THROTTLED) || !tg->has_rules[rw])
2139 goto out;
2140
2141 spin_lock_irq(q->queue_lock);
2142
2143 throtl_update_latency_buckets(td);
2144
2145 if (unlikely(blk_queue_bypass(q)))
2146 goto out_unlock;
2147
2148 blk_throtl_assoc_bio(tg, bio);
2149 blk_throtl_update_idletime(tg);
2150
2151 sq = &tg->service_queue;
2152
2153 again:
2154 while (true) {
2155 if (tg->last_low_overflow_time[rw] == 0)
2156 tg->last_low_overflow_time[rw] = jiffies;
2157 throtl_downgrade_check(tg);
2158 throtl_upgrade_check(tg);
2159 /* throtl is FIFO - if bios are already queued, should queue */
2160 if (sq->nr_queued[rw])
2161 break;
2162
2163 /* if above limits, break to queue */
2164 if (!tg_may_dispatch(tg, bio, NULL)) {
2165 tg->last_low_overflow_time[rw] = jiffies;
2166 if (throtl_can_upgrade(td, tg)) {
2167 throtl_upgrade_state(td);
2168 goto again;
2169 }
2170 break;
2171 }
2172
2173 /* within limits, let's charge and dispatch directly */
2174 throtl_charge_bio(tg, bio);
2175
2176 /*
2177 * We need to trim slice even when bios are not being queued
2178 * otherwise it might happen that a bio is not queued for
2179 * a long time and slice keeps on extending and trim is not
2180 * called for a long time. Now if limits are reduced suddenly
2181 * we take into account all the IO dispatched so far at new
2182 * low rate and * newly queued IO gets a really long dispatch
2183 * time.
2184 *
2185 * So keep on trimming slice even if bio is not queued.
2186 */
2187 throtl_trim_slice(tg, rw);
2188
2189 /*
2190 * @bio passed through this layer without being throttled.
2191 * Climb up the ladder. If we''re already at the top, it
2192 * can be executed directly.
2193 */
2194 qn = &tg->qnode_on_parent[rw];
2195 sq = sq->parent_sq;
2196 tg = sq_to_tg(sq);
2197 if (!tg)
2198 goto out_unlock;
2199 }
2200
2201 /* out-of-limit, queue to @tg */
2202 throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2203 rw == READ ? 'R' : 'W',
2204 tg->bytes_disp[rw], bio->bi_iter.bi_size,
2205 tg_bps_limit(tg, rw),
2206 tg->io_disp[rw], tg_iops_limit(tg, rw),
2207 sq->nr_queued[READ], sq->nr_queued[WRITE]);
2208
2209 tg->last_low_overflow_time[rw] = jiffies;
2210
2211 td->nr_queued[rw]++;
2212 throtl_add_bio_tg(bio, qn, tg);
2213 throttled = true;
2214
2215 /*
2216 * Update @tg's dispatch time and force schedule dispatch if @tg
2217 * was empty before @bio. The forced scheduling isn't likely to
2218 * cause undue delay as @bio is likely to be dispatched directly if
2219 * its @tg's disptime is not in the future.
2220 */
2221 if (tg->flags & THROTL_TG_WAS_EMPTY) {
2222 tg_update_disptime(tg);
2223 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
2224 }
2225
2226 out_unlock:
2227 spin_unlock_irq(q->queue_lock);
2228 out:
2229 bio_set_flag(bio, BIO_THROTTLED);
2230
2231 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2232 if (throttled || !td->track_bio_latency)
2233 bio->bi_issue_stat.stat |= SKIP_LATENCY;
2234 #endif
2235 return throttled;
2236 }
2237
2238 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2239 static void throtl_track_latency(struct throtl_data *td, sector_t size,
2240 int op, unsigned long time)
2241 {
2242 struct latency_bucket *latency;
2243 int index;
2244
2245 if (!td || td->limit_index != LIMIT_LOW || op != REQ_OP_READ ||
2246 !blk_queue_nonrot(td->queue))
2247 return;
2248
2249 index = request_bucket_index(size);
2250
2251 latency = get_cpu_ptr(td->latency_buckets);
2252 latency[index].total_latency += time;
2253 latency[index].samples++;
2254 put_cpu_ptr(td->latency_buckets);
2255 }
2256
2257 void blk_throtl_stat_add(struct request *rq, u64 time_ns)
2258 {
2259 struct request_queue *q = rq->q;
2260 struct throtl_data *td = q->td;
2261
2262 throtl_track_latency(td, blk_stat_size(&rq->issue_stat),
2263 req_op(rq), time_ns >> 10);
2264 }
2265
2266 void blk_throtl_bio_endio(struct bio *bio)
2267 {
2268 struct throtl_grp *tg;
2269 u64 finish_time_ns;
2270 unsigned long finish_time;
2271 unsigned long start_time;
2272 unsigned long lat;
2273
2274 tg = bio->bi_cg_private;
2275 if (!tg)
2276 return;
2277 bio->bi_cg_private = NULL;
2278
2279 finish_time_ns = ktime_get_ns();
2280 tg->last_finish_time = finish_time_ns >> 10;
2281
2282 start_time = blk_stat_time(&bio->bi_issue_stat) >> 10;
2283 finish_time = __blk_stat_time(finish_time_ns) >> 10;
2284 if (!start_time || finish_time <= start_time) {
2285 blkg_put(tg_to_blkg(tg));
2286 return;
2287 }
2288
2289 lat = finish_time - start_time;
2290 /* this is only for bio based driver */
2291 if (!(bio->bi_issue_stat.stat & SKIP_LATENCY))
2292 throtl_track_latency(tg->td, blk_stat_size(&bio->bi_issue_stat),
2293 bio_op(bio), lat);
2294
2295 if (tg->latency_target && lat >= tg->td->filtered_latency) {
2296 int bucket;
2297 unsigned int threshold;
2298
2299 bucket = request_bucket_index(
2300 blk_stat_size(&bio->bi_issue_stat));
2301 threshold = tg->td->avg_buckets[bucket].latency +
2302 tg->latency_target;
2303 if (lat > threshold)
2304 tg->bad_bio_cnt++;
2305 /*
2306 * Not race free, could get wrong count, which means cgroups
2307 * will be throttled
2308 */
2309 tg->bio_cnt++;
2310 }
2311
2312 if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
2313 tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
2314 tg->bio_cnt /= 2;
2315 tg->bad_bio_cnt /= 2;
2316 }
2317
2318 blkg_put(tg_to_blkg(tg));
2319 }
2320 #endif
2321
2322 /*
2323 * Dispatch all bios from all children tg's queued on @parent_sq. On
2324 * return, @parent_sq is guaranteed to not have any active children tg's
2325 * and all bios from previously active tg's are on @parent_sq->bio_lists[].
2326 */
2327 static void tg_drain_bios(struct throtl_service_queue *parent_sq)
2328 {
2329 struct throtl_grp *tg;
2330
2331 while ((tg = throtl_rb_first(parent_sq))) {
2332 struct throtl_service_queue *sq = &tg->service_queue;
2333 struct bio *bio;
2334
2335 throtl_dequeue_tg(tg);
2336
2337 while ((bio = throtl_peek_queued(&sq->queued[READ])))
2338 tg_dispatch_one_bio(tg, bio_data_dir(bio));
2339 while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
2340 tg_dispatch_one_bio(tg, bio_data_dir(bio));
2341 }
2342 }
2343
2344 /**
2345 * blk_throtl_drain - drain throttled bios
2346 * @q: request_queue to drain throttled bios for
2347 *
2348 * Dispatch all currently throttled bios on @q through ->make_request_fn().
2349 */
2350 void blk_throtl_drain(struct request_queue *q)
2351 __releases(q->queue_lock) __acquires(q->queue_lock)
2352 {
2353 struct throtl_data *td = q->td;
2354 struct blkcg_gq *blkg;
2355 struct cgroup_subsys_state *pos_css;
2356 struct bio *bio;
2357 int rw;
2358
2359 queue_lockdep_assert_held(q);
2360 rcu_read_lock();
2361
2362 /*
2363 * Drain each tg while doing post-order walk on the blkg tree, so
2364 * that all bios are propagated to td->service_queue. It'd be
2365 * better to walk service_queue tree directly but blkg walk is
2366 * easier.
2367 */
2368 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
2369 tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
2370
2371 /* finally, transfer bios from top-level tg's into the td */
2372 tg_drain_bios(&td->service_queue);
2373
2374 rcu_read_unlock();
2375 spin_unlock_irq(q->queue_lock);
2376
2377 /* all bios now should be in td->service_queue, issue them */
2378 for (rw = READ; rw <= WRITE; rw++)
2379 while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
2380 NULL)))
2381 generic_make_request(bio);
2382
2383 spin_lock_irq(q->queue_lock);
2384 }
2385
2386 int blk_throtl_init(struct request_queue *q)
2387 {
2388 struct throtl_data *td;
2389 int ret;
2390
2391 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
2392 if (!td)
2393 return -ENOMEM;
2394 td->latency_buckets = __alloc_percpu(sizeof(struct latency_bucket) *
2395 LATENCY_BUCKET_SIZE, __alignof__(u64));
2396 if (!td->latency_buckets) {
2397 kfree(td);
2398 return -ENOMEM;
2399 }
2400
2401 INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
2402 throtl_service_queue_init(&td->service_queue);
2403
2404 q->td = td;
2405 td->queue = q;
2406
2407 td->limit_valid[LIMIT_MAX] = true;
2408 td->limit_index = LIMIT_MAX;
2409 td->low_upgrade_time = jiffies;
2410 td->low_downgrade_time = jiffies;
2411
2412 /* activate policy */
2413 ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
2414 if (ret) {
2415 free_percpu(td->latency_buckets);
2416 kfree(td);
2417 }
2418 return ret;
2419 }
2420
2421 void blk_throtl_exit(struct request_queue *q)
2422 {
2423 BUG_ON(!q->td);
2424 throtl_shutdown_wq(q);
2425 blkcg_deactivate_policy(q, &blkcg_policy_throtl);
2426 free_percpu(q->td->latency_buckets);
2427 kfree(q->td);
2428 }
2429
2430 void blk_throtl_register_queue(struct request_queue *q)
2431 {
2432 struct throtl_data *td;
2433 int i;
2434
2435 td = q->td;
2436 BUG_ON(!td);
2437
2438 if (blk_queue_nonrot(q)) {
2439 td->throtl_slice = DFL_THROTL_SLICE_SSD;
2440 td->filtered_latency = LATENCY_FILTERED_SSD;
2441 } else {
2442 td->throtl_slice = DFL_THROTL_SLICE_HD;
2443 td->filtered_latency = LATENCY_FILTERED_HD;
2444 for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
2445 td->avg_buckets[i].latency = DFL_HD_BASELINE_LATENCY;
2446 }
2447 #ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2448 /* if no low limit, use previous default */
2449 td->throtl_slice = DFL_THROTL_SLICE_HD;
2450 #endif
2451
2452 td->track_bio_latency = !q->mq_ops && !q->request_fn;
2453 if (!td->track_bio_latency)
2454 blk_stat_enable_accounting(q);
2455 }
2456
2457 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2458 ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
2459 {
2460 if (!q->td)
2461 return -EINVAL;
2462 return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
2463 }
2464
2465 ssize_t blk_throtl_sample_time_store(struct request_queue *q,
2466 const char *page, size_t count)
2467 {
2468 unsigned long v;
2469 unsigned long t;
2470
2471 if (!q->td)
2472 return -EINVAL;
2473 if (kstrtoul(page, 10, &v))
2474 return -EINVAL;
2475 t = msecs_to_jiffies(v);
2476 if (t == 0 || t > MAX_THROTL_SLICE)
2477 return -EINVAL;
2478 q->td->throtl_slice = t;
2479 return count;
2480 }
2481 #endif
2482
2483 static int __init throtl_init(void)
2484 {
2485 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
2486 if (!kthrotld_workqueue)
2487 panic("Failed to create kthrotld\n");
2488
2489 return blkcg_policy_register(&blkcg_policy_throtl);
2490 }
2491
2492 module_init(throtl_init);