]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-throttle.c
blok, bfq: do not plug I/O if all queues are weight-raised
[mirror_ubuntu-bionic-kernel.git] / block / blk-throttle.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Interface for controlling IO bandwidth on a request queue
4 *
5 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
6 */
7
8 #include <linux/module.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/bio.h>
12 #include <linux/blktrace_api.h>
13 #include <linux/blk-cgroup.h>
14 #include "blk.h"
15
16 /* Max dispatch from a group in 1 round */
17 static int throtl_grp_quantum = 8;
18
19 /* Total max dispatch from all groups in one round */
20 static int throtl_quantum = 32;
21
22 /* Throttling is performed over a slice and after that slice is renewed */
23 #define DFL_THROTL_SLICE_HD (HZ / 10)
24 #define DFL_THROTL_SLICE_SSD (HZ / 50)
25 #define MAX_THROTL_SLICE (HZ)
26 #define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
27 #define MIN_THROTL_BPS (320 * 1024)
28 #define MIN_THROTL_IOPS (10)
29 #define DFL_LATENCY_TARGET (-1L)
30 #define DFL_IDLE_THRESHOLD (0)
31 #define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
32 #define LATENCY_FILTERED_SSD (0)
33 /*
34 * For HD, very small latency comes from sequential IO. Such IO is helpless to
35 * help determine if its IO is impacted by others, hence we ignore the IO
36 */
37 #define LATENCY_FILTERED_HD (1000L) /* 1ms */
38
39 #define SKIP_LATENCY (((u64)1) << BLK_STAT_RES_SHIFT)
40
41 static struct blkcg_policy blkcg_policy_throtl;
42
43 /* A workqueue to queue throttle related work */
44 static struct workqueue_struct *kthrotld_workqueue;
45
46 /*
47 * To implement hierarchical throttling, throtl_grps form a tree and bios
48 * are dispatched upwards level by level until they reach the top and get
49 * issued. When dispatching bios from the children and local group at each
50 * level, if the bios are dispatched into a single bio_list, there's a risk
51 * of a local or child group which can queue many bios at once filling up
52 * the list starving others.
53 *
54 * To avoid such starvation, dispatched bios are queued separately
55 * according to where they came from. When they are again dispatched to
56 * the parent, they're popped in round-robin order so that no single source
57 * hogs the dispatch window.
58 *
59 * throtl_qnode is used to keep the queued bios separated by their sources.
60 * Bios are queued to throtl_qnode which in turn is queued to
61 * throtl_service_queue and then dispatched in round-robin order.
62 *
63 * It's also used to track the reference counts on blkg's. A qnode always
64 * belongs to a throtl_grp and gets queued on itself or the parent, so
65 * incrementing the reference of the associated throtl_grp when a qnode is
66 * queued and decrementing when dequeued is enough to keep the whole blkg
67 * tree pinned while bios are in flight.
68 */
69 struct throtl_qnode {
70 struct list_head node; /* service_queue->queued[] */
71 struct bio_list bios; /* queued bios */
72 struct throtl_grp *tg; /* tg this qnode belongs to */
73 };
74
75 struct throtl_service_queue {
76 struct throtl_service_queue *parent_sq; /* the parent service_queue */
77
78 /*
79 * Bios queued directly to this service_queue or dispatched from
80 * children throtl_grp's.
81 */
82 struct list_head queued[2]; /* throtl_qnode [READ/WRITE] */
83 unsigned int nr_queued[2]; /* number of queued bios */
84
85 /*
86 * RB tree of active children throtl_grp's, which are sorted by
87 * their ->disptime.
88 */
89 struct rb_root pending_tree; /* RB tree of active tgs */
90 struct rb_node *first_pending; /* first node in the tree */
91 unsigned int nr_pending; /* # queued in the tree */
92 unsigned long first_pending_disptime; /* disptime of the first tg */
93 struct timer_list pending_timer; /* fires on first_pending_disptime */
94 };
95
96 enum tg_state_flags {
97 THROTL_TG_PENDING = 1 << 0, /* on parent's pending tree */
98 THROTL_TG_WAS_EMPTY = 1 << 1, /* bio_lists[] became non-empty */
99 };
100
101 #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
102
103 enum {
104 LIMIT_LOW,
105 LIMIT_MAX,
106 LIMIT_CNT,
107 };
108
109 struct throtl_grp {
110 /* must be the first member */
111 struct blkg_policy_data pd;
112
113 /* active throtl group service_queue member */
114 struct rb_node rb_node;
115
116 /* throtl_data this group belongs to */
117 struct throtl_data *td;
118
119 /* this group's service queue */
120 struct throtl_service_queue service_queue;
121
122 /*
123 * qnode_on_self is used when bios are directly queued to this
124 * throtl_grp so that local bios compete fairly with bios
125 * dispatched from children. qnode_on_parent is used when bios are
126 * dispatched from this throtl_grp into its parent and will compete
127 * with the sibling qnode_on_parents and the parent's
128 * qnode_on_self.
129 */
130 struct throtl_qnode qnode_on_self[2];
131 struct throtl_qnode qnode_on_parent[2];
132
133 /*
134 * Dispatch time in jiffies. This is the estimated time when group
135 * will unthrottle and is ready to dispatch more bio. It is used as
136 * key to sort active groups in service tree.
137 */
138 unsigned long disptime;
139
140 unsigned int flags;
141
142 /* are there any throtl rules between this group and td? */
143 bool has_rules[2];
144
145 /* internally used bytes per second rate limits */
146 uint64_t bps[2][LIMIT_CNT];
147 /* user configured bps limits */
148 uint64_t bps_conf[2][LIMIT_CNT];
149
150 /* internally used IOPS limits */
151 unsigned int iops[2][LIMIT_CNT];
152 /* user configured IOPS limits */
153 unsigned int iops_conf[2][LIMIT_CNT];
154
155 /* Number of bytes disptached in current slice */
156 uint64_t bytes_disp[2];
157 /* Number of bio's dispatched in current slice */
158 unsigned int io_disp[2];
159
160 unsigned long last_low_overflow_time[2];
161
162 uint64_t last_bytes_disp[2];
163 unsigned int last_io_disp[2];
164
165 unsigned long last_check_time;
166
167 unsigned long latency_target; /* us */
168 unsigned long latency_target_conf; /* us */
169 /* When did we start a new slice */
170 unsigned long slice_start[2];
171 unsigned long slice_end[2];
172
173 unsigned long last_finish_time; /* ns / 1024 */
174 unsigned long checked_last_finish_time; /* ns / 1024 */
175 unsigned long avg_idletime; /* ns / 1024 */
176 unsigned long idletime_threshold; /* us */
177 unsigned long idletime_threshold_conf; /* us */
178
179 unsigned int bio_cnt; /* total bios */
180 unsigned int bad_bio_cnt; /* bios exceeding latency threshold */
181 unsigned long bio_cnt_reset_time;
182 };
183
184 /* We measure latency for request size from <= 4k to >= 1M */
185 #define LATENCY_BUCKET_SIZE 9
186
187 struct latency_bucket {
188 unsigned long total_latency; /* ns / 1024 */
189 int samples;
190 };
191
192 struct avg_latency_bucket {
193 unsigned long latency; /* ns / 1024 */
194 bool valid;
195 };
196
197 struct throtl_data
198 {
199 /* service tree for active throtl groups */
200 struct throtl_service_queue service_queue;
201
202 struct request_queue *queue;
203
204 /* Total Number of queued bios on READ and WRITE lists */
205 unsigned int nr_queued[2];
206
207 unsigned int throtl_slice;
208
209 /* Work for dispatching throttled bios */
210 struct work_struct dispatch_work;
211 unsigned int limit_index;
212 bool limit_valid[LIMIT_CNT];
213
214 unsigned long low_upgrade_time;
215 unsigned long low_downgrade_time;
216
217 unsigned int scale;
218
219 struct latency_bucket tmp_buckets[LATENCY_BUCKET_SIZE];
220 struct avg_latency_bucket avg_buckets[LATENCY_BUCKET_SIZE];
221 struct latency_bucket __percpu *latency_buckets;
222 unsigned long last_calculate_time;
223 unsigned long filtered_latency;
224
225 bool track_bio_latency;
226 };
227
228 static void throtl_pending_timer_fn(struct timer_list *t);
229
230 static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
231 {
232 return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
233 }
234
235 static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
236 {
237 return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
238 }
239
240 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
241 {
242 return pd_to_blkg(&tg->pd);
243 }
244
245 /**
246 * sq_to_tg - return the throl_grp the specified service queue belongs to
247 * @sq: the throtl_service_queue of interest
248 *
249 * Return the throtl_grp @sq belongs to. If @sq is the top-level one
250 * embedded in throtl_data, %NULL is returned.
251 */
252 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
253 {
254 if (sq && sq->parent_sq)
255 return container_of(sq, struct throtl_grp, service_queue);
256 else
257 return NULL;
258 }
259
260 /**
261 * sq_to_td - return throtl_data the specified service queue belongs to
262 * @sq: the throtl_service_queue of interest
263 *
264 * A service_queue can be embedded in either a throtl_grp or throtl_data.
265 * Determine the associated throtl_data accordingly and return it.
266 */
267 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
268 {
269 struct throtl_grp *tg = sq_to_tg(sq);
270
271 if (tg)
272 return tg->td;
273 else
274 return container_of(sq, struct throtl_data, service_queue);
275 }
276
277 /*
278 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
279 * make the IO dispatch more smooth.
280 * Scale up: linearly scale up according to lapsed time since upgrade. For
281 * every throtl_slice, the limit scales up 1/2 .low limit till the
282 * limit hits .max limit
283 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
284 */
285 static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
286 {
287 /* arbitrary value to avoid too big scale */
288 if (td->scale < 4096 && time_after_eq(jiffies,
289 td->low_upgrade_time + td->scale * td->throtl_slice))
290 td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;
291
292 return low + (low >> 1) * td->scale;
293 }
294
295 static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
296 {
297 struct blkcg_gq *blkg = tg_to_blkg(tg);
298 struct throtl_data *td;
299 uint64_t ret;
300
301 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
302 return U64_MAX;
303
304 td = tg->td;
305 ret = tg->bps[rw][td->limit_index];
306 if (ret == 0 && td->limit_index == LIMIT_LOW) {
307 /* intermediate node or iops isn't 0 */
308 if (!list_empty(&blkg->blkcg->css.children) ||
309 tg->iops[rw][td->limit_index])
310 return U64_MAX;
311 else
312 return MIN_THROTL_BPS;
313 }
314
315 if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
316 tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
317 uint64_t adjusted;
318
319 adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
320 ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
321 }
322 return ret;
323 }
324
325 static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
326 {
327 struct blkcg_gq *blkg = tg_to_blkg(tg);
328 struct throtl_data *td;
329 unsigned int ret;
330
331 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
332 return UINT_MAX;
333
334 td = tg->td;
335 ret = tg->iops[rw][td->limit_index];
336 if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
337 /* intermediate node or bps isn't 0 */
338 if (!list_empty(&blkg->blkcg->css.children) ||
339 tg->bps[rw][td->limit_index])
340 return UINT_MAX;
341 else
342 return MIN_THROTL_IOPS;
343 }
344
345 if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
346 tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
347 uint64_t adjusted;
348
349 adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
350 if (adjusted > UINT_MAX)
351 adjusted = UINT_MAX;
352 ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
353 }
354 return ret;
355 }
356
357 #define request_bucket_index(sectors) \
358 clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
359
360 /**
361 * throtl_log - log debug message via blktrace
362 * @sq: the service_queue being reported
363 * @fmt: printf format string
364 * @args: printf args
365 *
366 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
367 * throtl_grp; otherwise, just "throtl".
368 */
369 #define throtl_log(sq, fmt, args...) do { \
370 struct throtl_grp *__tg = sq_to_tg((sq)); \
371 struct throtl_data *__td = sq_to_td((sq)); \
372 \
373 (void)__td; \
374 if (likely(!blk_trace_note_message_enabled(__td->queue))) \
375 break; \
376 if ((__tg)) { \
377 blk_add_cgroup_trace_msg(__td->queue, \
378 tg_to_blkg(__tg)->blkcg, "throtl " fmt, ##args);\
379 } else { \
380 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \
381 } \
382 } while (0)
383
384 static inline unsigned int throtl_bio_data_size(struct bio *bio)
385 {
386 /* assume it's one sector */
387 if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
388 return 512;
389 return bio->bi_iter.bi_size;
390 }
391
392 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
393 {
394 INIT_LIST_HEAD(&qn->node);
395 bio_list_init(&qn->bios);
396 qn->tg = tg;
397 }
398
399 /**
400 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
401 * @bio: bio being added
402 * @qn: qnode to add bio to
403 * @queued: the service_queue->queued[] list @qn belongs to
404 *
405 * Add @bio to @qn and put @qn on @queued if it's not already on.
406 * @qn->tg's reference count is bumped when @qn is activated. See the
407 * comment on top of throtl_qnode definition for details.
408 */
409 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
410 struct list_head *queued)
411 {
412 bio_list_add(&qn->bios, bio);
413 if (list_empty(&qn->node)) {
414 list_add_tail(&qn->node, queued);
415 blkg_get(tg_to_blkg(qn->tg));
416 }
417 }
418
419 /**
420 * throtl_peek_queued - peek the first bio on a qnode list
421 * @queued: the qnode list to peek
422 */
423 static struct bio *throtl_peek_queued(struct list_head *queued)
424 {
425 struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
426 struct bio *bio;
427
428 if (list_empty(queued))
429 return NULL;
430
431 bio = bio_list_peek(&qn->bios);
432 WARN_ON_ONCE(!bio);
433 return bio;
434 }
435
436 /**
437 * throtl_pop_queued - pop the first bio form a qnode list
438 * @queued: the qnode list to pop a bio from
439 * @tg_to_put: optional out argument for throtl_grp to put
440 *
441 * Pop the first bio from the qnode list @queued. After popping, the first
442 * qnode is removed from @queued if empty or moved to the end of @queued so
443 * that the popping order is round-robin.
444 *
445 * When the first qnode is removed, its associated throtl_grp should be put
446 * too. If @tg_to_put is NULL, this function automatically puts it;
447 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
448 * responsible for putting it.
449 */
450 static struct bio *throtl_pop_queued(struct list_head *queued,
451 struct throtl_grp **tg_to_put)
452 {
453 struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
454 struct bio *bio;
455
456 if (list_empty(queued))
457 return NULL;
458
459 bio = bio_list_pop(&qn->bios);
460 WARN_ON_ONCE(!bio);
461
462 if (bio_list_empty(&qn->bios)) {
463 list_del_init(&qn->node);
464 if (tg_to_put)
465 *tg_to_put = qn->tg;
466 else
467 blkg_put(tg_to_blkg(qn->tg));
468 } else {
469 list_move_tail(&qn->node, queued);
470 }
471
472 return bio;
473 }
474
475 /* init a service_queue, assumes the caller zeroed it */
476 static void throtl_service_queue_init(struct throtl_service_queue *sq)
477 {
478 INIT_LIST_HEAD(&sq->queued[0]);
479 INIT_LIST_HEAD(&sq->queued[1]);
480 sq->pending_tree = RB_ROOT;
481 timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
482 }
483
484 static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, int node)
485 {
486 struct throtl_grp *tg;
487 int rw;
488
489 tg = kzalloc_node(sizeof(*tg), gfp, node);
490 if (!tg)
491 return NULL;
492
493 throtl_service_queue_init(&tg->service_queue);
494
495 for (rw = READ; rw <= WRITE; rw++) {
496 throtl_qnode_init(&tg->qnode_on_self[rw], tg);
497 throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
498 }
499
500 RB_CLEAR_NODE(&tg->rb_node);
501 tg->bps[READ][LIMIT_MAX] = U64_MAX;
502 tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
503 tg->iops[READ][LIMIT_MAX] = UINT_MAX;
504 tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
505 tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
506 tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
507 tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
508 tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
509 /* LIMIT_LOW will have default value 0 */
510
511 tg->latency_target = DFL_LATENCY_TARGET;
512 tg->latency_target_conf = DFL_LATENCY_TARGET;
513 tg->idletime_threshold = DFL_IDLE_THRESHOLD;
514 tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
515
516 return &tg->pd;
517 }
518
519 static void throtl_pd_init(struct blkg_policy_data *pd)
520 {
521 struct throtl_grp *tg = pd_to_tg(pd);
522 struct blkcg_gq *blkg = tg_to_blkg(tg);
523 struct throtl_data *td = blkg->q->td;
524 struct throtl_service_queue *sq = &tg->service_queue;
525
526 /*
527 * If on the default hierarchy, we switch to properly hierarchical
528 * behavior where limits on a given throtl_grp are applied to the
529 * whole subtree rather than just the group itself. e.g. If 16M
530 * read_bps limit is set on the root group, the whole system can't
531 * exceed 16M for the device.
532 *
533 * If not on the default hierarchy, the broken flat hierarchy
534 * behavior is retained where all throtl_grps are treated as if
535 * they're all separate root groups right below throtl_data.
536 * Limits of a group don't interact with limits of other groups
537 * regardless of the position of the group in the hierarchy.
538 */
539 sq->parent_sq = &td->service_queue;
540 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
541 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
542 tg->td = td;
543 }
544
545 /*
546 * Set has_rules[] if @tg or any of its parents have limits configured.
547 * This doesn't require walking up to the top of the hierarchy as the
548 * parent's has_rules[] is guaranteed to be correct.
549 */
550 static void tg_update_has_rules(struct throtl_grp *tg)
551 {
552 struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
553 struct throtl_data *td = tg->td;
554 int rw;
555
556 for (rw = READ; rw <= WRITE; rw++)
557 tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
558 (td->limit_valid[td->limit_index] &&
559 (tg_bps_limit(tg, rw) != U64_MAX ||
560 tg_iops_limit(tg, rw) != UINT_MAX));
561 }
562
563 static void throtl_pd_online(struct blkg_policy_data *pd)
564 {
565 struct throtl_grp *tg = pd_to_tg(pd);
566 /*
567 * We don't want new groups to escape the limits of its ancestors.
568 * Update has_rules[] after a new group is brought online.
569 */
570 tg_update_has_rules(tg);
571 }
572
573 static void blk_throtl_update_limit_valid(struct throtl_data *td)
574 {
575 struct cgroup_subsys_state *pos_css;
576 struct blkcg_gq *blkg;
577 bool low_valid = false;
578
579 rcu_read_lock();
580 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
581 struct throtl_grp *tg = blkg_to_tg(blkg);
582
583 if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
584 tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
585 low_valid = true;
586 }
587 rcu_read_unlock();
588
589 td->limit_valid[LIMIT_LOW] = low_valid;
590 }
591
592 static void throtl_upgrade_state(struct throtl_data *td);
593 static void throtl_pd_offline(struct blkg_policy_data *pd)
594 {
595 struct throtl_grp *tg = pd_to_tg(pd);
596
597 tg->bps[READ][LIMIT_LOW] = 0;
598 tg->bps[WRITE][LIMIT_LOW] = 0;
599 tg->iops[READ][LIMIT_LOW] = 0;
600 tg->iops[WRITE][LIMIT_LOW] = 0;
601
602 blk_throtl_update_limit_valid(tg->td);
603
604 if (!tg->td->limit_valid[tg->td->limit_index])
605 throtl_upgrade_state(tg->td);
606 }
607
608 static void throtl_pd_free(struct blkg_policy_data *pd)
609 {
610 struct throtl_grp *tg = pd_to_tg(pd);
611
612 del_timer_sync(&tg->service_queue.pending_timer);
613 kfree(tg);
614 }
615
616 static struct throtl_grp *
617 throtl_rb_first(struct throtl_service_queue *parent_sq)
618 {
619 /* Service tree is empty */
620 if (!parent_sq->nr_pending)
621 return NULL;
622
623 if (!parent_sq->first_pending)
624 parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
625
626 if (parent_sq->first_pending)
627 return rb_entry_tg(parent_sq->first_pending);
628
629 return NULL;
630 }
631
632 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
633 {
634 rb_erase(n, root);
635 RB_CLEAR_NODE(n);
636 }
637
638 static void throtl_rb_erase(struct rb_node *n,
639 struct throtl_service_queue *parent_sq)
640 {
641 if (parent_sq->first_pending == n)
642 parent_sq->first_pending = NULL;
643 rb_erase_init(n, &parent_sq->pending_tree);
644 --parent_sq->nr_pending;
645 }
646
647 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
648 {
649 struct throtl_grp *tg;
650
651 tg = throtl_rb_first(parent_sq);
652 if (!tg)
653 return;
654
655 parent_sq->first_pending_disptime = tg->disptime;
656 }
657
658 static void tg_service_queue_add(struct throtl_grp *tg)
659 {
660 struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
661 struct rb_node **node = &parent_sq->pending_tree.rb_node;
662 struct rb_node *parent = NULL;
663 struct throtl_grp *__tg;
664 unsigned long key = tg->disptime;
665 int left = 1;
666
667 while (*node != NULL) {
668 parent = *node;
669 __tg = rb_entry_tg(parent);
670
671 if (time_before(key, __tg->disptime))
672 node = &parent->rb_left;
673 else {
674 node = &parent->rb_right;
675 left = 0;
676 }
677 }
678
679 if (left)
680 parent_sq->first_pending = &tg->rb_node;
681
682 rb_link_node(&tg->rb_node, parent, node);
683 rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
684 }
685
686 static void __throtl_enqueue_tg(struct throtl_grp *tg)
687 {
688 tg_service_queue_add(tg);
689 tg->flags |= THROTL_TG_PENDING;
690 tg->service_queue.parent_sq->nr_pending++;
691 }
692
693 static void throtl_enqueue_tg(struct throtl_grp *tg)
694 {
695 if (!(tg->flags & THROTL_TG_PENDING))
696 __throtl_enqueue_tg(tg);
697 }
698
699 static void __throtl_dequeue_tg(struct throtl_grp *tg)
700 {
701 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
702 tg->flags &= ~THROTL_TG_PENDING;
703 }
704
705 static void throtl_dequeue_tg(struct throtl_grp *tg)
706 {
707 if (tg->flags & THROTL_TG_PENDING)
708 __throtl_dequeue_tg(tg);
709 }
710
711 /* Call with queue lock held */
712 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
713 unsigned long expires)
714 {
715 unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
716
717 /*
718 * Since we are adjusting the throttle limit dynamically, the sleep
719 * time calculated according to previous limit might be invalid. It's
720 * possible the cgroup sleep time is very long and no other cgroups
721 * have IO running so notify the limit changes. Make sure the cgroup
722 * doesn't sleep too long to avoid the missed notification.
723 */
724 if (time_after(expires, max_expire))
725 expires = max_expire;
726 mod_timer(&sq->pending_timer, expires);
727 throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
728 expires - jiffies, jiffies);
729 }
730
731 /**
732 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
733 * @sq: the service_queue to schedule dispatch for
734 * @force: force scheduling
735 *
736 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
737 * dispatch time of the first pending child. Returns %true if either timer
738 * is armed or there's no pending child left. %false if the current
739 * dispatch window is still open and the caller should continue
740 * dispatching.
741 *
742 * If @force is %true, the dispatch timer is always scheduled and this
743 * function is guaranteed to return %true. This is to be used when the
744 * caller can't dispatch itself and needs to invoke pending_timer
745 * unconditionally. Note that forced scheduling is likely to induce short
746 * delay before dispatch starts even if @sq->first_pending_disptime is not
747 * in the future and thus shouldn't be used in hot paths.
748 */
749 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
750 bool force)
751 {
752 /* any pending children left? */
753 if (!sq->nr_pending)
754 return true;
755
756 update_min_dispatch_time(sq);
757
758 /* is the next dispatch time in the future? */
759 if (force || time_after(sq->first_pending_disptime, jiffies)) {
760 throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
761 return true;
762 }
763
764 /* tell the caller to continue dispatching */
765 return false;
766 }
767
768 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
769 bool rw, unsigned long start)
770 {
771 tg->bytes_disp[rw] = 0;
772 tg->io_disp[rw] = 0;
773
774 /*
775 * Previous slice has expired. We must have trimmed it after last
776 * bio dispatch. That means since start of last slice, we never used
777 * that bandwidth. Do try to make use of that bandwidth while giving
778 * credit.
779 */
780 if (time_after_eq(start, tg->slice_start[rw]))
781 tg->slice_start[rw] = start;
782
783 tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
784 throtl_log(&tg->service_queue,
785 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
786 rw == READ ? 'R' : 'W', tg->slice_start[rw],
787 tg->slice_end[rw], jiffies);
788 }
789
790 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
791 {
792 tg->bytes_disp[rw] = 0;
793 tg->io_disp[rw] = 0;
794 tg->slice_start[rw] = jiffies;
795 tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
796 throtl_log(&tg->service_queue,
797 "[%c] new slice start=%lu end=%lu jiffies=%lu",
798 rw == READ ? 'R' : 'W', tg->slice_start[rw],
799 tg->slice_end[rw], jiffies);
800 }
801
802 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
803 unsigned long jiffy_end)
804 {
805 tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
806 }
807
808 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
809 unsigned long jiffy_end)
810 {
811 tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
812 throtl_log(&tg->service_queue,
813 "[%c] extend slice start=%lu end=%lu jiffies=%lu",
814 rw == READ ? 'R' : 'W', tg->slice_start[rw],
815 tg->slice_end[rw], jiffies);
816 }
817
818 /* Determine if previously allocated or extended slice is complete or not */
819 static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
820 {
821 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
822 return false;
823
824 return 1;
825 }
826
827 /* Trim the used slices and adjust slice start accordingly */
828 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
829 {
830 unsigned long nr_slices, time_elapsed, io_trim;
831 u64 bytes_trim, tmp;
832
833 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
834
835 /*
836 * If bps are unlimited (-1), then time slice don't get
837 * renewed. Don't try to trim the slice if slice is used. A new
838 * slice will start when appropriate.
839 */
840 if (throtl_slice_used(tg, rw))
841 return;
842
843 /*
844 * A bio has been dispatched. Also adjust slice_end. It might happen
845 * that initially cgroup limit was very low resulting in high
846 * slice_end, but later limit was bumped up and bio was dispached
847 * sooner, then we need to reduce slice_end. A high bogus slice_end
848 * is bad because it does not allow new slice to start.
849 */
850
851 throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
852
853 time_elapsed = jiffies - tg->slice_start[rw];
854
855 nr_slices = time_elapsed / tg->td->throtl_slice;
856
857 if (!nr_slices)
858 return;
859 tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
860 do_div(tmp, HZ);
861 bytes_trim = tmp;
862
863 io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
864 HZ;
865
866 if (!bytes_trim && !io_trim)
867 return;
868
869 if (tg->bytes_disp[rw] >= bytes_trim)
870 tg->bytes_disp[rw] -= bytes_trim;
871 else
872 tg->bytes_disp[rw] = 0;
873
874 if (tg->io_disp[rw] >= io_trim)
875 tg->io_disp[rw] -= io_trim;
876 else
877 tg->io_disp[rw] = 0;
878
879 tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
880
881 throtl_log(&tg->service_queue,
882 "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
883 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
884 tg->slice_start[rw], tg->slice_end[rw], jiffies);
885 }
886
887 static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
888 unsigned long *wait)
889 {
890 bool rw = bio_data_dir(bio);
891 unsigned int io_allowed;
892 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
893 u64 tmp;
894
895 jiffy_elapsed = jiffies - tg->slice_start[rw];
896
897 /* Round up to the next throttle slice, wait time must be nonzero */
898 jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice);
899
900 /*
901 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
902 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
903 * will allow dispatch after 1 second and after that slice should
904 * have been trimmed.
905 */
906
907 tmp = (u64)tg_iops_limit(tg, rw) * jiffy_elapsed_rnd;
908 do_div(tmp, HZ);
909
910 if (tmp > UINT_MAX)
911 io_allowed = UINT_MAX;
912 else
913 io_allowed = tmp;
914
915 if (tg->io_disp[rw] + 1 <= io_allowed) {
916 if (wait)
917 *wait = 0;
918 return true;
919 }
920
921 /* Calc approx time to dispatch */
922 jiffy_wait = ((tg->io_disp[rw] + 1) * HZ) / tg_iops_limit(tg, rw) + 1;
923
924 if (jiffy_wait > jiffy_elapsed)
925 jiffy_wait = jiffy_wait - jiffy_elapsed;
926 else
927 jiffy_wait = 1;
928
929 if (wait)
930 *wait = jiffy_wait;
931 return 0;
932 }
933
934 static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
935 unsigned long *wait)
936 {
937 bool rw = bio_data_dir(bio);
938 u64 bytes_allowed, extra_bytes, tmp;
939 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
940 unsigned int bio_size = throtl_bio_data_size(bio);
941
942 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
943
944 /* Slice has just started. Consider one slice interval */
945 if (!jiffy_elapsed)
946 jiffy_elapsed_rnd = tg->td->throtl_slice;
947
948 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
949
950 tmp = tg_bps_limit(tg, rw) * jiffy_elapsed_rnd;
951 do_div(tmp, HZ);
952 bytes_allowed = tmp;
953
954 if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) {
955 if (wait)
956 *wait = 0;
957 return true;
958 }
959
960 /* Calc approx time to dispatch */
961 extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
962 jiffy_wait = div64_u64(extra_bytes * HZ, tg_bps_limit(tg, rw));
963
964 if (!jiffy_wait)
965 jiffy_wait = 1;
966
967 /*
968 * This wait time is without taking into consideration the rounding
969 * up we did. Add that time also.
970 */
971 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
972 if (wait)
973 *wait = jiffy_wait;
974 return 0;
975 }
976
977 /*
978 * Returns whether one can dispatch a bio or not. Also returns approx number
979 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
980 */
981 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
982 unsigned long *wait)
983 {
984 bool rw = bio_data_dir(bio);
985 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
986
987 /*
988 * Currently whole state machine of group depends on first bio
989 * queued in the group bio list. So one should not be calling
990 * this function with a different bio if there are other bios
991 * queued.
992 */
993 BUG_ON(tg->service_queue.nr_queued[rw] &&
994 bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
995
996 /* If tg->bps = -1, then BW is unlimited */
997 if (tg_bps_limit(tg, rw) == U64_MAX &&
998 tg_iops_limit(tg, rw) == UINT_MAX) {
999 if (wait)
1000 *wait = 0;
1001 return true;
1002 }
1003
1004 /*
1005 * If previous slice expired, start a new one otherwise renew/extend
1006 * existing slice to make sure it is at least throtl_slice interval
1007 * long since now. New slice is started only for empty throttle group.
1008 * If there is queued bio, that means there should be an active
1009 * slice and it should be extended instead.
1010 */
1011 if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
1012 throtl_start_new_slice(tg, rw);
1013 else {
1014 if (time_before(tg->slice_end[rw],
1015 jiffies + tg->td->throtl_slice))
1016 throtl_extend_slice(tg, rw,
1017 jiffies + tg->td->throtl_slice);
1018 }
1019
1020 if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
1021 tg_with_in_iops_limit(tg, bio, &iops_wait)) {
1022 if (wait)
1023 *wait = 0;
1024 return 1;
1025 }
1026
1027 max_wait = max(bps_wait, iops_wait);
1028
1029 if (wait)
1030 *wait = max_wait;
1031
1032 if (time_before(tg->slice_end[rw], jiffies + max_wait))
1033 throtl_extend_slice(tg, rw, jiffies + max_wait);
1034
1035 return 0;
1036 }
1037
1038 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
1039 {
1040 bool rw = bio_data_dir(bio);
1041 unsigned int bio_size = throtl_bio_data_size(bio);
1042
1043 /* Charge the bio to the group */
1044 tg->bytes_disp[rw] += bio_size;
1045 tg->io_disp[rw]++;
1046 tg->last_bytes_disp[rw] += bio_size;
1047 tg->last_io_disp[rw]++;
1048
1049 /*
1050 * BIO_THROTTLED is used to prevent the same bio to be throttled
1051 * more than once as a throttled bio will go through blk-throtl the
1052 * second time when it eventually gets issued. Set it when a bio
1053 * is being charged to a tg.
1054 */
1055 if (!bio_flagged(bio, BIO_THROTTLED))
1056 bio_set_flag(bio, BIO_THROTTLED);
1057 }
1058
1059 /**
1060 * throtl_add_bio_tg - add a bio to the specified throtl_grp
1061 * @bio: bio to add
1062 * @qn: qnode to use
1063 * @tg: the target throtl_grp
1064 *
1065 * Add @bio to @tg's service_queue using @qn. If @qn is not specified,
1066 * tg->qnode_on_self[] is used.
1067 */
1068 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
1069 struct throtl_grp *tg)
1070 {
1071 struct throtl_service_queue *sq = &tg->service_queue;
1072 bool rw = bio_data_dir(bio);
1073
1074 if (!qn)
1075 qn = &tg->qnode_on_self[rw];
1076
1077 /*
1078 * If @tg doesn't currently have any bios queued in the same
1079 * direction, queueing @bio can change when @tg should be
1080 * dispatched. Mark that @tg was empty. This is automatically
1081 * cleaered on the next tg_update_disptime().
1082 */
1083 if (!sq->nr_queued[rw])
1084 tg->flags |= THROTL_TG_WAS_EMPTY;
1085
1086 throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
1087
1088 sq->nr_queued[rw]++;
1089 throtl_enqueue_tg(tg);
1090 }
1091
1092 static void tg_update_disptime(struct throtl_grp *tg)
1093 {
1094 struct throtl_service_queue *sq = &tg->service_queue;
1095 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
1096 struct bio *bio;
1097
1098 bio = throtl_peek_queued(&sq->queued[READ]);
1099 if (bio)
1100 tg_may_dispatch(tg, bio, &read_wait);
1101
1102 bio = throtl_peek_queued(&sq->queued[WRITE]);
1103 if (bio)
1104 tg_may_dispatch(tg, bio, &write_wait);
1105
1106 min_wait = min(read_wait, write_wait);
1107 disptime = jiffies + min_wait;
1108
1109 /* Update dispatch time */
1110 throtl_dequeue_tg(tg);
1111 tg->disptime = disptime;
1112 throtl_enqueue_tg(tg);
1113
1114 /* see throtl_add_bio_tg() */
1115 tg->flags &= ~THROTL_TG_WAS_EMPTY;
1116 }
1117
1118 static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1119 struct throtl_grp *parent_tg, bool rw)
1120 {
1121 if (throtl_slice_used(parent_tg, rw)) {
1122 throtl_start_new_slice_with_credit(parent_tg, rw,
1123 child_tg->slice_start[rw]);
1124 }
1125
1126 }
1127
1128 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1129 {
1130 struct throtl_service_queue *sq = &tg->service_queue;
1131 struct throtl_service_queue *parent_sq = sq->parent_sq;
1132 struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1133 struct throtl_grp *tg_to_put = NULL;
1134 struct bio *bio;
1135
1136 /*
1137 * @bio is being transferred from @tg to @parent_sq. Popping a bio
1138 * from @tg may put its reference and @parent_sq might end up
1139 * getting released prematurely. Remember the tg to put and put it
1140 * after @bio is transferred to @parent_sq.
1141 */
1142 bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1143 sq->nr_queued[rw]--;
1144
1145 throtl_charge_bio(tg, bio);
1146
1147 /*
1148 * If our parent is another tg, we just need to transfer @bio to
1149 * the parent using throtl_add_bio_tg(). If our parent is
1150 * @td->service_queue, @bio is ready to be issued. Put it on its
1151 * bio_lists[] and decrease total number queued. The caller is
1152 * responsible for issuing these bios.
1153 */
1154 if (parent_tg) {
1155 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1156 start_parent_slice_with_credit(tg, parent_tg, rw);
1157 } else {
1158 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1159 &parent_sq->queued[rw]);
1160 BUG_ON(tg->td->nr_queued[rw] <= 0);
1161 tg->td->nr_queued[rw]--;
1162 }
1163
1164 throtl_trim_slice(tg, rw);
1165
1166 if (tg_to_put)
1167 blkg_put(tg_to_blkg(tg_to_put));
1168 }
1169
1170 static int throtl_dispatch_tg(struct throtl_grp *tg)
1171 {
1172 struct throtl_service_queue *sq = &tg->service_queue;
1173 unsigned int nr_reads = 0, nr_writes = 0;
1174 unsigned int max_nr_reads = throtl_grp_quantum*3/4;
1175 unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
1176 struct bio *bio;
1177
1178 /* Try to dispatch 75% READS and 25% WRITES */
1179
1180 while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1181 tg_may_dispatch(tg, bio, NULL)) {
1182
1183 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1184 nr_reads++;
1185
1186 if (nr_reads >= max_nr_reads)
1187 break;
1188 }
1189
1190 while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1191 tg_may_dispatch(tg, bio, NULL)) {
1192
1193 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1194 nr_writes++;
1195
1196 if (nr_writes >= max_nr_writes)
1197 break;
1198 }
1199
1200 return nr_reads + nr_writes;
1201 }
1202
1203 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1204 {
1205 unsigned int nr_disp = 0;
1206
1207 while (1) {
1208 struct throtl_grp *tg = throtl_rb_first(parent_sq);
1209 struct throtl_service_queue *sq = &tg->service_queue;
1210
1211 if (!tg)
1212 break;
1213
1214 if (time_before(jiffies, tg->disptime))
1215 break;
1216
1217 throtl_dequeue_tg(tg);
1218
1219 nr_disp += throtl_dispatch_tg(tg);
1220
1221 if (sq->nr_queued[0] || sq->nr_queued[1])
1222 tg_update_disptime(tg);
1223
1224 if (nr_disp >= throtl_quantum)
1225 break;
1226 }
1227
1228 return nr_disp;
1229 }
1230
1231 static bool throtl_can_upgrade(struct throtl_data *td,
1232 struct throtl_grp *this_tg);
1233 /**
1234 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1235 * @arg: the throtl_service_queue being serviced
1236 *
1237 * This timer is armed when a child throtl_grp with active bio's become
1238 * pending and queued on the service_queue's pending_tree and expires when
1239 * the first child throtl_grp should be dispatched. This function
1240 * dispatches bio's from the children throtl_grps to the parent
1241 * service_queue.
1242 *
1243 * If the parent's parent is another throtl_grp, dispatching is propagated
1244 * by either arming its pending_timer or repeating dispatch directly. If
1245 * the top-level service_tree is reached, throtl_data->dispatch_work is
1246 * kicked so that the ready bio's are issued.
1247 */
1248 static void throtl_pending_timer_fn(struct timer_list *t)
1249 {
1250 struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
1251 struct throtl_grp *tg = sq_to_tg(sq);
1252 struct throtl_data *td = sq_to_td(sq);
1253 struct request_queue *q = td->queue;
1254 struct throtl_service_queue *parent_sq;
1255 bool dispatched;
1256 int ret;
1257
1258 spin_lock_irq(q->queue_lock);
1259 if (throtl_can_upgrade(td, NULL))
1260 throtl_upgrade_state(td);
1261
1262 again:
1263 parent_sq = sq->parent_sq;
1264 dispatched = false;
1265
1266 while (true) {
1267 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1268 sq->nr_queued[READ] + sq->nr_queued[WRITE],
1269 sq->nr_queued[READ], sq->nr_queued[WRITE]);
1270
1271 ret = throtl_select_dispatch(sq);
1272 if (ret) {
1273 throtl_log(sq, "bios disp=%u", ret);
1274 dispatched = true;
1275 }
1276
1277 if (throtl_schedule_next_dispatch(sq, false))
1278 break;
1279
1280 /* this dispatch windows is still open, relax and repeat */
1281 spin_unlock_irq(q->queue_lock);
1282 cpu_relax();
1283 spin_lock_irq(q->queue_lock);
1284 }
1285
1286 if (!dispatched)
1287 goto out_unlock;
1288
1289 if (parent_sq) {
1290 /* @parent_sq is another throl_grp, propagate dispatch */
1291 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1292 tg_update_disptime(tg);
1293 if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1294 /* window is already open, repeat dispatching */
1295 sq = parent_sq;
1296 tg = sq_to_tg(sq);
1297 goto again;
1298 }
1299 }
1300 } else {
1301 /* reached the top-level, queue issueing */
1302 queue_work(kthrotld_workqueue, &td->dispatch_work);
1303 }
1304 out_unlock:
1305 spin_unlock_irq(q->queue_lock);
1306 }
1307
1308 /**
1309 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1310 * @work: work item being executed
1311 *
1312 * This function is queued for execution when bio's reach the bio_lists[]
1313 * of throtl_data->service_queue. Those bio's are ready and issued by this
1314 * function.
1315 */
1316 static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1317 {
1318 struct throtl_data *td = container_of(work, struct throtl_data,
1319 dispatch_work);
1320 struct throtl_service_queue *td_sq = &td->service_queue;
1321 struct request_queue *q = td->queue;
1322 struct bio_list bio_list_on_stack;
1323 struct bio *bio;
1324 struct blk_plug plug;
1325 int rw;
1326
1327 bio_list_init(&bio_list_on_stack);
1328
1329 spin_lock_irq(q->queue_lock);
1330 for (rw = READ; rw <= WRITE; rw++)
1331 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1332 bio_list_add(&bio_list_on_stack, bio);
1333 spin_unlock_irq(q->queue_lock);
1334
1335 if (!bio_list_empty(&bio_list_on_stack)) {
1336 blk_start_plug(&plug);
1337 while((bio = bio_list_pop(&bio_list_on_stack)))
1338 generic_make_request(bio);
1339 blk_finish_plug(&plug);
1340 }
1341 }
1342
1343 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1344 int off)
1345 {
1346 struct throtl_grp *tg = pd_to_tg(pd);
1347 u64 v = *(u64 *)((void *)tg + off);
1348
1349 if (v == U64_MAX)
1350 return 0;
1351 return __blkg_prfill_u64(sf, pd, v);
1352 }
1353
1354 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1355 int off)
1356 {
1357 struct throtl_grp *tg = pd_to_tg(pd);
1358 unsigned int v = *(unsigned int *)((void *)tg + off);
1359
1360 if (v == UINT_MAX)
1361 return 0;
1362 return __blkg_prfill_u64(sf, pd, v);
1363 }
1364
1365 static int tg_print_conf_u64(struct seq_file *sf, void *v)
1366 {
1367 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1368 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1369 return 0;
1370 }
1371
1372 static int tg_print_conf_uint(struct seq_file *sf, void *v)
1373 {
1374 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1375 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1376 return 0;
1377 }
1378
1379 static void tg_conf_updated(struct throtl_grp *tg, bool global)
1380 {
1381 struct throtl_service_queue *sq = &tg->service_queue;
1382 struct cgroup_subsys_state *pos_css;
1383 struct blkcg_gq *blkg;
1384
1385 throtl_log(&tg->service_queue,
1386 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1387 tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1388 tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1389
1390 /*
1391 * Update has_rules[] flags for the updated tg's subtree. A tg is
1392 * considered to have rules if either the tg itself or any of its
1393 * ancestors has rules. This identifies groups without any
1394 * restrictions in the whole hierarchy and allows them to bypass
1395 * blk-throttle.
1396 */
1397 blkg_for_each_descendant_pre(blkg, pos_css,
1398 global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
1399 struct throtl_grp *this_tg = blkg_to_tg(blkg);
1400 struct throtl_grp *parent_tg;
1401
1402 tg_update_has_rules(this_tg);
1403 /* ignore root/second level */
1404 if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
1405 !blkg->parent->parent)
1406 continue;
1407 parent_tg = blkg_to_tg(blkg->parent);
1408 /*
1409 * make sure all children has lower idle time threshold and
1410 * higher latency target
1411 */
1412 this_tg->idletime_threshold = min(this_tg->idletime_threshold,
1413 parent_tg->idletime_threshold);
1414 this_tg->latency_target = max(this_tg->latency_target,
1415 parent_tg->latency_target);
1416 }
1417
1418 /*
1419 * We're already holding queue_lock and know @tg is valid. Let's
1420 * apply the new config directly.
1421 *
1422 * Restart the slices for both READ and WRITES. It might happen
1423 * that a group's limit are dropped suddenly and we don't want to
1424 * account recently dispatched IO with new low rate.
1425 */
1426 throtl_start_new_slice(tg, 0);
1427 throtl_start_new_slice(tg, 1);
1428
1429 if (tg->flags & THROTL_TG_PENDING) {
1430 tg_update_disptime(tg);
1431 throtl_schedule_next_dispatch(sq->parent_sq, true);
1432 }
1433 }
1434
1435 static ssize_t tg_set_conf(struct kernfs_open_file *of,
1436 char *buf, size_t nbytes, loff_t off, bool is_u64)
1437 {
1438 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1439 struct blkg_conf_ctx ctx;
1440 struct throtl_grp *tg;
1441 int ret;
1442 u64 v;
1443
1444 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1445 if (ret)
1446 return ret;
1447
1448 ret = -EINVAL;
1449 if (sscanf(ctx.body, "%llu", &v) != 1)
1450 goto out_finish;
1451 if (!v)
1452 v = U64_MAX;
1453
1454 tg = blkg_to_tg(ctx.blkg);
1455
1456 if (is_u64)
1457 *(u64 *)((void *)tg + of_cft(of)->private) = v;
1458 else
1459 *(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1460
1461 tg_conf_updated(tg, false);
1462 ret = 0;
1463 out_finish:
1464 blkg_conf_finish(&ctx);
1465 return ret ?: nbytes;
1466 }
1467
1468 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1469 char *buf, size_t nbytes, loff_t off)
1470 {
1471 return tg_set_conf(of, buf, nbytes, off, true);
1472 }
1473
1474 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1475 char *buf, size_t nbytes, loff_t off)
1476 {
1477 return tg_set_conf(of, buf, nbytes, off, false);
1478 }
1479
1480 static struct cftype throtl_legacy_files[] = {
1481 {
1482 .name = "throttle.read_bps_device",
1483 .private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1484 .seq_show = tg_print_conf_u64,
1485 .write = tg_set_conf_u64,
1486 },
1487 {
1488 .name = "throttle.write_bps_device",
1489 .private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1490 .seq_show = tg_print_conf_u64,
1491 .write = tg_set_conf_u64,
1492 },
1493 {
1494 .name = "throttle.read_iops_device",
1495 .private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1496 .seq_show = tg_print_conf_uint,
1497 .write = tg_set_conf_uint,
1498 },
1499 {
1500 .name = "throttle.write_iops_device",
1501 .private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1502 .seq_show = tg_print_conf_uint,
1503 .write = tg_set_conf_uint,
1504 },
1505 {
1506 .name = "throttle.io_service_bytes",
1507 .private = (unsigned long)&blkcg_policy_throtl,
1508 .seq_show = blkg_print_stat_bytes,
1509 },
1510 {
1511 .name = "throttle.io_serviced",
1512 .private = (unsigned long)&blkcg_policy_throtl,
1513 .seq_show = blkg_print_stat_ios,
1514 },
1515 { } /* terminate */
1516 };
1517
1518 static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1519 int off)
1520 {
1521 struct throtl_grp *tg = pd_to_tg(pd);
1522 const char *dname = blkg_dev_name(pd->blkg);
1523 char bufs[4][21] = { "max", "max", "max", "max" };
1524 u64 bps_dft;
1525 unsigned int iops_dft;
1526 char idle_time[26] = "";
1527 char latency_time[26] = "";
1528
1529 if (!dname)
1530 return 0;
1531
1532 if (off == LIMIT_LOW) {
1533 bps_dft = 0;
1534 iops_dft = 0;
1535 } else {
1536 bps_dft = U64_MAX;
1537 iops_dft = UINT_MAX;
1538 }
1539
1540 if (tg->bps_conf[READ][off] == bps_dft &&
1541 tg->bps_conf[WRITE][off] == bps_dft &&
1542 tg->iops_conf[READ][off] == iops_dft &&
1543 tg->iops_conf[WRITE][off] == iops_dft &&
1544 (off != LIMIT_LOW ||
1545 (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
1546 tg->latency_target_conf == DFL_LATENCY_TARGET)))
1547 return 0;
1548
1549 if (tg->bps_conf[READ][off] != U64_MAX)
1550 snprintf(bufs[0], sizeof(bufs[0]), "%llu",
1551 tg->bps_conf[READ][off]);
1552 if (tg->bps_conf[WRITE][off] != U64_MAX)
1553 snprintf(bufs[1], sizeof(bufs[1]), "%llu",
1554 tg->bps_conf[WRITE][off]);
1555 if (tg->iops_conf[READ][off] != UINT_MAX)
1556 snprintf(bufs[2], sizeof(bufs[2]), "%u",
1557 tg->iops_conf[READ][off]);
1558 if (tg->iops_conf[WRITE][off] != UINT_MAX)
1559 snprintf(bufs[3], sizeof(bufs[3]), "%u",
1560 tg->iops_conf[WRITE][off]);
1561 if (off == LIMIT_LOW) {
1562 if (tg->idletime_threshold_conf == ULONG_MAX)
1563 strcpy(idle_time, " idle=max");
1564 else
1565 snprintf(idle_time, sizeof(idle_time), " idle=%lu",
1566 tg->idletime_threshold_conf);
1567
1568 if (tg->latency_target_conf == ULONG_MAX)
1569 strcpy(latency_time, " latency=max");
1570 else
1571 snprintf(latency_time, sizeof(latency_time),
1572 " latency=%lu", tg->latency_target_conf);
1573 }
1574
1575 seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1576 dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
1577 latency_time);
1578 return 0;
1579 }
1580
1581 static int tg_print_limit(struct seq_file *sf, void *v)
1582 {
1583 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1584 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1585 return 0;
1586 }
1587
1588 static ssize_t tg_set_limit(struct kernfs_open_file *of,
1589 char *buf, size_t nbytes, loff_t off)
1590 {
1591 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1592 struct blkg_conf_ctx ctx;
1593 struct throtl_grp *tg;
1594 u64 v[4];
1595 unsigned long idle_time;
1596 unsigned long latency_time;
1597 int ret;
1598 int index = of_cft(of)->private;
1599
1600 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1601 if (ret)
1602 return ret;
1603
1604 tg = blkg_to_tg(ctx.blkg);
1605
1606 v[0] = tg->bps_conf[READ][index];
1607 v[1] = tg->bps_conf[WRITE][index];
1608 v[2] = tg->iops_conf[READ][index];
1609 v[3] = tg->iops_conf[WRITE][index];
1610
1611 idle_time = tg->idletime_threshold_conf;
1612 latency_time = tg->latency_target_conf;
1613 while (true) {
1614 char tok[27]; /* wiops=18446744073709551616 */
1615 char *p;
1616 u64 val = U64_MAX;
1617 int len;
1618
1619 if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1620 break;
1621 if (tok[0] == '\0')
1622 break;
1623 ctx.body += len;
1624
1625 ret = -EINVAL;
1626 p = tok;
1627 strsep(&p, "=");
1628 if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1629 goto out_finish;
1630
1631 ret = -ERANGE;
1632 if (!val)
1633 goto out_finish;
1634
1635 ret = -EINVAL;
1636 if (!strcmp(tok, "rbps"))
1637 v[0] = val;
1638 else if (!strcmp(tok, "wbps"))
1639 v[1] = val;
1640 else if (!strcmp(tok, "riops"))
1641 v[2] = min_t(u64, val, UINT_MAX);
1642 else if (!strcmp(tok, "wiops"))
1643 v[3] = min_t(u64, val, UINT_MAX);
1644 else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
1645 idle_time = val;
1646 else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
1647 latency_time = val;
1648 else
1649 goto out_finish;
1650 }
1651
1652 tg->bps_conf[READ][index] = v[0];
1653 tg->bps_conf[WRITE][index] = v[1];
1654 tg->iops_conf[READ][index] = v[2];
1655 tg->iops_conf[WRITE][index] = v[3];
1656
1657 if (index == LIMIT_MAX) {
1658 tg->bps[READ][index] = v[0];
1659 tg->bps[WRITE][index] = v[1];
1660 tg->iops[READ][index] = v[2];
1661 tg->iops[WRITE][index] = v[3];
1662 }
1663 tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1664 tg->bps_conf[READ][LIMIT_MAX]);
1665 tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1666 tg->bps_conf[WRITE][LIMIT_MAX]);
1667 tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1668 tg->iops_conf[READ][LIMIT_MAX]);
1669 tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1670 tg->iops_conf[WRITE][LIMIT_MAX]);
1671 tg->idletime_threshold_conf = idle_time;
1672 tg->latency_target_conf = latency_time;
1673
1674 /* force user to configure all settings for low limit */
1675 if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
1676 tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
1677 tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
1678 tg->latency_target_conf == DFL_LATENCY_TARGET) {
1679 tg->bps[READ][LIMIT_LOW] = 0;
1680 tg->bps[WRITE][LIMIT_LOW] = 0;
1681 tg->iops[READ][LIMIT_LOW] = 0;
1682 tg->iops[WRITE][LIMIT_LOW] = 0;
1683 tg->idletime_threshold = DFL_IDLE_THRESHOLD;
1684 tg->latency_target = DFL_LATENCY_TARGET;
1685 } else if (index == LIMIT_LOW) {
1686 tg->idletime_threshold = tg->idletime_threshold_conf;
1687 tg->latency_target = tg->latency_target_conf;
1688 }
1689
1690 blk_throtl_update_limit_valid(tg->td);
1691 if (tg->td->limit_valid[LIMIT_LOW]) {
1692 if (index == LIMIT_LOW)
1693 tg->td->limit_index = LIMIT_LOW;
1694 } else
1695 tg->td->limit_index = LIMIT_MAX;
1696 tg_conf_updated(tg, index == LIMIT_LOW &&
1697 tg->td->limit_valid[LIMIT_LOW]);
1698 ret = 0;
1699 out_finish:
1700 blkg_conf_finish(&ctx);
1701 return ret ?: nbytes;
1702 }
1703
1704 static struct cftype throtl_files[] = {
1705 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1706 {
1707 .name = "low",
1708 .flags = CFTYPE_NOT_ON_ROOT,
1709 .seq_show = tg_print_limit,
1710 .write = tg_set_limit,
1711 .private = LIMIT_LOW,
1712 },
1713 #endif
1714 {
1715 .name = "max",
1716 .flags = CFTYPE_NOT_ON_ROOT,
1717 .seq_show = tg_print_limit,
1718 .write = tg_set_limit,
1719 .private = LIMIT_MAX,
1720 },
1721 { } /* terminate */
1722 };
1723
1724 static void throtl_shutdown_wq(struct request_queue *q)
1725 {
1726 struct throtl_data *td = q->td;
1727
1728 cancel_work_sync(&td->dispatch_work);
1729 }
1730
1731 static struct blkcg_policy blkcg_policy_throtl = {
1732 .dfl_cftypes = throtl_files,
1733 .legacy_cftypes = throtl_legacy_files,
1734
1735 .pd_alloc_fn = throtl_pd_alloc,
1736 .pd_init_fn = throtl_pd_init,
1737 .pd_online_fn = throtl_pd_online,
1738 .pd_offline_fn = throtl_pd_offline,
1739 .pd_free_fn = throtl_pd_free,
1740 };
1741
1742 static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1743 {
1744 unsigned long rtime = jiffies, wtime = jiffies;
1745
1746 if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1747 rtime = tg->last_low_overflow_time[READ];
1748 if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1749 wtime = tg->last_low_overflow_time[WRITE];
1750 return min(rtime, wtime);
1751 }
1752
1753 /* tg should not be an intermediate node */
1754 static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1755 {
1756 struct throtl_service_queue *parent_sq;
1757 struct throtl_grp *parent = tg;
1758 unsigned long ret = __tg_last_low_overflow_time(tg);
1759
1760 while (true) {
1761 parent_sq = parent->service_queue.parent_sq;
1762 parent = sq_to_tg(parent_sq);
1763 if (!parent)
1764 break;
1765
1766 /*
1767 * The parent doesn't have low limit, it always reaches low
1768 * limit. Its overflow time is useless for children
1769 */
1770 if (!parent->bps[READ][LIMIT_LOW] &&
1771 !parent->iops[READ][LIMIT_LOW] &&
1772 !parent->bps[WRITE][LIMIT_LOW] &&
1773 !parent->iops[WRITE][LIMIT_LOW])
1774 continue;
1775 if (time_after(__tg_last_low_overflow_time(parent), ret))
1776 ret = __tg_last_low_overflow_time(parent);
1777 }
1778 return ret;
1779 }
1780
1781 static bool throtl_tg_is_idle(struct throtl_grp *tg)
1782 {
1783 /*
1784 * cgroup is idle if:
1785 * - single idle is too long, longer than a fixed value (in case user
1786 * configure a too big threshold) or 4 times of idletime threshold
1787 * - average think time is more than threshold
1788 * - IO latency is largely below threshold
1789 */
1790 unsigned long time;
1791 bool ret;
1792
1793 time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
1794 ret = tg->latency_target == DFL_LATENCY_TARGET ||
1795 tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
1796 (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
1797 tg->avg_idletime > tg->idletime_threshold ||
1798 (tg->latency_target && tg->bio_cnt &&
1799 tg->bad_bio_cnt * 5 < tg->bio_cnt);
1800 throtl_log(&tg->service_queue,
1801 "avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
1802 tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
1803 tg->bio_cnt, ret, tg->td->scale);
1804 return ret;
1805 }
1806
1807 static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1808 {
1809 struct throtl_service_queue *sq = &tg->service_queue;
1810 bool read_limit, write_limit;
1811
1812 /*
1813 * if cgroup reaches low limit (if low limit is 0, the cgroup always
1814 * reaches), it's ok to upgrade to next limit
1815 */
1816 read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
1817 write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
1818 if (!read_limit && !write_limit)
1819 return true;
1820 if (read_limit && sq->nr_queued[READ] &&
1821 (!write_limit || sq->nr_queued[WRITE]))
1822 return true;
1823 if (write_limit && sq->nr_queued[WRITE] &&
1824 (!read_limit || sq->nr_queued[READ]))
1825 return true;
1826
1827 if (time_after_eq(jiffies,
1828 tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
1829 throtl_tg_is_idle(tg))
1830 return true;
1831 return false;
1832 }
1833
1834 static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1835 {
1836 while (true) {
1837 if (throtl_tg_can_upgrade(tg))
1838 return true;
1839 tg = sq_to_tg(tg->service_queue.parent_sq);
1840 if (!tg || !tg_to_blkg(tg)->parent)
1841 return false;
1842 }
1843 return false;
1844 }
1845
1846 static bool throtl_can_upgrade(struct throtl_data *td,
1847 struct throtl_grp *this_tg)
1848 {
1849 struct cgroup_subsys_state *pos_css;
1850 struct blkcg_gq *blkg;
1851
1852 if (td->limit_index != LIMIT_LOW)
1853 return false;
1854
1855 if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
1856 return false;
1857
1858 rcu_read_lock();
1859 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1860 struct throtl_grp *tg = blkg_to_tg(blkg);
1861
1862 if (tg == this_tg)
1863 continue;
1864 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1865 continue;
1866 if (!throtl_hierarchy_can_upgrade(tg)) {
1867 rcu_read_unlock();
1868 return false;
1869 }
1870 }
1871 rcu_read_unlock();
1872 return true;
1873 }
1874
1875 static void throtl_upgrade_check(struct throtl_grp *tg)
1876 {
1877 unsigned long now = jiffies;
1878
1879 if (tg->td->limit_index != LIMIT_LOW)
1880 return;
1881
1882 if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1883 return;
1884
1885 tg->last_check_time = now;
1886
1887 if (!time_after_eq(now,
1888 __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
1889 return;
1890
1891 if (throtl_can_upgrade(tg->td, NULL))
1892 throtl_upgrade_state(tg->td);
1893 }
1894
1895 static void throtl_upgrade_state(struct throtl_data *td)
1896 {
1897 struct cgroup_subsys_state *pos_css;
1898 struct blkcg_gq *blkg;
1899
1900 throtl_log(&td->service_queue, "upgrade to max");
1901 td->limit_index = LIMIT_MAX;
1902 td->low_upgrade_time = jiffies;
1903 td->scale = 0;
1904 rcu_read_lock();
1905 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1906 struct throtl_grp *tg = blkg_to_tg(blkg);
1907 struct throtl_service_queue *sq = &tg->service_queue;
1908
1909 tg->disptime = jiffies - 1;
1910 throtl_select_dispatch(sq);
1911 throtl_schedule_next_dispatch(sq, true);
1912 }
1913 rcu_read_unlock();
1914 throtl_select_dispatch(&td->service_queue);
1915 throtl_schedule_next_dispatch(&td->service_queue, true);
1916 queue_work(kthrotld_workqueue, &td->dispatch_work);
1917 }
1918
1919 static void throtl_downgrade_state(struct throtl_data *td, int new)
1920 {
1921 td->scale /= 2;
1922
1923 throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
1924 if (td->scale) {
1925 td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
1926 return;
1927 }
1928
1929 td->limit_index = new;
1930 td->low_downgrade_time = jiffies;
1931 }
1932
1933 static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
1934 {
1935 struct throtl_data *td = tg->td;
1936 unsigned long now = jiffies;
1937
1938 /*
1939 * If cgroup is below low limit, consider downgrade and throttle other
1940 * cgroups
1941 */
1942 if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
1943 time_after_eq(now, tg_last_low_overflow_time(tg) +
1944 td->throtl_slice) &&
1945 (!throtl_tg_is_idle(tg) ||
1946 !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
1947 return true;
1948 return false;
1949 }
1950
1951 static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
1952 {
1953 while (true) {
1954 if (!throtl_tg_can_downgrade(tg))
1955 return false;
1956 tg = sq_to_tg(tg->service_queue.parent_sq);
1957 if (!tg || !tg_to_blkg(tg)->parent)
1958 break;
1959 }
1960 return true;
1961 }
1962
1963 static void throtl_downgrade_check(struct throtl_grp *tg)
1964 {
1965 uint64_t bps;
1966 unsigned int iops;
1967 unsigned long elapsed_time;
1968 unsigned long now = jiffies;
1969
1970 if (tg->td->limit_index != LIMIT_MAX ||
1971 !tg->td->limit_valid[LIMIT_LOW])
1972 return;
1973 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1974 return;
1975 if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1976 return;
1977
1978 elapsed_time = now - tg->last_check_time;
1979 tg->last_check_time = now;
1980
1981 if (time_before(now, tg_last_low_overflow_time(tg) +
1982 tg->td->throtl_slice))
1983 return;
1984
1985 if (tg->bps[READ][LIMIT_LOW]) {
1986 bps = tg->last_bytes_disp[READ] * HZ;
1987 do_div(bps, elapsed_time);
1988 if (bps >= tg->bps[READ][LIMIT_LOW])
1989 tg->last_low_overflow_time[READ] = now;
1990 }
1991
1992 if (tg->bps[WRITE][LIMIT_LOW]) {
1993 bps = tg->last_bytes_disp[WRITE] * HZ;
1994 do_div(bps, elapsed_time);
1995 if (bps >= tg->bps[WRITE][LIMIT_LOW])
1996 tg->last_low_overflow_time[WRITE] = now;
1997 }
1998
1999 if (tg->iops[READ][LIMIT_LOW]) {
2000 iops = tg->last_io_disp[READ] * HZ / elapsed_time;
2001 if (iops >= tg->iops[READ][LIMIT_LOW])
2002 tg->last_low_overflow_time[READ] = now;
2003 }
2004
2005 if (tg->iops[WRITE][LIMIT_LOW]) {
2006 iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
2007 if (iops >= tg->iops[WRITE][LIMIT_LOW])
2008 tg->last_low_overflow_time[WRITE] = now;
2009 }
2010
2011 /*
2012 * If cgroup is below low limit, consider downgrade and throttle other
2013 * cgroups
2014 */
2015 if (throtl_hierarchy_can_downgrade(tg))
2016 throtl_downgrade_state(tg->td, LIMIT_LOW);
2017
2018 tg->last_bytes_disp[READ] = 0;
2019 tg->last_bytes_disp[WRITE] = 0;
2020 tg->last_io_disp[READ] = 0;
2021 tg->last_io_disp[WRITE] = 0;
2022 }
2023
2024 static void blk_throtl_update_idletime(struct throtl_grp *tg)
2025 {
2026 unsigned long now = ktime_get_ns() >> 10;
2027 unsigned long last_finish_time = tg->last_finish_time;
2028
2029 if (now <= last_finish_time || last_finish_time == 0 ||
2030 last_finish_time == tg->checked_last_finish_time)
2031 return;
2032
2033 tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
2034 tg->checked_last_finish_time = last_finish_time;
2035 }
2036
2037 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2038 static void throtl_update_latency_buckets(struct throtl_data *td)
2039 {
2040 struct avg_latency_bucket avg_latency[LATENCY_BUCKET_SIZE];
2041 int i, cpu;
2042 unsigned long last_latency = 0;
2043 unsigned long latency;
2044
2045 if (!blk_queue_nonrot(td->queue))
2046 return;
2047 if (time_before(jiffies, td->last_calculate_time + HZ))
2048 return;
2049 td->last_calculate_time = jiffies;
2050
2051 memset(avg_latency, 0, sizeof(avg_latency));
2052 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2053 struct latency_bucket *tmp = &td->tmp_buckets[i];
2054
2055 for_each_possible_cpu(cpu) {
2056 struct latency_bucket *bucket;
2057
2058 /* this isn't race free, but ok in practice */
2059 bucket = per_cpu_ptr(td->latency_buckets, cpu);
2060 tmp->total_latency += bucket[i].total_latency;
2061 tmp->samples += bucket[i].samples;
2062 bucket[i].total_latency = 0;
2063 bucket[i].samples = 0;
2064 }
2065
2066 if (tmp->samples >= 32) {
2067 int samples = tmp->samples;
2068
2069 latency = tmp->total_latency;
2070
2071 tmp->total_latency = 0;
2072 tmp->samples = 0;
2073 latency /= samples;
2074 if (latency == 0)
2075 continue;
2076 avg_latency[i].latency = latency;
2077 }
2078 }
2079
2080 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2081 if (!avg_latency[i].latency) {
2082 if (td->avg_buckets[i].latency < last_latency)
2083 td->avg_buckets[i].latency = last_latency;
2084 continue;
2085 }
2086
2087 if (!td->avg_buckets[i].valid)
2088 latency = avg_latency[i].latency;
2089 else
2090 latency = (td->avg_buckets[i].latency * 7 +
2091 avg_latency[i].latency) >> 3;
2092
2093 td->avg_buckets[i].latency = max(latency, last_latency);
2094 td->avg_buckets[i].valid = true;
2095 last_latency = td->avg_buckets[i].latency;
2096 }
2097
2098 for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
2099 throtl_log(&td->service_queue,
2100 "Latency bucket %d: latency=%ld, valid=%d", i,
2101 td->avg_buckets[i].latency, td->avg_buckets[i].valid);
2102 }
2103 #else
2104 static inline void throtl_update_latency_buckets(struct throtl_data *td)
2105 {
2106 }
2107 #endif
2108
2109 static void blk_throtl_assoc_bio(struct throtl_grp *tg, struct bio *bio)
2110 {
2111 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2112 if (bio->bi_css) {
2113 if (bio->bi_cg_private)
2114 blkg_put(tg_to_blkg(bio->bi_cg_private));
2115 bio->bi_cg_private = tg;
2116 blkg_get(tg_to_blkg(tg));
2117 }
2118 blk_stat_set_issue(&bio->bi_issue_stat, bio_sectors(bio));
2119 #endif
2120 }
2121
2122 bool blk_throtl_bio(struct request_queue *q, struct blkcg_gq *blkg,
2123 struct bio *bio)
2124 {
2125 struct throtl_qnode *qn = NULL;
2126 struct throtl_grp *tg = blkg_to_tg(blkg ?: q->root_blkg);
2127 struct throtl_service_queue *sq;
2128 bool rw = bio_data_dir(bio);
2129 bool throttled = false;
2130 struct throtl_data *td = tg->td;
2131
2132 WARN_ON_ONCE(!rcu_read_lock_held());
2133
2134 /* see throtl_charge_bio() */
2135 if (bio_flagged(bio, BIO_THROTTLED) || !tg->has_rules[rw])
2136 goto out;
2137
2138 spin_lock_irq(q->queue_lock);
2139
2140 throtl_update_latency_buckets(td);
2141
2142 if (unlikely(blk_queue_bypass(q)))
2143 goto out_unlock;
2144
2145 blk_throtl_assoc_bio(tg, bio);
2146 blk_throtl_update_idletime(tg);
2147
2148 sq = &tg->service_queue;
2149
2150 again:
2151 while (true) {
2152 if (tg->last_low_overflow_time[rw] == 0)
2153 tg->last_low_overflow_time[rw] = jiffies;
2154 throtl_downgrade_check(tg);
2155 throtl_upgrade_check(tg);
2156 /* throtl is FIFO - if bios are already queued, should queue */
2157 if (sq->nr_queued[rw])
2158 break;
2159
2160 /* if above limits, break to queue */
2161 if (!tg_may_dispatch(tg, bio, NULL)) {
2162 tg->last_low_overflow_time[rw] = jiffies;
2163 if (throtl_can_upgrade(td, tg)) {
2164 throtl_upgrade_state(td);
2165 goto again;
2166 }
2167 break;
2168 }
2169
2170 /* within limits, let's charge and dispatch directly */
2171 throtl_charge_bio(tg, bio);
2172
2173 /*
2174 * We need to trim slice even when bios are not being queued
2175 * otherwise it might happen that a bio is not queued for
2176 * a long time and slice keeps on extending and trim is not
2177 * called for a long time. Now if limits are reduced suddenly
2178 * we take into account all the IO dispatched so far at new
2179 * low rate and * newly queued IO gets a really long dispatch
2180 * time.
2181 *
2182 * So keep on trimming slice even if bio is not queued.
2183 */
2184 throtl_trim_slice(tg, rw);
2185
2186 /*
2187 * @bio passed through this layer without being throttled.
2188 * Climb up the ladder. If we''re already at the top, it
2189 * can be executed directly.
2190 */
2191 qn = &tg->qnode_on_parent[rw];
2192 sq = sq->parent_sq;
2193 tg = sq_to_tg(sq);
2194 if (!tg)
2195 goto out_unlock;
2196 }
2197
2198 /* out-of-limit, queue to @tg */
2199 throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2200 rw == READ ? 'R' : 'W',
2201 tg->bytes_disp[rw], bio->bi_iter.bi_size,
2202 tg_bps_limit(tg, rw),
2203 tg->io_disp[rw], tg_iops_limit(tg, rw),
2204 sq->nr_queued[READ], sq->nr_queued[WRITE]);
2205
2206 tg->last_low_overflow_time[rw] = jiffies;
2207
2208 td->nr_queued[rw]++;
2209 throtl_add_bio_tg(bio, qn, tg);
2210 throttled = true;
2211
2212 /*
2213 * Update @tg's dispatch time and force schedule dispatch if @tg
2214 * was empty before @bio. The forced scheduling isn't likely to
2215 * cause undue delay as @bio is likely to be dispatched directly if
2216 * its @tg's disptime is not in the future.
2217 */
2218 if (tg->flags & THROTL_TG_WAS_EMPTY) {
2219 tg_update_disptime(tg);
2220 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
2221 }
2222
2223 out_unlock:
2224 spin_unlock_irq(q->queue_lock);
2225 out:
2226 bio_set_flag(bio, BIO_THROTTLED);
2227
2228 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2229 if (throttled || !td->track_bio_latency)
2230 bio->bi_issue_stat.stat |= SKIP_LATENCY;
2231 #endif
2232 return throttled;
2233 }
2234
2235 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2236 static void throtl_track_latency(struct throtl_data *td, sector_t size,
2237 int op, unsigned long time)
2238 {
2239 struct latency_bucket *latency;
2240 int index;
2241
2242 if (!td || td->limit_index != LIMIT_LOW || op != REQ_OP_READ ||
2243 !blk_queue_nonrot(td->queue))
2244 return;
2245
2246 index = request_bucket_index(size);
2247
2248 latency = get_cpu_ptr(td->latency_buckets);
2249 latency[index].total_latency += time;
2250 latency[index].samples++;
2251 put_cpu_ptr(td->latency_buckets);
2252 }
2253
2254 void blk_throtl_stat_add(struct request *rq, u64 time_ns)
2255 {
2256 struct request_queue *q = rq->q;
2257 struct throtl_data *td = q->td;
2258
2259 throtl_track_latency(td, blk_stat_size(&rq->issue_stat),
2260 req_op(rq), time_ns >> 10);
2261 }
2262
2263 void blk_throtl_bio_endio(struct bio *bio)
2264 {
2265 struct throtl_grp *tg;
2266 u64 finish_time_ns;
2267 unsigned long finish_time;
2268 unsigned long start_time;
2269 unsigned long lat;
2270
2271 tg = bio->bi_cg_private;
2272 if (!tg)
2273 return;
2274 bio->bi_cg_private = NULL;
2275
2276 finish_time_ns = ktime_get_ns();
2277 tg->last_finish_time = finish_time_ns >> 10;
2278
2279 start_time = blk_stat_time(&bio->bi_issue_stat) >> 10;
2280 finish_time = __blk_stat_time(finish_time_ns) >> 10;
2281 if (!start_time || finish_time <= start_time) {
2282 blkg_put(tg_to_blkg(tg));
2283 return;
2284 }
2285
2286 lat = finish_time - start_time;
2287 /* this is only for bio based driver */
2288 if (!(bio->bi_issue_stat.stat & SKIP_LATENCY))
2289 throtl_track_latency(tg->td, blk_stat_size(&bio->bi_issue_stat),
2290 bio_op(bio), lat);
2291
2292 if (tg->latency_target && lat >= tg->td->filtered_latency) {
2293 int bucket;
2294 unsigned int threshold;
2295
2296 bucket = request_bucket_index(
2297 blk_stat_size(&bio->bi_issue_stat));
2298 threshold = tg->td->avg_buckets[bucket].latency +
2299 tg->latency_target;
2300 if (lat > threshold)
2301 tg->bad_bio_cnt++;
2302 /*
2303 * Not race free, could get wrong count, which means cgroups
2304 * will be throttled
2305 */
2306 tg->bio_cnt++;
2307 }
2308
2309 if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
2310 tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
2311 tg->bio_cnt /= 2;
2312 tg->bad_bio_cnt /= 2;
2313 }
2314
2315 blkg_put(tg_to_blkg(tg));
2316 }
2317 #endif
2318
2319 /*
2320 * Dispatch all bios from all children tg's queued on @parent_sq. On
2321 * return, @parent_sq is guaranteed to not have any active children tg's
2322 * and all bios from previously active tg's are on @parent_sq->bio_lists[].
2323 */
2324 static void tg_drain_bios(struct throtl_service_queue *parent_sq)
2325 {
2326 struct throtl_grp *tg;
2327
2328 while ((tg = throtl_rb_first(parent_sq))) {
2329 struct throtl_service_queue *sq = &tg->service_queue;
2330 struct bio *bio;
2331
2332 throtl_dequeue_tg(tg);
2333
2334 while ((bio = throtl_peek_queued(&sq->queued[READ])))
2335 tg_dispatch_one_bio(tg, bio_data_dir(bio));
2336 while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
2337 tg_dispatch_one_bio(tg, bio_data_dir(bio));
2338 }
2339 }
2340
2341 /**
2342 * blk_throtl_drain - drain throttled bios
2343 * @q: request_queue to drain throttled bios for
2344 *
2345 * Dispatch all currently throttled bios on @q through ->make_request_fn().
2346 */
2347 void blk_throtl_drain(struct request_queue *q)
2348 __releases(q->queue_lock) __acquires(q->queue_lock)
2349 {
2350 struct throtl_data *td = q->td;
2351 struct blkcg_gq *blkg;
2352 struct cgroup_subsys_state *pos_css;
2353 struct bio *bio;
2354 int rw;
2355
2356 queue_lockdep_assert_held(q);
2357 rcu_read_lock();
2358
2359 /*
2360 * Drain each tg while doing post-order walk on the blkg tree, so
2361 * that all bios are propagated to td->service_queue. It'd be
2362 * better to walk service_queue tree directly but blkg walk is
2363 * easier.
2364 */
2365 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
2366 tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
2367
2368 /* finally, transfer bios from top-level tg's into the td */
2369 tg_drain_bios(&td->service_queue);
2370
2371 rcu_read_unlock();
2372 spin_unlock_irq(q->queue_lock);
2373
2374 /* all bios now should be in td->service_queue, issue them */
2375 for (rw = READ; rw <= WRITE; rw++)
2376 while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
2377 NULL)))
2378 generic_make_request(bio);
2379
2380 spin_lock_irq(q->queue_lock);
2381 }
2382
2383 int blk_throtl_init(struct request_queue *q)
2384 {
2385 struct throtl_data *td;
2386 int ret;
2387
2388 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
2389 if (!td)
2390 return -ENOMEM;
2391 td->latency_buckets = __alloc_percpu(sizeof(struct latency_bucket) *
2392 LATENCY_BUCKET_SIZE, __alignof__(u64));
2393 if (!td->latency_buckets) {
2394 kfree(td);
2395 return -ENOMEM;
2396 }
2397
2398 INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
2399 throtl_service_queue_init(&td->service_queue);
2400
2401 q->td = td;
2402 td->queue = q;
2403
2404 td->limit_valid[LIMIT_MAX] = true;
2405 td->limit_index = LIMIT_MAX;
2406 td->low_upgrade_time = jiffies;
2407 td->low_downgrade_time = jiffies;
2408
2409 /* activate policy */
2410 ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
2411 if (ret) {
2412 free_percpu(td->latency_buckets);
2413 kfree(td);
2414 }
2415 return ret;
2416 }
2417
2418 void blk_throtl_exit(struct request_queue *q)
2419 {
2420 BUG_ON(!q->td);
2421 throtl_shutdown_wq(q);
2422 blkcg_deactivate_policy(q, &blkcg_policy_throtl);
2423 free_percpu(q->td->latency_buckets);
2424 kfree(q->td);
2425 }
2426
2427 void blk_throtl_register_queue(struct request_queue *q)
2428 {
2429 struct throtl_data *td;
2430 int i;
2431
2432 td = q->td;
2433 BUG_ON(!td);
2434
2435 if (blk_queue_nonrot(q)) {
2436 td->throtl_slice = DFL_THROTL_SLICE_SSD;
2437 td->filtered_latency = LATENCY_FILTERED_SSD;
2438 } else {
2439 td->throtl_slice = DFL_THROTL_SLICE_HD;
2440 td->filtered_latency = LATENCY_FILTERED_HD;
2441 for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
2442 td->avg_buckets[i].latency = DFL_HD_BASELINE_LATENCY;
2443 }
2444 #ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2445 /* if no low limit, use previous default */
2446 td->throtl_slice = DFL_THROTL_SLICE_HD;
2447 #endif
2448
2449 td->track_bio_latency = !q->mq_ops && !q->request_fn;
2450 if (!td->track_bio_latency)
2451 blk_stat_enable_accounting(q);
2452 }
2453
2454 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2455 ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
2456 {
2457 if (!q->td)
2458 return -EINVAL;
2459 return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
2460 }
2461
2462 ssize_t blk_throtl_sample_time_store(struct request_queue *q,
2463 const char *page, size_t count)
2464 {
2465 unsigned long v;
2466 unsigned long t;
2467
2468 if (!q->td)
2469 return -EINVAL;
2470 if (kstrtoul(page, 10, &v))
2471 return -EINVAL;
2472 t = msecs_to_jiffies(v);
2473 if (t == 0 || t > MAX_THROTL_SLICE)
2474 return -EINVAL;
2475 q->td->throtl_slice = t;
2476 return count;
2477 }
2478 #endif
2479
2480 static int __init throtl_init(void)
2481 {
2482 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
2483 if (!kthrotld_workqueue)
2484 panic("Failed to create kthrotld\n");
2485
2486 return blkcg_policy_register(&blkcg_policy_throtl);
2487 }
2488
2489 module_init(throtl_init);