]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-wbt.c
block: Clear kernel memory before copying to user
[mirror_ubuntu-bionic-kernel.git] / block / blk-wbt.c
1 /*
2 * buffered writeback throttling. loosely based on CoDel. We can't drop
3 * packets for IO scheduling, so the logic is something like this:
4 *
5 * - Monitor latencies in a defined window of time.
6 * - If the minimum latency in the above window exceeds some target, increment
7 * scaling step and scale down queue depth by a factor of 2x. The monitoring
8 * window is then shrunk to 100 / sqrt(scaling step + 1).
9 * - For any window where we don't have solid data on what the latencies
10 * look like, retain status quo.
11 * - If latencies look good, decrement scaling step.
12 * - If we're only doing writes, allow the scaling step to go negative. This
13 * will temporarily boost write performance, snapping back to a stable
14 * scaling step of 0 if reads show up or the heavy writers finish. Unlike
15 * positive scaling steps where we shrink the monitoring window, a negative
16 * scaling step retains the default step==0 window size.
17 *
18 * Copyright (C) 2016 Jens Axboe
19 *
20 */
21 #include <linux/kernel.h>
22 #include <linux/blk_types.h>
23 #include <linux/slab.h>
24 #include <linux/backing-dev.h>
25 #include <linux/swap.h>
26
27 #include "blk-wbt.h"
28
29 #define CREATE_TRACE_POINTS
30 #include <trace/events/wbt.h>
31
32 enum {
33 /*
34 * Default setting, we'll scale up (to 75% of QD max) or down (min 1)
35 * from here depending on device stats
36 */
37 RWB_DEF_DEPTH = 16,
38
39 /*
40 * 100msec window
41 */
42 RWB_WINDOW_NSEC = 100 * 1000 * 1000ULL,
43
44 /*
45 * Disregard stats, if we don't meet this minimum
46 */
47 RWB_MIN_WRITE_SAMPLES = 3,
48
49 /*
50 * If we have this number of consecutive windows with not enough
51 * information to scale up or down, scale up.
52 */
53 RWB_UNKNOWN_BUMP = 5,
54 };
55
56 static inline bool rwb_enabled(struct rq_wb *rwb)
57 {
58 return rwb && rwb->wb_normal != 0;
59 }
60
61 /*
62 * Increment 'v', if 'v' is below 'below'. Returns true if we succeeded,
63 * false if 'v' + 1 would be bigger than 'below'.
64 */
65 static bool atomic_inc_below(atomic_t *v, int below)
66 {
67 int cur = atomic_read(v);
68
69 for (;;) {
70 int old;
71
72 if (cur >= below)
73 return false;
74 old = atomic_cmpxchg(v, cur, cur + 1);
75 if (old == cur)
76 break;
77 cur = old;
78 }
79
80 return true;
81 }
82
83 static void wb_timestamp(struct rq_wb *rwb, unsigned long *var)
84 {
85 if (rwb_enabled(rwb)) {
86 const unsigned long cur = jiffies;
87
88 if (cur != *var)
89 *var = cur;
90 }
91 }
92
93 /*
94 * If a task was rate throttled in balance_dirty_pages() within the last
95 * second or so, use that to indicate a higher cleaning rate.
96 */
97 static bool wb_recent_wait(struct rq_wb *rwb)
98 {
99 struct bdi_writeback *wb = &rwb->queue->backing_dev_info->wb;
100
101 return time_before(jiffies, wb->dirty_sleep + HZ);
102 }
103
104 static inline struct rq_wait *get_rq_wait(struct rq_wb *rwb,
105 enum wbt_flags wb_acct)
106 {
107 if (wb_acct & WBT_KSWAPD)
108 return &rwb->rq_wait[WBT_RWQ_KSWAPD];
109
110 return &rwb->rq_wait[WBT_RWQ_BG];
111 }
112
113 static void rwb_wake_all(struct rq_wb *rwb)
114 {
115 int i;
116
117 for (i = 0; i < WBT_NUM_RWQ; i++) {
118 struct rq_wait *rqw = &rwb->rq_wait[i];
119
120 if (wq_has_sleeper(&rqw->wait))
121 wake_up_all(&rqw->wait);
122 }
123 }
124
125 static void wbt_rqw_done(struct rq_wb *rwb, struct rq_wait *rqw,
126 enum wbt_flags wb_acct)
127 {
128 int inflight, limit;
129
130 inflight = atomic_dec_return(&rqw->inflight);
131
132 /*
133 * wbt got disabled with IO in flight. Wake up any potential
134 * waiters, we don't have to do more than that.
135 */
136 if (unlikely(!rwb_enabled(rwb))) {
137 rwb_wake_all(rwb);
138 return;
139 }
140
141 /*
142 * If the device does write back caching, drop further down
143 * before we wake people up.
144 */
145 if (rwb->wc && !wb_recent_wait(rwb))
146 limit = 0;
147 else
148 limit = rwb->wb_normal;
149
150 /*
151 * Don't wake anyone up if we are above the normal limit.
152 */
153 if (inflight && inflight >= limit)
154 return;
155
156 if (wq_has_sleeper(&rqw->wait)) {
157 int diff = limit - inflight;
158
159 if (!inflight || diff >= rwb->wb_background / 2)
160 wake_up_all(&rqw->wait);
161 }
162 }
163
164 void __wbt_done(struct rq_wb *rwb, enum wbt_flags wb_acct)
165 {
166 struct rq_wait *rqw;
167
168 if (!(wb_acct & WBT_TRACKED))
169 return;
170
171 rqw = get_rq_wait(rwb, wb_acct);
172 wbt_rqw_done(rwb, rqw, wb_acct);
173 }
174
175 /*
176 * Called on completion of a request. Note that it's also called when
177 * a request is merged, when the request gets freed.
178 */
179 void wbt_done(struct rq_wb *rwb, struct blk_issue_stat *stat)
180 {
181 if (!rwb)
182 return;
183
184 if (!wbt_is_tracked(stat)) {
185 if (rwb->sync_cookie == stat) {
186 rwb->sync_issue = 0;
187 rwb->sync_cookie = NULL;
188 }
189
190 if (wbt_is_read(stat))
191 wb_timestamp(rwb, &rwb->last_comp);
192 } else {
193 WARN_ON_ONCE(stat == rwb->sync_cookie);
194 __wbt_done(rwb, wbt_stat_to_mask(stat));
195 }
196 wbt_clear_state(stat);
197 }
198
199 /*
200 * Return true, if we can't increase the depth further by scaling
201 */
202 static bool calc_wb_limits(struct rq_wb *rwb)
203 {
204 unsigned int depth;
205 bool ret = false;
206
207 if (!rwb->min_lat_nsec) {
208 rwb->wb_max = rwb->wb_normal = rwb->wb_background = 0;
209 return false;
210 }
211
212 /*
213 * For QD=1 devices, this is a special case. It's important for those
214 * to have one request ready when one completes, so force a depth of
215 * 2 for those devices. On the backend, it'll be a depth of 1 anyway,
216 * since the device can't have more than that in flight. If we're
217 * scaling down, then keep a setting of 1/1/1.
218 */
219 if (rwb->queue_depth == 1) {
220 if (rwb->scale_step > 0)
221 rwb->wb_max = rwb->wb_normal = 1;
222 else {
223 rwb->wb_max = rwb->wb_normal = 2;
224 ret = true;
225 }
226 rwb->wb_background = 1;
227 } else {
228 /*
229 * scale_step == 0 is our default state. If we have suffered
230 * latency spikes, step will be > 0, and we shrink the
231 * allowed write depths. If step is < 0, we're only doing
232 * writes, and we allow a temporarily higher depth to
233 * increase performance.
234 */
235 depth = min_t(unsigned int, RWB_DEF_DEPTH, rwb->queue_depth);
236 if (rwb->scale_step > 0)
237 depth = 1 + ((depth - 1) >> min(31, rwb->scale_step));
238 else if (rwb->scale_step < 0) {
239 unsigned int maxd = 3 * rwb->queue_depth / 4;
240
241 depth = 1 + ((depth - 1) << -rwb->scale_step);
242 if (depth > maxd) {
243 depth = maxd;
244 ret = true;
245 }
246 }
247
248 /*
249 * Set our max/normal/bg queue depths based on how far
250 * we have scaled down (->scale_step).
251 */
252 rwb->wb_max = depth;
253 rwb->wb_normal = (rwb->wb_max + 1) / 2;
254 rwb->wb_background = (rwb->wb_max + 3) / 4;
255 }
256
257 return ret;
258 }
259
260 static inline bool stat_sample_valid(struct blk_rq_stat *stat)
261 {
262 /*
263 * We need at least one read sample, and a minimum of
264 * RWB_MIN_WRITE_SAMPLES. We require some write samples to know
265 * that it's writes impacting us, and not just some sole read on
266 * a device that is in a lower power state.
267 */
268 return (stat[READ].nr_samples >= 1 &&
269 stat[WRITE].nr_samples >= RWB_MIN_WRITE_SAMPLES);
270 }
271
272 static u64 rwb_sync_issue_lat(struct rq_wb *rwb)
273 {
274 u64 now, issue = READ_ONCE(rwb->sync_issue);
275
276 if (!issue || !rwb->sync_cookie)
277 return 0;
278
279 now = ktime_to_ns(ktime_get());
280 return now - issue;
281 }
282
283 enum {
284 LAT_OK = 1,
285 LAT_UNKNOWN,
286 LAT_UNKNOWN_WRITES,
287 LAT_EXCEEDED,
288 };
289
290 static int latency_exceeded(struct rq_wb *rwb, struct blk_rq_stat *stat)
291 {
292 struct backing_dev_info *bdi = rwb->queue->backing_dev_info;
293 u64 thislat;
294
295 /*
296 * If our stored sync issue exceeds the window size, or it
297 * exceeds our min target AND we haven't logged any entries,
298 * flag the latency as exceeded. wbt works off completion latencies,
299 * but for a flooded device, a single sync IO can take a long time
300 * to complete after being issued. If this time exceeds our
301 * monitoring window AND we didn't see any other completions in that
302 * window, then count that sync IO as a violation of the latency.
303 */
304 thislat = rwb_sync_issue_lat(rwb);
305 if (thislat > rwb->cur_win_nsec ||
306 (thislat > rwb->min_lat_nsec && !stat[READ].nr_samples)) {
307 trace_wbt_lat(bdi, thislat);
308 return LAT_EXCEEDED;
309 }
310
311 /*
312 * No read/write mix, if stat isn't valid
313 */
314 if (!stat_sample_valid(stat)) {
315 /*
316 * If we had writes in this stat window and the window is
317 * current, we're only doing writes. If a task recently
318 * waited or still has writes in flights, consider us doing
319 * just writes as well.
320 */
321 if (stat[WRITE].nr_samples || wb_recent_wait(rwb) ||
322 wbt_inflight(rwb))
323 return LAT_UNKNOWN_WRITES;
324 return LAT_UNKNOWN;
325 }
326
327 /*
328 * If the 'min' latency exceeds our target, step down.
329 */
330 if (stat[READ].min > rwb->min_lat_nsec) {
331 trace_wbt_lat(bdi, stat[READ].min);
332 trace_wbt_stat(bdi, stat);
333 return LAT_EXCEEDED;
334 }
335
336 if (rwb->scale_step)
337 trace_wbt_stat(bdi, stat);
338
339 return LAT_OK;
340 }
341
342 static void rwb_trace_step(struct rq_wb *rwb, const char *msg)
343 {
344 struct backing_dev_info *bdi = rwb->queue->backing_dev_info;
345
346 trace_wbt_step(bdi, msg, rwb->scale_step, rwb->cur_win_nsec,
347 rwb->wb_background, rwb->wb_normal, rwb->wb_max);
348 }
349
350 static void scale_up(struct rq_wb *rwb)
351 {
352 /*
353 * Hit max in previous round, stop here
354 */
355 if (rwb->scaled_max)
356 return;
357
358 rwb->scale_step--;
359 rwb->unknown_cnt = 0;
360
361 rwb->scaled_max = calc_wb_limits(rwb);
362
363 rwb_wake_all(rwb);
364
365 rwb_trace_step(rwb, "step up");
366 }
367
368 /*
369 * Scale rwb down. If 'hard_throttle' is set, do it quicker, since we
370 * had a latency violation.
371 */
372 static void scale_down(struct rq_wb *rwb, bool hard_throttle)
373 {
374 /*
375 * Stop scaling down when we've hit the limit. This also prevents
376 * ->scale_step from going to crazy values, if the device can't
377 * keep up.
378 */
379 if (rwb->wb_max == 1)
380 return;
381
382 if (rwb->scale_step < 0 && hard_throttle)
383 rwb->scale_step = 0;
384 else
385 rwb->scale_step++;
386
387 rwb->scaled_max = false;
388 rwb->unknown_cnt = 0;
389 calc_wb_limits(rwb);
390 rwb_trace_step(rwb, "step down");
391 }
392
393 static void rwb_arm_timer(struct rq_wb *rwb)
394 {
395 if (rwb->scale_step > 0) {
396 /*
397 * We should speed this up, using some variant of a fast
398 * integer inverse square root calculation. Since we only do
399 * this for every window expiration, it's not a huge deal,
400 * though.
401 */
402 rwb->cur_win_nsec = div_u64(rwb->win_nsec << 4,
403 int_sqrt((rwb->scale_step + 1) << 8));
404 } else {
405 /*
406 * For step < 0, we don't want to increase/decrease the
407 * window size.
408 */
409 rwb->cur_win_nsec = rwb->win_nsec;
410 }
411
412 blk_stat_activate_nsecs(rwb->cb, rwb->cur_win_nsec);
413 }
414
415 static void wb_timer_fn(struct blk_stat_callback *cb)
416 {
417 struct rq_wb *rwb = cb->data;
418 unsigned int inflight = wbt_inflight(rwb);
419 int status;
420
421 status = latency_exceeded(rwb, cb->stat);
422
423 trace_wbt_timer(rwb->queue->backing_dev_info, status, rwb->scale_step,
424 inflight);
425
426 /*
427 * If we exceeded the latency target, step down. If we did not,
428 * step one level up. If we don't know enough to say either exceeded
429 * or ok, then don't do anything.
430 */
431 switch (status) {
432 case LAT_EXCEEDED:
433 scale_down(rwb, true);
434 break;
435 case LAT_OK:
436 scale_up(rwb);
437 break;
438 case LAT_UNKNOWN_WRITES:
439 /*
440 * We started a the center step, but don't have a valid
441 * read/write sample, but we do have writes going on.
442 * Allow step to go negative, to increase write perf.
443 */
444 scale_up(rwb);
445 break;
446 case LAT_UNKNOWN:
447 if (++rwb->unknown_cnt < RWB_UNKNOWN_BUMP)
448 break;
449 /*
450 * We get here when previously scaled reduced depth, and we
451 * currently don't have a valid read/write sample. For that
452 * case, slowly return to center state (step == 0).
453 */
454 if (rwb->scale_step > 0)
455 scale_up(rwb);
456 else if (rwb->scale_step < 0)
457 scale_down(rwb, false);
458 break;
459 default:
460 break;
461 }
462
463 /*
464 * Re-arm timer, if we have IO in flight
465 */
466 if (rwb->scale_step || inflight)
467 rwb_arm_timer(rwb);
468 }
469
470 void wbt_update_limits(struct rq_wb *rwb)
471 {
472 rwb->scale_step = 0;
473 rwb->scaled_max = false;
474 calc_wb_limits(rwb);
475
476 rwb_wake_all(rwb);
477 }
478
479 static bool close_io(struct rq_wb *rwb)
480 {
481 const unsigned long now = jiffies;
482
483 return time_before(now, rwb->last_issue + HZ / 10) ||
484 time_before(now, rwb->last_comp + HZ / 10);
485 }
486
487 #define REQ_HIPRIO (REQ_SYNC | REQ_META | REQ_PRIO)
488
489 static inline unsigned int get_limit(struct rq_wb *rwb, unsigned long rw)
490 {
491 unsigned int limit;
492
493 /*
494 * If we got disabled, just return UINT_MAX. This ensures that
495 * we'll properly inc a new IO, and dec+wakeup at the end.
496 */
497 if (!rwb_enabled(rwb))
498 return UINT_MAX;
499
500 /*
501 * At this point we know it's a buffered write. If this is
502 * kswapd trying to free memory, or REQ_SYNC is set, then
503 * it's WB_SYNC_ALL writeback, and we'll use the max limit for
504 * that. If the write is marked as a background write, then use
505 * the idle limit, or go to normal if we haven't had competing
506 * IO for a bit.
507 */
508 if ((rw & REQ_HIPRIO) || wb_recent_wait(rwb) || current_is_kswapd())
509 limit = rwb->wb_max;
510 else if ((rw & REQ_BACKGROUND) || close_io(rwb)) {
511 /*
512 * If less than 100ms since we completed unrelated IO,
513 * limit us to half the depth for background writeback.
514 */
515 limit = rwb->wb_background;
516 } else
517 limit = rwb->wb_normal;
518
519 return limit;
520 }
521
522 struct wbt_wait_data {
523 struct wait_queue_entry wq;
524 struct task_struct *task;
525 struct rq_wb *rwb;
526 struct rq_wait *rqw;
527 unsigned long rw;
528 bool got_token;
529 };
530
531 static int wbt_wake_function(struct wait_queue_entry *curr, unsigned int mode,
532 int wake_flags, void *key)
533 {
534 struct wbt_wait_data *data = container_of(curr, struct wbt_wait_data,
535 wq);
536
537 /*
538 * If we fail to get a budget, return -1 to interrupt the wake up
539 * loop in __wake_up_common.
540 */
541 if (!atomic_inc_below(&data->rqw->inflight, get_limit(data->rwb, data->rw)))
542 return -1;
543
544 data->got_token = true;
545 list_del_init(&curr->entry);
546 wake_up_process(data->task);
547 return 1;
548 }
549
550 /*
551 * Block if we will exceed our limit, or if we are currently waiting for
552 * the timer to kick off queuing again.
553 */
554 static void __wbt_wait(struct rq_wb *rwb, enum wbt_flags wb_acct,
555 unsigned long rw, spinlock_t *lock)
556 __releases(lock)
557 __acquires(lock)
558 {
559 struct rq_wait *rqw = get_rq_wait(rwb, wb_acct);
560 struct wbt_wait_data data = {
561 .wq = {
562 .func = wbt_wake_function,
563 .entry = LIST_HEAD_INIT(data.wq.entry),
564 },
565 .task = current,
566 .rwb = rwb,
567 .rqw = rqw,
568 .rw = rw,
569 };
570 bool has_sleeper;
571
572 has_sleeper = wq_has_sleeper(&rqw->wait);
573 if (!has_sleeper && atomic_inc_below(&rqw->inflight, get_limit(rwb, rw)))
574 return;
575
576 prepare_to_wait_exclusive(&rqw->wait, &data.wq, TASK_UNINTERRUPTIBLE);
577 do {
578 if (data.got_token)
579 break;
580
581 if (!has_sleeper &&
582 atomic_inc_below(&rqw->inflight, get_limit(rwb, rw))) {
583 finish_wait(&rqw->wait, &data.wq);
584
585 /*
586 * We raced with wbt_wake_function() getting a token,
587 * which means we now have two. Put our local token
588 * and wake anyone else potentially waiting for one.
589 */
590 if (data.got_token)
591 wbt_rqw_done(rwb, rqw, wb_acct);
592 break;
593 }
594
595 if (lock) {
596 spin_unlock_irq(lock);
597 io_schedule();
598 spin_lock_irq(lock);
599 } else
600 io_schedule();
601
602 has_sleeper = false;
603 } while (1);
604
605 finish_wait(&rqw->wait, &data.wq);
606 }
607
608 static inline bool wbt_should_throttle(struct rq_wb *rwb, struct bio *bio)
609 {
610 const int op = bio_op(bio);
611
612 /*
613 * If not a WRITE, do nothing
614 */
615 if (op != REQ_OP_WRITE)
616 return false;
617
618 /*
619 * Don't throttle WRITE_ODIRECT
620 */
621 if ((bio->bi_opf & (REQ_SYNC | REQ_IDLE)) == (REQ_SYNC | REQ_IDLE))
622 return false;
623
624 return true;
625 }
626
627 /*
628 * Returns true if the IO request should be accounted, false if not.
629 * May sleep, if we have exceeded the writeback limits. Caller can pass
630 * in an irq held spinlock, if it holds one when calling this function.
631 * If we do sleep, we'll release and re-grab it.
632 */
633 enum wbt_flags wbt_wait(struct rq_wb *rwb, struct bio *bio, spinlock_t *lock)
634 {
635 enum wbt_flags ret = 0;
636
637 if (!rwb_enabled(rwb))
638 return 0;
639
640 if (bio_op(bio) == REQ_OP_READ)
641 ret = WBT_READ;
642
643 if (!wbt_should_throttle(rwb, bio)) {
644 if (ret & WBT_READ)
645 wb_timestamp(rwb, &rwb->last_issue);
646 return ret;
647 }
648
649 if (current_is_kswapd())
650 ret |= WBT_KSWAPD;
651
652 __wbt_wait(rwb, ret, bio->bi_opf, lock);
653
654 if (!blk_stat_is_active(rwb->cb))
655 rwb_arm_timer(rwb);
656
657 return ret | WBT_TRACKED;
658 }
659
660 void wbt_issue(struct rq_wb *rwb, struct blk_issue_stat *stat)
661 {
662 if (!rwb_enabled(rwb))
663 return;
664
665 /*
666 * Track sync issue, in case it takes a long time to complete. Allows
667 * us to react quicker, if a sync IO takes a long time to complete.
668 * Note that this is just a hint. 'stat' can go away when the
669 * request completes, so it's important we never dereference it. We
670 * only use the address to compare with, which is why we store the
671 * sync_issue time locally.
672 */
673 if (wbt_is_read(stat) && !rwb->sync_issue) {
674 rwb->sync_cookie = stat;
675 rwb->sync_issue = blk_stat_time(stat);
676 }
677 }
678
679 void wbt_requeue(struct rq_wb *rwb, struct blk_issue_stat *stat)
680 {
681 if (!rwb_enabled(rwb))
682 return;
683 if (stat == rwb->sync_cookie) {
684 rwb->sync_issue = 0;
685 rwb->sync_cookie = NULL;
686 }
687 }
688
689 void wbt_set_queue_depth(struct rq_wb *rwb, unsigned int depth)
690 {
691 if (rwb) {
692 rwb->queue_depth = depth;
693 wbt_update_limits(rwb);
694 }
695 }
696
697 void wbt_set_write_cache(struct rq_wb *rwb, bool write_cache_on)
698 {
699 if (rwb)
700 rwb->wc = write_cache_on;
701 }
702
703 /*
704 * Disable wbt, if enabled by default.
705 */
706 void wbt_disable_default(struct request_queue *q)
707 {
708 struct rq_wb *rwb = q->rq_wb;
709
710 if (rwb && rwb->enable_state == WBT_STATE_ON_DEFAULT)
711 wbt_exit(q);
712 }
713 EXPORT_SYMBOL_GPL(wbt_disable_default);
714
715 /*
716 * Enable wbt if defaults are configured that way
717 */
718 void wbt_enable_default(struct request_queue *q)
719 {
720 /* Throttling already enabled? */
721 if (q->rq_wb)
722 return;
723
724 /* Queue not registered? Maybe shutting down... */
725 if (!test_bit(QUEUE_FLAG_REGISTERED, &q->queue_flags))
726 return;
727
728 if ((q->mq_ops && IS_ENABLED(CONFIG_BLK_WBT_MQ)) ||
729 (q->request_fn && IS_ENABLED(CONFIG_BLK_WBT_SQ)))
730 wbt_init(q);
731 }
732 EXPORT_SYMBOL_GPL(wbt_enable_default);
733
734 u64 wbt_default_latency_nsec(struct request_queue *q)
735 {
736 /*
737 * We default to 2msec for non-rotational storage, and 75msec
738 * for rotational storage.
739 */
740 if (blk_queue_nonrot(q))
741 return 2000000ULL;
742 else
743 return 75000000ULL;
744 }
745
746 static int wbt_data_dir(const struct request *rq)
747 {
748 const int op = req_op(rq);
749
750 if (op == REQ_OP_READ)
751 return READ;
752 else if (op == REQ_OP_WRITE || op == REQ_OP_FLUSH)
753 return WRITE;
754
755 /* don't account */
756 return -1;
757 }
758
759 int wbt_init(struct request_queue *q)
760 {
761 struct rq_wb *rwb;
762 int i;
763
764 BUILD_BUG_ON(WBT_NR_BITS > BLK_STAT_RES_BITS);
765
766 rwb = kzalloc(sizeof(*rwb), GFP_KERNEL);
767 if (!rwb)
768 return -ENOMEM;
769
770 rwb->cb = blk_stat_alloc_callback(wb_timer_fn, wbt_data_dir, 2, rwb);
771 if (!rwb->cb) {
772 kfree(rwb);
773 return -ENOMEM;
774 }
775
776 for (i = 0; i < WBT_NUM_RWQ; i++) {
777 atomic_set(&rwb->rq_wait[i].inflight, 0);
778 init_waitqueue_head(&rwb->rq_wait[i].wait);
779 }
780
781 rwb->last_comp = rwb->last_issue = jiffies;
782 rwb->queue = q;
783 rwb->win_nsec = RWB_WINDOW_NSEC;
784 rwb->enable_state = WBT_STATE_ON_DEFAULT;
785 wbt_update_limits(rwb);
786
787 /*
788 * Assign rwb and add the stats callback.
789 */
790 q->rq_wb = rwb;
791 blk_stat_add_callback(q, rwb->cb);
792
793 rwb->min_lat_nsec = wbt_default_latency_nsec(q);
794
795 wbt_set_queue_depth(rwb, blk_queue_depth(q));
796 wbt_set_write_cache(rwb, test_bit(QUEUE_FLAG_WC, &q->queue_flags));
797
798 return 0;
799 }
800
801 void wbt_exit(struct request_queue *q)
802 {
803 struct rq_wb *rwb = q->rq_wb;
804
805 if (rwb) {
806 blk_stat_remove_callback(q, rwb->cb);
807 blk_stat_free_callback(rwb->cb);
808 q->rq_wb = NULL;
809 kfree(rwb);
810 }
811 }