]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/cfq-iosched.c
block: fix infinite loop if the device loses discard capability
[mirror_ubuntu-bionic-kernel.git] / block / cfq-iosched.c
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/sched/clock.h>
12 #include <linux/blkdev.h>
13 #include <linux/elevator.h>
14 #include <linux/ktime.h>
15 #include <linux/rbtree.h>
16 #include <linux/ioprio.h>
17 #include <linux/blktrace_api.h>
18 #include <linux/blk-cgroup.h>
19 #include "blk.h"
20 #include "blk-wbt.h"
21
22 /*
23 * tunables
24 */
25 /* max queue in one round of service */
26 static const int cfq_quantum = 8;
27 static const u64 cfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
28 /* maximum backwards seek, in KiB */
29 static const int cfq_back_max = 16 * 1024;
30 /* penalty of a backwards seek */
31 static const int cfq_back_penalty = 2;
32 static const u64 cfq_slice_sync = NSEC_PER_SEC / 10;
33 static u64 cfq_slice_async = NSEC_PER_SEC / 25;
34 static const int cfq_slice_async_rq = 2;
35 static u64 cfq_slice_idle = NSEC_PER_SEC / 125;
36 static u64 cfq_group_idle = NSEC_PER_SEC / 125;
37 static const u64 cfq_target_latency = (u64)NSEC_PER_SEC * 3/10; /* 300 ms */
38 static const int cfq_hist_divisor = 4;
39
40 /*
41 * offset from end of queue service tree for idle class
42 */
43 #define CFQ_IDLE_DELAY (NSEC_PER_SEC / 5)
44 /* offset from end of group service tree under time slice mode */
45 #define CFQ_SLICE_MODE_GROUP_DELAY (NSEC_PER_SEC / 5)
46 /* offset from end of group service under IOPS mode */
47 #define CFQ_IOPS_MODE_GROUP_DELAY (HZ / 5)
48
49 /*
50 * below this threshold, we consider thinktime immediate
51 */
52 #define CFQ_MIN_TT (2 * NSEC_PER_SEC / HZ)
53
54 #define CFQ_SLICE_SCALE (5)
55 #define CFQ_HW_QUEUE_MIN (5)
56 #define CFQ_SERVICE_SHIFT 12
57
58 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
59 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
60 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
61 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
62
63 #define RQ_CIC(rq) icq_to_cic((rq)->elv.icq)
64 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elv.priv[0])
65 #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elv.priv[1])
66
67 static struct kmem_cache *cfq_pool;
68
69 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
70 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
71 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
72
73 #define sample_valid(samples) ((samples) > 80)
74 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
75
76 /* blkio-related constants */
77 #define CFQ_WEIGHT_LEGACY_MIN 10
78 #define CFQ_WEIGHT_LEGACY_DFL 500
79 #define CFQ_WEIGHT_LEGACY_MAX 1000
80
81 struct cfq_ttime {
82 u64 last_end_request;
83
84 u64 ttime_total;
85 u64 ttime_mean;
86 unsigned long ttime_samples;
87 };
88
89 /*
90 * Most of our rbtree usage is for sorting with min extraction, so
91 * if we cache the leftmost node we don't have to walk down the tree
92 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
93 * move this into the elevator for the rq sorting as well.
94 */
95 struct cfq_rb_root {
96 struct rb_root_cached rb;
97 struct rb_node *rb_rightmost;
98 unsigned count;
99 u64 min_vdisktime;
100 struct cfq_ttime ttime;
101 };
102 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT_CACHED, \
103 .rb_rightmost = NULL, \
104 .ttime = {.last_end_request = ktime_get_ns(),},}
105
106 /*
107 * Per process-grouping structure
108 */
109 struct cfq_queue {
110 /* reference count */
111 int ref;
112 /* various state flags, see below */
113 unsigned int flags;
114 /* parent cfq_data */
115 struct cfq_data *cfqd;
116 /* service_tree member */
117 struct rb_node rb_node;
118 /* service_tree key */
119 u64 rb_key;
120 /* prio tree member */
121 struct rb_node p_node;
122 /* prio tree root we belong to, if any */
123 struct rb_root *p_root;
124 /* sorted list of pending requests */
125 struct rb_root sort_list;
126 /* if fifo isn't expired, next request to serve */
127 struct request *next_rq;
128 /* requests queued in sort_list */
129 int queued[2];
130 /* currently allocated requests */
131 int allocated[2];
132 /* fifo list of requests in sort_list */
133 struct list_head fifo;
134
135 /* time when queue got scheduled in to dispatch first request. */
136 u64 dispatch_start;
137 u64 allocated_slice;
138 u64 slice_dispatch;
139 /* time when first request from queue completed and slice started. */
140 u64 slice_start;
141 u64 slice_end;
142 s64 slice_resid;
143
144 /* pending priority requests */
145 int prio_pending;
146 /* number of requests that are on the dispatch list or inside driver */
147 int dispatched;
148
149 /* io prio of this group */
150 unsigned short ioprio, org_ioprio;
151 unsigned short ioprio_class, org_ioprio_class;
152
153 pid_t pid;
154
155 u32 seek_history;
156 sector_t last_request_pos;
157
158 struct cfq_rb_root *service_tree;
159 struct cfq_queue *new_cfqq;
160 struct cfq_group *cfqg;
161 /* Number of sectors dispatched from queue in single dispatch round */
162 unsigned long nr_sectors;
163 };
164
165 /*
166 * First index in the service_trees.
167 * IDLE is handled separately, so it has negative index
168 */
169 enum wl_class_t {
170 BE_WORKLOAD = 0,
171 RT_WORKLOAD = 1,
172 IDLE_WORKLOAD = 2,
173 CFQ_PRIO_NR,
174 };
175
176 /*
177 * Second index in the service_trees.
178 */
179 enum wl_type_t {
180 ASYNC_WORKLOAD = 0,
181 SYNC_NOIDLE_WORKLOAD = 1,
182 SYNC_WORKLOAD = 2
183 };
184
185 struct cfqg_stats {
186 #ifdef CONFIG_CFQ_GROUP_IOSCHED
187 /* number of ios merged */
188 struct blkg_rwstat merged;
189 /* total time spent on device in ns, may not be accurate w/ queueing */
190 struct blkg_rwstat service_time;
191 /* total time spent waiting in scheduler queue in ns */
192 struct blkg_rwstat wait_time;
193 /* number of IOs queued up */
194 struct blkg_rwstat queued;
195 /* total disk time and nr sectors dispatched by this group */
196 struct blkg_stat time;
197 #ifdef CONFIG_DEBUG_BLK_CGROUP
198 /* time not charged to this cgroup */
199 struct blkg_stat unaccounted_time;
200 /* sum of number of ios queued across all samples */
201 struct blkg_stat avg_queue_size_sum;
202 /* count of samples taken for average */
203 struct blkg_stat avg_queue_size_samples;
204 /* how many times this group has been removed from service tree */
205 struct blkg_stat dequeue;
206 /* total time spent waiting for it to be assigned a timeslice. */
207 struct blkg_stat group_wait_time;
208 /* time spent idling for this blkcg_gq */
209 struct blkg_stat idle_time;
210 /* total time with empty current active q with other requests queued */
211 struct blkg_stat empty_time;
212 /* fields after this shouldn't be cleared on stat reset */
213 uint64_t start_group_wait_time;
214 uint64_t start_idle_time;
215 uint64_t start_empty_time;
216 uint16_t flags;
217 #endif /* CONFIG_DEBUG_BLK_CGROUP */
218 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
219 };
220
221 /* Per-cgroup data */
222 struct cfq_group_data {
223 /* must be the first member */
224 struct blkcg_policy_data cpd;
225
226 unsigned int weight;
227 unsigned int leaf_weight;
228 };
229
230 /* This is per cgroup per device grouping structure */
231 struct cfq_group {
232 /* must be the first member */
233 struct blkg_policy_data pd;
234
235 /* group service_tree member */
236 struct rb_node rb_node;
237
238 /* group service_tree key */
239 u64 vdisktime;
240
241 /*
242 * The number of active cfqgs and sum of their weights under this
243 * cfqg. This covers this cfqg's leaf_weight and all children's
244 * weights, but does not cover weights of further descendants.
245 *
246 * If a cfqg is on the service tree, it's active. An active cfqg
247 * also activates its parent and contributes to the children_weight
248 * of the parent.
249 */
250 int nr_active;
251 unsigned int children_weight;
252
253 /*
254 * vfraction is the fraction of vdisktime that the tasks in this
255 * cfqg are entitled to. This is determined by compounding the
256 * ratios walking up from this cfqg to the root.
257 *
258 * It is in fixed point w/ CFQ_SERVICE_SHIFT and the sum of all
259 * vfractions on a service tree is approximately 1. The sum may
260 * deviate a bit due to rounding errors and fluctuations caused by
261 * cfqgs entering and leaving the service tree.
262 */
263 unsigned int vfraction;
264
265 /*
266 * There are two weights - (internal) weight is the weight of this
267 * cfqg against the sibling cfqgs. leaf_weight is the wight of
268 * this cfqg against the child cfqgs. For the root cfqg, both
269 * weights are kept in sync for backward compatibility.
270 */
271 unsigned int weight;
272 unsigned int new_weight;
273 unsigned int dev_weight;
274
275 unsigned int leaf_weight;
276 unsigned int new_leaf_weight;
277 unsigned int dev_leaf_weight;
278
279 /* number of cfqq currently on this group */
280 int nr_cfqq;
281
282 /*
283 * Per group busy queues average. Useful for workload slice calc. We
284 * create the array for each prio class but at run time it is used
285 * only for RT and BE class and slot for IDLE class remains unused.
286 * This is primarily done to avoid confusion and a gcc warning.
287 */
288 unsigned int busy_queues_avg[CFQ_PRIO_NR];
289 /*
290 * rr lists of queues with requests. We maintain service trees for
291 * RT and BE classes. These trees are subdivided in subclasses
292 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
293 * class there is no subclassification and all the cfq queues go on
294 * a single tree service_tree_idle.
295 * Counts are embedded in the cfq_rb_root
296 */
297 struct cfq_rb_root service_trees[2][3];
298 struct cfq_rb_root service_tree_idle;
299
300 u64 saved_wl_slice;
301 enum wl_type_t saved_wl_type;
302 enum wl_class_t saved_wl_class;
303
304 /* number of requests that are on the dispatch list or inside driver */
305 int dispatched;
306 struct cfq_ttime ttime;
307 struct cfqg_stats stats; /* stats for this cfqg */
308
309 /* async queue for each priority case */
310 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
311 struct cfq_queue *async_idle_cfqq;
312
313 };
314
315 struct cfq_io_cq {
316 struct io_cq icq; /* must be the first member */
317 struct cfq_queue *cfqq[2];
318 struct cfq_ttime ttime;
319 int ioprio; /* the current ioprio */
320 #ifdef CONFIG_CFQ_GROUP_IOSCHED
321 uint64_t blkcg_serial_nr; /* the current blkcg serial */
322 #endif
323 };
324
325 /*
326 * Per block device queue structure
327 */
328 struct cfq_data {
329 struct request_queue *queue;
330 /* Root service tree for cfq_groups */
331 struct cfq_rb_root grp_service_tree;
332 struct cfq_group *root_group;
333
334 /*
335 * The priority currently being served
336 */
337 enum wl_class_t serving_wl_class;
338 enum wl_type_t serving_wl_type;
339 u64 workload_expires;
340 struct cfq_group *serving_group;
341
342 /*
343 * Each priority tree is sorted by next_request position. These
344 * trees are used when determining if two or more queues are
345 * interleaving requests (see cfq_close_cooperator).
346 */
347 struct rb_root prio_trees[CFQ_PRIO_LISTS];
348
349 unsigned int busy_queues;
350 unsigned int busy_sync_queues;
351
352 int rq_in_driver;
353 int rq_in_flight[2];
354
355 /*
356 * queue-depth detection
357 */
358 int rq_queued;
359 int hw_tag;
360 /*
361 * hw_tag can be
362 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
363 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
364 * 0 => no NCQ
365 */
366 int hw_tag_est_depth;
367 unsigned int hw_tag_samples;
368
369 /*
370 * idle window management
371 */
372 struct hrtimer idle_slice_timer;
373 struct work_struct unplug_work;
374
375 struct cfq_queue *active_queue;
376 struct cfq_io_cq *active_cic;
377
378 sector_t last_position;
379
380 /*
381 * tunables, see top of file
382 */
383 unsigned int cfq_quantum;
384 unsigned int cfq_back_penalty;
385 unsigned int cfq_back_max;
386 unsigned int cfq_slice_async_rq;
387 unsigned int cfq_latency;
388 u64 cfq_fifo_expire[2];
389 u64 cfq_slice[2];
390 u64 cfq_slice_idle;
391 u64 cfq_group_idle;
392 u64 cfq_target_latency;
393
394 /*
395 * Fallback dummy cfqq for extreme OOM conditions
396 */
397 struct cfq_queue oom_cfqq;
398
399 u64 last_delayed_sync;
400 };
401
402 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
403 static void cfq_put_queue(struct cfq_queue *cfqq);
404
405 static struct cfq_rb_root *st_for(struct cfq_group *cfqg,
406 enum wl_class_t class,
407 enum wl_type_t type)
408 {
409 if (!cfqg)
410 return NULL;
411
412 if (class == IDLE_WORKLOAD)
413 return &cfqg->service_tree_idle;
414
415 return &cfqg->service_trees[class][type];
416 }
417
418 enum cfqq_state_flags {
419 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
420 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
421 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
422 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
423 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
424 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
425 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
426 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
427 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
428 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
429 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
430 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
431 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
432 };
433
434 #define CFQ_CFQQ_FNS(name) \
435 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
436 { \
437 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
438 } \
439 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
440 { \
441 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
442 } \
443 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
444 { \
445 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
446 }
447
448 CFQ_CFQQ_FNS(on_rr);
449 CFQ_CFQQ_FNS(wait_request);
450 CFQ_CFQQ_FNS(must_dispatch);
451 CFQ_CFQQ_FNS(must_alloc_slice);
452 CFQ_CFQQ_FNS(fifo_expire);
453 CFQ_CFQQ_FNS(idle_window);
454 CFQ_CFQQ_FNS(prio_changed);
455 CFQ_CFQQ_FNS(slice_new);
456 CFQ_CFQQ_FNS(sync);
457 CFQ_CFQQ_FNS(coop);
458 CFQ_CFQQ_FNS(split_coop);
459 CFQ_CFQQ_FNS(deep);
460 CFQ_CFQQ_FNS(wait_busy);
461 #undef CFQ_CFQQ_FNS
462
463 #if defined(CONFIG_CFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
464
465 /* cfqg stats flags */
466 enum cfqg_stats_flags {
467 CFQG_stats_waiting = 0,
468 CFQG_stats_idling,
469 CFQG_stats_empty,
470 };
471
472 #define CFQG_FLAG_FNS(name) \
473 static inline void cfqg_stats_mark_##name(struct cfqg_stats *stats) \
474 { \
475 stats->flags |= (1 << CFQG_stats_##name); \
476 } \
477 static inline void cfqg_stats_clear_##name(struct cfqg_stats *stats) \
478 { \
479 stats->flags &= ~(1 << CFQG_stats_##name); \
480 } \
481 static inline int cfqg_stats_##name(struct cfqg_stats *stats) \
482 { \
483 return (stats->flags & (1 << CFQG_stats_##name)) != 0; \
484 } \
485
486 CFQG_FLAG_FNS(waiting)
487 CFQG_FLAG_FNS(idling)
488 CFQG_FLAG_FNS(empty)
489 #undef CFQG_FLAG_FNS
490
491 /* This should be called with the queue_lock held. */
492 static void cfqg_stats_update_group_wait_time(struct cfqg_stats *stats)
493 {
494 unsigned long long now;
495
496 if (!cfqg_stats_waiting(stats))
497 return;
498
499 now = sched_clock();
500 if (time_after64(now, stats->start_group_wait_time))
501 blkg_stat_add(&stats->group_wait_time,
502 now - stats->start_group_wait_time);
503 cfqg_stats_clear_waiting(stats);
504 }
505
506 /* This should be called with the queue_lock held. */
507 static void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg,
508 struct cfq_group *curr_cfqg)
509 {
510 struct cfqg_stats *stats = &cfqg->stats;
511
512 if (cfqg_stats_waiting(stats))
513 return;
514 if (cfqg == curr_cfqg)
515 return;
516 stats->start_group_wait_time = sched_clock();
517 cfqg_stats_mark_waiting(stats);
518 }
519
520 /* This should be called with the queue_lock held. */
521 static void cfqg_stats_end_empty_time(struct cfqg_stats *stats)
522 {
523 unsigned long long now;
524
525 if (!cfqg_stats_empty(stats))
526 return;
527
528 now = sched_clock();
529 if (time_after64(now, stats->start_empty_time))
530 blkg_stat_add(&stats->empty_time,
531 now - stats->start_empty_time);
532 cfqg_stats_clear_empty(stats);
533 }
534
535 static void cfqg_stats_update_dequeue(struct cfq_group *cfqg)
536 {
537 blkg_stat_add(&cfqg->stats.dequeue, 1);
538 }
539
540 static void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg)
541 {
542 struct cfqg_stats *stats = &cfqg->stats;
543
544 if (blkg_rwstat_total(&stats->queued))
545 return;
546
547 /*
548 * group is already marked empty. This can happen if cfqq got new
549 * request in parent group and moved to this group while being added
550 * to service tree. Just ignore the event and move on.
551 */
552 if (cfqg_stats_empty(stats))
553 return;
554
555 stats->start_empty_time = sched_clock();
556 cfqg_stats_mark_empty(stats);
557 }
558
559 static void cfqg_stats_update_idle_time(struct cfq_group *cfqg)
560 {
561 struct cfqg_stats *stats = &cfqg->stats;
562
563 if (cfqg_stats_idling(stats)) {
564 unsigned long long now = sched_clock();
565
566 if (time_after64(now, stats->start_idle_time))
567 blkg_stat_add(&stats->idle_time,
568 now - stats->start_idle_time);
569 cfqg_stats_clear_idling(stats);
570 }
571 }
572
573 static void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg)
574 {
575 struct cfqg_stats *stats = &cfqg->stats;
576
577 BUG_ON(cfqg_stats_idling(stats));
578
579 stats->start_idle_time = sched_clock();
580 cfqg_stats_mark_idling(stats);
581 }
582
583 static void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg)
584 {
585 struct cfqg_stats *stats = &cfqg->stats;
586
587 blkg_stat_add(&stats->avg_queue_size_sum,
588 blkg_rwstat_total(&stats->queued));
589 blkg_stat_add(&stats->avg_queue_size_samples, 1);
590 cfqg_stats_update_group_wait_time(stats);
591 }
592
593 #else /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
594
595 static inline void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg, struct cfq_group *curr_cfqg) { }
596 static inline void cfqg_stats_end_empty_time(struct cfqg_stats *stats) { }
597 static inline void cfqg_stats_update_dequeue(struct cfq_group *cfqg) { }
598 static inline void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg) { }
599 static inline void cfqg_stats_update_idle_time(struct cfq_group *cfqg) { }
600 static inline void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg) { }
601 static inline void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg) { }
602
603 #endif /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
604
605 #ifdef CONFIG_CFQ_GROUP_IOSCHED
606
607 static inline struct cfq_group *pd_to_cfqg(struct blkg_policy_data *pd)
608 {
609 return pd ? container_of(pd, struct cfq_group, pd) : NULL;
610 }
611
612 static struct cfq_group_data
613 *cpd_to_cfqgd(struct blkcg_policy_data *cpd)
614 {
615 return cpd ? container_of(cpd, struct cfq_group_data, cpd) : NULL;
616 }
617
618 static inline struct blkcg_gq *cfqg_to_blkg(struct cfq_group *cfqg)
619 {
620 return pd_to_blkg(&cfqg->pd);
621 }
622
623 static struct blkcg_policy blkcg_policy_cfq;
624
625 static inline struct cfq_group *blkg_to_cfqg(struct blkcg_gq *blkg)
626 {
627 return pd_to_cfqg(blkg_to_pd(blkg, &blkcg_policy_cfq));
628 }
629
630 static struct cfq_group_data *blkcg_to_cfqgd(struct blkcg *blkcg)
631 {
632 return cpd_to_cfqgd(blkcg_to_cpd(blkcg, &blkcg_policy_cfq));
633 }
634
635 static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg)
636 {
637 struct blkcg_gq *pblkg = cfqg_to_blkg(cfqg)->parent;
638
639 return pblkg ? blkg_to_cfqg(pblkg) : NULL;
640 }
641
642 static inline bool cfqg_is_descendant(struct cfq_group *cfqg,
643 struct cfq_group *ancestor)
644 {
645 return cgroup_is_descendant(cfqg_to_blkg(cfqg)->blkcg->css.cgroup,
646 cfqg_to_blkg(ancestor)->blkcg->css.cgroup);
647 }
648
649 static inline void cfqg_get(struct cfq_group *cfqg)
650 {
651 return blkg_get(cfqg_to_blkg(cfqg));
652 }
653
654 static inline void cfqg_put(struct cfq_group *cfqg)
655 {
656 return blkg_put(cfqg_to_blkg(cfqg));
657 }
658
659 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) do { \
660 blk_add_cgroup_trace_msg((cfqd)->queue, \
661 cfqg_to_blkg((cfqq)->cfqg)->blkcg, \
662 "cfq%d%c%c " fmt, (cfqq)->pid, \
663 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
664 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
665 ##args); \
666 } while (0)
667
668 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do { \
669 blk_add_cgroup_trace_msg((cfqd)->queue, \
670 cfqg_to_blkg(cfqg)->blkcg, fmt, ##args); \
671 } while (0)
672
673 static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
674 struct cfq_group *curr_cfqg,
675 unsigned int op)
676 {
677 blkg_rwstat_add(&cfqg->stats.queued, op, 1);
678 cfqg_stats_end_empty_time(&cfqg->stats);
679 cfqg_stats_set_start_group_wait_time(cfqg, curr_cfqg);
680 }
681
682 static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
683 uint64_t time, unsigned long unaccounted_time)
684 {
685 blkg_stat_add(&cfqg->stats.time, time);
686 #ifdef CONFIG_DEBUG_BLK_CGROUP
687 blkg_stat_add(&cfqg->stats.unaccounted_time, unaccounted_time);
688 #endif
689 }
690
691 static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg,
692 unsigned int op)
693 {
694 blkg_rwstat_add(&cfqg->stats.queued, op, -1);
695 }
696
697 static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg,
698 unsigned int op)
699 {
700 blkg_rwstat_add(&cfqg->stats.merged, op, 1);
701 }
702
703 static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
704 uint64_t start_time, uint64_t io_start_time,
705 unsigned int op)
706 {
707 struct cfqg_stats *stats = &cfqg->stats;
708 unsigned long long now = sched_clock();
709
710 if (time_after64(now, io_start_time))
711 blkg_rwstat_add(&stats->service_time, op, now - io_start_time);
712 if (time_after64(io_start_time, start_time))
713 blkg_rwstat_add(&stats->wait_time, op,
714 io_start_time - start_time);
715 }
716
717 /* @stats = 0 */
718 static void cfqg_stats_reset(struct cfqg_stats *stats)
719 {
720 /* queued stats shouldn't be cleared */
721 blkg_rwstat_reset(&stats->merged);
722 blkg_rwstat_reset(&stats->service_time);
723 blkg_rwstat_reset(&stats->wait_time);
724 blkg_stat_reset(&stats->time);
725 #ifdef CONFIG_DEBUG_BLK_CGROUP
726 blkg_stat_reset(&stats->unaccounted_time);
727 blkg_stat_reset(&stats->avg_queue_size_sum);
728 blkg_stat_reset(&stats->avg_queue_size_samples);
729 blkg_stat_reset(&stats->dequeue);
730 blkg_stat_reset(&stats->group_wait_time);
731 blkg_stat_reset(&stats->idle_time);
732 blkg_stat_reset(&stats->empty_time);
733 #endif
734 }
735
736 /* @to += @from */
737 static void cfqg_stats_add_aux(struct cfqg_stats *to, struct cfqg_stats *from)
738 {
739 /* queued stats shouldn't be cleared */
740 blkg_rwstat_add_aux(&to->merged, &from->merged);
741 blkg_rwstat_add_aux(&to->service_time, &from->service_time);
742 blkg_rwstat_add_aux(&to->wait_time, &from->wait_time);
743 blkg_stat_add_aux(&from->time, &from->time);
744 #ifdef CONFIG_DEBUG_BLK_CGROUP
745 blkg_stat_add_aux(&to->unaccounted_time, &from->unaccounted_time);
746 blkg_stat_add_aux(&to->avg_queue_size_sum, &from->avg_queue_size_sum);
747 blkg_stat_add_aux(&to->avg_queue_size_samples, &from->avg_queue_size_samples);
748 blkg_stat_add_aux(&to->dequeue, &from->dequeue);
749 blkg_stat_add_aux(&to->group_wait_time, &from->group_wait_time);
750 blkg_stat_add_aux(&to->idle_time, &from->idle_time);
751 blkg_stat_add_aux(&to->empty_time, &from->empty_time);
752 #endif
753 }
754
755 /*
756 * Transfer @cfqg's stats to its parent's aux counts so that the ancestors'
757 * recursive stats can still account for the amount used by this cfqg after
758 * it's gone.
759 */
760 static void cfqg_stats_xfer_dead(struct cfq_group *cfqg)
761 {
762 struct cfq_group *parent = cfqg_parent(cfqg);
763
764 lockdep_assert_held(cfqg_to_blkg(cfqg)->q->queue_lock);
765
766 if (unlikely(!parent))
767 return;
768
769 cfqg_stats_add_aux(&parent->stats, &cfqg->stats);
770 cfqg_stats_reset(&cfqg->stats);
771 }
772
773 #else /* CONFIG_CFQ_GROUP_IOSCHED */
774
775 static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg) { return NULL; }
776 static inline bool cfqg_is_descendant(struct cfq_group *cfqg,
777 struct cfq_group *ancestor)
778 {
779 return true;
780 }
781 static inline void cfqg_get(struct cfq_group *cfqg) { }
782 static inline void cfqg_put(struct cfq_group *cfqg) { }
783
784 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
785 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c " fmt, (cfqq)->pid, \
786 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
787 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
788 ##args)
789 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
790
791 static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
792 struct cfq_group *curr_cfqg, unsigned int op) { }
793 static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
794 uint64_t time, unsigned long unaccounted_time) { }
795 static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg,
796 unsigned int op) { }
797 static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg,
798 unsigned int op) { }
799 static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
800 uint64_t start_time, uint64_t io_start_time,
801 unsigned int op) { }
802
803 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
804
805 #define cfq_log(cfqd, fmt, args...) \
806 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
807
808 /* Traverses through cfq group service trees */
809 #define for_each_cfqg_st(cfqg, i, j, st) \
810 for (i = 0; i <= IDLE_WORKLOAD; i++) \
811 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
812 : &cfqg->service_tree_idle; \
813 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
814 (i == IDLE_WORKLOAD && j == 0); \
815 j++, st = i < IDLE_WORKLOAD ? \
816 &cfqg->service_trees[i][j]: NULL) \
817
818 static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
819 struct cfq_ttime *ttime, bool group_idle)
820 {
821 u64 slice;
822 if (!sample_valid(ttime->ttime_samples))
823 return false;
824 if (group_idle)
825 slice = cfqd->cfq_group_idle;
826 else
827 slice = cfqd->cfq_slice_idle;
828 return ttime->ttime_mean > slice;
829 }
830
831 static inline bool iops_mode(struct cfq_data *cfqd)
832 {
833 /*
834 * If we are not idling on queues and it is a NCQ drive, parallel
835 * execution of requests is on and measuring time is not possible
836 * in most of the cases until and unless we drive shallower queue
837 * depths and that becomes a performance bottleneck. In such cases
838 * switch to start providing fairness in terms of number of IOs.
839 */
840 if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
841 return true;
842 else
843 return false;
844 }
845
846 static inline enum wl_class_t cfqq_class(struct cfq_queue *cfqq)
847 {
848 if (cfq_class_idle(cfqq))
849 return IDLE_WORKLOAD;
850 if (cfq_class_rt(cfqq))
851 return RT_WORKLOAD;
852 return BE_WORKLOAD;
853 }
854
855
856 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
857 {
858 if (!cfq_cfqq_sync(cfqq))
859 return ASYNC_WORKLOAD;
860 if (!cfq_cfqq_idle_window(cfqq))
861 return SYNC_NOIDLE_WORKLOAD;
862 return SYNC_WORKLOAD;
863 }
864
865 static inline int cfq_group_busy_queues_wl(enum wl_class_t wl_class,
866 struct cfq_data *cfqd,
867 struct cfq_group *cfqg)
868 {
869 if (wl_class == IDLE_WORKLOAD)
870 return cfqg->service_tree_idle.count;
871
872 return cfqg->service_trees[wl_class][ASYNC_WORKLOAD].count +
873 cfqg->service_trees[wl_class][SYNC_NOIDLE_WORKLOAD].count +
874 cfqg->service_trees[wl_class][SYNC_WORKLOAD].count;
875 }
876
877 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
878 struct cfq_group *cfqg)
879 {
880 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count +
881 cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
882 }
883
884 static void cfq_dispatch_insert(struct request_queue *, struct request *);
885 static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, bool is_sync,
886 struct cfq_io_cq *cic, struct bio *bio);
887
888 static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq)
889 {
890 /* cic->icq is the first member, %NULL will convert to %NULL */
891 return container_of(icq, struct cfq_io_cq, icq);
892 }
893
894 static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd,
895 struct io_context *ioc)
896 {
897 if (ioc)
898 return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue));
899 return NULL;
900 }
901
902 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync)
903 {
904 return cic->cfqq[is_sync];
905 }
906
907 static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,
908 bool is_sync)
909 {
910 cic->cfqq[is_sync] = cfqq;
911 }
912
913 static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic)
914 {
915 return cic->icq.q->elevator->elevator_data;
916 }
917
918 /*
919 * scheduler run of queue, if there are requests pending and no one in the
920 * driver that will restart queueing
921 */
922 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
923 {
924 if (cfqd->busy_queues) {
925 cfq_log(cfqd, "schedule dispatch");
926 kblockd_schedule_work(&cfqd->unplug_work);
927 }
928 }
929
930 /*
931 * Scale schedule slice based on io priority. Use the sync time slice only
932 * if a queue is marked sync and has sync io queued. A sync queue with async
933 * io only, should not get full sync slice length.
934 */
935 static inline u64 cfq_prio_slice(struct cfq_data *cfqd, bool sync,
936 unsigned short prio)
937 {
938 u64 base_slice = cfqd->cfq_slice[sync];
939 u64 slice = div_u64(base_slice, CFQ_SLICE_SCALE);
940
941 WARN_ON(prio >= IOPRIO_BE_NR);
942
943 return base_slice + (slice * (4 - prio));
944 }
945
946 static inline u64
947 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
948 {
949 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
950 }
951
952 /**
953 * cfqg_scale_charge - scale disk time charge according to cfqg weight
954 * @charge: disk time being charged
955 * @vfraction: vfraction of the cfqg, fixed point w/ CFQ_SERVICE_SHIFT
956 *
957 * Scale @charge according to @vfraction, which is in range (0, 1]. The
958 * scaling is inversely proportional.
959 *
960 * scaled = charge / vfraction
961 *
962 * The result is also in fixed point w/ CFQ_SERVICE_SHIFT.
963 */
964 static inline u64 cfqg_scale_charge(u64 charge,
965 unsigned int vfraction)
966 {
967 u64 c = charge << CFQ_SERVICE_SHIFT; /* make it fixed point */
968
969 /* charge / vfraction */
970 c <<= CFQ_SERVICE_SHIFT;
971 return div_u64(c, vfraction);
972 }
973
974 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
975 {
976 s64 delta = (s64)(vdisktime - min_vdisktime);
977 if (delta > 0)
978 min_vdisktime = vdisktime;
979
980 return min_vdisktime;
981 }
982
983 static void update_min_vdisktime(struct cfq_rb_root *st)
984 {
985 if (!RB_EMPTY_ROOT(&st->rb.rb_root)) {
986 struct cfq_group *cfqg = rb_entry_cfqg(st->rb.rb_leftmost);
987
988 st->min_vdisktime = max_vdisktime(st->min_vdisktime,
989 cfqg->vdisktime);
990 }
991 }
992
993 /*
994 * get averaged number of queues of RT/BE priority.
995 * average is updated, with a formula that gives more weight to higher numbers,
996 * to quickly follows sudden increases and decrease slowly
997 */
998
999 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
1000 struct cfq_group *cfqg, bool rt)
1001 {
1002 unsigned min_q, max_q;
1003 unsigned mult = cfq_hist_divisor - 1;
1004 unsigned round = cfq_hist_divisor / 2;
1005 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
1006
1007 min_q = min(cfqg->busy_queues_avg[rt], busy);
1008 max_q = max(cfqg->busy_queues_avg[rt], busy);
1009 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
1010 cfq_hist_divisor;
1011 return cfqg->busy_queues_avg[rt];
1012 }
1013
1014 static inline u64
1015 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
1016 {
1017 return cfqd->cfq_target_latency * cfqg->vfraction >> CFQ_SERVICE_SHIFT;
1018 }
1019
1020 static inline u64
1021 cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1022 {
1023 u64 slice = cfq_prio_to_slice(cfqd, cfqq);
1024 if (cfqd->cfq_latency) {
1025 /*
1026 * interested queues (we consider only the ones with the same
1027 * priority class in the cfq group)
1028 */
1029 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
1030 cfq_class_rt(cfqq));
1031 u64 sync_slice = cfqd->cfq_slice[1];
1032 u64 expect_latency = sync_slice * iq;
1033 u64 group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
1034
1035 if (expect_latency > group_slice) {
1036 u64 base_low_slice = 2 * cfqd->cfq_slice_idle;
1037 u64 low_slice;
1038
1039 /* scale low_slice according to IO priority
1040 * and sync vs async */
1041 low_slice = div64_u64(base_low_slice*slice, sync_slice);
1042 low_slice = min(slice, low_slice);
1043 /* the adapted slice value is scaled to fit all iqs
1044 * into the target latency */
1045 slice = div64_u64(slice*group_slice, expect_latency);
1046 slice = max(slice, low_slice);
1047 }
1048 }
1049 return slice;
1050 }
1051
1052 static inline void
1053 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1054 {
1055 u64 slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
1056 u64 now = ktime_get_ns();
1057
1058 cfqq->slice_start = now;
1059 cfqq->slice_end = now + slice;
1060 cfqq->allocated_slice = slice;
1061 cfq_log_cfqq(cfqd, cfqq, "set_slice=%llu", cfqq->slice_end - now);
1062 }
1063
1064 /*
1065 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
1066 * isn't valid until the first request from the dispatch is activated
1067 * and the slice time set.
1068 */
1069 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
1070 {
1071 if (cfq_cfqq_slice_new(cfqq))
1072 return false;
1073 if (ktime_get_ns() < cfqq->slice_end)
1074 return false;
1075
1076 return true;
1077 }
1078
1079 /*
1080 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1081 * We choose the request that is closest to the head right now. Distance
1082 * behind the head is penalized and only allowed to a certain extent.
1083 */
1084 static struct request *
1085 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1086 {
1087 sector_t s1, s2, d1 = 0, d2 = 0;
1088 unsigned long back_max;
1089 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
1090 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
1091 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1092
1093 if (rq1 == NULL || rq1 == rq2)
1094 return rq2;
1095 if (rq2 == NULL)
1096 return rq1;
1097
1098 if (rq_is_sync(rq1) != rq_is_sync(rq2))
1099 return rq_is_sync(rq1) ? rq1 : rq2;
1100
1101 if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
1102 return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
1103
1104 s1 = blk_rq_pos(rq1);
1105 s2 = blk_rq_pos(rq2);
1106
1107 /*
1108 * by definition, 1KiB is 2 sectors
1109 */
1110 back_max = cfqd->cfq_back_max * 2;
1111
1112 /*
1113 * Strict one way elevator _except_ in the case where we allow
1114 * short backward seeks which are biased as twice the cost of a
1115 * similar forward seek.
1116 */
1117 if (s1 >= last)
1118 d1 = s1 - last;
1119 else if (s1 + back_max >= last)
1120 d1 = (last - s1) * cfqd->cfq_back_penalty;
1121 else
1122 wrap |= CFQ_RQ1_WRAP;
1123
1124 if (s2 >= last)
1125 d2 = s2 - last;
1126 else if (s2 + back_max >= last)
1127 d2 = (last - s2) * cfqd->cfq_back_penalty;
1128 else
1129 wrap |= CFQ_RQ2_WRAP;
1130
1131 /* Found required data */
1132
1133 /*
1134 * By doing switch() on the bit mask "wrap" we avoid having to
1135 * check two variables for all permutations: --> faster!
1136 */
1137 switch (wrap) {
1138 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
1139 if (d1 < d2)
1140 return rq1;
1141 else if (d2 < d1)
1142 return rq2;
1143 else {
1144 if (s1 >= s2)
1145 return rq1;
1146 else
1147 return rq2;
1148 }
1149
1150 case CFQ_RQ2_WRAP:
1151 return rq1;
1152 case CFQ_RQ1_WRAP:
1153 return rq2;
1154 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
1155 default:
1156 /*
1157 * Since both rqs are wrapped,
1158 * start with the one that's further behind head
1159 * (--> only *one* back seek required),
1160 * since back seek takes more time than forward.
1161 */
1162 if (s1 <= s2)
1163 return rq1;
1164 else
1165 return rq2;
1166 }
1167 }
1168
1169 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
1170 {
1171 /* Service tree is empty */
1172 if (!root->count)
1173 return NULL;
1174
1175 return rb_entry(rb_first_cached(&root->rb), struct cfq_queue, rb_node);
1176 }
1177
1178 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
1179 {
1180 return rb_entry_cfqg(rb_first_cached(&root->rb));
1181 }
1182
1183 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
1184 {
1185 if (root->rb_rightmost == n)
1186 root->rb_rightmost = rb_prev(n);
1187
1188 rb_erase_cached(n, &root->rb);
1189 RB_CLEAR_NODE(n);
1190
1191 --root->count;
1192 }
1193
1194 /*
1195 * would be nice to take fifo expire time into account as well
1196 */
1197 static struct request *
1198 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1199 struct request *last)
1200 {
1201 struct rb_node *rbnext = rb_next(&last->rb_node);
1202 struct rb_node *rbprev = rb_prev(&last->rb_node);
1203 struct request *next = NULL, *prev = NULL;
1204
1205 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1206
1207 if (rbprev)
1208 prev = rb_entry_rq(rbprev);
1209
1210 if (rbnext)
1211 next = rb_entry_rq(rbnext);
1212 else {
1213 rbnext = rb_first(&cfqq->sort_list);
1214 if (rbnext && rbnext != &last->rb_node)
1215 next = rb_entry_rq(rbnext);
1216 }
1217
1218 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1219 }
1220
1221 static u64 cfq_slice_offset(struct cfq_data *cfqd,
1222 struct cfq_queue *cfqq)
1223 {
1224 /*
1225 * just an approximation, should be ok.
1226 */
1227 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
1228 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
1229 }
1230
1231 static inline s64
1232 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
1233 {
1234 return cfqg->vdisktime - st->min_vdisktime;
1235 }
1236
1237 static void
1238 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1239 {
1240 struct rb_node **node = &st->rb.rb_root.rb_node;
1241 struct rb_node *parent = NULL;
1242 struct cfq_group *__cfqg;
1243 s64 key = cfqg_key(st, cfqg);
1244 bool leftmost = true, rightmost = true;
1245
1246 while (*node != NULL) {
1247 parent = *node;
1248 __cfqg = rb_entry_cfqg(parent);
1249
1250 if (key < cfqg_key(st, __cfqg)) {
1251 node = &parent->rb_left;
1252 rightmost = false;
1253 } else {
1254 node = &parent->rb_right;
1255 leftmost = false;
1256 }
1257 }
1258
1259 if (rightmost)
1260 st->rb_rightmost = &cfqg->rb_node;
1261
1262 rb_link_node(&cfqg->rb_node, parent, node);
1263 rb_insert_color_cached(&cfqg->rb_node, &st->rb, leftmost);
1264 }
1265
1266 /*
1267 * This has to be called only on activation of cfqg
1268 */
1269 static void
1270 cfq_update_group_weight(struct cfq_group *cfqg)
1271 {
1272 if (cfqg->new_weight) {
1273 cfqg->weight = cfqg->new_weight;
1274 cfqg->new_weight = 0;
1275 }
1276 }
1277
1278 static void
1279 cfq_update_group_leaf_weight(struct cfq_group *cfqg)
1280 {
1281 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1282
1283 if (cfqg->new_leaf_weight) {
1284 cfqg->leaf_weight = cfqg->new_leaf_weight;
1285 cfqg->new_leaf_weight = 0;
1286 }
1287 }
1288
1289 static void
1290 cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1291 {
1292 unsigned int vfr = 1 << CFQ_SERVICE_SHIFT; /* start with 1 */
1293 struct cfq_group *pos = cfqg;
1294 struct cfq_group *parent;
1295 bool propagate;
1296
1297 /* add to the service tree */
1298 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1299
1300 /*
1301 * Update leaf_weight. We cannot update weight at this point
1302 * because cfqg might already have been activated and is
1303 * contributing its current weight to the parent's child_weight.
1304 */
1305 cfq_update_group_leaf_weight(cfqg);
1306 __cfq_group_service_tree_add(st, cfqg);
1307
1308 /*
1309 * Activate @cfqg and calculate the portion of vfraction @cfqg is
1310 * entitled to. vfraction is calculated by walking the tree
1311 * towards the root calculating the fraction it has at each level.
1312 * The compounded ratio is how much vfraction @cfqg owns.
1313 *
1314 * Start with the proportion tasks in this cfqg has against active
1315 * children cfqgs - its leaf_weight against children_weight.
1316 */
1317 propagate = !pos->nr_active++;
1318 pos->children_weight += pos->leaf_weight;
1319 vfr = vfr * pos->leaf_weight / pos->children_weight;
1320
1321 /*
1322 * Compound ->weight walking up the tree. Both activation and
1323 * vfraction calculation are done in the same loop. Propagation
1324 * stops once an already activated node is met. vfraction
1325 * calculation should always continue to the root.
1326 */
1327 while ((parent = cfqg_parent(pos))) {
1328 if (propagate) {
1329 cfq_update_group_weight(pos);
1330 propagate = !parent->nr_active++;
1331 parent->children_weight += pos->weight;
1332 }
1333 vfr = vfr * pos->weight / parent->children_weight;
1334 pos = parent;
1335 }
1336
1337 cfqg->vfraction = max_t(unsigned, vfr, 1);
1338 }
1339
1340 static inline u64 cfq_get_cfqg_vdisktime_delay(struct cfq_data *cfqd)
1341 {
1342 if (!iops_mode(cfqd))
1343 return CFQ_SLICE_MODE_GROUP_DELAY;
1344 else
1345 return CFQ_IOPS_MODE_GROUP_DELAY;
1346 }
1347
1348 static void
1349 cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
1350 {
1351 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1352 struct cfq_group *__cfqg;
1353 struct rb_node *n;
1354
1355 cfqg->nr_cfqq++;
1356 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1357 return;
1358
1359 /*
1360 * Currently put the group at the end. Later implement something
1361 * so that groups get lesser vtime based on their weights, so that
1362 * if group does not loose all if it was not continuously backlogged.
1363 */
1364 n = st->rb_rightmost;
1365 if (n) {
1366 __cfqg = rb_entry_cfqg(n);
1367 cfqg->vdisktime = __cfqg->vdisktime +
1368 cfq_get_cfqg_vdisktime_delay(cfqd);
1369 } else
1370 cfqg->vdisktime = st->min_vdisktime;
1371 cfq_group_service_tree_add(st, cfqg);
1372 }
1373
1374 static void
1375 cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
1376 {
1377 struct cfq_group *pos = cfqg;
1378 bool propagate;
1379
1380 /*
1381 * Undo activation from cfq_group_service_tree_add(). Deactivate
1382 * @cfqg and propagate deactivation upwards.
1383 */
1384 propagate = !--pos->nr_active;
1385 pos->children_weight -= pos->leaf_weight;
1386
1387 while (propagate) {
1388 struct cfq_group *parent = cfqg_parent(pos);
1389
1390 /* @pos has 0 nr_active at this point */
1391 WARN_ON_ONCE(pos->children_weight);
1392 pos->vfraction = 0;
1393
1394 if (!parent)
1395 break;
1396
1397 propagate = !--parent->nr_active;
1398 parent->children_weight -= pos->weight;
1399 pos = parent;
1400 }
1401
1402 /* remove from the service tree */
1403 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1404 cfq_rb_erase(&cfqg->rb_node, st);
1405 }
1406
1407 static void
1408 cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
1409 {
1410 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1411
1412 BUG_ON(cfqg->nr_cfqq < 1);
1413 cfqg->nr_cfqq--;
1414
1415 /* If there are other cfq queues under this group, don't delete it */
1416 if (cfqg->nr_cfqq)
1417 return;
1418
1419 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
1420 cfq_group_service_tree_del(st, cfqg);
1421 cfqg->saved_wl_slice = 0;
1422 cfqg_stats_update_dequeue(cfqg);
1423 }
1424
1425 static inline u64 cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
1426 u64 *unaccounted_time)
1427 {
1428 u64 slice_used;
1429 u64 now = ktime_get_ns();
1430
1431 /*
1432 * Queue got expired before even a single request completed or
1433 * got expired immediately after first request completion.
1434 */
1435 if (!cfqq->slice_start || cfqq->slice_start == now) {
1436 /*
1437 * Also charge the seek time incurred to the group, otherwise
1438 * if there are mutiple queues in the group, each can dispatch
1439 * a single request on seeky media and cause lots of seek time
1440 * and group will never know it.
1441 */
1442 slice_used = max_t(u64, (now - cfqq->dispatch_start),
1443 jiffies_to_nsecs(1));
1444 } else {
1445 slice_used = now - cfqq->slice_start;
1446 if (slice_used > cfqq->allocated_slice) {
1447 *unaccounted_time = slice_used - cfqq->allocated_slice;
1448 slice_used = cfqq->allocated_slice;
1449 }
1450 if (cfqq->slice_start > cfqq->dispatch_start)
1451 *unaccounted_time += cfqq->slice_start -
1452 cfqq->dispatch_start;
1453 }
1454
1455 return slice_used;
1456 }
1457
1458 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
1459 struct cfq_queue *cfqq)
1460 {
1461 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1462 u64 used_sl, charge, unaccounted_sl = 0;
1463 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
1464 - cfqg->service_tree_idle.count;
1465 unsigned int vfr;
1466 u64 now = ktime_get_ns();
1467
1468 BUG_ON(nr_sync < 0);
1469 used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
1470
1471 if (iops_mode(cfqd))
1472 charge = cfqq->slice_dispatch;
1473 else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
1474 charge = cfqq->allocated_slice;
1475
1476 /*
1477 * Can't update vdisktime while on service tree and cfqg->vfraction
1478 * is valid only while on it. Cache vfr, leave the service tree,
1479 * update vdisktime and go back on. The re-addition to the tree
1480 * will also update the weights as necessary.
1481 */
1482 vfr = cfqg->vfraction;
1483 cfq_group_service_tree_del(st, cfqg);
1484 cfqg->vdisktime += cfqg_scale_charge(charge, vfr);
1485 cfq_group_service_tree_add(st, cfqg);
1486
1487 /* This group is being expired. Save the context */
1488 if (cfqd->workload_expires > now) {
1489 cfqg->saved_wl_slice = cfqd->workload_expires - now;
1490 cfqg->saved_wl_type = cfqd->serving_wl_type;
1491 cfqg->saved_wl_class = cfqd->serving_wl_class;
1492 } else
1493 cfqg->saved_wl_slice = 0;
1494
1495 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
1496 st->min_vdisktime);
1497 cfq_log_cfqq(cfqq->cfqd, cfqq,
1498 "sl_used=%llu disp=%llu charge=%llu iops=%u sect=%lu",
1499 used_sl, cfqq->slice_dispatch, charge,
1500 iops_mode(cfqd), cfqq->nr_sectors);
1501 cfqg_stats_update_timeslice_used(cfqg, used_sl, unaccounted_sl);
1502 cfqg_stats_set_start_empty_time(cfqg);
1503 }
1504
1505 /**
1506 * cfq_init_cfqg_base - initialize base part of a cfq_group
1507 * @cfqg: cfq_group to initialize
1508 *
1509 * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED
1510 * is enabled or not.
1511 */
1512 static void cfq_init_cfqg_base(struct cfq_group *cfqg)
1513 {
1514 struct cfq_rb_root *st;
1515 int i, j;
1516
1517 for_each_cfqg_st(cfqg, i, j, st)
1518 *st = CFQ_RB_ROOT;
1519 RB_CLEAR_NODE(&cfqg->rb_node);
1520
1521 cfqg->ttime.last_end_request = ktime_get_ns();
1522 }
1523
1524 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1525 static int __cfq_set_weight(struct cgroup_subsys_state *css, u64 val,
1526 bool on_dfl, bool reset_dev, bool is_leaf_weight);
1527
1528 static void cfqg_stats_exit(struct cfqg_stats *stats)
1529 {
1530 blkg_rwstat_exit(&stats->merged);
1531 blkg_rwstat_exit(&stats->service_time);
1532 blkg_rwstat_exit(&stats->wait_time);
1533 blkg_rwstat_exit(&stats->queued);
1534 blkg_stat_exit(&stats->time);
1535 #ifdef CONFIG_DEBUG_BLK_CGROUP
1536 blkg_stat_exit(&stats->unaccounted_time);
1537 blkg_stat_exit(&stats->avg_queue_size_sum);
1538 blkg_stat_exit(&stats->avg_queue_size_samples);
1539 blkg_stat_exit(&stats->dequeue);
1540 blkg_stat_exit(&stats->group_wait_time);
1541 blkg_stat_exit(&stats->idle_time);
1542 blkg_stat_exit(&stats->empty_time);
1543 #endif
1544 }
1545
1546 static int cfqg_stats_init(struct cfqg_stats *stats, gfp_t gfp)
1547 {
1548 if (blkg_rwstat_init(&stats->merged, gfp) ||
1549 blkg_rwstat_init(&stats->service_time, gfp) ||
1550 blkg_rwstat_init(&stats->wait_time, gfp) ||
1551 blkg_rwstat_init(&stats->queued, gfp) ||
1552 blkg_stat_init(&stats->time, gfp))
1553 goto err;
1554
1555 #ifdef CONFIG_DEBUG_BLK_CGROUP
1556 if (blkg_stat_init(&stats->unaccounted_time, gfp) ||
1557 blkg_stat_init(&stats->avg_queue_size_sum, gfp) ||
1558 blkg_stat_init(&stats->avg_queue_size_samples, gfp) ||
1559 blkg_stat_init(&stats->dequeue, gfp) ||
1560 blkg_stat_init(&stats->group_wait_time, gfp) ||
1561 blkg_stat_init(&stats->idle_time, gfp) ||
1562 blkg_stat_init(&stats->empty_time, gfp))
1563 goto err;
1564 #endif
1565 return 0;
1566 err:
1567 cfqg_stats_exit(stats);
1568 return -ENOMEM;
1569 }
1570
1571 static struct blkcg_policy_data *cfq_cpd_alloc(gfp_t gfp)
1572 {
1573 struct cfq_group_data *cgd;
1574
1575 cgd = kzalloc(sizeof(*cgd), gfp);
1576 if (!cgd)
1577 return NULL;
1578 return &cgd->cpd;
1579 }
1580
1581 static void cfq_cpd_init(struct blkcg_policy_data *cpd)
1582 {
1583 struct cfq_group_data *cgd = cpd_to_cfqgd(cpd);
1584 unsigned int weight = cgroup_subsys_on_dfl(io_cgrp_subsys) ?
1585 CGROUP_WEIGHT_DFL : CFQ_WEIGHT_LEGACY_DFL;
1586
1587 if (cpd_to_blkcg(cpd) == &blkcg_root)
1588 weight *= 2;
1589
1590 cgd->weight = weight;
1591 cgd->leaf_weight = weight;
1592 }
1593
1594 static void cfq_cpd_free(struct blkcg_policy_data *cpd)
1595 {
1596 kfree(cpd_to_cfqgd(cpd));
1597 }
1598
1599 static void cfq_cpd_bind(struct blkcg_policy_data *cpd)
1600 {
1601 struct blkcg *blkcg = cpd_to_blkcg(cpd);
1602 bool on_dfl = cgroup_subsys_on_dfl(io_cgrp_subsys);
1603 unsigned int weight = on_dfl ? CGROUP_WEIGHT_DFL : CFQ_WEIGHT_LEGACY_DFL;
1604
1605 if (blkcg == &blkcg_root)
1606 weight *= 2;
1607
1608 WARN_ON_ONCE(__cfq_set_weight(&blkcg->css, weight, on_dfl, true, false));
1609 WARN_ON_ONCE(__cfq_set_weight(&blkcg->css, weight, on_dfl, true, true));
1610 }
1611
1612 static struct blkg_policy_data *cfq_pd_alloc(gfp_t gfp, int node)
1613 {
1614 struct cfq_group *cfqg;
1615
1616 cfqg = kzalloc_node(sizeof(*cfqg), gfp, node);
1617 if (!cfqg)
1618 return NULL;
1619
1620 cfq_init_cfqg_base(cfqg);
1621 if (cfqg_stats_init(&cfqg->stats, gfp)) {
1622 kfree(cfqg);
1623 return NULL;
1624 }
1625
1626 return &cfqg->pd;
1627 }
1628
1629 static void cfq_pd_init(struct blkg_policy_data *pd)
1630 {
1631 struct cfq_group *cfqg = pd_to_cfqg(pd);
1632 struct cfq_group_data *cgd = blkcg_to_cfqgd(pd->blkg->blkcg);
1633
1634 cfqg->weight = cgd->weight;
1635 cfqg->leaf_weight = cgd->leaf_weight;
1636 }
1637
1638 static void cfq_pd_offline(struct blkg_policy_data *pd)
1639 {
1640 struct cfq_group *cfqg = pd_to_cfqg(pd);
1641 int i;
1642
1643 for (i = 0; i < IOPRIO_BE_NR; i++) {
1644 if (cfqg->async_cfqq[0][i])
1645 cfq_put_queue(cfqg->async_cfqq[0][i]);
1646 if (cfqg->async_cfqq[1][i])
1647 cfq_put_queue(cfqg->async_cfqq[1][i]);
1648 }
1649
1650 if (cfqg->async_idle_cfqq)
1651 cfq_put_queue(cfqg->async_idle_cfqq);
1652
1653 /*
1654 * @blkg is going offline and will be ignored by
1655 * blkg_[rw]stat_recursive_sum(). Transfer stats to the parent so
1656 * that they don't get lost. If IOs complete after this point, the
1657 * stats for them will be lost. Oh well...
1658 */
1659 cfqg_stats_xfer_dead(cfqg);
1660 }
1661
1662 static void cfq_pd_free(struct blkg_policy_data *pd)
1663 {
1664 struct cfq_group *cfqg = pd_to_cfqg(pd);
1665
1666 cfqg_stats_exit(&cfqg->stats);
1667 return kfree(cfqg);
1668 }
1669
1670 static void cfq_pd_reset_stats(struct blkg_policy_data *pd)
1671 {
1672 struct cfq_group *cfqg = pd_to_cfqg(pd);
1673
1674 cfqg_stats_reset(&cfqg->stats);
1675 }
1676
1677 static struct cfq_group *cfq_lookup_cfqg(struct cfq_data *cfqd,
1678 struct blkcg *blkcg)
1679 {
1680 struct blkcg_gq *blkg;
1681
1682 blkg = blkg_lookup(blkcg, cfqd->queue);
1683 if (likely(blkg))
1684 return blkg_to_cfqg(blkg);
1685 return NULL;
1686 }
1687
1688 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1689 {
1690 cfqq->cfqg = cfqg;
1691 /* cfqq reference on cfqg */
1692 cfqg_get(cfqg);
1693 }
1694
1695 static u64 cfqg_prfill_weight_device(struct seq_file *sf,
1696 struct blkg_policy_data *pd, int off)
1697 {
1698 struct cfq_group *cfqg = pd_to_cfqg(pd);
1699
1700 if (!cfqg->dev_weight)
1701 return 0;
1702 return __blkg_prfill_u64(sf, pd, cfqg->dev_weight);
1703 }
1704
1705 static int cfqg_print_weight_device(struct seq_file *sf, void *v)
1706 {
1707 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1708 cfqg_prfill_weight_device, &blkcg_policy_cfq,
1709 0, false);
1710 return 0;
1711 }
1712
1713 static u64 cfqg_prfill_leaf_weight_device(struct seq_file *sf,
1714 struct blkg_policy_data *pd, int off)
1715 {
1716 struct cfq_group *cfqg = pd_to_cfqg(pd);
1717
1718 if (!cfqg->dev_leaf_weight)
1719 return 0;
1720 return __blkg_prfill_u64(sf, pd, cfqg->dev_leaf_weight);
1721 }
1722
1723 static int cfqg_print_leaf_weight_device(struct seq_file *sf, void *v)
1724 {
1725 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1726 cfqg_prfill_leaf_weight_device, &blkcg_policy_cfq,
1727 0, false);
1728 return 0;
1729 }
1730
1731 static int cfq_print_weight(struct seq_file *sf, void *v)
1732 {
1733 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1734 struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg);
1735 unsigned int val = 0;
1736
1737 if (cgd)
1738 val = cgd->weight;
1739
1740 seq_printf(sf, "%u\n", val);
1741 return 0;
1742 }
1743
1744 static int cfq_print_leaf_weight(struct seq_file *sf, void *v)
1745 {
1746 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1747 struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg);
1748 unsigned int val = 0;
1749
1750 if (cgd)
1751 val = cgd->leaf_weight;
1752
1753 seq_printf(sf, "%u\n", val);
1754 return 0;
1755 }
1756
1757 static ssize_t __cfqg_set_weight_device(struct kernfs_open_file *of,
1758 char *buf, size_t nbytes, loff_t off,
1759 bool on_dfl, bool is_leaf_weight)
1760 {
1761 unsigned int min = on_dfl ? CGROUP_WEIGHT_MIN : CFQ_WEIGHT_LEGACY_MIN;
1762 unsigned int max = on_dfl ? CGROUP_WEIGHT_MAX : CFQ_WEIGHT_LEGACY_MAX;
1763 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1764 struct blkg_conf_ctx ctx;
1765 struct cfq_group *cfqg;
1766 struct cfq_group_data *cfqgd;
1767 int ret;
1768 u64 v;
1769
1770 ret = blkg_conf_prep(blkcg, &blkcg_policy_cfq, buf, &ctx);
1771 if (ret)
1772 return ret;
1773
1774 if (sscanf(ctx.body, "%llu", &v) == 1) {
1775 /* require "default" on dfl */
1776 ret = -ERANGE;
1777 if (!v && on_dfl)
1778 goto out_finish;
1779 } else if (!strcmp(strim(ctx.body), "default")) {
1780 v = 0;
1781 } else {
1782 ret = -EINVAL;
1783 goto out_finish;
1784 }
1785
1786 cfqg = blkg_to_cfqg(ctx.blkg);
1787 cfqgd = blkcg_to_cfqgd(blkcg);
1788
1789 ret = -ERANGE;
1790 if (!v || (v >= min && v <= max)) {
1791 if (!is_leaf_weight) {
1792 cfqg->dev_weight = v;
1793 cfqg->new_weight = v ?: cfqgd->weight;
1794 } else {
1795 cfqg->dev_leaf_weight = v;
1796 cfqg->new_leaf_weight = v ?: cfqgd->leaf_weight;
1797 }
1798 ret = 0;
1799 }
1800 out_finish:
1801 blkg_conf_finish(&ctx);
1802 return ret ?: nbytes;
1803 }
1804
1805 static ssize_t cfqg_set_weight_device(struct kernfs_open_file *of,
1806 char *buf, size_t nbytes, loff_t off)
1807 {
1808 return __cfqg_set_weight_device(of, buf, nbytes, off, false, false);
1809 }
1810
1811 static ssize_t cfqg_set_leaf_weight_device(struct kernfs_open_file *of,
1812 char *buf, size_t nbytes, loff_t off)
1813 {
1814 return __cfqg_set_weight_device(of, buf, nbytes, off, false, true);
1815 }
1816
1817 static int __cfq_set_weight(struct cgroup_subsys_state *css, u64 val,
1818 bool on_dfl, bool reset_dev, bool is_leaf_weight)
1819 {
1820 unsigned int min = on_dfl ? CGROUP_WEIGHT_MIN : CFQ_WEIGHT_LEGACY_MIN;
1821 unsigned int max = on_dfl ? CGROUP_WEIGHT_MAX : CFQ_WEIGHT_LEGACY_MAX;
1822 struct blkcg *blkcg = css_to_blkcg(css);
1823 struct blkcg_gq *blkg;
1824 struct cfq_group_data *cfqgd;
1825 int ret = 0;
1826
1827 if (val < min || val > max)
1828 return -ERANGE;
1829
1830 spin_lock_irq(&blkcg->lock);
1831 cfqgd = blkcg_to_cfqgd(blkcg);
1832 if (!cfqgd) {
1833 ret = -EINVAL;
1834 goto out;
1835 }
1836
1837 if (!is_leaf_weight)
1838 cfqgd->weight = val;
1839 else
1840 cfqgd->leaf_weight = val;
1841
1842 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
1843 struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1844
1845 if (!cfqg)
1846 continue;
1847
1848 if (!is_leaf_weight) {
1849 if (reset_dev)
1850 cfqg->dev_weight = 0;
1851 if (!cfqg->dev_weight)
1852 cfqg->new_weight = cfqgd->weight;
1853 } else {
1854 if (reset_dev)
1855 cfqg->dev_leaf_weight = 0;
1856 if (!cfqg->dev_leaf_weight)
1857 cfqg->new_leaf_weight = cfqgd->leaf_weight;
1858 }
1859 }
1860
1861 out:
1862 spin_unlock_irq(&blkcg->lock);
1863 return ret;
1864 }
1865
1866 static int cfq_set_weight(struct cgroup_subsys_state *css, struct cftype *cft,
1867 u64 val)
1868 {
1869 return __cfq_set_weight(css, val, false, false, false);
1870 }
1871
1872 static int cfq_set_leaf_weight(struct cgroup_subsys_state *css,
1873 struct cftype *cft, u64 val)
1874 {
1875 return __cfq_set_weight(css, val, false, false, true);
1876 }
1877
1878 static int cfqg_print_stat(struct seq_file *sf, void *v)
1879 {
1880 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_stat,
1881 &blkcg_policy_cfq, seq_cft(sf)->private, false);
1882 return 0;
1883 }
1884
1885 static int cfqg_print_rwstat(struct seq_file *sf, void *v)
1886 {
1887 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_rwstat,
1888 &blkcg_policy_cfq, seq_cft(sf)->private, true);
1889 return 0;
1890 }
1891
1892 static u64 cfqg_prfill_stat_recursive(struct seq_file *sf,
1893 struct blkg_policy_data *pd, int off)
1894 {
1895 u64 sum = blkg_stat_recursive_sum(pd_to_blkg(pd),
1896 &blkcg_policy_cfq, off);
1897 return __blkg_prfill_u64(sf, pd, sum);
1898 }
1899
1900 static u64 cfqg_prfill_rwstat_recursive(struct seq_file *sf,
1901 struct blkg_policy_data *pd, int off)
1902 {
1903 struct blkg_rwstat sum = blkg_rwstat_recursive_sum(pd_to_blkg(pd),
1904 &blkcg_policy_cfq, off);
1905 return __blkg_prfill_rwstat(sf, pd, &sum);
1906 }
1907
1908 static int cfqg_print_stat_recursive(struct seq_file *sf, void *v)
1909 {
1910 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1911 cfqg_prfill_stat_recursive, &blkcg_policy_cfq,
1912 seq_cft(sf)->private, false);
1913 return 0;
1914 }
1915
1916 static int cfqg_print_rwstat_recursive(struct seq_file *sf, void *v)
1917 {
1918 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1919 cfqg_prfill_rwstat_recursive, &blkcg_policy_cfq,
1920 seq_cft(sf)->private, true);
1921 return 0;
1922 }
1923
1924 static u64 cfqg_prfill_sectors(struct seq_file *sf, struct blkg_policy_data *pd,
1925 int off)
1926 {
1927 u64 sum = blkg_rwstat_total(&pd->blkg->stat_bytes);
1928
1929 return __blkg_prfill_u64(sf, pd, sum >> 9);
1930 }
1931
1932 static int cfqg_print_stat_sectors(struct seq_file *sf, void *v)
1933 {
1934 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1935 cfqg_prfill_sectors, &blkcg_policy_cfq, 0, false);
1936 return 0;
1937 }
1938
1939 static u64 cfqg_prfill_sectors_recursive(struct seq_file *sf,
1940 struct blkg_policy_data *pd, int off)
1941 {
1942 struct blkg_rwstat tmp = blkg_rwstat_recursive_sum(pd->blkg, NULL,
1943 offsetof(struct blkcg_gq, stat_bytes));
1944 u64 sum = atomic64_read(&tmp.aux_cnt[BLKG_RWSTAT_READ]) +
1945 atomic64_read(&tmp.aux_cnt[BLKG_RWSTAT_WRITE]);
1946
1947 return __blkg_prfill_u64(sf, pd, sum >> 9);
1948 }
1949
1950 static int cfqg_print_stat_sectors_recursive(struct seq_file *sf, void *v)
1951 {
1952 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1953 cfqg_prfill_sectors_recursive, &blkcg_policy_cfq, 0,
1954 false);
1955 return 0;
1956 }
1957
1958 #ifdef CONFIG_DEBUG_BLK_CGROUP
1959 static u64 cfqg_prfill_avg_queue_size(struct seq_file *sf,
1960 struct blkg_policy_data *pd, int off)
1961 {
1962 struct cfq_group *cfqg = pd_to_cfqg(pd);
1963 u64 samples = blkg_stat_read(&cfqg->stats.avg_queue_size_samples);
1964 u64 v = 0;
1965
1966 if (samples) {
1967 v = blkg_stat_read(&cfqg->stats.avg_queue_size_sum);
1968 v = div64_u64(v, samples);
1969 }
1970 __blkg_prfill_u64(sf, pd, v);
1971 return 0;
1972 }
1973
1974 /* print avg_queue_size */
1975 static int cfqg_print_avg_queue_size(struct seq_file *sf, void *v)
1976 {
1977 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1978 cfqg_prfill_avg_queue_size, &blkcg_policy_cfq,
1979 0, false);
1980 return 0;
1981 }
1982 #endif /* CONFIG_DEBUG_BLK_CGROUP */
1983
1984 static struct cftype cfq_blkcg_legacy_files[] = {
1985 /* on root, weight is mapped to leaf_weight */
1986 {
1987 .name = "weight_device",
1988 .flags = CFTYPE_ONLY_ON_ROOT,
1989 .seq_show = cfqg_print_leaf_weight_device,
1990 .write = cfqg_set_leaf_weight_device,
1991 },
1992 {
1993 .name = "weight",
1994 .flags = CFTYPE_ONLY_ON_ROOT,
1995 .seq_show = cfq_print_leaf_weight,
1996 .write_u64 = cfq_set_leaf_weight,
1997 },
1998
1999 /* no such mapping necessary for !roots */
2000 {
2001 .name = "weight_device",
2002 .flags = CFTYPE_NOT_ON_ROOT,
2003 .seq_show = cfqg_print_weight_device,
2004 .write = cfqg_set_weight_device,
2005 },
2006 {
2007 .name = "weight",
2008 .flags = CFTYPE_NOT_ON_ROOT,
2009 .seq_show = cfq_print_weight,
2010 .write_u64 = cfq_set_weight,
2011 },
2012
2013 {
2014 .name = "leaf_weight_device",
2015 .seq_show = cfqg_print_leaf_weight_device,
2016 .write = cfqg_set_leaf_weight_device,
2017 },
2018 {
2019 .name = "leaf_weight",
2020 .seq_show = cfq_print_leaf_weight,
2021 .write_u64 = cfq_set_leaf_weight,
2022 },
2023
2024 /* statistics, covers only the tasks in the cfqg */
2025 {
2026 .name = "time",
2027 .private = offsetof(struct cfq_group, stats.time),
2028 .seq_show = cfqg_print_stat,
2029 },
2030 {
2031 .name = "sectors",
2032 .seq_show = cfqg_print_stat_sectors,
2033 },
2034 {
2035 .name = "io_service_bytes",
2036 .private = (unsigned long)&blkcg_policy_cfq,
2037 .seq_show = blkg_print_stat_bytes,
2038 },
2039 {
2040 .name = "io_serviced",
2041 .private = (unsigned long)&blkcg_policy_cfq,
2042 .seq_show = blkg_print_stat_ios,
2043 },
2044 {
2045 .name = "io_service_time",
2046 .private = offsetof(struct cfq_group, stats.service_time),
2047 .seq_show = cfqg_print_rwstat,
2048 },
2049 {
2050 .name = "io_wait_time",
2051 .private = offsetof(struct cfq_group, stats.wait_time),
2052 .seq_show = cfqg_print_rwstat,
2053 },
2054 {
2055 .name = "io_merged",
2056 .private = offsetof(struct cfq_group, stats.merged),
2057 .seq_show = cfqg_print_rwstat,
2058 },
2059 {
2060 .name = "io_queued",
2061 .private = offsetof(struct cfq_group, stats.queued),
2062 .seq_show = cfqg_print_rwstat,
2063 },
2064
2065 /* the same statictics which cover the cfqg and its descendants */
2066 {
2067 .name = "time_recursive",
2068 .private = offsetof(struct cfq_group, stats.time),
2069 .seq_show = cfqg_print_stat_recursive,
2070 },
2071 {
2072 .name = "sectors_recursive",
2073 .seq_show = cfqg_print_stat_sectors_recursive,
2074 },
2075 {
2076 .name = "io_service_bytes_recursive",
2077 .private = (unsigned long)&blkcg_policy_cfq,
2078 .seq_show = blkg_print_stat_bytes_recursive,
2079 },
2080 {
2081 .name = "io_serviced_recursive",
2082 .private = (unsigned long)&blkcg_policy_cfq,
2083 .seq_show = blkg_print_stat_ios_recursive,
2084 },
2085 {
2086 .name = "io_service_time_recursive",
2087 .private = offsetof(struct cfq_group, stats.service_time),
2088 .seq_show = cfqg_print_rwstat_recursive,
2089 },
2090 {
2091 .name = "io_wait_time_recursive",
2092 .private = offsetof(struct cfq_group, stats.wait_time),
2093 .seq_show = cfqg_print_rwstat_recursive,
2094 },
2095 {
2096 .name = "io_merged_recursive",
2097 .private = offsetof(struct cfq_group, stats.merged),
2098 .seq_show = cfqg_print_rwstat_recursive,
2099 },
2100 {
2101 .name = "io_queued_recursive",
2102 .private = offsetof(struct cfq_group, stats.queued),
2103 .seq_show = cfqg_print_rwstat_recursive,
2104 },
2105 #ifdef CONFIG_DEBUG_BLK_CGROUP
2106 {
2107 .name = "avg_queue_size",
2108 .seq_show = cfqg_print_avg_queue_size,
2109 },
2110 {
2111 .name = "group_wait_time",
2112 .private = offsetof(struct cfq_group, stats.group_wait_time),
2113 .seq_show = cfqg_print_stat,
2114 },
2115 {
2116 .name = "idle_time",
2117 .private = offsetof(struct cfq_group, stats.idle_time),
2118 .seq_show = cfqg_print_stat,
2119 },
2120 {
2121 .name = "empty_time",
2122 .private = offsetof(struct cfq_group, stats.empty_time),
2123 .seq_show = cfqg_print_stat,
2124 },
2125 {
2126 .name = "dequeue",
2127 .private = offsetof(struct cfq_group, stats.dequeue),
2128 .seq_show = cfqg_print_stat,
2129 },
2130 {
2131 .name = "unaccounted_time",
2132 .private = offsetof(struct cfq_group, stats.unaccounted_time),
2133 .seq_show = cfqg_print_stat,
2134 },
2135 #endif /* CONFIG_DEBUG_BLK_CGROUP */
2136 { } /* terminate */
2137 };
2138
2139 static int cfq_print_weight_on_dfl(struct seq_file *sf, void *v)
2140 {
2141 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
2142 struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg);
2143
2144 seq_printf(sf, "default %u\n", cgd->weight);
2145 blkcg_print_blkgs(sf, blkcg, cfqg_prfill_weight_device,
2146 &blkcg_policy_cfq, 0, false);
2147 return 0;
2148 }
2149
2150 static ssize_t cfq_set_weight_on_dfl(struct kernfs_open_file *of,
2151 char *buf, size_t nbytes, loff_t off)
2152 {
2153 char *endp;
2154 int ret;
2155 u64 v;
2156
2157 buf = strim(buf);
2158
2159 /* "WEIGHT" or "default WEIGHT" sets the default weight */
2160 v = simple_strtoull(buf, &endp, 0);
2161 if (*endp == '\0' || sscanf(buf, "default %llu", &v) == 1) {
2162 ret = __cfq_set_weight(of_css(of), v, true, false, false);
2163 return ret ?: nbytes;
2164 }
2165
2166 /* "MAJ:MIN WEIGHT" */
2167 return __cfqg_set_weight_device(of, buf, nbytes, off, true, false);
2168 }
2169
2170 static struct cftype cfq_blkcg_files[] = {
2171 {
2172 .name = "weight",
2173 .flags = CFTYPE_NOT_ON_ROOT,
2174 .seq_show = cfq_print_weight_on_dfl,
2175 .write = cfq_set_weight_on_dfl,
2176 },
2177 { } /* terminate */
2178 };
2179
2180 #else /* GROUP_IOSCHED */
2181 static struct cfq_group *cfq_lookup_cfqg(struct cfq_data *cfqd,
2182 struct blkcg *blkcg)
2183 {
2184 return cfqd->root_group;
2185 }
2186
2187 static inline void
2188 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
2189 cfqq->cfqg = cfqg;
2190 }
2191
2192 #endif /* GROUP_IOSCHED */
2193
2194 /*
2195 * The cfqd->service_trees holds all pending cfq_queue's that have
2196 * requests waiting to be processed. It is sorted in the order that
2197 * we will service the queues.
2198 */
2199 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2200 bool add_front)
2201 {
2202 struct rb_node **p, *parent;
2203 struct cfq_queue *__cfqq;
2204 u64 rb_key;
2205 struct cfq_rb_root *st;
2206 bool leftmost = true;
2207 int new_cfqq = 1;
2208 u64 now = ktime_get_ns();
2209
2210 st = st_for(cfqq->cfqg, cfqq_class(cfqq), cfqq_type(cfqq));
2211 if (cfq_class_idle(cfqq)) {
2212 rb_key = CFQ_IDLE_DELAY;
2213 parent = st->rb_rightmost;
2214 if (parent && parent != &cfqq->rb_node) {
2215 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
2216 rb_key += __cfqq->rb_key;
2217 } else
2218 rb_key += now;
2219 } else if (!add_front) {
2220 /*
2221 * Get our rb key offset. Subtract any residual slice
2222 * value carried from last service. A negative resid
2223 * count indicates slice overrun, and this should position
2224 * the next service time further away in the tree.
2225 */
2226 rb_key = cfq_slice_offset(cfqd, cfqq) + now;
2227 rb_key -= cfqq->slice_resid;
2228 cfqq->slice_resid = 0;
2229 } else {
2230 rb_key = -NSEC_PER_SEC;
2231 __cfqq = cfq_rb_first(st);
2232 rb_key += __cfqq ? __cfqq->rb_key : now;
2233 }
2234
2235 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2236 new_cfqq = 0;
2237 /*
2238 * same position, nothing more to do
2239 */
2240 if (rb_key == cfqq->rb_key && cfqq->service_tree == st)
2241 return;
2242
2243 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2244 cfqq->service_tree = NULL;
2245 }
2246
2247 parent = NULL;
2248 cfqq->service_tree = st;
2249 p = &st->rb.rb_root.rb_node;
2250 while (*p) {
2251 parent = *p;
2252 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
2253
2254 /*
2255 * sort by key, that represents service time.
2256 */
2257 if (rb_key < __cfqq->rb_key)
2258 p = &parent->rb_left;
2259 else {
2260 p = &parent->rb_right;
2261 leftmost = false;
2262 }
2263 }
2264
2265 cfqq->rb_key = rb_key;
2266 rb_link_node(&cfqq->rb_node, parent, p);
2267 rb_insert_color_cached(&cfqq->rb_node, &st->rb, leftmost);
2268 st->count++;
2269 if (add_front || !new_cfqq)
2270 return;
2271 cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
2272 }
2273
2274 static struct cfq_queue *
2275 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
2276 sector_t sector, struct rb_node **ret_parent,
2277 struct rb_node ***rb_link)
2278 {
2279 struct rb_node **p, *parent;
2280 struct cfq_queue *cfqq = NULL;
2281
2282 parent = NULL;
2283 p = &root->rb_node;
2284 while (*p) {
2285 struct rb_node **n;
2286
2287 parent = *p;
2288 cfqq = rb_entry(parent, struct cfq_queue, p_node);
2289
2290 /*
2291 * Sort strictly based on sector. Smallest to the left,
2292 * largest to the right.
2293 */
2294 if (sector > blk_rq_pos(cfqq->next_rq))
2295 n = &(*p)->rb_right;
2296 else if (sector < blk_rq_pos(cfqq->next_rq))
2297 n = &(*p)->rb_left;
2298 else
2299 break;
2300 p = n;
2301 cfqq = NULL;
2302 }
2303
2304 *ret_parent = parent;
2305 if (rb_link)
2306 *rb_link = p;
2307 return cfqq;
2308 }
2309
2310 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2311 {
2312 struct rb_node **p, *parent;
2313 struct cfq_queue *__cfqq;
2314
2315 if (cfqq->p_root) {
2316 rb_erase(&cfqq->p_node, cfqq->p_root);
2317 cfqq->p_root = NULL;
2318 }
2319
2320 if (cfq_class_idle(cfqq))
2321 return;
2322 if (!cfqq->next_rq)
2323 return;
2324
2325 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2326 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
2327 blk_rq_pos(cfqq->next_rq), &parent, &p);
2328 if (!__cfqq) {
2329 rb_link_node(&cfqq->p_node, parent, p);
2330 rb_insert_color(&cfqq->p_node, cfqq->p_root);
2331 } else
2332 cfqq->p_root = NULL;
2333 }
2334
2335 /*
2336 * Update cfqq's position in the service tree.
2337 */
2338 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2339 {
2340 /*
2341 * Resorting requires the cfqq to be on the RR list already.
2342 */
2343 if (cfq_cfqq_on_rr(cfqq)) {
2344 cfq_service_tree_add(cfqd, cfqq, 0);
2345 cfq_prio_tree_add(cfqd, cfqq);
2346 }
2347 }
2348
2349 /*
2350 * add to busy list of queues for service, trying to be fair in ordering
2351 * the pending list according to last request service
2352 */
2353 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2354 {
2355 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
2356 BUG_ON(cfq_cfqq_on_rr(cfqq));
2357 cfq_mark_cfqq_on_rr(cfqq);
2358 cfqd->busy_queues++;
2359 if (cfq_cfqq_sync(cfqq))
2360 cfqd->busy_sync_queues++;
2361
2362 cfq_resort_rr_list(cfqd, cfqq);
2363 }
2364
2365 /*
2366 * Called when the cfqq no longer has requests pending, remove it from
2367 * the service tree.
2368 */
2369 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2370 {
2371 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
2372 BUG_ON(!cfq_cfqq_on_rr(cfqq));
2373 cfq_clear_cfqq_on_rr(cfqq);
2374
2375 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2376 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2377 cfqq->service_tree = NULL;
2378 }
2379 if (cfqq->p_root) {
2380 rb_erase(&cfqq->p_node, cfqq->p_root);
2381 cfqq->p_root = NULL;
2382 }
2383
2384 cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
2385 BUG_ON(!cfqd->busy_queues);
2386 cfqd->busy_queues--;
2387 if (cfq_cfqq_sync(cfqq))
2388 cfqd->busy_sync_queues--;
2389 }
2390
2391 /*
2392 * rb tree support functions
2393 */
2394 static void cfq_del_rq_rb(struct request *rq)
2395 {
2396 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2397 const int sync = rq_is_sync(rq);
2398
2399 BUG_ON(!cfqq->queued[sync]);
2400 cfqq->queued[sync]--;
2401
2402 elv_rb_del(&cfqq->sort_list, rq);
2403
2404 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
2405 /*
2406 * Queue will be deleted from service tree when we actually
2407 * expire it later. Right now just remove it from prio tree
2408 * as it is empty.
2409 */
2410 if (cfqq->p_root) {
2411 rb_erase(&cfqq->p_node, cfqq->p_root);
2412 cfqq->p_root = NULL;
2413 }
2414 }
2415 }
2416
2417 static void cfq_add_rq_rb(struct request *rq)
2418 {
2419 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2420 struct cfq_data *cfqd = cfqq->cfqd;
2421 struct request *prev;
2422
2423 cfqq->queued[rq_is_sync(rq)]++;
2424
2425 elv_rb_add(&cfqq->sort_list, rq);
2426
2427 if (!cfq_cfqq_on_rr(cfqq))
2428 cfq_add_cfqq_rr(cfqd, cfqq);
2429
2430 /*
2431 * check if this request is a better next-serve candidate
2432 */
2433 prev = cfqq->next_rq;
2434 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
2435
2436 /*
2437 * adjust priority tree position, if ->next_rq changes
2438 */
2439 if (prev != cfqq->next_rq)
2440 cfq_prio_tree_add(cfqd, cfqq);
2441
2442 BUG_ON(!cfqq->next_rq);
2443 }
2444
2445 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
2446 {
2447 elv_rb_del(&cfqq->sort_list, rq);
2448 cfqq->queued[rq_is_sync(rq)]--;
2449 cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
2450 cfq_add_rq_rb(rq);
2451 cfqg_stats_update_io_add(RQ_CFQG(rq), cfqq->cfqd->serving_group,
2452 rq->cmd_flags);
2453 }
2454
2455 static struct request *
2456 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
2457 {
2458 struct task_struct *tsk = current;
2459 struct cfq_io_cq *cic;
2460 struct cfq_queue *cfqq;
2461
2462 cic = cfq_cic_lookup(cfqd, tsk->io_context);
2463 if (!cic)
2464 return NULL;
2465
2466 cfqq = cic_to_cfqq(cic, op_is_sync(bio->bi_opf));
2467 if (cfqq)
2468 return elv_rb_find(&cfqq->sort_list, bio_end_sector(bio));
2469
2470 return NULL;
2471 }
2472
2473 static void cfq_activate_request(struct request_queue *q, struct request *rq)
2474 {
2475 struct cfq_data *cfqd = q->elevator->elevator_data;
2476
2477 cfqd->rq_in_driver++;
2478 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
2479 cfqd->rq_in_driver);
2480
2481 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
2482 }
2483
2484 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
2485 {
2486 struct cfq_data *cfqd = q->elevator->elevator_data;
2487
2488 WARN_ON(!cfqd->rq_in_driver);
2489 cfqd->rq_in_driver--;
2490 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
2491 cfqd->rq_in_driver);
2492 }
2493
2494 static void cfq_remove_request(struct request *rq)
2495 {
2496 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2497
2498 if (cfqq->next_rq == rq)
2499 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
2500
2501 list_del_init(&rq->queuelist);
2502 cfq_del_rq_rb(rq);
2503
2504 cfqq->cfqd->rq_queued--;
2505 cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
2506 if (rq->cmd_flags & REQ_PRIO) {
2507 WARN_ON(!cfqq->prio_pending);
2508 cfqq->prio_pending--;
2509 }
2510 }
2511
2512 static enum elv_merge cfq_merge(struct request_queue *q, struct request **req,
2513 struct bio *bio)
2514 {
2515 struct cfq_data *cfqd = q->elevator->elevator_data;
2516 struct request *__rq;
2517
2518 __rq = cfq_find_rq_fmerge(cfqd, bio);
2519 if (__rq && elv_bio_merge_ok(__rq, bio)) {
2520 *req = __rq;
2521 return ELEVATOR_FRONT_MERGE;
2522 }
2523
2524 return ELEVATOR_NO_MERGE;
2525 }
2526
2527 static void cfq_merged_request(struct request_queue *q, struct request *req,
2528 enum elv_merge type)
2529 {
2530 if (type == ELEVATOR_FRONT_MERGE) {
2531 struct cfq_queue *cfqq = RQ_CFQQ(req);
2532
2533 cfq_reposition_rq_rb(cfqq, req);
2534 }
2535 }
2536
2537 static void cfq_bio_merged(struct request_queue *q, struct request *req,
2538 struct bio *bio)
2539 {
2540 cfqg_stats_update_io_merged(RQ_CFQG(req), bio->bi_opf);
2541 }
2542
2543 static void
2544 cfq_merged_requests(struct request_queue *q, struct request *rq,
2545 struct request *next)
2546 {
2547 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2548 struct cfq_data *cfqd = q->elevator->elevator_data;
2549
2550 /*
2551 * reposition in fifo if next is older than rq
2552 */
2553 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
2554 next->fifo_time < rq->fifo_time &&
2555 cfqq == RQ_CFQQ(next)) {
2556 list_move(&rq->queuelist, &next->queuelist);
2557 rq->fifo_time = next->fifo_time;
2558 }
2559
2560 if (cfqq->next_rq == next)
2561 cfqq->next_rq = rq;
2562 cfq_remove_request(next);
2563 cfqg_stats_update_io_merged(RQ_CFQG(rq), next->cmd_flags);
2564
2565 cfqq = RQ_CFQQ(next);
2566 /*
2567 * all requests of this queue are merged to other queues, delete it
2568 * from the service tree. If it's the active_queue,
2569 * cfq_dispatch_requests() will choose to expire it or do idle
2570 */
2571 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) &&
2572 cfqq != cfqd->active_queue)
2573 cfq_del_cfqq_rr(cfqd, cfqq);
2574 }
2575
2576 static int cfq_allow_bio_merge(struct request_queue *q, struct request *rq,
2577 struct bio *bio)
2578 {
2579 struct cfq_data *cfqd = q->elevator->elevator_data;
2580 bool is_sync = op_is_sync(bio->bi_opf);
2581 struct cfq_io_cq *cic;
2582 struct cfq_queue *cfqq;
2583
2584 /*
2585 * Disallow merge of a sync bio into an async request.
2586 */
2587 if (is_sync && !rq_is_sync(rq))
2588 return false;
2589
2590 /*
2591 * Lookup the cfqq that this bio will be queued with and allow
2592 * merge only if rq is queued there.
2593 */
2594 cic = cfq_cic_lookup(cfqd, current->io_context);
2595 if (!cic)
2596 return false;
2597
2598 cfqq = cic_to_cfqq(cic, is_sync);
2599 return cfqq == RQ_CFQQ(rq);
2600 }
2601
2602 static int cfq_allow_rq_merge(struct request_queue *q, struct request *rq,
2603 struct request *next)
2604 {
2605 return RQ_CFQQ(rq) == RQ_CFQQ(next);
2606 }
2607
2608 static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2609 {
2610 hrtimer_try_to_cancel(&cfqd->idle_slice_timer);
2611 cfqg_stats_update_idle_time(cfqq->cfqg);
2612 }
2613
2614 static void __cfq_set_active_queue(struct cfq_data *cfqd,
2615 struct cfq_queue *cfqq)
2616 {
2617 if (cfqq) {
2618 cfq_log_cfqq(cfqd, cfqq, "set_active wl_class:%d wl_type:%d",
2619 cfqd->serving_wl_class, cfqd->serving_wl_type);
2620 cfqg_stats_update_avg_queue_size(cfqq->cfqg);
2621 cfqq->slice_start = 0;
2622 cfqq->dispatch_start = ktime_get_ns();
2623 cfqq->allocated_slice = 0;
2624 cfqq->slice_end = 0;
2625 cfqq->slice_dispatch = 0;
2626 cfqq->nr_sectors = 0;
2627
2628 cfq_clear_cfqq_wait_request(cfqq);
2629 cfq_clear_cfqq_must_dispatch(cfqq);
2630 cfq_clear_cfqq_must_alloc_slice(cfqq);
2631 cfq_clear_cfqq_fifo_expire(cfqq);
2632 cfq_mark_cfqq_slice_new(cfqq);
2633
2634 cfq_del_timer(cfqd, cfqq);
2635 }
2636
2637 cfqd->active_queue = cfqq;
2638 }
2639
2640 /*
2641 * current cfqq expired its slice (or was too idle), select new one
2642 */
2643 static void
2644 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2645 bool timed_out)
2646 {
2647 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
2648
2649 if (cfq_cfqq_wait_request(cfqq))
2650 cfq_del_timer(cfqd, cfqq);
2651
2652 cfq_clear_cfqq_wait_request(cfqq);
2653 cfq_clear_cfqq_wait_busy(cfqq);
2654
2655 /*
2656 * If this cfqq is shared between multiple processes, check to
2657 * make sure that those processes are still issuing I/Os within
2658 * the mean seek distance. If not, it may be time to break the
2659 * queues apart again.
2660 */
2661 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
2662 cfq_mark_cfqq_split_coop(cfqq);
2663
2664 /*
2665 * store what was left of this slice, if the queue idled/timed out
2666 */
2667 if (timed_out) {
2668 if (cfq_cfqq_slice_new(cfqq))
2669 cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
2670 else
2671 cfqq->slice_resid = cfqq->slice_end - ktime_get_ns();
2672 cfq_log_cfqq(cfqd, cfqq, "resid=%lld", cfqq->slice_resid);
2673 }
2674
2675 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
2676
2677 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
2678 cfq_del_cfqq_rr(cfqd, cfqq);
2679
2680 cfq_resort_rr_list(cfqd, cfqq);
2681
2682 if (cfqq == cfqd->active_queue)
2683 cfqd->active_queue = NULL;
2684
2685 if (cfqd->active_cic) {
2686 put_io_context(cfqd->active_cic->icq.ioc);
2687 cfqd->active_cic = NULL;
2688 }
2689 }
2690
2691 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
2692 {
2693 struct cfq_queue *cfqq = cfqd->active_queue;
2694
2695 if (cfqq)
2696 __cfq_slice_expired(cfqd, cfqq, timed_out);
2697 }
2698
2699 /*
2700 * Get next queue for service. Unless we have a queue preemption,
2701 * we'll simply select the first cfqq in the service tree.
2702 */
2703 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
2704 {
2705 struct cfq_rb_root *st = st_for(cfqd->serving_group,
2706 cfqd->serving_wl_class, cfqd->serving_wl_type);
2707
2708 if (!cfqd->rq_queued)
2709 return NULL;
2710
2711 /* There is nothing to dispatch */
2712 if (!st)
2713 return NULL;
2714 if (RB_EMPTY_ROOT(&st->rb.rb_root))
2715 return NULL;
2716 return cfq_rb_first(st);
2717 }
2718
2719 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
2720 {
2721 struct cfq_group *cfqg;
2722 struct cfq_queue *cfqq;
2723 int i, j;
2724 struct cfq_rb_root *st;
2725
2726 if (!cfqd->rq_queued)
2727 return NULL;
2728
2729 cfqg = cfq_get_next_cfqg(cfqd);
2730 if (!cfqg)
2731 return NULL;
2732
2733 for_each_cfqg_st(cfqg, i, j, st) {
2734 cfqq = cfq_rb_first(st);
2735 if (cfqq)
2736 return cfqq;
2737 }
2738 return NULL;
2739 }
2740
2741 /*
2742 * Get and set a new active queue for service.
2743 */
2744 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
2745 struct cfq_queue *cfqq)
2746 {
2747 if (!cfqq)
2748 cfqq = cfq_get_next_queue(cfqd);
2749
2750 __cfq_set_active_queue(cfqd, cfqq);
2751 return cfqq;
2752 }
2753
2754 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
2755 struct request *rq)
2756 {
2757 if (blk_rq_pos(rq) >= cfqd->last_position)
2758 return blk_rq_pos(rq) - cfqd->last_position;
2759 else
2760 return cfqd->last_position - blk_rq_pos(rq);
2761 }
2762
2763 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2764 struct request *rq)
2765 {
2766 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
2767 }
2768
2769 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
2770 struct cfq_queue *cur_cfqq)
2771 {
2772 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
2773 struct rb_node *parent, *node;
2774 struct cfq_queue *__cfqq;
2775 sector_t sector = cfqd->last_position;
2776
2777 if (RB_EMPTY_ROOT(root))
2778 return NULL;
2779
2780 /*
2781 * First, if we find a request starting at the end of the last
2782 * request, choose it.
2783 */
2784 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
2785 if (__cfqq)
2786 return __cfqq;
2787
2788 /*
2789 * If the exact sector wasn't found, the parent of the NULL leaf
2790 * will contain the closest sector.
2791 */
2792 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
2793 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2794 return __cfqq;
2795
2796 if (blk_rq_pos(__cfqq->next_rq) < sector)
2797 node = rb_next(&__cfqq->p_node);
2798 else
2799 node = rb_prev(&__cfqq->p_node);
2800 if (!node)
2801 return NULL;
2802
2803 __cfqq = rb_entry(node, struct cfq_queue, p_node);
2804 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2805 return __cfqq;
2806
2807 return NULL;
2808 }
2809
2810 /*
2811 * cfqd - obvious
2812 * cur_cfqq - passed in so that we don't decide that the current queue is
2813 * closely cooperating with itself.
2814 *
2815 * So, basically we're assuming that that cur_cfqq has dispatched at least
2816 * one request, and that cfqd->last_position reflects a position on the disk
2817 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
2818 * assumption.
2819 */
2820 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
2821 struct cfq_queue *cur_cfqq)
2822 {
2823 struct cfq_queue *cfqq;
2824
2825 if (cfq_class_idle(cur_cfqq))
2826 return NULL;
2827 if (!cfq_cfqq_sync(cur_cfqq))
2828 return NULL;
2829 if (CFQQ_SEEKY(cur_cfqq))
2830 return NULL;
2831
2832 /*
2833 * Don't search priority tree if it's the only queue in the group.
2834 */
2835 if (cur_cfqq->cfqg->nr_cfqq == 1)
2836 return NULL;
2837
2838 /*
2839 * We should notice if some of the queues are cooperating, eg
2840 * working closely on the same area of the disk. In that case,
2841 * we can group them together and don't waste time idling.
2842 */
2843 cfqq = cfqq_close(cfqd, cur_cfqq);
2844 if (!cfqq)
2845 return NULL;
2846
2847 /* If new queue belongs to different cfq_group, don't choose it */
2848 if (cur_cfqq->cfqg != cfqq->cfqg)
2849 return NULL;
2850
2851 /*
2852 * It only makes sense to merge sync queues.
2853 */
2854 if (!cfq_cfqq_sync(cfqq))
2855 return NULL;
2856 if (CFQQ_SEEKY(cfqq))
2857 return NULL;
2858
2859 /*
2860 * Do not merge queues of different priority classes
2861 */
2862 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
2863 return NULL;
2864
2865 return cfqq;
2866 }
2867
2868 /*
2869 * Determine whether we should enforce idle window for this queue.
2870 */
2871
2872 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2873 {
2874 enum wl_class_t wl_class = cfqq_class(cfqq);
2875 struct cfq_rb_root *st = cfqq->service_tree;
2876
2877 BUG_ON(!st);
2878 BUG_ON(!st->count);
2879
2880 if (!cfqd->cfq_slice_idle)
2881 return false;
2882
2883 /* We never do for idle class queues. */
2884 if (wl_class == IDLE_WORKLOAD)
2885 return false;
2886
2887 /* We do for queues that were marked with idle window flag. */
2888 if (cfq_cfqq_idle_window(cfqq) &&
2889 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
2890 return true;
2891
2892 /*
2893 * Otherwise, we do only if they are the last ones
2894 * in their service tree.
2895 */
2896 if (st->count == 1 && cfq_cfqq_sync(cfqq) &&
2897 !cfq_io_thinktime_big(cfqd, &st->ttime, false))
2898 return true;
2899 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d", st->count);
2900 return false;
2901 }
2902
2903 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
2904 {
2905 struct cfq_queue *cfqq = cfqd->active_queue;
2906 struct cfq_rb_root *st = cfqq->service_tree;
2907 struct cfq_io_cq *cic;
2908 u64 sl, group_idle = 0;
2909 u64 now = ktime_get_ns();
2910
2911 /*
2912 * SSD device without seek penalty, disable idling. But only do so
2913 * for devices that support queuing, otherwise we still have a problem
2914 * with sync vs async workloads.
2915 */
2916 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag &&
2917 !cfqd->cfq_group_idle)
2918 return;
2919
2920 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
2921 WARN_ON(cfq_cfqq_slice_new(cfqq));
2922
2923 /*
2924 * idle is disabled, either manually or by past process history
2925 */
2926 if (!cfq_should_idle(cfqd, cfqq)) {
2927 /* no queue idling. Check for group idling */
2928 if (cfqd->cfq_group_idle)
2929 group_idle = cfqd->cfq_group_idle;
2930 else
2931 return;
2932 }
2933
2934 /*
2935 * still active requests from this queue, don't idle
2936 */
2937 if (cfqq->dispatched)
2938 return;
2939
2940 /*
2941 * task has exited, don't wait
2942 */
2943 cic = cfqd->active_cic;
2944 if (!cic || !atomic_read(&cic->icq.ioc->active_ref))
2945 return;
2946
2947 /*
2948 * If our average think time is larger than the remaining time
2949 * slice, then don't idle. This avoids overrunning the allotted
2950 * time slice.
2951 */
2952 if (sample_valid(cic->ttime.ttime_samples) &&
2953 (cfqq->slice_end - now < cic->ttime.ttime_mean)) {
2954 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%llu",
2955 cic->ttime.ttime_mean);
2956 return;
2957 }
2958
2959 /*
2960 * There are other queues in the group or this is the only group and
2961 * it has too big thinktime, don't do group idle.
2962 */
2963 if (group_idle &&
2964 (cfqq->cfqg->nr_cfqq > 1 ||
2965 cfq_io_thinktime_big(cfqd, &st->ttime, true)))
2966 return;
2967
2968 cfq_mark_cfqq_wait_request(cfqq);
2969
2970 if (group_idle)
2971 sl = cfqd->cfq_group_idle;
2972 else
2973 sl = cfqd->cfq_slice_idle;
2974
2975 hrtimer_start(&cfqd->idle_slice_timer, ns_to_ktime(sl),
2976 HRTIMER_MODE_REL);
2977 cfqg_stats_set_start_idle_time(cfqq->cfqg);
2978 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %llu group_idle: %d", sl,
2979 group_idle ? 1 : 0);
2980 }
2981
2982 /*
2983 * Move request from internal lists to the request queue dispatch list.
2984 */
2985 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
2986 {
2987 struct cfq_data *cfqd = q->elevator->elevator_data;
2988 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2989
2990 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2991
2992 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
2993 cfq_remove_request(rq);
2994 cfqq->dispatched++;
2995 (RQ_CFQG(rq))->dispatched++;
2996 elv_dispatch_sort(q, rq);
2997
2998 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
2999 cfqq->nr_sectors += blk_rq_sectors(rq);
3000 }
3001
3002 /*
3003 * return expired entry, or NULL to just start from scratch in rbtree
3004 */
3005 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
3006 {
3007 struct request *rq = NULL;
3008
3009 if (cfq_cfqq_fifo_expire(cfqq))
3010 return NULL;
3011
3012 cfq_mark_cfqq_fifo_expire(cfqq);
3013
3014 if (list_empty(&cfqq->fifo))
3015 return NULL;
3016
3017 rq = rq_entry_fifo(cfqq->fifo.next);
3018 if (ktime_get_ns() < rq->fifo_time)
3019 rq = NULL;
3020
3021 return rq;
3022 }
3023
3024 static inline int
3025 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3026 {
3027 const int base_rq = cfqd->cfq_slice_async_rq;
3028
3029 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
3030
3031 return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
3032 }
3033
3034 /*
3035 * Must be called with the queue_lock held.
3036 */
3037 static int cfqq_process_refs(struct cfq_queue *cfqq)
3038 {
3039 int process_refs, io_refs;
3040
3041 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
3042 process_refs = cfqq->ref - io_refs;
3043 BUG_ON(process_refs < 0);
3044 return process_refs;
3045 }
3046
3047 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
3048 {
3049 int process_refs, new_process_refs;
3050 struct cfq_queue *__cfqq;
3051
3052 /*
3053 * If there are no process references on the new_cfqq, then it is
3054 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
3055 * chain may have dropped their last reference (not just their
3056 * last process reference).
3057 */
3058 if (!cfqq_process_refs(new_cfqq))
3059 return;
3060
3061 /* Avoid a circular list and skip interim queue merges */
3062 while ((__cfqq = new_cfqq->new_cfqq)) {
3063 if (__cfqq == cfqq)
3064 return;
3065 new_cfqq = __cfqq;
3066 }
3067
3068 process_refs = cfqq_process_refs(cfqq);
3069 new_process_refs = cfqq_process_refs(new_cfqq);
3070 /*
3071 * If the process for the cfqq has gone away, there is no
3072 * sense in merging the queues.
3073 */
3074 if (process_refs == 0 || new_process_refs == 0)
3075 return;
3076
3077 /*
3078 * Merge in the direction of the lesser amount of work.
3079 */
3080 if (new_process_refs >= process_refs) {
3081 cfqq->new_cfqq = new_cfqq;
3082 new_cfqq->ref += process_refs;
3083 } else {
3084 new_cfqq->new_cfqq = cfqq;
3085 cfqq->ref += new_process_refs;
3086 }
3087 }
3088
3089 static enum wl_type_t cfq_choose_wl_type(struct cfq_data *cfqd,
3090 struct cfq_group *cfqg, enum wl_class_t wl_class)
3091 {
3092 struct cfq_queue *queue;
3093 int i;
3094 bool key_valid = false;
3095 u64 lowest_key = 0;
3096 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
3097
3098 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
3099 /* select the one with lowest rb_key */
3100 queue = cfq_rb_first(st_for(cfqg, wl_class, i));
3101 if (queue &&
3102 (!key_valid || queue->rb_key < lowest_key)) {
3103 lowest_key = queue->rb_key;
3104 cur_best = i;
3105 key_valid = true;
3106 }
3107 }
3108
3109 return cur_best;
3110 }
3111
3112 static void
3113 choose_wl_class_and_type(struct cfq_data *cfqd, struct cfq_group *cfqg)
3114 {
3115 u64 slice;
3116 unsigned count;
3117 struct cfq_rb_root *st;
3118 u64 group_slice;
3119 enum wl_class_t original_class = cfqd->serving_wl_class;
3120 u64 now = ktime_get_ns();
3121
3122 /* Choose next priority. RT > BE > IDLE */
3123 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
3124 cfqd->serving_wl_class = RT_WORKLOAD;
3125 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
3126 cfqd->serving_wl_class = BE_WORKLOAD;
3127 else {
3128 cfqd->serving_wl_class = IDLE_WORKLOAD;
3129 cfqd->workload_expires = now + jiffies_to_nsecs(1);
3130 return;
3131 }
3132
3133 if (original_class != cfqd->serving_wl_class)
3134 goto new_workload;
3135
3136 /*
3137 * For RT and BE, we have to choose also the type
3138 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
3139 * expiration time
3140 */
3141 st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
3142 count = st->count;
3143
3144 /*
3145 * check workload expiration, and that we still have other queues ready
3146 */
3147 if (count && !(now > cfqd->workload_expires))
3148 return;
3149
3150 new_workload:
3151 /* otherwise select new workload type */
3152 cfqd->serving_wl_type = cfq_choose_wl_type(cfqd, cfqg,
3153 cfqd->serving_wl_class);
3154 st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
3155 count = st->count;
3156
3157 /*
3158 * the workload slice is computed as a fraction of target latency
3159 * proportional to the number of queues in that workload, over
3160 * all the queues in the same priority class
3161 */
3162 group_slice = cfq_group_slice(cfqd, cfqg);
3163
3164 slice = div_u64(group_slice * count,
3165 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_wl_class],
3166 cfq_group_busy_queues_wl(cfqd->serving_wl_class, cfqd,
3167 cfqg)));
3168
3169 if (cfqd->serving_wl_type == ASYNC_WORKLOAD) {
3170 u64 tmp;
3171
3172 /*
3173 * Async queues are currently system wide. Just taking
3174 * proportion of queues with-in same group will lead to higher
3175 * async ratio system wide as generally root group is going
3176 * to have higher weight. A more accurate thing would be to
3177 * calculate system wide asnc/sync ratio.
3178 */
3179 tmp = cfqd->cfq_target_latency *
3180 cfqg_busy_async_queues(cfqd, cfqg);
3181 tmp = div_u64(tmp, cfqd->busy_queues);
3182 slice = min_t(u64, slice, tmp);
3183
3184 /* async workload slice is scaled down according to
3185 * the sync/async slice ratio. */
3186 slice = div64_u64(slice*cfqd->cfq_slice[0], cfqd->cfq_slice[1]);
3187 } else
3188 /* sync workload slice is at least 2 * cfq_slice_idle */
3189 slice = max(slice, 2 * cfqd->cfq_slice_idle);
3190
3191 slice = max_t(u64, slice, CFQ_MIN_TT);
3192 cfq_log(cfqd, "workload slice:%llu", slice);
3193 cfqd->workload_expires = now + slice;
3194 }
3195
3196 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
3197 {
3198 struct cfq_rb_root *st = &cfqd->grp_service_tree;
3199 struct cfq_group *cfqg;
3200
3201 if (RB_EMPTY_ROOT(&st->rb.rb_root))
3202 return NULL;
3203 cfqg = cfq_rb_first_group(st);
3204 update_min_vdisktime(st);
3205 return cfqg;
3206 }
3207
3208 static void cfq_choose_cfqg(struct cfq_data *cfqd)
3209 {
3210 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
3211 u64 now = ktime_get_ns();
3212
3213 cfqd->serving_group = cfqg;
3214
3215 /* Restore the workload type data */
3216 if (cfqg->saved_wl_slice) {
3217 cfqd->workload_expires = now + cfqg->saved_wl_slice;
3218 cfqd->serving_wl_type = cfqg->saved_wl_type;
3219 cfqd->serving_wl_class = cfqg->saved_wl_class;
3220 } else
3221 cfqd->workload_expires = now - 1;
3222
3223 choose_wl_class_and_type(cfqd, cfqg);
3224 }
3225
3226 /*
3227 * Select a queue for service. If we have a current active queue,
3228 * check whether to continue servicing it, or retrieve and set a new one.
3229 */
3230 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
3231 {
3232 struct cfq_queue *cfqq, *new_cfqq = NULL;
3233 u64 now = ktime_get_ns();
3234
3235 cfqq = cfqd->active_queue;
3236 if (!cfqq)
3237 goto new_queue;
3238
3239 if (!cfqd->rq_queued)
3240 return NULL;
3241
3242 /*
3243 * We were waiting for group to get backlogged. Expire the queue
3244 */
3245 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
3246 goto expire;
3247
3248 /*
3249 * The active queue has run out of time, expire it and select new.
3250 */
3251 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
3252 /*
3253 * If slice had not expired at the completion of last request
3254 * we might not have turned on wait_busy flag. Don't expire
3255 * the queue yet. Allow the group to get backlogged.
3256 *
3257 * The very fact that we have used the slice, that means we
3258 * have been idling all along on this queue and it should be
3259 * ok to wait for this request to complete.
3260 */
3261 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
3262 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
3263 cfqq = NULL;
3264 goto keep_queue;
3265 } else
3266 goto check_group_idle;
3267 }
3268
3269 /*
3270 * The active queue has requests and isn't expired, allow it to
3271 * dispatch.
3272 */
3273 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3274 goto keep_queue;
3275
3276 /*
3277 * If another queue has a request waiting within our mean seek
3278 * distance, let it run. The expire code will check for close
3279 * cooperators and put the close queue at the front of the service
3280 * tree. If possible, merge the expiring queue with the new cfqq.
3281 */
3282 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
3283 if (new_cfqq) {
3284 if (!cfqq->new_cfqq)
3285 cfq_setup_merge(cfqq, new_cfqq);
3286 goto expire;
3287 }
3288
3289 /*
3290 * No requests pending. If the active queue still has requests in
3291 * flight or is idling for a new request, allow either of these
3292 * conditions to happen (or time out) before selecting a new queue.
3293 */
3294 if (hrtimer_active(&cfqd->idle_slice_timer)) {
3295 cfqq = NULL;
3296 goto keep_queue;
3297 }
3298
3299 /*
3300 * This is a deep seek queue, but the device is much faster than
3301 * the queue can deliver, don't idle
3302 **/
3303 if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
3304 (cfq_cfqq_slice_new(cfqq) ||
3305 (cfqq->slice_end - now > now - cfqq->slice_start))) {
3306 cfq_clear_cfqq_deep(cfqq);
3307 cfq_clear_cfqq_idle_window(cfqq);
3308 }
3309
3310 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
3311 cfqq = NULL;
3312 goto keep_queue;
3313 }
3314
3315 /*
3316 * If group idle is enabled and there are requests dispatched from
3317 * this group, wait for requests to complete.
3318 */
3319 check_group_idle:
3320 if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
3321 cfqq->cfqg->dispatched &&
3322 !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
3323 cfqq = NULL;
3324 goto keep_queue;
3325 }
3326
3327 expire:
3328 cfq_slice_expired(cfqd, 0);
3329 new_queue:
3330 /*
3331 * Current queue expired. Check if we have to switch to a new
3332 * service tree
3333 */
3334 if (!new_cfqq)
3335 cfq_choose_cfqg(cfqd);
3336
3337 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
3338 keep_queue:
3339 return cfqq;
3340 }
3341
3342 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
3343 {
3344 int dispatched = 0;
3345
3346 while (cfqq->next_rq) {
3347 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
3348 dispatched++;
3349 }
3350
3351 BUG_ON(!list_empty(&cfqq->fifo));
3352
3353 /* By default cfqq is not expired if it is empty. Do it explicitly */
3354 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
3355 return dispatched;
3356 }
3357
3358 /*
3359 * Drain our current requests. Used for barriers and when switching
3360 * io schedulers on-the-fly.
3361 */
3362 static int cfq_forced_dispatch(struct cfq_data *cfqd)
3363 {
3364 struct cfq_queue *cfqq;
3365 int dispatched = 0;
3366
3367 /* Expire the timeslice of the current active queue first */
3368 cfq_slice_expired(cfqd, 0);
3369 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
3370 __cfq_set_active_queue(cfqd, cfqq);
3371 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
3372 }
3373
3374 BUG_ON(cfqd->busy_queues);
3375
3376 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
3377 return dispatched;
3378 }
3379
3380 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
3381 struct cfq_queue *cfqq)
3382 {
3383 u64 now = ktime_get_ns();
3384
3385 /* the queue hasn't finished any request, can't estimate */
3386 if (cfq_cfqq_slice_new(cfqq))
3387 return true;
3388 if (now + cfqd->cfq_slice_idle * cfqq->dispatched > cfqq->slice_end)
3389 return true;
3390
3391 return false;
3392 }
3393
3394 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3395 {
3396 unsigned int max_dispatch;
3397
3398 if (cfq_cfqq_must_dispatch(cfqq))
3399 return true;
3400
3401 /*
3402 * Drain async requests before we start sync IO
3403 */
3404 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
3405 return false;
3406
3407 /*
3408 * If this is an async queue and we have sync IO in flight, let it wait
3409 */
3410 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
3411 return false;
3412
3413 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
3414 if (cfq_class_idle(cfqq))
3415 max_dispatch = 1;
3416
3417 /*
3418 * Does this cfqq already have too much IO in flight?
3419 */
3420 if (cfqq->dispatched >= max_dispatch) {
3421 bool promote_sync = false;
3422 /*
3423 * idle queue must always only have a single IO in flight
3424 */
3425 if (cfq_class_idle(cfqq))
3426 return false;
3427
3428 /*
3429 * If there is only one sync queue
3430 * we can ignore async queue here and give the sync
3431 * queue no dispatch limit. The reason is a sync queue can
3432 * preempt async queue, limiting the sync queue doesn't make
3433 * sense. This is useful for aiostress test.
3434 */
3435 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
3436 promote_sync = true;
3437
3438 /*
3439 * We have other queues, don't allow more IO from this one
3440 */
3441 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
3442 !promote_sync)
3443 return false;
3444
3445 /*
3446 * Sole queue user, no limit
3447 */
3448 if (cfqd->busy_queues == 1 || promote_sync)
3449 max_dispatch = -1;
3450 else
3451 /*
3452 * Normally we start throttling cfqq when cfq_quantum/2
3453 * requests have been dispatched. But we can drive
3454 * deeper queue depths at the beginning of slice
3455 * subjected to upper limit of cfq_quantum.
3456 * */
3457 max_dispatch = cfqd->cfq_quantum;
3458 }
3459
3460 /*
3461 * Async queues must wait a bit before being allowed dispatch.
3462 * We also ramp up the dispatch depth gradually for async IO,
3463 * based on the last sync IO we serviced
3464 */
3465 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
3466 u64 last_sync = ktime_get_ns() - cfqd->last_delayed_sync;
3467 unsigned int depth;
3468
3469 depth = div64_u64(last_sync, cfqd->cfq_slice[1]);
3470 if (!depth && !cfqq->dispatched)
3471 depth = 1;
3472 if (depth < max_dispatch)
3473 max_dispatch = depth;
3474 }
3475
3476 /*
3477 * If we're below the current max, allow a dispatch
3478 */
3479 return cfqq->dispatched < max_dispatch;
3480 }
3481
3482 /*
3483 * Dispatch a request from cfqq, moving them to the request queue
3484 * dispatch list.
3485 */
3486 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3487 {
3488 struct request *rq;
3489
3490 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
3491
3492 rq = cfq_check_fifo(cfqq);
3493 if (rq)
3494 cfq_mark_cfqq_must_dispatch(cfqq);
3495
3496 if (!cfq_may_dispatch(cfqd, cfqq))
3497 return false;
3498
3499 /*
3500 * follow expired path, else get first next available
3501 */
3502 if (!rq)
3503 rq = cfqq->next_rq;
3504 else
3505 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
3506
3507 /*
3508 * insert request into driver dispatch list
3509 */
3510 cfq_dispatch_insert(cfqd->queue, rq);
3511
3512 if (!cfqd->active_cic) {
3513 struct cfq_io_cq *cic = RQ_CIC(rq);
3514
3515 atomic_long_inc(&cic->icq.ioc->refcount);
3516 cfqd->active_cic = cic;
3517 }
3518
3519 return true;
3520 }
3521
3522 /*
3523 * Find the cfqq that we need to service and move a request from that to the
3524 * dispatch list
3525 */
3526 static int cfq_dispatch_requests(struct request_queue *q, int force)
3527 {
3528 struct cfq_data *cfqd = q->elevator->elevator_data;
3529 struct cfq_queue *cfqq;
3530
3531 if (!cfqd->busy_queues)
3532 return 0;
3533
3534 if (unlikely(force))
3535 return cfq_forced_dispatch(cfqd);
3536
3537 cfqq = cfq_select_queue(cfqd);
3538 if (!cfqq)
3539 return 0;
3540
3541 /*
3542 * Dispatch a request from this cfqq, if it is allowed
3543 */
3544 if (!cfq_dispatch_request(cfqd, cfqq))
3545 return 0;
3546
3547 cfqq->slice_dispatch++;
3548 cfq_clear_cfqq_must_dispatch(cfqq);
3549
3550 /*
3551 * expire an async queue immediately if it has used up its slice. idle
3552 * queue always expire after 1 dispatch round.
3553 */
3554 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
3555 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
3556 cfq_class_idle(cfqq))) {
3557 cfqq->slice_end = ktime_get_ns() + 1;
3558 cfq_slice_expired(cfqd, 0);
3559 }
3560
3561 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
3562 return 1;
3563 }
3564
3565 /*
3566 * task holds one reference to the queue, dropped when task exits. each rq
3567 * in-flight on this queue also holds a reference, dropped when rq is freed.
3568 *
3569 * Each cfq queue took a reference on the parent group. Drop it now.
3570 * queue lock must be held here.
3571 */
3572 static void cfq_put_queue(struct cfq_queue *cfqq)
3573 {
3574 struct cfq_data *cfqd = cfqq->cfqd;
3575 struct cfq_group *cfqg;
3576
3577 BUG_ON(cfqq->ref <= 0);
3578
3579 cfqq->ref--;
3580 if (cfqq->ref)
3581 return;
3582
3583 cfq_log_cfqq(cfqd, cfqq, "put_queue");
3584 BUG_ON(rb_first(&cfqq->sort_list));
3585 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
3586 cfqg = cfqq->cfqg;
3587
3588 if (unlikely(cfqd->active_queue == cfqq)) {
3589 __cfq_slice_expired(cfqd, cfqq, 0);
3590 cfq_schedule_dispatch(cfqd);
3591 }
3592
3593 BUG_ON(cfq_cfqq_on_rr(cfqq));
3594 kmem_cache_free(cfq_pool, cfqq);
3595 cfqg_put(cfqg);
3596 }
3597
3598 static void cfq_put_cooperator(struct cfq_queue *cfqq)
3599 {
3600 struct cfq_queue *__cfqq, *next;
3601
3602 /*
3603 * If this queue was scheduled to merge with another queue, be
3604 * sure to drop the reference taken on that queue (and others in
3605 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
3606 */
3607 __cfqq = cfqq->new_cfqq;
3608 while (__cfqq) {
3609 if (__cfqq == cfqq) {
3610 WARN(1, "cfqq->new_cfqq loop detected\n");
3611 break;
3612 }
3613 next = __cfqq->new_cfqq;
3614 cfq_put_queue(__cfqq);
3615 __cfqq = next;
3616 }
3617 }
3618
3619 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3620 {
3621 if (unlikely(cfqq == cfqd->active_queue)) {
3622 __cfq_slice_expired(cfqd, cfqq, 0);
3623 cfq_schedule_dispatch(cfqd);
3624 }
3625
3626 cfq_put_cooperator(cfqq);
3627
3628 cfq_put_queue(cfqq);
3629 }
3630
3631 static void cfq_init_icq(struct io_cq *icq)
3632 {
3633 struct cfq_io_cq *cic = icq_to_cic(icq);
3634
3635 cic->ttime.last_end_request = ktime_get_ns();
3636 }
3637
3638 static void cfq_exit_icq(struct io_cq *icq)
3639 {
3640 struct cfq_io_cq *cic = icq_to_cic(icq);
3641 struct cfq_data *cfqd = cic_to_cfqd(cic);
3642
3643 if (cic_to_cfqq(cic, false)) {
3644 cfq_exit_cfqq(cfqd, cic_to_cfqq(cic, false));
3645 cic_set_cfqq(cic, NULL, false);
3646 }
3647
3648 if (cic_to_cfqq(cic, true)) {
3649 cfq_exit_cfqq(cfqd, cic_to_cfqq(cic, true));
3650 cic_set_cfqq(cic, NULL, true);
3651 }
3652 }
3653
3654 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct cfq_io_cq *cic)
3655 {
3656 struct task_struct *tsk = current;
3657 int ioprio_class;
3658
3659 if (!cfq_cfqq_prio_changed(cfqq))
3660 return;
3661
3662 ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3663 switch (ioprio_class) {
3664 default:
3665 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
3666 case IOPRIO_CLASS_NONE:
3667 /*
3668 * no prio set, inherit CPU scheduling settings
3669 */
3670 cfqq->ioprio = task_nice_ioprio(tsk);
3671 cfqq->ioprio_class = task_nice_ioclass(tsk);
3672 break;
3673 case IOPRIO_CLASS_RT:
3674 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3675 cfqq->ioprio_class = IOPRIO_CLASS_RT;
3676 break;
3677 case IOPRIO_CLASS_BE:
3678 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3679 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3680 break;
3681 case IOPRIO_CLASS_IDLE:
3682 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
3683 cfqq->ioprio = 7;
3684 cfq_clear_cfqq_idle_window(cfqq);
3685 break;
3686 }
3687
3688 /*
3689 * keep track of original prio settings in case we have to temporarily
3690 * elevate the priority of this queue
3691 */
3692 cfqq->org_ioprio = cfqq->ioprio;
3693 cfqq->org_ioprio_class = cfqq->ioprio_class;
3694 cfq_clear_cfqq_prio_changed(cfqq);
3695 }
3696
3697 static void check_ioprio_changed(struct cfq_io_cq *cic, struct bio *bio)
3698 {
3699 int ioprio = cic->icq.ioc->ioprio;
3700 struct cfq_data *cfqd = cic_to_cfqd(cic);
3701 struct cfq_queue *cfqq;
3702
3703 /*
3704 * Check whether ioprio has changed. The condition may trigger
3705 * spuriously on a newly created cic but there's no harm.
3706 */
3707 if (unlikely(!cfqd) || likely(cic->ioprio == ioprio))
3708 return;
3709
3710 cfqq = cic_to_cfqq(cic, false);
3711 if (cfqq) {
3712 cfq_put_queue(cfqq);
3713 cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic, bio);
3714 cic_set_cfqq(cic, cfqq, false);
3715 }
3716
3717 cfqq = cic_to_cfqq(cic, true);
3718 if (cfqq)
3719 cfq_mark_cfqq_prio_changed(cfqq);
3720
3721 cic->ioprio = ioprio;
3722 }
3723
3724 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3725 pid_t pid, bool is_sync)
3726 {
3727 RB_CLEAR_NODE(&cfqq->rb_node);
3728 RB_CLEAR_NODE(&cfqq->p_node);
3729 INIT_LIST_HEAD(&cfqq->fifo);
3730
3731 cfqq->ref = 0;
3732 cfqq->cfqd = cfqd;
3733
3734 cfq_mark_cfqq_prio_changed(cfqq);
3735
3736 if (is_sync) {
3737 if (!cfq_class_idle(cfqq))
3738 cfq_mark_cfqq_idle_window(cfqq);
3739 cfq_mark_cfqq_sync(cfqq);
3740 }
3741 cfqq->pid = pid;
3742 }
3743
3744 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3745 static void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio)
3746 {
3747 struct cfq_data *cfqd = cic_to_cfqd(cic);
3748 struct cfq_queue *cfqq;
3749 uint64_t serial_nr;
3750
3751 rcu_read_lock();
3752 serial_nr = bio_blkcg(bio)->css.serial_nr;
3753 rcu_read_unlock();
3754
3755 /*
3756 * Check whether blkcg has changed. The condition may trigger
3757 * spuriously on a newly created cic but there's no harm.
3758 */
3759 if (unlikely(!cfqd) || likely(cic->blkcg_serial_nr == serial_nr))
3760 return;
3761
3762 /*
3763 * Drop reference to queues. New queues will be assigned in new
3764 * group upon arrival of fresh requests.
3765 */
3766 cfqq = cic_to_cfqq(cic, false);
3767 if (cfqq) {
3768 cfq_log_cfqq(cfqd, cfqq, "changed cgroup");
3769 cic_set_cfqq(cic, NULL, false);
3770 cfq_put_queue(cfqq);
3771 }
3772
3773 cfqq = cic_to_cfqq(cic, true);
3774 if (cfqq) {
3775 cfq_log_cfqq(cfqd, cfqq, "changed cgroup");
3776 cic_set_cfqq(cic, NULL, true);
3777 cfq_put_queue(cfqq);
3778 }
3779
3780 cic->blkcg_serial_nr = serial_nr;
3781 }
3782 #else
3783 static inline void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio)
3784 {
3785 }
3786 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
3787
3788 static struct cfq_queue **
3789 cfq_async_queue_prio(struct cfq_group *cfqg, int ioprio_class, int ioprio)
3790 {
3791 switch (ioprio_class) {
3792 case IOPRIO_CLASS_RT:
3793 return &cfqg->async_cfqq[0][ioprio];
3794 case IOPRIO_CLASS_NONE:
3795 ioprio = IOPRIO_NORM;
3796 /* fall through */
3797 case IOPRIO_CLASS_BE:
3798 return &cfqg->async_cfqq[1][ioprio];
3799 case IOPRIO_CLASS_IDLE:
3800 return &cfqg->async_idle_cfqq;
3801 default:
3802 BUG();
3803 }
3804 }
3805
3806 static struct cfq_queue *
3807 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
3808 struct bio *bio)
3809 {
3810 int ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3811 int ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3812 struct cfq_queue **async_cfqq = NULL;
3813 struct cfq_queue *cfqq;
3814 struct cfq_group *cfqg;
3815
3816 rcu_read_lock();
3817 cfqg = cfq_lookup_cfqg(cfqd, bio_blkcg(bio));
3818 if (!cfqg) {
3819 cfqq = &cfqd->oom_cfqq;
3820 goto out;
3821 }
3822
3823 if (!is_sync) {
3824 if (!ioprio_valid(cic->ioprio)) {
3825 struct task_struct *tsk = current;
3826 ioprio = task_nice_ioprio(tsk);
3827 ioprio_class = task_nice_ioclass(tsk);
3828 }
3829 async_cfqq = cfq_async_queue_prio(cfqg, ioprio_class, ioprio);
3830 cfqq = *async_cfqq;
3831 if (cfqq)
3832 goto out;
3833 }
3834
3835 cfqq = kmem_cache_alloc_node(cfq_pool,
3836 GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
3837 cfqd->queue->node);
3838 if (!cfqq) {
3839 cfqq = &cfqd->oom_cfqq;
3840 goto out;
3841 }
3842
3843 /* cfq_init_cfqq() assumes cfqq->ioprio_class is initialized. */
3844 cfqq->ioprio_class = IOPRIO_CLASS_NONE;
3845 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
3846 cfq_init_prio_data(cfqq, cic);
3847 cfq_link_cfqq_cfqg(cfqq, cfqg);
3848 cfq_log_cfqq(cfqd, cfqq, "alloced");
3849
3850 if (async_cfqq) {
3851 /* a new async queue is created, pin and remember */
3852 cfqq->ref++;
3853 *async_cfqq = cfqq;
3854 }
3855 out:
3856 cfqq->ref++;
3857 rcu_read_unlock();
3858 return cfqq;
3859 }
3860
3861 static void
3862 __cfq_update_io_thinktime(struct cfq_ttime *ttime, u64 slice_idle)
3863 {
3864 u64 elapsed = ktime_get_ns() - ttime->last_end_request;
3865 elapsed = min(elapsed, 2UL * slice_idle);
3866
3867 ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
3868 ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed, 8);
3869 ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
3870 ttime->ttime_samples);
3871 }
3872
3873 static void
3874 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3875 struct cfq_io_cq *cic)
3876 {
3877 if (cfq_cfqq_sync(cfqq)) {
3878 __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
3879 __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
3880 cfqd->cfq_slice_idle);
3881 }
3882 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3883 __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
3884 #endif
3885 }
3886
3887 static void
3888 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3889 struct request *rq)
3890 {
3891 sector_t sdist = 0;
3892 sector_t n_sec = blk_rq_sectors(rq);
3893 if (cfqq->last_request_pos) {
3894 if (cfqq->last_request_pos < blk_rq_pos(rq))
3895 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3896 else
3897 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3898 }
3899
3900 cfqq->seek_history <<= 1;
3901 if (blk_queue_nonrot(cfqd->queue))
3902 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3903 else
3904 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3905 }
3906
3907 static inline bool req_noidle(struct request *req)
3908 {
3909 return req_op(req) == REQ_OP_WRITE &&
3910 (req->cmd_flags & (REQ_SYNC | REQ_IDLE)) == REQ_SYNC;
3911 }
3912
3913 /*
3914 * Disable idle window if the process thinks too long or seeks so much that
3915 * it doesn't matter
3916 */
3917 static void
3918 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3919 struct cfq_io_cq *cic)
3920 {
3921 int old_idle, enable_idle;
3922
3923 /*
3924 * Don't idle for async or idle io prio class
3925 */
3926 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3927 return;
3928
3929 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3930
3931 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3932 cfq_mark_cfqq_deep(cfqq);
3933
3934 if (cfqq->next_rq && req_noidle(cfqq->next_rq))
3935 enable_idle = 0;
3936 else if (!atomic_read(&cic->icq.ioc->active_ref) ||
3937 !cfqd->cfq_slice_idle ||
3938 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3939 enable_idle = 0;
3940 else if (sample_valid(cic->ttime.ttime_samples)) {
3941 if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
3942 enable_idle = 0;
3943 else
3944 enable_idle = 1;
3945 }
3946
3947 if (old_idle != enable_idle) {
3948 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3949 if (enable_idle)
3950 cfq_mark_cfqq_idle_window(cfqq);
3951 else
3952 cfq_clear_cfqq_idle_window(cfqq);
3953 }
3954 }
3955
3956 /*
3957 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3958 * no or if we aren't sure, a 1 will cause a preempt.
3959 */
3960 static bool
3961 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3962 struct request *rq)
3963 {
3964 struct cfq_queue *cfqq;
3965
3966 cfqq = cfqd->active_queue;
3967 if (!cfqq)
3968 return false;
3969
3970 if (cfq_class_idle(new_cfqq))
3971 return false;
3972
3973 if (cfq_class_idle(cfqq))
3974 return true;
3975
3976 /*
3977 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3978 */
3979 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3980 return false;
3981
3982 /*
3983 * if the new request is sync, but the currently running queue is
3984 * not, let the sync request have priority.
3985 */
3986 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
3987 return true;
3988
3989 /*
3990 * Treat ancestors of current cgroup the same way as current cgroup.
3991 * For anybody else we disallow preemption to guarantee service
3992 * fairness among cgroups.
3993 */
3994 if (!cfqg_is_descendant(cfqq->cfqg, new_cfqq->cfqg))
3995 return false;
3996
3997 if (cfq_slice_used(cfqq))
3998 return true;
3999
4000 /*
4001 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
4002 */
4003 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
4004 return true;
4005
4006 WARN_ON_ONCE(cfqq->ioprio_class != new_cfqq->ioprio_class);
4007 /* Allow preemption only if we are idling on sync-noidle tree */
4008 if (cfqd->serving_wl_type == SYNC_NOIDLE_WORKLOAD &&
4009 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
4010 RB_EMPTY_ROOT(&cfqq->sort_list))
4011 return true;
4012
4013 /*
4014 * So both queues are sync. Let the new request get disk time if
4015 * it's a metadata request and the current queue is doing regular IO.
4016 */
4017 if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
4018 return true;
4019
4020 /* An idle queue should not be idle now for some reason */
4021 if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
4022 return true;
4023
4024 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
4025 return false;
4026
4027 /*
4028 * if this request is as-good as one we would expect from the
4029 * current cfqq, let it preempt
4030 */
4031 if (cfq_rq_close(cfqd, cfqq, rq))
4032 return true;
4033
4034 return false;
4035 }
4036
4037 /*
4038 * cfqq preempts the active queue. if we allowed preempt with no slice left,
4039 * let it have half of its nominal slice.
4040 */
4041 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
4042 {
4043 enum wl_type_t old_type = cfqq_type(cfqd->active_queue);
4044
4045 cfq_log_cfqq(cfqd, cfqq, "preempt");
4046 cfq_slice_expired(cfqd, 1);
4047
4048 /*
4049 * workload type is changed, don't save slice, otherwise preempt
4050 * doesn't happen
4051 */
4052 if (old_type != cfqq_type(cfqq))
4053 cfqq->cfqg->saved_wl_slice = 0;
4054
4055 /*
4056 * Put the new queue at the front of the of the current list,
4057 * so we know that it will be selected next.
4058 */
4059 BUG_ON(!cfq_cfqq_on_rr(cfqq));
4060
4061 cfq_service_tree_add(cfqd, cfqq, 1);
4062
4063 cfqq->slice_end = 0;
4064 cfq_mark_cfqq_slice_new(cfqq);
4065 }
4066
4067 /*
4068 * Called when a new fs request (rq) is added (to cfqq). Check if there's
4069 * something we should do about it
4070 */
4071 static void
4072 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
4073 struct request *rq)
4074 {
4075 struct cfq_io_cq *cic = RQ_CIC(rq);
4076
4077 cfqd->rq_queued++;
4078 if (rq->cmd_flags & REQ_PRIO)
4079 cfqq->prio_pending++;
4080
4081 cfq_update_io_thinktime(cfqd, cfqq, cic);
4082 cfq_update_io_seektime(cfqd, cfqq, rq);
4083 cfq_update_idle_window(cfqd, cfqq, cic);
4084
4085 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
4086
4087 if (cfqq == cfqd->active_queue) {
4088 /*
4089 * Remember that we saw a request from this process, but
4090 * don't start queuing just yet. Otherwise we risk seeing lots
4091 * of tiny requests, because we disrupt the normal plugging
4092 * and merging. If the request is already larger than a single
4093 * page, let it rip immediately. For that case we assume that
4094 * merging is already done. Ditto for a busy system that
4095 * has other work pending, don't risk delaying until the
4096 * idle timer unplug to continue working.
4097 */
4098 if (cfq_cfqq_wait_request(cfqq)) {
4099 if (blk_rq_bytes(rq) > PAGE_SIZE ||
4100 cfqd->busy_queues > 1) {
4101 cfq_del_timer(cfqd, cfqq);
4102 cfq_clear_cfqq_wait_request(cfqq);
4103 __blk_run_queue(cfqd->queue);
4104 } else {
4105 cfqg_stats_update_idle_time(cfqq->cfqg);
4106 cfq_mark_cfqq_must_dispatch(cfqq);
4107 }
4108 }
4109 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
4110 /*
4111 * not the active queue - expire current slice if it is
4112 * idle and has expired it's mean thinktime or this new queue
4113 * has some old slice time left and is of higher priority or
4114 * this new queue is RT and the current one is BE
4115 */
4116 cfq_preempt_queue(cfqd, cfqq);
4117 __blk_run_queue(cfqd->queue);
4118 }
4119 }
4120
4121 static void cfq_insert_request(struct request_queue *q, struct request *rq)
4122 {
4123 struct cfq_data *cfqd = q->elevator->elevator_data;
4124 struct cfq_queue *cfqq = RQ_CFQQ(rq);
4125
4126 cfq_log_cfqq(cfqd, cfqq, "insert_request");
4127 cfq_init_prio_data(cfqq, RQ_CIC(rq));
4128
4129 rq->fifo_time = ktime_get_ns() + cfqd->cfq_fifo_expire[rq_is_sync(rq)];
4130 list_add_tail(&rq->queuelist, &cfqq->fifo);
4131 cfq_add_rq_rb(rq);
4132 cfqg_stats_update_io_add(RQ_CFQG(rq), cfqd->serving_group,
4133 rq->cmd_flags);
4134 cfq_rq_enqueued(cfqd, cfqq, rq);
4135 }
4136
4137 /*
4138 * Update hw_tag based on peak queue depth over 50 samples under
4139 * sufficient load.
4140 */
4141 static void cfq_update_hw_tag(struct cfq_data *cfqd)
4142 {
4143 struct cfq_queue *cfqq = cfqd->active_queue;
4144
4145 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
4146 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
4147
4148 if (cfqd->hw_tag == 1)
4149 return;
4150
4151 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
4152 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
4153 return;
4154
4155 /*
4156 * If active queue hasn't enough requests and can idle, cfq might not
4157 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
4158 * case
4159 */
4160 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
4161 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
4162 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
4163 return;
4164
4165 if (cfqd->hw_tag_samples++ < 50)
4166 return;
4167
4168 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
4169 cfqd->hw_tag = 1;
4170 else
4171 cfqd->hw_tag = 0;
4172 }
4173
4174 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
4175 {
4176 struct cfq_io_cq *cic = cfqd->active_cic;
4177 u64 now = ktime_get_ns();
4178
4179 /* If the queue already has requests, don't wait */
4180 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
4181 return false;
4182
4183 /* If there are other queues in the group, don't wait */
4184 if (cfqq->cfqg->nr_cfqq > 1)
4185 return false;
4186
4187 /* the only queue in the group, but think time is big */
4188 if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
4189 return false;
4190
4191 if (cfq_slice_used(cfqq))
4192 return true;
4193
4194 /* if slice left is less than think time, wait busy */
4195 if (cic && sample_valid(cic->ttime.ttime_samples)
4196 && (cfqq->slice_end - now < cic->ttime.ttime_mean))
4197 return true;
4198
4199 /*
4200 * If think times is less than a jiffy than ttime_mean=0 and above
4201 * will not be true. It might happen that slice has not expired yet
4202 * but will expire soon (4-5 ns) during select_queue(). To cover the
4203 * case where think time is less than a jiffy, mark the queue wait
4204 * busy if only 1 jiffy is left in the slice.
4205 */
4206 if (cfqq->slice_end - now <= jiffies_to_nsecs(1))
4207 return true;
4208
4209 return false;
4210 }
4211
4212 static void cfq_completed_request(struct request_queue *q, struct request *rq)
4213 {
4214 struct cfq_queue *cfqq = RQ_CFQQ(rq);
4215 struct cfq_data *cfqd = cfqq->cfqd;
4216 const int sync = rq_is_sync(rq);
4217 u64 now = ktime_get_ns();
4218
4219 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", req_noidle(rq));
4220
4221 cfq_update_hw_tag(cfqd);
4222
4223 WARN_ON(!cfqd->rq_in_driver);
4224 WARN_ON(!cfqq->dispatched);
4225 cfqd->rq_in_driver--;
4226 cfqq->dispatched--;
4227 (RQ_CFQG(rq))->dispatched--;
4228 cfqg_stats_update_completion(cfqq->cfqg, rq_start_time_ns(rq),
4229 rq_io_start_time_ns(rq), rq->cmd_flags);
4230
4231 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
4232
4233 if (sync) {
4234 struct cfq_rb_root *st;
4235
4236 RQ_CIC(rq)->ttime.last_end_request = now;
4237
4238 if (cfq_cfqq_on_rr(cfqq))
4239 st = cfqq->service_tree;
4240 else
4241 st = st_for(cfqq->cfqg, cfqq_class(cfqq),
4242 cfqq_type(cfqq));
4243
4244 st->ttime.last_end_request = now;
4245 /*
4246 * We have to do this check in jiffies since start_time is in
4247 * jiffies and it is not trivial to convert to ns. If
4248 * cfq_fifo_expire[1] ever comes close to 1 jiffie, this test
4249 * will become problematic but so far we are fine (the default
4250 * is 128 ms).
4251 */
4252 if (!time_after(rq->start_time +
4253 nsecs_to_jiffies(cfqd->cfq_fifo_expire[1]),
4254 jiffies))
4255 cfqd->last_delayed_sync = now;
4256 }
4257
4258 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4259 cfqq->cfqg->ttime.last_end_request = now;
4260 #endif
4261
4262 /*
4263 * If this is the active queue, check if it needs to be expired,
4264 * or if we want to idle in case it has no pending requests.
4265 */
4266 if (cfqd->active_queue == cfqq) {
4267 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
4268
4269 if (cfq_cfqq_slice_new(cfqq)) {
4270 cfq_set_prio_slice(cfqd, cfqq);
4271 cfq_clear_cfqq_slice_new(cfqq);
4272 }
4273
4274 /*
4275 * Should we wait for next request to come in before we expire
4276 * the queue.
4277 */
4278 if (cfq_should_wait_busy(cfqd, cfqq)) {
4279 u64 extend_sl = cfqd->cfq_slice_idle;
4280 if (!cfqd->cfq_slice_idle)
4281 extend_sl = cfqd->cfq_group_idle;
4282 cfqq->slice_end = now + extend_sl;
4283 cfq_mark_cfqq_wait_busy(cfqq);
4284 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
4285 }
4286
4287 /*
4288 * Idling is not enabled on:
4289 * - expired queues
4290 * - idle-priority queues
4291 * - async queues
4292 * - queues with still some requests queued
4293 * - when there is a close cooperator
4294 */
4295 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
4296 cfq_slice_expired(cfqd, 1);
4297 else if (sync && cfqq_empty &&
4298 !cfq_close_cooperator(cfqd, cfqq)) {
4299 cfq_arm_slice_timer(cfqd);
4300 }
4301 }
4302
4303 if (!cfqd->rq_in_driver)
4304 cfq_schedule_dispatch(cfqd);
4305 }
4306
4307 static void cfqq_boost_on_prio(struct cfq_queue *cfqq, unsigned int op)
4308 {
4309 /*
4310 * If REQ_PRIO is set, boost class and prio level, if it's below
4311 * BE/NORM. If prio is not set, restore the potentially boosted
4312 * class/prio level.
4313 */
4314 if (!(op & REQ_PRIO)) {
4315 cfqq->ioprio_class = cfqq->org_ioprio_class;
4316 cfqq->ioprio = cfqq->org_ioprio;
4317 } else {
4318 if (cfq_class_idle(cfqq))
4319 cfqq->ioprio_class = IOPRIO_CLASS_BE;
4320 if (cfqq->ioprio > IOPRIO_NORM)
4321 cfqq->ioprio = IOPRIO_NORM;
4322 }
4323 }
4324
4325 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
4326 {
4327 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
4328 cfq_mark_cfqq_must_alloc_slice(cfqq);
4329 return ELV_MQUEUE_MUST;
4330 }
4331
4332 return ELV_MQUEUE_MAY;
4333 }
4334
4335 static int cfq_may_queue(struct request_queue *q, unsigned int op)
4336 {
4337 struct cfq_data *cfqd = q->elevator->elevator_data;
4338 struct task_struct *tsk = current;
4339 struct cfq_io_cq *cic;
4340 struct cfq_queue *cfqq;
4341
4342 /*
4343 * don't force setup of a queue from here, as a call to may_queue
4344 * does not necessarily imply that a request actually will be queued.
4345 * so just lookup a possibly existing queue, or return 'may queue'
4346 * if that fails
4347 */
4348 cic = cfq_cic_lookup(cfqd, tsk->io_context);
4349 if (!cic)
4350 return ELV_MQUEUE_MAY;
4351
4352 cfqq = cic_to_cfqq(cic, op_is_sync(op));
4353 if (cfqq) {
4354 cfq_init_prio_data(cfqq, cic);
4355 cfqq_boost_on_prio(cfqq, op);
4356
4357 return __cfq_may_queue(cfqq);
4358 }
4359
4360 return ELV_MQUEUE_MAY;
4361 }
4362
4363 /*
4364 * queue lock held here
4365 */
4366 static void cfq_put_request(struct request *rq)
4367 {
4368 struct cfq_queue *cfqq = RQ_CFQQ(rq);
4369
4370 if (cfqq) {
4371 const int rw = rq_data_dir(rq);
4372
4373 BUG_ON(!cfqq->allocated[rw]);
4374 cfqq->allocated[rw]--;
4375
4376 /* Put down rq reference on cfqg */
4377 cfqg_put(RQ_CFQG(rq));
4378 rq->elv.priv[0] = NULL;
4379 rq->elv.priv[1] = NULL;
4380
4381 cfq_put_queue(cfqq);
4382 }
4383 }
4384
4385 static struct cfq_queue *
4386 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic,
4387 struct cfq_queue *cfqq)
4388 {
4389 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
4390 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
4391 cfq_mark_cfqq_coop(cfqq->new_cfqq);
4392 cfq_put_queue(cfqq);
4393 return cic_to_cfqq(cic, 1);
4394 }
4395
4396 /*
4397 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
4398 * was the last process referring to said cfqq.
4399 */
4400 static struct cfq_queue *
4401 split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq)
4402 {
4403 if (cfqq_process_refs(cfqq) == 1) {
4404 cfqq->pid = current->pid;
4405 cfq_clear_cfqq_coop(cfqq);
4406 cfq_clear_cfqq_split_coop(cfqq);
4407 return cfqq;
4408 }
4409
4410 cic_set_cfqq(cic, NULL, 1);
4411
4412 cfq_put_cooperator(cfqq);
4413
4414 cfq_put_queue(cfqq);
4415 return NULL;
4416 }
4417 /*
4418 * Allocate cfq data structures associated with this request.
4419 */
4420 static int
4421 cfq_set_request(struct request_queue *q, struct request *rq, struct bio *bio,
4422 gfp_t gfp_mask)
4423 {
4424 struct cfq_data *cfqd = q->elevator->elevator_data;
4425 struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq);
4426 const int rw = rq_data_dir(rq);
4427 const bool is_sync = rq_is_sync(rq);
4428 struct cfq_queue *cfqq;
4429
4430 spin_lock_irq(q->queue_lock);
4431
4432 check_ioprio_changed(cic, bio);
4433 check_blkcg_changed(cic, bio);
4434 new_queue:
4435 cfqq = cic_to_cfqq(cic, is_sync);
4436 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
4437 if (cfqq)
4438 cfq_put_queue(cfqq);
4439 cfqq = cfq_get_queue(cfqd, is_sync, cic, bio);
4440 cic_set_cfqq(cic, cfqq, is_sync);
4441 } else {
4442 /*
4443 * If the queue was seeky for too long, break it apart.
4444 */
4445 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
4446 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
4447 cfqq = split_cfqq(cic, cfqq);
4448 if (!cfqq)
4449 goto new_queue;
4450 }
4451
4452 /*
4453 * Check to see if this queue is scheduled to merge with
4454 * another, closely cooperating queue. The merging of
4455 * queues happens here as it must be done in process context.
4456 * The reference on new_cfqq was taken in merge_cfqqs.
4457 */
4458 if (cfqq->new_cfqq)
4459 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
4460 }
4461
4462 cfqq->allocated[rw]++;
4463
4464 cfqq->ref++;
4465 cfqg_get(cfqq->cfqg);
4466 rq->elv.priv[0] = cfqq;
4467 rq->elv.priv[1] = cfqq->cfqg;
4468 spin_unlock_irq(q->queue_lock);
4469
4470 return 0;
4471 }
4472
4473 static void cfq_kick_queue(struct work_struct *work)
4474 {
4475 struct cfq_data *cfqd =
4476 container_of(work, struct cfq_data, unplug_work);
4477 struct request_queue *q = cfqd->queue;
4478
4479 spin_lock_irq(q->queue_lock);
4480 __blk_run_queue(cfqd->queue);
4481 spin_unlock_irq(q->queue_lock);
4482 }
4483
4484 /*
4485 * Timer running if the active_queue is currently idling inside its time slice
4486 */
4487 static enum hrtimer_restart cfq_idle_slice_timer(struct hrtimer *timer)
4488 {
4489 struct cfq_data *cfqd = container_of(timer, struct cfq_data,
4490 idle_slice_timer);
4491 struct cfq_queue *cfqq;
4492 unsigned long flags;
4493 int timed_out = 1;
4494
4495 cfq_log(cfqd, "idle timer fired");
4496
4497 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
4498
4499 cfqq = cfqd->active_queue;
4500 if (cfqq) {
4501 timed_out = 0;
4502
4503 /*
4504 * We saw a request before the queue expired, let it through
4505 */
4506 if (cfq_cfqq_must_dispatch(cfqq))
4507 goto out_kick;
4508
4509 /*
4510 * expired
4511 */
4512 if (cfq_slice_used(cfqq))
4513 goto expire;
4514
4515 /*
4516 * only expire and reinvoke request handler, if there are
4517 * other queues with pending requests
4518 */
4519 if (!cfqd->busy_queues)
4520 goto out_cont;
4521
4522 /*
4523 * not expired and it has a request pending, let it dispatch
4524 */
4525 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
4526 goto out_kick;
4527
4528 /*
4529 * Queue depth flag is reset only when the idle didn't succeed
4530 */
4531 cfq_clear_cfqq_deep(cfqq);
4532 }
4533 expire:
4534 cfq_slice_expired(cfqd, timed_out);
4535 out_kick:
4536 cfq_schedule_dispatch(cfqd);
4537 out_cont:
4538 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
4539 return HRTIMER_NORESTART;
4540 }
4541
4542 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
4543 {
4544 hrtimer_cancel(&cfqd->idle_slice_timer);
4545 cancel_work_sync(&cfqd->unplug_work);
4546 }
4547
4548 static void cfq_exit_queue(struct elevator_queue *e)
4549 {
4550 struct cfq_data *cfqd = e->elevator_data;
4551 struct request_queue *q = cfqd->queue;
4552
4553 cfq_shutdown_timer_wq(cfqd);
4554
4555 spin_lock_irq(q->queue_lock);
4556
4557 if (cfqd->active_queue)
4558 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
4559
4560 spin_unlock_irq(q->queue_lock);
4561
4562 cfq_shutdown_timer_wq(cfqd);
4563
4564 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4565 blkcg_deactivate_policy(q, &blkcg_policy_cfq);
4566 #else
4567 kfree(cfqd->root_group);
4568 #endif
4569 kfree(cfqd);
4570 }
4571
4572 static int cfq_init_queue(struct request_queue *q, struct elevator_type *e)
4573 {
4574 struct cfq_data *cfqd;
4575 struct blkcg_gq *blkg __maybe_unused;
4576 int i, ret;
4577 struct elevator_queue *eq;
4578
4579 eq = elevator_alloc(q, e);
4580 if (!eq)
4581 return -ENOMEM;
4582
4583 cfqd = kzalloc_node(sizeof(*cfqd), GFP_KERNEL, q->node);
4584 if (!cfqd) {
4585 kobject_put(&eq->kobj);
4586 return -ENOMEM;
4587 }
4588 eq->elevator_data = cfqd;
4589
4590 cfqd->queue = q;
4591 spin_lock_irq(q->queue_lock);
4592 q->elevator = eq;
4593 spin_unlock_irq(q->queue_lock);
4594
4595 /* Init root service tree */
4596 cfqd->grp_service_tree = CFQ_RB_ROOT;
4597
4598 /* Init root group and prefer root group over other groups by default */
4599 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4600 ret = blkcg_activate_policy(q, &blkcg_policy_cfq);
4601 if (ret)
4602 goto out_free;
4603
4604 cfqd->root_group = blkg_to_cfqg(q->root_blkg);
4605 #else
4606 ret = -ENOMEM;
4607 cfqd->root_group = kzalloc_node(sizeof(*cfqd->root_group),
4608 GFP_KERNEL, cfqd->queue->node);
4609 if (!cfqd->root_group)
4610 goto out_free;
4611
4612 cfq_init_cfqg_base(cfqd->root_group);
4613 cfqd->root_group->weight = 2 * CFQ_WEIGHT_LEGACY_DFL;
4614 cfqd->root_group->leaf_weight = 2 * CFQ_WEIGHT_LEGACY_DFL;
4615 #endif
4616
4617 /*
4618 * Not strictly needed (since RB_ROOT just clears the node and we
4619 * zeroed cfqd on alloc), but better be safe in case someone decides
4620 * to add magic to the rb code
4621 */
4622 for (i = 0; i < CFQ_PRIO_LISTS; i++)
4623 cfqd->prio_trees[i] = RB_ROOT;
4624
4625 /*
4626 * Our fallback cfqq if cfq_get_queue() runs into OOM issues.
4627 * Grab a permanent reference to it, so that the normal code flow
4628 * will not attempt to free it. oom_cfqq is linked to root_group
4629 * but shouldn't hold a reference as it'll never be unlinked. Lose
4630 * the reference from linking right away.
4631 */
4632 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
4633 cfqd->oom_cfqq.ref++;
4634
4635 spin_lock_irq(q->queue_lock);
4636 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, cfqd->root_group);
4637 cfqg_put(cfqd->root_group);
4638 spin_unlock_irq(q->queue_lock);
4639
4640 hrtimer_init(&cfqd->idle_slice_timer, CLOCK_MONOTONIC,
4641 HRTIMER_MODE_REL);
4642 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
4643
4644 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
4645
4646 cfqd->cfq_quantum = cfq_quantum;
4647 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
4648 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
4649 cfqd->cfq_back_max = cfq_back_max;
4650 cfqd->cfq_back_penalty = cfq_back_penalty;
4651 cfqd->cfq_slice[0] = cfq_slice_async;
4652 cfqd->cfq_slice[1] = cfq_slice_sync;
4653 cfqd->cfq_target_latency = cfq_target_latency;
4654 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
4655 cfqd->cfq_slice_idle = cfq_slice_idle;
4656 cfqd->cfq_group_idle = cfq_group_idle;
4657 cfqd->cfq_latency = 1;
4658 cfqd->hw_tag = -1;
4659 /*
4660 * we optimistically start assuming sync ops weren't delayed in last
4661 * second, in order to have larger depth for async operations.
4662 */
4663 cfqd->last_delayed_sync = ktime_get_ns() - NSEC_PER_SEC;
4664 return 0;
4665
4666 out_free:
4667 kfree(cfqd);
4668 kobject_put(&eq->kobj);
4669 return ret;
4670 }
4671
4672 static void cfq_registered_queue(struct request_queue *q)
4673 {
4674 struct elevator_queue *e = q->elevator;
4675 struct cfq_data *cfqd = e->elevator_data;
4676
4677 /*
4678 * Default to IOPS mode with no idling for SSDs
4679 */
4680 if (blk_queue_nonrot(q))
4681 cfqd->cfq_slice_idle = 0;
4682 wbt_disable_default(q);
4683 }
4684
4685 /*
4686 * sysfs parts below -->
4687 */
4688 static ssize_t
4689 cfq_var_show(unsigned int var, char *page)
4690 {
4691 return sprintf(page, "%u\n", var);
4692 }
4693
4694 static void
4695 cfq_var_store(unsigned int *var, const char *page)
4696 {
4697 char *p = (char *) page;
4698
4699 *var = simple_strtoul(p, &p, 10);
4700 }
4701
4702 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
4703 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4704 { \
4705 struct cfq_data *cfqd = e->elevator_data; \
4706 u64 __data = __VAR; \
4707 if (__CONV) \
4708 __data = div_u64(__data, NSEC_PER_MSEC); \
4709 return cfq_var_show(__data, (page)); \
4710 }
4711 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
4712 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4713 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
4714 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4715 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4716 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4717 SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4718 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4719 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4720 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4721 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4722 SHOW_FUNCTION(cfq_target_latency_show, cfqd->cfq_target_latency, 1);
4723 #undef SHOW_FUNCTION
4724
4725 #define USEC_SHOW_FUNCTION(__FUNC, __VAR) \
4726 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4727 { \
4728 struct cfq_data *cfqd = e->elevator_data; \
4729 u64 __data = __VAR; \
4730 __data = div_u64(__data, NSEC_PER_USEC); \
4731 return cfq_var_show(__data, (page)); \
4732 }
4733 USEC_SHOW_FUNCTION(cfq_slice_idle_us_show, cfqd->cfq_slice_idle);
4734 USEC_SHOW_FUNCTION(cfq_group_idle_us_show, cfqd->cfq_group_idle);
4735 USEC_SHOW_FUNCTION(cfq_slice_sync_us_show, cfqd->cfq_slice[1]);
4736 USEC_SHOW_FUNCTION(cfq_slice_async_us_show, cfqd->cfq_slice[0]);
4737 USEC_SHOW_FUNCTION(cfq_target_latency_us_show, cfqd->cfq_target_latency);
4738 #undef USEC_SHOW_FUNCTION
4739
4740 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
4741 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4742 { \
4743 struct cfq_data *cfqd = e->elevator_data; \
4744 unsigned int __data, __min = (MIN), __max = (MAX); \
4745 \
4746 cfq_var_store(&__data, (page)); \
4747 if (__data < __min) \
4748 __data = __min; \
4749 else if (__data > __max) \
4750 __data = __max; \
4751 if (__CONV) \
4752 *(__PTR) = (u64)__data * NSEC_PER_MSEC; \
4753 else \
4754 *(__PTR) = __data; \
4755 return count; \
4756 }
4757 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4758 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4759 UINT_MAX, 1);
4760 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4761 UINT_MAX, 1);
4762 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4763 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4764 UINT_MAX, 0);
4765 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4766 STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4767 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4768 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4769 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4770 UINT_MAX, 0);
4771 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4772 STORE_FUNCTION(cfq_target_latency_store, &cfqd->cfq_target_latency, 1, UINT_MAX, 1);
4773 #undef STORE_FUNCTION
4774
4775 #define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \
4776 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4777 { \
4778 struct cfq_data *cfqd = e->elevator_data; \
4779 unsigned int __data, __min = (MIN), __max = (MAX); \
4780 \
4781 cfq_var_store(&__data, (page)); \
4782 if (__data < __min) \
4783 __data = __min; \
4784 else if (__data > __max) \
4785 __data = __max; \
4786 *(__PTR) = (u64)__data * NSEC_PER_USEC; \
4787 return count; \
4788 }
4789 USEC_STORE_FUNCTION(cfq_slice_idle_us_store, &cfqd->cfq_slice_idle, 0, UINT_MAX);
4790 USEC_STORE_FUNCTION(cfq_group_idle_us_store, &cfqd->cfq_group_idle, 0, UINT_MAX);
4791 USEC_STORE_FUNCTION(cfq_slice_sync_us_store, &cfqd->cfq_slice[1], 1, UINT_MAX);
4792 USEC_STORE_FUNCTION(cfq_slice_async_us_store, &cfqd->cfq_slice[0], 1, UINT_MAX);
4793 USEC_STORE_FUNCTION(cfq_target_latency_us_store, &cfqd->cfq_target_latency, 1, UINT_MAX);
4794 #undef USEC_STORE_FUNCTION
4795
4796 #define CFQ_ATTR(name) \
4797 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4798
4799 static struct elv_fs_entry cfq_attrs[] = {
4800 CFQ_ATTR(quantum),
4801 CFQ_ATTR(fifo_expire_sync),
4802 CFQ_ATTR(fifo_expire_async),
4803 CFQ_ATTR(back_seek_max),
4804 CFQ_ATTR(back_seek_penalty),
4805 CFQ_ATTR(slice_sync),
4806 CFQ_ATTR(slice_sync_us),
4807 CFQ_ATTR(slice_async),
4808 CFQ_ATTR(slice_async_us),
4809 CFQ_ATTR(slice_async_rq),
4810 CFQ_ATTR(slice_idle),
4811 CFQ_ATTR(slice_idle_us),
4812 CFQ_ATTR(group_idle),
4813 CFQ_ATTR(group_idle_us),
4814 CFQ_ATTR(low_latency),
4815 CFQ_ATTR(target_latency),
4816 CFQ_ATTR(target_latency_us),
4817 __ATTR_NULL
4818 };
4819
4820 static struct elevator_type iosched_cfq = {
4821 .ops.sq = {
4822 .elevator_merge_fn = cfq_merge,
4823 .elevator_merged_fn = cfq_merged_request,
4824 .elevator_merge_req_fn = cfq_merged_requests,
4825 .elevator_allow_bio_merge_fn = cfq_allow_bio_merge,
4826 .elevator_allow_rq_merge_fn = cfq_allow_rq_merge,
4827 .elevator_bio_merged_fn = cfq_bio_merged,
4828 .elevator_dispatch_fn = cfq_dispatch_requests,
4829 .elevator_add_req_fn = cfq_insert_request,
4830 .elevator_activate_req_fn = cfq_activate_request,
4831 .elevator_deactivate_req_fn = cfq_deactivate_request,
4832 .elevator_completed_req_fn = cfq_completed_request,
4833 .elevator_former_req_fn = elv_rb_former_request,
4834 .elevator_latter_req_fn = elv_rb_latter_request,
4835 .elevator_init_icq_fn = cfq_init_icq,
4836 .elevator_exit_icq_fn = cfq_exit_icq,
4837 .elevator_set_req_fn = cfq_set_request,
4838 .elevator_put_req_fn = cfq_put_request,
4839 .elevator_may_queue_fn = cfq_may_queue,
4840 .elevator_init_fn = cfq_init_queue,
4841 .elevator_exit_fn = cfq_exit_queue,
4842 .elevator_registered_fn = cfq_registered_queue,
4843 },
4844 .icq_size = sizeof(struct cfq_io_cq),
4845 .icq_align = __alignof__(struct cfq_io_cq),
4846 .elevator_attrs = cfq_attrs,
4847 .elevator_name = "cfq",
4848 .elevator_owner = THIS_MODULE,
4849 };
4850
4851 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4852 static struct blkcg_policy blkcg_policy_cfq = {
4853 .dfl_cftypes = cfq_blkcg_files,
4854 .legacy_cftypes = cfq_blkcg_legacy_files,
4855
4856 .cpd_alloc_fn = cfq_cpd_alloc,
4857 .cpd_init_fn = cfq_cpd_init,
4858 .cpd_free_fn = cfq_cpd_free,
4859 .cpd_bind_fn = cfq_cpd_bind,
4860
4861 .pd_alloc_fn = cfq_pd_alloc,
4862 .pd_init_fn = cfq_pd_init,
4863 .pd_offline_fn = cfq_pd_offline,
4864 .pd_free_fn = cfq_pd_free,
4865 .pd_reset_stats_fn = cfq_pd_reset_stats,
4866 };
4867 #endif
4868
4869 static int __init cfq_init(void)
4870 {
4871 int ret;
4872
4873 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4874 ret = blkcg_policy_register(&blkcg_policy_cfq);
4875 if (ret)
4876 return ret;
4877 #else
4878 cfq_group_idle = 0;
4879 #endif
4880
4881 ret = -ENOMEM;
4882 cfq_pool = KMEM_CACHE(cfq_queue, 0);
4883 if (!cfq_pool)
4884 goto err_pol_unreg;
4885
4886 ret = elv_register(&iosched_cfq);
4887 if (ret)
4888 goto err_free_pool;
4889
4890 return 0;
4891
4892 err_free_pool:
4893 kmem_cache_destroy(cfq_pool);
4894 err_pol_unreg:
4895 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4896 blkcg_policy_unregister(&blkcg_policy_cfq);
4897 #endif
4898 return ret;
4899 }
4900
4901 static void __exit cfq_exit(void)
4902 {
4903 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4904 blkcg_policy_unregister(&blkcg_policy_cfq);
4905 #endif
4906 elv_unregister(&iosched_cfq);
4907 kmem_cache_destroy(cfq_pool);
4908 }
4909
4910 module_init(cfq_init);
4911 module_exit(cfq_exit);
4912
4913 MODULE_AUTHOR("Jens Axboe");
4914 MODULE_LICENSE("GPL");
4915 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");