]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - crypto/Kconfig
UBUNTU: SAUCE: Revert "crypto: testmgr - add AES-CFB tests"
[mirror_ubuntu-bionic-kernel.git] / crypto / Kconfig
1 # SPDX-License-Identifier: GPL-2.0
2 #
3 # Generic algorithms support
4 #
5 config XOR_BLOCKS
6 tristate
7
8 #
9 # async_tx api: hardware offloaded memory transfer/transform support
10 #
11 source "crypto/async_tx/Kconfig"
12
13 #
14 # Cryptographic API Configuration
15 #
16 menuconfig CRYPTO
17 tristate "Cryptographic API"
18 help
19 This option provides the core Cryptographic API.
20
21 if CRYPTO
22
23 comment "Crypto core or helper"
24
25 config CRYPTO_FIPS
26 bool "FIPS 200 compliance"
27 depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
28 depends on (MODULE_SIG || !MODULES)
29 help
30 This options enables the fips boot option which is
31 required if you want to system to operate in a FIPS 200
32 certification. You should say no unless you know what
33 this is.
34
35 config CRYPTO_ALGAPI
36 tristate
37 select CRYPTO_ALGAPI2
38 help
39 This option provides the API for cryptographic algorithms.
40
41 config CRYPTO_ALGAPI2
42 tristate
43
44 config CRYPTO_AEAD
45 tristate
46 select CRYPTO_AEAD2
47 select CRYPTO_ALGAPI
48
49 config CRYPTO_AEAD2
50 tristate
51 select CRYPTO_ALGAPI2
52 select CRYPTO_NULL2
53 select CRYPTO_RNG2
54
55 config CRYPTO_BLKCIPHER
56 tristate
57 select CRYPTO_BLKCIPHER2
58 select CRYPTO_ALGAPI
59
60 config CRYPTO_BLKCIPHER2
61 tristate
62 select CRYPTO_ALGAPI2
63 select CRYPTO_RNG2
64 select CRYPTO_WORKQUEUE
65
66 config CRYPTO_HASH
67 tristate
68 select CRYPTO_HASH2
69 select CRYPTO_ALGAPI
70
71 config CRYPTO_HASH2
72 tristate
73 select CRYPTO_ALGAPI2
74
75 config CRYPTO_RNG
76 tristate
77 select CRYPTO_RNG2
78 select CRYPTO_ALGAPI
79
80 config CRYPTO_RNG2
81 tristate
82 select CRYPTO_ALGAPI2
83
84 config CRYPTO_RNG_DEFAULT
85 tristate
86 select CRYPTO_DRBG_MENU
87
88 config CRYPTO_AKCIPHER2
89 tristate
90 select CRYPTO_ALGAPI2
91
92 config CRYPTO_AKCIPHER
93 tristate
94 select CRYPTO_AKCIPHER2
95 select CRYPTO_ALGAPI
96
97 config CRYPTO_KPP2
98 tristate
99 select CRYPTO_ALGAPI2
100
101 config CRYPTO_KPP
102 tristate
103 select CRYPTO_ALGAPI
104 select CRYPTO_KPP2
105
106 config CRYPTO_ACOMP2
107 tristate
108 select CRYPTO_ALGAPI2
109
110 config CRYPTO_ACOMP
111 tristate
112 select CRYPTO_ALGAPI
113 select CRYPTO_ACOMP2
114
115 config CRYPTO_RSA
116 tristate "RSA algorithm"
117 select CRYPTO_AKCIPHER
118 select CRYPTO_MANAGER
119 select MPILIB
120 select ASN1
121 help
122 Generic implementation of the RSA public key algorithm.
123
124 config CRYPTO_DH
125 tristate "Diffie-Hellman algorithm"
126 select CRYPTO_KPP
127 select MPILIB
128 help
129 Generic implementation of the Diffie-Hellman algorithm.
130
131 config CRYPTO_ECDH
132 tristate "ECDH algorithm"
133 select CRYPTO_KPP
134 select CRYPTO_RNG_DEFAULT
135 help
136 Generic implementation of the ECDH algorithm
137
138 config CRYPTO_MANAGER
139 tristate "Cryptographic algorithm manager"
140 select CRYPTO_MANAGER2
141 help
142 Create default cryptographic template instantiations such as
143 cbc(aes).
144
145 config CRYPTO_MANAGER2
146 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
147 select CRYPTO_AEAD2
148 select CRYPTO_HASH2
149 select CRYPTO_BLKCIPHER2
150 select CRYPTO_AKCIPHER2
151 select CRYPTO_KPP2
152 select CRYPTO_ACOMP2
153
154 config CRYPTO_USER
155 tristate "Userspace cryptographic algorithm configuration"
156 depends on NET
157 select CRYPTO_MANAGER
158 help
159 Userspace configuration for cryptographic instantiations such as
160 cbc(aes).
161
162 config CRYPTO_MANAGER_DISABLE_TESTS
163 bool "Disable run-time self tests"
164 default y
165 depends on CRYPTO_MANAGER2
166 help
167 Disable run-time self tests that normally take place at
168 algorithm registration.
169
170 config CRYPTO_GF128MUL
171 tristate "GF(2^128) multiplication functions"
172 help
173 Efficient table driven implementation of multiplications in the
174 field GF(2^128). This is needed by some cypher modes. This
175 option will be selected automatically if you select such a
176 cipher mode. Only select this option by hand if you expect to load
177 an external module that requires these functions.
178
179 config CRYPTO_NULL
180 tristate "Null algorithms"
181 select CRYPTO_NULL2
182 help
183 These are 'Null' algorithms, used by IPsec, which do nothing.
184
185 config CRYPTO_NULL2
186 tristate
187 select CRYPTO_ALGAPI2
188 select CRYPTO_BLKCIPHER2
189 select CRYPTO_HASH2
190
191 config CRYPTO_PCRYPT
192 tristate "Parallel crypto engine"
193 depends on SMP
194 select PADATA
195 select CRYPTO_MANAGER
196 select CRYPTO_AEAD
197 help
198 This converts an arbitrary crypto algorithm into a parallel
199 algorithm that executes in kernel threads.
200
201 config CRYPTO_WORKQUEUE
202 tristate
203
204 config CRYPTO_CRYPTD
205 tristate "Software async crypto daemon"
206 select CRYPTO_BLKCIPHER
207 select CRYPTO_HASH
208 select CRYPTO_MANAGER
209 select CRYPTO_WORKQUEUE
210 help
211 This is a generic software asynchronous crypto daemon that
212 converts an arbitrary synchronous software crypto algorithm
213 into an asynchronous algorithm that executes in a kernel thread.
214
215 config CRYPTO_MCRYPTD
216 tristate "Software async multi-buffer crypto daemon"
217 select CRYPTO_BLKCIPHER
218 select CRYPTO_HASH
219 select CRYPTO_MANAGER
220 select CRYPTO_WORKQUEUE
221 help
222 This is a generic software asynchronous crypto daemon that
223 provides the kernel thread to assist multi-buffer crypto
224 algorithms for submitting jobs and flushing jobs in multi-buffer
225 crypto algorithms. Multi-buffer crypto algorithms are executed
226 in the context of this kernel thread and drivers can post
227 their crypto request asynchronously to be processed by this daemon.
228
229 config CRYPTO_AUTHENC
230 tristate "Authenc support"
231 select CRYPTO_AEAD
232 select CRYPTO_BLKCIPHER
233 select CRYPTO_MANAGER
234 select CRYPTO_HASH
235 select CRYPTO_NULL
236 help
237 Authenc: Combined mode wrapper for IPsec.
238 This is required for IPSec.
239
240 config CRYPTO_TEST
241 tristate "Testing module"
242 depends on m
243 select CRYPTO_MANAGER
244 help
245 Quick & dirty crypto test module.
246
247 config CRYPTO_ABLK_HELPER
248 tristate
249 select CRYPTO_CRYPTD
250
251 config CRYPTO_SIMD
252 tristate
253 select CRYPTO_CRYPTD
254
255 config CRYPTO_GLUE_HELPER_X86
256 tristate
257 depends on X86
258 select CRYPTO_BLKCIPHER
259
260 config CRYPTO_ENGINE
261 tristate
262
263 comment "Authenticated Encryption with Associated Data"
264
265 config CRYPTO_CCM
266 tristate "CCM support"
267 select CRYPTO_CTR
268 select CRYPTO_HASH
269 select CRYPTO_AEAD
270 help
271 Support for Counter with CBC MAC. Required for IPsec.
272
273 config CRYPTO_GCM
274 tristate "GCM/GMAC support"
275 select CRYPTO_CTR
276 select CRYPTO_AEAD
277 select CRYPTO_GHASH
278 select CRYPTO_NULL
279 help
280 Support for Galois/Counter Mode (GCM) and Galois Message
281 Authentication Code (GMAC). Required for IPSec.
282
283 config CRYPTO_CHACHA20POLY1305
284 tristate "ChaCha20-Poly1305 AEAD support"
285 select CRYPTO_CHACHA20
286 select CRYPTO_POLY1305
287 select CRYPTO_AEAD
288 help
289 ChaCha20-Poly1305 AEAD support, RFC7539.
290
291 Support for the AEAD wrapper using the ChaCha20 stream cipher combined
292 with the Poly1305 authenticator. It is defined in RFC7539 for use in
293 IETF protocols.
294
295 config CRYPTO_SEQIV
296 tristate "Sequence Number IV Generator"
297 select CRYPTO_AEAD
298 select CRYPTO_BLKCIPHER
299 select CRYPTO_NULL
300 select CRYPTO_RNG_DEFAULT
301 help
302 This IV generator generates an IV based on a sequence number by
303 xoring it with a salt. This algorithm is mainly useful for CTR
304
305 config CRYPTO_ECHAINIV
306 tristate "Encrypted Chain IV Generator"
307 select CRYPTO_AEAD
308 select CRYPTO_NULL
309 select CRYPTO_RNG_DEFAULT
310 default m
311 help
312 This IV generator generates an IV based on the encryption of
313 a sequence number xored with a salt. This is the default
314 algorithm for CBC.
315
316 comment "Block modes"
317
318 config CRYPTO_CBC
319 tristate "CBC support"
320 select CRYPTO_BLKCIPHER
321 select CRYPTO_MANAGER
322 help
323 CBC: Cipher Block Chaining mode
324 This block cipher algorithm is required for IPSec.
325
326 config CRYPTO_CTR
327 tristate "CTR support"
328 select CRYPTO_BLKCIPHER
329 select CRYPTO_SEQIV
330 select CRYPTO_MANAGER
331 help
332 CTR: Counter mode
333 This block cipher algorithm is required for IPSec.
334
335 config CRYPTO_CTS
336 tristate "CTS support"
337 select CRYPTO_BLKCIPHER
338 help
339 CTS: Cipher Text Stealing
340 This is the Cipher Text Stealing mode as described by
341 Section 8 of rfc2040 and referenced by rfc3962.
342 (rfc3962 includes errata information in its Appendix A)
343 This mode is required for Kerberos gss mechanism support
344 for AES encryption.
345
346 config CRYPTO_ECB
347 tristate "ECB support"
348 select CRYPTO_BLKCIPHER
349 select CRYPTO_MANAGER
350 help
351 ECB: Electronic CodeBook mode
352 This is the simplest block cipher algorithm. It simply encrypts
353 the input block by block.
354
355 config CRYPTO_LRW
356 tristate "LRW support"
357 select CRYPTO_BLKCIPHER
358 select CRYPTO_MANAGER
359 select CRYPTO_GF128MUL
360 help
361 LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
362 narrow block cipher mode for dm-crypt. Use it with cipher
363 specification string aes-lrw-benbi, the key must be 256, 320 or 384.
364 The first 128, 192 or 256 bits in the key are used for AES and the
365 rest is used to tie each cipher block to its logical position.
366
367 config CRYPTO_PCBC
368 tristate "PCBC support"
369 select CRYPTO_BLKCIPHER
370 select CRYPTO_MANAGER
371 help
372 PCBC: Propagating Cipher Block Chaining mode
373 This block cipher algorithm is required for RxRPC.
374
375 config CRYPTO_XTS
376 tristate "XTS support"
377 select CRYPTO_BLKCIPHER
378 select CRYPTO_MANAGER
379 select CRYPTO_ECB
380 help
381 XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
382 key size 256, 384 or 512 bits. This implementation currently
383 can't handle a sectorsize which is not a multiple of 16 bytes.
384
385 config CRYPTO_KEYWRAP
386 tristate "Key wrapping support"
387 select CRYPTO_BLKCIPHER
388 help
389 Support for key wrapping (NIST SP800-38F / RFC3394) without
390 padding.
391
392 comment "Hash modes"
393
394 config CRYPTO_CMAC
395 tristate "CMAC support"
396 select CRYPTO_HASH
397 select CRYPTO_MANAGER
398 help
399 Cipher-based Message Authentication Code (CMAC) specified by
400 The National Institute of Standards and Technology (NIST).
401
402 https://tools.ietf.org/html/rfc4493
403 http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
404
405 config CRYPTO_HMAC
406 tristate "HMAC support"
407 select CRYPTO_HASH
408 select CRYPTO_MANAGER
409 help
410 HMAC: Keyed-Hashing for Message Authentication (RFC2104).
411 This is required for IPSec.
412
413 config CRYPTO_XCBC
414 tristate "XCBC support"
415 select CRYPTO_HASH
416 select CRYPTO_MANAGER
417 help
418 XCBC: Keyed-Hashing with encryption algorithm
419 http://www.ietf.org/rfc/rfc3566.txt
420 http://csrc.nist.gov/encryption/modes/proposedmodes/
421 xcbc-mac/xcbc-mac-spec.pdf
422
423 config CRYPTO_VMAC
424 tristate "VMAC support"
425 select CRYPTO_HASH
426 select CRYPTO_MANAGER
427 help
428 VMAC is a message authentication algorithm designed for
429 very high speed on 64-bit architectures.
430
431 See also:
432 <http://fastcrypto.org/vmac>
433
434 comment "Digest"
435
436 config CRYPTO_CRC32C
437 tristate "CRC32c CRC algorithm"
438 select CRYPTO_HASH
439 select CRC32
440 help
441 Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used
442 by iSCSI for header and data digests and by others.
443 See Castagnoli93. Module will be crc32c.
444
445 config CRYPTO_CRC32C_INTEL
446 tristate "CRC32c INTEL hardware acceleration"
447 depends on X86
448 select CRYPTO_HASH
449 help
450 In Intel processor with SSE4.2 supported, the processor will
451 support CRC32C implementation using hardware accelerated CRC32
452 instruction. This option will create 'crc32c-intel' module,
453 which will enable any routine to use the CRC32 instruction to
454 gain performance compared with software implementation.
455 Module will be crc32c-intel.
456
457 config CRYPTO_CRC32C_VPMSUM
458 tristate "CRC32c CRC algorithm (powerpc64)"
459 depends on PPC64 && ALTIVEC
460 select CRYPTO_HASH
461 select CRC32
462 help
463 CRC32c algorithm implemented using vector polynomial multiply-sum
464 (vpmsum) instructions, introduced in POWER8. Enable on POWER8
465 and newer processors for improved performance.
466
467
468 config CRYPTO_CRC32C_SPARC64
469 tristate "CRC32c CRC algorithm (SPARC64)"
470 depends on SPARC64
471 select CRYPTO_HASH
472 select CRC32
473 help
474 CRC32c CRC algorithm implemented using sparc64 crypto instructions,
475 when available.
476
477 config CRYPTO_CRC32
478 tristate "CRC32 CRC algorithm"
479 select CRYPTO_HASH
480 select CRC32
481 help
482 CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
483 Shash crypto api wrappers to crc32_le function.
484
485 config CRYPTO_CRC32_PCLMUL
486 tristate "CRC32 PCLMULQDQ hardware acceleration"
487 depends on X86
488 select CRYPTO_HASH
489 select CRC32
490 help
491 From Intel Westmere and AMD Bulldozer processor with SSE4.2
492 and PCLMULQDQ supported, the processor will support
493 CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
494 instruction. This option will create 'crc32-plcmul' module,
495 which will enable any routine to use the CRC-32-IEEE 802.3 checksum
496 and gain better performance as compared with the table implementation.
497
498 config CRYPTO_CRCT10DIF
499 tristate "CRCT10DIF algorithm"
500 select CRYPTO_HASH
501 help
502 CRC T10 Data Integrity Field computation is being cast as
503 a crypto transform. This allows for faster crc t10 diff
504 transforms to be used if they are available.
505
506 config CRYPTO_CRCT10DIF_PCLMUL
507 tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
508 depends on X86 && 64BIT && CRC_T10DIF
509 select CRYPTO_HASH
510 help
511 For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
512 CRC T10 DIF PCLMULQDQ computation can be hardware
513 accelerated PCLMULQDQ instruction. This option will create
514 'crct10dif-plcmul' module, which is faster when computing the
515 crct10dif checksum as compared with the generic table implementation.
516
517 config CRYPTO_CRCT10DIF_VPMSUM
518 tristate "CRC32T10DIF powerpc64 hardware acceleration"
519 depends on PPC64 && ALTIVEC && CRC_T10DIF
520 select CRYPTO_HASH
521 help
522 CRC10T10DIF algorithm implemented using vector polynomial
523 multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
524 POWER8 and newer processors for improved performance.
525
526 config CRYPTO_VPMSUM_TESTER
527 tristate "Powerpc64 vpmsum hardware acceleration tester"
528 depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
529 help
530 Stress test for CRC32c and CRC-T10DIF algorithms implemented with
531 POWER8 vpmsum instructions.
532 Unless you are testing these algorithms, you don't need this.
533
534 config CRYPTO_GHASH
535 tristate "GHASH digest algorithm"
536 select CRYPTO_GF128MUL
537 select CRYPTO_HASH
538 help
539 GHASH is message digest algorithm for GCM (Galois/Counter Mode).
540
541 config CRYPTO_POLY1305
542 tristate "Poly1305 authenticator algorithm"
543 select CRYPTO_HASH
544 help
545 Poly1305 authenticator algorithm, RFC7539.
546
547 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
548 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
549 in IETF protocols. This is the portable C implementation of Poly1305.
550
551 config CRYPTO_POLY1305_X86_64
552 tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
553 depends on X86 && 64BIT
554 select CRYPTO_POLY1305
555 help
556 Poly1305 authenticator algorithm, RFC7539.
557
558 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
559 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
560 in IETF protocols. This is the x86_64 assembler implementation using SIMD
561 instructions.
562
563 config CRYPTO_MD4
564 tristate "MD4 digest algorithm"
565 select CRYPTO_HASH
566 help
567 MD4 message digest algorithm (RFC1320).
568
569 config CRYPTO_MD5
570 tristate "MD5 digest algorithm"
571 select CRYPTO_HASH
572 help
573 MD5 message digest algorithm (RFC1321).
574
575 config CRYPTO_MD5_OCTEON
576 tristate "MD5 digest algorithm (OCTEON)"
577 depends on CPU_CAVIUM_OCTEON
578 select CRYPTO_MD5
579 select CRYPTO_HASH
580 help
581 MD5 message digest algorithm (RFC1321) implemented
582 using OCTEON crypto instructions, when available.
583
584 config CRYPTO_MD5_PPC
585 tristate "MD5 digest algorithm (PPC)"
586 depends on PPC
587 select CRYPTO_HASH
588 help
589 MD5 message digest algorithm (RFC1321) implemented
590 in PPC assembler.
591
592 config CRYPTO_MD5_SPARC64
593 tristate "MD5 digest algorithm (SPARC64)"
594 depends on SPARC64
595 select CRYPTO_MD5
596 select CRYPTO_HASH
597 help
598 MD5 message digest algorithm (RFC1321) implemented
599 using sparc64 crypto instructions, when available.
600
601 config CRYPTO_MICHAEL_MIC
602 tristate "Michael MIC keyed digest algorithm"
603 select CRYPTO_HASH
604 help
605 Michael MIC is used for message integrity protection in TKIP
606 (IEEE 802.11i). This algorithm is required for TKIP, but it
607 should not be used for other purposes because of the weakness
608 of the algorithm.
609
610 config CRYPTO_RMD128
611 tristate "RIPEMD-128 digest algorithm"
612 select CRYPTO_HASH
613 help
614 RIPEMD-128 (ISO/IEC 10118-3:2004).
615
616 RIPEMD-128 is a 128-bit cryptographic hash function. It should only
617 be used as a secure replacement for RIPEMD. For other use cases,
618 RIPEMD-160 should be used.
619
620 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
621 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
622
623 config CRYPTO_RMD160
624 tristate "RIPEMD-160 digest algorithm"
625 select CRYPTO_HASH
626 help
627 RIPEMD-160 (ISO/IEC 10118-3:2004).
628
629 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
630 to be used as a secure replacement for the 128-bit hash functions
631 MD4, MD5 and it's predecessor RIPEMD
632 (not to be confused with RIPEMD-128).
633
634 It's speed is comparable to SHA1 and there are no known attacks
635 against RIPEMD-160.
636
637 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
638 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
639
640 config CRYPTO_RMD256
641 tristate "RIPEMD-256 digest algorithm"
642 select CRYPTO_HASH
643 help
644 RIPEMD-256 is an optional extension of RIPEMD-128 with a
645 256 bit hash. It is intended for applications that require
646 longer hash-results, without needing a larger security level
647 (than RIPEMD-128).
648
649 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
650 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
651
652 config CRYPTO_RMD320
653 tristate "RIPEMD-320 digest algorithm"
654 select CRYPTO_HASH
655 help
656 RIPEMD-320 is an optional extension of RIPEMD-160 with a
657 320 bit hash. It is intended for applications that require
658 longer hash-results, without needing a larger security level
659 (than RIPEMD-160).
660
661 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
662 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
663
664 config CRYPTO_SHA1
665 tristate "SHA1 digest algorithm"
666 select CRYPTO_HASH
667 help
668 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
669
670 config CRYPTO_SHA1_SSSE3
671 tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
672 depends on X86 && 64BIT
673 select CRYPTO_SHA1
674 select CRYPTO_HASH
675 help
676 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
677 using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
678 Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
679 when available.
680
681 config CRYPTO_SHA256_SSSE3
682 tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
683 depends on X86 && 64BIT
684 select CRYPTO_SHA256
685 select CRYPTO_HASH
686 help
687 SHA-256 secure hash standard (DFIPS 180-2) implemented
688 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
689 Extensions version 1 (AVX1), or Advanced Vector Extensions
690 version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
691 Instructions) when available.
692
693 config CRYPTO_SHA512_SSSE3
694 tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
695 depends on X86 && 64BIT
696 select CRYPTO_SHA512
697 select CRYPTO_HASH
698 help
699 SHA-512 secure hash standard (DFIPS 180-2) implemented
700 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
701 Extensions version 1 (AVX1), or Advanced Vector Extensions
702 version 2 (AVX2) instructions, when available.
703
704 config CRYPTO_SHA1_OCTEON
705 tristate "SHA1 digest algorithm (OCTEON)"
706 depends on CPU_CAVIUM_OCTEON
707 select CRYPTO_SHA1
708 select CRYPTO_HASH
709 help
710 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
711 using OCTEON crypto instructions, when available.
712
713 config CRYPTO_SHA1_SPARC64
714 tristate "SHA1 digest algorithm (SPARC64)"
715 depends on SPARC64
716 select CRYPTO_SHA1
717 select CRYPTO_HASH
718 help
719 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
720 using sparc64 crypto instructions, when available.
721
722 config CRYPTO_SHA1_PPC
723 tristate "SHA1 digest algorithm (powerpc)"
724 depends on PPC
725 help
726 This is the powerpc hardware accelerated implementation of the
727 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
728
729 config CRYPTO_SHA1_PPC_SPE
730 tristate "SHA1 digest algorithm (PPC SPE)"
731 depends on PPC && SPE
732 help
733 SHA-1 secure hash standard (DFIPS 180-4) implemented
734 using powerpc SPE SIMD instruction set.
735
736 config CRYPTO_SHA1_MB
737 tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)"
738 depends on X86 && 64BIT
739 select CRYPTO_SHA1
740 select CRYPTO_HASH
741 select CRYPTO_MCRYPTD
742 help
743 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
744 using multi-buffer technique. This algorithm computes on
745 multiple data lanes concurrently with SIMD instructions for
746 better throughput. It should not be enabled by default but
747 used when there is significant amount of work to keep the keep
748 the data lanes filled to get performance benefit. If the data
749 lanes remain unfilled, a flush operation will be initiated to
750 process the crypto jobs, adding a slight latency.
751
752 config CRYPTO_SHA256_MB
753 tristate "SHA256 digest algorithm (x86_64 Multi-Buffer, Experimental)"
754 depends on X86 && 64BIT
755 select CRYPTO_SHA256
756 select CRYPTO_HASH
757 select CRYPTO_MCRYPTD
758 help
759 SHA-256 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
760 using multi-buffer technique. This algorithm computes on
761 multiple data lanes concurrently with SIMD instructions for
762 better throughput. It should not be enabled by default but
763 used when there is significant amount of work to keep the keep
764 the data lanes filled to get performance benefit. If the data
765 lanes remain unfilled, a flush operation will be initiated to
766 process the crypto jobs, adding a slight latency.
767
768 config CRYPTO_SHA512_MB
769 tristate "SHA512 digest algorithm (x86_64 Multi-Buffer, Experimental)"
770 depends on X86 && 64BIT
771 select CRYPTO_SHA512
772 select CRYPTO_HASH
773 select CRYPTO_MCRYPTD
774 help
775 SHA-512 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
776 using multi-buffer technique. This algorithm computes on
777 multiple data lanes concurrently with SIMD instructions for
778 better throughput. It should not be enabled by default but
779 used when there is significant amount of work to keep the keep
780 the data lanes filled to get performance benefit. If the data
781 lanes remain unfilled, a flush operation will be initiated to
782 process the crypto jobs, adding a slight latency.
783
784 config CRYPTO_SHA256
785 tristate "SHA224 and SHA256 digest algorithm"
786 select CRYPTO_HASH
787 help
788 SHA256 secure hash standard (DFIPS 180-2).
789
790 This version of SHA implements a 256 bit hash with 128 bits of
791 security against collision attacks.
792
793 This code also includes SHA-224, a 224 bit hash with 112 bits
794 of security against collision attacks.
795
796 config CRYPTO_SHA256_PPC_SPE
797 tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
798 depends on PPC && SPE
799 select CRYPTO_SHA256
800 select CRYPTO_HASH
801 help
802 SHA224 and SHA256 secure hash standard (DFIPS 180-2)
803 implemented using powerpc SPE SIMD instruction set.
804
805 config CRYPTO_SHA256_OCTEON
806 tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
807 depends on CPU_CAVIUM_OCTEON
808 select CRYPTO_SHA256
809 select CRYPTO_HASH
810 help
811 SHA-256 secure hash standard (DFIPS 180-2) implemented
812 using OCTEON crypto instructions, when available.
813
814 config CRYPTO_SHA256_SPARC64
815 tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
816 depends on SPARC64
817 select CRYPTO_SHA256
818 select CRYPTO_HASH
819 help
820 SHA-256 secure hash standard (DFIPS 180-2) implemented
821 using sparc64 crypto instructions, when available.
822
823 config CRYPTO_SHA512
824 tristate "SHA384 and SHA512 digest algorithms"
825 select CRYPTO_HASH
826 help
827 SHA512 secure hash standard (DFIPS 180-2).
828
829 This version of SHA implements a 512 bit hash with 256 bits of
830 security against collision attacks.
831
832 This code also includes SHA-384, a 384 bit hash with 192 bits
833 of security against collision attacks.
834
835 config CRYPTO_SHA512_OCTEON
836 tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
837 depends on CPU_CAVIUM_OCTEON
838 select CRYPTO_SHA512
839 select CRYPTO_HASH
840 help
841 SHA-512 secure hash standard (DFIPS 180-2) implemented
842 using OCTEON crypto instructions, when available.
843
844 config CRYPTO_SHA512_SPARC64
845 tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
846 depends on SPARC64
847 select CRYPTO_SHA512
848 select CRYPTO_HASH
849 help
850 SHA-512 secure hash standard (DFIPS 180-2) implemented
851 using sparc64 crypto instructions, when available.
852
853 config CRYPTO_SHA3
854 tristate "SHA3 digest algorithm"
855 select CRYPTO_HASH
856 help
857 SHA-3 secure hash standard (DFIPS 202). It's based on
858 cryptographic sponge function family called Keccak.
859
860 References:
861 http://keccak.noekeon.org/
862
863 config CRYPTO_SM3
864 tristate "SM3 digest algorithm"
865 select CRYPTO_HASH
866 help
867 SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
868 It is part of the Chinese Commercial Cryptography suite.
869
870 References:
871 http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
872 https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
873
874 config CRYPTO_TGR192
875 tristate "Tiger digest algorithms"
876 select CRYPTO_HASH
877 help
878 Tiger hash algorithm 192, 160 and 128-bit hashes
879
880 Tiger is a hash function optimized for 64-bit processors while
881 still having decent performance on 32-bit processors.
882 Tiger was developed by Ross Anderson and Eli Biham.
883
884 See also:
885 <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
886
887 config CRYPTO_WP512
888 tristate "Whirlpool digest algorithms"
889 select CRYPTO_HASH
890 help
891 Whirlpool hash algorithm 512, 384 and 256-bit hashes
892
893 Whirlpool-512 is part of the NESSIE cryptographic primitives.
894 Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
895
896 See also:
897 <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
898
899 config CRYPTO_GHASH_CLMUL_NI_INTEL
900 tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
901 depends on X86 && 64BIT
902 select CRYPTO_CRYPTD
903 help
904 GHASH is message digest algorithm for GCM (Galois/Counter Mode).
905 The implementation is accelerated by CLMUL-NI of Intel.
906
907 comment "Ciphers"
908
909 config CRYPTO_AES
910 tristate "AES cipher algorithms"
911 select CRYPTO_ALGAPI
912 help
913 AES cipher algorithms (FIPS-197). AES uses the Rijndael
914 algorithm.
915
916 Rijndael appears to be consistently a very good performer in
917 both hardware and software across a wide range of computing
918 environments regardless of its use in feedback or non-feedback
919 modes. Its key setup time is excellent, and its key agility is
920 good. Rijndael's very low memory requirements make it very well
921 suited for restricted-space environments, in which it also
922 demonstrates excellent performance. Rijndael's operations are
923 among the easiest to defend against power and timing attacks.
924
925 The AES specifies three key sizes: 128, 192 and 256 bits
926
927 See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
928
929 config CRYPTO_AES_TI
930 tristate "Fixed time AES cipher"
931 select CRYPTO_ALGAPI
932 help
933 This is a generic implementation of AES that attempts to eliminate
934 data dependent latencies as much as possible without affecting
935 performance too much. It is intended for use by the generic CCM
936 and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
937 solely on encryption (although decryption is supported as well, but
938 with a more dramatic performance hit)
939
940 Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
941 8 for decryption), this implementation only uses just two S-boxes of
942 256 bytes each, and attempts to eliminate data dependent latencies by
943 prefetching the entire table into the cache at the start of each
944 block. Interrupts are also disabled to avoid races where cachelines
945 are evicted when the CPU is interrupted to do something else.
946
947 config CRYPTO_AES_586
948 tristate "AES cipher algorithms (i586)"
949 depends on (X86 || UML_X86) && !64BIT
950 select CRYPTO_ALGAPI
951 select CRYPTO_AES
952 help
953 AES cipher algorithms (FIPS-197). AES uses the Rijndael
954 algorithm.
955
956 Rijndael appears to be consistently a very good performer in
957 both hardware and software across a wide range of computing
958 environments regardless of its use in feedback or non-feedback
959 modes. Its key setup time is excellent, and its key agility is
960 good. Rijndael's very low memory requirements make it very well
961 suited for restricted-space environments, in which it also
962 demonstrates excellent performance. Rijndael's operations are
963 among the easiest to defend against power and timing attacks.
964
965 The AES specifies three key sizes: 128, 192 and 256 bits
966
967 See <http://csrc.nist.gov/encryption/aes/> for more information.
968
969 config CRYPTO_AES_X86_64
970 tristate "AES cipher algorithms (x86_64)"
971 depends on (X86 || UML_X86) && 64BIT
972 select CRYPTO_ALGAPI
973 select CRYPTO_AES
974 help
975 AES cipher algorithms (FIPS-197). AES uses the Rijndael
976 algorithm.
977
978 Rijndael appears to be consistently a very good performer in
979 both hardware and software across a wide range of computing
980 environments regardless of its use in feedback or non-feedback
981 modes. Its key setup time is excellent, and its key agility is
982 good. Rijndael's very low memory requirements make it very well
983 suited for restricted-space environments, in which it also
984 demonstrates excellent performance. Rijndael's operations are
985 among the easiest to defend against power and timing attacks.
986
987 The AES specifies three key sizes: 128, 192 and 256 bits
988
989 See <http://csrc.nist.gov/encryption/aes/> for more information.
990
991 config CRYPTO_AES_NI_INTEL
992 tristate "AES cipher algorithms (AES-NI)"
993 depends on X86
994 select CRYPTO_AEAD
995 select CRYPTO_AES_X86_64 if 64BIT
996 select CRYPTO_AES_586 if !64BIT
997 select CRYPTO_ALGAPI
998 select CRYPTO_BLKCIPHER
999 select CRYPTO_GLUE_HELPER_X86 if 64BIT
1000 select CRYPTO_SIMD
1001 help
1002 Use Intel AES-NI instructions for AES algorithm.
1003
1004 AES cipher algorithms (FIPS-197). AES uses the Rijndael
1005 algorithm.
1006
1007 Rijndael appears to be consistently a very good performer in
1008 both hardware and software across a wide range of computing
1009 environments regardless of its use in feedback or non-feedback
1010 modes. Its key setup time is excellent, and its key agility is
1011 good. Rijndael's very low memory requirements make it very well
1012 suited for restricted-space environments, in which it also
1013 demonstrates excellent performance. Rijndael's operations are
1014 among the easiest to defend against power and timing attacks.
1015
1016 The AES specifies three key sizes: 128, 192 and 256 bits
1017
1018 See <http://csrc.nist.gov/encryption/aes/> for more information.
1019
1020 In addition to AES cipher algorithm support, the acceleration
1021 for some popular block cipher mode is supported too, including
1022 ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
1023 acceleration for CTR.
1024
1025 config CRYPTO_AES_SPARC64
1026 tristate "AES cipher algorithms (SPARC64)"
1027 depends on SPARC64
1028 select CRYPTO_CRYPTD
1029 select CRYPTO_ALGAPI
1030 help
1031 Use SPARC64 crypto opcodes for AES algorithm.
1032
1033 AES cipher algorithms (FIPS-197). AES uses the Rijndael
1034 algorithm.
1035
1036 Rijndael appears to be consistently a very good performer in
1037 both hardware and software across a wide range of computing
1038 environments regardless of its use in feedback or non-feedback
1039 modes. Its key setup time is excellent, and its key agility is
1040 good. Rijndael's very low memory requirements make it very well
1041 suited for restricted-space environments, in which it also
1042 demonstrates excellent performance. Rijndael's operations are
1043 among the easiest to defend against power and timing attacks.
1044
1045 The AES specifies three key sizes: 128, 192 and 256 bits
1046
1047 See <http://csrc.nist.gov/encryption/aes/> for more information.
1048
1049 In addition to AES cipher algorithm support, the acceleration
1050 for some popular block cipher mode is supported too, including
1051 ECB and CBC.
1052
1053 config CRYPTO_AES_PPC_SPE
1054 tristate "AES cipher algorithms (PPC SPE)"
1055 depends on PPC && SPE
1056 help
1057 AES cipher algorithms (FIPS-197). Additionally the acceleration
1058 for popular block cipher modes ECB, CBC, CTR and XTS is supported.
1059 This module should only be used for low power (router) devices
1060 without hardware AES acceleration (e.g. caam crypto). It reduces the
1061 size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
1062 timining attacks. Nevertheless it might be not as secure as other
1063 architecture specific assembler implementations that work on 1KB
1064 tables or 256 bytes S-boxes.
1065
1066 config CRYPTO_ANUBIS
1067 tristate "Anubis cipher algorithm"
1068 select CRYPTO_ALGAPI
1069 help
1070 Anubis cipher algorithm.
1071
1072 Anubis is a variable key length cipher which can use keys from
1073 128 bits to 320 bits in length. It was evaluated as a entrant
1074 in the NESSIE competition.
1075
1076 See also:
1077 <https://www.cosic.esat.kuleuven.be/nessie/reports/>
1078 <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
1079
1080 config CRYPTO_ARC4
1081 tristate "ARC4 cipher algorithm"
1082 select CRYPTO_BLKCIPHER
1083 help
1084 ARC4 cipher algorithm.
1085
1086 ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1087 bits in length. This algorithm is required for driver-based
1088 WEP, but it should not be for other purposes because of the
1089 weakness of the algorithm.
1090
1091 config CRYPTO_BLOWFISH
1092 tristate "Blowfish cipher algorithm"
1093 select CRYPTO_ALGAPI
1094 select CRYPTO_BLOWFISH_COMMON
1095 help
1096 Blowfish cipher algorithm, by Bruce Schneier.
1097
1098 This is a variable key length cipher which can use keys from 32
1099 bits to 448 bits in length. It's fast, simple and specifically
1100 designed for use on "large microprocessors".
1101
1102 See also:
1103 <http://www.schneier.com/blowfish.html>
1104
1105 config CRYPTO_BLOWFISH_COMMON
1106 tristate
1107 help
1108 Common parts of the Blowfish cipher algorithm shared by the
1109 generic c and the assembler implementations.
1110
1111 See also:
1112 <http://www.schneier.com/blowfish.html>
1113
1114 config CRYPTO_BLOWFISH_X86_64
1115 tristate "Blowfish cipher algorithm (x86_64)"
1116 depends on X86 && 64BIT
1117 select CRYPTO_ALGAPI
1118 select CRYPTO_BLOWFISH_COMMON
1119 help
1120 Blowfish cipher algorithm (x86_64), by Bruce Schneier.
1121
1122 This is a variable key length cipher which can use keys from 32
1123 bits to 448 bits in length. It's fast, simple and specifically
1124 designed for use on "large microprocessors".
1125
1126 See also:
1127 <http://www.schneier.com/blowfish.html>
1128
1129 config CRYPTO_CAMELLIA
1130 tristate "Camellia cipher algorithms"
1131 depends on CRYPTO
1132 select CRYPTO_ALGAPI
1133 help
1134 Camellia cipher algorithms module.
1135
1136 Camellia is a symmetric key block cipher developed jointly
1137 at NTT and Mitsubishi Electric Corporation.
1138
1139 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1140
1141 See also:
1142 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1143
1144 config CRYPTO_CAMELLIA_X86_64
1145 tristate "Camellia cipher algorithm (x86_64)"
1146 depends on X86 && 64BIT
1147 depends on CRYPTO
1148 select CRYPTO_ALGAPI
1149 select CRYPTO_GLUE_HELPER_X86
1150 select CRYPTO_LRW
1151 select CRYPTO_XTS
1152 help
1153 Camellia cipher algorithm module (x86_64).
1154
1155 Camellia is a symmetric key block cipher developed jointly
1156 at NTT and Mitsubishi Electric Corporation.
1157
1158 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1159
1160 See also:
1161 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1162
1163 config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1164 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1165 depends on X86 && 64BIT
1166 depends on CRYPTO
1167 select CRYPTO_ALGAPI
1168 select CRYPTO_CRYPTD
1169 select CRYPTO_ABLK_HELPER
1170 select CRYPTO_GLUE_HELPER_X86
1171 select CRYPTO_CAMELLIA_X86_64
1172 select CRYPTO_LRW
1173 select CRYPTO_XTS
1174 help
1175 Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1176
1177 Camellia is a symmetric key block cipher developed jointly
1178 at NTT and Mitsubishi Electric Corporation.
1179
1180 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1181
1182 See also:
1183 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1184
1185 config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1186 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1187 depends on X86 && 64BIT
1188 depends on CRYPTO
1189 select CRYPTO_ALGAPI
1190 select CRYPTO_CRYPTD
1191 select CRYPTO_ABLK_HELPER
1192 select CRYPTO_GLUE_HELPER_X86
1193 select CRYPTO_CAMELLIA_X86_64
1194 select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1195 select CRYPTO_LRW
1196 select CRYPTO_XTS
1197 help
1198 Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1199
1200 Camellia is a symmetric key block cipher developed jointly
1201 at NTT and Mitsubishi Electric Corporation.
1202
1203 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1204
1205 See also:
1206 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1207
1208 config CRYPTO_CAMELLIA_SPARC64
1209 tristate "Camellia cipher algorithm (SPARC64)"
1210 depends on SPARC64
1211 depends on CRYPTO
1212 select CRYPTO_ALGAPI
1213 help
1214 Camellia cipher algorithm module (SPARC64).
1215
1216 Camellia is a symmetric key block cipher developed jointly
1217 at NTT and Mitsubishi Electric Corporation.
1218
1219 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1220
1221 See also:
1222 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1223
1224 config CRYPTO_CAST_COMMON
1225 tristate
1226 help
1227 Common parts of the CAST cipher algorithms shared by the
1228 generic c and the assembler implementations.
1229
1230 config CRYPTO_CAST5
1231 tristate "CAST5 (CAST-128) cipher algorithm"
1232 select CRYPTO_ALGAPI
1233 select CRYPTO_CAST_COMMON
1234 help
1235 The CAST5 encryption algorithm (synonymous with CAST-128) is
1236 described in RFC2144.
1237
1238 config CRYPTO_CAST5_AVX_X86_64
1239 tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
1240 depends on X86 && 64BIT
1241 select CRYPTO_ALGAPI
1242 select CRYPTO_CRYPTD
1243 select CRYPTO_ABLK_HELPER
1244 select CRYPTO_CAST_COMMON
1245 select CRYPTO_CAST5
1246 help
1247 The CAST5 encryption algorithm (synonymous with CAST-128) is
1248 described in RFC2144.
1249
1250 This module provides the Cast5 cipher algorithm that processes
1251 sixteen blocks parallel using the AVX instruction set.
1252
1253 config CRYPTO_CAST6
1254 tristate "CAST6 (CAST-256) cipher algorithm"
1255 select CRYPTO_ALGAPI
1256 select CRYPTO_CAST_COMMON
1257 help
1258 The CAST6 encryption algorithm (synonymous with CAST-256) is
1259 described in RFC2612.
1260
1261 config CRYPTO_CAST6_AVX_X86_64
1262 tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
1263 depends on X86 && 64BIT
1264 select CRYPTO_ALGAPI
1265 select CRYPTO_CRYPTD
1266 select CRYPTO_ABLK_HELPER
1267 select CRYPTO_GLUE_HELPER_X86
1268 select CRYPTO_CAST_COMMON
1269 select CRYPTO_CAST6
1270 select CRYPTO_LRW
1271 select CRYPTO_XTS
1272 help
1273 The CAST6 encryption algorithm (synonymous with CAST-256) is
1274 described in RFC2612.
1275
1276 This module provides the Cast6 cipher algorithm that processes
1277 eight blocks parallel using the AVX instruction set.
1278
1279 config CRYPTO_DES
1280 tristate "DES and Triple DES EDE cipher algorithms"
1281 select CRYPTO_ALGAPI
1282 help
1283 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1284
1285 config CRYPTO_DES_SPARC64
1286 tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1287 depends on SPARC64
1288 select CRYPTO_ALGAPI
1289 select CRYPTO_DES
1290 help
1291 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1292 optimized using SPARC64 crypto opcodes.
1293
1294 config CRYPTO_DES3_EDE_X86_64
1295 tristate "Triple DES EDE cipher algorithm (x86-64)"
1296 depends on X86 && 64BIT
1297 select CRYPTO_ALGAPI
1298 select CRYPTO_DES
1299 help
1300 Triple DES EDE (FIPS 46-3) algorithm.
1301
1302 This module provides implementation of the Triple DES EDE cipher
1303 algorithm that is optimized for x86-64 processors. Two versions of
1304 algorithm are provided; regular processing one input block and
1305 one that processes three blocks parallel.
1306
1307 config CRYPTO_FCRYPT
1308 tristate "FCrypt cipher algorithm"
1309 select CRYPTO_ALGAPI
1310 select CRYPTO_BLKCIPHER
1311 help
1312 FCrypt algorithm used by RxRPC.
1313
1314 config CRYPTO_KHAZAD
1315 tristate "Khazad cipher algorithm"
1316 select CRYPTO_ALGAPI
1317 help
1318 Khazad cipher algorithm.
1319
1320 Khazad was a finalist in the initial NESSIE competition. It is
1321 an algorithm optimized for 64-bit processors with good performance
1322 on 32-bit processors. Khazad uses an 128 bit key size.
1323
1324 See also:
1325 <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1326
1327 config CRYPTO_SALSA20
1328 tristate "Salsa20 stream cipher algorithm"
1329 select CRYPTO_BLKCIPHER
1330 help
1331 Salsa20 stream cipher algorithm.
1332
1333 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1334 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1335
1336 The Salsa20 stream cipher algorithm is designed by Daniel J.
1337 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1338
1339 config CRYPTO_CHACHA20
1340 tristate "ChaCha20 cipher algorithm"
1341 select CRYPTO_BLKCIPHER
1342 help
1343 ChaCha20 cipher algorithm, RFC7539.
1344
1345 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1346 Bernstein and further specified in RFC7539 for use in IETF protocols.
1347 This is the portable C implementation of ChaCha20.
1348
1349 See also:
1350 <http://cr.yp.to/chacha/chacha-20080128.pdf>
1351
1352 config CRYPTO_CHACHA20_X86_64
1353 tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)"
1354 depends on X86 && 64BIT
1355 select CRYPTO_BLKCIPHER
1356 select CRYPTO_CHACHA20
1357 help
1358 ChaCha20 cipher algorithm, RFC7539.
1359
1360 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1361 Bernstein and further specified in RFC7539 for use in IETF protocols.
1362 This is the x86_64 assembler implementation using SIMD instructions.
1363
1364 See also:
1365 <http://cr.yp.to/chacha/chacha-20080128.pdf>
1366
1367 config CRYPTO_SEED
1368 tristate "SEED cipher algorithm"
1369 select CRYPTO_ALGAPI
1370 help
1371 SEED cipher algorithm (RFC4269).
1372
1373 SEED is a 128-bit symmetric key block cipher that has been
1374 developed by KISA (Korea Information Security Agency) as a
1375 national standard encryption algorithm of the Republic of Korea.
1376 It is a 16 round block cipher with the key size of 128 bit.
1377
1378 See also:
1379 <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1380
1381 config CRYPTO_SERPENT
1382 tristate "Serpent cipher algorithm"
1383 select CRYPTO_ALGAPI
1384 help
1385 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1386
1387 Keys are allowed to be from 0 to 256 bits in length, in steps
1388 of 8 bits. Also includes the 'Tnepres' algorithm, a reversed
1389 variant of Serpent for compatibility with old kerneli.org code.
1390
1391 See also:
1392 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1393
1394 config CRYPTO_SERPENT_SSE2_X86_64
1395 tristate "Serpent cipher algorithm (x86_64/SSE2)"
1396 depends on X86 && 64BIT
1397 select CRYPTO_ALGAPI
1398 select CRYPTO_CRYPTD
1399 select CRYPTO_ABLK_HELPER
1400 select CRYPTO_GLUE_HELPER_X86
1401 select CRYPTO_SERPENT
1402 select CRYPTO_LRW
1403 select CRYPTO_XTS
1404 help
1405 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1406
1407 Keys are allowed to be from 0 to 256 bits in length, in steps
1408 of 8 bits.
1409
1410 This module provides Serpent cipher algorithm that processes eight
1411 blocks parallel using SSE2 instruction set.
1412
1413 See also:
1414 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1415
1416 config CRYPTO_SERPENT_SSE2_586
1417 tristate "Serpent cipher algorithm (i586/SSE2)"
1418 depends on X86 && !64BIT
1419 select CRYPTO_ALGAPI
1420 select CRYPTO_CRYPTD
1421 select CRYPTO_ABLK_HELPER
1422 select CRYPTO_GLUE_HELPER_X86
1423 select CRYPTO_SERPENT
1424 select CRYPTO_LRW
1425 select CRYPTO_XTS
1426 help
1427 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1428
1429 Keys are allowed to be from 0 to 256 bits in length, in steps
1430 of 8 bits.
1431
1432 This module provides Serpent cipher algorithm that processes four
1433 blocks parallel using SSE2 instruction set.
1434
1435 See also:
1436 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1437
1438 config CRYPTO_SERPENT_AVX_X86_64
1439 tristate "Serpent cipher algorithm (x86_64/AVX)"
1440 depends on X86 && 64BIT
1441 select CRYPTO_ALGAPI
1442 select CRYPTO_CRYPTD
1443 select CRYPTO_ABLK_HELPER
1444 select CRYPTO_GLUE_HELPER_X86
1445 select CRYPTO_SERPENT
1446 select CRYPTO_LRW
1447 select CRYPTO_XTS
1448 help
1449 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1450
1451 Keys are allowed to be from 0 to 256 bits in length, in steps
1452 of 8 bits.
1453
1454 This module provides the Serpent cipher algorithm that processes
1455 eight blocks parallel using the AVX instruction set.
1456
1457 See also:
1458 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1459
1460 config CRYPTO_SERPENT_AVX2_X86_64
1461 tristate "Serpent cipher algorithm (x86_64/AVX2)"
1462 depends on X86 && 64BIT
1463 select CRYPTO_ALGAPI
1464 select CRYPTO_CRYPTD
1465 select CRYPTO_ABLK_HELPER
1466 select CRYPTO_GLUE_HELPER_X86
1467 select CRYPTO_SERPENT
1468 select CRYPTO_SERPENT_AVX_X86_64
1469 select CRYPTO_LRW
1470 select CRYPTO_XTS
1471 help
1472 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1473
1474 Keys are allowed to be from 0 to 256 bits in length, in steps
1475 of 8 bits.
1476
1477 This module provides Serpent cipher algorithm that processes 16
1478 blocks parallel using AVX2 instruction set.
1479
1480 See also:
1481 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1482
1483 config CRYPTO_TEA
1484 tristate "TEA, XTEA and XETA cipher algorithms"
1485 select CRYPTO_ALGAPI
1486 help
1487 TEA cipher algorithm.
1488
1489 Tiny Encryption Algorithm is a simple cipher that uses
1490 many rounds for security. It is very fast and uses
1491 little memory.
1492
1493 Xtendend Tiny Encryption Algorithm is a modification to
1494 the TEA algorithm to address a potential key weakness
1495 in the TEA algorithm.
1496
1497 Xtendend Encryption Tiny Algorithm is a mis-implementation
1498 of the XTEA algorithm for compatibility purposes.
1499
1500 config CRYPTO_TWOFISH
1501 tristate "Twofish cipher algorithm"
1502 select CRYPTO_ALGAPI
1503 select CRYPTO_TWOFISH_COMMON
1504 help
1505 Twofish cipher algorithm.
1506
1507 Twofish was submitted as an AES (Advanced Encryption Standard)
1508 candidate cipher by researchers at CounterPane Systems. It is a
1509 16 round block cipher supporting key sizes of 128, 192, and 256
1510 bits.
1511
1512 See also:
1513 <http://www.schneier.com/twofish.html>
1514
1515 config CRYPTO_TWOFISH_COMMON
1516 tristate
1517 help
1518 Common parts of the Twofish cipher algorithm shared by the
1519 generic c and the assembler implementations.
1520
1521 config CRYPTO_TWOFISH_586
1522 tristate "Twofish cipher algorithms (i586)"
1523 depends on (X86 || UML_X86) && !64BIT
1524 select CRYPTO_ALGAPI
1525 select CRYPTO_TWOFISH_COMMON
1526 help
1527 Twofish cipher algorithm.
1528
1529 Twofish was submitted as an AES (Advanced Encryption Standard)
1530 candidate cipher by researchers at CounterPane Systems. It is a
1531 16 round block cipher supporting key sizes of 128, 192, and 256
1532 bits.
1533
1534 See also:
1535 <http://www.schneier.com/twofish.html>
1536
1537 config CRYPTO_TWOFISH_X86_64
1538 tristate "Twofish cipher algorithm (x86_64)"
1539 depends on (X86 || UML_X86) && 64BIT
1540 select CRYPTO_ALGAPI
1541 select CRYPTO_TWOFISH_COMMON
1542 help
1543 Twofish cipher algorithm (x86_64).
1544
1545 Twofish was submitted as an AES (Advanced Encryption Standard)
1546 candidate cipher by researchers at CounterPane Systems. It is a
1547 16 round block cipher supporting key sizes of 128, 192, and 256
1548 bits.
1549
1550 See also:
1551 <http://www.schneier.com/twofish.html>
1552
1553 config CRYPTO_TWOFISH_X86_64_3WAY
1554 tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1555 depends on X86 && 64BIT
1556 select CRYPTO_ALGAPI
1557 select CRYPTO_TWOFISH_COMMON
1558 select CRYPTO_TWOFISH_X86_64
1559 select CRYPTO_GLUE_HELPER_X86
1560 select CRYPTO_LRW
1561 select CRYPTO_XTS
1562 help
1563 Twofish cipher algorithm (x86_64, 3-way parallel).
1564
1565 Twofish was submitted as an AES (Advanced Encryption Standard)
1566 candidate cipher by researchers at CounterPane Systems. It is a
1567 16 round block cipher supporting key sizes of 128, 192, and 256
1568 bits.
1569
1570 This module provides Twofish cipher algorithm that processes three
1571 blocks parallel, utilizing resources of out-of-order CPUs better.
1572
1573 See also:
1574 <http://www.schneier.com/twofish.html>
1575
1576 config CRYPTO_TWOFISH_AVX_X86_64
1577 tristate "Twofish cipher algorithm (x86_64/AVX)"
1578 depends on X86 && 64BIT
1579 select CRYPTO_ALGAPI
1580 select CRYPTO_CRYPTD
1581 select CRYPTO_ABLK_HELPER
1582 select CRYPTO_GLUE_HELPER_X86
1583 select CRYPTO_TWOFISH_COMMON
1584 select CRYPTO_TWOFISH_X86_64
1585 select CRYPTO_TWOFISH_X86_64_3WAY
1586 select CRYPTO_LRW
1587 select CRYPTO_XTS
1588 help
1589 Twofish cipher algorithm (x86_64/AVX).
1590
1591 Twofish was submitted as an AES (Advanced Encryption Standard)
1592 candidate cipher by researchers at CounterPane Systems. It is a
1593 16 round block cipher supporting key sizes of 128, 192, and 256
1594 bits.
1595
1596 This module provides the Twofish cipher algorithm that processes
1597 eight blocks parallel using the AVX Instruction Set.
1598
1599 See also:
1600 <http://www.schneier.com/twofish.html>
1601
1602 comment "Compression"
1603
1604 config CRYPTO_DEFLATE
1605 tristate "Deflate compression algorithm"
1606 select CRYPTO_ALGAPI
1607 select CRYPTO_ACOMP2
1608 select ZLIB_INFLATE
1609 select ZLIB_DEFLATE
1610 help
1611 This is the Deflate algorithm (RFC1951), specified for use in
1612 IPSec with the IPCOMP protocol (RFC3173, RFC2394).
1613
1614 You will most probably want this if using IPSec.
1615
1616 config CRYPTO_LZO
1617 tristate "LZO compression algorithm"
1618 select CRYPTO_ALGAPI
1619 select CRYPTO_ACOMP2
1620 select LZO_COMPRESS
1621 select LZO_DECOMPRESS
1622 help
1623 This is the LZO algorithm.
1624
1625 config CRYPTO_842
1626 tristate "842 compression algorithm"
1627 select CRYPTO_ALGAPI
1628 select CRYPTO_ACOMP2
1629 select 842_COMPRESS
1630 select 842_DECOMPRESS
1631 help
1632 This is the 842 algorithm.
1633
1634 config CRYPTO_LZ4
1635 tristate "LZ4 compression algorithm"
1636 select CRYPTO_ALGAPI
1637 select CRYPTO_ACOMP2
1638 select LZ4_COMPRESS
1639 select LZ4_DECOMPRESS
1640 help
1641 This is the LZ4 algorithm.
1642
1643 config CRYPTO_LZ4HC
1644 tristate "LZ4HC compression algorithm"
1645 select CRYPTO_ALGAPI
1646 select CRYPTO_ACOMP2
1647 select LZ4HC_COMPRESS
1648 select LZ4_DECOMPRESS
1649 help
1650 This is the LZ4 high compression mode algorithm.
1651
1652 comment "Random Number Generation"
1653
1654 config CRYPTO_ANSI_CPRNG
1655 tristate "Pseudo Random Number Generation for Cryptographic modules"
1656 select CRYPTO_AES
1657 select CRYPTO_RNG
1658 help
1659 This option enables the generic pseudo random number generator
1660 for cryptographic modules. Uses the Algorithm specified in
1661 ANSI X9.31 A.2.4. Note that this option must be enabled if
1662 CRYPTO_FIPS is selected
1663
1664 menuconfig CRYPTO_DRBG_MENU
1665 tristate "NIST SP800-90A DRBG"
1666 help
1667 NIST SP800-90A compliant DRBG. In the following submenu, one or
1668 more of the DRBG types must be selected.
1669
1670 if CRYPTO_DRBG_MENU
1671
1672 config CRYPTO_DRBG_HMAC
1673 bool
1674 default y
1675 select CRYPTO_HMAC
1676 select CRYPTO_SHA256
1677
1678 config CRYPTO_DRBG_HASH
1679 bool "Enable Hash DRBG"
1680 select CRYPTO_SHA256
1681 help
1682 Enable the Hash DRBG variant as defined in NIST SP800-90A.
1683
1684 config CRYPTO_DRBG_CTR
1685 bool "Enable CTR DRBG"
1686 select CRYPTO_AES
1687 depends on CRYPTO_CTR
1688 help
1689 Enable the CTR DRBG variant as defined in NIST SP800-90A.
1690
1691 config CRYPTO_DRBG
1692 tristate
1693 default CRYPTO_DRBG_MENU
1694 select CRYPTO_RNG
1695 select CRYPTO_JITTERENTROPY
1696
1697 endif # if CRYPTO_DRBG_MENU
1698
1699 config CRYPTO_JITTERENTROPY
1700 tristate "Jitterentropy Non-Deterministic Random Number Generator"
1701 select CRYPTO_RNG
1702 help
1703 The Jitterentropy RNG is a noise that is intended
1704 to provide seed to another RNG. The RNG does not
1705 perform any cryptographic whitening of the generated
1706 random numbers. This Jitterentropy RNG registers with
1707 the kernel crypto API and can be used by any caller.
1708
1709 config CRYPTO_USER_API
1710 tristate
1711
1712 config CRYPTO_USER_API_HASH
1713 tristate "User-space interface for hash algorithms"
1714 depends on NET
1715 select CRYPTO_HASH
1716 select CRYPTO_USER_API
1717 help
1718 This option enables the user-spaces interface for hash
1719 algorithms.
1720
1721 config CRYPTO_USER_API_SKCIPHER
1722 tristate "User-space interface for symmetric key cipher algorithms"
1723 depends on NET
1724 select CRYPTO_BLKCIPHER
1725 select CRYPTO_USER_API
1726 help
1727 This option enables the user-spaces interface for symmetric
1728 key cipher algorithms.
1729
1730 config CRYPTO_USER_API_RNG
1731 tristate "User-space interface for random number generator algorithms"
1732 depends on NET
1733 select CRYPTO_RNG
1734 select CRYPTO_USER_API
1735 help
1736 This option enables the user-spaces interface for random
1737 number generator algorithms.
1738
1739 config CRYPTO_USER_API_AEAD
1740 tristate "User-space interface for AEAD cipher algorithms"
1741 depends on NET
1742 select CRYPTO_AEAD
1743 select CRYPTO_BLKCIPHER
1744 select CRYPTO_NULL
1745 select CRYPTO_USER_API
1746 help
1747 This option enables the user-spaces interface for AEAD
1748 cipher algorithms.
1749
1750 config CRYPTO_HASH_INFO
1751 bool
1752
1753 source "drivers/crypto/Kconfig"
1754 source crypto/asymmetric_keys/Kconfig
1755 source certs/Kconfig
1756
1757 endif # if CRYPTO