]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - crypto/algif_aead.c
PCI: PM: Skip devices in D0 for suspend-to-idle
[mirror_ubuntu-bionic-kernel.git] / crypto / algif_aead.c
1 /*
2 * algif_aead: User-space interface for AEAD algorithms
3 *
4 * Copyright (C) 2014, Stephan Mueller <smueller@chronox.de>
5 *
6 * This file provides the user-space API for AEAD ciphers.
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2 of the License, or (at your option)
11 * any later version.
12 *
13 * The following concept of the memory management is used:
14 *
15 * The kernel maintains two SGLs, the TX SGL and the RX SGL. The TX SGL is
16 * filled by user space with the data submitted via sendpage/sendmsg. Filling
17 * up the TX SGL does not cause a crypto operation -- the data will only be
18 * tracked by the kernel. Upon receipt of one recvmsg call, the caller must
19 * provide a buffer which is tracked with the RX SGL.
20 *
21 * During the processing of the recvmsg operation, the cipher request is
22 * allocated and prepared. As part of the recvmsg operation, the processed
23 * TX buffers are extracted from the TX SGL into a separate SGL.
24 *
25 * After the completion of the crypto operation, the RX SGL and the cipher
26 * request is released. The extracted TX SGL parts are released together with
27 * the RX SGL release.
28 */
29
30 #include <crypto/internal/aead.h>
31 #include <crypto/scatterwalk.h>
32 #include <crypto/if_alg.h>
33 #include <crypto/skcipher.h>
34 #include <crypto/null.h>
35 #include <linux/init.h>
36 #include <linux/list.h>
37 #include <linux/kernel.h>
38 #include <linux/mm.h>
39 #include <linux/module.h>
40 #include <linux/net.h>
41 #include <net/sock.h>
42
43 struct aead_tfm {
44 struct crypto_aead *aead;
45 bool has_key;
46 struct crypto_skcipher *null_tfm;
47 };
48
49 static inline bool aead_sufficient_data(struct sock *sk)
50 {
51 struct alg_sock *ask = alg_sk(sk);
52 struct sock *psk = ask->parent;
53 struct alg_sock *pask = alg_sk(psk);
54 struct af_alg_ctx *ctx = ask->private;
55 struct aead_tfm *aeadc = pask->private;
56 struct crypto_aead *tfm = aeadc->aead;
57 unsigned int as = crypto_aead_authsize(tfm);
58
59 /*
60 * The minimum amount of memory needed for an AEAD cipher is
61 * the AAD and in case of decryption the tag.
62 */
63 return ctx->used >= ctx->aead_assoclen + (ctx->enc ? 0 : as);
64 }
65
66 static int aead_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
67 {
68 struct sock *sk = sock->sk;
69 struct alg_sock *ask = alg_sk(sk);
70 struct sock *psk = ask->parent;
71 struct alg_sock *pask = alg_sk(psk);
72 struct aead_tfm *aeadc = pask->private;
73 struct crypto_aead *tfm = aeadc->aead;
74 unsigned int ivsize = crypto_aead_ivsize(tfm);
75
76 return af_alg_sendmsg(sock, msg, size, ivsize);
77 }
78
79 static int crypto_aead_copy_sgl(struct crypto_skcipher *null_tfm,
80 struct scatterlist *src,
81 struct scatterlist *dst, unsigned int len)
82 {
83 SKCIPHER_REQUEST_ON_STACK(skreq, null_tfm);
84
85 skcipher_request_set_tfm(skreq, null_tfm);
86 skcipher_request_set_callback(skreq, CRYPTO_TFM_REQ_MAY_BACKLOG,
87 NULL, NULL);
88 skcipher_request_set_crypt(skreq, src, dst, len, NULL);
89
90 return crypto_skcipher_encrypt(skreq);
91 }
92
93 static int _aead_recvmsg(struct socket *sock, struct msghdr *msg,
94 size_t ignored, int flags)
95 {
96 struct sock *sk = sock->sk;
97 struct alg_sock *ask = alg_sk(sk);
98 struct sock *psk = ask->parent;
99 struct alg_sock *pask = alg_sk(psk);
100 struct af_alg_ctx *ctx = ask->private;
101 struct aead_tfm *aeadc = pask->private;
102 struct crypto_aead *tfm = aeadc->aead;
103 struct crypto_skcipher *null_tfm = aeadc->null_tfm;
104 unsigned int i, as = crypto_aead_authsize(tfm);
105 struct af_alg_async_req *areq;
106 struct af_alg_tsgl *tsgl, *tmp;
107 struct scatterlist *rsgl_src, *tsgl_src = NULL;
108 int err = 0;
109 size_t used = 0; /* [in] TX bufs to be en/decrypted */
110 size_t outlen = 0; /* [out] RX bufs produced by kernel */
111 size_t usedpages = 0; /* [in] RX bufs to be used from user */
112 size_t processed = 0; /* [in] TX bufs to be consumed */
113
114 if (!ctx->used) {
115 err = af_alg_wait_for_data(sk, flags);
116 if (err)
117 return err;
118 }
119
120 /*
121 * Data length provided by caller via sendmsg/sendpage that has not
122 * yet been processed.
123 */
124 used = ctx->used;
125
126 /*
127 * Make sure sufficient data is present -- note, the same check is
128 * is also present in sendmsg/sendpage. The checks in sendpage/sendmsg
129 * shall provide an information to the data sender that something is
130 * wrong, but they are irrelevant to maintain the kernel integrity.
131 * We need this check here too in case user space decides to not honor
132 * the error message in sendmsg/sendpage and still call recvmsg. This
133 * check here protects the kernel integrity.
134 */
135 if (!aead_sufficient_data(sk))
136 return -EINVAL;
137
138 /*
139 * Calculate the minimum output buffer size holding the result of the
140 * cipher operation. When encrypting data, the receiving buffer is
141 * larger by the tag length compared to the input buffer as the
142 * encryption operation generates the tag. For decryption, the input
143 * buffer provides the tag which is consumed resulting in only the
144 * plaintext without a buffer for the tag returned to the caller.
145 */
146 if (ctx->enc)
147 outlen = used + as;
148 else
149 outlen = used - as;
150
151 /*
152 * The cipher operation input data is reduced by the associated data
153 * length as this data is processed separately later on.
154 */
155 used -= ctx->aead_assoclen;
156
157 /* Allocate cipher request for current operation. */
158 areq = af_alg_alloc_areq(sk, sizeof(struct af_alg_async_req) +
159 crypto_aead_reqsize(tfm));
160 if (IS_ERR(areq))
161 return PTR_ERR(areq);
162
163 /* convert iovecs of output buffers into RX SGL */
164 err = af_alg_get_rsgl(sk, msg, flags, areq, outlen, &usedpages);
165 if (err)
166 goto free;
167
168 /*
169 * Ensure output buffer is sufficiently large. If the caller provides
170 * less buffer space, only use the relative required input size. This
171 * allows AIO operation where the caller sent all data to be processed
172 * and the AIO operation performs the operation on the different chunks
173 * of the input data.
174 */
175 if (usedpages < outlen) {
176 size_t less = outlen - usedpages;
177
178 if (used < less) {
179 err = -EINVAL;
180 goto free;
181 }
182 used -= less;
183 outlen -= less;
184 }
185
186 processed = used + ctx->aead_assoclen;
187 list_for_each_entry_safe(tsgl, tmp, &ctx->tsgl_list, list) {
188 for (i = 0; i < tsgl->cur; i++) {
189 struct scatterlist *process_sg = tsgl->sg + i;
190
191 if (!(process_sg->length) || !sg_page(process_sg))
192 continue;
193 tsgl_src = process_sg;
194 break;
195 }
196 if (tsgl_src)
197 break;
198 }
199 if (processed && !tsgl_src) {
200 err = -EFAULT;
201 goto free;
202 }
203
204 /*
205 * Copy of AAD from source to destination
206 *
207 * The AAD is copied to the destination buffer without change. Even
208 * when user space uses an in-place cipher operation, the kernel
209 * will copy the data as it does not see whether such in-place operation
210 * is initiated.
211 *
212 * To ensure efficiency, the following implementation ensure that the
213 * ciphers are invoked to perform a crypto operation in-place. This
214 * is achieved by memory management specified as follows.
215 */
216
217 /* Use the RX SGL as source (and destination) for crypto op. */
218 rsgl_src = areq->first_rsgl.sgl.sg;
219
220 if (ctx->enc) {
221 /*
222 * Encryption operation - The in-place cipher operation is
223 * achieved by the following operation:
224 *
225 * TX SGL: AAD || PT
226 * | |
227 * | copy |
228 * v v
229 * RX SGL: AAD || PT || Tag
230 */
231 err = crypto_aead_copy_sgl(null_tfm, tsgl_src,
232 areq->first_rsgl.sgl.sg, processed);
233 if (err)
234 goto free;
235 af_alg_pull_tsgl(sk, processed, NULL, 0);
236 } else {
237 /*
238 * Decryption operation - To achieve an in-place cipher
239 * operation, the following SGL structure is used:
240 *
241 * TX SGL: AAD || CT || Tag
242 * | | ^
243 * | copy | | Create SGL link.
244 * v v |
245 * RX SGL: AAD || CT ----+
246 */
247
248 /* Copy AAD || CT to RX SGL buffer for in-place operation. */
249 err = crypto_aead_copy_sgl(null_tfm, tsgl_src,
250 areq->first_rsgl.sgl.sg, outlen);
251 if (err)
252 goto free;
253
254 /* Create TX SGL for tag and chain it to RX SGL. */
255 areq->tsgl_entries = af_alg_count_tsgl(sk, processed,
256 processed - as);
257 if (!areq->tsgl_entries)
258 areq->tsgl_entries = 1;
259 areq->tsgl = sock_kmalloc(sk, sizeof(*areq->tsgl) *
260 areq->tsgl_entries,
261 GFP_KERNEL);
262 if (!areq->tsgl) {
263 err = -ENOMEM;
264 goto free;
265 }
266 sg_init_table(areq->tsgl, areq->tsgl_entries);
267
268 /* Release TX SGL, except for tag data and reassign tag data. */
269 af_alg_pull_tsgl(sk, processed, areq->tsgl, processed - as);
270
271 /* chain the areq TX SGL holding the tag with RX SGL */
272 if (usedpages) {
273 /* RX SGL present */
274 struct af_alg_sgl *sgl_prev = &areq->last_rsgl->sgl;
275
276 sg_unmark_end(sgl_prev->sg + sgl_prev->npages - 1);
277 sg_chain(sgl_prev->sg, sgl_prev->npages + 1,
278 areq->tsgl);
279 } else
280 /* no RX SGL present (e.g. authentication only) */
281 rsgl_src = areq->tsgl;
282 }
283
284 /* Initialize the crypto operation */
285 aead_request_set_crypt(&areq->cra_u.aead_req, rsgl_src,
286 areq->first_rsgl.sgl.sg, used, ctx->iv);
287 aead_request_set_ad(&areq->cra_u.aead_req, ctx->aead_assoclen);
288 aead_request_set_tfm(&areq->cra_u.aead_req, tfm);
289
290 if (msg->msg_iocb && !is_sync_kiocb(msg->msg_iocb)) {
291 /* AIO operation */
292 sock_hold(sk);
293 areq->iocb = msg->msg_iocb;
294
295 /* Remember output size that will be generated. */
296 areq->outlen = outlen;
297
298 aead_request_set_callback(&areq->cra_u.aead_req,
299 CRYPTO_TFM_REQ_MAY_BACKLOG,
300 af_alg_async_cb, areq);
301 err = ctx->enc ? crypto_aead_encrypt(&areq->cra_u.aead_req) :
302 crypto_aead_decrypt(&areq->cra_u.aead_req);
303
304 /* AIO operation in progress */
305 if (err == -EINPROGRESS || err == -EBUSY)
306 return -EIOCBQUEUED;
307
308 sock_put(sk);
309 } else {
310 /* Synchronous operation */
311 aead_request_set_callback(&areq->cra_u.aead_req,
312 CRYPTO_TFM_REQ_MAY_BACKLOG,
313 crypto_req_done, &ctx->wait);
314 err = crypto_wait_req(ctx->enc ?
315 crypto_aead_encrypt(&areq->cra_u.aead_req) :
316 crypto_aead_decrypt(&areq->cra_u.aead_req),
317 &ctx->wait);
318 }
319
320
321 free:
322 af_alg_free_resources(areq);
323
324 return err ? err : outlen;
325 }
326
327 static int aead_recvmsg(struct socket *sock, struct msghdr *msg,
328 size_t ignored, int flags)
329 {
330 struct sock *sk = sock->sk;
331 int ret = 0;
332
333 lock_sock(sk);
334 while (msg_data_left(msg)) {
335 int err = _aead_recvmsg(sock, msg, ignored, flags);
336
337 /*
338 * This error covers -EIOCBQUEUED which implies that we can
339 * only handle one AIO request. If the caller wants to have
340 * multiple AIO requests in parallel, he must make multiple
341 * separate AIO calls.
342 *
343 * Also return the error if no data has been processed so far.
344 */
345 if (err <= 0) {
346 if (err == -EIOCBQUEUED || err == -EBADMSG || !ret)
347 ret = err;
348 goto out;
349 }
350
351 ret += err;
352 }
353
354 out:
355 af_alg_wmem_wakeup(sk);
356 release_sock(sk);
357 return ret;
358 }
359
360 static struct proto_ops algif_aead_ops = {
361 .family = PF_ALG,
362
363 .connect = sock_no_connect,
364 .socketpair = sock_no_socketpair,
365 .getname = sock_no_getname,
366 .ioctl = sock_no_ioctl,
367 .listen = sock_no_listen,
368 .shutdown = sock_no_shutdown,
369 .getsockopt = sock_no_getsockopt,
370 .mmap = sock_no_mmap,
371 .bind = sock_no_bind,
372 .accept = sock_no_accept,
373 .setsockopt = sock_no_setsockopt,
374
375 .release = af_alg_release,
376 .sendmsg = aead_sendmsg,
377 .sendpage = af_alg_sendpage,
378 .recvmsg = aead_recvmsg,
379 .poll = af_alg_poll,
380 };
381
382 static int aead_check_key(struct socket *sock)
383 {
384 int err = 0;
385 struct sock *psk;
386 struct alg_sock *pask;
387 struct aead_tfm *tfm;
388 struct sock *sk = sock->sk;
389 struct alg_sock *ask = alg_sk(sk);
390
391 lock_sock(sk);
392 if (ask->refcnt)
393 goto unlock_child;
394
395 psk = ask->parent;
396 pask = alg_sk(ask->parent);
397 tfm = pask->private;
398
399 err = -ENOKEY;
400 lock_sock_nested(psk, SINGLE_DEPTH_NESTING);
401 if (!tfm->has_key)
402 goto unlock;
403
404 if (!pask->refcnt++)
405 sock_hold(psk);
406
407 ask->refcnt = 1;
408 sock_put(psk);
409
410 err = 0;
411
412 unlock:
413 release_sock(psk);
414 unlock_child:
415 release_sock(sk);
416
417 return err;
418 }
419
420 static int aead_sendmsg_nokey(struct socket *sock, struct msghdr *msg,
421 size_t size)
422 {
423 int err;
424
425 err = aead_check_key(sock);
426 if (err)
427 return err;
428
429 return aead_sendmsg(sock, msg, size);
430 }
431
432 static ssize_t aead_sendpage_nokey(struct socket *sock, struct page *page,
433 int offset, size_t size, int flags)
434 {
435 int err;
436
437 err = aead_check_key(sock);
438 if (err)
439 return err;
440
441 return af_alg_sendpage(sock, page, offset, size, flags);
442 }
443
444 static int aead_recvmsg_nokey(struct socket *sock, struct msghdr *msg,
445 size_t ignored, int flags)
446 {
447 int err;
448
449 err = aead_check_key(sock);
450 if (err)
451 return err;
452
453 return aead_recvmsg(sock, msg, ignored, flags);
454 }
455
456 static struct proto_ops algif_aead_ops_nokey = {
457 .family = PF_ALG,
458
459 .connect = sock_no_connect,
460 .socketpair = sock_no_socketpair,
461 .getname = sock_no_getname,
462 .ioctl = sock_no_ioctl,
463 .listen = sock_no_listen,
464 .shutdown = sock_no_shutdown,
465 .getsockopt = sock_no_getsockopt,
466 .mmap = sock_no_mmap,
467 .bind = sock_no_bind,
468 .accept = sock_no_accept,
469 .setsockopt = sock_no_setsockopt,
470
471 .release = af_alg_release,
472 .sendmsg = aead_sendmsg_nokey,
473 .sendpage = aead_sendpage_nokey,
474 .recvmsg = aead_recvmsg_nokey,
475 .poll = af_alg_poll,
476 };
477
478 static void *aead_bind(const char *name, u32 type, u32 mask)
479 {
480 struct aead_tfm *tfm;
481 struct crypto_aead *aead;
482 struct crypto_skcipher *null_tfm;
483
484 tfm = kzalloc(sizeof(*tfm), GFP_KERNEL);
485 if (!tfm)
486 return ERR_PTR(-ENOMEM);
487
488 aead = crypto_alloc_aead(name, type, mask);
489 if (IS_ERR(aead)) {
490 kfree(tfm);
491 return ERR_CAST(aead);
492 }
493
494 null_tfm = crypto_get_default_null_skcipher2();
495 if (IS_ERR(null_tfm)) {
496 crypto_free_aead(aead);
497 kfree(tfm);
498 return ERR_CAST(null_tfm);
499 }
500
501 tfm->aead = aead;
502 tfm->null_tfm = null_tfm;
503
504 return tfm;
505 }
506
507 static void aead_release(void *private)
508 {
509 struct aead_tfm *tfm = private;
510
511 crypto_free_aead(tfm->aead);
512 crypto_put_default_null_skcipher2();
513 kfree(tfm);
514 }
515
516 static int aead_setauthsize(void *private, unsigned int authsize)
517 {
518 struct aead_tfm *tfm = private;
519
520 return crypto_aead_setauthsize(tfm->aead, authsize);
521 }
522
523 static int aead_setkey(void *private, const u8 *key, unsigned int keylen)
524 {
525 struct aead_tfm *tfm = private;
526 int err;
527
528 err = crypto_aead_setkey(tfm->aead, key, keylen);
529 tfm->has_key = !err;
530
531 return err;
532 }
533
534 static void aead_sock_destruct(struct sock *sk)
535 {
536 struct alg_sock *ask = alg_sk(sk);
537 struct af_alg_ctx *ctx = ask->private;
538 struct sock *psk = ask->parent;
539 struct alg_sock *pask = alg_sk(psk);
540 struct aead_tfm *aeadc = pask->private;
541 struct crypto_aead *tfm = aeadc->aead;
542 unsigned int ivlen = crypto_aead_ivsize(tfm);
543
544 af_alg_pull_tsgl(sk, ctx->used, NULL, 0);
545 sock_kzfree_s(sk, ctx->iv, ivlen);
546 sock_kfree_s(sk, ctx, ctx->len);
547 af_alg_release_parent(sk);
548 }
549
550 static int aead_accept_parent_nokey(void *private, struct sock *sk)
551 {
552 struct af_alg_ctx *ctx;
553 struct alg_sock *ask = alg_sk(sk);
554 struct aead_tfm *tfm = private;
555 struct crypto_aead *aead = tfm->aead;
556 unsigned int len = sizeof(*ctx);
557 unsigned int ivlen = crypto_aead_ivsize(aead);
558
559 ctx = sock_kmalloc(sk, len, GFP_KERNEL);
560 if (!ctx)
561 return -ENOMEM;
562 memset(ctx, 0, len);
563
564 ctx->iv = sock_kmalloc(sk, ivlen, GFP_KERNEL);
565 if (!ctx->iv) {
566 sock_kfree_s(sk, ctx, len);
567 return -ENOMEM;
568 }
569 memset(ctx->iv, 0, ivlen);
570
571 INIT_LIST_HEAD(&ctx->tsgl_list);
572 ctx->len = len;
573 ctx->used = 0;
574 atomic_set(&ctx->rcvused, 0);
575 ctx->more = 0;
576 ctx->merge = 0;
577 ctx->enc = 0;
578 ctx->aead_assoclen = 0;
579 crypto_init_wait(&ctx->wait);
580
581 ask->private = ctx;
582
583 sk->sk_destruct = aead_sock_destruct;
584
585 return 0;
586 }
587
588 static int aead_accept_parent(void *private, struct sock *sk)
589 {
590 struct aead_tfm *tfm = private;
591
592 if (!tfm->has_key)
593 return -ENOKEY;
594
595 return aead_accept_parent_nokey(private, sk);
596 }
597
598 static const struct af_alg_type algif_type_aead = {
599 .bind = aead_bind,
600 .release = aead_release,
601 .setkey = aead_setkey,
602 .setauthsize = aead_setauthsize,
603 .accept = aead_accept_parent,
604 .accept_nokey = aead_accept_parent_nokey,
605 .ops = &algif_aead_ops,
606 .ops_nokey = &algif_aead_ops_nokey,
607 .name = "aead",
608 .owner = THIS_MODULE
609 };
610
611 static int __init algif_aead_init(void)
612 {
613 return af_alg_register_type(&algif_type_aead);
614 }
615
616 static void __exit algif_aead_exit(void)
617 {
618 int err = af_alg_unregister_type(&algif_type_aead);
619 BUG_ON(err);
620 }
621
622 module_init(algif_aead_init);
623 module_exit(algif_aead_exit);
624 MODULE_LICENSE("GPL");
625 MODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>");
626 MODULE_DESCRIPTION("AEAD kernel crypto API user space interface");