]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - crypto/cryptd.c
Merge branch 'for-4.15-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj...
[mirror_ubuntu-bionic-kernel.git] / crypto / cryptd.c
1 /*
2 * Software async crypto daemon.
3 *
4 * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
5 *
6 * Added AEAD support to cryptd.
7 * Authors: Tadeusz Struk (tadeusz.struk@intel.com)
8 * Adrian Hoban <adrian.hoban@intel.com>
9 * Gabriele Paoloni <gabriele.paoloni@intel.com>
10 * Aidan O'Mahony (aidan.o.mahony@intel.com)
11 * Copyright (c) 2010, Intel Corporation.
12 *
13 * This program is free software; you can redistribute it and/or modify it
14 * under the terms of the GNU General Public License as published by the Free
15 * Software Foundation; either version 2 of the License, or (at your option)
16 * any later version.
17 *
18 */
19
20 #include <crypto/internal/hash.h>
21 #include <crypto/internal/aead.h>
22 #include <crypto/internal/skcipher.h>
23 #include <crypto/cryptd.h>
24 #include <crypto/crypto_wq.h>
25 #include <linux/atomic.h>
26 #include <linux/err.h>
27 #include <linux/init.h>
28 #include <linux/kernel.h>
29 #include <linux/list.h>
30 #include <linux/module.h>
31 #include <linux/scatterlist.h>
32 #include <linux/sched.h>
33 #include <linux/slab.h>
34
35 #define CRYPTD_MAX_CPU_QLEN 1000
36
37 struct cryptd_cpu_queue {
38 struct crypto_queue queue;
39 struct work_struct work;
40 };
41
42 struct cryptd_queue {
43 struct cryptd_cpu_queue __percpu *cpu_queue;
44 };
45
46 struct cryptd_instance_ctx {
47 struct crypto_spawn spawn;
48 struct cryptd_queue *queue;
49 };
50
51 struct skcipherd_instance_ctx {
52 struct crypto_skcipher_spawn spawn;
53 struct cryptd_queue *queue;
54 };
55
56 struct hashd_instance_ctx {
57 struct crypto_shash_spawn spawn;
58 struct cryptd_queue *queue;
59 };
60
61 struct aead_instance_ctx {
62 struct crypto_aead_spawn aead_spawn;
63 struct cryptd_queue *queue;
64 };
65
66 struct cryptd_blkcipher_ctx {
67 atomic_t refcnt;
68 struct crypto_blkcipher *child;
69 };
70
71 struct cryptd_blkcipher_request_ctx {
72 crypto_completion_t complete;
73 };
74
75 struct cryptd_skcipher_ctx {
76 atomic_t refcnt;
77 struct crypto_skcipher *child;
78 };
79
80 struct cryptd_skcipher_request_ctx {
81 crypto_completion_t complete;
82 };
83
84 struct cryptd_hash_ctx {
85 atomic_t refcnt;
86 struct crypto_shash *child;
87 };
88
89 struct cryptd_hash_request_ctx {
90 crypto_completion_t complete;
91 struct shash_desc desc;
92 };
93
94 struct cryptd_aead_ctx {
95 atomic_t refcnt;
96 struct crypto_aead *child;
97 };
98
99 struct cryptd_aead_request_ctx {
100 crypto_completion_t complete;
101 };
102
103 static void cryptd_queue_worker(struct work_struct *work);
104
105 static int cryptd_init_queue(struct cryptd_queue *queue,
106 unsigned int max_cpu_qlen)
107 {
108 int cpu;
109 struct cryptd_cpu_queue *cpu_queue;
110
111 queue->cpu_queue = alloc_percpu(struct cryptd_cpu_queue);
112 if (!queue->cpu_queue)
113 return -ENOMEM;
114 for_each_possible_cpu(cpu) {
115 cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
116 crypto_init_queue(&cpu_queue->queue, max_cpu_qlen);
117 INIT_WORK(&cpu_queue->work, cryptd_queue_worker);
118 }
119 return 0;
120 }
121
122 static void cryptd_fini_queue(struct cryptd_queue *queue)
123 {
124 int cpu;
125 struct cryptd_cpu_queue *cpu_queue;
126
127 for_each_possible_cpu(cpu) {
128 cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
129 BUG_ON(cpu_queue->queue.qlen);
130 }
131 free_percpu(queue->cpu_queue);
132 }
133
134 static int cryptd_enqueue_request(struct cryptd_queue *queue,
135 struct crypto_async_request *request)
136 {
137 int cpu, err;
138 struct cryptd_cpu_queue *cpu_queue;
139 atomic_t *refcnt;
140
141 cpu = get_cpu();
142 cpu_queue = this_cpu_ptr(queue->cpu_queue);
143 err = crypto_enqueue_request(&cpu_queue->queue, request);
144
145 refcnt = crypto_tfm_ctx(request->tfm);
146
147 if (err == -ENOSPC)
148 goto out_put_cpu;
149
150 queue_work_on(cpu, kcrypto_wq, &cpu_queue->work);
151
152 if (!atomic_read(refcnt))
153 goto out_put_cpu;
154
155 atomic_inc(refcnt);
156
157 out_put_cpu:
158 put_cpu();
159
160 return err;
161 }
162
163 /* Called in workqueue context, do one real cryption work (via
164 * req->complete) and reschedule itself if there are more work to
165 * do. */
166 static void cryptd_queue_worker(struct work_struct *work)
167 {
168 struct cryptd_cpu_queue *cpu_queue;
169 struct crypto_async_request *req, *backlog;
170
171 cpu_queue = container_of(work, struct cryptd_cpu_queue, work);
172 /*
173 * Only handle one request at a time to avoid hogging crypto workqueue.
174 * preempt_disable/enable is used to prevent being preempted by
175 * cryptd_enqueue_request(). local_bh_disable/enable is used to prevent
176 * cryptd_enqueue_request() being accessed from software interrupts.
177 */
178 local_bh_disable();
179 preempt_disable();
180 backlog = crypto_get_backlog(&cpu_queue->queue);
181 req = crypto_dequeue_request(&cpu_queue->queue);
182 preempt_enable();
183 local_bh_enable();
184
185 if (!req)
186 return;
187
188 if (backlog)
189 backlog->complete(backlog, -EINPROGRESS);
190 req->complete(req, 0);
191
192 if (cpu_queue->queue.qlen)
193 queue_work(kcrypto_wq, &cpu_queue->work);
194 }
195
196 static inline struct cryptd_queue *cryptd_get_queue(struct crypto_tfm *tfm)
197 {
198 struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
199 struct cryptd_instance_ctx *ictx = crypto_instance_ctx(inst);
200 return ictx->queue;
201 }
202
203 static inline void cryptd_check_internal(struct rtattr **tb, u32 *type,
204 u32 *mask)
205 {
206 struct crypto_attr_type *algt;
207
208 algt = crypto_get_attr_type(tb);
209 if (IS_ERR(algt))
210 return;
211
212 *type |= algt->type & CRYPTO_ALG_INTERNAL;
213 *mask |= algt->mask & CRYPTO_ALG_INTERNAL;
214 }
215
216 static int cryptd_blkcipher_setkey(struct crypto_ablkcipher *parent,
217 const u8 *key, unsigned int keylen)
218 {
219 struct cryptd_blkcipher_ctx *ctx = crypto_ablkcipher_ctx(parent);
220 struct crypto_blkcipher *child = ctx->child;
221 int err;
222
223 crypto_blkcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
224 crypto_blkcipher_set_flags(child, crypto_ablkcipher_get_flags(parent) &
225 CRYPTO_TFM_REQ_MASK);
226 err = crypto_blkcipher_setkey(child, key, keylen);
227 crypto_ablkcipher_set_flags(parent, crypto_blkcipher_get_flags(child) &
228 CRYPTO_TFM_RES_MASK);
229 return err;
230 }
231
232 static void cryptd_blkcipher_crypt(struct ablkcipher_request *req,
233 struct crypto_blkcipher *child,
234 int err,
235 int (*crypt)(struct blkcipher_desc *desc,
236 struct scatterlist *dst,
237 struct scatterlist *src,
238 unsigned int len))
239 {
240 struct cryptd_blkcipher_request_ctx *rctx;
241 struct cryptd_blkcipher_ctx *ctx;
242 struct crypto_ablkcipher *tfm;
243 struct blkcipher_desc desc;
244 int refcnt;
245
246 rctx = ablkcipher_request_ctx(req);
247
248 if (unlikely(err == -EINPROGRESS))
249 goto out;
250
251 desc.tfm = child;
252 desc.info = req->info;
253 desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
254
255 err = crypt(&desc, req->dst, req->src, req->nbytes);
256
257 req->base.complete = rctx->complete;
258
259 out:
260 tfm = crypto_ablkcipher_reqtfm(req);
261 ctx = crypto_ablkcipher_ctx(tfm);
262 refcnt = atomic_read(&ctx->refcnt);
263
264 local_bh_disable();
265 rctx->complete(&req->base, err);
266 local_bh_enable();
267
268 if (err != -EINPROGRESS && refcnt && atomic_dec_and_test(&ctx->refcnt))
269 crypto_free_ablkcipher(tfm);
270 }
271
272 static void cryptd_blkcipher_encrypt(struct crypto_async_request *req, int err)
273 {
274 struct cryptd_blkcipher_ctx *ctx = crypto_tfm_ctx(req->tfm);
275 struct crypto_blkcipher *child = ctx->child;
276
277 cryptd_blkcipher_crypt(ablkcipher_request_cast(req), child, err,
278 crypto_blkcipher_crt(child)->encrypt);
279 }
280
281 static void cryptd_blkcipher_decrypt(struct crypto_async_request *req, int err)
282 {
283 struct cryptd_blkcipher_ctx *ctx = crypto_tfm_ctx(req->tfm);
284 struct crypto_blkcipher *child = ctx->child;
285
286 cryptd_blkcipher_crypt(ablkcipher_request_cast(req), child, err,
287 crypto_blkcipher_crt(child)->decrypt);
288 }
289
290 static int cryptd_blkcipher_enqueue(struct ablkcipher_request *req,
291 crypto_completion_t compl)
292 {
293 struct cryptd_blkcipher_request_ctx *rctx = ablkcipher_request_ctx(req);
294 struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
295 struct cryptd_queue *queue;
296
297 queue = cryptd_get_queue(crypto_ablkcipher_tfm(tfm));
298 rctx->complete = req->base.complete;
299 req->base.complete = compl;
300
301 return cryptd_enqueue_request(queue, &req->base);
302 }
303
304 static int cryptd_blkcipher_encrypt_enqueue(struct ablkcipher_request *req)
305 {
306 return cryptd_blkcipher_enqueue(req, cryptd_blkcipher_encrypt);
307 }
308
309 static int cryptd_blkcipher_decrypt_enqueue(struct ablkcipher_request *req)
310 {
311 return cryptd_blkcipher_enqueue(req, cryptd_blkcipher_decrypt);
312 }
313
314 static int cryptd_blkcipher_init_tfm(struct crypto_tfm *tfm)
315 {
316 struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
317 struct cryptd_instance_ctx *ictx = crypto_instance_ctx(inst);
318 struct crypto_spawn *spawn = &ictx->spawn;
319 struct cryptd_blkcipher_ctx *ctx = crypto_tfm_ctx(tfm);
320 struct crypto_blkcipher *cipher;
321
322 cipher = crypto_spawn_blkcipher(spawn);
323 if (IS_ERR(cipher))
324 return PTR_ERR(cipher);
325
326 ctx->child = cipher;
327 tfm->crt_ablkcipher.reqsize =
328 sizeof(struct cryptd_blkcipher_request_ctx);
329 return 0;
330 }
331
332 static void cryptd_blkcipher_exit_tfm(struct crypto_tfm *tfm)
333 {
334 struct cryptd_blkcipher_ctx *ctx = crypto_tfm_ctx(tfm);
335
336 crypto_free_blkcipher(ctx->child);
337 }
338
339 static int cryptd_init_instance(struct crypto_instance *inst,
340 struct crypto_alg *alg)
341 {
342 if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME,
343 "cryptd(%s)",
344 alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
345 return -ENAMETOOLONG;
346
347 memcpy(inst->alg.cra_name, alg->cra_name, CRYPTO_MAX_ALG_NAME);
348
349 inst->alg.cra_priority = alg->cra_priority + 50;
350 inst->alg.cra_blocksize = alg->cra_blocksize;
351 inst->alg.cra_alignmask = alg->cra_alignmask;
352
353 return 0;
354 }
355
356 static void *cryptd_alloc_instance(struct crypto_alg *alg, unsigned int head,
357 unsigned int tail)
358 {
359 char *p;
360 struct crypto_instance *inst;
361 int err;
362
363 p = kzalloc(head + sizeof(*inst) + tail, GFP_KERNEL);
364 if (!p)
365 return ERR_PTR(-ENOMEM);
366
367 inst = (void *)(p + head);
368
369 err = cryptd_init_instance(inst, alg);
370 if (err)
371 goto out_free_inst;
372
373 out:
374 return p;
375
376 out_free_inst:
377 kfree(p);
378 p = ERR_PTR(err);
379 goto out;
380 }
381
382 static int cryptd_create_blkcipher(struct crypto_template *tmpl,
383 struct rtattr **tb,
384 struct cryptd_queue *queue)
385 {
386 struct cryptd_instance_ctx *ctx;
387 struct crypto_instance *inst;
388 struct crypto_alg *alg;
389 u32 type = CRYPTO_ALG_TYPE_BLKCIPHER;
390 u32 mask = CRYPTO_ALG_TYPE_MASK;
391 int err;
392
393 cryptd_check_internal(tb, &type, &mask);
394
395 alg = crypto_get_attr_alg(tb, type, mask);
396 if (IS_ERR(alg))
397 return PTR_ERR(alg);
398
399 inst = cryptd_alloc_instance(alg, 0, sizeof(*ctx));
400 err = PTR_ERR(inst);
401 if (IS_ERR(inst))
402 goto out_put_alg;
403
404 ctx = crypto_instance_ctx(inst);
405 ctx->queue = queue;
406
407 err = crypto_init_spawn(&ctx->spawn, alg, inst,
408 CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_ASYNC);
409 if (err)
410 goto out_free_inst;
411
412 type = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC;
413 if (alg->cra_flags & CRYPTO_ALG_INTERNAL)
414 type |= CRYPTO_ALG_INTERNAL;
415 inst->alg.cra_flags = type;
416 inst->alg.cra_type = &crypto_ablkcipher_type;
417
418 inst->alg.cra_ablkcipher.ivsize = alg->cra_blkcipher.ivsize;
419 inst->alg.cra_ablkcipher.min_keysize = alg->cra_blkcipher.min_keysize;
420 inst->alg.cra_ablkcipher.max_keysize = alg->cra_blkcipher.max_keysize;
421
422 inst->alg.cra_ablkcipher.geniv = alg->cra_blkcipher.geniv;
423
424 inst->alg.cra_ctxsize = sizeof(struct cryptd_blkcipher_ctx);
425
426 inst->alg.cra_init = cryptd_blkcipher_init_tfm;
427 inst->alg.cra_exit = cryptd_blkcipher_exit_tfm;
428
429 inst->alg.cra_ablkcipher.setkey = cryptd_blkcipher_setkey;
430 inst->alg.cra_ablkcipher.encrypt = cryptd_blkcipher_encrypt_enqueue;
431 inst->alg.cra_ablkcipher.decrypt = cryptd_blkcipher_decrypt_enqueue;
432
433 err = crypto_register_instance(tmpl, inst);
434 if (err) {
435 crypto_drop_spawn(&ctx->spawn);
436 out_free_inst:
437 kfree(inst);
438 }
439
440 out_put_alg:
441 crypto_mod_put(alg);
442 return err;
443 }
444
445 static int cryptd_skcipher_setkey(struct crypto_skcipher *parent,
446 const u8 *key, unsigned int keylen)
447 {
448 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(parent);
449 struct crypto_skcipher *child = ctx->child;
450 int err;
451
452 crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
453 crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(parent) &
454 CRYPTO_TFM_REQ_MASK);
455 err = crypto_skcipher_setkey(child, key, keylen);
456 crypto_skcipher_set_flags(parent, crypto_skcipher_get_flags(child) &
457 CRYPTO_TFM_RES_MASK);
458 return err;
459 }
460
461 static void cryptd_skcipher_complete(struct skcipher_request *req, int err)
462 {
463 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
464 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
465 struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
466 int refcnt = atomic_read(&ctx->refcnt);
467
468 local_bh_disable();
469 rctx->complete(&req->base, err);
470 local_bh_enable();
471
472 if (err != -EINPROGRESS && refcnt && atomic_dec_and_test(&ctx->refcnt))
473 crypto_free_skcipher(tfm);
474 }
475
476 static void cryptd_skcipher_encrypt(struct crypto_async_request *base,
477 int err)
478 {
479 struct skcipher_request *req = skcipher_request_cast(base);
480 struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
481 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
482 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
483 struct crypto_skcipher *child = ctx->child;
484 SKCIPHER_REQUEST_ON_STACK(subreq, child);
485
486 if (unlikely(err == -EINPROGRESS))
487 goto out;
488
489 skcipher_request_set_tfm(subreq, child);
490 skcipher_request_set_callback(subreq, CRYPTO_TFM_REQ_MAY_SLEEP,
491 NULL, NULL);
492 skcipher_request_set_crypt(subreq, req->src, req->dst, req->cryptlen,
493 req->iv);
494
495 err = crypto_skcipher_encrypt(subreq);
496 skcipher_request_zero(subreq);
497
498 req->base.complete = rctx->complete;
499
500 out:
501 cryptd_skcipher_complete(req, err);
502 }
503
504 static void cryptd_skcipher_decrypt(struct crypto_async_request *base,
505 int err)
506 {
507 struct skcipher_request *req = skcipher_request_cast(base);
508 struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
509 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
510 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
511 struct crypto_skcipher *child = ctx->child;
512 SKCIPHER_REQUEST_ON_STACK(subreq, child);
513
514 if (unlikely(err == -EINPROGRESS))
515 goto out;
516
517 skcipher_request_set_tfm(subreq, child);
518 skcipher_request_set_callback(subreq, CRYPTO_TFM_REQ_MAY_SLEEP,
519 NULL, NULL);
520 skcipher_request_set_crypt(subreq, req->src, req->dst, req->cryptlen,
521 req->iv);
522
523 err = crypto_skcipher_decrypt(subreq);
524 skcipher_request_zero(subreq);
525
526 req->base.complete = rctx->complete;
527
528 out:
529 cryptd_skcipher_complete(req, err);
530 }
531
532 static int cryptd_skcipher_enqueue(struct skcipher_request *req,
533 crypto_completion_t compl)
534 {
535 struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
536 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
537 struct cryptd_queue *queue;
538
539 queue = cryptd_get_queue(crypto_skcipher_tfm(tfm));
540 rctx->complete = req->base.complete;
541 req->base.complete = compl;
542
543 return cryptd_enqueue_request(queue, &req->base);
544 }
545
546 static int cryptd_skcipher_encrypt_enqueue(struct skcipher_request *req)
547 {
548 return cryptd_skcipher_enqueue(req, cryptd_skcipher_encrypt);
549 }
550
551 static int cryptd_skcipher_decrypt_enqueue(struct skcipher_request *req)
552 {
553 return cryptd_skcipher_enqueue(req, cryptd_skcipher_decrypt);
554 }
555
556 static int cryptd_skcipher_init_tfm(struct crypto_skcipher *tfm)
557 {
558 struct skcipher_instance *inst = skcipher_alg_instance(tfm);
559 struct skcipherd_instance_ctx *ictx = skcipher_instance_ctx(inst);
560 struct crypto_skcipher_spawn *spawn = &ictx->spawn;
561 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
562 struct crypto_skcipher *cipher;
563
564 cipher = crypto_spawn_skcipher(spawn);
565 if (IS_ERR(cipher))
566 return PTR_ERR(cipher);
567
568 ctx->child = cipher;
569 crypto_skcipher_set_reqsize(
570 tfm, sizeof(struct cryptd_skcipher_request_ctx));
571 return 0;
572 }
573
574 static void cryptd_skcipher_exit_tfm(struct crypto_skcipher *tfm)
575 {
576 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
577
578 crypto_free_skcipher(ctx->child);
579 }
580
581 static void cryptd_skcipher_free(struct skcipher_instance *inst)
582 {
583 struct skcipherd_instance_ctx *ctx = skcipher_instance_ctx(inst);
584
585 crypto_drop_skcipher(&ctx->spawn);
586 }
587
588 static int cryptd_create_skcipher(struct crypto_template *tmpl,
589 struct rtattr **tb,
590 struct cryptd_queue *queue)
591 {
592 struct skcipherd_instance_ctx *ctx;
593 struct skcipher_instance *inst;
594 struct skcipher_alg *alg;
595 const char *name;
596 u32 type;
597 u32 mask;
598 int err;
599
600 type = 0;
601 mask = CRYPTO_ALG_ASYNC;
602
603 cryptd_check_internal(tb, &type, &mask);
604
605 name = crypto_attr_alg_name(tb[1]);
606 if (IS_ERR(name))
607 return PTR_ERR(name);
608
609 inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
610 if (!inst)
611 return -ENOMEM;
612
613 ctx = skcipher_instance_ctx(inst);
614 ctx->queue = queue;
615
616 crypto_set_skcipher_spawn(&ctx->spawn, skcipher_crypto_instance(inst));
617 err = crypto_grab_skcipher(&ctx->spawn, name, type, mask);
618 if (err)
619 goto out_free_inst;
620
621 alg = crypto_spawn_skcipher_alg(&ctx->spawn);
622 err = cryptd_init_instance(skcipher_crypto_instance(inst), &alg->base);
623 if (err)
624 goto out_drop_skcipher;
625
626 inst->alg.base.cra_flags = CRYPTO_ALG_ASYNC |
627 (alg->base.cra_flags & CRYPTO_ALG_INTERNAL);
628
629 inst->alg.ivsize = crypto_skcipher_alg_ivsize(alg);
630 inst->alg.chunksize = crypto_skcipher_alg_chunksize(alg);
631 inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(alg);
632 inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(alg);
633
634 inst->alg.base.cra_ctxsize = sizeof(struct cryptd_skcipher_ctx);
635
636 inst->alg.init = cryptd_skcipher_init_tfm;
637 inst->alg.exit = cryptd_skcipher_exit_tfm;
638
639 inst->alg.setkey = cryptd_skcipher_setkey;
640 inst->alg.encrypt = cryptd_skcipher_encrypt_enqueue;
641 inst->alg.decrypt = cryptd_skcipher_decrypt_enqueue;
642
643 inst->free = cryptd_skcipher_free;
644
645 err = skcipher_register_instance(tmpl, inst);
646 if (err) {
647 out_drop_skcipher:
648 crypto_drop_skcipher(&ctx->spawn);
649 out_free_inst:
650 kfree(inst);
651 }
652 return err;
653 }
654
655 static int cryptd_hash_init_tfm(struct crypto_tfm *tfm)
656 {
657 struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
658 struct hashd_instance_ctx *ictx = crypto_instance_ctx(inst);
659 struct crypto_shash_spawn *spawn = &ictx->spawn;
660 struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
661 struct crypto_shash *hash;
662
663 hash = crypto_spawn_shash(spawn);
664 if (IS_ERR(hash))
665 return PTR_ERR(hash);
666
667 ctx->child = hash;
668 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
669 sizeof(struct cryptd_hash_request_ctx) +
670 crypto_shash_descsize(hash));
671 return 0;
672 }
673
674 static void cryptd_hash_exit_tfm(struct crypto_tfm *tfm)
675 {
676 struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
677
678 crypto_free_shash(ctx->child);
679 }
680
681 static int cryptd_hash_setkey(struct crypto_ahash *parent,
682 const u8 *key, unsigned int keylen)
683 {
684 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(parent);
685 struct crypto_shash *child = ctx->child;
686 int err;
687
688 crypto_shash_clear_flags(child, CRYPTO_TFM_REQ_MASK);
689 crypto_shash_set_flags(child, crypto_ahash_get_flags(parent) &
690 CRYPTO_TFM_REQ_MASK);
691 err = crypto_shash_setkey(child, key, keylen);
692 crypto_ahash_set_flags(parent, crypto_shash_get_flags(child) &
693 CRYPTO_TFM_RES_MASK);
694 return err;
695 }
696
697 static int cryptd_hash_enqueue(struct ahash_request *req,
698 crypto_completion_t compl)
699 {
700 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
701 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
702 struct cryptd_queue *queue =
703 cryptd_get_queue(crypto_ahash_tfm(tfm));
704
705 rctx->complete = req->base.complete;
706 req->base.complete = compl;
707
708 return cryptd_enqueue_request(queue, &req->base);
709 }
710
711 static void cryptd_hash_complete(struct ahash_request *req, int err)
712 {
713 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
714 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm);
715 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
716 int refcnt = atomic_read(&ctx->refcnt);
717
718 local_bh_disable();
719 rctx->complete(&req->base, err);
720 local_bh_enable();
721
722 if (err != -EINPROGRESS && refcnt && atomic_dec_and_test(&ctx->refcnt))
723 crypto_free_ahash(tfm);
724 }
725
726 static void cryptd_hash_init(struct crypto_async_request *req_async, int err)
727 {
728 struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
729 struct crypto_shash *child = ctx->child;
730 struct ahash_request *req = ahash_request_cast(req_async);
731 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
732 struct shash_desc *desc = &rctx->desc;
733
734 if (unlikely(err == -EINPROGRESS))
735 goto out;
736
737 desc->tfm = child;
738 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
739
740 err = crypto_shash_init(desc);
741
742 req->base.complete = rctx->complete;
743
744 out:
745 cryptd_hash_complete(req, err);
746 }
747
748 static int cryptd_hash_init_enqueue(struct ahash_request *req)
749 {
750 return cryptd_hash_enqueue(req, cryptd_hash_init);
751 }
752
753 static void cryptd_hash_update(struct crypto_async_request *req_async, int err)
754 {
755 struct ahash_request *req = ahash_request_cast(req_async);
756 struct cryptd_hash_request_ctx *rctx;
757
758 rctx = ahash_request_ctx(req);
759
760 if (unlikely(err == -EINPROGRESS))
761 goto out;
762
763 err = shash_ahash_update(req, &rctx->desc);
764
765 req->base.complete = rctx->complete;
766
767 out:
768 cryptd_hash_complete(req, err);
769 }
770
771 static int cryptd_hash_update_enqueue(struct ahash_request *req)
772 {
773 return cryptd_hash_enqueue(req, cryptd_hash_update);
774 }
775
776 static void cryptd_hash_final(struct crypto_async_request *req_async, int err)
777 {
778 struct ahash_request *req = ahash_request_cast(req_async);
779 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
780
781 if (unlikely(err == -EINPROGRESS))
782 goto out;
783
784 err = crypto_shash_final(&rctx->desc, req->result);
785
786 req->base.complete = rctx->complete;
787
788 out:
789 cryptd_hash_complete(req, err);
790 }
791
792 static int cryptd_hash_final_enqueue(struct ahash_request *req)
793 {
794 return cryptd_hash_enqueue(req, cryptd_hash_final);
795 }
796
797 static void cryptd_hash_finup(struct crypto_async_request *req_async, int err)
798 {
799 struct ahash_request *req = ahash_request_cast(req_async);
800 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
801
802 if (unlikely(err == -EINPROGRESS))
803 goto out;
804
805 err = shash_ahash_finup(req, &rctx->desc);
806
807 req->base.complete = rctx->complete;
808
809 out:
810 cryptd_hash_complete(req, err);
811 }
812
813 static int cryptd_hash_finup_enqueue(struct ahash_request *req)
814 {
815 return cryptd_hash_enqueue(req, cryptd_hash_finup);
816 }
817
818 static void cryptd_hash_digest(struct crypto_async_request *req_async, int err)
819 {
820 struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
821 struct crypto_shash *child = ctx->child;
822 struct ahash_request *req = ahash_request_cast(req_async);
823 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
824 struct shash_desc *desc = &rctx->desc;
825
826 if (unlikely(err == -EINPROGRESS))
827 goto out;
828
829 desc->tfm = child;
830 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
831
832 err = shash_ahash_digest(req, desc);
833
834 req->base.complete = rctx->complete;
835
836 out:
837 cryptd_hash_complete(req, err);
838 }
839
840 static int cryptd_hash_digest_enqueue(struct ahash_request *req)
841 {
842 return cryptd_hash_enqueue(req, cryptd_hash_digest);
843 }
844
845 static int cryptd_hash_export(struct ahash_request *req, void *out)
846 {
847 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
848
849 return crypto_shash_export(&rctx->desc, out);
850 }
851
852 static int cryptd_hash_import(struct ahash_request *req, const void *in)
853 {
854 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
855 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm);
856 struct shash_desc *desc = cryptd_shash_desc(req);
857
858 desc->tfm = ctx->child;
859 desc->flags = req->base.flags;
860
861 return crypto_shash_import(desc, in);
862 }
863
864 static int cryptd_create_hash(struct crypto_template *tmpl, struct rtattr **tb,
865 struct cryptd_queue *queue)
866 {
867 struct hashd_instance_ctx *ctx;
868 struct ahash_instance *inst;
869 struct shash_alg *salg;
870 struct crypto_alg *alg;
871 u32 type = 0;
872 u32 mask = 0;
873 int err;
874
875 cryptd_check_internal(tb, &type, &mask);
876
877 salg = shash_attr_alg(tb[1], type, mask);
878 if (IS_ERR(salg))
879 return PTR_ERR(salg);
880
881 alg = &salg->base;
882 inst = cryptd_alloc_instance(alg, ahash_instance_headroom(),
883 sizeof(*ctx));
884 err = PTR_ERR(inst);
885 if (IS_ERR(inst))
886 goto out_put_alg;
887
888 ctx = ahash_instance_ctx(inst);
889 ctx->queue = queue;
890
891 err = crypto_init_shash_spawn(&ctx->spawn, salg,
892 ahash_crypto_instance(inst));
893 if (err)
894 goto out_free_inst;
895
896 type = CRYPTO_ALG_ASYNC;
897 if (alg->cra_flags & CRYPTO_ALG_INTERNAL)
898 type |= CRYPTO_ALG_INTERNAL;
899 inst->alg.halg.base.cra_flags = type;
900
901 inst->alg.halg.digestsize = salg->digestsize;
902 inst->alg.halg.statesize = salg->statesize;
903 inst->alg.halg.base.cra_ctxsize = sizeof(struct cryptd_hash_ctx);
904
905 inst->alg.halg.base.cra_init = cryptd_hash_init_tfm;
906 inst->alg.halg.base.cra_exit = cryptd_hash_exit_tfm;
907
908 inst->alg.init = cryptd_hash_init_enqueue;
909 inst->alg.update = cryptd_hash_update_enqueue;
910 inst->alg.final = cryptd_hash_final_enqueue;
911 inst->alg.finup = cryptd_hash_finup_enqueue;
912 inst->alg.export = cryptd_hash_export;
913 inst->alg.import = cryptd_hash_import;
914 inst->alg.setkey = cryptd_hash_setkey;
915 inst->alg.digest = cryptd_hash_digest_enqueue;
916
917 err = ahash_register_instance(tmpl, inst);
918 if (err) {
919 crypto_drop_shash(&ctx->spawn);
920 out_free_inst:
921 kfree(inst);
922 }
923
924 out_put_alg:
925 crypto_mod_put(alg);
926 return err;
927 }
928
929 static int cryptd_aead_setkey(struct crypto_aead *parent,
930 const u8 *key, unsigned int keylen)
931 {
932 struct cryptd_aead_ctx *ctx = crypto_aead_ctx(parent);
933 struct crypto_aead *child = ctx->child;
934
935 return crypto_aead_setkey(child, key, keylen);
936 }
937
938 static int cryptd_aead_setauthsize(struct crypto_aead *parent,
939 unsigned int authsize)
940 {
941 struct cryptd_aead_ctx *ctx = crypto_aead_ctx(parent);
942 struct crypto_aead *child = ctx->child;
943
944 return crypto_aead_setauthsize(child, authsize);
945 }
946
947 static void cryptd_aead_crypt(struct aead_request *req,
948 struct crypto_aead *child,
949 int err,
950 int (*crypt)(struct aead_request *req))
951 {
952 struct cryptd_aead_request_ctx *rctx;
953 struct cryptd_aead_ctx *ctx;
954 crypto_completion_t compl;
955 struct crypto_aead *tfm;
956 int refcnt;
957
958 rctx = aead_request_ctx(req);
959 compl = rctx->complete;
960
961 tfm = crypto_aead_reqtfm(req);
962
963 if (unlikely(err == -EINPROGRESS))
964 goto out;
965 aead_request_set_tfm(req, child);
966 err = crypt( req );
967
968 out:
969 ctx = crypto_aead_ctx(tfm);
970 refcnt = atomic_read(&ctx->refcnt);
971
972 local_bh_disable();
973 compl(&req->base, err);
974 local_bh_enable();
975
976 if (err != -EINPROGRESS && refcnt && atomic_dec_and_test(&ctx->refcnt))
977 crypto_free_aead(tfm);
978 }
979
980 static void cryptd_aead_encrypt(struct crypto_async_request *areq, int err)
981 {
982 struct cryptd_aead_ctx *ctx = crypto_tfm_ctx(areq->tfm);
983 struct crypto_aead *child = ctx->child;
984 struct aead_request *req;
985
986 req = container_of(areq, struct aead_request, base);
987 cryptd_aead_crypt(req, child, err, crypto_aead_alg(child)->encrypt);
988 }
989
990 static void cryptd_aead_decrypt(struct crypto_async_request *areq, int err)
991 {
992 struct cryptd_aead_ctx *ctx = crypto_tfm_ctx(areq->tfm);
993 struct crypto_aead *child = ctx->child;
994 struct aead_request *req;
995
996 req = container_of(areq, struct aead_request, base);
997 cryptd_aead_crypt(req, child, err, crypto_aead_alg(child)->decrypt);
998 }
999
1000 static int cryptd_aead_enqueue(struct aead_request *req,
1001 crypto_completion_t compl)
1002 {
1003 struct cryptd_aead_request_ctx *rctx = aead_request_ctx(req);
1004 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1005 struct cryptd_queue *queue = cryptd_get_queue(crypto_aead_tfm(tfm));
1006
1007 rctx->complete = req->base.complete;
1008 req->base.complete = compl;
1009 return cryptd_enqueue_request(queue, &req->base);
1010 }
1011
1012 static int cryptd_aead_encrypt_enqueue(struct aead_request *req)
1013 {
1014 return cryptd_aead_enqueue(req, cryptd_aead_encrypt );
1015 }
1016
1017 static int cryptd_aead_decrypt_enqueue(struct aead_request *req)
1018 {
1019 return cryptd_aead_enqueue(req, cryptd_aead_decrypt );
1020 }
1021
1022 static int cryptd_aead_init_tfm(struct crypto_aead *tfm)
1023 {
1024 struct aead_instance *inst = aead_alg_instance(tfm);
1025 struct aead_instance_ctx *ictx = aead_instance_ctx(inst);
1026 struct crypto_aead_spawn *spawn = &ictx->aead_spawn;
1027 struct cryptd_aead_ctx *ctx = crypto_aead_ctx(tfm);
1028 struct crypto_aead *cipher;
1029
1030 cipher = crypto_spawn_aead(spawn);
1031 if (IS_ERR(cipher))
1032 return PTR_ERR(cipher);
1033
1034 ctx->child = cipher;
1035 crypto_aead_set_reqsize(
1036 tfm, max((unsigned)sizeof(struct cryptd_aead_request_ctx),
1037 crypto_aead_reqsize(cipher)));
1038 return 0;
1039 }
1040
1041 static void cryptd_aead_exit_tfm(struct crypto_aead *tfm)
1042 {
1043 struct cryptd_aead_ctx *ctx = crypto_aead_ctx(tfm);
1044 crypto_free_aead(ctx->child);
1045 }
1046
1047 static int cryptd_create_aead(struct crypto_template *tmpl,
1048 struct rtattr **tb,
1049 struct cryptd_queue *queue)
1050 {
1051 struct aead_instance_ctx *ctx;
1052 struct aead_instance *inst;
1053 struct aead_alg *alg;
1054 const char *name;
1055 u32 type = 0;
1056 u32 mask = CRYPTO_ALG_ASYNC;
1057 int err;
1058
1059 cryptd_check_internal(tb, &type, &mask);
1060
1061 name = crypto_attr_alg_name(tb[1]);
1062 if (IS_ERR(name))
1063 return PTR_ERR(name);
1064
1065 inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
1066 if (!inst)
1067 return -ENOMEM;
1068
1069 ctx = aead_instance_ctx(inst);
1070 ctx->queue = queue;
1071
1072 crypto_set_aead_spawn(&ctx->aead_spawn, aead_crypto_instance(inst));
1073 err = crypto_grab_aead(&ctx->aead_spawn, name, type, mask);
1074 if (err)
1075 goto out_free_inst;
1076
1077 alg = crypto_spawn_aead_alg(&ctx->aead_spawn);
1078 err = cryptd_init_instance(aead_crypto_instance(inst), &alg->base);
1079 if (err)
1080 goto out_drop_aead;
1081
1082 inst->alg.base.cra_flags = CRYPTO_ALG_ASYNC |
1083 (alg->base.cra_flags & CRYPTO_ALG_INTERNAL);
1084 inst->alg.base.cra_ctxsize = sizeof(struct cryptd_aead_ctx);
1085
1086 inst->alg.ivsize = crypto_aead_alg_ivsize(alg);
1087 inst->alg.maxauthsize = crypto_aead_alg_maxauthsize(alg);
1088
1089 inst->alg.init = cryptd_aead_init_tfm;
1090 inst->alg.exit = cryptd_aead_exit_tfm;
1091 inst->alg.setkey = cryptd_aead_setkey;
1092 inst->alg.setauthsize = cryptd_aead_setauthsize;
1093 inst->alg.encrypt = cryptd_aead_encrypt_enqueue;
1094 inst->alg.decrypt = cryptd_aead_decrypt_enqueue;
1095
1096 err = aead_register_instance(tmpl, inst);
1097 if (err) {
1098 out_drop_aead:
1099 crypto_drop_aead(&ctx->aead_spawn);
1100 out_free_inst:
1101 kfree(inst);
1102 }
1103 return err;
1104 }
1105
1106 static struct cryptd_queue queue;
1107
1108 static int cryptd_create(struct crypto_template *tmpl, struct rtattr **tb)
1109 {
1110 struct crypto_attr_type *algt;
1111
1112 algt = crypto_get_attr_type(tb);
1113 if (IS_ERR(algt))
1114 return PTR_ERR(algt);
1115
1116 switch (algt->type & algt->mask & CRYPTO_ALG_TYPE_MASK) {
1117 case CRYPTO_ALG_TYPE_BLKCIPHER:
1118 if ((algt->type & CRYPTO_ALG_TYPE_MASK) ==
1119 CRYPTO_ALG_TYPE_BLKCIPHER)
1120 return cryptd_create_blkcipher(tmpl, tb, &queue);
1121
1122 return cryptd_create_skcipher(tmpl, tb, &queue);
1123 case CRYPTO_ALG_TYPE_DIGEST:
1124 return cryptd_create_hash(tmpl, tb, &queue);
1125 case CRYPTO_ALG_TYPE_AEAD:
1126 return cryptd_create_aead(tmpl, tb, &queue);
1127 }
1128
1129 return -EINVAL;
1130 }
1131
1132 static void cryptd_free(struct crypto_instance *inst)
1133 {
1134 struct cryptd_instance_ctx *ctx = crypto_instance_ctx(inst);
1135 struct hashd_instance_ctx *hctx = crypto_instance_ctx(inst);
1136 struct aead_instance_ctx *aead_ctx = crypto_instance_ctx(inst);
1137
1138 switch (inst->alg.cra_flags & CRYPTO_ALG_TYPE_MASK) {
1139 case CRYPTO_ALG_TYPE_AHASH:
1140 crypto_drop_shash(&hctx->spawn);
1141 kfree(ahash_instance(inst));
1142 return;
1143 case CRYPTO_ALG_TYPE_AEAD:
1144 crypto_drop_aead(&aead_ctx->aead_spawn);
1145 kfree(aead_instance(inst));
1146 return;
1147 default:
1148 crypto_drop_spawn(&ctx->spawn);
1149 kfree(inst);
1150 }
1151 }
1152
1153 static struct crypto_template cryptd_tmpl = {
1154 .name = "cryptd",
1155 .create = cryptd_create,
1156 .free = cryptd_free,
1157 .module = THIS_MODULE,
1158 };
1159
1160 struct cryptd_ablkcipher *cryptd_alloc_ablkcipher(const char *alg_name,
1161 u32 type, u32 mask)
1162 {
1163 char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
1164 struct cryptd_blkcipher_ctx *ctx;
1165 struct crypto_tfm *tfm;
1166
1167 if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
1168 "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
1169 return ERR_PTR(-EINVAL);
1170 type = crypto_skcipher_type(type);
1171 mask &= ~CRYPTO_ALG_TYPE_MASK;
1172 mask |= (CRYPTO_ALG_GENIV | CRYPTO_ALG_TYPE_BLKCIPHER_MASK);
1173 tfm = crypto_alloc_base(cryptd_alg_name, type, mask);
1174 if (IS_ERR(tfm))
1175 return ERR_CAST(tfm);
1176 if (tfm->__crt_alg->cra_module != THIS_MODULE) {
1177 crypto_free_tfm(tfm);
1178 return ERR_PTR(-EINVAL);
1179 }
1180
1181 ctx = crypto_tfm_ctx(tfm);
1182 atomic_set(&ctx->refcnt, 1);
1183
1184 return __cryptd_ablkcipher_cast(__crypto_ablkcipher_cast(tfm));
1185 }
1186 EXPORT_SYMBOL_GPL(cryptd_alloc_ablkcipher);
1187
1188 struct crypto_blkcipher *cryptd_ablkcipher_child(struct cryptd_ablkcipher *tfm)
1189 {
1190 struct cryptd_blkcipher_ctx *ctx = crypto_ablkcipher_ctx(&tfm->base);
1191 return ctx->child;
1192 }
1193 EXPORT_SYMBOL_GPL(cryptd_ablkcipher_child);
1194
1195 bool cryptd_ablkcipher_queued(struct cryptd_ablkcipher *tfm)
1196 {
1197 struct cryptd_blkcipher_ctx *ctx = crypto_ablkcipher_ctx(&tfm->base);
1198
1199 return atomic_read(&ctx->refcnt) - 1;
1200 }
1201 EXPORT_SYMBOL_GPL(cryptd_ablkcipher_queued);
1202
1203 void cryptd_free_ablkcipher(struct cryptd_ablkcipher *tfm)
1204 {
1205 struct cryptd_blkcipher_ctx *ctx = crypto_ablkcipher_ctx(&tfm->base);
1206
1207 if (atomic_dec_and_test(&ctx->refcnt))
1208 crypto_free_ablkcipher(&tfm->base);
1209 }
1210 EXPORT_SYMBOL_GPL(cryptd_free_ablkcipher);
1211
1212 struct cryptd_skcipher *cryptd_alloc_skcipher(const char *alg_name,
1213 u32 type, u32 mask)
1214 {
1215 char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
1216 struct cryptd_skcipher_ctx *ctx;
1217 struct crypto_skcipher *tfm;
1218
1219 if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
1220 "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
1221 return ERR_PTR(-EINVAL);
1222
1223 tfm = crypto_alloc_skcipher(cryptd_alg_name, type, mask);
1224 if (IS_ERR(tfm))
1225 return ERR_CAST(tfm);
1226
1227 if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
1228 crypto_free_skcipher(tfm);
1229 return ERR_PTR(-EINVAL);
1230 }
1231
1232 ctx = crypto_skcipher_ctx(tfm);
1233 atomic_set(&ctx->refcnt, 1);
1234
1235 return container_of(tfm, struct cryptd_skcipher, base);
1236 }
1237 EXPORT_SYMBOL_GPL(cryptd_alloc_skcipher);
1238
1239 struct crypto_skcipher *cryptd_skcipher_child(struct cryptd_skcipher *tfm)
1240 {
1241 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base);
1242
1243 return ctx->child;
1244 }
1245 EXPORT_SYMBOL_GPL(cryptd_skcipher_child);
1246
1247 bool cryptd_skcipher_queued(struct cryptd_skcipher *tfm)
1248 {
1249 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base);
1250
1251 return atomic_read(&ctx->refcnt) - 1;
1252 }
1253 EXPORT_SYMBOL_GPL(cryptd_skcipher_queued);
1254
1255 void cryptd_free_skcipher(struct cryptd_skcipher *tfm)
1256 {
1257 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base);
1258
1259 if (atomic_dec_and_test(&ctx->refcnt))
1260 crypto_free_skcipher(&tfm->base);
1261 }
1262 EXPORT_SYMBOL_GPL(cryptd_free_skcipher);
1263
1264 struct cryptd_ahash *cryptd_alloc_ahash(const char *alg_name,
1265 u32 type, u32 mask)
1266 {
1267 char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
1268 struct cryptd_hash_ctx *ctx;
1269 struct crypto_ahash *tfm;
1270
1271 if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
1272 "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
1273 return ERR_PTR(-EINVAL);
1274 tfm = crypto_alloc_ahash(cryptd_alg_name, type, mask);
1275 if (IS_ERR(tfm))
1276 return ERR_CAST(tfm);
1277 if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
1278 crypto_free_ahash(tfm);
1279 return ERR_PTR(-EINVAL);
1280 }
1281
1282 ctx = crypto_ahash_ctx(tfm);
1283 atomic_set(&ctx->refcnt, 1);
1284
1285 return __cryptd_ahash_cast(tfm);
1286 }
1287 EXPORT_SYMBOL_GPL(cryptd_alloc_ahash);
1288
1289 struct crypto_shash *cryptd_ahash_child(struct cryptd_ahash *tfm)
1290 {
1291 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
1292
1293 return ctx->child;
1294 }
1295 EXPORT_SYMBOL_GPL(cryptd_ahash_child);
1296
1297 struct shash_desc *cryptd_shash_desc(struct ahash_request *req)
1298 {
1299 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
1300 return &rctx->desc;
1301 }
1302 EXPORT_SYMBOL_GPL(cryptd_shash_desc);
1303
1304 bool cryptd_ahash_queued(struct cryptd_ahash *tfm)
1305 {
1306 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
1307
1308 return atomic_read(&ctx->refcnt) - 1;
1309 }
1310 EXPORT_SYMBOL_GPL(cryptd_ahash_queued);
1311
1312 void cryptd_free_ahash(struct cryptd_ahash *tfm)
1313 {
1314 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
1315
1316 if (atomic_dec_and_test(&ctx->refcnt))
1317 crypto_free_ahash(&tfm->base);
1318 }
1319 EXPORT_SYMBOL_GPL(cryptd_free_ahash);
1320
1321 struct cryptd_aead *cryptd_alloc_aead(const char *alg_name,
1322 u32 type, u32 mask)
1323 {
1324 char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
1325 struct cryptd_aead_ctx *ctx;
1326 struct crypto_aead *tfm;
1327
1328 if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
1329 "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
1330 return ERR_PTR(-EINVAL);
1331 tfm = crypto_alloc_aead(cryptd_alg_name, type, mask);
1332 if (IS_ERR(tfm))
1333 return ERR_CAST(tfm);
1334 if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
1335 crypto_free_aead(tfm);
1336 return ERR_PTR(-EINVAL);
1337 }
1338
1339 ctx = crypto_aead_ctx(tfm);
1340 atomic_set(&ctx->refcnt, 1);
1341
1342 return __cryptd_aead_cast(tfm);
1343 }
1344 EXPORT_SYMBOL_GPL(cryptd_alloc_aead);
1345
1346 struct crypto_aead *cryptd_aead_child(struct cryptd_aead *tfm)
1347 {
1348 struct cryptd_aead_ctx *ctx;
1349 ctx = crypto_aead_ctx(&tfm->base);
1350 return ctx->child;
1351 }
1352 EXPORT_SYMBOL_GPL(cryptd_aead_child);
1353
1354 bool cryptd_aead_queued(struct cryptd_aead *tfm)
1355 {
1356 struct cryptd_aead_ctx *ctx = crypto_aead_ctx(&tfm->base);
1357
1358 return atomic_read(&ctx->refcnt) - 1;
1359 }
1360 EXPORT_SYMBOL_GPL(cryptd_aead_queued);
1361
1362 void cryptd_free_aead(struct cryptd_aead *tfm)
1363 {
1364 struct cryptd_aead_ctx *ctx = crypto_aead_ctx(&tfm->base);
1365
1366 if (atomic_dec_and_test(&ctx->refcnt))
1367 crypto_free_aead(&tfm->base);
1368 }
1369 EXPORT_SYMBOL_GPL(cryptd_free_aead);
1370
1371 static int __init cryptd_init(void)
1372 {
1373 int err;
1374
1375 err = cryptd_init_queue(&queue, CRYPTD_MAX_CPU_QLEN);
1376 if (err)
1377 return err;
1378
1379 err = crypto_register_template(&cryptd_tmpl);
1380 if (err)
1381 cryptd_fini_queue(&queue);
1382
1383 return err;
1384 }
1385
1386 static void __exit cryptd_exit(void)
1387 {
1388 cryptd_fini_queue(&queue);
1389 crypto_unregister_template(&cryptd_tmpl);
1390 }
1391
1392 subsys_initcall(cryptd_init);
1393 module_exit(cryptd_exit);
1394
1395 MODULE_LICENSE("GPL");
1396 MODULE_DESCRIPTION("Software async crypto daemon");
1397 MODULE_ALIAS_CRYPTO("cryptd");