]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - crypto/skcipher.c
x86/speculation/mds: Add mitigation control for MDS
[mirror_ubuntu-bionic-kernel.git] / crypto / skcipher.c
1 /*
2 * Symmetric key cipher operations.
3 *
4 * Generic encrypt/decrypt wrapper for ciphers, handles operations across
5 * multiple page boundaries by using temporary blocks. In user context,
6 * the kernel is given a chance to schedule us once per page.
7 *
8 * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the Free
12 * Software Foundation; either version 2 of the License, or (at your option)
13 * any later version.
14 *
15 */
16
17 #include <crypto/internal/aead.h>
18 #include <crypto/internal/skcipher.h>
19 #include <crypto/scatterwalk.h>
20 #include <linux/bug.h>
21 #include <linux/cryptouser.h>
22 #include <linux/compiler.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/rtnetlink.h>
26 #include <linux/seq_file.h>
27 #include <net/netlink.h>
28
29 #include "internal.h"
30
31 enum {
32 SKCIPHER_WALK_PHYS = 1 << 0,
33 SKCIPHER_WALK_SLOW = 1 << 1,
34 SKCIPHER_WALK_COPY = 1 << 2,
35 SKCIPHER_WALK_DIFF = 1 << 3,
36 SKCIPHER_WALK_SLEEP = 1 << 4,
37 };
38
39 struct skcipher_walk_buffer {
40 struct list_head entry;
41 struct scatter_walk dst;
42 unsigned int len;
43 u8 *data;
44 u8 buffer[];
45 };
46
47 static int skcipher_walk_next(struct skcipher_walk *walk);
48
49 static inline void skcipher_unmap(struct scatter_walk *walk, void *vaddr)
50 {
51 if (PageHighMem(scatterwalk_page(walk)))
52 kunmap_atomic(vaddr);
53 }
54
55 static inline void *skcipher_map(struct scatter_walk *walk)
56 {
57 struct page *page = scatterwalk_page(walk);
58
59 return (PageHighMem(page) ? kmap_atomic(page) : page_address(page)) +
60 offset_in_page(walk->offset);
61 }
62
63 static inline void skcipher_map_src(struct skcipher_walk *walk)
64 {
65 walk->src.virt.addr = skcipher_map(&walk->in);
66 }
67
68 static inline void skcipher_map_dst(struct skcipher_walk *walk)
69 {
70 walk->dst.virt.addr = skcipher_map(&walk->out);
71 }
72
73 static inline void skcipher_unmap_src(struct skcipher_walk *walk)
74 {
75 skcipher_unmap(&walk->in, walk->src.virt.addr);
76 }
77
78 static inline void skcipher_unmap_dst(struct skcipher_walk *walk)
79 {
80 skcipher_unmap(&walk->out, walk->dst.virt.addr);
81 }
82
83 static inline gfp_t skcipher_walk_gfp(struct skcipher_walk *walk)
84 {
85 return walk->flags & SKCIPHER_WALK_SLEEP ? GFP_KERNEL : GFP_ATOMIC;
86 }
87
88 /* Get a spot of the specified length that does not straddle a page.
89 * The caller needs to ensure that there is enough space for this operation.
90 */
91 static inline u8 *skcipher_get_spot(u8 *start, unsigned int len)
92 {
93 u8 *end_page = (u8 *)(((unsigned long)(start + len - 1)) & PAGE_MASK);
94
95 return max(start, end_page);
96 }
97
98 static int skcipher_done_slow(struct skcipher_walk *walk, unsigned int bsize)
99 {
100 u8 *addr;
101
102 addr = (u8 *)ALIGN((unsigned long)walk->buffer, walk->alignmask + 1);
103 addr = skcipher_get_spot(addr, bsize);
104 scatterwalk_copychunks(addr, &walk->out, bsize,
105 (walk->flags & SKCIPHER_WALK_PHYS) ? 2 : 1);
106 return 0;
107 }
108
109 int skcipher_walk_done(struct skcipher_walk *walk, int err)
110 {
111 unsigned int n = walk->nbytes - err;
112 unsigned int nbytes;
113
114 nbytes = walk->total - n;
115
116 if (unlikely(err < 0)) {
117 nbytes = 0;
118 n = 0;
119 } else if (likely(!(walk->flags & (SKCIPHER_WALK_PHYS |
120 SKCIPHER_WALK_SLOW |
121 SKCIPHER_WALK_COPY |
122 SKCIPHER_WALK_DIFF)))) {
123 unmap_src:
124 skcipher_unmap_src(walk);
125 } else if (walk->flags & SKCIPHER_WALK_DIFF) {
126 skcipher_unmap_dst(walk);
127 goto unmap_src;
128 } else if (walk->flags & SKCIPHER_WALK_COPY) {
129 skcipher_map_dst(walk);
130 memcpy(walk->dst.virt.addr, walk->page, n);
131 skcipher_unmap_dst(walk);
132 } else if (unlikely(walk->flags & SKCIPHER_WALK_SLOW)) {
133 if (WARN_ON(err)) {
134 err = -EINVAL;
135 nbytes = 0;
136 } else
137 n = skcipher_done_slow(walk, n);
138 }
139
140 if (err > 0)
141 err = 0;
142
143 walk->total = nbytes;
144 walk->nbytes = nbytes;
145
146 scatterwalk_advance(&walk->in, n);
147 scatterwalk_advance(&walk->out, n);
148 scatterwalk_done(&walk->in, 0, nbytes);
149 scatterwalk_done(&walk->out, 1, nbytes);
150
151 if (nbytes) {
152 crypto_yield(walk->flags & SKCIPHER_WALK_SLEEP ?
153 CRYPTO_TFM_REQ_MAY_SLEEP : 0);
154 return skcipher_walk_next(walk);
155 }
156
157 /* Short-circuit for the common/fast path. */
158 if (!((unsigned long)walk->buffer | (unsigned long)walk->page))
159 goto out;
160
161 if (walk->flags & SKCIPHER_WALK_PHYS)
162 goto out;
163
164 if (walk->iv != walk->oiv)
165 memcpy(walk->oiv, walk->iv, walk->ivsize);
166 if (walk->buffer != walk->page)
167 kfree(walk->buffer);
168 if (walk->page)
169 free_page((unsigned long)walk->page);
170
171 out:
172 return err;
173 }
174 EXPORT_SYMBOL_GPL(skcipher_walk_done);
175
176 void skcipher_walk_complete(struct skcipher_walk *walk, int err)
177 {
178 struct skcipher_walk_buffer *p, *tmp;
179
180 list_for_each_entry_safe(p, tmp, &walk->buffers, entry) {
181 u8 *data;
182
183 if (err)
184 goto done;
185
186 data = p->data;
187 if (!data) {
188 data = PTR_ALIGN(&p->buffer[0], walk->alignmask + 1);
189 data = skcipher_get_spot(data, walk->stride);
190 }
191
192 scatterwalk_copychunks(data, &p->dst, p->len, 1);
193
194 if (offset_in_page(p->data) + p->len + walk->stride >
195 PAGE_SIZE)
196 free_page((unsigned long)p->data);
197
198 done:
199 list_del(&p->entry);
200 kfree(p);
201 }
202
203 if (!err && walk->iv != walk->oiv)
204 memcpy(walk->oiv, walk->iv, walk->ivsize);
205 if (walk->buffer != walk->page)
206 kfree(walk->buffer);
207 if (walk->page)
208 free_page((unsigned long)walk->page);
209 }
210 EXPORT_SYMBOL_GPL(skcipher_walk_complete);
211
212 static void skcipher_queue_write(struct skcipher_walk *walk,
213 struct skcipher_walk_buffer *p)
214 {
215 p->dst = walk->out;
216 list_add_tail(&p->entry, &walk->buffers);
217 }
218
219 static int skcipher_next_slow(struct skcipher_walk *walk, unsigned int bsize)
220 {
221 bool phys = walk->flags & SKCIPHER_WALK_PHYS;
222 unsigned alignmask = walk->alignmask;
223 struct skcipher_walk_buffer *p;
224 unsigned a;
225 unsigned n;
226 u8 *buffer;
227 void *v;
228
229 if (!phys) {
230 if (!walk->buffer)
231 walk->buffer = walk->page;
232 buffer = walk->buffer;
233 if (buffer)
234 goto ok;
235 }
236
237 /* Start with the minimum alignment of kmalloc. */
238 a = crypto_tfm_ctx_alignment() - 1;
239 n = bsize;
240
241 if (phys) {
242 /* Calculate the minimum alignment of p->buffer. */
243 a &= (sizeof(*p) ^ (sizeof(*p) - 1)) >> 1;
244 n += sizeof(*p);
245 }
246
247 /* Minimum size to align p->buffer by alignmask. */
248 n += alignmask & ~a;
249
250 /* Minimum size to ensure p->buffer does not straddle a page. */
251 n += (bsize - 1) & ~(alignmask | a);
252
253 v = kzalloc(n, skcipher_walk_gfp(walk));
254 if (!v)
255 return skcipher_walk_done(walk, -ENOMEM);
256
257 if (phys) {
258 p = v;
259 p->len = bsize;
260 skcipher_queue_write(walk, p);
261 buffer = p->buffer;
262 } else {
263 walk->buffer = v;
264 buffer = v;
265 }
266
267 ok:
268 walk->dst.virt.addr = PTR_ALIGN(buffer, alignmask + 1);
269 walk->dst.virt.addr = skcipher_get_spot(walk->dst.virt.addr, bsize);
270 walk->src.virt.addr = walk->dst.virt.addr;
271
272 scatterwalk_copychunks(walk->src.virt.addr, &walk->in, bsize, 0);
273
274 walk->nbytes = bsize;
275 walk->flags |= SKCIPHER_WALK_SLOW;
276
277 return 0;
278 }
279
280 static int skcipher_next_copy(struct skcipher_walk *walk)
281 {
282 struct skcipher_walk_buffer *p;
283 u8 *tmp = walk->page;
284
285 skcipher_map_src(walk);
286 memcpy(tmp, walk->src.virt.addr, walk->nbytes);
287 skcipher_unmap_src(walk);
288
289 walk->src.virt.addr = tmp;
290 walk->dst.virt.addr = tmp;
291
292 if (!(walk->flags & SKCIPHER_WALK_PHYS))
293 return 0;
294
295 p = kmalloc(sizeof(*p), skcipher_walk_gfp(walk));
296 if (!p)
297 return -ENOMEM;
298
299 p->data = walk->page;
300 p->len = walk->nbytes;
301 skcipher_queue_write(walk, p);
302
303 if (offset_in_page(walk->page) + walk->nbytes + walk->stride >
304 PAGE_SIZE)
305 walk->page = NULL;
306 else
307 walk->page += walk->nbytes;
308
309 return 0;
310 }
311
312 static int skcipher_next_fast(struct skcipher_walk *walk)
313 {
314 unsigned long diff;
315
316 walk->src.phys.page = scatterwalk_page(&walk->in);
317 walk->src.phys.offset = offset_in_page(walk->in.offset);
318 walk->dst.phys.page = scatterwalk_page(&walk->out);
319 walk->dst.phys.offset = offset_in_page(walk->out.offset);
320
321 if (walk->flags & SKCIPHER_WALK_PHYS)
322 return 0;
323
324 diff = walk->src.phys.offset - walk->dst.phys.offset;
325 diff |= walk->src.virt.page - walk->dst.virt.page;
326
327 skcipher_map_src(walk);
328 walk->dst.virt.addr = walk->src.virt.addr;
329
330 if (diff) {
331 walk->flags |= SKCIPHER_WALK_DIFF;
332 skcipher_map_dst(walk);
333 }
334
335 return 0;
336 }
337
338 static int skcipher_walk_next(struct skcipher_walk *walk)
339 {
340 unsigned int bsize;
341 unsigned int n;
342 int err;
343
344 walk->flags &= ~(SKCIPHER_WALK_SLOW | SKCIPHER_WALK_COPY |
345 SKCIPHER_WALK_DIFF);
346
347 n = walk->total;
348 bsize = min(walk->stride, max(n, walk->blocksize));
349 n = scatterwalk_clamp(&walk->in, n);
350 n = scatterwalk_clamp(&walk->out, n);
351
352 if (unlikely(n < bsize)) {
353 if (unlikely(walk->total < walk->blocksize))
354 return skcipher_walk_done(walk, -EINVAL);
355
356 slow_path:
357 err = skcipher_next_slow(walk, bsize);
358 goto set_phys_lowmem;
359 }
360
361 if (unlikely((walk->in.offset | walk->out.offset) & walk->alignmask)) {
362 if (!walk->page) {
363 gfp_t gfp = skcipher_walk_gfp(walk);
364
365 walk->page = (void *)__get_free_page(gfp);
366 if (!walk->page)
367 goto slow_path;
368 }
369
370 walk->nbytes = min_t(unsigned, n,
371 PAGE_SIZE - offset_in_page(walk->page));
372 walk->flags |= SKCIPHER_WALK_COPY;
373 err = skcipher_next_copy(walk);
374 goto set_phys_lowmem;
375 }
376
377 walk->nbytes = n;
378
379 return skcipher_next_fast(walk);
380
381 set_phys_lowmem:
382 if (!err && (walk->flags & SKCIPHER_WALK_PHYS)) {
383 walk->src.phys.page = virt_to_page(walk->src.virt.addr);
384 walk->dst.phys.page = virt_to_page(walk->dst.virt.addr);
385 walk->src.phys.offset &= PAGE_SIZE - 1;
386 walk->dst.phys.offset &= PAGE_SIZE - 1;
387 }
388 return err;
389 }
390 EXPORT_SYMBOL_GPL(skcipher_walk_next);
391
392 static int skcipher_copy_iv(struct skcipher_walk *walk)
393 {
394 unsigned a = crypto_tfm_ctx_alignment() - 1;
395 unsigned alignmask = walk->alignmask;
396 unsigned ivsize = walk->ivsize;
397 unsigned bs = walk->stride;
398 unsigned aligned_bs;
399 unsigned size;
400 u8 *iv;
401
402 aligned_bs = ALIGN(bs, alignmask);
403
404 /* Minimum size to align buffer by alignmask. */
405 size = alignmask & ~a;
406
407 if (walk->flags & SKCIPHER_WALK_PHYS)
408 size += ivsize;
409 else {
410 size += aligned_bs + ivsize;
411
412 /* Minimum size to ensure buffer does not straddle a page. */
413 size += (bs - 1) & ~(alignmask | a);
414 }
415
416 walk->buffer = kmalloc(size, skcipher_walk_gfp(walk));
417 if (!walk->buffer)
418 return -ENOMEM;
419
420 iv = PTR_ALIGN(walk->buffer, alignmask + 1);
421 iv = skcipher_get_spot(iv, bs) + aligned_bs;
422
423 walk->iv = memcpy(iv, walk->iv, walk->ivsize);
424 return 0;
425 }
426
427 static int skcipher_walk_first(struct skcipher_walk *walk)
428 {
429 if (WARN_ON_ONCE(in_irq()))
430 return -EDEADLK;
431
432 walk->buffer = NULL;
433 if (unlikely(((unsigned long)walk->iv & walk->alignmask))) {
434 int err = skcipher_copy_iv(walk);
435 if (err)
436 return err;
437 }
438
439 walk->page = NULL;
440 walk->nbytes = walk->total;
441
442 return skcipher_walk_next(walk);
443 }
444
445 static int skcipher_walk_skcipher(struct skcipher_walk *walk,
446 struct skcipher_request *req)
447 {
448 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
449
450 walk->total = req->cryptlen;
451 walk->nbytes = 0;
452 walk->iv = req->iv;
453 walk->oiv = req->iv;
454
455 if (unlikely(!walk->total))
456 return 0;
457
458 scatterwalk_start(&walk->in, req->src);
459 scatterwalk_start(&walk->out, req->dst);
460
461 walk->flags &= ~SKCIPHER_WALK_SLEEP;
462 walk->flags |= req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
463 SKCIPHER_WALK_SLEEP : 0;
464
465 walk->blocksize = crypto_skcipher_blocksize(tfm);
466 walk->stride = crypto_skcipher_walksize(tfm);
467 walk->ivsize = crypto_skcipher_ivsize(tfm);
468 walk->alignmask = crypto_skcipher_alignmask(tfm);
469
470 return skcipher_walk_first(walk);
471 }
472
473 int skcipher_walk_virt(struct skcipher_walk *walk,
474 struct skcipher_request *req, bool atomic)
475 {
476 int err;
477
478 walk->flags &= ~SKCIPHER_WALK_PHYS;
479
480 err = skcipher_walk_skcipher(walk, req);
481
482 walk->flags &= atomic ? ~SKCIPHER_WALK_SLEEP : ~0;
483
484 return err;
485 }
486 EXPORT_SYMBOL_GPL(skcipher_walk_virt);
487
488 void skcipher_walk_atomise(struct skcipher_walk *walk)
489 {
490 walk->flags &= ~SKCIPHER_WALK_SLEEP;
491 }
492 EXPORT_SYMBOL_GPL(skcipher_walk_atomise);
493
494 int skcipher_walk_async(struct skcipher_walk *walk,
495 struct skcipher_request *req)
496 {
497 walk->flags |= SKCIPHER_WALK_PHYS;
498
499 INIT_LIST_HEAD(&walk->buffers);
500
501 return skcipher_walk_skcipher(walk, req);
502 }
503 EXPORT_SYMBOL_GPL(skcipher_walk_async);
504
505 static int skcipher_walk_aead_common(struct skcipher_walk *walk,
506 struct aead_request *req, bool atomic)
507 {
508 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
509 int err;
510
511 walk->nbytes = 0;
512 walk->iv = req->iv;
513 walk->oiv = req->iv;
514
515 if (unlikely(!walk->total))
516 return 0;
517
518 walk->flags &= ~SKCIPHER_WALK_PHYS;
519
520 scatterwalk_start(&walk->in, req->src);
521 scatterwalk_start(&walk->out, req->dst);
522
523 scatterwalk_copychunks(NULL, &walk->in, req->assoclen, 2);
524 scatterwalk_copychunks(NULL, &walk->out, req->assoclen, 2);
525
526 scatterwalk_done(&walk->in, 0, walk->total);
527 scatterwalk_done(&walk->out, 0, walk->total);
528
529 if (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP)
530 walk->flags |= SKCIPHER_WALK_SLEEP;
531 else
532 walk->flags &= ~SKCIPHER_WALK_SLEEP;
533
534 walk->blocksize = crypto_aead_blocksize(tfm);
535 walk->stride = crypto_aead_chunksize(tfm);
536 walk->ivsize = crypto_aead_ivsize(tfm);
537 walk->alignmask = crypto_aead_alignmask(tfm);
538
539 err = skcipher_walk_first(walk);
540
541 if (atomic)
542 walk->flags &= ~SKCIPHER_WALK_SLEEP;
543
544 return err;
545 }
546
547 int skcipher_walk_aead(struct skcipher_walk *walk, struct aead_request *req,
548 bool atomic)
549 {
550 walk->total = req->cryptlen;
551
552 return skcipher_walk_aead_common(walk, req, atomic);
553 }
554 EXPORT_SYMBOL_GPL(skcipher_walk_aead);
555
556 int skcipher_walk_aead_encrypt(struct skcipher_walk *walk,
557 struct aead_request *req, bool atomic)
558 {
559 walk->total = req->cryptlen;
560
561 return skcipher_walk_aead_common(walk, req, atomic);
562 }
563 EXPORT_SYMBOL_GPL(skcipher_walk_aead_encrypt);
564
565 int skcipher_walk_aead_decrypt(struct skcipher_walk *walk,
566 struct aead_request *req, bool atomic)
567 {
568 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
569
570 walk->total = req->cryptlen - crypto_aead_authsize(tfm);
571
572 return skcipher_walk_aead_common(walk, req, atomic);
573 }
574 EXPORT_SYMBOL_GPL(skcipher_walk_aead_decrypt);
575
576 static unsigned int crypto_skcipher_extsize(struct crypto_alg *alg)
577 {
578 if (alg->cra_type == &crypto_blkcipher_type)
579 return sizeof(struct crypto_blkcipher *);
580
581 if (alg->cra_type == &crypto_ablkcipher_type ||
582 alg->cra_type == &crypto_givcipher_type)
583 return sizeof(struct crypto_ablkcipher *);
584
585 return crypto_alg_extsize(alg);
586 }
587
588 static int skcipher_setkey_blkcipher(struct crypto_skcipher *tfm,
589 const u8 *key, unsigned int keylen)
590 {
591 struct crypto_blkcipher **ctx = crypto_skcipher_ctx(tfm);
592 struct crypto_blkcipher *blkcipher = *ctx;
593 int err;
594
595 crypto_blkcipher_clear_flags(blkcipher, ~0);
596 crypto_blkcipher_set_flags(blkcipher, crypto_skcipher_get_flags(tfm) &
597 CRYPTO_TFM_REQ_MASK);
598 err = crypto_blkcipher_setkey(blkcipher, key, keylen);
599 crypto_skcipher_set_flags(tfm, crypto_blkcipher_get_flags(blkcipher) &
600 CRYPTO_TFM_RES_MASK);
601
602 return err;
603 }
604
605 static int skcipher_crypt_blkcipher(struct skcipher_request *req,
606 int (*crypt)(struct blkcipher_desc *,
607 struct scatterlist *,
608 struct scatterlist *,
609 unsigned int))
610 {
611 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
612 struct crypto_blkcipher **ctx = crypto_skcipher_ctx(tfm);
613 struct blkcipher_desc desc = {
614 .tfm = *ctx,
615 .info = req->iv,
616 .flags = req->base.flags,
617 };
618
619
620 return crypt(&desc, req->dst, req->src, req->cryptlen);
621 }
622
623 static int skcipher_encrypt_blkcipher(struct skcipher_request *req)
624 {
625 struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
626 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
627 struct blkcipher_alg *alg = &tfm->__crt_alg->cra_blkcipher;
628
629 return skcipher_crypt_blkcipher(req, alg->encrypt);
630 }
631
632 static int skcipher_decrypt_blkcipher(struct skcipher_request *req)
633 {
634 struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
635 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
636 struct blkcipher_alg *alg = &tfm->__crt_alg->cra_blkcipher;
637
638 return skcipher_crypt_blkcipher(req, alg->decrypt);
639 }
640
641 static void crypto_exit_skcipher_ops_blkcipher(struct crypto_tfm *tfm)
642 {
643 struct crypto_blkcipher **ctx = crypto_tfm_ctx(tfm);
644
645 crypto_free_blkcipher(*ctx);
646 }
647
648 static int crypto_init_skcipher_ops_blkcipher(struct crypto_tfm *tfm)
649 {
650 struct crypto_alg *calg = tfm->__crt_alg;
651 struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm);
652 struct crypto_blkcipher **ctx = crypto_tfm_ctx(tfm);
653 struct crypto_blkcipher *blkcipher;
654 struct crypto_tfm *btfm;
655
656 if (!crypto_mod_get(calg))
657 return -EAGAIN;
658
659 btfm = __crypto_alloc_tfm(calg, CRYPTO_ALG_TYPE_BLKCIPHER,
660 CRYPTO_ALG_TYPE_MASK);
661 if (IS_ERR(btfm)) {
662 crypto_mod_put(calg);
663 return PTR_ERR(btfm);
664 }
665
666 blkcipher = __crypto_blkcipher_cast(btfm);
667 *ctx = blkcipher;
668 tfm->exit = crypto_exit_skcipher_ops_blkcipher;
669
670 skcipher->setkey = skcipher_setkey_blkcipher;
671 skcipher->encrypt = skcipher_encrypt_blkcipher;
672 skcipher->decrypt = skcipher_decrypt_blkcipher;
673
674 skcipher->ivsize = crypto_blkcipher_ivsize(blkcipher);
675 skcipher->keysize = calg->cra_blkcipher.max_keysize;
676
677 return 0;
678 }
679
680 static int skcipher_setkey_ablkcipher(struct crypto_skcipher *tfm,
681 const u8 *key, unsigned int keylen)
682 {
683 struct crypto_ablkcipher **ctx = crypto_skcipher_ctx(tfm);
684 struct crypto_ablkcipher *ablkcipher = *ctx;
685 int err;
686
687 crypto_ablkcipher_clear_flags(ablkcipher, ~0);
688 crypto_ablkcipher_set_flags(ablkcipher,
689 crypto_skcipher_get_flags(tfm) &
690 CRYPTO_TFM_REQ_MASK);
691 err = crypto_ablkcipher_setkey(ablkcipher, key, keylen);
692 crypto_skcipher_set_flags(tfm,
693 crypto_ablkcipher_get_flags(ablkcipher) &
694 CRYPTO_TFM_RES_MASK);
695
696 return err;
697 }
698
699 static int skcipher_crypt_ablkcipher(struct skcipher_request *req,
700 int (*crypt)(struct ablkcipher_request *))
701 {
702 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
703 struct crypto_ablkcipher **ctx = crypto_skcipher_ctx(tfm);
704 struct ablkcipher_request *subreq = skcipher_request_ctx(req);
705
706 ablkcipher_request_set_tfm(subreq, *ctx);
707 ablkcipher_request_set_callback(subreq, skcipher_request_flags(req),
708 req->base.complete, req->base.data);
709 ablkcipher_request_set_crypt(subreq, req->src, req->dst, req->cryptlen,
710 req->iv);
711
712 return crypt(subreq);
713 }
714
715 static int skcipher_encrypt_ablkcipher(struct skcipher_request *req)
716 {
717 struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
718 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
719 struct ablkcipher_alg *alg = &tfm->__crt_alg->cra_ablkcipher;
720
721 return skcipher_crypt_ablkcipher(req, alg->encrypt);
722 }
723
724 static int skcipher_decrypt_ablkcipher(struct skcipher_request *req)
725 {
726 struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
727 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
728 struct ablkcipher_alg *alg = &tfm->__crt_alg->cra_ablkcipher;
729
730 return skcipher_crypt_ablkcipher(req, alg->decrypt);
731 }
732
733 static void crypto_exit_skcipher_ops_ablkcipher(struct crypto_tfm *tfm)
734 {
735 struct crypto_ablkcipher **ctx = crypto_tfm_ctx(tfm);
736
737 crypto_free_ablkcipher(*ctx);
738 }
739
740 static int crypto_init_skcipher_ops_ablkcipher(struct crypto_tfm *tfm)
741 {
742 struct crypto_alg *calg = tfm->__crt_alg;
743 struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm);
744 struct crypto_ablkcipher **ctx = crypto_tfm_ctx(tfm);
745 struct crypto_ablkcipher *ablkcipher;
746 struct crypto_tfm *abtfm;
747
748 if (!crypto_mod_get(calg))
749 return -EAGAIN;
750
751 abtfm = __crypto_alloc_tfm(calg, 0, 0);
752 if (IS_ERR(abtfm)) {
753 crypto_mod_put(calg);
754 return PTR_ERR(abtfm);
755 }
756
757 ablkcipher = __crypto_ablkcipher_cast(abtfm);
758 *ctx = ablkcipher;
759 tfm->exit = crypto_exit_skcipher_ops_ablkcipher;
760
761 skcipher->setkey = skcipher_setkey_ablkcipher;
762 skcipher->encrypt = skcipher_encrypt_ablkcipher;
763 skcipher->decrypt = skcipher_decrypt_ablkcipher;
764
765 skcipher->ivsize = crypto_ablkcipher_ivsize(ablkcipher);
766 skcipher->reqsize = crypto_ablkcipher_reqsize(ablkcipher) +
767 sizeof(struct ablkcipher_request);
768 skcipher->keysize = calg->cra_ablkcipher.max_keysize;
769
770 return 0;
771 }
772
773 static int skcipher_setkey_unaligned(struct crypto_skcipher *tfm,
774 const u8 *key, unsigned int keylen)
775 {
776 unsigned long alignmask = crypto_skcipher_alignmask(tfm);
777 struct skcipher_alg *cipher = crypto_skcipher_alg(tfm);
778 u8 *buffer, *alignbuffer;
779 unsigned long absize;
780 int ret;
781
782 absize = keylen + alignmask;
783 buffer = kmalloc(absize, GFP_ATOMIC);
784 if (!buffer)
785 return -ENOMEM;
786
787 alignbuffer = (u8 *)ALIGN((unsigned long)buffer, alignmask + 1);
788 memcpy(alignbuffer, key, keylen);
789 ret = cipher->setkey(tfm, alignbuffer, keylen);
790 kzfree(buffer);
791 return ret;
792 }
793
794 static int skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
795 unsigned int keylen)
796 {
797 struct skcipher_alg *cipher = crypto_skcipher_alg(tfm);
798 unsigned long alignmask = crypto_skcipher_alignmask(tfm);
799
800 if (keylen < cipher->min_keysize || keylen > cipher->max_keysize) {
801 crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
802 return -EINVAL;
803 }
804
805 if ((unsigned long)key & alignmask)
806 return skcipher_setkey_unaligned(tfm, key, keylen);
807
808 return cipher->setkey(tfm, key, keylen);
809 }
810
811 static void crypto_skcipher_exit_tfm(struct crypto_tfm *tfm)
812 {
813 struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm);
814 struct skcipher_alg *alg = crypto_skcipher_alg(skcipher);
815
816 alg->exit(skcipher);
817 }
818
819 static int crypto_skcipher_init_tfm(struct crypto_tfm *tfm)
820 {
821 struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm);
822 struct skcipher_alg *alg = crypto_skcipher_alg(skcipher);
823
824 if (tfm->__crt_alg->cra_type == &crypto_blkcipher_type)
825 return crypto_init_skcipher_ops_blkcipher(tfm);
826
827 if (tfm->__crt_alg->cra_type == &crypto_ablkcipher_type ||
828 tfm->__crt_alg->cra_type == &crypto_givcipher_type)
829 return crypto_init_skcipher_ops_ablkcipher(tfm);
830
831 skcipher->setkey = skcipher_setkey;
832 skcipher->encrypt = alg->encrypt;
833 skcipher->decrypt = alg->decrypt;
834 skcipher->ivsize = alg->ivsize;
835 skcipher->keysize = alg->max_keysize;
836
837 if (alg->exit)
838 skcipher->base.exit = crypto_skcipher_exit_tfm;
839
840 if (alg->init)
841 return alg->init(skcipher);
842
843 return 0;
844 }
845
846 static void crypto_skcipher_free_instance(struct crypto_instance *inst)
847 {
848 struct skcipher_instance *skcipher =
849 container_of(inst, struct skcipher_instance, s.base);
850
851 skcipher->free(skcipher);
852 }
853
854 static void crypto_skcipher_show(struct seq_file *m, struct crypto_alg *alg)
855 __maybe_unused;
856 static void crypto_skcipher_show(struct seq_file *m, struct crypto_alg *alg)
857 {
858 struct skcipher_alg *skcipher = container_of(alg, struct skcipher_alg,
859 base);
860
861 seq_printf(m, "type : skcipher\n");
862 seq_printf(m, "async : %s\n",
863 alg->cra_flags & CRYPTO_ALG_ASYNC ? "yes" : "no");
864 seq_printf(m, "blocksize : %u\n", alg->cra_blocksize);
865 seq_printf(m, "min keysize : %u\n", skcipher->min_keysize);
866 seq_printf(m, "max keysize : %u\n", skcipher->max_keysize);
867 seq_printf(m, "ivsize : %u\n", skcipher->ivsize);
868 seq_printf(m, "chunksize : %u\n", skcipher->chunksize);
869 seq_printf(m, "walksize : %u\n", skcipher->walksize);
870 }
871
872 #ifdef CONFIG_NET
873 static int crypto_skcipher_report(struct sk_buff *skb, struct crypto_alg *alg)
874 {
875 struct crypto_report_blkcipher rblkcipher;
876 struct skcipher_alg *skcipher = container_of(alg, struct skcipher_alg,
877 base);
878
879 strncpy(rblkcipher.type, "skcipher", sizeof(rblkcipher.type));
880 strncpy(rblkcipher.geniv, "<none>", sizeof(rblkcipher.geniv));
881
882 rblkcipher.blocksize = alg->cra_blocksize;
883 rblkcipher.min_keysize = skcipher->min_keysize;
884 rblkcipher.max_keysize = skcipher->max_keysize;
885 rblkcipher.ivsize = skcipher->ivsize;
886
887 if (nla_put(skb, CRYPTOCFGA_REPORT_BLKCIPHER,
888 sizeof(struct crypto_report_blkcipher), &rblkcipher))
889 goto nla_put_failure;
890 return 0;
891
892 nla_put_failure:
893 return -EMSGSIZE;
894 }
895 #else
896 static int crypto_skcipher_report(struct sk_buff *skb, struct crypto_alg *alg)
897 {
898 return -ENOSYS;
899 }
900 #endif
901
902 static const struct crypto_type crypto_skcipher_type2 = {
903 .extsize = crypto_skcipher_extsize,
904 .init_tfm = crypto_skcipher_init_tfm,
905 .free = crypto_skcipher_free_instance,
906 #ifdef CONFIG_PROC_FS
907 .show = crypto_skcipher_show,
908 #endif
909 .report = crypto_skcipher_report,
910 .maskclear = ~CRYPTO_ALG_TYPE_MASK,
911 .maskset = CRYPTO_ALG_TYPE_BLKCIPHER_MASK,
912 .type = CRYPTO_ALG_TYPE_SKCIPHER,
913 .tfmsize = offsetof(struct crypto_skcipher, base),
914 };
915
916 int crypto_grab_skcipher(struct crypto_skcipher_spawn *spawn,
917 const char *name, u32 type, u32 mask)
918 {
919 spawn->base.frontend = &crypto_skcipher_type2;
920 return crypto_grab_spawn(&spawn->base, name, type, mask);
921 }
922 EXPORT_SYMBOL_GPL(crypto_grab_skcipher);
923
924 struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name,
925 u32 type, u32 mask)
926 {
927 return crypto_alloc_tfm(alg_name, &crypto_skcipher_type2, type, mask);
928 }
929 EXPORT_SYMBOL_GPL(crypto_alloc_skcipher);
930
931 int crypto_has_skcipher2(const char *alg_name, u32 type, u32 mask)
932 {
933 return crypto_type_has_alg(alg_name, &crypto_skcipher_type2,
934 type, mask);
935 }
936 EXPORT_SYMBOL_GPL(crypto_has_skcipher2);
937
938 static int skcipher_prepare_alg(struct skcipher_alg *alg)
939 {
940 struct crypto_alg *base = &alg->base;
941
942 if (alg->ivsize > PAGE_SIZE / 8 || alg->chunksize > PAGE_SIZE / 8 ||
943 alg->walksize > PAGE_SIZE / 8)
944 return -EINVAL;
945
946 if (!alg->chunksize)
947 alg->chunksize = base->cra_blocksize;
948 if (!alg->walksize)
949 alg->walksize = alg->chunksize;
950
951 base->cra_type = &crypto_skcipher_type2;
952 base->cra_flags &= ~CRYPTO_ALG_TYPE_MASK;
953 base->cra_flags |= CRYPTO_ALG_TYPE_SKCIPHER;
954
955 return 0;
956 }
957
958 int crypto_register_skcipher(struct skcipher_alg *alg)
959 {
960 struct crypto_alg *base = &alg->base;
961 int err;
962
963 err = skcipher_prepare_alg(alg);
964 if (err)
965 return err;
966
967 return crypto_register_alg(base);
968 }
969 EXPORT_SYMBOL_GPL(crypto_register_skcipher);
970
971 void crypto_unregister_skcipher(struct skcipher_alg *alg)
972 {
973 crypto_unregister_alg(&alg->base);
974 }
975 EXPORT_SYMBOL_GPL(crypto_unregister_skcipher);
976
977 int crypto_register_skciphers(struct skcipher_alg *algs, int count)
978 {
979 int i, ret;
980
981 for (i = 0; i < count; i++) {
982 ret = crypto_register_skcipher(&algs[i]);
983 if (ret)
984 goto err;
985 }
986
987 return 0;
988
989 err:
990 for (--i; i >= 0; --i)
991 crypto_unregister_skcipher(&algs[i]);
992
993 return ret;
994 }
995 EXPORT_SYMBOL_GPL(crypto_register_skciphers);
996
997 void crypto_unregister_skciphers(struct skcipher_alg *algs, int count)
998 {
999 int i;
1000
1001 for (i = count - 1; i >= 0; --i)
1002 crypto_unregister_skcipher(&algs[i]);
1003 }
1004 EXPORT_SYMBOL_GPL(crypto_unregister_skciphers);
1005
1006 int skcipher_register_instance(struct crypto_template *tmpl,
1007 struct skcipher_instance *inst)
1008 {
1009 int err;
1010
1011 err = skcipher_prepare_alg(&inst->alg);
1012 if (err)
1013 return err;
1014
1015 return crypto_register_instance(tmpl, skcipher_crypto_instance(inst));
1016 }
1017 EXPORT_SYMBOL_GPL(skcipher_register_instance);
1018
1019 MODULE_LICENSE("GPL");
1020 MODULE_DESCRIPTION("Symmetric key cipher type");