]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - crypto/skcipher.c
crypto: skcipher - don't WARN on unprocessed data after slow walk step
[mirror_ubuntu-bionic-kernel.git] / crypto / skcipher.c
1 /*
2 * Symmetric key cipher operations.
3 *
4 * Generic encrypt/decrypt wrapper for ciphers, handles operations across
5 * multiple page boundaries by using temporary blocks. In user context,
6 * the kernel is given a chance to schedule us once per page.
7 *
8 * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the Free
12 * Software Foundation; either version 2 of the License, or (at your option)
13 * any later version.
14 *
15 */
16
17 #include <crypto/internal/aead.h>
18 #include <crypto/internal/skcipher.h>
19 #include <crypto/scatterwalk.h>
20 #include <linux/bug.h>
21 #include <linux/cryptouser.h>
22 #include <linux/compiler.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/rtnetlink.h>
26 #include <linux/seq_file.h>
27 #include <net/netlink.h>
28
29 #include "internal.h"
30
31 enum {
32 SKCIPHER_WALK_PHYS = 1 << 0,
33 SKCIPHER_WALK_SLOW = 1 << 1,
34 SKCIPHER_WALK_COPY = 1 << 2,
35 SKCIPHER_WALK_DIFF = 1 << 3,
36 SKCIPHER_WALK_SLEEP = 1 << 4,
37 };
38
39 struct skcipher_walk_buffer {
40 struct list_head entry;
41 struct scatter_walk dst;
42 unsigned int len;
43 u8 *data;
44 u8 buffer[];
45 };
46
47 static int skcipher_walk_next(struct skcipher_walk *walk);
48
49 static inline void skcipher_unmap(struct scatter_walk *walk, void *vaddr)
50 {
51 if (PageHighMem(scatterwalk_page(walk)))
52 kunmap_atomic(vaddr);
53 }
54
55 static inline void *skcipher_map(struct scatter_walk *walk)
56 {
57 struct page *page = scatterwalk_page(walk);
58
59 return (PageHighMem(page) ? kmap_atomic(page) : page_address(page)) +
60 offset_in_page(walk->offset);
61 }
62
63 static inline void skcipher_map_src(struct skcipher_walk *walk)
64 {
65 walk->src.virt.addr = skcipher_map(&walk->in);
66 }
67
68 static inline void skcipher_map_dst(struct skcipher_walk *walk)
69 {
70 walk->dst.virt.addr = skcipher_map(&walk->out);
71 }
72
73 static inline void skcipher_unmap_src(struct skcipher_walk *walk)
74 {
75 skcipher_unmap(&walk->in, walk->src.virt.addr);
76 }
77
78 static inline void skcipher_unmap_dst(struct skcipher_walk *walk)
79 {
80 skcipher_unmap(&walk->out, walk->dst.virt.addr);
81 }
82
83 static inline gfp_t skcipher_walk_gfp(struct skcipher_walk *walk)
84 {
85 return walk->flags & SKCIPHER_WALK_SLEEP ? GFP_KERNEL : GFP_ATOMIC;
86 }
87
88 /* Get a spot of the specified length that does not straddle a page.
89 * The caller needs to ensure that there is enough space for this operation.
90 */
91 static inline u8 *skcipher_get_spot(u8 *start, unsigned int len)
92 {
93 u8 *end_page = (u8 *)(((unsigned long)(start + len - 1)) & PAGE_MASK);
94
95 return max(start, end_page);
96 }
97
98 static void skcipher_done_slow(struct skcipher_walk *walk, unsigned int bsize)
99 {
100 u8 *addr;
101
102 addr = (u8 *)ALIGN((unsigned long)walk->buffer, walk->alignmask + 1);
103 addr = skcipher_get_spot(addr, bsize);
104 scatterwalk_copychunks(addr, &walk->out, bsize,
105 (walk->flags & SKCIPHER_WALK_PHYS) ? 2 : 1);
106 }
107
108 int skcipher_walk_done(struct skcipher_walk *walk, int err)
109 {
110 unsigned int n; /* bytes processed */
111 bool more;
112
113 if (unlikely(err < 0))
114 goto finish;
115
116 n = walk->nbytes - err;
117 walk->total -= n;
118 more = (walk->total != 0);
119
120 if (likely(!(walk->flags & (SKCIPHER_WALK_PHYS |
121 SKCIPHER_WALK_SLOW |
122 SKCIPHER_WALK_COPY |
123 SKCIPHER_WALK_DIFF)))) {
124 unmap_src:
125 skcipher_unmap_src(walk);
126 } else if (walk->flags & SKCIPHER_WALK_DIFF) {
127 skcipher_unmap_dst(walk);
128 goto unmap_src;
129 } else if (walk->flags & SKCIPHER_WALK_COPY) {
130 skcipher_map_dst(walk);
131 memcpy(walk->dst.virt.addr, walk->page, n);
132 skcipher_unmap_dst(walk);
133 } else if (unlikely(walk->flags & SKCIPHER_WALK_SLOW)) {
134 if (err) {
135 /*
136 * Didn't process all bytes. Either the algorithm is
137 * broken, or this was the last step and it turned out
138 * the message wasn't evenly divisible into blocks but
139 * the algorithm requires it.
140 */
141 err = -EINVAL;
142 goto finish;
143 }
144 skcipher_done_slow(walk, n);
145 goto already_advanced;
146 }
147
148 scatterwalk_advance(&walk->in, n);
149 scatterwalk_advance(&walk->out, n);
150 already_advanced:
151 scatterwalk_done(&walk->in, 0, more);
152 scatterwalk_done(&walk->out, 1, more);
153
154 if (more) {
155 crypto_yield(walk->flags & SKCIPHER_WALK_SLEEP ?
156 CRYPTO_TFM_REQ_MAY_SLEEP : 0);
157 return skcipher_walk_next(walk);
158 }
159 err = 0;
160 finish:
161 walk->nbytes = 0;
162
163 /* Short-circuit for the common/fast path. */
164 if (!((unsigned long)walk->buffer | (unsigned long)walk->page))
165 goto out;
166
167 if (walk->flags & SKCIPHER_WALK_PHYS)
168 goto out;
169
170 if (walk->iv != walk->oiv)
171 memcpy(walk->oiv, walk->iv, walk->ivsize);
172 if (walk->buffer != walk->page)
173 kfree(walk->buffer);
174 if (walk->page)
175 free_page((unsigned long)walk->page);
176
177 out:
178 return err;
179 }
180 EXPORT_SYMBOL_GPL(skcipher_walk_done);
181
182 void skcipher_walk_complete(struct skcipher_walk *walk, int err)
183 {
184 struct skcipher_walk_buffer *p, *tmp;
185
186 list_for_each_entry_safe(p, tmp, &walk->buffers, entry) {
187 u8 *data;
188
189 if (err)
190 goto done;
191
192 data = p->data;
193 if (!data) {
194 data = PTR_ALIGN(&p->buffer[0], walk->alignmask + 1);
195 data = skcipher_get_spot(data, walk->stride);
196 }
197
198 scatterwalk_copychunks(data, &p->dst, p->len, 1);
199
200 if (offset_in_page(p->data) + p->len + walk->stride >
201 PAGE_SIZE)
202 free_page((unsigned long)p->data);
203
204 done:
205 list_del(&p->entry);
206 kfree(p);
207 }
208
209 if (!err && walk->iv != walk->oiv)
210 memcpy(walk->oiv, walk->iv, walk->ivsize);
211 if (walk->buffer != walk->page)
212 kfree(walk->buffer);
213 if (walk->page)
214 free_page((unsigned long)walk->page);
215 }
216 EXPORT_SYMBOL_GPL(skcipher_walk_complete);
217
218 static void skcipher_queue_write(struct skcipher_walk *walk,
219 struct skcipher_walk_buffer *p)
220 {
221 p->dst = walk->out;
222 list_add_tail(&p->entry, &walk->buffers);
223 }
224
225 static int skcipher_next_slow(struct skcipher_walk *walk, unsigned int bsize)
226 {
227 bool phys = walk->flags & SKCIPHER_WALK_PHYS;
228 unsigned alignmask = walk->alignmask;
229 struct skcipher_walk_buffer *p;
230 unsigned a;
231 unsigned n;
232 u8 *buffer;
233 void *v;
234
235 if (!phys) {
236 if (!walk->buffer)
237 walk->buffer = walk->page;
238 buffer = walk->buffer;
239 if (buffer)
240 goto ok;
241 }
242
243 /* Start with the minimum alignment of kmalloc. */
244 a = crypto_tfm_ctx_alignment() - 1;
245 n = bsize;
246
247 if (phys) {
248 /* Calculate the minimum alignment of p->buffer. */
249 a &= (sizeof(*p) ^ (sizeof(*p) - 1)) >> 1;
250 n += sizeof(*p);
251 }
252
253 /* Minimum size to align p->buffer by alignmask. */
254 n += alignmask & ~a;
255
256 /* Minimum size to ensure p->buffer does not straddle a page. */
257 n += (bsize - 1) & ~(alignmask | a);
258
259 v = kzalloc(n, skcipher_walk_gfp(walk));
260 if (!v)
261 return skcipher_walk_done(walk, -ENOMEM);
262
263 if (phys) {
264 p = v;
265 p->len = bsize;
266 skcipher_queue_write(walk, p);
267 buffer = p->buffer;
268 } else {
269 walk->buffer = v;
270 buffer = v;
271 }
272
273 ok:
274 walk->dst.virt.addr = PTR_ALIGN(buffer, alignmask + 1);
275 walk->dst.virt.addr = skcipher_get_spot(walk->dst.virt.addr, bsize);
276 walk->src.virt.addr = walk->dst.virt.addr;
277
278 scatterwalk_copychunks(walk->src.virt.addr, &walk->in, bsize, 0);
279
280 walk->nbytes = bsize;
281 walk->flags |= SKCIPHER_WALK_SLOW;
282
283 return 0;
284 }
285
286 static int skcipher_next_copy(struct skcipher_walk *walk)
287 {
288 struct skcipher_walk_buffer *p;
289 u8 *tmp = walk->page;
290
291 skcipher_map_src(walk);
292 memcpy(tmp, walk->src.virt.addr, walk->nbytes);
293 skcipher_unmap_src(walk);
294
295 walk->src.virt.addr = tmp;
296 walk->dst.virt.addr = tmp;
297
298 if (!(walk->flags & SKCIPHER_WALK_PHYS))
299 return 0;
300
301 p = kmalloc(sizeof(*p), skcipher_walk_gfp(walk));
302 if (!p)
303 return -ENOMEM;
304
305 p->data = walk->page;
306 p->len = walk->nbytes;
307 skcipher_queue_write(walk, p);
308
309 if (offset_in_page(walk->page) + walk->nbytes + walk->stride >
310 PAGE_SIZE)
311 walk->page = NULL;
312 else
313 walk->page += walk->nbytes;
314
315 return 0;
316 }
317
318 static int skcipher_next_fast(struct skcipher_walk *walk)
319 {
320 unsigned long diff;
321
322 walk->src.phys.page = scatterwalk_page(&walk->in);
323 walk->src.phys.offset = offset_in_page(walk->in.offset);
324 walk->dst.phys.page = scatterwalk_page(&walk->out);
325 walk->dst.phys.offset = offset_in_page(walk->out.offset);
326
327 if (walk->flags & SKCIPHER_WALK_PHYS)
328 return 0;
329
330 diff = walk->src.phys.offset - walk->dst.phys.offset;
331 diff |= walk->src.virt.page - walk->dst.virt.page;
332
333 skcipher_map_src(walk);
334 walk->dst.virt.addr = walk->src.virt.addr;
335
336 if (diff) {
337 walk->flags |= SKCIPHER_WALK_DIFF;
338 skcipher_map_dst(walk);
339 }
340
341 return 0;
342 }
343
344 static int skcipher_walk_next(struct skcipher_walk *walk)
345 {
346 unsigned int bsize;
347 unsigned int n;
348 int err;
349
350 walk->flags &= ~(SKCIPHER_WALK_SLOW | SKCIPHER_WALK_COPY |
351 SKCIPHER_WALK_DIFF);
352
353 n = walk->total;
354 bsize = min(walk->stride, max(n, walk->blocksize));
355 n = scatterwalk_clamp(&walk->in, n);
356 n = scatterwalk_clamp(&walk->out, n);
357
358 if (unlikely(n < bsize)) {
359 if (unlikely(walk->total < walk->blocksize))
360 return skcipher_walk_done(walk, -EINVAL);
361
362 slow_path:
363 err = skcipher_next_slow(walk, bsize);
364 goto set_phys_lowmem;
365 }
366
367 if (unlikely((walk->in.offset | walk->out.offset) & walk->alignmask)) {
368 if (!walk->page) {
369 gfp_t gfp = skcipher_walk_gfp(walk);
370
371 walk->page = (void *)__get_free_page(gfp);
372 if (!walk->page)
373 goto slow_path;
374 }
375
376 walk->nbytes = min_t(unsigned, n,
377 PAGE_SIZE - offset_in_page(walk->page));
378 walk->flags |= SKCIPHER_WALK_COPY;
379 err = skcipher_next_copy(walk);
380 goto set_phys_lowmem;
381 }
382
383 walk->nbytes = n;
384
385 return skcipher_next_fast(walk);
386
387 set_phys_lowmem:
388 if (!err && (walk->flags & SKCIPHER_WALK_PHYS)) {
389 walk->src.phys.page = virt_to_page(walk->src.virt.addr);
390 walk->dst.phys.page = virt_to_page(walk->dst.virt.addr);
391 walk->src.phys.offset &= PAGE_SIZE - 1;
392 walk->dst.phys.offset &= PAGE_SIZE - 1;
393 }
394 return err;
395 }
396 EXPORT_SYMBOL_GPL(skcipher_walk_next);
397
398 static int skcipher_copy_iv(struct skcipher_walk *walk)
399 {
400 unsigned a = crypto_tfm_ctx_alignment() - 1;
401 unsigned alignmask = walk->alignmask;
402 unsigned ivsize = walk->ivsize;
403 unsigned bs = walk->stride;
404 unsigned aligned_bs;
405 unsigned size;
406 u8 *iv;
407
408 aligned_bs = ALIGN(bs, alignmask + 1);
409
410 /* Minimum size to align buffer by alignmask. */
411 size = alignmask & ~a;
412
413 if (walk->flags & SKCIPHER_WALK_PHYS)
414 size += ivsize;
415 else {
416 size += aligned_bs + ivsize;
417
418 /* Minimum size to ensure buffer does not straddle a page. */
419 size += (bs - 1) & ~(alignmask | a);
420 }
421
422 walk->buffer = kmalloc(size, skcipher_walk_gfp(walk));
423 if (!walk->buffer)
424 return -ENOMEM;
425
426 iv = PTR_ALIGN(walk->buffer, alignmask + 1);
427 iv = skcipher_get_spot(iv, bs) + aligned_bs;
428
429 walk->iv = memcpy(iv, walk->iv, walk->ivsize);
430 return 0;
431 }
432
433 static int skcipher_walk_first(struct skcipher_walk *walk)
434 {
435 if (WARN_ON_ONCE(in_irq()))
436 return -EDEADLK;
437
438 walk->buffer = NULL;
439 if (unlikely(((unsigned long)walk->iv & walk->alignmask))) {
440 int err = skcipher_copy_iv(walk);
441 if (err)
442 return err;
443 }
444
445 walk->page = NULL;
446 walk->nbytes = walk->total;
447
448 return skcipher_walk_next(walk);
449 }
450
451 static int skcipher_walk_skcipher(struct skcipher_walk *walk,
452 struct skcipher_request *req)
453 {
454 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
455
456 walk->total = req->cryptlen;
457 walk->nbytes = 0;
458 walk->iv = req->iv;
459 walk->oiv = req->iv;
460
461 if (unlikely(!walk->total))
462 return 0;
463
464 scatterwalk_start(&walk->in, req->src);
465 scatterwalk_start(&walk->out, req->dst);
466
467 walk->flags &= ~SKCIPHER_WALK_SLEEP;
468 walk->flags |= req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
469 SKCIPHER_WALK_SLEEP : 0;
470
471 walk->blocksize = crypto_skcipher_blocksize(tfm);
472 walk->stride = crypto_skcipher_walksize(tfm);
473 walk->ivsize = crypto_skcipher_ivsize(tfm);
474 walk->alignmask = crypto_skcipher_alignmask(tfm);
475
476 return skcipher_walk_first(walk);
477 }
478
479 int skcipher_walk_virt(struct skcipher_walk *walk,
480 struct skcipher_request *req, bool atomic)
481 {
482 int err;
483
484 walk->flags &= ~SKCIPHER_WALK_PHYS;
485
486 err = skcipher_walk_skcipher(walk, req);
487
488 walk->flags &= atomic ? ~SKCIPHER_WALK_SLEEP : ~0;
489
490 return err;
491 }
492 EXPORT_SYMBOL_GPL(skcipher_walk_virt);
493
494 void skcipher_walk_atomise(struct skcipher_walk *walk)
495 {
496 walk->flags &= ~SKCIPHER_WALK_SLEEP;
497 }
498 EXPORT_SYMBOL_GPL(skcipher_walk_atomise);
499
500 int skcipher_walk_async(struct skcipher_walk *walk,
501 struct skcipher_request *req)
502 {
503 walk->flags |= SKCIPHER_WALK_PHYS;
504
505 INIT_LIST_HEAD(&walk->buffers);
506
507 return skcipher_walk_skcipher(walk, req);
508 }
509 EXPORT_SYMBOL_GPL(skcipher_walk_async);
510
511 static int skcipher_walk_aead_common(struct skcipher_walk *walk,
512 struct aead_request *req, bool atomic)
513 {
514 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
515 int err;
516
517 walk->nbytes = 0;
518 walk->iv = req->iv;
519 walk->oiv = req->iv;
520
521 if (unlikely(!walk->total))
522 return 0;
523
524 walk->flags &= ~SKCIPHER_WALK_PHYS;
525
526 scatterwalk_start(&walk->in, req->src);
527 scatterwalk_start(&walk->out, req->dst);
528
529 scatterwalk_copychunks(NULL, &walk->in, req->assoclen, 2);
530 scatterwalk_copychunks(NULL, &walk->out, req->assoclen, 2);
531
532 scatterwalk_done(&walk->in, 0, walk->total);
533 scatterwalk_done(&walk->out, 0, walk->total);
534
535 if (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP)
536 walk->flags |= SKCIPHER_WALK_SLEEP;
537 else
538 walk->flags &= ~SKCIPHER_WALK_SLEEP;
539
540 walk->blocksize = crypto_aead_blocksize(tfm);
541 walk->stride = crypto_aead_chunksize(tfm);
542 walk->ivsize = crypto_aead_ivsize(tfm);
543 walk->alignmask = crypto_aead_alignmask(tfm);
544
545 err = skcipher_walk_first(walk);
546
547 if (atomic)
548 walk->flags &= ~SKCIPHER_WALK_SLEEP;
549
550 return err;
551 }
552
553 int skcipher_walk_aead(struct skcipher_walk *walk, struct aead_request *req,
554 bool atomic)
555 {
556 walk->total = req->cryptlen;
557
558 return skcipher_walk_aead_common(walk, req, atomic);
559 }
560 EXPORT_SYMBOL_GPL(skcipher_walk_aead);
561
562 int skcipher_walk_aead_encrypt(struct skcipher_walk *walk,
563 struct aead_request *req, bool atomic)
564 {
565 walk->total = req->cryptlen;
566
567 return skcipher_walk_aead_common(walk, req, atomic);
568 }
569 EXPORT_SYMBOL_GPL(skcipher_walk_aead_encrypt);
570
571 int skcipher_walk_aead_decrypt(struct skcipher_walk *walk,
572 struct aead_request *req, bool atomic)
573 {
574 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
575
576 walk->total = req->cryptlen - crypto_aead_authsize(tfm);
577
578 return skcipher_walk_aead_common(walk, req, atomic);
579 }
580 EXPORT_SYMBOL_GPL(skcipher_walk_aead_decrypt);
581
582 static unsigned int crypto_skcipher_extsize(struct crypto_alg *alg)
583 {
584 if (alg->cra_type == &crypto_blkcipher_type)
585 return sizeof(struct crypto_blkcipher *);
586
587 if (alg->cra_type == &crypto_ablkcipher_type ||
588 alg->cra_type == &crypto_givcipher_type)
589 return sizeof(struct crypto_ablkcipher *);
590
591 return crypto_alg_extsize(alg);
592 }
593
594 static int skcipher_setkey_blkcipher(struct crypto_skcipher *tfm,
595 const u8 *key, unsigned int keylen)
596 {
597 struct crypto_blkcipher **ctx = crypto_skcipher_ctx(tfm);
598 struct crypto_blkcipher *blkcipher = *ctx;
599 int err;
600
601 crypto_blkcipher_clear_flags(blkcipher, ~0);
602 crypto_blkcipher_set_flags(blkcipher, crypto_skcipher_get_flags(tfm) &
603 CRYPTO_TFM_REQ_MASK);
604 err = crypto_blkcipher_setkey(blkcipher, key, keylen);
605 crypto_skcipher_set_flags(tfm, crypto_blkcipher_get_flags(blkcipher) &
606 CRYPTO_TFM_RES_MASK);
607
608 return err;
609 }
610
611 static int skcipher_crypt_blkcipher(struct skcipher_request *req,
612 int (*crypt)(struct blkcipher_desc *,
613 struct scatterlist *,
614 struct scatterlist *,
615 unsigned int))
616 {
617 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
618 struct crypto_blkcipher **ctx = crypto_skcipher_ctx(tfm);
619 struct blkcipher_desc desc = {
620 .tfm = *ctx,
621 .info = req->iv,
622 .flags = req->base.flags,
623 };
624
625
626 return crypt(&desc, req->dst, req->src, req->cryptlen);
627 }
628
629 static int skcipher_encrypt_blkcipher(struct skcipher_request *req)
630 {
631 struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
632 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
633 struct blkcipher_alg *alg = &tfm->__crt_alg->cra_blkcipher;
634
635 return skcipher_crypt_blkcipher(req, alg->encrypt);
636 }
637
638 static int skcipher_decrypt_blkcipher(struct skcipher_request *req)
639 {
640 struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
641 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
642 struct blkcipher_alg *alg = &tfm->__crt_alg->cra_blkcipher;
643
644 return skcipher_crypt_blkcipher(req, alg->decrypt);
645 }
646
647 static void crypto_exit_skcipher_ops_blkcipher(struct crypto_tfm *tfm)
648 {
649 struct crypto_blkcipher **ctx = crypto_tfm_ctx(tfm);
650
651 crypto_free_blkcipher(*ctx);
652 }
653
654 static int crypto_init_skcipher_ops_blkcipher(struct crypto_tfm *tfm)
655 {
656 struct crypto_alg *calg = tfm->__crt_alg;
657 struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm);
658 struct crypto_blkcipher **ctx = crypto_tfm_ctx(tfm);
659 struct crypto_blkcipher *blkcipher;
660 struct crypto_tfm *btfm;
661
662 if (!crypto_mod_get(calg))
663 return -EAGAIN;
664
665 btfm = __crypto_alloc_tfm(calg, CRYPTO_ALG_TYPE_BLKCIPHER,
666 CRYPTO_ALG_TYPE_MASK);
667 if (IS_ERR(btfm)) {
668 crypto_mod_put(calg);
669 return PTR_ERR(btfm);
670 }
671
672 blkcipher = __crypto_blkcipher_cast(btfm);
673 *ctx = blkcipher;
674 tfm->exit = crypto_exit_skcipher_ops_blkcipher;
675
676 skcipher->setkey = skcipher_setkey_blkcipher;
677 skcipher->encrypt = skcipher_encrypt_blkcipher;
678 skcipher->decrypt = skcipher_decrypt_blkcipher;
679
680 skcipher->ivsize = crypto_blkcipher_ivsize(blkcipher);
681 skcipher->keysize = calg->cra_blkcipher.max_keysize;
682
683 return 0;
684 }
685
686 static int skcipher_setkey_ablkcipher(struct crypto_skcipher *tfm,
687 const u8 *key, unsigned int keylen)
688 {
689 struct crypto_ablkcipher **ctx = crypto_skcipher_ctx(tfm);
690 struct crypto_ablkcipher *ablkcipher = *ctx;
691 int err;
692
693 crypto_ablkcipher_clear_flags(ablkcipher, ~0);
694 crypto_ablkcipher_set_flags(ablkcipher,
695 crypto_skcipher_get_flags(tfm) &
696 CRYPTO_TFM_REQ_MASK);
697 err = crypto_ablkcipher_setkey(ablkcipher, key, keylen);
698 crypto_skcipher_set_flags(tfm,
699 crypto_ablkcipher_get_flags(ablkcipher) &
700 CRYPTO_TFM_RES_MASK);
701
702 return err;
703 }
704
705 static int skcipher_crypt_ablkcipher(struct skcipher_request *req,
706 int (*crypt)(struct ablkcipher_request *))
707 {
708 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
709 struct crypto_ablkcipher **ctx = crypto_skcipher_ctx(tfm);
710 struct ablkcipher_request *subreq = skcipher_request_ctx(req);
711
712 ablkcipher_request_set_tfm(subreq, *ctx);
713 ablkcipher_request_set_callback(subreq, skcipher_request_flags(req),
714 req->base.complete, req->base.data);
715 ablkcipher_request_set_crypt(subreq, req->src, req->dst, req->cryptlen,
716 req->iv);
717
718 return crypt(subreq);
719 }
720
721 static int skcipher_encrypt_ablkcipher(struct skcipher_request *req)
722 {
723 struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
724 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
725 struct ablkcipher_alg *alg = &tfm->__crt_alg->cra_ablkcipher;
726
727 return skcipher_crypt_ablkcipher(req, alg->encrypt);
728 }
729
730 static int skcipher_decrypt_ablkcipher(struct skcipher_request *req)
731 {
732 struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
733 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
734 struct ablkcipher_alg *alg = &tfm->__crt_alg->cra_ablkcipher;
735
736 return skcipher_crypt_ablkcipher(req, alg->decrypt);
737 }
738
739 static void crypto_exit_skcipher_ops_ablkcipher(struct crypto_tfm *tfm)
740 {
741 struct crypto_ablkcipher **ctx = crypto_tfm_ctx(tfm);
742
743 crypto_free_ablkcipher(*ctx);
744 }
745
746 static int crypto_init_skcipher_ops_ablkcipher(struct crypto_tfm *tfm)
747 {
748 struct crypto_alg *calg = tfm->__crt_alg;
749 struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm);
750 struct crypto_ablkcipher **ctx = crypto_tfm_ctx(tfm);
751 struct crypto_ablkcipher *ablkcipher;
752 struct crypto_tfm *abtfm;
753
754 if (!crypto_mod_get(calg))
755 return -EAGAIN;
756
757 abtfm = __crypto_alloc_tfm(calg, 0, 0);
758 if (IS_ERR(abtfm)) {
759 crypto_mod_put(calg);
760 return PTR_ERR(abtfm);
761 }
762
763 ablkcipher = __crypto_ablkcipher_cast(abtfm);
764 *ctx = ablkcipher;
765 tfm->exit = crypto_exit_skcipher_ops_ablkcipher;
766
767 skcipher->setkey = skcipher_setkey_ablkcipher;
768 skcipher->encrypt = skcipher_encrypt_ablkcipher;
769 skcipher->decrypt = skcipher_decrypt_ablkcipher;
770
771 skcipher->ivsize = crypto_ablkcipher_ivsize(ablkcipher);
772 skcipher->reqsize = crypto_ablkcipher_reqsize(ablkcipher) +
773 sizeof(struct ablkcipher_request);
774 skcipher->keysize = calg->cra_ablkcipher.max_keysize;
775
776 return 0;
777 }
778
779 static int skcipher_setkey_unaligned(struct crypto_skcipher *tfm,
780 const u8 *key, unsigned int keylen)
781 {
782 unsigned long alignmask = crypto_skcipher_alignmask(tfm);
783 struct skcipher_alg *cipher = crypto_skcipher_alg(tfm);
784 u8 *buffer, *alignbuffer;
785 unsigned long absize;
786 int ret;
787
788 absize = keylen + alignmask;
789 buffer = kmalloc(absize, GFP_ATOMIC);
790 if (!buffer)
791 return -ENOMEM;
792
793 alignbuffer = (u8 *)ALIGN((unsigned long)buffer, alignmask + 1);
794 memcpy(alignbuffer, key, keylen);
795 ret = cipher->setkey(tfm, alignbuffer, keylen);
796 kzfree(buffer);
797 return ret;
798 }
799
800 static int skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
801 unsigned int keylen)
802 {
803 struct skcipher_alg *cipher = crypto_skcipher_alg(tfm);
804 unsigned long alignmask = crypto_skcipher_alignmask(tfm);
805
806 if (keylen < cipher->min_keysize || keylen > cipher->max_keysize) {
807 crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
808 return -EINVAL;
809 }
810
811 if ((unsigned long)key & alignmask)
812 return skcipher_setkey_unaligned(tfm, key, keylen);
813
814 return cipher->setkey(tfm, key, keylen);
815 }
816
817 static void crypto_skcipher_exit_tfm(struct crypto_tfm *tfm)
818 {
819 struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm);
820 struct skcipher_alg *alg = crypto_skcipher_alg(skcipher);
821
822 alg->exit(skcipher);
823 }
824
825 static int crypto_skcipher_init_tfm(struct crypto_tfm *tfm)
826 {
827 struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm);
828 struct skcipher_alg *alg = crypto_skcipher_alg(skcipher);
829
830 if (tfm->__crt_alg->cra_type == &crypto_blkcipher_type)
831 return crypto_init_skcipher_ops_blkcipher(tfm);
832
833 if (tfm->__crt_alg->cra_type == &crypto_ablkcipher_type ||
834 tfm->__crt_alg->cra_type == &crypto_givcipher_type)
835 return crypto_init_skcipher_ops_ablkcipher(tfm);
836
837 skcipher->setkey = skcipher_setkey;
838 skcipher->encrypt = alg->encrypt;
839 skcipher->decrypt = alg->decrypt;
840 skcipher->ivsize = alg->ivsize;
841 skcipher->keysize = alg->max_keysize;
842
843 if (alg->exit)
844 skcipher->base.exit = crypto_skcipher_exit_tfm;
845
846 if (alg->init)
847 return alg->init(skcipher);
848
849 return 0;
850 }
851
852 static void crypto_skcipher_free_instance(struct crypto_instance *inst)
853 {
854 struct skcipher_instance *skcipher =
855 container_of(inst, struct skcipher_instance, s.base);
856
857 skcipher->free(skcipher);
858 }
859
860 static void crypto_skcipher_show(struct seq_file *m, struct crypto_alg *alg)
861 __maybe_unused;
862 static void crypto_skcipher_show(struct seq_file *m, struct crypto_alg *alg)
863 {
864 struct skcipher_alg *skcipher = container_of(alg, struct skcipher_alg,
865 base);
866
867 seq_printf(m, "type : skcipher\n");
868 seq_printf(m, "async : %s\n",
869 alg->cra_flags & CRYPTO_ALG_ASYNC ? "yes" : "no");
870 seq_printf(m, "blocksize : %u\n", alg->cra_blocksize);
871 seq_printf(m, "min keysize : %u\n", skcipher->min_keysize);
872 seq_printf(m, "max keysize : %u\n", skcipher->max_keysize);
873 seq_printf(m, "ivsize : %u\n", skcipher->ivsize);
874 seq_printf(m, "chunksize : %u\n", skcipher->chunksize);
875 seq_printf(m, "walksize : %u\n", skcipher->walksize);
876 }
877
878 #ifdef CONFIG_NET
879 static int crypto_skcipher_report(struct sk_buff *skb, struct crypto_alg *alg)
880 {
881 struct crypto_report_blkcipher rblkcipher;
882 struct skcipher_alg *skcipher = container_of(alg, struct skcipher_alg,
883 base);
884
885 strncpy(rblkcipher.type, "skcipher", sizeof(rblkcipher.type));
886 strncpy(rblkcipher.geniv, "<none>", sizeof(rblkcipher.geniv));
887
888 rblkcipher.blocksize = alg->cra_blocksize;
889 rblkcipher.min_keysize = skcipher->min_keysize;
890 rblkcipher.max_keysize = skcipher->max_keysize;
891 rblkcipher.ivsize = skcipher->ivsize;
892
893 if (nla_put(skb, CRYPTOCFGA_REPORT_BLKCIPHER,
894 sizeof(struct crypto_report_blkcipher), &rblkcipher))
895 goto nla_put_failure;
896 return 0;
897
898 nla_put_failure:
899 return -EMSGSIZE;
900 }
901 #else
902 static int crypto_skcipher_report(struct sk_buff *skb, struct crypto_alg *alg)
903 {
904 return -ENOSYS;
905 }
906 #endif
907
908 static const struct crypto_type crypto_skcipher_type2 = {
909 .extsize = crypto_skcipher_extsize,
910 .init_tfm = crypto_skcipher_init_tfm,
911 .free = crypto_skcipher_free_instance,
912 #ifdef CONFIG_PROC_FS
913 .show = crypto_skcipher_show,
914 #endif
915 .report = crypto_skcipher_report,
916 .maskclear = ~CRYPTO_ALG_TYPE_MASK,
917 .maskset = CRYPTO_ALG_TYPE_BLKCIPHER_MASK,
918 .type = CRYPTO_ALG_TYPE_SKCIPHER,
919 .tfmsize = offsetof(struct crypto_skcipher, base),
920 };
921
922 int crypto_grab_skcipher(struct crypto_skcipher_spawn *spawn,
923 const char *name, u32 type, u32 mask)
924 {
925 spawn->base.frontend = &crypto_skcipher_type2;
926 return crypto_grab_spawn(&spawn->base, name, type, mask);
927 }
928 EXPORT_SYMBOL_GPL(crypto_grab_skcipher);
929
930 struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name,
931 u32 type, u32 mask)
932 {
933 return crypto_alloc_tfm(alg_name, &crypto_skcipher_type2, type, mask);
934 }
935 EXPORT_SYMBOL_GPL(crypto_alloc_skcipher);
936
937 int crypto_has_skcipher2(const char *alg_name, u32 type, u32 mask)
938 {
939 return crypto_type_has_alg(alg_name, &crypto_skcipher_type2,
940 type, mask);
941 }
942 EXPORT_SYMBOL_GPL(crypto_has_skcipher2);
943
944 static int skcipher_prepare_alg(struct skcipher_alg *alg)
945 {
946 struct crypto_alg *base = &alg->base;
947
948 if (alg->ivsize > PAGE_SIZE / 8 || alg->chunksize > PAGE_SIZE / 8 ||
949 alg->walksize > PAGE_SIZE / 8)
950 return -EINVAL;
951
952 if (!alg->chunksize)
953 alg->chunksize = base->cra_blocksize;
954 if (!alg->walksize)
955 alg->walksize = alg->chunksize;
956
957 base->cra_type = &crypto_skcipher_type2;
958 base->cra_flags &= ~CRYPTO_ALG_TYPE_MASK;
959 base->cra_flags |= CRYPTO_ALG_TYPE_SKCIPHER;
960
961 return 0;
962 }
963
964 int crypto_register_skcipher(struct skcipher_alg *alg)
965 {
966 struct crypto_alg *base = &alg->base;
967 int err;
968
969 err = skcipher_prepare_alg(alg);
970 if (err)
971 return err;
972
973 return crypto_register_alg(base);
974 }
975 EXPORT_SYMBOL_GPL(crypto_register_skcipher);
976
977 void crypto_unregister_skcipher(struct skcipher_alg *alg)
978 {
979 crypto_unregister_alg(&alg->base);
980 }
981 EXPORT_SYMBOL_GPL(crypto_unregister_skcipher);
982
983 int crypto_register_skciphers(struct skcipher_alg *algs, int count)
984 {
985 int i, ret;
986
987 for (i = 0; i < count; i++) {
988 ret = crypto_register_skcipher(&algs[i]);
989 if (ret)
990 goto err;
991 }
992
993 return 0;
994
995 err:
996 for (--i; i >= 0; --i)
997 crypto_unregister_skcipher(&algs[i]);
998
999 return ret;
1000 }
1001 EXPORT_SYMBOL_GPL(crypto_register_skciphers);
1002
1003 void crypto_unregister_skciphers(struct skcipher_alg *algs, int count)
1004 {
1005 int i;
1006
1007 for (i = count - 1; i >= 0; --i)
1008 crypto_unregister_skcipher(&algs[i]);
1009 }
1010 EXPORT_SYMBOL_GPL(crypto_unregister_skciphers);
1011
1012 int skcipher_register_instance(struct crypto_template *tmpl,
1013 struct skcipher_instance *inst)
1014 {
1015 int err;
1016
1017 err = skcipher_prepare_alg(&inst->alg);
1018 if (err)
1019 return err;
1020
1021 return crypto_register_instance(tmpl, skcipher_crypto_instance(inst));
1022 }
1023 EXPORT_SYMBOL_GPL(skcipher_register_instance);
1024
1025 MODULE_LICENSE("GPL");
1026 MODULE_DESCRIPTION("Symmetric key cipher type");